WO2006035360A2 - Procede de formation d'un revetement sur un substrat, et revetement forme par ce procede - Google Patents
Procede de formation d'un revetement sur un substrat, et revetement forme par ce procede Download PDFInfo
- Publication number
- WO2006035360A2 WO2006035360A2 PCT/IB2005/053090 IB2005053090W WO2006035360A2 WO 2006035360 A2 WO2006035360 A2 WO 2006035360A2 IB 2005053090 W IB2005053090 W IB 2005053090W WO 2006035360 A2 WO2006035360 A2 WO 2006035360A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- component
- substrate
- coating composition
- filler component
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000000758 substrate Substances 0.000 title claims abstract description 30
- 238000000576 coating method Methods 0.000 title claims description 65
- 239000011248 coating agent Substances 0.000 title claims description 54
- 239000000945 filler Substances 0.000 claims abstract description 44
- 239000011159 matrix material Substances 0.000 claims abstract description 39
- 239000002243 precursor Substances 0.000 claims abstract description 31
- 239000002245 particle Substances 0.000 claims abstract description 24
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 23
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000008199 coating composition Substances 0.000 claims description 27
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000011049 filling Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000004873 anchoring Methods 0.000 claims description 5
- 150000004703 alkoxides Chemical class 0.000 claims description 4
- QORWLRPWMJEJKP-UHFFFAOYSA-N butan-1-olate;tantalum(5+) Chemical compound [Ta+5].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] QORWLRPWMJEJKP-UHFFFAOYSA-N 0.000 claims description 4
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 claims description 4
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 claims description 4
- HSXKFDGTKKAEHL-UHFFFAOYSA-N tantalum(v) ethoxide Chemical compound [Ta+5].CC[O-].CC[O-].CC[O-].CC[O-].CC[O-] HSXKFDGTKKAEHL-UHFFFAOYSA-N 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 claims 1
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 239000011253 protective coating Substances 0.000 abstract description 18
- 239000000126 substance Substances 0.000 abstract description 7
- 230000003014 reinforcing effect Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 19
- 239000010410 layer Substances 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 5
- 239000000206 moulding compound Substances 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- -1 silica compound Chemical class 0.000 description 4
- XQMTUIZTZJXUFM-UHFFFAOYSA-N tetraethoxy silicate Chemical compound CCOO[Si](OOCC)(OOCC)OOCC XQMTUIZTZJXUFM-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910008051 Si-OH Inorganic materials 0.000 description 2
- 229910008284 Si—F Inorganic materials 0.000 description 2
- 229910006358 Si—OH Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- SCMCGJZNZWBQDK-UHFFFAOYSA-N [Si](O)(O)(O)O.C=C.C=C.C=C.C=C Chemical compound [Si](O)(O)(O)O.C=C.C=C.C=C.C=C SCMCGJZNZWBQDK-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004334 fluoridation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920003209 poly(hydridosilsesquioxane) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/007—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3435—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/291—Oxides or nitrides or carbides, e.g. ceramics, glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/585—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries comprising conductive layers or plates or strips or rods or rings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/425—Coatings comprising at least one inhomogeneous layer consisting of a porous layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/44—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
- C03C2217/45—Inorganic continuous phases
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/46—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
- C03C2217/47—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
- C03C2217/475—Inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/113—Deposition methods from solutions or suspensions by sol-gel processes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/116—Deposition methods from solutions or suspensions by spin-coating, centrifugation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
Definitions
- the invention relates to a method of forming a coating on a substrate, said method comprising the steps of forming a porous structure and at least partially filling the porous structure with a second solution.
- the invention also relates to a composition for forming the porous structure.
- the invention further relates to a substrate provided with a coating as obtainable by the method according to the present invention.
- the known coating is a ceramic coating, for instance of a silica compound - e.g. a SiO 2 -network -, that is filled with a silicone polymer.
- the silica compound was provided by placing t a hydrogen silsesquioxane resin in an oxygen plasma reactor and heating it to 250 0 C, while being treated with oxygen plasma for three hours. This process resulted in a coating with a thickness of 200 nm and a porosity of 25 to 30%, as indicated in the related patent application EP-A 775680 (column 4, line 48-51).
- PDMS PDMS
- the porous structure is obtained by providing a coating composition that comprises a matrix precursor component and a particulate filler component, applying the coating composition on the substrate, and curing the composition.
- the method of the present invention provides a porous structure that is based on the particulate filler component.
