[go: up one dir, main page]

WO2006009099A1 - エチレン及びプロピレンの製造法 - Google Patents

エチレン及びプロピレンの製造法 Download PDF

Info

Publication number
WO2006009099A1
WO2006009099A1 PCT/JP2005/013128 JP2005013128W WO2006009099A1 WO 2006009099 A1 WO2006009099 A1 WO 2006009099A1 JP 2005013128 W JP2005013128 W JP 2005013128W WO 2006009099 A1 WO2006009099 A1 WO 2006009099A1
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
hydrocarbon
carbon atoms
zeolite
reactor
Prior art date
Application number
PCT/JP2005/013128
Other languages
English (en)
French (fr)
Inventor
Takashi Tsunoda
Mitsuhiro Sekiguchi
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN2005800279199A priority Critical patent/CN101006035B/zh
Priority to EP05766311.4A priority patent/EP1770080B1/en
Priority to JP2006529173A priority patent/JP4953817B2/ja
Priority to US11/631,644 priority patent/US7754934B2/en
Priority to BRPI0513338A priority patent/BRPI0513338B1/pt
Publication of WO2006009099A1 publication Critical patent/WO2006009099A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for catalytic conversion of a hydrocarbon feedstock. More specifically, the present invention relates to a method for efficiently and stably producing ethylene and propylene useful as olefinic hydrocarbon raw materials and petrochemical raw materials by using specific zeolite, reaction conditions, and reaction processes.
  • Patent Document 1 discloses a method of converting paraffin, olefin and Z or cycloparaffin (naphthene) having 5 or more carbon atoms into aromatic hydrocarbons, ethylene and propylene using H (proton) type ZSM-5 zeolite. Has been. In this process, aromatic hydrocarbons are obtained in relatively high yields. Ethylene and propylene yields are low.
  • Patent Document 2 discloses a method of converting olefins having 2 to 4 carbon atoms and norafine to aromatic hydrocarbons, ethylene and propylene using proton type ZSM-5 zeolite. However, even in this method, aromatic hydrocarbons are obtained in a relatively high yield, and the yields of ethylene and propylene are low.
  • Patent Documents 3 and 4 disclose a method of converting butene to ethylene and propylene using an aluminophosphate molecular sieve. However, even in this method, the yields of ethylene and propylene are low.
  • Patent Document 5 uses H-type ZSM-5 zeolite with a SiO ZA1 O molar ratio of 350 or more.
  • Patent Document 6 describes that a non-containing material containing a group IB metal having a SiO ZA1 O molar ratio of 200 to 5000.
  • a method for converting olefins having 4 to 12 carbon atoms into ethylene and propylene using a mouth-toned ZSM-5 zeolite is disclosed.
  • olefins having about 4 to 8 carbon atoms can be obtained in addition to ethylene and propylene as reaction products. .
  • Patent Document 5 describes a method of recycling a 4- to 8-carbon olefin excluding aromatic hydrocarbons in a reaction product.
  • Patent Document 6 describes a method of recycling a 4- to 8-carbon olefin from a reaction product by removing a fraction having a boiling point equal to or higher than that of an aromatic hydrocarbon having 8 or more carbon atoms to a reactor.
  • a plurality of separation devices are required to obtain a recycled raw material, and the device and the operating cost are expensive. Therefore, a simpler method is required.
  • Patent Document 1 JP-A-49-41322
  • Patent Document 2 JP-A-50-49233
  • Patent Document 3 U.S. Pat.No. 4,527,001
  • Patent Document 4 U.S. Pat.No. 4,613,721
  • Patent Document 5 European Patent Application Publication No. 0109060
  • Patent Document 6 International Application Publication WO2000Z010948
  • the present invention relates to a method for producing a hydrocarbon raw material containing ethylene and propylene containing at least one kind of olefin having 4 to 12 carbon atoms using a catalyst containing an intermediate pore size zeolite.
  • the purpose is to provide an improved recycling process that can acquire recycled materials in a simple manner and produce ethylene and propylene efficiently and stably.
  • the present inventors have intensively studied to achieve the above object.
  • a hydrocarbon feed containing olefins having 4 to 12 carbon atoms is unexpectedly brought into contact with a specific zeolite-containing catalyst under specific conditions to obtain a reaction mixture containing ethylene and propylene!
  • the reaction mixture can be separated into a fraction having 3 or less carbon atoms and a hydrocarbon having 4 or more carbon atoms, and the hydrocarbon having 4 or more carbon atoms can be used as a raw material for recycling (heavy fraction).
  • the present inventors have found that stable operation is possible without adversely affecting the deterioration of the catalyst. Based on this knowledge, the present invention has been completed.
  • the present invention relates to the manufacturing method shown below.
  • Hydrocarbon raw material containing at least one kind of olefin having 4 to 12 carbon atoms in an amount of 20% by mass or more, containing an intermediate pore size zeolite having a SiO ZA1 O molar ratio of 200 to 5000 in the reactor.
  • the at least one carbon A reaction mixture containing ethylene and propylene is obtained by carrying out a catalytic conversion reaction of olefins having 4 to 12 and a fraction A mainly containing hydrogen and hydrocarbons having 1 to 3 carbon atoms. And a fraction B mainly containing at least one hydrocarbon having 4 or more carbon atoms, and the fraction A force also includes separating ethylene and propylene.
  • AROMAout Ratio of aromatic hydrocarbon component having 6 to 8 carbon atoms in the reaction mixture at the outlet of the reactor [mass%]
  • the fraction A is divided into a fraction A mainly containing hydrogen and a hydrocarbon having 1 to 2 carbon atoms, and a carbon number of 3 To a fraction A containing mainly hydrocarbons, and at least a part of the fraction A is fed to the reactor.
  • a hydrocarbon raw material containing at least one kind of olefin having 4 to 12 carbon atoms in an amount of 20% by mass or more is contained in the reactor with a medium pore diameter zeolite having a SiO ZA1 O molar ratio of 200 to 5000.
  • reaction mixture containing ethylene and propylene is obtained by conducting a catalytic conversion reaction of the olefins having 4 to 12 and the reaction mixture is mainly composed of hydrogen and hydrocarbons having 1 to 2 carbon atoms.
  • a fraction D mainly containing at least one hydrocarbon having 3 or more carbon atoms and the fraction D is separated from a fraction D mainly containing hydrocarbons having 3 carbon atoms and at least one carbon. Is separated into a fraction D mainly containing a hydrocarbon having a number of 4 or more, and the fraction C and
  • a process for producing ethylene and propylene comprising separating ethylene and z or propylene, wherein the process satisfies the following conditions (i) and (ii):
  • AROMAout Ratio of aromatic hydrocarbon component having 6 to 8 carbon atoms in the reaction mixture at the outlet of the reactor [mass%]
  • reaction temperature is 500 to 580 ° C
  • partial pressure of the hydrocarbon feedstock is 0. 05-0 3MPa
  • weight hourly space velocity 2 ⁇ :. L0hr is _ 1, item (1) - ( The method according to any one of 8).
  • At least one selected from the group consisting of metals belonging to Group VIII, Group VIII and Group VIII of the Periodic Table, using a part of the fraction B as part or all of the hydrocarbon raw material The method according to any one of the preceding items (1) to (4), wherein the aromatic hydrocarbon is obtained by contacting a catalyst containing an intermediate pore size zeolite containing a gas phase at a temperature of 650 ° C or lower.
  • a part of the fraction D is used as part or all of the hydrocarbon feedstock, and periodic table II
  • Aromatic carbonization is carried out by contacting a catalyst containing an intermediate pore size zeolite containing at least one selected from the group consisting of metals belonging to Group B, Group X and Group VIII and compounds thereof at a gas phase temperature of 650 ° C or lower.
  • olefinic hydrocarbon raw material propylene and ethylene can be produced efficiently and stably.
  • a hydrocarbon raw material containing 20% by weight or more of at least one kind of olefin having 4 to 12 carbon atoms is used as a raw material for producing ethylene and propylene.
  • the “hydrocarbon raw material” is a hydrocarbon having 1 to 12 carbon atoms, for example, a normal paraffin having 1 to 12 carbon atoms, isoparaffin, olefin, cycloparaffin (naphthene), or cycloparaffin having a side chain alkyl group.
  • the hydrocarbon raw material contains at least one kind of olefin having 4 to 12 carbon atoms in an amount of 20% by weight or more based on the weight of the hydrocarbon raw material.
  • olefin is intended to include linear, branched and cyclic olefins and cycloparaffins.
  • the hydrocarbon raw material contains at least one kind of olefin having 4 to 12 carbon atoms, preferably 30% by weight or more, more preferably 40% by weight or more, and most preferably 50% by weight or more. .
  • the hydrocarbon raw material may contain a small amount of oxygen-containing compounds such as tertiary butanol, methyl tertiary butyl ether, and methanol as impurities. Further, it may contain a small amount of acetylenes such as methylacetylene, propagen, butadiene and pentene. Gen and acetylene promote carbon deposition (coking) on the surface of the catalyst because of their high reactivity. For this reason, while the conversion reaction is continuously performed, the catalyst deteriorates due to coking (coking deterioration), and the catalytic activity decreases.
  • oxygen-containing compounds such as tertiary butanol, methyl tertiary butyl ether, and methanol as impurities.
  • acetylenes such as methylacetylene, propagen, butadiene and pentene.
  • Gen and acetylene promote carbon deposition (coking) on the surface of the catalyst because of their high reactivity
  • the total concentration of gen and acetylene is determined in the hydrocarbon feed at the reactor inlet. 2% by mass or less is preferable. More preferably, it is 1.5 mass% or less, Most preferably, it is 1 mass% or less.
  • Examples of preferable hydrocarbon raw materials that can be used in the method of the present invention include the following. (1) Product power obtained by pyrolyzing petroleum hydrocarbons such as naphtha C4 and C5 fractions to be separated, and diolefins in the C4 and C5 fractions partially hydrogenated to olefins Min
  • the hydrocarbon raw material as described above is brought into contact with a specific zeolite-containing catalyst in a reactor, so that at least one kind of carbon atoms contained in the hydrocarbon raw material has 4 to 4 carbon atoms.
  • a reaction mixture containing ethylene and propylene is obtained, and ethylene and propylene are separated from the obtained reaction mixture.
  • a so-called “medium pore diameter zeolite” having a pore diameter of 5 to 6.5 A is used as the zeolite in the zeolite catalyst.
  • intermediate pore size zeolite means “the pore size range is small pore size zeolite represented by type A zeolite and small pore size zeolite represented by mordenite, X type and Y type zeolite. It means “zeolite in the middle of the pore size”. “Intermediate pore size zeolite” has a so-called oxygen 10-membered ring in its crystal structure.
  • Examples of intermediate pore size zeolites include ZSM-5, ZSM-8, ZSM-11, ZSM-12, ZSM-21, ZSM-23, ZSM-35, ZSM-38, etc. 5, ZSM-5 type zeolite such as ZSM-11 and ZSM-8, and ZSM-38 are preferred. Also by PA Jacobs and JA Martens "Stud. Surf. Sci. Catal.” 33, P. 1 67—215 (1987, Randa) [ZSM-5, ZSM—1U, similar to Zetalite can also be used. Of these, ZSM-5 is particularly preferred.
  • zeolite a zeolite containing a proton type or a metal belonging to Group IB of the periodic table and containing substantially no proton can be used. Zeolite containing a metal belonging to Group IB of the periodic table and substantially free of protons is particularly preferred.
  • a known method can be used to obtain a proton-type zeolite. That is, a method of ion exchange of zeolite obtained by hydrothermal synthesis, drying and firing in an aqueous solution of nitric acid, hydrochloric acid, etc .; an aqueous solution of an ammonium salt such as ammonium nitrate, ammonium chloride, etc. It can be prepared by, for example, a method in which ion exchange is performed to obtain amorphous zeolite, followed by drying and baking to obtain a proton type; a method in which ion exchange is performed with a polyvalent metal cation, and baking is performed.
  • a zeolite containing a metal belonging to Group IB of the periodic table and substantially free of protons can be obtained, for example, by the following method.
  • substantially free of protons means that the amount of protons (acid amount) in the above-mentioned zeolite determined by the liquid phase ion exchange Z filtration droplet method described later is the above. It means 0.02 mmol or less per gram of zeolite. In the present invention, the proton amount per gram of the zeolite is more preferably 0.01 mmol or less.
  • Liquid-phase ion exchange Z filtration droplet method is Intrazeolite Chemistry, “ACS Symp. — This method is described in 527 (1989). Measurement of the amount of protons using this method can be performed as follows.
  • Zeolite baked in air is subjected to an ion exchange treatment using an aqueous NaCl solution, and then the zeolite is recovered by filtration and a filtrate is obtained.
  • the collected zeolite is washed with pure water, and the whole washing solution is collected and mixed with the above filtrate.
  • the amount of proton in the obtained mixed solution is obtained by neutralization titration, and the value is taken as the proton amount of the zeolite.
  • ammonia ion type and polyvalent metal cation type zeolites (for example, rare earth metal cation type zeolites) generate protons by heat treatment. Therefore, prior to the measurement of the proton amount by the above method, the zeolite is calcined. There is a need.
  • group IB metal group IB of the periodic table
  • group IB metal a group force consisting of copper, silver, and gold
  • IB group metal silver, which is preferably copper or silver, is particularly preferable.
  • the “periodic table” refers to CRC Handbook of Chemistry and Physics, 75th edition [(David R. Lide et al., CRC Press Inc. published (1994 1995)]), page 15 The periodic table shall be shown.
  • the above-mentioned "contains a group IB metal” means containing a group IB metal in a corresponding cation state.
  • the group IB metal may be further included in a state other than the cation in addition to the above-described zeolite in the cation state.
  • the group IB metal is included in the oxide state. .
  • a method for incorporating a group IB metal into zeolite a known method such as an ion exchange method, an impregnation method, a kneading method, etc., is preferable for a zeolite that does not contain a group IB metal.
  • group IB metal salt examples include silver nitrate, silver acetate, silver sulfate, copper chloride, copper sulfate, copper nitrate, and gold chloride.
  • the content of the group IB metal is not strictly limited, but is preferably in the range of 0.01 to 5% by weight, more preferably 0.02 to 3% by weight with respect to the weight of zeolite. If the content of the group IB metal is 0.01% by weight or less, the catalyst activity of the zeolite-containing catalyst is insufficient, and the addition of 5% by weight or more usually does not improve the performance of the zeolite-containing catalyst.
  • the content of the group IB metal in zeolite can be determined by a known method such as X-ray fluorescence analysis.
  • the above-mentioned zeolite has a SiO ZA1 O molar ratio of 200 or more, 5
  • the zeolite has a SiO / Al 2 O molar ratio of preferably 220 or more and 4,000 or less, more preferably 250 or more, 3,500 or less, most preferably 500 or more and 3,000 or less.
  • Zeolite's SiO ZA1 O molar ratio is determined according to a known method, for example,
  • a metalloaluminosilicate in which a part of aluminum atoms constituting the zeolite framework is substituted with a metal such as Ga, Fe, B, Cr, or zeolite. It is also possible to use a metal silicate in which all the aluminum atoms constituting the skeleton are substituted with the above metals. In that case, after converting the metal content in the metalloaluminosilicate or metallosilicate to the number of moles of Al O,
  • the SiO 2 / Al 2 O molar ratio is calculated.
  • the zeolite is composed of at least one metal selected from alkali metals and alkaline earth metals, more preferably at least one metal selected from alkali metal power, and more preferably sodium and potassium. Group power It is preferable to further contain at least one metal selected.
  • the zeolite is a zeolite containing both at least one metal selected from alkali metals and alkaline earth metals and a group IB metal.
  • alkali metal and alkaline earth metal force 0.0 based on the weight of the zeolite is at least one content of the metal case of the different forces sodium by, for example, the kind of metal selected from 1 to 0.4 weight 0/0 it is preferred in the case of potassium is 01-0. 8 range of weight 0/0 0. by weight of the zeolite.
  • Alkali metal and alkaline earth metal forces At least one selected metal is preferably included in the corresponding cation state.
  • zeolite When preparing such zeolite, there is no particular limitation on the order and number of times in which the zeolite contains at least one metal selected from alkali metals and alkaline earth metals and the method in which a group IB metal is included. Absent. For example, zeolite contains at least one metal selected from alkali metals and alkali earth metals, and then contains group IB metals. It is also possible to contain at least one metal selected from alkali metals and alkaline earth metals after the inclusion of a group IB metal. However, even in the case of U deviation, as described above, it is preferable that the zeolite after the metal is contained does not substantially contain a proton.
  • At least one kind of metal selected from the group force consisting of metals belonging to Group IIb, III, Vb, VIb, VIIb, and VIII such as Zn and Ga may be further contained.
  • the method of containing these metals is the same as the method of containing the Group IB metal except that the type of metal used is different.
  • the content of these metals is preferably in the range of 0.1 to 2% by weight with respect to the weight of zeolite.
  • the zeolite-containing catalyst can be heat-treated at a temperature of 500 ° C or higher in the presence of water vapor prior to contact with the hydrocarbon raw material.
  • the above heat treatment is preferably performed at a temperature of 500 ° C. or higher and 900 ° C. or lower under a water vapor partial pressure of 0.01 atmospheric pressure or higher.
  • the above-mentioned heat treatment is carried out on a zeolite-containing catalyst containing a group IB metal and substantially free of protons, it can be carried out before the above-mentioned zeolite contains the group IB metal. It is more preferable to carry out after zolite contains a Group IB metal.
  • the coke-degraded catalyst is regenerated by burning off the coke on the catalyst at a temperature of 400-700 ° C, usually in air or a mixed gas consisting of oxygen and inert gas. Can do. In the present specification, this processing is called “reproduction processing”.
  • the heat treatment in the presence of the water vapor can be performed using the water vapor. That is, the same effect as the above heat treatment can be obtained by repeating the regeneration treatment of the zeolite-containing catalyst which has been used for the conversion reaction for a long period of time and has undergone coking deterioration.
  • the zeolite used in the present invention is calcined and the force is also used as a catalyst. be able to.
  • the firing temperature is usually 500 to 900 ° C.
  • the zeolite-containing catalyst When using the zeolite-containing catalyst, it is preferable to form the zeolite-containing catalyst into a molded body in order to obtain particles having an appropriate shape. In that case, it is possible to mold only the above zeolite and use the resulting molded article as a zeolite-containing catalyst.
  • the above zeolite is usually used as a binder or a molding diluent (matrix) with a porous refractory inorganic oxide such as alumina, silica, silica / alumina, zircoa, titania, diatomaceous earth, and clay.
  • the mixture obtained by mixing is molded, and the obtained molded body is used as a zeolite-containing catalyst.
  • the content thereof based on the total weight of Zeoraito and Matoritsu task or binder, preferably 10 to 90 wt%, more rather preferably in the range of 20 to 50 weight 0/0 is there.
  • the catalytic conversion reaction of at least one kind of olefin having 4 to 12 carbon atoms is performed in the reactor by contacting with the zeolite-containing catalyst as described above.
  • the catalytic conversion reaction of olefins having 4 to 12 carbon atoms the olefins having 4 to 12 carbon atoms in the raw material hydrocarbons are converted to ethylene and propylene with high selectivity, and paraffins coexisting in the raw material hydrocarbons. It is preferable to carry out the reaction under the conditions shown below that do not substantially react.
  • the reaction temperature is preferably 400 to 600 ° C, more preferably 500 to 580 ° C.
  • the lower partial pressure of the carbon dioxide hydrogen raw material is usually 0.01 to 0.5 MPa, preferably 0.05 to 0.3 MPa.
  • the contact time between the hydrocarbon feedstock and the zeolite-containing catalyst is preferably 5 seconds or less, more preferably 1 second or less.
  • the hydrocarbon raw material may be a mixture with a diluent gas.
  • dilution gas Power capable of using an inert gas such as hydrogen, methane, water vapor, nitrogen, etc.
  • hydrogen dilution is not performed. That is, hydrogen is used to suppress the coking deterioration of the catalyst. At the same time, however, a hydrogenation reaction of the produced propylene occurs, which has the adverse effect of reducing the propylene purity (propylene Z (propylene + propane)).
  • it is preferable not to dilute the hydrogen. because the coking deterioration of the catalyst is small and stable operation is possible without diluting the hydrogen, it is preferable not to dilute the hydrogen. (However, a small amount of hydrogen supplied to the reactor by recycling of the C2-distillation described later does not have the adverse effect of hydrogen dilution described above.)
  • the reactor for bringing the hydrocarbon raw material into contact with the zeolite-containing catalyst may be any of a fixed bed type, a moving bed type, a fluidized bed type, or an air flow type reactor.
