WO2006118147A1 - Polar coordinate modulation circuit, polar coordinate modulation method, integrated circuit, and radio transmitting apparatus - Google Patents
Polar coordinate modulation circuit, polar coordinate modulation method, integrated circuit, and radio transmitting apparatus Download PDFInfo
- Publication number
- WO2006118147A1 WO2006118147A1 PCT/JP2006/308739 JP2006308739W WO2006118147A1 WO 2006118147 A1 WO2006118147 A1 WO 2006118147A1 JP 2006308739 W JP2006308739 W JP 2006308739W WO 2006118147 A1 WO2006118147 A1 WO 2006118147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- amplitude
- phase
- unit
- modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3282—Acting on the phase and the amplitude of the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0222—Continuous control by using a signal derived from the input signal
Definitions
- the transmission signal is separated into a constant amplitude phase signal and an amplitude signal, and phase modulation is performed by a phase modulator based on the constant amplitude phase signal, so that the power amplifying unit performs a constant oscillation level at which saturation operation is performed.
- a method of synthesizing amplitude modulation by inputting a width phase modulation signal and driving a control voltage of a power amplifier at high speed is known. This is called the EER method (Envelope Elimination & Restoration), Meji ⁇ polar, polar modulation method (Po ⁇ ⁇ ⁇ !! system, polar modulation system).
- This is a method that achieves efficiency (for example, see Non-Patent Document 1). In the following, it differs from the quadrature modulation method. In order to clarify that it is a modulation method, it is called a polar coordinate modulation method.
- an output signal amplitude characteristic (AM-AM) with respect to a control voltage in a saturation operation type power amplification unit at a predetermined input high-frequency signal amplitude.
- AM-AM output signal amplitude characteristic
- AM-PM Amplitude Modulation to Phase Modulation conversion
- predistortion type distortion compensation is performed with reference to the memory, and after a transmission signal is separated into an amplitude signal and a phase signal, a delay adjustment unit is provided in the path of the amplitude signal or the phase signal. And synchronization between both signals is ensured (see, for example, Patent Document 1).
- the amplitude information correction unit 904 corrects the input amplitude signal based on the amplitude correction signal output from the memory 903. Based on the output signal from the amplitude information correction unit 904, the amplitude modulation unit 905 drives the control voltage of the power amplification unit 900 at high speed.
- the phase information correction unit 907 performs correction on the input phase signal based on the phase correction signal output from the memory 903.
- the phase modulation unit 908 performs phase modulation based on the output signal from the phase information correction unit 907.
- the amplitude modulation signal and the phase modulation signal distorted in advance in consideration of the inverse characteristic of the output characteristic with respect to the input control signal to the power amplification unit 900 are actually generated in the power amplification unit 900.
- the desired output amplitude and phase are affected by the amplitude and phase distortion, and the output response (linearity) to the input control voltage can be improved.
- the delay adjustment unit 9002 can ensure synchronization between the amplitude signal and the phase signal, the transmission signal can be accurately represented.
- the amplitude modulation section 905 drives the power supply voltage of the power amplification section 900 at high speed based on the analog amplitude signal.
- the phase modulator 908 performs phase modulation based on analog IQ signals.
- a signal is generated and output to the power amplifier 900.
- the change point detection circuit 1104 differentiates the output signal of the power amplifying unit 900 and then detects a signal change point from the positive / negative of the differential value.
- the delay unit 1105 adjusts the conversion timing of the DA converters 1101 and 1102 at the signal change point detected by the change point detection circuit 1104, that is, the synchronization between the amplitude signal and the phase signal extracted from the IQ signal. To do. With this configuration, it is possible to detect a signal change point and ensure synchronization of the amplitude signal and the phase signal at the signal change point.
- Patent Document 1 Special Table 2004—501527 (Fig. 11)
- Patent Document 2 Japanese Translation of Special Publication 2002-530992 (Fig. 2)
- the loss at the output portion of the power amplifier 900 increases, and the efficiency of the transmitter decreases. In addition, it cannot be used when there is a cause of loss of synchronization other than the signal change point.
- the polar modulation circuit of the present invention firstly includes a polar coordinate conversion unit that generates an amplitude signal from a baseband quadrature signal generated from transmission data, and an amplitude that generates an amplitude modulation signal based on the amplitude signal.
- the polar modulation circuit of the present invention is the first polar modulation circuit described above, which stores predetermined predistortion distortion compensation data for amplitude correction processing, and based on the amplitude signal, And a memory unit for outputting an amplitude correction signal or a phase correction signal for the amplitude signal or the signal having at least the phase component, respectively.
- the polar modulation circuit of the present invention is the first or second polar modulation circuit, wherein the delay amount information is an output of the amplification unit with respect to an input control signal to the amplification unit. This is a value determined based on the step response characteristics.
- the polar modulation circuit of the present invention is the first or second polar modulation circuit, wherein the delay amount determination unit uses the delay amount information as an amplitude value of the amplitude signal or the amplitude signal.
- a data table is stored for each transmission level information.
- the polar modulation circuit according to the present invention is the first or second polar modulation circuit, wherein the phase modulation unit is configured based on phase information output from the delay adjustment unit. And a quadrature coordinate conversion unit that generates a quadrature signal having an amplitude value and a quadrature modulation unit that generates a phase modulation signal in a radio frequency band based on the quadrature signal and outputs the phase modulation signal to the amplifying unit.
- the polar modulation circuit of the present invention is the sixth polar modulation circuit, wherein the second delay adjustment unit includes a plurality of signal amplitude values after delay adjustment in a predetermined operation clock unit. And linear interpolation based on the delay amount information.
- the polar modulation circuit of the present invention includes a polar coordinate conversion unit that generates an amplitude signal from a baseband quadrature signal generated from transmission data, and an amplitude that generates an amplitude modulation signal based on the amplitude signal.
- a modulation unit a phase modulation unit that generates a phase modulation signal in a radio frequency band based on a signal having at least a phase component of the baseband quadrature signal, and the phase modulation signal as an input high-frequency signal;
- an amplification unit that generates transmission data in a radio frequency band, and transmission level information indicating the amplitude value of the amplitude signal or the radio transmission level of the transmission data, Stores phase adjustment amount information for correcting a phase difference between the amplitude signal and the phase signal.
- a phase adjustment amount determination unit and a phase adjustment unit that adjusts the phase of the amplitude signal or the signal having at least a phase component based on the phase adjustment amount information.
- the polar modulation circuit of the present invention is the eighth polar modulation circuit described above, which stores predetermined predistortion distortion compensation data for amplitude correction processing, and based on the amplitude signal, And a memory unit for outputting an amplitude correction signal or a phase correction signal for the amplitude signal or the signal having at least the phase component, respectively.
- the distortion compensation accuracy can be improved.
- the polar modulation circuit of the present invention is the ninth polar modulation circuit, wherein the phase adjustment unit includes a multiplication circuit that multiplies the phase adjustment amount information and the phase correction signal. Composed.