- the matrix precursor is used both as an encapsulant and an adhesive, and not as the porous structure itself, as is the case in the prior art method. Consequently, the matrix precursor can be chosen more freely and more broadly. Its primary properties are: sufficient adhesion to the particulate filler, and sufficiently able to form a network.
- the method of the invention further allows the porosity to be chosen , and thus also allows for relatively large pores.
- the desired porosity can be set by the average size and the size distribution of the particulate filler component.
- a high porosity is obtained at a large average size and a relatively narrow size distribution. Porosities of 40 to 90 vol.% are obtained.
- the average particle size can suitably be chosen in the range of 1 to 3 microns; if the coating is a functional layer, the average particle size may be chosen to be smaller.
- the improved porous structure obtained in the method of the invention allows simpler filling processes for this structure. Instead of the plasma process used in the prior art, a coating process is used in the method of the invention. Such a coating process is simpler and more direct, and less dependent on the control of pressure.
- the resulting coating has at least two advantageous structural properties; firstly, it need not be completely filled, but may be left partially porous. Secondly, its top side is closed, so that further layers can be applied on top of the porous structure. Moreover, a suitable choice of the second solution enables the adhesion to the substrate, and to any layer on top of the porous structure, to be optimized.
- the matrix precursor component comprises hydrolysable compounds bonded to a metal.
- Typical hydrolysable groups in the compound include, but are not limited to, alkoxy, such as methoxy, ethoxy, propoxy, butoxy and hexoxy, aceloxy, such as acetoxy, other organic groups bonded to the metal through an oxygen such as acetyl acetonate or amino groups.
- alkoxy such as methoxy, ethoxy, propoxy, butoxy and hexoxy
- aceloxy such as acetoxy
- other organic groups bonded to the metal through an oxygen such as acetyl acetonate or amino groups.
- Such compounds are known per se from sol-gel processing and MOCVD processes. Good results have been obtained with the use of ethoxide, isopropoxide and n-butoxide compounds.
- Suitable metals include aluminum, titanium, zirconium, silicon, niobium, tantalum and the like.
- the number of hydrolysable groups
- the matrix precursor component comprises a compound selected from the group consisting of tetraethyl orthotitanate (TEOTi), tetra-isopropyl titanate, niobium(V) ethoxide, tantalum(V) ethoxide, tantalum n-butoxide, zirconium n-butoxide or a mixture thereof.
- TEOTi tetraethyl orthotitanate
- tetra-isopropyl titanate niobium(V) ethoxide
- tantalum(V) ethoxide tantalum n-butoxide
- zirconium n-butoxide or a mixture thereof zirconium n-butoxide or a mixture thereof.
- the resulting porous structure will then comprise a compound selected from the group consisting of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , ZrO 2 or a mixture thereof, and furthermore the particul
- the particulate filler component preferably comprises crystalline particles, and they may be of any shape.
- Amorphous particles could be used additionally or alternatively. Examples include aluminum oxides, zirconium oxides, silicon oxide, titanium oxide, titanium nitride, titanium carbide, zinc oxide, silicon carbide.
- the particles need not be comprised of one material only. Good results have been obtained with TiN and TiO 2 particles, and with a mixture thereof. These results were optimized for thick, non-transparent coatings, and other materials may be applied as well. Materials that can be chemically or physically bonded to the matrix precursor component are preferred. In the present example, bonding is achieved, at least partially, by means of hydrogen bonding.
- a predetermined amount of the filler component is used in order to obtain a porous structure with at least 40 vol.% of filler component.
- This amount of filler component using particles with a diameter in the range of 1 to 3 micrometers, leads to a suitable porous structure.
- the relative volume of filler component appears to be dependent on the average size of the filler component, on the specific materials used, and on the viscosity of the matrix precursor component.
- the vol.% of filler component is preferably even higher than 40 vol.%, more preferably at least 60 vol.% and most preferably, for certain applications, even 80 vol.%. This high amount of filler component leads to coatings of a suitable thickness.
- Coatings having a thicknesses of more than 2 microns are suitable for use as security coatings, and preferably such coatings have a thickness in the range between 2 and 10 microns.
- the application of the coating composition on the substrate may be performed in various ways, as long as a suitable coating layer on the substrate is formed. Usually the coating composition is applied by dip coating, spin coating or spray coating, which techniques are well known in the art .