  • the zeolite-containing catalyst used in the method of the present invention is unlikely to deteriorate due to coking. Therefore, even if a fixed bed reactor is used, it becomes possible to stably produce ethylene and propylene over a long period of time.
  • the paraffin conversion reaction is a large endothermic reaction, while the olefin conversion reaction is a slightly endothermic reaction or an exothermic reaction, depending on the reaction conditions. For this reason, when selectively reacting olefins in hydrocarbon feeds under the above-mentioned conditions where paraffins do not substantially react, it is not necessary to supply heat of reaction, so a one-stage adiabatic fixed bed reaction with a simple structure. A vessel can also be used.
  • reaction mixture strength ethylene and propylene containing ethylene and propylene obtained as described above are separated.
  • the reaction mixture is made up of a fraction A mainly containing hydrogen and a hydrocarbon having 1 to 3 carbon atoms and at least one hydrocarbon having 4 or more carbon atoms. It is preferable to separate into mainly fraction F and to separate ethylene and propylene from fraction A.
  • the reaction mixture is mixed with a fraction C mainly containing hydrogen and a hydrocarbon having 1 to 2 carbon atoms, and at least one kind.
  • fraction D mainly containing hydrocarbons having 3 or more carbon atoms
  • this fraction D is divided into a fraction D mainly containing hydrocarbons having 3 carbon atoms and at least one kind of carbon atoms having 4 or more carbon atoms. Separating into fraction D mainly containing hydrocarbons, and separating the above fraction C and D force ethylene and propylene.
  • AROMAout indicates the ratio [mass%] of the aromatic hydrocarbon component having 6 to 8 carbon atoms in the hydrocarbon feedstock at the reactor inlet, and AROMAout indicates the carbon in the reaction mixture at the reactor outlet.
  • the ratio (mass%) of the aromatic hydrocarbon component of the number 6 to 8 is shown.
  • P represents the partial pressure [MPa] of the hydrocarbon raw material.
  • delta AROMA shows the yields [mass 0/0] of aromatic hydrocarbon component of C 6-8 produced in the reactor. Therefore, the above formula shows that it is desirable to suppress the generation of aromatic hydrocarbon components having 6 to 8 carbon atoms as much as possible in order to obtain ethylene and propylene efficiently.
  • AAROMAZP> 13 that is, aromatic hydrocarbons are likely to be produced
  • catalyst activity is likely to be reduced by coking.
  • the aromatic hydrocarbon components with 6 to 8 carbon atoms produced in the reactor increase, the yield of ethylene and propylene decreases and the carbonization of the aromatic material with 6 to 8 carbon atoms in the recycled raw material is reduced.
  • the ratio of hydrogen components and hydrocarbon components with 9 or more carbon atoms increases. As a result, accumulation in the reaction system and promotion of coking become problems.
  • a method for controlling the production of the aromatic hydrocarbon component having 6 to 8 carbon atoms in the method of the present invention is not limited, but in general, the conversion rate of olefins in the hydrocarbon raw material is controlled. Lowering method is adopted.
  • the olefin conversion ratio refers to the butene standard olefin conversion ratio expressed by the following equation.
  • Olefin conversion rate (%) ⁇ (Olefin concentration of 4 or more carbon atoms in hydrocarbon feed at the reactor inlet) Butene concentration in hydrocarbon components at the reactor exit) Carbon number in hydrocarbon feed at the Z reactor inlet Olefin concentration of 4 or more ⁇ X 100
  • the preferred olefin conversion is 40 to 75% by mass.
  • the means for reducing the olefin conversion ratio is not limited, but the weight time space velocity of the hydrocarbon raw material is increased; the reaction temperature is decreased; or the medium pore diameter zeolite-containing catalyst is increased.
  • zeolite containing a metal belonging to Group IB of the periodic table and substantially free of protons. This is because the zeolite suppresses the production of aromatic hydrocarbons having 6 to 8 carbon atoms compared to the commonly used H-type zeolite, so that the olefin conversion rate can be further increased. It is for producing the effect that the yield of can be increased.
  • the preferable recycle ratio of the fraction B or D is 10 to 95.
  • the proportion of the components is preferably 20% by mass or less, more preferably 15% by mass or less. This is because ethylene and propylene cannot be obtained efficiently under conditions where the ratio of the hydrocarbon component having 9 or more carbon atoms exceeds 20% by mass.
  • Figure 1 shows one preferred embodiment of the recycling reaction system when C4 fraction is used as the hydrocarbon feedstock.
  • a reaction mixture (a mixture of hydrogen and a hydrocarbon having 1 or more carbon atoms) is divided into a fraction mainly containing hydrogen and a hydrocarbon having 1 to 3 carbon atoms (hereinafter referred to as “H
  • C3 separator a fraction mainly containing at least one hydrocarbon having 4 or more carbon atoms
  • C4 + fraction a fraction mainly containing at least one hydrocarbon having 4 or more carbon atoms
  • the apparatus (C3 separator) used for the separation for example, a distillation tower, a flash drum (gas-liquid separator) and the like can be used, but a distillation tower is preferably used. Ethylene and propylene are recovered from the obtained H to C3 fraction.
  • the H to C3 fraction is a fraction mainly containing hydrogen and hydrocarbons having 1 to 2 carbon atoms (hereinafter referred to as
  • C2 separator a fraction mainly containing hydrocarbons having 3 carbon atoms
  • C3 fraction a fraction mainly containing hydrocarbons having 3 carbon atoms
  • the apparatus (C2 separator) used for the separation for example, a distillation column, a flash drum (gas-liquid separator) and the like can be used, and a distillation column is preferably used.
  • the C2 separator for example, a distillation column, a flash drum (gas-liquid separator) and the like can be used, and a distillation column is preferably used.
  • the ethylene in the C2 fraction can be used as a part of the raw material. Since the C2— fraction contains hydrogen, methane, and ethane in addition to ethylene, hydrogen, methane, and ethane accumulate when the entire C2— fraction is recycled.
  • the amount of C2— fraction to be recycled to the reactor is limited to a portion of the C2— fraction obtained so that hydrogen, methane Control the accumulation of ethane.
  • the C3 fractional force recovers propylene, but can be used as it is as chemical grade propylene if the reaction conditions and separation conditions are set appropriately.
  • the C4 + fraction includes a fraction mainly containing hydrocarbons having 4 carbon atoms (hereinafter referred to as "C4 fraction”! And at least one carbon atom having 5 or more carbon atoms. It can be separated into a fraction mainly containing hydrogen (hereinafter referred to as “C5 + fraction”).
  • the location where the C4 fraction is separated from the C4 + fraction can be either before or after recycling the C4 + fraction.
  • the apparatus (C4 separator) used for the separation for example, a distillation tower, a flash drum (gas-liquid separator) and the like can be used, and a distillation tower is preferably used. At least a portion of the C4 fraction and Z or C5 + fraction obtained can be recycled to the reactor and used as part of the feed hydrocarbon.
  • Fig. 2 shows another preferred embodiment of the recycle reaction system when the C4 fraction is used as a hydrocarbon feedstock.
  • a reaction mixture (a mixture of hydrogen and a hydrocarbon having 1 or more carbon atoms) is divided into a fraction mainly containing hydrogen and a hydrocarbon having 1 to 2 carbon atoms (hereinafter referred to as “C 2 -fraction”), and at least one kind.
  • C3 + fraction Into a fraction mainly containing hydrocarbons with 3 or more carbon atoms (hereinafter referred to as “C3 + fraction”).
  • the apparatus (C2 separator) used for the separation for example, a distillation column, a flash drum (gas-liquid separator) or the like can be used, and a distillation column is preferably used.
  • Ethylene is recovered from the obtained C2-fraction.
  • at least a part of the C2 fraction is recycled to the reactor, and the ethylene in the C2 fraction is used as a part of the raw material. .
  • the C3 + fraction is mainly composed of a fraction mainly containing hydrocarbons having 3 carbon atoms (hereinafter referred to as "C3 fraction") and at least one hydrocarbon having 4 or more carbon atoms. Separated into fractions containing (hereinafter referred to as “C4 + fraction”).
  • C3 separator for example, a distillation tower, a flash drum (gas-liquid separator) and the like can be used, but a distillation tower is preferably used.
  • the C3 fractional force recovers propylene, but can be used as it is as chemical grade propylene if the reaction and separation conditions are set appropriately.
  • the C4 + fraction is recycled to the reactor and used as a part of the raw material.
  • C4 + fraction is included in the raw material hydrocarbon Butane is concentrated. Therefore, since the butane is accumulated when the entire amount of C4 + fraction is recycled, the amount of C4 + fraction to be recycled to the reactor is limited to a part of the C4 + fraction obtained, thereby accumulating butane. Control.
  • the C4 + fraction includes a fraction mainly containing hydrocarbons having 4 carbon atoms (hereinafter referred to as “C4 fraction”!).
  • C5 + fraction mainly containing hydrocarbons having 5 or more carbon atoms
  • the location where the C4 fraction is separated from the C4 + fraction can be either before or after recycling the C4 + fraction.
  • the apparatus (C4 separator) used for the separation for example, a distillation column, a flash drum (gas-liquid separator) and the like can be used, and a distillation column is preferably used. At least a part of the obtained C4 fraction and Z or C5 + fraction can be recycled to the reactor and used as part of the feed hydrocarbon.
  • the production of ethylene and propylene by the above catalytic rolling and the production of ethylene and propylene by the steam cracking method are carried out in parallel, thereby producing hydrocarbons.
  • the yield of ethylene and propylene per raw material can be improved.
  • by-products such as methane can be suppressed, the purification of ethylene and propylene can be carried out efficiently.
  • the fraction B or D is supplied to a tubular pyrolysis furnace and subjected to steam cracking.
  • steam cracking is performed under the conditions of a temperature in a tubular pyrolysis furnace of 750 to 850 ° C, a pressure of 0 to 15 kgZcm2G, a residence time of 0.1 to 0.8 seconds, and a steam Z hydrocarbon weight ratio of 0.1 to 1. It is preferable to carry out below.
  • An aromatic hydrocarbon having 6 to 9 carbon atoms can be obtained by using a part of the hydrocarbon raw material as a part or all of the hydrocarbon raw material and bringing it into contact with an intermediate pore size zeolite-containing catalyst.
  • this reaction is referred to as “catalytic cyclization reaction”.
  • the hydrocarbon raw material that can be added to the fraction B or the fraction D is a hydrocarbon having 1 to 12 carbon atoms, for example, 1 to 12 carbon atoms.
  • the raw materials mainly containing at least one kind selected from the group power consisting of normal paraffin, isoparaffin, olefin, cycloparaffin (naphthene), and cycloparaffin having a side chain alkyl group. Also,
  • the hydrocarbon raw material used for the catalytic cyclization reaction may contain a small amount of oxygen-containing compounds such as tertiary butanol, methyl tertiary butyl ether, and methanol as impurities. Further, it may contain a small amount of acetylenes, such as methylacetylene, propagen, butadiene, pentene and the like.
  • Examples of preferred ones include the following as described above.
  • a so-called “medium pore diameter zeolite” having a pore diameter of 5 to 6.5 A is used.
  • the meaning and examples of the term “medium pore diameter zeolite” are the same as described above.
  • the intermediate pore diameter zeolite-containing catalyst used for this catalytic cyclization reaction becomes a more suitable catalyst by adding a hydrogenated Z dehydrating metal component to the catalyst.
  • a hydrogenated Z dehydrating metal component in particular, at least one selected from metals belonging to Group II B, Group VIII and Group VIII of the Periodic Table and their compounds.
  • the metals belonging to Group VIII, Group VIII and Group VIII of the periodic table and their compounds are preferably zinc, gallium, indium, nickel, noradium, platinum and their oxides, complex oxides, Zinc, zinc oxide, zinc complex oxides such as zinc aluminate are preferable.
  • the amount of metals belonging to Group VIII, Group VIII and Group VIII of the periodic table and their compounds with respect to the zeolite-containing catalyst is preferably 0.1 to 20% by mass in terms of metal.
  • a zeolite included in the above-mentioned catalyst having a medium pore diameter zeolite a zeolite containing a proton type or a group IB metal, that is, at least one metal selected from the group force consisting of copper, silver, and gold is used. be able to.
  • group IB metals silver is particularly preferred, with copper and silver being preferred. Examples of a method for obtaining a proton type zeolite and a method for incorporating a group IB metal in zeolite are as described above.
  • the content of the Group IB metal is not strictly limited, it is preferably 0.1 to LO weight%, more preferably 0.2 to 5 weight% with respect to the weight of zeolite. If the content of the group IB metal is less than 0.1% by weight, the activity for catalytic cyclization reaction is not sufficient. If it exceeds 10% by weight, the performance will not be improved.
  • SiO ZA1 O molar ratio is not particularly limited
  • the SiO 2 / Al 2 O molar ratio is about 20 to 500, preferably 28 to 300
  • meta-aluminosilicate in which a part of the aluminum atoms constituting the zeolite framework is substituted with metals such as Ga, Fe, B, Cr, etc., and the zeolite framework. It is also possible to use a metal silicate in which all of the aluminum atoms are replaced with the above metals. In that case, the metal content in the metal mouth aluminosilicate or metallosilicate was converted to the number of moles of Al 2 O.
  • the alkali metal and alkaline earth metal content of zeolite and the heat treatment of zeolite in the presence of water vapor are the same as described above.
  • coking deterioration may occur.
  • the coke on the catalyst is burned and removed at a temperature of 400 to 700 ° C, so that it can be regenerated.
  • water vapor is generated during the regeneration treatment, the heat treatment in the presence of the water vapor can be performed using the water vapor. That is, the same effect as the above heat treatment can be obtained by repeating the regeneration treatment of the zeolite-containing catalyst that has been used for the long-term indirect catalyzing reaction and has undergone coking degradation.
  • zeolite used in the catalytic cyclization reaction can be calcined and used as a force catalyst.
  • the firing temperature is usually 500 to 900 ° C.
  • the zeolite-containing catalyst when using the zeolite-containing catalyst in the catalytic cyclization reaction, it is preferable to form the zeolite-containing catalyst into a molded body in order to obtain particles having an appropriate shape. In that case, only the above zeolite can be molded, and the resulting molded body can be used as a zeolite-containing catalyst.
  • porous materials such as alumina, silica, silica Z-alumina, zirconia, titania, diatomaceous earth, clay, etc.
  • a mixture obtained by mixing the above-mentioned zeolite with the above refractory inorganic acid oxide as a binder or a diluent for molding (matrix) is molded, and the obtained molded body is used as a zeolite-containing catalyst.
  • the content thereof based on the total weight of Zeoraito and Matoritsu task or binder, preferably 5 to 90 weight 0/0, more preferably from 10 to 50 weight 0/0 is there.
  • the conditions for the catalytic cyclization reaction of the present invention vary depending on the amount of hydrocarbon raw material, particularly the amount of olefin and paraffin in the raw material, but at a temperature of 300 to 650 ° C, carbonization of 0.01 to 3 MPa is possible.
  • hydrogen partial pressure is the preferred instrument more preferably the weight hourly space velocity of 0. l ⁇ 50hr _1 at a temperature of 400 to 600 ° C.
  • any of a fixed bed type, moving bed type, and fluidized bed type reactor can be applied, and the reaction mode is not particularly limited, but a preferable one is an adiabatic type having a simple structure.
  • a fixed bed reactor may be mentioned.
  • K WHSV X ln [l / (l -X)]
  • WHSV (hr _1 ) is the weight hourly space velocity of the feedstock relative to the weight of the zeolite
  • X (unitless) is the butene-based olefin fin conversion rate ⁇ (the number of carbon atoms in the feed Refin concentration (mass%) — butene concentration in product (mass%)) Z olefin content (mass%) ⁇ having 4 to 8 carbon atoms in Z raw material.
  • Catalyst A was packed in a quartz glass reactor with an inner diameter of 16 mm and steamed for 5 hours under conditions of a temperature of 650 ° C, a steam flow rate of 27.6 gZhr, and a nitrogen flow rate of 140 NccZmin.
  • the proton amount of catalyst A after the steaming treatment was determined by liquid phase ion exchange Z filtration droplet method, and found to be 0.002 mmol / g.
  • the steamed catalyst A10 g was charged into a Hastelloy C reactor having an inner diameter of 17 mm.
  • the reaction product obtained was cooled to about 30 ° C using a heat exchanger at the reactor outlet, the gas It was introduced into a liquid separation drum, and the liquid (C4 + fraction) was separated and collected.
  • the composition of the recovered C4 + fraction is shown in Table 1.
  • a C4 + recycling experiment was conducted for 24 hours under the following experimental conditions.
  • Sample gas volume lml (sampling line is kept at 200-300 ° C to prevent liquefaction)
  • Temperature rising program Hold at 40 ° C for 12 minutes, then increase the humidity to 200 ° C at 5 ° CZ, Hold at 200 ° C for 22 minutes.
  • FID detector Air supply pressure 50kPa (about 500mlZ min), hydrogen supply pressure 60kPa (about 50ml Z min)
  • Measurement method A TCD detector and an FID detector were connected in series, hydrogen and hydrocarbons having 1 and 2 carbon atoms were detected by the TCD detector, and hydrocarbons having 3 or more carbon atoms were detected by the FID detector. Ten minutes after the start of analysis, the detection output was switched to FID for TCD force.
  • Example 1 From the comparison between Example 1 and Comparative Example 1, it was found that even if the C4 + fraction was used as a recycling raw material without removing heavy components, it did not adversely affect the deterioration of the catalyst. It was also found that the non-aromatic components having 6 to 8 carbon atoms in the C 4 + fraction can be effectively used for the production of propylene and ethylene.
  • Reactor feed as C4 raffinate one 2 26. 8gZhr, C4 + fraction 27. 2 g / hr, ethylene 6gZhr (WHSV 6hr _1) and to other than the Example 1 under the same conditions, recycling of ethylene considerable experimental Went.
  • SiO ZA1 Extrusion molding of Na-type ZSM-5 with a molar ratio of 1200 (SiO binder 3
  • Catalyst B has an inner diameter of 27mm
  • the reactor was packed in a C reactor and steamed for 5 hours under the conditions of a temperature of 650 ° C, a steam flow rate of 214 gZhr, a nitrogen flow rate of 400 NLZ hr, and a pressure of 0. IMPaG.
  • the amount of proton in catalyst B after the steaming treatment was determined to be 0.002 mmol / g by liquid phase ion exchange Z filtration droplet determination.
  • the steamed catalyst B60g was charged into a Hastelloy C reactor with an inner diameter of 27 mm.
  • Regeneration temperature 500-550 ° C
  • regeneration pressure 0.5 MPaG
  • nitrogen + air flow rate 1008NLZhr
  • oxygen concentration 1-5% by volume
  • regeneration time 10 hours.
  • Table 2 shows the yield (% by mass) relative to C4 rough rice tomato 2.
  • AAROMAZP was 3.5.
  • the regeneration gas at the outlet of the reactor is periodically sampled, the regeneration gas is analyzed using a gas chromatograph, and the CO and CO concentrations are measured.
  • the yield (% by mass) based on C4 raffinate-2 is shown in Table 2. The coke yield was 77 mass ppm.
  • Example 3 Compared with Example 3, it was found that C4 + fraction recycling improves the yield of ethylene and propylene. In addition, the coke yield did not increase even if the C4 + fraction was recycled as it was.
  • Catalyst C was packed into a Hastelloy C reactor with an inner diameter of 27 mm and steamed for 3 hours under conditions of a temperature of 650 ° C, a steam flow rate of 214 g / hr, a nitrogen flow rate of 400 NLZhr, and a pressure of 0. IMPaG.
  • the steamed catalyst C39.6 g was charged into a Hastelloy C reactor having an inner diameter of 27 mm ⁇ .
  • Feed rate of C4 + fraction obtained in Example 3 was 10.9 gZhr, reaction temperature was 515 ° C, pressure was 0.
  • the reaction was carried out at 5 MPa.
  • the yield of aromatic hydrocarbons having 6 to 9 carbon atoms 2 hours after the start of the reaction was 45.32% by mass.
  • the yield based on C4 rough rice tomato 2 was 22.08% by mass of ethylene 9.08, propylene 38.05, and C6-C9 aromatic hydrocarbon. .
  • composition of C 4 roughine toe 2 and C 4 + fraction (% by mass) Ingredient C 4 rough rice toe 2 C 4 + fraction Methylacetylene 0.07 0.00 Propagen 0.22 0.00 Propylene 0.18 0.01 Propane 0.04 0.00 Butadiene 1.69 0.02 Butene 78.73 7.89 butane 17.94 4.06 pentene 0.30 20.47 pentane 0.53 2.17 benzene 0.00 2.54
  • the production method of the present invention is a method for producing hydrocarbon raw materials containing olefin, ethylene and propylene. it can. Therefore, it is industrially useful as the above production method.
  • FIG. 1 is a flow sheet showing an embodiment of a system configuration used for producing ethylene and propylene by the method of the present invention.
  • FIG. 2 is a flow sheet showing another embodiment of the system configuration used for producing ethylene and propylene by the method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、少なくとも1種の炭素数4~12のオレフィンを含有する炭化水素原料をゼオライト含有触媒と接触させて、エチレンおよびプロピレンを含有する反応混合物を得、反応混合物を水素から炭素数3の炭化水素から成る留分と炭素数4以上の炭化水素とに分離し、炭素数4以上の炭化水素をそのまま反応器にリサイクルすることを含む、エチレン及びプロピレンを効率よく安定に製造する方法を開示する。