- a polar coordinate conversion step of generating an amplitude signal from a baseband orthogonal signal generated from transmission data, and an amplitude of generating an amplitude modulation signal based on the amplitude signal A modulation step; a phase modulation step for generating a phase modulation signal in a radio frequency band based on a signal having at least a phase component of the baseband quadrature signal; and the phase modulation signal as an input high-frequency signal;
- an amplitude modulation signal as a control signal
- an amplification step for generating transmission data in a radio frequency band, and transmission level information indicating the amplitude value of the amplitude signal or the radio transmission level of the transmission data In order to correct a delay difference between paths of the amplitude signal and the phase signal
- An integrated circuit of the present invention is thirteenth mounted with any one of the first to eleventh polar modulation circuits.
- the wireless transmission device of the present invention includes any one of the first to eleventh polar modulation circuits or the thirteenth integrated circuit.
- the polar modulation circuit and the polar coordinate modulation method capable of compensating for the delay difference between the path of the phase signal and the amplitude signal while suppressing an increase in circuit scale.
- An integrated circuit and a wireless transmission device can be provided.
- FIG. 1 is a diagram showing a configuration of a polar modulation circuit according to a first embodiment of the present invention.
- FIG. 2 is a diagram showing AM-AM characteristics and AM-PM characteristics of the power amplification unit according to the first embodiment of the present invention.
- FIG. 3 is a diagram showing another configuration of the polar modulation circuit according to the first embodiment of the present invention.
- FIG. 4 is a diagram showing a configuration of a power amplifying unit according to the first embodiment of the present invention.
- FIG. 5 is a diagram showing step response characteristics of the power amplifying unit according to the first embodiment of the present invention.
- FIG. 6 is a diagram showing a configuration of a polar modulation circuit according to a second embodiment of the present invention.
- FIG. 7 is a diagram showing a configuration of a polar modulation circuit according to a third embodiment of the present invention.
- FIG. 8 is a diagram showing a configuration of a delay adjustment unit according to a fourth embodiment of the present invention.
- FIG. 14 is a block diagram showing a configuration of a transmission device according to a conventional technique
- the first embodiment of the present invention analyzes the operation of the power amplifying unit in the polar modulation circuit, estimates the cause of the delay, and identifies the cause of the delay, thereby performing the synchronization adjustment of the predistortion method. This section explains how to ensure synchronization by using a feedback system that branches the output signal of the power amplifier.
- FIG. 1 is a diagram showing an example of a schematic configuration of a polar modulation circuit according to the first embodiment of the present invention.
- this polar modulation circuit includes a power amplification unit 105, a polar coordinate conversion unit 106, an amplitude controller unit 109 having an amplitude information correction unit 107 and an amplitude modulation unit 108, a phase information correction unit 110, and a phase A phase modulation signal generation unit 112 having a modulation unit 111, a memory 101, a delay amount determination unit 102, and delay adjustment units 103 and 104 are provided.
- Polar coordinate conversion unit 106 uses IQ signal (1, Q) as transmission data input from a baseband signal generation unit (not shown) of the transmission device when the polar modulation circuit of the present invention is used in the transmission device. ) Is separated into an amplitude signal r and a constant amplitude phase signal ⁇ .
- the amplitude signal r (t) is normalized so that the maximum value is 1.
- the amplitude information correction unit 107 corrects the input amplitude signal based on the amplitude correction signal output from the memory 101.
- the amplitude modulation unit 108 drives the control voltage of the power amplification unit 105 at high speed based on the output signal from the amplitude information correction unit 107.
- the phase information correction unit 110 performs correction on the input phase signal based on the phase correction signal output from the memory 101.
- Phase modulation section 111 generates a radio frequency phase modulation signal based on the output signal from phase information correction section 110 and outputs the phase modulation signal to power amplification section 105.
- the power amplifying unit 105 receives the phase modulation signal output from the phase modulation unit 111 as an input high-frequency signal and inputs the amplitude modulation signal output from the amplitude modulation unit 108 as a control signal. Transmission data in the radio frequency band is generated.
- Transmission level information S1 is an unillustrated antenna force that is arranged after the power amplifying unit 105 transmitted from the control unit of the not-shown transmitter when the polar modulation circuit of the present invention is used in the transmitter. This is information for determining the average output level, and is input to the memory 101 and the delay amount judgment unit 102.
- the transmission level information corresponds to the antenna output level specified in 2 dB steps between 33 dBm and 5 dBm, for example, in the case of a mobile station transmitting by 8-PSK modulation in the 900 MHz band GSM band. To do.
- the memory 101 stores AM-AM characteristics and AM-PM characteristics for a control signal input to the power amplification unit 105 in a state where a predetermined input high-frequency signal amplitude is given to the power amplification unit 105.
- the memory 101 accesses the stored AM-AM characteristic and AM-PM characteristic using the amplitude signal r (t) output from the polar coordinate converter 106 as a reference signal, and the AM- Outputs amplitude correction signal Rcomp (t), which is the inverse of AM characteristics, to amplitude information correction unit 107, and outputs phase correction signal Tcomp (t), which is the inverse of AM-PM characteristics, to phase information correction unit 110 To do.
- the memory 101 performs normalization processing of AM-AM characteristics based on the transmission level information S1. Specifically, for the desired output level (average power), based on the maximum transmission power considering the maximum value (peak factor) of the amplitude information according to the modulation method, the stored AM-AM data By performing normalization of the output signal amplitude, correction is performed for each desired output level. This regularity enables access to AM-AM data using the input amplitude information r (t) as an address designation signal.
- the delay amount determination unit 102 receives the amplitude signal!: (T) output from the polar coordinate conversion unit 106 and The synchronization shift between the amplitude signal r and the phase signal ⁇ is calculated by referring to the data table power for the delay amount obtained in advance corresponding to the transmission level information si. Then, the delay amount information for correcting the synchronization shift is transmitted to the delay adjustment units 103 and 104. The detailed operation of the delay amount determination unit 102 will be described later.
- delay adjustment unit 103 delays only the time with respect to phase signal ⁇ (t) output from polar coordinate conversion unit 106.
- the phase signal 0 (t— ⁇ ) given is generated and output to the phase information correction unit 110.
- delay adjustment unit 104 Based on the delay amount information transmitted from delay amount determination unit 102, delay adjustment unit 104 gives a delay of time ⁇ to phase correction signal Tcomp (t) transmitted from memory 101.
- the phase correction signal Tcomp (t— ⁇ ) is generated and output to the phase information correction unit 110.
- the delay adjustment unit 104 gives a delay amount equivalent to that of the delay adjustment unit 103, whereby the phase signal and the phase information correction signal, which are input signals to the phase information correction unit 110, are provided. The same period is secured.
- FIG. 2 is a diagram illustrating an example of AM-AM characteristics and AM-PM characteristics of the power amplifying unit 105.
- AM—AM characteristic 201 is an output voltage characteristic (AM—AM characteristic) with respect to the control voltage
- AM—PM characteristic 202 is a pass phase characteristic (AM—PM characteristic) with respect to the control voltage. It can be easily obtained using a network analyzer or the like.