- the application of the second solution may also be performed using known techniques, including the above-mentioned dip coating, spin coating or spray coating.
- the curing of the coating composition, and optionally that of the second solution is usually performed using UV- light or an increased temperature (preferably between 100 - 450°C), although other suitable methods may also be used.
- the second solution comprises a component with hydrolysable groups bonded to a metal that is converted into a network.
- the result is an inorganic coating with a specific microstructure.
- Suitable second solutions comprise for instance a compound selected from the group consisting of tetraethyl orthotitanate (TEOTi), tetra-isopropyl titanate, niobium(V) ethoxide, tantalum(V) ethoxide, tantalum n-butoxide, zirconium n-butoxide or a mixture thereof.
- TEOTi tetraethyl orthotitanate
- Such type of coatings are very suitable as protective 'security' coatings for integrated circuits and may be used to inhibit access to the integrated circuit by unauthorized persons.
- the coatings must offer chemical, optical and physical protection.
- the optical protection is achieved with the filler component, which is able to absorb, scatter or reflect visible light.
- Particle mixtures of TiN and TiO 2 furthermore allow protection against UV, IR and electron radiation to a sufficient extent.
- the chemical protection is optimized through the choice of the matrix material and, in this case, the second solution.
- Use can be made of a monoaluminum phosphate matrix material, or a matrix material based on tetra-ethoxy-orthosilicate (TEOS).
- TEOS tetra-ethoxy-orthosilicate
- a protective non-porous coating with a monoaluminum phosphate matrix material and a filler component is known per se from US-A 6,198,155. Excellent results have been obtained with Ti-based matrix components.
- the hardness of the coating allows physical protection. Additionally, sensors can be provided below and/or on top of the coating, which enable the impedance to be measured. This allows the generation of an unpredictable and physically embodied identification code, and is known per se from WO-A 2003/046986. However, the coating of the invention is not limited to such a security coating.
- the coating is used as a protective coating within a package of a semiconductor compound.
- molding compounds are used as protective coatings.
- Well-known examples are epoxies that are filled with glass or glass-like particles.
- the present method is very suitable to provide such a protective coating. It is then preferred that an organic polymer, particularly a moulding compound, is chosen as the second solution that fills the porous structure at least partially. Examples include epoxies, polyimides, polystyrenes, polyterephtalates and other materials known in the art for transfer and injection moulding processes.
- This moulding compound may, but need not, be filled with particles. If it is filled with particles, these particles suitably have a smaller average diameter than the filler component that is part of the porous structure. The average particle sizes are suitably less than 0.5 microns, and most preferably less than 0.3 microns, if the filler component has an average particle diameter between 1 and 2 microns.
- a moulding compound is a suitable choice, as the resulting coating will then be chemically similar (although structurally different) to the presently used protective coatings.
- the coating as a protective coating is advantageous in view of the proper chemical resistivity of the matrix material and the second solution.
- a further advantage is presented by the option that the porous structure is not completely filled. This incomplete filling may well be used as an inherent compensation for differences in thermal expansion.
- This material may also be used in combination with wire bonding, since its precursor component can be converted into the porous structure at a sufficiently low temperature.
- the coating has a good adhesion to underlying layers, such as a passivation layer.
- the porous structure on the basis of a precursor material such as an alkoxide, has a good adhesion to oxidic and nitridic surfaces.
- the second solution i.e. the organic polymer, has a good adhesion to organic and apolar surfaces.
- the adhesion may be further optimized by choosing the precursor material and the second solution, by choosing a second solution with specific adhesive properties and by variation of the volume ratio between the precursor material and the compound used to fill the porous structure.
- such a moulding compound for packaging its constituents are chosen to be transparent.
- the stability of transparent epoxies in practice is an even larger problem than that of standard moulding compounds.
- contemporary integrated circuits tend to produce a lot of heat, and the coating should be able to withstand this without any adhesion problems.
- the coating is chosen to have sufficient flexibility. Flexible devices are known from for instance EP-A 1256983. They are suitably used in security applications, and data stored in the integrated circuits therein should be protected properly.
- a prior art security coating does not fulfill the condition of flexibility, but the porous coating of the invention may be optimized to have sufficient flexibility, and it is possible to apply it only on a limited number of areas of the semiconductor substrate - which limited provision may help to achieve the required flexibility.
- One example of a class of suitable materials is polyimides. These materials can be applied in soluble form as a polyamide, that is used as the second solution to fill the porous structure at least partially, and can be subsequently converted to polyimides. Alternative polymer or polymerisable materials could be applied as well.