Description

明 細 書 技術分野
[0001] 本発明は、炭化水素原料を接触転化する方法に関する。さらに詳しくは、特定のゼ オライト、反応条件、反応プロセスを用いることによって、ォレフィン系炭化水素原料 力 石油化学原料として有用なエチレン及びプロピレンを効率よく安定に製造する方 法に関する。
背景技術
[0002] ォレフィン類を含有する炭化水素原料を、ゼォライトを含有する触媒を用いて接触 転ィ匕する方法については、多くの方法が知られており、そのような接触転化によって 、エチレン及びプロピレンを製造する方法についても、多くの報告がある。
特許文献 1には、 H (プロトン)型 ZSM— 5ゼォライトを用いて炭素数 5以上のパラフ イン、ォレフィン及び Z又はシクロパラフィン (ナフテン)を芳香族炭化水素、エチレン 及びプロピレンに転化する方法が開示されている。し力しこの方法においては、芳香 族炭化水素は比較的高収率で得られる力 エチレンおよびプロピレンの収率は低い
[0003] 特許文献 2には、プロトン型 ZSM— 5ゼォライトを用いて炭素数 2〜4のォレフイン、 ノ ラフィンを芳香族炭化水素、エチレン及びプロピレンに転ィ匕する方法が開示されて いる。し力しこの方法においても、芳香族炭化水素は比較的高収率で得られる力 ェ チレンおよびプロピレンの収率は低 、。
特許文献 3および 4には、アルミノリン酸塩系モレキュラーシーブを用いて、ブテンを エチレンおよびプロピレンに転換する方法が開示されている。しかしこの方法におい ても、エチレンおよびプロピレンの収率が低い。
[0004] 特許文献 5には、 SiO ZA1 Oモル比が 350以上の H型 ZSM— 5ゼォライトを用
2 2 3
いて、炭素数 4〜 12のォレフィンを特定反応条件下でエチレンおよびプロピレンに転 化する方法が開示されて!ヽる。
特許文献 6には、 SiO ZA1 Oモル比が 200〜5000の IB族金属を含有する非プ 口トン型 ZSM— 5ゼォライトを用 、て、炭素数 4〜 12のォレフインをエチレンおよびプ ロピレンに転化する方法が開示されている。
[0005] 炭素数 4〜12のォレフィンをゼオライト含有触媒を用いてエチレンおよびプロピレン に転ィ匕する方法においては、反応生成物としてエチレンおよびプロピレンの他に炭 素数 4〜8程度のォレフィンが得られる。これは、原料ォレフィンが触媒によって 2量 化および分解され、反応条件における平衡組成に近似した組成に変換されるためで ある。従って、原料ォレフィンを効率よくエチレンおよびプロピレンに転化するために は、反応生成物中の炭素数 4以上のォレフィンを簡便な方法で効率よく反応器にリサ イクノレすることが必須である。
[0006] 特許文献 5には、反応生成物力 芳香族炭化水素を除いた炭素数 4〜8のォレフィ ンを反応器にリサイクルする方法について記載がある。また、特許文献 6には、反応 生成物から炭素数 8の芳香族炭化水素以上の沸点を持つ留分を除いた炭素数 4〜 8のォレフインを反応器にリサイクルする方法について記載がある。しかし、これらの 方法においてもリサイクル原料を得るためには複数の分離装置が必要であり、装置 および運転経費が高価になるため、より簡便な方法が求められている。
特許文献 1 :特開昭 49— 41322号公報
特許文献 2 :特開昭 50— 49233号公報
特許文献 3 :米国特許第 4, 527, 001号明細書
特許文献 4:米国特許第 4, 613, 721号明細書
特許文献 5:ヨーロッパ特許出願公開第 0109060号公報
特許文献 6:国際出願公開公報 WO2000Z010948
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、中間細孔径ゼオライト含有触媒を用いて、少なくとも 1種の炭素数 4〜1 2のォレフインを含有する炭化水素原料力 エチレンおよびプロピレンを製造する方 法において、反応生成物力 簡便な方法でリサイクル原料を取得し、効率よく安定に エチレンおよびプロピレンを製造できる、改良されたリサイクルプロセスを提供するこ とを目的とする。 課題を解決するための手段
[0008] 本発明者らは、上記目的を達成すべく鋭意研究を行った。その結果、意外にも炭 素数 4〜 12のォレフィンを含有する炭化水素原料を特定のゼォライト含有触媒と特 定条件下で接触させて、エチレンおよびプロピレンを含有する反応混合物を得る方 法にお!、て、該反応混合物を炭素数 3の炭化水素以下の留分と炭素数 4以上の炭 化水素とに分離し、炭素数 4以上の炭化水素をそのままリサイクル原料として用いて も (重質分を除去しない)、触媒の劣化に悪影響を及ぼさず安定な運転が可能である ことを見出し、この知見に基づき、本発明を完成するに至った。
[0009] すなわち、本発明は下記に示された製造方法に関する。
(1)少なくとも 1種の炭素数 4〜 12のォレフインを 20質量%以上含有する炭化水素 原料を、反応器内で SiO ZA1 Oモル比が 200〜5000の中間細孔径ゼオライト含
2 2 3
有触媒と反応温度 400〜600°C、該炭化水素原料の分圧 0. 01-0. 5MPa、重量 時間空間速度 1〜: LOOhr—1の条件下で接触させて、該少なくとも 1種の炭素数 4〜1 2のォレフインの接触転ィ匕反応を行うことにより、エチレンおよびプロピレンを含有する 反応混合物を得、該反応混合物を水素および炭素数 1〜3の炭化水素を主に含む 留分 Aと少なくとも 1種の炭素数 4以上の炭化水素を主に含む留分 Bとに分離し、該 留分 A力もエチレンおよびプロピレンを分離することを包含する、エチレンおよびプロ ピレンの製造方法であって、下記 (i)および (ii)の条件を満足する上記方法:
(1) AAROMA/P≤13
Δ AROMA = AROMAout— AROMAin
(AROMAin:該反応器入口における該炭化水素原料中の炭素数 6〜8の 芳香族炭化水素成分の比率 [質量%]
AROMAout:該反応器出口における該反応混合物中の炭素数 6〜8の芳 香族炭化水素成分の比率 [質量%]
P:該炭化水素原料の分圧 [MPa] )を満たすこと;及び
(ii) 該留分 Bの 10〜95質量%を該反応器にリサイクルし、該炭化水素原料とし て用いること。
(2)該留分 Aを、水素および炭素数 1〜2の炭化水素を主に含む留分 Aと、炭素数 3 の炭化水素を主に含む留分 Aとに分離し、該留分 Aの少なくとも一部を該反応器に
2 1
リサイクルし、該炭化水素原料の一部として用いる、前項(1)に記載の方法。
(3)該留分 Bの 15〜90質量%を該反応器にリサイクルし、該炭化水素原料の一部と して用いる、前項(1)に記載の方法。
(4)該 (i)式が Δ AROMAZP≤ 10を満たす、前項(1)に記載の方法。
(5)少なくとも 1種の炭素数 4〜 12のォレフインを 20質量%以上含有する炭化水素 原料を、反応器内で SiO ZA1 Oモル比が 200〜5000の中間細孔径ゼオライト含
2 2 3
有触媒と反応温度 400〜600°C、該炭化水素原料の分圧 0. 01-0. 5MPa、重量 時間空間速度 1〜: LOOhr—1の条件下で接触させて、該少なくとも 1種の炭素数 4〜1 2のォレフインの接触転ィ匕反応を行うことにより、エチレンおよびプロピレンを含有する 反応混合物を得、該反応混合物を水素および炭素数 1〜2の炭化水素を主に含む 留分 Cと少なくとも 1種の炭素数 3以上の炭化水素を主に含む留分 Dとに分離し、該 留分 Dを、炭素数 3の炭化水素を主に含む留分 Dと、少なくとも 1種の炭素数 4以上 の炭化水素を主に含む留分 Dとに分離し、該留分 Cおよび
2 Zまたは該留分 Dから
1 エチレンおよび zまたはプロピレンを分離することを包含するエチレンおよびプロピレ ンの製造方法であって、下記 (i)および (ii)の条件を満足する上記方法:
(i) AAROMA/P≤13
Δ AROMA = AROMAout— AROMAin
(AROMAin:該反応器入口における該炭化水素原料中の炭素数 6〜8の 芳香族炭化水素成分の比率 [質量%]
AROMAout:該反応器出口における該反応混合物中の炭素数 6〜8の芳 香族炭化水素成分の比率 [質量%]
P:該炭化水素原料の分圧 [MPa] )を満たすこと;及び
(ii) 該留分 Bの 10〜95質量%を該反応器にリサイクルし、該炭化水素原料とし て用いること。
(6)該留分 Dの少なくとも一部を該反応器にリサイクルし、該炭化水素原料の一部と
2
して用いる、前項(5)に記載の方法。
(7)該留分 Dの 15〜90質量%を該反応器にリサイクルし、該炭化水素原料として用 いる、前項 (5)に記載の方法。
(8)該 (i)式が Δ AROMAZP≤ 10を満たす、前項(5)に記載の方法。
(9)該ゼオライトが、 ZSM— 5型ゼオライトよりなる群力 選ばれる、前項(1)〜(8)の いずれか 1項に記載の方法。
(10)該ゼオライト含有触媒中のゼォライトが、周期律表第 IB族に属する金属を含有 し、実質的にプロトンを含まない、前項(1)〜(8)のいずれ力 1項に記載の方法。
(11)該反応器が、断熱型固定床反応器である、前項(1)〜(8)のいずれか 1項に記 載の方法。
(12)該反応温度が 500〜580°C、該炭化水素原料の分圧が 0. 05-0. 3MPa、該 重量時間空間速度が 2〜: L0hr_ 1である、前項(1)〜(8)のいずれか 1項に記載の方 法。
(13)該留分 Bの一部を炭化水素原料の一部または全部として用い、周期律表第 ΠΒ 族、 ΠΙΒ族および VIII族に属する金属及びそれらの化合物からなる群より選ばれる 少なくとも 1つを含有する中間細孔径ゼオライト含有触媒と気相 650°C以下の温度で 接触させて、芳香族炭化水素を得る、前項(1)〜(4)のいずれ力 1項に記載の方法。
(14)該留分 Bの一部を炭化水素原料の一部として用いる場合において、さらに、該 留分 Aから分離された水素および炭素数 1〜2の炭化水素を主に含む留分 Aを該炭 化水素原料の一部として用いる、前項(13)に記載の方法。
(15)該留分 Dの一部を炭化水素原料の一部または全部として用い、周期律表第 II
2
B族、 ΠΙΒ族および VIII族に属する金属及びそれらの化合物からなる群より選ばれる 少なくとも 1つを含有する中間細孔径ゼオライト含有触媒と気相 650°C以下の温度で 接触させて、芳香族炭化水素を得る、前項 (5)〜(8)のいずれ力 1項に記載の方法。
(16)該留分 Dの一部を炭化水素原料の一部として用いる場合において、さらに、留
2
分 Cを該炭化水素原料の一部として用いる、前項(15)に記載の方法。
発明の効果
本発明の製造方法によれば、ォレフィン系炭化水素原料力 プロピレンおよびェチ レンを効率よく安定に製造することができる。
発明を実施するための最良の形態 [0011] 以下、本発明を詳細に説明する。
本発明の方法においては、少なくとも 1種の炭素数 4〜12のォレフィンを 20重量% 以上含有する炭化水素原料を、エチレンおよびプロピレンを製造するための原料とし て用いる。
本発明において「炭化水素原料」とは、炭素数 1〜12の炭化水素、例えば炭素数 1 〜 12のノルマルパラフィン、イソパラフィン、ォレフィン、シクロパラフィン(ナフテン)、 側鎖アルキル基を有するシクロパラフィンよりなる群力も選ばれる、少なくとも 1種を主 に含む原料を表わす。
[0012] 本発明の方法において、上記炭化水素原料は、少なくとも 1種の炭素数 4〜 12の ォレフィンを、上記炭化水素原料の重量に対して 20重量%以上含有する。
尚、上記の「ォレフイン」という用語は、直鎖状、分岐状及び環状ォレフィンにカロえ、 シクロパラフィンを含むものとする。
[0013] 一方、上記炭化水素原料におけるォレフィンの含有量が 20%未満では、エチレン 及びプロピレンの収量が不充分になってしまう。本発明の方法において、上記炭化 水素原料は、少なくとも 1種の炭素数 4〜 12のォレフィンを、好ましくは 30重量%以 上、更に好ましくは 40重量%以上、最も好ましくは 50重量%以上含有する。
[0014] また上記の炭化水素原料は、ターシャリーブタノール、メチルターシャリーブチルェ 一テル、メタノール等の含酸素化合物を不純物として少量含んでいてもよい。また、メ チルアセチレン、プロバジェン、ブタジエン、ペンタジェン等のジェン、アセチレン類 を少量含んでいても良い。ジェン、アセチレン類は、その反応性の高さ故、触媒の表 面における炭素質の析出(コーキング)を促進する。このため、転化反応を継続的に 行っているうちに、コーキングによって触媒が劣化 (コーキング劣化)し、触媒活性が 低下する。炭化水素原料中のジェン、アセチレン類の含量に特に制限はないが、ェ チレンおよびプロピレンを効率よく安定に製造するためには、ジェン、アセチレン類 の合計濃度は、反応器入口において炭化水素原料中の 2質量%以下が好ましい。 更に好ましくは 1. 5質量%以下、特に好ましくは 1質量%以下である。
[0015] 本発明の方法において使用可能な炭化水素原料として好ましいものの例としては、 次のようなちのを挙げることがでさる。 (1)ナフサなどの石油系炭化水素を熱分解して得られる生成物力 分離される C4留 分及び C5留分、および該 C4留分及び C5留分中のジォレフインをォレフインに部分 水素化した留分、
(2)上記 C4留分力 ブタジエンおよびイソブテンの一部若しくは全部を分離除去し た留分、
(3)上記 C5留分からイソプレンおよびシクロペンタジェンの一部若しくは全部を分離 除去した留分、
(4)減圧軽油などの石油系炭化水素を流動接触分解 (FCC)して得られる生成物か ら分離される C4留分および Z又はガソリン留分、
(5)コ一力一力 分離される C4留分および Z又はガソリン留分、および
(6)一酸ィ匕炭素と水素力 フィッシャー ·トロプシュ反応 (FT合成)によって合成される 炭化水素から分離される C4留分および Z又はガソリン留分。
またこれらは、単独で用いても、 2種以上を混合して用いてもよい。
[0016] 本発明の方法においては、上記のような炭化水素原料を、反応器内で特定のゼォ ライト含有触媒と接触させて、上記炭化水素原料に含まれる少なくとも 1種の炭素数 4 〜12のォレフィンの接触転化反応を行うことにより、エチレンおよびプロピレンを含有 する反応混合物を得、得られた反応混合物からエチレンおよびプロピレンを分離す る。
[0017] 本発明の方法においては、上記のゼォライト系触媒中のゼォライトとして、 5〜6. 5 Aの細孔径を有する、いわゆる「中間細孔径ゼオライト」を用いる。
用語「中間細孔径ゼオライト」は、「細孔径の範囲が、 A型ゼオライトに代表される小 細孔径ゼオライトの細孔径と、モルデナイトや X型や Y型ゼオライトに代表される大細 孔径ゼオライトの細孔径の中間にあるゼォライト」を意味する。「中間細孔径ゼオライト 」は、その結晶構造中にいわゆる酸素 10員環を有する。
[0018] 中間細孔径ゼオライトの例としては、 ZSM— 5、 ZSM— 8、 ZSM— 11、 ZSM— 12 、 ZSM— 21、 ZSM— 23、 ZSM— 35、 ZSM— 38等力挙げられる力 中でも ZSM 5、 ZSM— 11、 ZSM— 8などの ZSM— 5型ゼオライトや、 ZSM— 38が好ましい。 また、 P. A. Jacobs and J. A. Martens著" Stud. Surf. Sci. Catal. "33, P. 1 67— 215 (1987、才ランダ)【こ記載の、 ZSM— 5、 ZSM— 1 Uこ類似のゼ才ライトを 用いることもできる。これらのうち、 ZSM— 5が特に好ましい。