- FIG. 2 shows the relationship between the output voltage, the control voltage, and the phase rotation amount in the desired power amplifying unit 105. An example of a distortion compensation method is also shown.
- converting the output voltage axial force to the control voltage axis also determines the inverse characteristic of the AM-AM characteristic 201, and the signal output from the polar coordinate conversion unit 106
- the corrected amplitude signal r2 (t) 2 04 obtained from the inverse characteristic of the AM-AM characteristic 201 becomes the distortion signal of the amplitude signal.
- the corrected amplitude signal r2 (t) becomes the control voltage input to the power amplifier 105, and therefore, conversion from the control voltage axis to the phase rotation amount axis is performed.
- the phase correction signal Tcomp (t) 205 transmitted from the memory 101 can be obtained.
- this phase correction signal Tcomp (t) 205 is achieved. Compensation can be performed.
- predistortion is performed in consideration of the reverse characteristic of the output characteristic with respect to the input control signal to the power amplifying unit.
- the amplitude modulation signal and phase modulation signal take into account the amount of delay generated in the power amplification unit, and are affected by the actual amplitude and phase distortion, resulting in the desired output amplitude and phase.
- the output signal for the input control voltage The linearity of can be improved.
- FIG. 3 As another example of the transmission apparatus according to the first embodiment of the present invention, the configuration shown in FIG. 3 may be provided.
- FIG. 3 is a diagram showing another example of a schematic configuration of the polar modulation circuit according to the first embodiment of the present invention.
- the polar modulation circuit includes a power amplification unit 105, a polar coordinate conversion unit 106, an amplitude controller unit 109 having an amplitude information correction unit 107 and an amplitude modulation unit 108, a phase information correction unit 110, and A phase modulation signal generation unit 112 having a phase modulation unit 111, a delay amount determination unit 102, delay adjustment units 103 and 301, and a memory 302 are provided.
- a delay adjustment unit 301 is provided instead of the delay adjustment unit 104
- a memory 302 is provided instead of the memory 101. Parts that overlap with the polar modulation circuit in FIG.
- the transmission level information S 1 is transmission level information of the power amplifying unit 105 transmitted from the control unit of the transmission device (not shown) when the polar coordinate modulation circuit of the present invention is used for the transmission device, and the memory 302 And input to the delay amount determination unit 102.
- delay adjustment unit 301 Based on the delay amount information transmitted from delay amount determination unit 102, delay adjustment unit 301 performs time ⁇ only on the amplitude signal!: (T) transmitted from polar coordinate conversion unit 106. Amplitude signal r (t— ⁇ ) with delay is generated, and amplitude signal r (t— ⁇ ) is output as a reference signal of AM— ⁇ characteristic to memory 302, and a reference signal of AM—AM characteristic Output an amplitude signal!: (T).
- the delay time given to the reference signal of AM-PM characteristic is the delay time given to the phase signal ⁇ (t) transmitted from the polar coordinate conversion unit 106 by the delay adjustment unit 103.
- the memory 302 stores AM-AM characteristics and AM-PM characteristics for the input control signal of the power amplifying unit 105 when a high-frequency signal having a predetermined amplitude is input.
- FIG. 7 is a diagram showing an example of a schematic configuration of a polar modulation circuit according to the third embodiment of the present invention.
- this polar modulation circuit includes a power amplifier 105 and a polar coordinate converter.
- a signal generation unit 112, a delay amount determination unit 102, and a memory 101 are provided.
- an orthogonal coordinate conversion unit 113 is added to the polar coordinate modulation circuit of FIG. 6 shown in the second embodiment of the present invention, and the phase modulation unit 111 is replaced with a quadrature modulation unit 111C. . Note that portions that overlap with the polar coordinate modulation circuit in FIG.
- the orthogonal modulation unit 111 C generates a radio frequency band phase modulation signal based on the orthogonal signal output from the orthogonal coordinate conversion unit 113 and outputs the phase modulation signal to the power amplification unit 105.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
明 細 書 Specification
極座標変調回路、極座標変調方法、集積回路および無線送信装置 技術分野 Polar coordinate modulation circuit, polar coordinate modulation method, integrated circuit, and wireless transmission device
[0001] 本発明は、高効率な送信器を実現する極座標変調方式において、位相変調信号 と振幅変調信号との合成時の同期を確保する極座標変調回路、極座標変調方法、 集積回路および無線送信装置に関する。 [0001] The present invention relates to a polar modulation circuit, a polar modulation method, an integrated circuit, and a radio transmission apparatus that ensure synchronization when combining a phase modulation signal and an amplitude modulation signal in a polar modulation system that realizes a highly efficient transmitter About.
背景技術 Background art
[0002] 近年の携帯電話サービスでは、音声通話に加えてデータ通信に対する需要が拡 大していることから、通信速度の向上が重要である。例えば、主に、ヨーロッパ、アジ ァ地域にて普及している GSM (Global System for Mobile communications )システムにおいては、従来、搬送波の位相を送信データに応じてシフトする GMSK 変調にて音声通話が行われてきた。さらに、搬送波の位相及び振幅を送信データに 応じてシフトすることで、 GMSK変調に対して、 1シンボル当たりのビット情報を 3倍に 高めた 3 π Z8rotating8— PSK変調(以下 8— PSK変調と略す)にて、データ通信 も行う EDGE (Enhanced Data rates for GSM Evolution)方式が提案され ている。 [0002] In recent cellular phone services, demand for data communication in addition to voice calls is increasing, so it is important to improve communication speed. For example, in the GSM (Global System for Mobile communications) system, which is prevalent mainly in Europe and Asia, voice calls are conventionally performed using GMSK modulation that shifts the phase of the carrier wave according to the transmission data. I came. Furthermore, by shifting the phase and amplitude of the carrier wave according to the transmission data, 3 π Z8rotating8—PSK modulation (hereinafter abbreviated as “8-PSK modulation”) is obtained by increasing the bit information per symbol three times that of GMSK modulation. EDGE (Enhanced Data rates for GSM Evolution), which also performs data communication, has been proposed.
[0003] 8— PSK変調のように振幅変動を伴う線形変調方式では、無線機送信部の電力増 幅部に対する線形性の要求が厳しい。また、一般的に、電力増幅部の線形領域での 電力効率は飽和領域での電力効率に比べて低い。したがって、線形変調方式に、 従来の直交変調方式を適用すると、電力効率の高効率化が困難であった。 [0003] In a linear modulation method with amplitude fluctuation, such as 8—PSK modulation, there is a strict requirement for linearity in the power amplifier of the radio transmitter. In general, the power efficiency in the linear region of the power amplifier is lower than that in the saturation region. Therefore, when the conventional quadrature modulation method is applied to the linear modulation method, it is difficult to increase the power efficiency.