- the coating may be provided with specific functional properties.
- the porous structure and the second solution that fills the porous structure may have a complementary functionality. If one component generates or transmits optical radiation, the other component can be used to inhibit transmission of the radiation in a certain direction, or to diminish the intensity thereof. If one component has magnetic properties, the other component may be used as a shield for the field, particularly in certain directions. Particularly the porous structure that is closed at its top side appears to be suitable for such a shielding or inhibiting function. Additionally, by means of the patterning method, that will be explained later on, the porous structure can be provided in a limited number of areas only. This may allow the transmission of for instance light in a limited number of areas only, whereas the light may be generated on the complete surface area.
- the coating is used as a porous coating, on top of which subsequent layers are deposited.
- the coating is patterned.
- a patterned structure Prior to application of the coating composition, a patterned structure is provided on the substrate. Then, a surface of the substrate and of the patterned structure are modified such that the surface of the substrate is relatively hydrophilic and the surface of the patterned structure is relatively hydrophobic. Consequently, on application of the coating composition, the patterned structure is kept free of coating composition.
- the patterned structure is removed. This removal is preferably done before curing of the coating composition, for instance after a pre-bake step at about 100 0 C.
- the modification of the surface could be carried out by the application of certain modifying agents. Alternatively, use is made of plasma treatments.
- a patterned resist layer is applied to the substrate and patterned by photolithography, resulting in the above-mentioned patterned structure.
- the photoresist will be present in areas that are to be kept free of the coating composition.
- a fluorine plasma etch step is applied.
- Both the exposed surface of the substrate, particularly an oxide or nitride layer, and the resist are affected by this treatment.
- Si-OH groups present at the surface will be largely replaced by Si-F groups, rendering the nitride less hydrophilic.
- the resist will be affected differently, and more complex reactions will take place. This basically results in fluoridation, polymerization and some damage to the upper part of the resist.
- the patterning of the coating allows access to bond pads or other metallic areas and pads hidden under the coating.
- the patterning is used to limit the presence of the porous structure to predefined areas on the substrate surface.
- the method is furthermore advantageous, as the removal of a porous structure by means of a conventional lift-off technique is inherently problematic in view of its inhomogeneous nature and the deterioration of its stability.
- patterning by application of a photoresist on top of the filled coating is problematic in view of the strength of the network, and the different materials that require specific etching processes.
- the particulate character of the filler component inhibits the provision of well-defined holes. It is a second object of the invention to provide a coating composition with which an improved porous coating can be formed.
- the coating composition comprises a matrix precursor component and a filler component, which matrix precursor component is convertible into a matrix material in a heat treatment and which filler component is present in an amount of at least 30 vol.%, with the average particle size being at least 1 ⁇ m.
- the coating composition of the present invention may be provided after preparation in situ or after supply by another company. It is observed that there may be alternative compositions that may be used in the method of the invention to form a porous coating.
- the coating composition has however the advantage of good rheological properties and hence good processability.
- the average particle size is in the range of 1 to 3 microns, more preferably between 1.2 and 2.8 microns, and most preferably between 1.5 and 2.5 microns.
- the matrix precursor material is preferably chosen such that it can be converted to the matrix in a heat treatment at less than 500 0 C, more preferably less than 450 0 C or even less than 400 0 C. This allows the use thereof within the interconnect structure of semiconductor devices. Examples of such materials include for instance tetraethylene orthosilicate (TEOS), and monoaluminum phosphate (MAP), tetraethyl orthotitanate
- TEOS tetraethylene orthosilicate
- MAP monoaluminum phosphate
- TEOTi tetra-isopropyl titanate
- niobium(V) ethoxide tantalum(V) ethoxide
- tantalum n- butoxide tantalum n- butoxide
- zirconium n-butoxide zirconium n-butoxide or a mixture of one or more of the said precursor materials with each other or with further precursor materials.
- the heat treatment is most preferably carried out at a temperature of less than 300 0 C. Many precursor materials are capable of being converted at such a temperature.
- a suitable example is for instance TEOS, which can even be converted by a heat treatment at less than 100 0 C.
- the filler component and the precursor matrix material are chosen such that the filler and the converted matrix are bonded to each other.
- a very strong bond is a chemical bond.
- Such a bond can be achieved because t the filler component comprises precursor groups such as alkoxides, at least at a portion of its surface.