[0019] また、本発明の方法においては、上記のゼォライトとして、プロトン型若しくは周期 律表第 IB族に属する金属を含有し実質的にプロトンを含まないゼォライトを用いるこ とができる。周期律表第 IB族に属する金属を含有し実質的にプロトンを含まないゼォ ライトが特に好ましい。
[0020] プロトン型ゼオライトを得るために公知の方法が利用できる。即ち、水熱合成後、乾 燥、焼成して得られるゼォライトを硝酸、塩酸等の水溶液中でイオン交換する方法; 硝酸アンモ-ゥム、塩化アンモ-ゥム等のアンモ-ゥム塩の水溶液中でイオン交換し 、アンモ-ゥム型のゼォライトとした後、乾燥、焼成しプロトン型とする方法;多価金属 カチオンでイオン交換し、焼成する方法などによって調製することができる。
[0021] また、周期律表第 IB族に属する金属を含有し実質的にプロトンを含まないゼォライ トは、例えば以下の方法で得ることができる。
[0022] 本発明にお 、て「実質的にプロトンを含まな 、」とは、後述する液相イオン交換 Z濾 液滴定法によって求めた、上記ゼォライト中のプロトン量 (酸量)が、上記ゼォライト 1 グラムあたり 0. 02ミリモル以下であることを意味する。本発明において、上記ゼォライ ト 1グラムあたりのプロトン量は、 0. 01ミリモル以下であることがより好ましい。
[0023] 液相イオン交換 Z濾液滴定法とは、 Intrazeolite Chemistry, 「ACS Symp. S er.」, 218, P369— 382 (1983,米)、日本ィ匕学会誌、 [3] , P. 521— 527 (1989 )等に記載されている方法である。この方法を用いたプロトン量の測定は以下のように して行うことができる。
空気中で焼成したゼォライトを、 NaCl水溶液を用いてイオン交換処理した後、ゼォ ライトを濾過により回収すると共に、濾液を得る。回収したゼォライトを純水で洗浄し、 得られる洗液を全量回収して、上記の濾液と混合する。得られた混合溶液中のプロト ン量を中和滴定により求め、その値をゼオライトのプロトン量とする。
[0024] なお、アンモ -ゥムイオン型及び多価金属カチオン型ゼオライト (例えば希土類金 属カチオン型ゼオライト)は、加熱処理によりプロトンを生成することが知られている。 従って、上記の方法によるプロトン量の測定に先立って、ゼォライトを焼成処理する 必要がある。
[0025] 本発明の方法においては、ゼォライトとして、周期律表第 IB族に属する金属(以降「 IB族金属」と称する)、即ち、銅、銀、金よりなる群力 選ばれる少なくとも 1種の金属 を含有するものを用いる。 IB族金属としては、銅、銀が好ましぐ銀が特に好ましい。 尚、本発明において、「周期律表」とは、 CRC Handbook of Chemistry and Physics, 75th edition [ (David R. Lideら著、 CRC Press Inc.発行(1994 1995年) ]、 1 15頁に記載の周期律表を示すものとする。
[0026] 上記の「IB族金属を含有する」とは、 IB族金属を対応する陽イオンの状態で含むこ とを意味する。ただし、 IB族金属は、上記ゼォライト中に陽イオンの状態で含まれて いるものに加えて、陽イオン以外の状態で更に含まれていてもよぐ例えば酸ィ匕物の 状態で含まれて 、てもよ 、。
[0027] ゼォライトに IB族金属を含有させる方法の例としては、 IB族金属を含有していない ゼォライトを、公知の方法、例えばイオン交換法、含浸法、混練り法等の方法、好まし くはイオン交換法により処理する方法を挙げることができる。
イオン交換法によってゼォライトに IB族金属を含有させる場合、 IB族金属の塩を使 用する必要がある。 IB族金属の塩としては、例えば硝酸銀、酢酸銀、硫酸銀、塩ィ匕 銅、硫酸銅、硝酸銅、塩化金等が挙げられる。
[0028] IB族金属の含有量に厳密な限定はないが、ゼォライトの重量に対し 0. 01〜5重量 %、より好ましくは 0. 02〜3重量%の範囲であることが好ましい。 IB族金属の含有量 が 0. 01重量%以下ではゼオライト含有触媒の触媒活性が不充分であり、また 5重量 %以上添加しても、通常ゼォライト含有触媒の性能は向上しない。なお、ゼォライト中 の IB族金属の含有量は、公知の方法、例えば X線蛍光分析法などにより求めること ができる。
[0029] 本発明の方法においては、上記のゼォライトの SiO ZA1 Oモル比が 200以上、 5
2 2 3
, 000以下であることが必須である。 SiO /Al Oモル比が 200を下回ると、転ィ匕反
2 2 3
応に伴うコーキングによってゼォライト含有触媒が劣化しやすくなる。 SiO /Al O
2 2 3 モル比が 5000を超えると、ゼォライト含有触媒の触媒活性が不充分となる。上記ゼ オライトの SiO /Al Oモル比は、好ましくは 220以上、 4, 000以下、より好ましくは 250以上、 3, 500以下、最も好ましくは 500以上、 3, 000以下であること力 子まし ヽ 。ゼォライトの SiO ZA1 Oモル比は、公知の方法、例えばゼォライトをアルカリ水溶
2 2 3
液に完全に溶解し、得られた溶液をプラズマ発光分光分析法などにより分析し、求め ることがでさる。
[0030] なお、本発明の方法においては、上記のゼォライトとして、ゼォライト骨格を構成す るアルミニウム原子の一部が Ga、 Fe、 B、 Cr等の金属で置換されたメタロアルミノシリ ケートや、ゼォライト骨格を構成するアルミニウム原子が全て上記のような金属で置換 されたメタ口シリケートを用いることもできる。その場合、メタロアルミノシリケートまたは メタロシリケート中における上記の金属の含有量を Al Oのモル数に換算した上で、
2 3
SiO /Al Oモル比を算出する。
2 2 3
[0031] また上記のゼォライトは、アルカリ金属およびアルカリ土類金属カゝら選ばれる少なく とも 1種の金属、より好ましくはアルカリ金属力 選ばれる少なくとも 1種の金属、更に 好ましくはナトリウムおよびカリウムよりなる群力 選ばれる少なくとも 1種の金属を更 に含有することが好ましい。この場合、上記ゼォライトは、アルカリ金属およびアルカリ 土類金属から選ばれる少なくとも 1種の金属と、 IB族金属の両方を含有するゼォライ トであることになる。
ゼォライトにアルカリ金属およびアルカリ土類金属から選ばれる少なくとも 1種の金 属を含有させる方法の例としては、ゼォライトに IB族金属を含有させる方法と同様の 方法を挙げることができる。
[0032] アルカリ金属およびアルカリ土類金属力 選ばれる少なくとも 1種の金属の含有量 は金属の種類により異なる力 例えばナトリウムの場合はゼオライトの重量に対し 0. 0 1〜0. 4重量0 /0、カリウムの場合はゼオライトの重量に対し 0. 01-0. 8重量0 /0の範 囲であることが好ましい。アルカリ金属およびアルカリ土類金属力 選ばれる少なくと も 1種の金属は、対応する陽イオンの状態で含まれることが好ましい。
[0033] そのようなゼォライトを調製する場合、ゼォライトにアルカリ金属およびアルカリ土類 金属から選ばれる少なくとも 1種の金属を含有させる方法と、 IB族金属を含有させる 方法の順序や回数に特に制限はない。例えば、ゼォライトにアルカリ金属およびアル カリ土類金属から選ばれる少なくとも 1種の金属を含有させた後に、 IB族金属を含有 させてもよぐ IB族金属を含有させた後に、アルカリ金属およびアルカリ土類金属から 選ばれる少なくとも 1種の金属を含有させてもょ 、。ただ U、ずれの場合に於 、ても、 上記の通り、金属を含有させた後のゼォライトが、実質的にプロトンを含まないように することが好ましい。
[0034] 所望であれば、コーキング劣化の抑制や、エチレンおよびプロピレンの収率の向上 を目的として、上記ゼォライト含有触媒に、 V、 Cr、 Mo、 W、 Mn、 Pt、 Pd、 Fe、 Ni、 Zn、 Ga等の IIb、 III、 Vb、 VIb、 VIIb、 VIII族に属する金属よりなる群力も選ばれる 少なくとも 1種の金属を、更に含有させて用いてもよい。
これらの金属を含有させる方法は、使用する金属の種類が異なる以外は、上記の I B族金属を含有させる方法と同様である。これらの金属の含有量は、ゼォライトの重 量に対し 0. 1〜2重量%の範囲であることが好ましい。
[0035] また、コーキング劣化に対する耐性をより向上させる目的で、該炭化水素原料との 接触に先立ち、上記ゼォライト含有触媒を、水蒸気の存在下、 500°C以上の温度で 加熱処理することができる。上記の加熱処理は、 500°C以上、 900°C以下の温度で、 水蒸気分圧 0. 01気圧以上の条件で行うことが好ましい。
また、 IB族金属を含有し実質的にプロトンを含まないゼォライト含有触媒に上記の 加熱処理を行う場合は、上記のゼォライトに IB族金属を含有させる前に実施すること もできる。ゼォライトに IB族金属を含有させた後に実施する方がより好ましい。
[0036] なお、上記のゼォライト含有触媒を、長期間転ィ匕反応に用いるとコーキング劣化を 起こす場合がある。その場合には、通常空気中又は酸素と不活性ガスよりなる混合ガ ス中、 400〜700°Cの温度で触媒上のコークを燃焼除去することにより、コーキング 劣化を起こした触媒を再生させることができる。本明細書では、この処理を「再生処理 」と呼ぶ。
[0037] この再生処理の際に水蒸気が発生するので、この水蒸気を利用して、上記の水蒸 気の存在下での加熱処理を行うこともできる。即ち、長期間転ィ匕反応に用い、コーキ ング劣化を起こしたゼォライト含有触媒を再生処理に付すことを繰り返すことにより、 上記の加熱処理と同等の効果を得ることができる。
また所望であれば、本発明で用いられるゼォライトは焼成して力も触媒として用いる ことができる。その場合、焼成温度は通常 500〜900°Cとする。
[0038] また上記ゼォライト含有触媒の使用に際して、適切な形状を有する粒子とするため に、上記ゼォライト含有触媒を成型体とすることが好ましい。その場合、上記のゼオラ イトのみを成型し、得られた成形体をゼオライト含有触媒として用いることもできる。し かし、通常は、アルミナ、シリカ、シリカ/アルミナ、ジルコユア、チタ二了、ケイソゥ土、 粘土等の多孔性耐火性無機酸ィ匕物をバインダーまたは成型用希釈剤 (マトリックス) として上記のゼォライトに混合して得られる混合物を成型し、得られた成形体をゼォ ライト含有触媒として用いる。
マトリックスまたはバインダーを用いる場合、それらの含有量は、ゼォライトとマトリツ タスまたはバインダーの重量の合計に対して、好ましくは 10〜90重量%、より好まし くは 20〜50重量0 /0の範囲である。
[0039] 本発明の方法においては、以上のようなゼォライト含有触媒を用いることにより、 20 重量%以上に及ぶ高濃度のォレフィンを含有する炭化水素原料を用いるにもかかわ らず、従来法に比べゼォライト含有触媒のコーキング劣化が起こりにくい。従って再 生操作を頻繁に繰り返す必要がない。その結果、エチレンおよびプロピレンを長期間 にわたり安定且つ効率よく製造することが可能となる。
[0040] 本発明の方法においては、以上のようなゼォライト含有触媒と接触させることによつ て、反応器内で少なくとも 1種の炭素数 4〜 12のォレフインの接触転化反応を行う。 炭素数 4〜 12のォレフインの接触転ィ匕反応は、原料炭化水素中の炭素数 4〜 12の ォレフィンが高選択率でエチレンおよびプロピレンに転ィ匕され、原料炭化水素中に 共存するパラフィンが実質的に反応しない、以下に示すような条件で行うことが好まし い。反応温度は、好ましくは 400〜600°C、より好ましくは 500〜580°Cである。炭ィ匕 水素原料の分圧は低いほうが望ましぐ通常 0. 01〜0. 5MPa、好ましくは 0. 05〜0 . 3MPaである。ゼォライト含有触媒中のゼォライトの重量に対する炭化水素原料の 重量時間空間速度 WHSVは、 l〜100hr_1、好ましくは 2〜: LOhr_1の範囲であるこ とがより好ましい。炭化水素原料とゼォライト含有触媒との接触時間は、好ましくは 5 秒以下、より好ましくは 1秒以下である。
[0041] また、上記炭化水素原料は希釈ガスとの混合物であってもよい。希釈ガスとしては、 水素、メタン、水蒸気、窒素などの不活性ガスなどを用いることができる力 好ましくは 水素希釈は行わない。即ち、水素は触媒のコーキング劣化を抑制するために使用さ れる。しかし、同時に生成プロピレン等の水素化反応が起こり、プロピレン純度(プロ ピレン Z (プロピレン +プロパン))を低下させる悪影響がある。本発明の方法におい ては、水素の希釈をしなくても触媒のコーキング劣化は小さぐ安定な運転が可能で あるので、水素希釈を行わないほうが好ましい。(ただし、後述の C2—留分のリサイク ル等によって反応器に供給される少量の水素は上記水素希釈におけるような悪影響 を生じない。 )
[0042] 上記のパラフィンが実質的に反応しない条件で転化反応を行うと、炭化水素原料 中のォレフィンの転化反応が選択的に促進され、パラフィンの転化反応は抑制される 。その結果、ノ ラフィンの転ィ匕反応によるメタン、ェタン、プロパン等の副生が抑制さ れ、反応混合物力 のエチレンおよびプロピレンの分離 ·精製が容易になる。
[0043] 本発明の方法において、炭化水素原料をゼオライト含有触媒と接触させるための 反応器は、固定床式、移動床式、流動床式あるいは気流搬送式のいずれの反応器 も利用できる。本発明の方法において用いられるゼォライト含有触媒は、コーキング による劣化を起こしにくい。そのため、固定床反応器を用いても、長期間にわたりェ チレンおよびプロピレンを安定して製造することが可能となる。
また、パラフィンの転ィ匕反応は大きな吸熱反応であり、一方、ォレフィンの転化反応 は、反応条件により異なるが、微吸熱反応または発熱反応である。そのため、上記の パラフィンが実質的に反応しない条件下で、炭化水素原料中のォレフィンを選択的 に反応させる場合、反応熱を供給する必要がなぐそのため構造が簡単な 1段断熱 式の固定床反応器を用いることもできる。
[0044] 以上のようにして得たエチレンおよびプロピレンを含有する反応混合物力 ェチレ ンおよびプロピレンを分離する。具体的に述べると、第 1のプロセスとしては、上記反 応混合物を、水素および炭素数 1〜3の炭化水素を主に含む留分 Aと、少なくとも 1 種の炭素数 4以上の炭化水素を主に含む留分 Bとに分離し、上記留分 Aからェチレ ンおよびプロピレンを分離することが好ましい。第 2のプロセスとしては、上記反応混 合物を、水素および炭素数 1〜2の炭化水素を主に含む留分 Cと、少なくとも 1種の 炭素数 3以上の炭化水素を主に含む留分 Dとに分離し、該留分 Dを、炭素数 3の炭 化水素を主に含む留分 Dと、少なくとも 1種の炭素数 4以上の炭化水素を主に含む 留分 Dとに分離し、上記留分 Cおよび D力 エチレンおよびプロピレンを分離するこ
2 1
とが好ましい。これらの分離工程は、分留、抽出など、種々の公知の方法を組み合わ せること〖こよって実施することができる。
[0045] 前述した通り、上記の反応混合物中には、エチレンおよびプロピレンの他に、炭素 数 4以上のォレフィンおよび芳香族炭化水素等が存在する。従って、反応混合物中 力 炭素数 4以上のォレフィンの全量または一部を分離して反応器にリサイクルし、 再び反応させる、いわゆるリサイクル反応システムを用いることにより、炭化水素原料 の有効利用を図ることができる。