[0004] そこで、送信信号を定振幅位相信号と振幅信号に分離して、定振幅位相信号をも とに位相変調器にて位相変調をかけ、電力増幅部が飽和動作をするレベルの定振 幅位相変調信号を入力するとともに、電力増幅部の制御電圧を高速に駆動すること で振幅変調を合成する方式が知られている。これは、 EER法(Envelope Eliminat ion & Restoration)、め ヽ ί 、 polar modulation方式 (ポ ~~ τ ~~変! ^方式、 極座標変調方式)と呼ばれ、線形変調方式にて電力増幅部の高効率化を実現する 方式である (例えば、非特許文献 1参照)。なお、以下では、直交変調方式と異なる 変調方式であることを明確にするため、極座標変調方式と呼ぶ。 [0004] Therefore, the transmission signal is separated into a constant amplitude phase signal and an amplitude signal, and phase modulation is performed by a phase modulator based on the constant amplitude phase signal, so that the power amplifying unit performs a constant oscillation level at which saturation operation is performed. A method of synthesizing amplitude modulation by inputting a width phase modulation signal and driving a control voltage of a power amplifier at high speed is known. This is called the EER method (Envelope Elimination & Restoration), Meji ί polar, polar modulation method (Po ~~ τ ~~ !! system, polar modulation system). This is a method that achieves efficiency (for example, see Non-Patent Document 1). In the following, it differs from the quadrature modulation method. In order to clarify that it is a modulation method, it is called a polar coordinate modulation method.
[0005] 図 11は 8— PSK変調時の振幅信号に関して、 GSMの 1タイムスロット(577[ /z s]) 中 200〜400 s]部分を抽出してプロットした図である。図 11において、横軸は当 該タイムスロットの開始力もの経過時間、縦軸は振幅信号の振幅である。極座標変調 方式では、定振幅位相変調信号を電力増幅部に入力するため、電力増幅部を飽和 動作点にて使用可能であり、電力効率の面で有利である。 FIG. 11 is a diagram obtained by extracting and plotting the 200 to 400 s] portion in one time slot (577 [/ z s]) of GSM for the amplitude signal at the time of 8-PSK modulation. In FIG. 11, the horizontal axis is the elapsed time of the starting force of the time slot, and the vertical axis is the amplitude of the amplitude signal. In the polar modulation method, since the constant amplitude phase modulation signal is input to the power amplifier, the power amplifier can be used at the saturation operating point, which is advantageous in terms of power efficiency.
[0006] しかしながら、図 11のような 2[ s]以内に、振幅の極大値 極小値の変極点が存 在する振幅信号を表現するためには、電力増幅部の制御電圧を高速に駆動する必 要がある。そこで、入力制御電圧の変化に対する電力増幅部の出力応答性は、改善 技術 (歪補償技術)が必要である。 [0006] However, in order to represent an amplitude signal in which the inflection point of the maximum value or minimum value of the amplitude exists within 2 [s] as shown in FIG. 11, the control voltage of the power amplifier is driven at high speed. There is a need. Therefore, an improvement technology (distortion compensation technology) is required for the output response of the power amplifier to changes in the input control voltage.
[0007] また、極座標変調方式は、送信信号を振幅信号と位相信号とに一度分離し、再合 成する方式であるため、分離後、再合成するまでの間に、振幅信号と位相信号との 間の同期が外れると、再合成時に、送信信号を正確に表現することができない。よつ て、振幅信号と位相信号との間の同期をとる同期調整技術が必要である。 [0007] Further, since the polar modulation method is a method in which a transmission signal is once separated into an amplitude signal and a phase signal and recombined, the amplitude signal and the phase signal are separated after the separation and before being recombined. If the synchronization is lost, the transmitted signal cannot be expressed accurately during recombination. Therefore, a synchronization adjustment technique for synchronizing the amplitude signal and the phase signal is necessary.
[0008] ここまで説明してきたように、極座標変調方式において必要とされる 2つの技術に関 する従来技術につ!、て説明する。 [0008] As described so far, the prior art relating to the two techniques required in the polar modulation method will be described.
[0009] まず、極座標変調方式での歪補償及び同期調整に関する従来技術として、所定入 力高周波信号振幅での飽和動作型電力増幅部において、制御電圧に対する出力 信号振幅特'性(AM— AM : Amplitude Modulation to Amplitude Modulat ion conversion)と、通過位相特'性(AM— PM : Amplitude Modulation to P hase Modulation conversion)とをメモリに蓄積しておくものがある。この従来技 術では、前記メモリを参照してプリディストーション方式の歪補償を実施するとともに、 送信信号を振幅信号と位相信号とに分離した後、振幅信号あるいは位相信号の経 路に遅延調整部を配置し、両信号間の同期を確保する (例えば、特許文献 1参照)。 [0009] First, as a conventional technique related to distortion compensation and synchronization adjustment in the polar modulation method, an output signal amplitude characteristic (AM-AM) with respect to a control voltage in a saturation operation type power amplification unit at a predetermined input high-frequency signal amplitude. There are some which store Amplitude Modulation to Amplitude Modulation ion conversion (AM) and pass phase characteristics (AM-PM: Amplitude Modulation to Phase Modulation conversion) in a memory. In this conventional technique, predistortion type distortion compensation is performed with reference to the memory, and after a transmission signal is separated into an amplitude signal and a phase signal, a delay adjustment unit is provided in the path of the amplitude signal or the phase signal. And synchronization between both signals is ensured (see, for example, Patent Document 1).
[0010] 図 12は特許文献 1に記載された従来の送信装置を示すブロック図である。図 12に 示すように、この送信装置は、電力増幅部(PA) 900と、極座標変換部 901と、遅延 調整部 902と、メモリ 903と、振幅情報補正部 904及び振幅変調部 905を有する振 幅コントローラ部 906と、位相情報補正部 907及び位相変調部 908を有する位相変 調信号発生器 909とを備える。 FIG. 12 is a block diagram showing a conventional transmission device described in Patent Document 1. As shown in FIG. 12, this transmission apparatus includes a power amplification unit (PA) 900, a polar coordinate conversion unit 901, a delay adjustment unit 902, a memory 903, an amplitude information correction unit 904, and an amplitude modulation unit 905. A phase changer having a width controller unit 906, a phase information correction unit 907, and a phase modulation unit 908. A modulation signal generator 909.
[0011] 極座標変換部 901は、図示しないベースバンド信号生成部より入力された IQ信号( I、 Q)を振幅信号 rと定振幅の位相信号 Θとに分離する。遅延調整部 902は、入力す る振幅信号 rと位相信号 Θとにそれぞれ所定の遅延を与え、出力する振幅信号 と 位相信号 Θ 2との同期を確保する。メモリ 903は、電力増幅部 900に所定の入力高 周波信号振幅を与えた状態で、電力増幅部 900に入力される制御信号に対する A M— AM特性及び AM— PM特性を格納する。また、入力振幅信号 r2に応じて電力 増幅部 900の逆特性となる振幅補正信号、位相補正信号を出力する。 The polar coordinate conversion unit 901 separates the IQ signal (I, Q) input from a baseband signal generation unit (not shown) into an amplitude signal r and a constant amplitude phase signal Θ. The delay adjustment unit 902 gives predetermined delays to the input amplitude signal r and phase signal Θ, respectively, and ensures synchronization between the output amplitude signal and phase signal Θ2. The memory 903 stores the AM-AM characteristic and the AM-PM characteristic for the control signal input to the power amplification unit 900 in a state where a predetermined input high frequency signal amplitude is given to the power amplification unit 900. In addition, an amplitude correction signal and a phase correction signal that are the reverse characteristics of the power amplification unit 900 are output according to the input amplitude signal r2.