- the filler and the converted matrix material are bonded to each other with physical bonds, including capillary forces, Van der Waals forces and hydrogen bonds. The latter mechanism is assumed to take place with TiN particles in a matrix that stills contains hydroxyl groups.
- This object is achieved by means of a porous structure comprising filler particles that are encapsulated by a layer of a matrix component, and an anchoring component filling the porous structure at least partially.
- the anchoring component provides the coating with strength.
- anchoring component' is meant that the body filling the porous structure extends on different sides of the porous structure, such that a mechanical anchoring effect is obtained.
- the coating may have any of the specific applications described with reference to the method claims. It is particularly suitable for integration into an electronic device. A suitable example hereof is a semiconductor device such as an integrated circuit. However, application in neighbouring technical fields, such as (biomedical) sensors and optical devices, is certainly not excluded.
- a porous protective coating according to the present invention was prepared using tetraethyl orthotitanate (TEOTi) as the matrix precursor component (resulting in a porous matrix of TiO 2 ), TiN particles as the filler component and again TEOTi (resulting in TiO 2 ) as the precursor reinforcing component.
- TEOTi tetraethyl orthotitanate
- the suspension obtained was subsequently deposited on a glass substrate by spin coating. An excess of liquid was applied while the substrate was rotating at 450 rpm, for 18 seconds. Thereafter the sample was spun at 620 rpm for 60 seconds. After spinning, the sample was kept on a hot plate at 100 0 C for 1 minute, followed by 200 0 C for 2 minutes. Finally the porous coating was cured at 400 0 C for 1 hour.
- the porous coating contained 91 vol.% of the filler component TiN based on the porous matrix of TiO 2 .
- a reinforcing precursor component in this example TiO 2
- a TEOTi-solution as a precursor.
- 30 g TEOTi was added to a solution of 30 g ethanol and 3.53 g acetic acid.
- the glass substrate, containing the porous TiN-TiO 2 coating layer was immersed in the latter TEOTi-solution under a vacuum (300 mbar) for 10 minutes.
- the sample was spun at 5400 rpm for 2 minutes. After spinning, the sample was kept on a hot plate at 100°C for 1 minute, followed by 200°C for 2 minutes. Finally the coating was cured at 400°C for 1 hour.
- the protective coating obtained had a thickness of 3 ⁇ m.
- the coating could also be easily applied on an IC instead of on the glass substrate as shown above.
- the protective coating showed an excellent mechanical, physical and chemical resistance, as well as a suitable non- transparency.
- the chemical resistance of the protective coating may be further improved by applying further coatings on the protective coating, if desired. For instance it may be additionally coated or impregnated with TiO 2 , ZrO 2 , Nb 2 O 5 Ta 2 O 5 , etc.
- the coating described above may be patterned, if necessary.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05798271A EP1797016A2 (fr) | 2004-09-30 | 2005-09-20 | Procede de formation d'un revetement sur un substrat, et revetement forme par ce procede |
JP2007534130A JP2008514415A (ja) | 2004-09-30 | 2005-09-20 | 基材上にコーティングを形成する方法、及び、こうして形成されたコーティング |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04104791 | 2004-09-30 | ||
EP04104791.1 | 2004-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006035360A2 true WO2006035360A2 (fr) | 2006-04-06 |
WO2006035360A3 WO2006035360A3 (fr) | 2006-08-03 |
Family
ID=36119265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2005/053090 WO2006035360A2 (fr) | 2004-09-30 | 2005-09-20 | Procede de formation d'un revetement sur un substrat, et revetement forme par ce procede |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1797016A2 (fr) |
JP (1) | JP2008514415A (fr) |
CN (1) | CN101031519A (fr) |
TW (1) | TW200626519A (fr) |
WO (1) | WO2006035360A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013019608A1 (fr) * | 2011-08-02 | 2013-02-07 | Dow Global Technologies Llc | Dispositifs optoélectroniques à films barrière minces à caractéristiques cristallines déposés par revêtement enrobant sur des surfaces complexes pour assurer la protection contre l'humidité |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107188616B (zh) * | 2017-05-23 | 2019-08-23 | 佛山欧神诺陶瓷有限公司 | 一种裂纹砖及其制备方法 |