本発明の方法においては、上記留分 Bないしは Dの少なくとも一部を反応器にリサ
2
イタルし、炭化水素原料の一部として用いる。即ち、上記留分 Bないしは Dを精製す
2 ることなく、そのままリサイクル原料として利用するので、最もシンプルなリサイクルプロ セスを構築することができる。
[0046] 本発明の方法において、上記リサイクルプロセス力 エチレン、プロピレンを効率よ く得るためには、
AAROMA/P≤13
とすることが好ましい。より好ましくは
AAROMA/P≤10
である。ここで、
Δ AROMA = AROMAout -AROMAin
である。 AROMAoutとは、該反応器入口における該炭化水素原料中の炭素数 6〜 8の芳香族炭化水素成分の比率 [質量%]を示し、 AROMAoutとは、該反応器出口 における該反応混合物中の炭素数 6〜8の芳香族炭化水素成分の比率 [質量%]を 示す。また Pは、該炭化水素原料の分圧 [MPa]をさす。
[0047] Δ AROMAは反応器内で生成する炭素数 6〜8の芳香族炭化水素成分の収率 [ 質量0 /0]を示す。従って、上記の式は、エチレンおよびプロピレンを効率よく得るため には、炭素数 6〜8の芳香族炭化水素成分の生成を極力抑えることが望ましいことを 表している。 AAROMAZP> 13となる、つまり芳香族炭化水素が生成しやすい反 応条件では、コーキングによる触媒活性の低下を引き起こしやすい。また、反応器内 で生成する炭素数 6〜8の芳香族炭化水素成分が増えることでエチレンおよびプロピ レンの収率が下がるば力りでなぐリサイクル原料中の炭素数 6〜8の芳香族炭化水 素成分及び炭素数 9以上の炭化水素成分の比率が高まる。その結果、反応系内へ の蓄積とコーキング促進が問題となる。
[0048] 本発明の方法における炭素数 6〜8の芳香族炭化水素成分の生成を制御する方 法としては、限定するものではないが、一般には炭化水素原料中のォレフィンの転ィ匕 率を下げる手法が採られる。ここでォレフィンの転ィ匕率とは、下式で表されるブテン基 準のォレフィン転化率をさすこととする。
ォレフィン転化率(%) = { (反応器入口における炭化水素原料中の炭素数 4以上 のォレフイン濃度 反応器出口における炭化水素成分中のブテン濃度) Z反応器入 口における炭化水素原料中の炭素数 4以上のォレフィン濃度 } X 100
好ましいォレフィン転化率は 40〜75質量%である。
[0049] ォレフィン転ィ匕率を下げる手段としては、これも限定するものではないが、該炭化水 素原料の重量時間空間速度を上げる;反応温度を下げる;または中間細孔径ゼオラ イト含有触媒中の中間細孔径ゼオライトの SiO ZA1 Oモル比を上げる等の方法が
2 2 3
用いられる。また、該ゼオライトを変更する際に、先述の周期律表第 IB族に属する金 属を含有し実質的にプロトンを含まな ヽゼオライトを用いると更に好ま Uヽ。これは該 ゼォライトが、一般に用いられる H型ゼオライトよりも炭素数 6〜8の芳香族炭化水素 の生成を抑制するため、よりォレフィン転ィ匕率を高めることが可能となり、従ってェチ レンおよびプロピレンの収量を高められるという効果を生むためである。
[0050] 本発明の方法において、該留分 Bないしは Dの好ましいリサイクル比率は 10〜95
2
質量%であり、 15〜90質量%がより好ましい。該リサイクル比率が 10質量%未満で は、エチレンおよびプロピレンの収量が充分でない。一方、 95質量%より該リサイク ル比率を高くすると、原料炭化水素中に含まれるパラフィン成分や反応器で生成した 炭素数 6〜8の芳香族炭化水素成分の蓄積が顕著になり、反応装置への負荷が過 大になる。 本発明の方法における該留分 Bないしは D中における炭素数 9以上の炭化水素
2
成分の比率は 20質量%以下が好ましぐより好ましくは 15質量%以下である。該炭 素数 9以上の炭化水素成分の比率が 20質量%を超えるような条件では、エチレンお よびプロピレンが効率よく得られないためである。
[0051] 石油系炭化水素のスチームクラッキング生成物から得られる C4留分 (ブタン、イソ ブタン、ブテン、イソブテンなど、炭素数 4の炭化水素を主に含む留分)を炭化水素 原料として用いる場合を例にとり、本発明の方法をより詳しく説明する。
図 1は、 C4留分を炭化水素原料として用いる場合の、リサイクル反応システムの好 ましい一つの態様を示したものである。反応混合物 (水素及び炭素数 1以上の炭化 水素の混合物)を、水素および炭素数 1〜3の炭化水素を主に含む留分 (以降「H
2
〜C3留分」という)と、少なくとも 1種の炭素数 4以上の炭化水素を主に含む留分 (以 降「C4 +留分」という)とに分離する。分離に用いる装置 (C3分離器)としては、例え ば、蒸留塔、フラッシュドラム (気液分離器)などを用いることができるが、好ましくは蒸 留塔を用いる。得られた H〜C3留分から、エチレンおよびプロピレンを回収する。
2 一 方、上記 C4 +留分の少なくとも一部は、反応器にリサイクルして原料の一部として利 用する。 C4 +留分のリサイクルによって、 C4 +留分には原料炭化水素中に含まれる ブタンが濃縮される。そのため、 C4 +留分の全量をリサイクルするとブタンが蓄積さ れるので、反応器にリサイクルする C4 +留分の量を得られた C4 +留分の一部にとど めることによって、ブタンの蓄積を制御する。
[0052] 更に、 H〜C3留分は、水素および炭素数 1〜2の炭化水素を主に含む留分 (以降
2
「C2—留分」と 、う)と、炭素数 3の炭化水素を主に含む留分 (以降「C3留分」 t 、う) とに分離してもよい。分離に用いる装置 (C2分離器)としては、例えば、蒸留塔、フラ ッシュドラム (気液分離器)などを用いることができるが、好ましくは蒸留塔を用いる。 プロピレンを選択的に製造する場合には、この C2—留分の少なくとも一部を反応器 にリサイクルして、 C2—留分中のエチレンを原料の一部として利用することができる。 C2—留分には、エチレンの他に水素、メタン、ェタンが含まれるため、 C2—留分を 全量リサイクルすると水素、メタン、ェタンが蓄積する。そのため、反応器にリサイクル する C2—留分の量を得られた C2—留分の一部にとどめることによって、水素、メタン 、ェタンの蓄積を制御する。一方、 C3留分力 はプロピレンを回収するが、反応条件 および分離条件を適切に設定した場合は、そのままケミカルグレードのプロピレンとし て利用することが可能である。
[0053] また、 C4 +留分は、必要により、炭素数 4の炭化水素を主に含む留分 (以降「C4留 分」と!、う)と、少なくとも 1種の炭素数 5以上の炭化水素を主に含む留分 (以降「C5 +留分」という)とに分離することができる。 C4 +留分から C4留分を分離する個所は 、 C4 +留分をリサイクルする前および後のいずれでも良い。分離に用いる装置 (C4 分離器)としては、例えば、蒸留塔、フラッシュドラム (気液分離器)などを用いることが できるが、好ましくは蒸留塔を用いる。得られた C4留分および Zまたは C5 +留分の 少なくとも一部は、反応器にリサイクルし、原料炭化水素の一部として用いることがで きる。
[0054] 図 2は、 C4留分を炭化水素原料として用いる場合の、リサイクル反応システムの好 ましいもう一つの態様を示したものである。反応混合物 (水素及び炭素数 1以上の炭 化水素の混合物)を、水素および炭素数 1〜2の炭化水素を主に含む留分 (以降「C 2—留分」という)と、少なくとも 1種の炭素数 3以上の炭化水素を主に含む留分 (以降 「C3 +留分」という)とに分離する。分離に用いる装置 (C2分離器)としては、例えば、 蒸留塔、フラッシュドラム (気液分離器)などを用いることができるが、好ましくは蒸留 塔を用いる。得られた C2—留分から、エチレンを回収する。尚、プロピレンを選択的 に製造する場合には、前述の通り、この C2—留分の少なくとも一部を反応器にリサイ クルして、 C2—留分中のエチレンを原料の一部として利用する。
[0055] 一方、上記 C3 +留分は、炭素数 3の炭化水素を主に含む留分 (以降「C3留分」と いう)と、少なくとも 1種の炭素数 4以上の炭化水素を主に含む留分 (以降「C4 +留分 」という)とに分離する。分離に用いる装置 (C3分離器)としては、例えば、蒸留塔、フ ラッシュドラム (気液分離器)などを用いることができるが、好ましくは蒸留塔を用いる。 C3留分力 はプロピレンを回収するが、反応条件および分離条件を適切に設定した 場合は、そのままケミカルグレードのプロピレンとして利用することが可能である。
[0056] 一方、上記 C4 +留分の少なくとも一部は反応器にリサイクルして原料の一部として 利用する。 C4 +留分のリサイクルによって、 C4 +留分には原料炭化水素中に含ま れるブタンが濃縮される。そのため、 C4 +留分の全量をリサイクルするとブタンが蓄 積されるため、反応器にリサイクルする C4 +留分の量を得られた C4 +留分の一部 にとどめることによって、ブタンの蓄積を制御する。また、図 1に関して上で説明したの と同様に、 C4 +留分は、必要により、炭素数 4の炭化水素を主に含む留分 (以降「C 4留分」と!、う)と、少なくとも 1種の炭素数 5以上の炭化水素を主に含む留分 (以降「 C5 +留分」という)とに分離することができる。 C4 +留分から C4留分を分離する個所 は、 C4 +留分をリサイクルする前および後のいずれでも良い。分離に用いる装置 (C 4分離器)としては、例えば、蒸留塔、フラッシュドラム (気液分離器)などを用いること ができるが、好ましくは蒸留塔を用いる。得られた C4留分および Zまたは C5 +留分 の少なくとも一部は、反応器にリサイクルし、原料炭化水素の一部として用いることが できる。
[0057] なお、本発明の方法においては、上記の接触転ィ匕によるエチレンおよびプロピレン の製造と、スチームクラッキング法 (管式熱分解法)によるエチレンおよびプロピレン の製造を併行することによって、炭化水素原料当たりのエチレンおよびプロピレンの 収率を向上させることができる。またこの場合、メタン等の副生を抑制することができる ため、エチレン、プロピレンの精製を効率的に実施できる。このような方法の例として 、上記留分 B若しくは Dを管式熱分解炉に供給し、スチームクラッキングに付すこと
2
により、エチレンおよびプロピレンを含有するスチームクラッキング生成物を得、得ら れたスチームクラッキング生成物からエチレンおよびプロピレンを分離する方法を挙 げることができる。この場合のスチームクラッキングは、管式熱分解炉内の温度 750 〜850°C、圧力 0〜15kgZcm2G、滞留時間 0. 1〜0. 8秒、スチーム Z炭化水素 重量比 0. 1〜1の条件下で行うことが好ましい。
[0058] [接触環化反応]
また、本発明の方法のもう一つの態様においては、該留分 Bもしくは該留分 Dの
2 一 部を炭化水素原料の一部または全部として用い、中間細孔径ゼオライト含有触媒と 接触させて、炭素数 6〜9の芳香族炭化水素を得ることができる。本明細書では、こ の反応を「接触環化反応」という。接触環化反応において、該留分 Bもしくは該留分 D に加えうる炭化水素原料としては、炭素数 1〜12の炭化水素、例えば炭素数 1〜12 のノルマルパラフィン、イソパラフィン、ォレフィン、シクロパラフィン(ナフテン)、及び 側鎖アルキル基を有するシクロパラフィンよりなる群力も選ばれる、少なくとも 1種を主 に含む原料が挙げられる。また、
接触環化反応に用いられる炭化水素原料は、ターシャリーブタノール、メチルター シャリーブチルエーテル、メタノール等の含酸素化合物を不純物として少量含んで!/ヽ ても良い。また、メチルアセチレン、プロバジェン、ブタジエン、ペンタジェン等のジェ ン、アセチレン類を少量含んでいても良い。
[0059] 接触環化反応において、該留分 Bもしくは該留分 Dに加えうる炭化水素原料として
2
好ましいものの例としては、上記同様に、次のようなものを挙げることができる。
(1)ナフサなどの石油系炭化水素を熱分解して得られる生成物力 分離される C4留 分及び C5留分、および該 C4留分及び C5留分中のジォレフインをォレフインに部分 水素化した留分、
(2)上記 C4留分力 ブタジエンおよびイソブテンの一部若しくは全部を分離除去し た留分、
(3)上記 C5留分からイソプレンおよびシクロペンタジェンの一部若しくは全部を分離 除去した留分、
(4)減圧軽油などの石油系炭化水素を流動接触分解 (FCC)して得られる生成物か ら分離される C4留分および Z又はガソリン留分、
(5)コ一力一力 分離される C4留分および Z又はガソリン留分、および
(6)一酸ィ匕炭素と水素力 フィッシャー ·トロプシュ反応 (FT合成)によって合成される 炭化水素から分離される C4留分および Z又はガソリン留分。
またこれらは、単独で用いても、 2種以上を混合して用いてもよい。
[0060] 接触環化反応に用いるゼォライトは、 5〜6. 5 Aの細孔径を有する、いわゆる「中間 細孔径ゼオライト」を用いる。用語「中間細孔径ゼオライト」の意味とその例は上記の 同様である。
さらに、この接触環化反応に用いる中間細孔径ゼオライト含有触媒は、水添 Z脱水 素金属成分を上記触媒に添加することで、より好適な触媒となる。特に周期律表第 II B族、 ΠΙΒ族及び VIII族に属する金属及びそれらの化合物から選ばれる 1種以上を 添加した場合、ゼォライト含有触媒の脱水素環化能が向上し、芳香族炭化水素を製 造するための好適な触媒とすることができる。周期律表第 ΠΒ族、 ΠΙΒ族及び VIII族 に属する金属及びそれらの化合物は、好ましくは亜鉛、ガリウム、インジウム、 -ッケ ル、ノラジウム、白金及びそれらの酸化物、複合酸化物であり、更に好ましくは、亜鉛 及び酸化亜鉛、アルミン酸亜鉛等の亜鉛の複合酸化物である。ゼォライト含有触媒 に対する周期律表第 ΠΒ族、 ΠΙΒ族及び VIII族に属する金属及びそれらの化合物の 量は、金属換算で 0. 1〜20質量%であることが好ましい。
[0061] また上記の中間細孔径ゼオライト含有触媒に含まれるゼォライトとして、プロトン型 若しくは、 IB族金属、即ち、銅、銀、金よりなる群力 選ばれる少なくとも 1種の金属を 含有するゼオライトを用いることができる。 IB族金属としては、銅、銀が好ましぐ銀が 特に好ま ヽ。プロトン型ゼオライトを得る方法およびゼォライトに IB族金属を含有さ せる方法の例は前述の通りである。
IB族金属の含有量に厳密な限定はないが、ゼォライトの重量に対し 0. 1〜: LO重量 %であることが好ましぐ更に好ましくは 0. 2〜5重量%である。 IB族金属の含有量が 0. 1重量%未満では接触環化反応に対する活性が充分ではなぐ 10重量%を超え て加えてもそれ以上性能が向上しない。
[0062] 接触環化反応におけるゼォライトの SiO ZA1 Oモル比は、触媒としての安定性か
2 2 3
ら 20以上が必要である。 SiO ZA1 Oモル比の上限は特に限定されるものではない
2 2 3
力 一般的には、 SiO /Al Oモル比が 20〜500程度のもの、好ましくは 28〜300
2 2 3
程度のものが用いられる。
なお接触環化反応においては、ゼォライトとして上記同様に、ゼォライト骨格を構成 するアルミニウム原子の一部が Ga、 Fe、 B、 Cr等の金属で置換されたメタ口アルミノ シリケートや、ゼォライト骨格を構成するアルミニウム原子が全て上記のような金属で 置換されたメタ口シリケートを用いることもできる。その場合、メタ口アルミノシリケートま たはメタロシリケート中における上記の金属の含有量を Al Oのモル数に換算した上