[0012] 振幅情報補正部 904は、メモリ 903から出力された振幅補正信号をもとに、入力振 幅信号に対する補正を行う。振幅変調部 905は、振幅情報補正部 904からの出力信 号をもとに、電力増幅部 900の制御電圧を高速に駆動する。位相情報補正部 907は 、メモリ 903から出力された位相補正信号をもとに、入力位相信号に対する補正を実 施する。位相変調部 908は、位相情報補正部 907からの出力信号をもとに、位相変 調を行う。 The amplitude information correction unit 904 corrects the input amplitude signal based on the amplitude correction signal output from the memory 903. Based on the output signal from the amplitude information correction unit 904, the amplitude modulation unit 905 drives the control voltage of the power amplification unit 900 at high speed. The phase information correction unit 907 performs correction on the input phase signal based on the phase correction signal output from the memory 903. The phase modulation unit 908 performs phase modulation based on the output signal from the phase information correction unit 907.
[0013] このようにして、電力増幅部 900への入力制御信号に対する出力特性の逆特性を 考慮して予め歪ませた振幅変調信号及び位相変調信号は、電力増幅部 900にて発 生する実際の振幅、位相歪の影響を受けて、所望の出力振幅、位相となり、入力制 御電圧に対する出力応答性 (線形性)を向上させることができる。また、遅延調整部 9 02によって、振幅信号、位相信号間の同期を確保することができるため、送信信号 を正確に表現することができる。 In this way, the amplitude modulation signal and the phase modulation signal distorted in advance in consideration of the inverse characteristic of the output characteristic with respect to the input control signal to the power amplification unit 900 are actually generated in the power amplification unit 900. The desired output amplitude and phase are affected by the amplitude and phase distortion, and the output response (linearity) to the input control voltage can be improved. In addition, since the delay adjustment unit 9002 can ensure synchronization between the amplitude signal and the phase signal, the transmission signal can be accurately represented.
[0014] しかしながら、特許文献 1に記載の技術では、歪補償の具体的な方法、同期調整 の具体的な方法が開示されていない。よって、例えば、何らかの要因で振幅信号、位 相信号間の同期が外れる場合には対応できない。 However, the technique described in Patent Document 1 does not disclose a specific method for distortion compensation and a specific method for synchronization adjustment. Therefore, for example, it is not possible to cope with a case where the synchronization between the amplitude signal and the phase signal is lost due to some reason.
[0015] 図 13は、時間経過に対して徐々に変化(単調増力!]もしくは単調減少)する制御電 圧を、電力増幅部に印加した場合の通過位相特性をプロットした図である。図 13に おいて、横軸は正規化した制御電圧、縦軸は正規化制御電圧 1を基準とした通過位 相回転量である。図中の実線は、正規ィ匕制御電圧を低電圧 (0)から高電圧(1)へと 、単調増加で徐々に変化させた場合 (上り特性)の通過位相特性である。また、図中 の点線は正規ィ匕制御電圧を高電圧(1)から低電圧 (0)へと、単調減少で徐々に変 ィ匕させた場合 (下り特性)の通過位相特性である。なお、実線、点線ともに、電力増幅 部が飽和動作する所定レベルの入力高周波信号振幅(同一値)が供給されている場 合を示している。 FIG. 13 is a graph plotting the pass phase characteristics when a control voltage that gradually changes (monotonically increasing!) Or monotonously decreases over time is applied to the power amplifier. In FIG. 13, the horizontal axis represents the normalized control voltage, and the vertical axis represents the passing phase rotation amount based on the normalized control voltage 1. The solid line in the figure represents the passing phase characteristic when the normal voltage is gradually changed from a low voltage (0) to a high voltage (1) in a monotonically increasing manner (upbound characteristic). Also in the figure The dotted line shows the passing phase characteristics when the normal control voltage is gradually changed from a high voltage (1) to a low voltage (0) in a monotonically decreasing manner (downward characteristics). Both the solid line and the dotted line show the case where a predetermined level of input high-frequency signal amplitude (same value) is supplied to saturate the power amplifier.
[0016] 極座標変調方式においては、電力増幅部の制御電圧を高速に駆動するため、電 力増幅部への制御電圧入力部における容量 (寄生容量を含む)に対する充電時間、 放電時間に差が生じる。このため、図 13のように制御電圧の印加条件が、低電圧か ら高電圧へと変化する場合と、高電圧から低電圧へと変化する場合とで、制御電圧 の変化幅が同一値でも位相変化量が異なる。すなわち、信号変化点にて位相特性 が変化し、これは、振幅信号と位相信号との間の同期が外れることを意味する。 In the polar modulation method, since the control voltage of the power amplifier is driven at high speed, there is a difference in charge time and discharge time with respect to the capacitance (including parasitic capacitance) in the control voltage input unit to the power amplifier. . For this reason, as shown in Fig. 13, the control voltage application condition changes from low voltage to high voltage and when the control voltage changes from high voltage to low voltage, even if the change width of the control voltage is the same value. The amount of phase change is different. That is, the phase characteristic changes at the signal change point, which means that the synchronization between the amplitude signal and the phase signal is lost.
[0017] 次に、極座標変調方式における信号変化点での同期調整に関する従来技術につ いて説明する。このような従来技術として、電力増幅部の出力信号振幅を検波し、検 波信号を微分して信号変化点を求めるものがある。この従来技術では、信号変化点 を求めた後、振幅信号及び位相信号をデジタル形式からアナログ形式に変換するデ ジタルーアナログ変換回路(以下 DAコンバータと略す)に供給する基準クロックに対 する遅延を調整する。そして、信号変化点での同期タイミングを調整する(例えば、特 許文献 2参照)。 Next, a conventional technique related to synchronization adjustment at a signal change point in the polar coordinate modulation method will be described. As such a conventional technique, there is one that detects the output signal amplitude of the power amplifying unit and differentiates the detected signal to obtain a signal change point. In this conventional technique, after obtaining the signal change point, a delay with respect to a reference clock supplied to a digital-analog conversion circuit (hereinafter abbreviated as a DA converter) that converts an amplitude signal and a phase signal from a digital format to an analog format is calculated. adjust. Then, the synchronization timing at the signal change point is adjusted (for example, see Patent Document 2).
[0018] 図 14は、特許文献 2に記載された従来の送信装置を示すブロック図である。図 14 に示すように、この送信装置は、電力増幅部 900、振幅変調部 905、位相変調部 90 8、 DAコンバータ 1101、 1102、基準クロック 1103、変化点検出回路 1104、遅延部 1105を備える。 FIG. 14 is a block diagram showing a conventional transmission device described in Patent Document 2. As shown in FIG. 14, the transmission apparatus includes a power amplification unit 900, an amplitude modulation unit 905, a phase modulation unit 908, DA converters 1101 and 1102, a reference clock 1103, a change point detection circuit 1104, and a delay unit 1105.