CN112517352B (zh) * | 2020-10-13 | 2022-07-22 | 江苏大学 | 一种纳米颗粒负载多孔超宽光谱吸收涂层及制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5711987A (en) | 1996-10-04 | 1998-01-27 | Dow Corning Corporation | Electronic coatings |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5665422A (en) * | 1991-03-19 | 1997-09-09 | Hitachi, Ltd. | Process for formation of an ultra fine particle film |
EP1029347B1 (fr) * | 1998-06-10 | 2007-02-07 | Koninklijke Philips Electronics N.V. | Dispositif semi-conducteur avec circuit integre a revetement ceramique de securite et son procede de fabrication |
WO2004031445A1 (fr) * | 2002-10-03 | 2004-04-15 | Alberta Research Council Inc. | Revetement protecteur ceramique |
-
2005
- 2005-09-20 CN CN 200580033058 patent/CN101031519A/zh active Pending
- 2005-09-20 WO PCT/IB2005/053090 patent/WO2006035360A2/fr active Application Filing
- 2005-09-20 EP EP05798271A patent/EP1797016A2/fr not_active Withdrawn
- 2005-09-20 JP JP2007534130A patent/JP2008514415A/ja not_active Withdrawn
- 2005-09-27 TW TW094133543A patent/TW200626519A/zh unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5711987A (en) | 1996-10-04 | 1998-01-27 | Dow Corning Corporation | Electronic coatings |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013019608A1 (fr) * | 2011-08-02 | 2013-02-07 | Dow Global Technologies Llc | Dispositifs optoélectroniques à films barrière minces à caractéristiques cristallines déposés par revêtement enrobant sur des surfaces complexes pour assurer la protection contre l'humidité |
Also Published As
Publication number | Publication date |
---|---|
EP1797016A2 (fr) | 2007-06-20 |
TW200626519A (en) | 2006-08-01 |
CN101031519A (zh) | 2007-09-05 |
JP2008514415A (ja) | 2008-05-08 |
WO2006035360A3 (fr) | 2006-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0461782B1 (fr) | Conversion à basse température de précurseurs de silice en silice | |
EP0274274B1 (fr) | Revêtements céramiques multicouches obtenus à partir d'esters de silicates et d'oxydes métalliques | |
EP0460868B1 (fr) | Catalyseur à base d'amines pour la conversion à température basse de produits préliminaires de l'acide silicique en acide silicique | |
US5711987A (en) | Electronic coatings | |
EP0517475B1 (fr) | Procédé pour revêtir un substrat avec un précurseur de silice | |
US5399441A (en) | Method of applying opaque coatings | |
US5563102A (en) | Method of sealing integrated circuits | |
US4753855A (en) | Multilayer ceramic coatings from metal oxides for protection of electronic devices | |
EP0442632B1 (fr) | Couche de revêtement pour dispositifs et substrats micro-électroniques | |
US5387480A (en) | High dielectric constant coatings | |
US4808653A (en) | Coating composition containing hydrogen silsesquioxane resin and other metal oxide precursors | |
EP0427395A1 (fr) | Couches hermétiques sur un substrat sans une athmosphère de gaz inerte | |
EP0270231A2 (fr) | Revêtement multicouche en céramique à partir de résine hydrogène-silsesquioxane et d'oxydes métalliques catalysé par du platine ou du rhodium | |
EP0834489A1 (fr) | Revêtements épais opaques en céramique | |
JP4021131B2 (ja) | 低誘電率シリカ系被膜形成用塗布液および低誘電率シリカ系被膜付基板 | |
US5753374A (en) | Protective electronic coating | |
US5492958A (en) | Metal containing ceramic coatings | |
US4997482A (en) | Coating composition containing hydrolyzed silicate esters and other metal oxide precursors | |
US5866197A (en) | Method for producing thick crack-free coating from hydrogen silsequioxane resin | |
EP0605090B1 (fr) | Traitement thermique des précurseurs de silice dans une atmosphère d'oxyde nitreux | |
US5707681A (en) | Method of producing coatings on electronic substrates | |
EP1797016A2 (fr) | Procede de formation d'un revetement sur un substrat, et revetement forme par ce procede | |
KR19990006686A (ko) | 열적으로 안정한 유전성 피막 | |
CA2239356A1 (fr) | Revetements electroniques a faible constante dielectrique | |
JP3883174B2 (ja) | 低誘電率シリカ系被膜付半導体基板および低誘電率シリカ系被膜の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005798271 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 200580033058.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007534130 Country of ref document: JP |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005798271 Country of ref document: EP |