2 3
で、 SiO /Al Oモル比を算出する。
2 2 3
接触環化反応における、ゼォライトのアルカリ金属およびアルカリ土類金属の含有 、及びゼォライトの水蒸気存在下での加熱処理については上記と同様である。 [0063] なお、上記のゼォライト含有触媒を、長期間接触環化反応に用いるとコーキング劣 化を起こす場合があるが、その場合には、通常空気中又は酸素と不活性ガスよりなる 混合ガス中、 400〜700°Cの温度で触媒上のコークを燃焼除去することにより、再生 処理させることができる。この再生処理の際に水蒸気が発生するので、この水蒸気を 利用して、上記の水蒸気の存在下での加熱処理を行うこともできる。即ち、長期間接 触環化反応に用い、コーキング劣化を起こしたゼォライト含有触媒を再生処理に付 すことを繰り返すことにより、上記の加熱処理と同等の効果を得ることができる。
また所望であれば、接触環化反応で用いられるゼォライトは焼成して力 触媒とし て用いることができる。その場合、焼成温度は通常 500〜900°Cとする。
[0064] また、接触環化反応における上記ゼォライト含有触媒の使用に際して、適切な形状 を有する粒子とするために、上記ゼォライト含有触媒を成型体とすることが好ま Uヽ。 その場合、上記のゼォライトのみを成型し、得られた成形体をゼオライト含有触媒とし て用いることもできる力 通常は、アルミナ、シリカ、シリカ Zアルミナ、ジルコユア、チ タニア、ケイソゥ土、粘土等の多孔性耐火性無機酸ィ匕物をバインダーまたは成型用 希釈剤(マトリックス)として上記のゼォライトに混合して得られる混合物を成型し、得 られた成形体をゼオライト含有触媒として用いる。
マトリックスまたはバインダーを用いる場合、それらの含有量は、ゼォライトとマトリツ タスまたはバインダーの重量の合計に対して、好ましくは 5〜90重量0 /0、より好ましく は 10〜50重量0 /0の範囲である。
[0065] 本発明の接触環化反応の条件は、炭化水素原料、特に原料中のォレフィンとパラ フィンの量比により変化するが、 300〜650°Cの温度で、 0. 01〜3MPaの炭化水素 分圧、 0. l〜50hr_1の重量時間空間速度であることが好ましぐ更に好ましくは 400 〜600°Cの温度である。
本発明の接触環化反応においては、固定床式、移動床式、流動床式のいずれの 反応器も適用でき、反応様式は特に問わないが、好ましいものとしては、構造が簡単 な断熱式の固定床反応器が挙げられる。
[0066] (実施例)
以下、実施例及び比較例によって、本発明を更に具体的に説明するが、本発明は これらの例によって何ら限定されるものではない。
尚、実施例及び比較例にお!、て行われた測定は以下の通りである。
(1)液相イオン交換 Z濾液滴定法によるゼォライトのプロトン量の測定
ゼォライト 1. 5gを、空気中 400〜600。Cの温度で焼成した後、 3. 4モル Zリットル の NaCl水溶液 25ml中で氷冷下 10分間イオン交換を行った。得られる混合物を濾 過した後、 50mlの純水でゼォライトを洗浄し、洗浄に用いた水を含む濾液を全量回 収した。この濾液 (洗浄に用いた水を含む)を 0. 1Nの NaOH水溶液により中和滴定 し、中和点からゼォライトのプロトン量を求めた。
(2)反応速度定数 Kの計算
尚、触媒活性の指標である反応速度定数 K(hr_1)は以下の式によって求めた。 K=WHSV X ln[l/ (l -X) ]
[式中、 WHSV(hr_1)はゼオライトの重量に対する供給原料の重量時間空間速度 であり、 X(無単位)はブテン基準のォレフィン転ィ匕率 { (原料中の炭素数 4〜8のォレ フィン濃度 (質量%)—生成物中のブテン濃度 (質量%) ) Z原料中の炭素数 4〜8の ォレフィン濃度 (質量%) }である。 ]
[実施例 1]
SiO ZA1 Oモル比が 1000の H型 ZSM— 5の押出し成型品(SiOバインダー 30
2 2 3 2
重量%含有、 1. 6mm φ、 日揮ユニバーサル (株)より購入)を、 1N硝酸ナトリウム水 溶液(lOccZg—ゼオライト成型体)中に分散させ、室温、 1時間のイオン交換処理を 3回繰り返した。次いで濾過、水洗、乾燥を行い、 Na型 ZSM— 5ZSiOを調製した
2
。これを、 0. 01N硝酸銀水溶液(lOccZg—ゼォライト成型体)中に分散させ、室温 、 2時間イオン交換処理した。次いで濾過、水洗、乾燥して触媒 Aを調製した。蛍光 X 線分析で測定される触媒 Aの Ag量は 0. 15質量%であった。触媒 Aを内径 16mm φの石英ガラス製反応器に充填し、温度 650°C、スチーム流量 27. 6gZhr、窒素流 量 140NccZminの条件で 5時間スチーミングを行った。スチーミング処理後の触媒 Aのプロトン量を液相イオン交換 Z濾液滴定法により求めたところ 0. 002mmol/g であった。スチーミング処理後の触媒 A10gを、内径 17mm φのハステロィ C製反応 器に充填した。 [0068] 表 1に示す C4ラフイネ一トー 2 (ナフサをスチームクラッキングして得られる C4留分 から、ブタジエン及びイソブテンを抽出して得られる)を原料とし、反応温度 580°C、 C 4ラフイネ一トー 2の供給量 60gZhr(WHSV=6hr_1)、 0. IMPaGの条件で反応 を行い、得られる反応生成物を反応器出口で熱交換器を用いて約 30°Cまで冷却し た後、気液分離ドラムに導入して液 (C4 +留分)を分離、回収した。回収した C4 +留 分の組成を表 1に示した。次に、上記の回収 C4 +留分と C4ラフィネート— 2を原料と して、 C4 +リサイクルの実験を下記の実験条件で 24時間行った。
実験条件
反応温度: 580°C、 C4ラフイネ一トー 2の供給量: 30gZhr、 C4 +留分の供給量: 3 1. 2g/hr (WHSV=6. lhr_1)、反応圧力 0. IMPaG
[0069] 原料供給開始力 所定時間後の反応生成物を直接ガスクロマトグラフィー (TCD、 FID検出器)に導入して組成を分析した。
尚、ガスクロマトグラフによる分析は以下の条件で行った。
装置:島津製作所社製 GC— 17A
カラム:米国 SUPELCO社製カスタムキヤピラリーカラム SPB— 1 (内径 0. 25mm 、長さ 60m、フィルム厚 3. O ^ m)
サンプルガス量: lml (サンプリングラインは 200〜300°Cに保温し、液化を防止) 昇温プログラム: 40°Cで 12分間保持し、次いで 5°CZ分で 200°Cまで昇湿した後、 200°Cで 22分間保持した。
スプリット比: 200 : 1
キャリアーガス(窒素)流量: 120mlZ分
FID検出器:エアー供給圧 50kPa (約 500mlZ分)、水素供給圧 60kPa (約 50ml Z分)
測定方法: TCD検出器と FID検出器を直列に連結して、水素及び炭素数 1及び 2 の炭化水素を TCD検出器で検出し、炭素数 3以上の炭化水素を FID検出器で検出 した。分析開始 10分後に、検出の出力を TCD力も FIDに切り替えた。
[0070] 反応開始 12時間後の反応生成物の分析結果は、供給原料中の炭素数 4〜8のォ レフインに対するプロピレン、エチレンの収率(質量0 /0)がそれぞれ、 32. 1%、 8. 7 %であった。ただし、回収 C4 +留分中の炭素数 6〜8の成分は、芳香族炭化水素以 外はすべてォレフインとした。また、反応開始 4時間後と 24時間後の反応速度定数 K の比〔K(24時間) ΖΚ(4時間)〕は 0. 90であった。
[0071] 〔比較例 1〕
反応器供給原料として C4ラフィネート一 2 60g/hr (WHSV=6hr_1)のみを用 いる以外は実施例 1と同条件で、 C4ラフィネート— 2の反応を行った。反応開始 12時 間後の反応生成物の分析結果は、供給原料中の炭素数 4〜8のォレフインに対する プロピレン、エチレンの収率(質量0 /0)がそれぞれ、 31. 1%、 8. 9%であった。また、 反応開始 4時間後と 24時間後の反応速度定数 Kの比〔K(24時間) ZK (4時間)〕は 0. 87であった。
実施例 1と比較例 1の比較から、 C4 +留分を重質分の除去をせずにそのままリサイ クル原料として用いても、触媒の劣化に悪影響を及ぼさないことが分力つた。また、 C 4 +留分中の炭素数 6〜8の非芳香族成分は、プロピレン、エチレンの製造に有効に 利用できることが分力つた。
[0072] 〔実施例 2〕
反応器供給原料として C4ラフィネート一 2 26. 8gZhr、 C4 +留分 27. 2g/hr, エチレン 6gZhr (WHSV=6hr_1)とした以外は実施例 1と同条件で、エチレンのリ サイクル相当の実験を行った。
反応開始 4時間後の反応生成物の分析結果は、供給原料中の炭素数 4〜8のォレ フィンに対するプロピレン、エチレンの収率(質量0 /0)がそれぞれ、 34. 8%、 0. 5% であった。実施例 1と比較すると、エチレンをリサイクルすることによって、エチレンの 生成が抑制され、プロピレンの収率が向上することが分力つた。
[0073] [実施例 3]
SiO ZA1 Oモル比が 1200の Na型 ZSM— 5の押出し成型品(SiOバインダー 3
2 2 3 2
0重量%含有、 1. 6mm φ、日揮ユニバーサル (株)より購入)を、 0. 02Ν硝酸銀水 溶液(lOccZg—ゼオライト成型体)中に分散させ、 60°C、 1時間のイオン交換処理 を 2回繰り返した。次いで濾過、水洗、乾燥して触媒 Bを調製した。蛍光 X線分析で測 定される触媒 Bの Ag量は 0. 22質量%であった。触媒 Bを内径 27mm φのハステロ ィ C製反応器に充填し、温度 650°C、スチーム流量 214gZhr、窒素流量 400NLZ hr、圧力 0. IMPaGの条件で 5時間スチーミングを行った。スチーミング処理後の触 媒 Bのプロトン量を液相イオン交換 Z濾液滴定法により求めたところ 0. 002mmol/ gであった。スチーミング処理後の触媒 B60gを、内径 27mm φのハステロィ C製反応 器に充填した。
[0074] 表 2に示す C4ラフイネ一トー 2を原料とし、反応温度 550°C、 C4ラフイネ一トー 2の 供給量 220. 2gZhr、リサイクル C4 +留分の供給量 139. 8g/hr (WHSV=6hr_1 )、スチーム供給量 108gZhr、反応圧力 0. IMPaGの条件で反応を行い、得られる 反応生成物を蒸留塔に供給し、 H
2〜C3留分と C4 +留分に分離し、この C4 +留分 の約 56質量%を反応器にリサイクルした。反応を 2日間継続した後、以下の条件で 触媒の再生処理を実施した。
再生処理条件
再生温度: 500〜550°C、再生圧力: 0. 5MPaG、窒素 +空気流量: 1008NLZh r、酸素濃度: 1〜5容量%、再生時間:10時間。
[0075] C4ラフイネ一トー 2に対する収率(質量%)を表 2に示した。 AAROMAZPは 3. 5 であった。再生処理の際に反応器出口の再生ガスを定期的にサンプリングして、ガス クロマトグラフを用いて再生ガスの分析を行い、 CO、 COの濃度を測定し、この値か
2
らコーク量を求めた。コーク量を反応中にフィードする原料の合計量で割って、コーク の収率を求めたところ、 72質量 ppmであった。
[0076] 〔比較例 2〕
反応器供給原料として、実施例 3で用いる C4ラフィネート一 2 360g/hr (WHSV = 6hr_1)のみを用いた以外は実施例 3と同条件で、 C4ラフィネート— 2の反応を行 つた。 C4ラフィネート— 2に対する収率 (質量%)を表 2に示した。また、コーク収率は 、 77質量 ppmであった。
実施例 3と比較すると、 C4 +留分リサイクルによってエチレン、プロピレンの収率が 向上することが分力つた。また、コーク収率は C4 +留分をそのままリサイクルしても増 カロしないことが分力つた。
[0077] [実施例 4] H型 ZSM— 5 (SiO /Al Oモル比 = 80)を 72重量部、硝酸亜鉛(亜鉛金属とし
2 2 3
て 10重量部)及びアルミナゾル (Al Oとして 18重量部)を混練後、押出し成型を実
2 3
施し、直径 1. 6mm、長さ 4〜6mmに成型した。次いで、 120°C、 4時間乾燥後、 50 0°C、 3時間焼成し、 ZSM— 5ゼォライト成型触媒を得た。この触媒を 1N硝酸ナトリウ ム水溶液(lOccZg—ゼオライト成型体)中に分散させ、室温、 1時間のイオン交換処 理を 3回繰り返した。次いで濾過、水洗、乾燥を行い、 Na含有 ZSM— 5ZSiOを調
2 製した。これを、 0. 1N硝酸銀水溶液(lOccZg—ゼォライト成型体)中に分散させ、 室温、 2時間イオン交換処理した。次いで濾過、水洗、乾燥して触媒 Cを調製した。 蛍光 X線分析で測定される触媒 Cの Ag量は 1. 8重量%であった。触媒 Cを内径 27 mm φのハステロィ C製反応器に充填し、温度 650°C、スチーム流量 214g/hr、窒 素流量 400NLZhr、圧力 0. IMPaGの条件で 3時間スチーミングを行った。スチー ミング処理後の触媒 C39. 6gを、内径 27mm φのハステロィ C製反応器に充填した。
[0078] 実施例 3で得られた C4 +留分の供給量 110. 9gZhr、反応温度 515°C、圧力 0.
5MPaの条件で反応を行った。反応開始 2時間後の炭素数 6〜9の芳香族炭化水素 の収率は 45. 32質量%であった。実施例 3及び実施例 4の結果から、 C4ラフイネ一 トー 2に対する収率は、エチレン 9. 08、プロピレン 38. 05、炭素数 6〜9の芳香族炭 化水素 22. 82質量%となった。このことから、副生 C4 +留分を接触環化反応に供す ることによって、エチレン、プロピレン、および炭素数 6〜9の芳香族炭化水素が選択 的に得られることがわ力つた。
[0079] [表 1]
[ C 4ラフイネ一トー 2及び C 4 +留分の組成 (質量% ) ] 成分 C 4ラフイネ一トー 2 C 4 +留分 メチルアセチレン 0.07 0.00 プロパジェン 0.22 0.00 プロピレン 0.18 0.01 プロパン 0.04 0.00 ブタジエン 1.69 0.02 ブテン 78.73 7.89 ブタン 17.94 4.06 ペンテン 0.30 20.47 ペンタン 0.53 2.17 ベンゼン 0.00 2.54
C 6非芳香族炭化水素 0.00 16.15 卜ゾレエン 0.00 6.29
C 7非芳香族炭化水素 0.00 16.37
C 8芳香族炭化水素 0.00 9.52
C 8非芳香族炭化水素 0.30 7.39
C 9 +炭化水素 0.00 7.12 口 aT 100.00 100.00
[ 原料組成及び反応収率(質量% ) ]
Figure imgf000030_0001
産業上の利用可能性
本発明の製造方法は、ォレフィンを含有する炭化水素原料力 エチレン及びプロピ レンを製造する方法にぉ 、て、反応生成物力 簡便な方法でリサイクル原料を取得 し、効率的かつ安定なリサイクルプロセスを構築できる。従って、上記の製造方法とし て工業的に有用である。
図面の簡単な説明 [図 1]本発明の方法によるエチレンおよびプロピレンの製造に用いられるシステムの 構成の一態様を示すフローシートである。
[図 2]本発明の方法によるエチレンおよびプロピレンの製造に用いられるシステム構 成の別の一態様を示すフローシートである。