[0019] DAコンバータ 1101は、図示しないベースバンド信号生成部より入力されたデジタ ル形式の IQ信号 (1、 Q)をアナログ形式の IQ信号へと変換する。 DAコンバータ 110 2は、図示しない極座標変換部にて前記デジタル形式の IQ信号 (1、 Q)から抽出した デジタル形式の振幅信号 (r)をアナログ形式の振幅信号へと変換する。基準クロック 1103は、 DAコンバータ 1101、 1102に変換動作の基準となるクロックを供給する。 The DA converter 1101 converts a digital IQ signal (1, Q) input from a baseband signal generator (not shown) into an analog IQ signal. The DA converter 1102 converts the digital amplitude signal (r) extracted from the digital IQ signal (1, Q) into an analog amplitude signal by a polar coordinate converter (not shown). The reference clock 1103 supplies the DA converters 1101 and 1102 with a reference clock for conversion operation.
[0020] 振幅変調部 905は、アナログ形式の振幅信号をもとに、電力増幅部 900の電源電 圧を高速に駆動する。位相変調部 908は、アナログ形式の IQ信号をもとに位相変調 信号を生成し、電力増幅部 900へと出力する。変化点検出回路 1104は、電力増幅 部 900の出力信号を微分した後、微分値の正負から、信号変化点を検出する。遅延 部 1105は、変化点検出回路 1104にて検出した信号変化点にて、 DAコンバータ 11 01と 1102での変換タイミング、すなわち、 IQ信号より抽出した振幅信号と位相信号 との間の同期を調整する。この構成により、信号変化点を検出し、信号変化点にて振 幅信号と位相信号の同期を確保することが可能となる。 [0020] The amplitude modulation section 905 drives the power supply voltage of the power amplification section 900 at high speed based on the analog amplitude signal. The phase modulator 908 performs phase modulation based on analog IQ signals. A signal is generated and output to the power amplifier 900. The change point detection circuit 1104 differentiates the output signal of the power amplifying unit 900 and then detects a signal change point from the positive / negative of the differential value. The delay unit 1105 adjusts the conversion timing of the DA converters 1101 and 1102 at the signal change point detected by the change point detection circuit 1104, that is, the synchronization between the amplitude signal and the phase signal extracted from the IQ signal. To do. With this configuration, it is possible to detect a signal change point and ensure synchronization of the amplitude signal and the phase signal at the signal change point.
[0021] 特許文献 1:特表 2004— 501527号公報 (第 11図) [0021] Patent Document 1: Special Table 2004—501527 (Fig. 11)
特許文献 2:特表 2002— 530992号公報 (第 2図) Patent Document 2: Japanese Translation of Special Publication 2002-530992 (Fig. 2)
特干文献 1 : Kenington, Peter B、 High— Linearity RF Ampliner Design 、 Artech H ouse Pulishers (第 162頁、第 4. 18図) Special Reference 1: Kenington, Peter B, High—Linearity RF Ampliner Design, Artech House Pulishers (page 162, Figure 4.18)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0022] 極座標変調方式にお!、て、送信信号を正確に表現するためには、振幅信号と位相 信号との間の同期を確保する同期調整技術が必要である。以上のような極座標変調 方式を実現するのに必要な技術に対して、従来技術にて解決されていない課題に ついて、次に説明する。 In the polar coordinate modulation system, in order to accurately represent the transmission signal, a synchronization adjustment technique for ensuring synchronization between the amplitude signal and the phase signal is necessary. The following describes the problems that have not been solved by the prior art with respect to the techniques necessary to realize the polar coordinate modulation system as described above.
[0023] 特許文献 1にて示した極座標変調方式での同期調整技術では、同期確保の具体 的な方法が開示されていないため、何らかの要因で振幅信号、位相信号間の同期 がずれる場合には対応できな 、。 [0023] In the synchronization adjustment technique using the polar coordinate modulation method disclosed in Patent Document 1, a specific method for ensuring synchronization is not disclosed. Therefore, when the synchronization between the amplitude signal and the phase signal shifts due to some factor, I can't respond.
[0024] 特許文献 2にて示した極座標変調方式における信号変化点での同期調整技術で は、電力増幅部 900の出力信号を分岐し、フィードバックする系が必要となることから[0024] The synchronization adjustment technique at the signal change point in the polar modulation method shown in Patent Document 2 requires a system for branching and feeding back the output signal of the power amplifier 900.
、回路規模が増大するとともに、電力増幅部 900の出力部分での損失が増加し、送 信装置の効率が低下する。また、信号変化点以外に同期が外れる要因がある場合 に対応できない。 As the circuit scale increases, the loss at the output portion of the power amplifier 900 increases, and the efficiency of the transmitter decreases. In addition, it cannot be used when there is a cause of loss of synchronization other than the signal change point.
[0025] 本発明は、上記従来の事情に鑑みてなされたものであって、極座標変調方式にお いて、回路規模の増大を抑制しながら、位相変調信号と振幅変調信号との合成時の 同期を確保することが可能な極座標変調回路、極座標変調方法、集積回路および 無線送信装置を提供することを目的とする。 課題を解決するための手段 [0025] The present invention has been made in view of the above-described conventional circumstances, and in the polar modulation method, synchronization at the time of combining a phase modulation signal and an amplitude modulation signal while suppressing an increase in circuit scale. It is an object of the present invention to provide a polar modulation circuit, a polar modulation method, an integrated circuit, and a wireless transmission device capable of ensuring the above. Means for solving the problem
[0026] 本発明の極座標変調回路は、第 1に、送信データにより生成したベースバンド直交 信号から、振幅信号を生成する極座標変換部と、前記振幅信号を基に振幅変調信 号を生成する振幅変調部と、前記ベースバンド直交信号の少なくとも位相成分を有 する信号を基に、無線周波数帯の位相変調信号を生成する位相変調部と、前記位 相変調信号を入力高周波信号として入力し、前記振幅変調信号を制御信号として入 力することで、無線周波数帯の送信データを生成する増幅部と、前記振幅信号の振 幅値又は前記送信データの無線送信レベルを示す送信レベル情報に応じた前記振 幅信号と前記位相信号との経路間遅延差を補正するための遅延量情報を格納する 遅延量判断部と、前記遅延量情報を基に、前記振幅信号又は前記少なくとも位相成 分を有する信号に対して遅延を与える遅延調整部と、を含む。 [0026] The polar modulation circuit of the present invention firstly includes a polar coordinate conversion unit that generates an amplitude signal from a baseband quadrature signal generated from transmission data, and an amplitude that generates an amplitude modulation signal based on the amplitude signal. A modulation unit, a phase modulation unit that generates a phase modulation signal in a radio frequency band based on a signal having at least a phase component of the baseband quadrature signal, and the phase modulation signal as an input high-frequency signal; By inputting the amplitude modulation signal as a control signal, the amplification unit that generates transmission data in a radio frequency band, and the transmission level information indicating the amplitude value of the amplitude signal or the radio transmission level of the transmission data. A delay amount determining unit for storing delay amount information for correcting a delay difference between paths of the amplitude signal and the phase signal; and based on the delay amount information, the amplitude signal or at least the phase It includes a delay adjusting unit for delaying for a signal having a frequency, a.