Claims

請求の範囲
[1] 少なくとも 1種の炭素数 4〜12のォレフィンを 20質量%以上含有する炭化水素原 料を、反応器内で SiO ZA1 Oモル比が 200〜5000の中間細孔径ゼオライト含有
2 2 3
触媒と反応温度 400〜600°C、該炭化水素原料の分圧 0. 01-0. 5MPa、重量時 間空間速度 1〜 100hr_1の条件下で接触させて、該少なくとも 1種の炭素数 4〜 12 のォレフインの接触転ィ匕反応を行うことにより、エチレンおよびプロピレンを含有する 反応混合物を得、該反応混合物を水素および炭素数 1〜3の炭化水素を主に含む 留分 Aと少なくとも 1種の炭素数 4以上の炭化水素を主に含む留分 Bとに分離し、該 留分 A力もエチレンおよびプロピレンを分離することを包含する、エチレンおよびプロ ピレンの製造方法であって、下記 (i)および (ii)の条件を満足する上記方法:
(i) AAROMA/P≤13
Δ AROMA = AROMAout— AROMAin
(AROMAin:該反応器入口における該炭化水素原料中の炭素数 6〜8の 芳香族炭化水素成分の比率 [質量%]
AROMAout:該反応器出口における該反応混合物中の炭素数 6〜8の芳 香族炭化水素成分の比率 [質量%]
P:該炭化水素原料の分圧 [MPa] )を満たすこと;及び
(ii) 該留分 Bの 10〜95質量%を該反応器にリサイクルし、該炭化水素原料とし て用いること。
[2] 該留分 Aを、水素および炭素数 1〜2の炭化水素を主に含む留分 Aと、炭素数 3の 炭化水素を主に含む留分 Aとに分離し、該留分 Aの少なくとも一部を該反応器にリ
2 1
サイクルし、該炭化水素原料の一部として用いる、請求項 1に記載の方法。
[3] 該留分 Bの 15〜90質量%を該反応器にリサイクルし、該炭化水素原料の一部とし て用いる、請求項 1に記載の方法。
[4] 該 (i)式が Δ AROMA/P≤ 10を満たす、請求項 1に記載の方法。
[5] 少なくとも 1種の炭素数 4〜12のォレフィンを 20質量%以上含有する炭化水素原 料を、反応器内で SiO ZA1 Oモル比が 200〜5000の中間細孔径ゼオライト含有
2 2 3
触媒と反応温度 400〜600°C、該炭化水素原料の分圧 0. 01-0. 5MPa、重量時 間空間速度 1〜 1 OOhr_1の条件下で接触させて、該少なくとも 1種の炭素数 4〜 12 のォレフインの接触転ィ匕反応を行うことにより、エチレンおよびプロピレンを含有する 反応混合物を得、該反応混合物を水素および炭素数 1〜2の炭化水素を主に含む 留分 Cと少なくとも 1種の炭素数 3以上の炭化水素を主に含む留分 Dとに分離し、該 留分 Dを、炭素数 3の炭化水素を主に含む留分 Dと、少なくとも 1種の炭素数 4以上 の炭化水素を主に含む留分 Dとに分離し、該留分 Cおよび
2 Zまたは該留分 Dから
1 エチレンおよび zまたはプロピレンを分離することを包含するエチレンおよびプロピレ ンの製造方法であって、下記 (i)および (ii)の条件を満足する上記方法:
(i) AAROMA/P≤13
Δ AROMA = AROMAout— AROMAin
(AROMAin:該反応器入口における該炭化水素原料中の炭素数 6〜8の 芳香族炭化水素成分の比率 [質量%]
AROMAout:該反応器出口における該反応混合物中の炭素数 6〜8の芳 香族炭化水素成分の比率 [質量%]
P:該炭化水素原料の分圧 [MPa] )を満たすこと;及び
(ii) 該留分 Dの 10〜95質量%を該反応器にリサイクルし、該炭化水素原料とし て用いること。
[6] 該留分 Dの少なくとも一部を該反応器にリサイクルし、該炭化水素原料の一部とし
2
て用いる、請求項 5に記載の方法。
[7] 該留分 Dの 15〜90質量%を該反応器にリサイクルし、該炭化水素原料として用い
2
る、請求項 5に記載の方法。
[8] 該 (i)式が Δ AROMA/P≤ 10を満たす、請求項 5に記載の方法。
[9] 該ゼオライトが、 ZSM— 5型ゼオライトよりなる群力 選ばれる、請求項 1〜8のいず れか 1項に記載の方法。
[10] 該ゼオライト含有触媒中のゼォライトが、周期律表第 IB族に属する金属を含有し、 実質的にプロトンを含まない、請求項 1〜8のいずれか 1項に記載の方法。
[11] 該反応器が、断熱型固定床反応器である、請求項 1〜8のいずれか 1項に記載の 方法。
[12] 該反応温度が 500〜580°C、該炭化水素原料の分圧が 0. 05-0. 3MPa、該重 量時間空間速度が 2〜: L0hr_ 1である、請求項 1〜8のいずれか 1項に記載の方法。
[13] 該留分 Bの一部を炭化水素原料の一部または全部として用い、周期律表第 ΠΒ族、 ΠΙΒ族および VIII族に属する金属及びそれらの化合物力 なる群より選ばれる少なく とも 1つを含有する中間細孔径ゼオライト含有触媒と気相 650°C以下の温度で接触さ せて、芳香族炭化水素を得る、請求項 1〜4のいずれか 1項に記載の方法。
[14] 該留分 Bの一部を炭化水素原料の一部として用いる場合において、さらに、該留分 Aから分離された水素および炭素数 1〜2の炭化水素を主に含む留分 Aを該炭化水 素原料の一部として用いる、請求項 13に記載の方法。
[15] 該留分 Dの一部を炭化水素原料の一部または全部として用い、周期律表第 ΠΒ族
2
、ΙΠΒ族および VIII族に属する金属及びそれらの化合物力 なる群より選ばれる少な くとも 1つを含有する中間細孔径ゼオライト含有触媒と気相 650°C以下の温度で接触 させて、芳香族炭化水素を得る、請求項 5〜8のいずれか 1項に記載の方法。
[16] 該留分 Dの一部を炭化水素原料の一部として用いる場合において、さらに、該留
2
分 Cを該炭化水素原料の一部として用いる、請求項 15に記載の方法。
PCT/JP2005/013128 2004-07-16 2005-07-15 エチレン及びプロピレンの製造法 WO2006009099A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800279199A CN101006035B (zh) 2004-07-16 2005-07-15 制造乙烯和丙烯的方法
EP05766311.4A EP1770080B1 (en) 2004-07-16 2005-07-15 Process for producing ethylene and propylene
JP2006529173A JP4953817B2 (ja) 2004-07-16 2005-07-15 エチレン及びプロピレンの製造法
US11/631,644 US7754934B2 (en) 2004-07-16 2005-07-15 Process for producing ethylene and propylene
BRPI0513338A BRPI0513338B1 (pt) 2004-07-16 2005-07-15 métodos de produção de etileno e propileno

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004209654 2004-07-16
JP2004-209654 2004-07-16

Publications (1)

Publication Number Publication Date
WO2006009099A1 true WO2006009099A1 (ja) 2006-01-26

Family

ID=35785210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013128 WO2006009099A1 (ja) 2004-07-16 2005-07-15 エチレン及びプロピレンの製造法

Country Status (8)

Country Link
US (1) US7754934B2 (ja)
EP (1) EP1770080B1 (ja)
JP (1) JP4953817B2 (ja)
KR (1) KR100881042B1 (ja)
CN (1) CN101006035B (ja)
BR (1) BRPI0513338B1 (ja)
TW (1) TWI371440B (ja)
WO (1) WO2006009099A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032448A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation エチレン及びプロピレンの製造方法
WO2007032447A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation エチレン及びプロピレンを製造する方法
JP2007106739A (ja) * 2005-09-16 2007-04-26 Asahi Kasei Chemicals Corp エチレン及びプロピレンを製造する方法
JP2007106738A (ja) * 2005-09-16 2007-04-26 Asahi Kasei Chemicals Corp エチレン及びプロピレンの製造方法
WO2007080957A1 (ja) * 2006-01-16 2007-07-19 Asahi Kasei Chemicals Corporation プロピレン及び芳香族炭化水素の製造方法並びにその製造装置
JP2008050359A (ja) * 2006-08-24 2008-03-06 Ifp 球状ボールの形状を呈するマクロ細孔質触媒の存在下でのプロピレン生成方法
WO2008029631A1 (fr) * 2006-08-30 2008-03-13 Jgc Corporation Procédé de production de propylène et appareil de production de propylène
JP2008074764A (ja) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp プロピレンの製造方法
JP2008081417A (ja) * 2006-09-26 2008-04-10 Mitsubishi Chemicals Corp プロピレンの製造方法
JP2008106046A (ja) * 2006-09-28 2008-05-08 Jgc Corp プロピレンの製造方法およびプロピレンの製造装置
US8450550B2 (en) 2006-09-28 2013-05-28 Jgc Corporation Process and apparatus for producing propylene
KR20180124583A (ko) * 2017-05-12 2018-11-21 한국화학연구원 프로필렌으로부터 선택적 에틸렌의 제조방법
KR20190049209A (ko) * 2017-11-01 2019-05-09 한국화학연구원 산 처리된 zsm-5를 통한 프로필렌으로부터 선택적 에틸렌의 제조방법

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4324929B1 (ja) 2008-06-16 2009-09-02 株式会社豊田商会 回転印鑑
US8137631B2 (en) * 2008-12-11 2012-03-20 Uop Llc Unit, system and process for catalytic cracking
US8246914B2 (en) * 2008-12-22 2012-08-21 Uop Llc Fluid catalytic cracking system
US8889076B2 (en) * 2008-12-29 2014-11-18 Uop Llc Fluid catalytic cracking system and process
US9150465B2 (en) * 2010-09-21 2015-10-06 Uop Llc Integration of cyclic dehydrogenation process with FCC for dehydrogenation of refinery paraffins
US20120253092A1 (en) * 2011-03-31 2012-10-04 Stone & Webster Process Technology, Inc. Method and system for removal of foulant precursors from a recycle stream of an olefins conversion process
CN103889932A (zh) * 2011-09-07 2014-06-25 国际壳牌研究有限公司 由包含叔烷基醚的给料制备乙烯和丙烯的方法
DE102012006992A1 (de) * 2012-04-05 2013-10-10 Linde Aktiengesellschaft Verfahren zur Trennung von Olefinen bei milder Spaltung
US9745519B2 (en) 2012-08-22 2017-08-29 Kellogg Brown & Root Llc FCC process using a modified catalyst
KR102387487B1 (ko) 2015-07-02 2022-04-18 사우디 아라비안 오일 컴퍼니 프로필렌을 제조하기 위한 시스템 및 방법
WO2017003821A1 (en) 2015-07-02 2017-01-05 Saudi Arabian Oil Company Propylene production using a mesoporous silica foam metathesis catalyst
EP3536679B1 (en) 2015-07-02 2023-12-13 Saudi Arabian Oil Company Dual catalyst system for propylene production
CN107709276B (zh) 2015-07-02 2020-10-13 沙特阿拉伯石油公司 用于制造丙烯的系统和方法
WO2017094806A1 (ja) * 2015-12-03 2017-06-08 旭化成株式会社 プロピレンまたは芳香族炭化水素の製造方法
CN106588548B (zh) * 2016-11-21 2019-05-17 中石化宁波工程有限公司 一种烯烃分离方法
US10934231B2 (en) 2017-01-20 2021-03-02 Saudi Arabian Oil Company Multiple-stage catalyst systems and processes for propene production
US10329225B2 (en) 2017-01-20 2019-06-25 Saudi Arabian Oil Company Dual catalyst processes and systems for propylene production
US10550048B2 (en) 2017-01-20 2020-02-04 Saudi Arabian Oil Company Multiple-stage catalyst system for self-metathesis with controlled isomerization and cracking
CN111013511B (zh) * 2018-10-09 2021-11-12 中国石油化工股份有限公司 一种微反应器和系统及石油烃生产低碳烯烃的方法
US11242299B2 (en) 2018-10-10 2022-02-08 Saudi Arabian Oil Company Catalyst systems that include metal oxide co-catalysts for the production of propylene
US10961171B2 (en) 2018-10-10 2021-03-30 Saudi Arabian Oil Company Catalysts systems that include metal co-catalysts for the production of propylene
US11311869B2 (en) 2019-12-03 2022-04-26 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11517892B2 (en) 2019-12-03 2022-12-06 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11339332B2 (en) 2020-01-29 2022-05-24 Saudi Arabian Oil Company Systems and processes integrating fluidized catalytic cracking with metathesis for producing olefins
US11572516B2 (en) 2020-03-26 2023-02-07 Saudi Arabian Oil Company Systems and processes integrating steam cracking with dual catalyst metathesis for producing olefins
US11679378B2 (en) 2021-02-25 2023-06-20 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11845705B2 (en) 2021-08-17 2023-12-19 Saudi Arabian Oil Company Processes integrating hydrocarbon cracking with metathesis for producing propene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941322A (ja) * 1972-05-17 1974-04-18
JPH0327327A (ja) * 1989-04-25 1991-02-05 Arco Chem Technol Inc パラフイン炭化水素からのオレフインの製造方法
JPH03167136A (ja) * 1989-10-02 1991-07-19 Arco Chem Technol Inc エチレンを製造する方法
WO2000010948A1 (fr) * 1998-08-25 2000-03-02 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production d'ethylene et de propylene

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823368B2 (ja) 1973-08-21 1983-05-14 モ−ビル オイル コ−ポレ−ション ホウコウゾクカゴウブツノ セイホウ
DE3370150D1 (en) 1982-11-10 1987-04-16 Montedipe Spa Process for the conversion of linear butenes to propylene
US4527001A (en) 1983-11-15 1985-07-02 Union Carbide Corporation Small olefin interconversions
US4613721A (en) 1983-11-15 1986-09-23 Union Carbide Corporation Small olefin interconversions
JP3664502B2 (ja) * 1994-10-28 2005-06-29 旭化成ケミカルズ株式会社 低級オレフィン及び単環芳香族炭化水素の製造法
CN1317543A (zh) * 2000-04-07 2001-10-17 中国石油化工集团公司 多产乙烯和丙烯的烃类催化热裂解方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941322A (ja) * 1972-05-17 1974-04-18
JPH0327327A (ja) * 1989-04-25 1991-02-05 Arco Chem Technol Inc パラフイン炭化水素からのオレフインの製造方法
JPH03167136A (ja) * 1989-10-02 1991-07-19 Arco Chem Technol Inc エチレンを製造する方法
WO2000010948A1 (fr) * 1998-08-25 2000-03-02 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production d'ethylene et de propylene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Intrazeolite Chemistry", ACS SYMP. SER, vol. 218, 1983, pages 369 - 382
JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, 1989, pages 521 - 527
See also references of EP1770080A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2377231C1 (ru) * 2005-09-16 2009-12-27 Асахи Касеи Кемикалз Корпорейшн Способ получения этилена и пропилена
WO2007032447A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation エチレン及びプロピレンを製造する方法
JP2007106739A (ja) * 2005-09-16 2007-04-26 Asahi Kasei Chemicals Corp エチレン及びプロピレンを製造する方法
JP2007106738A (ja) * 2005-09-16 2007-04-26 Asahi Kasei Chemicals Corp エチレン及びプロピレンの製造方法
WO2007032448A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation エチレン及びプロピレンの製造方法
RU2433111C2 (ru) * 2005-09-16 2011-11-10 Асахи Касеи Кемикалз Корпорейшн Способ получения этилена и пропилена
US7893311B2 (en) 2005-09-16 2011-02-22 Asahi Kasei Chemicals Corporation Method for producing ethylene and propylene
US7884257B2 (en) 2005-09-16 2011-02-08 Asahi Kasei Chemicals Corporation Method for producing ethylene and propylene
WO2007080957A1 (ja) * 2006-01-16 2007-07-19 Asahi Kasei Chemicals Corporation プロピレン及び芳香族炭化水素の製造方法並びにその製造装置
US8034987B2 (en) 2006-01-16 2011-10-11 Asahi Kasei Chemicals Corporation Process for producing propylene and aromatic hydrocarbons, and producing apparatus therefor
JP5221149B2 (ja) * 2006-01-16 2013-06-26 旭化成ケミカルズ株式会社 プロピレン及び芳香族炭化水素の製造方法並びにその製造装置
JP2008050359A (ja) * 2006-08-24 2008-03-06 Ifp 球状ボールの形状を呈するマクロ細孔質触媒の存在下でのプロピレン生成方法
WO2008029631A1 (fr) * 2006-08-30 2008-03-13 Jgc Corporation Procédé de production de propylène et appareil de production de propylène
JP2008074764A (ja) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp プロピレンの製造方法
JP2008081417A (ja) * 2006-09-26 2008-04-10 Mitsubishi Chemicals Corp プロピレンの製造方法
JP2008106046A (ja) * 2006-09-28 2008-05-08 Jgc Corp プロピレンの製造方法およびプロピレンの製造装置
US8450550B2 (en) 2006-09-28 2013-05-28 Jgc Corporation Process and apparatus for producing propylene
KR20180124583A (ko) * 2017-05-12 2018-11-21 한국화학연구원 프로필렌으로부터 선택적 에틸렌의 제조방법
KR20190049209A (ko) * 2017-11-01 2019-05-09 한국화학연구원 산 처리된 zsm-5를 통한 프로필렌으로부터 선택적 에틸렌의 제조방법

Also Published As

Publication number Publication date
KR20070028538A (ko) 2007-03-12
BRPI0513338A (pt) 2008-05-06
EP1770080A4 (en) 2009-11-11
US7754934B2 (en) 2010-07-13
JPWO2006009099A1 (ja) 2008-07-31
CN101006035B (zh) 2012-08-08
BRPI0513338B1 (pt) 2015-11-03
EP1770080A1 (en) 2007-04-04
US20070265482A1 (en) 2007-11-15
JP4953817B2 (ja) 2012-06-13
CN101006035A (zh) 2007-07-25
TWI371440B (en) 2012-09-01
KR100881042B1 (ko) 2009-02-05
TW200615256A (en) 2006-05-16
EP1770080B1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2006009099A1 (ja) エチレン及びプロピレンの製造法
JP3707607B2 (ja) エチレンおよびプロピレンの製造方法
EP1642641B1 (en) A catalyst and process for producing monocyclic aromatic hydrocarbons
JP5025477B2 (ja) エチレン及びプロピレンの製造方法
CN101945841B (zh) 用于乙烷转化成芳烃的方法
AU2010313369B2 (en) Process for the conversion of mixed lower alkanes to aromatic hydrocarbons
WO1996010548A1 (fr) Procede de production d'hydrocarbure aromatique
EP2336275B1 (en) Process for producing olefin
JP5221149B2 (ja) プロピレン及び芳香族炭化水素の製造方法並びにその製造装置
JP6505866B2 (ja) プロピレンまたは芳香族炭化水素の製造方法
JP4879574B2 (ja) エチレン及びプロピレンの製造方法
JP5014138B2 (ja) エチレン及びプロピレンを製造する方法
CN103313959A (zh) 混合低级烷烃转化成芳烃的方法
JP4240339B2 (ja) 芳香族炭化水素の製造方法
RU2425091C1 (ru) Способ получения высокооктанового бензина и/или ароматических углеводородов с низким содержанием бензола
JP4921788B2 (ja) エチレン及びプロピレンを製造する方法
WO2015152159A1 (ja) 不飽和炭化水素の製造方法
WO2012169651A1 (en) Method for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms and apparatus for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529173

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005766311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 35/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12007500044

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 11631644

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077001007

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580027919.9

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020077001007

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005766311

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11631644

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0513338

Country of ref document: BR