[0027] この構成により、前記増幅部からの出力信号を分岐し、フィードバックする系を必要 とせず、簡易な構成で、位相信号と振幅信号の経路間遅延差を補償することができ る。 With this configuration, it is possible to compensate for the delay difference between the paths of the phase signal and the amplitude signal with a simple configuration without requiring a system for branching and feeding back the output signal from the amplification unit.
[0028] 本発明の極座標変調回路は、第 2に、上記第 1の極座標変調回路であって、所定 の振幅補正処理用プリディストーション歪補償処理データを格納し、前記振幅信号を 基に、前記振幅信号又は前記少なくとも位相成分を有する信号に対して、それぞれ 振幅補正信号又は位相補正信号を出力するメモリ部、をさらに備える。 [0028] Secondly, the polar modulation circuit of the present invention is the first polar modulation circuit described above, which stores predetermined predistortion distortion compensation data for amplitude correction processing, and based on the amplitude signal, And a memory unit for outputting an amplitude correction signal or a phase correction signal for the amplitude signal or the signal having at least the phase component, respectively.
[0029] この構成により、上記第 1の極座標変調回路での効果に加え、歪補償精度を向上 できる。 [0029] With this configuration, in addition to the effect of the first polar modulation circuit, distortion compensation accuracy can be improved.
[0030] 本発明の極座標変調回路は、第 3に、上記第 1または第 2の極座標変調回路であ つて、前記遅延量情報は、前記増幅部への入力制御信号に対する前記増幅部の出 力のステップ応答特性に基づいて決定した値である。 [0030] Thirdly, the polar modulation circuit of the present invention is the first or second polar modulation circuit, wherein the delay amount information is an output of the amplification unit with respect to an input control signal to the amplification unit. This is a value determined based on the step response characteristics.
[0031] この構成により、上記第 1または第 2の極座標変調回路での効果に加え、遅延調整 量の決定が容易となる。 [0031] With this configuration, in addition to the effect of the first or second polar modulation circuit, the delay adjustment amount can be easily determined.
[0032] 本発明の極座標変調回路は、第 4に、上記第 1または第 2の極座標変調回路であ つて、前記遅延量判断部は、前記遅延量情報を、前記振幅信号の振幅値又は前記 送信レベル情報毎に格納するデータテーブルを有する。 [0033] この構成により、極座標変調方式において、回路規模の増大を抑制しながら、位相 変調信号と振幅変調信号の合成時の同期を確保することができる。 [0032] Fourthly, the polar modulation circuit of the present invention is the first or second polar modulation circuit, wherein the delay amount determination unit uses the delay amount information as an amplitude value of the amplitude signal or the amplitude signal. A data table is stored for each transmission level information. With this configuration, in the polar modulation method, it is possible to ensure synchronization when combining the phase modulation signal and the amplitude modulation signal while suppressing an increase in circuit scale.
[0034] 本発明の極座標変調回路は、第 5に、上記第 1または第 2の極座標変調回路であ つて、前記位相変調部は、前記遅延調整部より出力される位相情報を基に、所定の 振幅値を有する直交信号を生成する直交座標変換部と、前記直交信号を基に、無 線周波数帯の位相変調信号を生成し、前記増幅部に対して出力する直交変調部と を備える。 [0034] Fifthly, the polar modulation circuit according to the present invention is the first or second polar modulation circuit, wherein the phase modulation unit is configured based on phase information output from the delay adjustment unit. And a quadrature coordinate conversion unit that generates a quadrature signal having an amplitude value and a quadrature modulation unit that generates a phase modulation signal in a radio frequency band based on the quadrature signal and outputs the phase modulation signal to the amplifying unit.
[0035] この構成により、位相変調信号と振幅変調信号の合成時の同期を確保するための 回路規模を低減することができる。 [0035] With this configuration, it is possible to reduce the circuit scale for ensuring synchronization during the synthesis of the phase modulation signal and the amplitude modulation signal.
[0036] 本発明の極座標変調回路は、第 6に、上記第 1ないし第 3の極座標変調回路であ つて、前記遅延調整部は、前記極座標変調回路を構成するデジタル信号処理部の 所定動作クロック単位での遅延調整を行う第一の遅延調整部と、前記クロック単位未 満での遅延調整を行う第二の遅延調整部とを備える。 [0036] Sixth, the polar modulation circuit of the present invention is the first to third polar modulation circuits, wherein the delay adjusting unit is a predetermined operation clock of a digital signal processing unit constituting the polar modulation circuit. A first delay adjustment unit that performs delay adjustment in units, and a second delay adjustment unit that performs delay adjustments in less than the clock unit.
[0037] この構成により、デジタル信号処理部の所定動作クロックの制約を受けることなぐ 遅延調整ステップの精度を向上することができる。 [0037] With this configuration, it is possible to improve the accuracy of the delay adjustment step without being restricted by a predetermined operation clock of the digital signal processing unit.
[0038] 本発明の極座標変調回路は、第 7に、上記第 6の極座標変調回路であって、前記 第二の遅延調整部は、所定動作クロック単位での遅延調整後の複数の信号振幅値 と前記遅延量情報とに基づき線形補間する。 [0038] Seventh, the polar modulation circuit of the present invention is the sixth polar modulation circuit, wherein the second delay adjustment unit includes a plurality of signal amplitude values after delay adjustment in a predetermined operation clock unit. And linear interpolation based on the delay amount information.
[0039] この構成により、簡単な構成にて、遅延調整ステップの精度を向上することができる [0039] With this configuration, it is possible to improve the accuracy of the delay adjustment step with a simple configuration.
[0040] 本発明の極座標変調回路は、第 8に、送信データにより生成したベースバンド直交 信号から、振幅信号を生成する極座標変換部と、前記振幅信号を基に振幅変調信 号を生成する振幅変調部と、前記ベースバンド直交信号の少なくとも位相成分を有 する信号を基に、無線周波数帯の位相変調信号を生成する位相変調部と、前記位 相変調信号を入力高周波信号として入力し、前記振幅変調信号を制御信号として入 力することで、無線周波数帯の送信データを生成する増幅部と、前記振幅信号の振 幅値又は前記送信データの無線送信レベルを示す送信レベル情報に応じて、前記 振幅信号と前記位相信号との位相差を補正するための位相調整量情報を格納する 位相調整量判断部と、前記位相調整量情報を基に、前記振幅信号又は前記少なく とも位相成分を有する信号の位相を調整する位相調整部と、を備える。 [0040] Eighthly, the polar modulation circuit of the present invention includes a polar coordinate conversion unit that generates an amplitude signal from a baseband quadrature signal generated from transmission data, and an amplitude that generates an amplitude modulation signal based on the amplitude signal. A modulation unit, a phase modulation unit that generates a phase modulation signal in a radio frequency band based on a signal having at least a phase component of the baseband quadrature signal, and the phase modulation signal as an input high-frequency signal; By inputting the amplitude modulation signal as a control signal, an amplification unit that generates transmission data in a radio frequency band, and transmission level information indicating the amplitude value of the amplitude signal or the radio transmission level of the transmission data, Stores phase adjustment amount information for correcting a phase difference between the amplitude signal and the phase signal. A phase adjustment amount determination unit; and a phase adjustment unit that adjusts the phase of the amplitude signal or the signal having at least a phase component based on the phase adjustment amount information.
[0041] この構成により、位相変調信号と振幅変調信号の合成時の同期を確保するための 回路規模を低減することができる。 [0041] With this configuration, it is possible to reduce the circuit scale for ensuring synchronization during the synthesis of the phase modulation signal and the amplitude modulation signal.
[0042] 本発明の極座標変調回路は、第 9に、上記第 8の極座標変調回路であって、所定 の振幅補正処理用プリディストーション歪補償処理データを格納し、前記振幅信号を 基に、前記振幅信号又は前記少なくとも位相成分を有する信号に対して、それぞれ 振幅補正信号又は位相補正信号を出力するメモリ部、をさらに備える。 [0042] Nineth, the polar modulation circuit of the present invention is the eighth polar modulation circuit described above, which stores predetermined predistortion distortion compensation data for amplitude correction processing, and based on the amplitude signal, And a memory unit for outputting an amplitude correction signal or a phase correction signal for the amplitude signal or the signal having at least the phase component, respectively.
[0043] この構成により、位相変調信号と振幅変調信号の合成時の同期を確保するとともに[0043] With this configuration, synchronization during the synthesis of the phase modulation signal and the amplitude modulation signal is ensured.
、歪補償精度を向上できる。 The distortion compensation accuracy can be improved.
[0044] 本発明の極座標変調回路は、第 10に、上記第 9の極座標変調回路であって、前記 位相調整部は、前記位相調整量情報と前記位相補正信号とを乗算する乗算回路に より構成される。 [0044] Tenthly, the polar modulation circuit of the present invention is the ninth polar modulation circuit, wherein the phase adjustment unit includes a multiplication circuit that multiplies the phase adjustment amount information and the phase correction signal. Composed.
[0045] この構成により、位相変調信号と振幅変調信号の合成時の同期を確保するための 回路規模を低減することができる。 [0045] With this configuration, it is possible to reduce the circuit scale for ensuring synchronization during the synthesis of the phase modulation signal and the amplitude modulation signal.
[0046] 本発明の極座標変調回路は、第 11に、上記第 9の極座標変調回路であって、前記 位相調整量判断部は、前記位相調整量情報を、前記振幅信号の振幅値又は前記 送信レベル情報毎に格納するデータテーブルを有する。 [0046] Eleventhly, the polar modulation circuit according to the present invention is the ninth polar modulation circuit, wherein the phase adjustment amount determination unit uses the phase adjustment amount information as the amplitude value of the amplitude signal or the transmission signal. A data table is stored for each level information.
[0047] この構成により、極座標変調方式において、回路規模の増大を抑制しながら、位相 変調信号と振幅変調信号の合成時の同期を確保することができる。 With this configuration, in the polar modulation method, it is possible to ensure synchronization when combining the phase modulation signal and the amplitude modulation signal while suppressing an increase in circuit scale.
[0048] 本発明の極座標変調方法は、第 12に、送信データにより生成したベースバンド直 交信号から、振幅信号を生成する極座標変換ステップと、前記振幅信号を基に振幅 変調信号を生成する振幅変調ステップと、前記ベースバンド直交信号の少なくとも位 相成分を有する信号を基に、無線周波数帯の位相変調信号を生成する位相変調ス テツプと、前記位相変調信号を入力高周波信号として入力し、前記振幅変調信号を 制御信号として入力することで、無線周波数帯の送信データを生成する増幅ステツ プと、前記振幅信号の振幅値又は前記送信データの無線送信レベルを示す送信レ ベル情報に応じた、前記振幅信号と前記位相信号との経路間遅延差を補正するた めの遅延量情報を格納する遅延量判断ステップと、前記遅延量情報を基に、前記振 幅信号又は前記少なくとも位相成分を有する信号に対して、遅延を与える遅延調整 ステップと、を備える。 [0048] In the polar modulation method of the present invention, twelfth, a polar coordinate conversion step of generating an amplitude signal from a baseband orthogonal signal generated from transmission data, and an amplitude of generating an amplitude modulation signal based on the amplitude signal A modulation step; a phase modulation step for generating a phase modulation signal in a radio frequency band based on a signal having at least a phase component of the baseband quadrature signal; and the phase modulation signal as an input high-frequency signal; By inputting an amplitude modulation signal as a control signal, an amplification step for generating transmission data in a radio frequency band, and transmission level information indicating the amplitude value of the amplitude signal or the radio transmission level of the transmission data, In order to correct a delay difference between paths of the amplitude signal and the phase signal A delay amount determining step for storing delay amount information for delay, and a delay adjustment step for giving a delay to the amplitude signal or the signal having at least the phase component based on the delay amount information.
[0049] この方法により、前記増幅ステップ後の出力信号を分岐し、フィードバックするステ ップを必要とせず、簡易に、位相信号と振幅信号の経路間遅延差を補償することが できる。 [0049] According to this method, it is possible to easily compensate for the delay difference between the path of the phase signal and the amplitude signal without branching and feeding back the output signal after the amplification step.
[0050] 本発明の集積回路は、第 13に、上記第 1ないし第 11のいずれかの極座標変調回 路を実装したものである。 [0050] An integrated circuit of the present invention is thirteenth mounted with any one of the first to eleventh polar modulation circuits.
[0051] この構成により、上記第 1ないし第 11のいずれかの極座標変調回路による効果に 加え、回路規模を低減できる。 [0051] With this configuration, in addition to the effect of any one of the first to eleventh polar modulation circuits, the circuit scale can be reduced.
[0052] 本発明の無線送信装置は、第 14に、上記第 1ないし第 11のいずれかの極座標変 調回路又は上記第 13の集積回路を有する。 [0052] Fourteenthly, the wireless transmission device of the present invention includes any one of the first to eleventh polar modulation circuits or the thirteenth integrated circuit.
[0053] この構成により、高効率な無線送信装置を実現することができる。 [0053] With this configuration, a highly efficient wireless transmission device can be realized.
発明の効果 The invention's effect
[0054] 本発明によれば、極座標変調方式において、回路規模の増大を抑制しながら、位 相信号と振幅信号の経路間遅延差を補償することが可能な極座標変調回路、極座 標変調方法、集積回路および無線送信装置を提供することができる。 [0054] According to the present invention, in the polar modulation system, the polar modulation circuit and the polar coordinate modulation method capable of compensating for the delay difference between the path of the phase signal and the amplitude signal while suppressing an increase in circuit scale. An integrated circuit and a wireless transmission device can be provided.
図面の簡単な説明 Brief Description of Drawings
[0055] [図 1]本発明の第 1の実施形態による極座標変調回路の構成を示す図 [0055] FIG. 1 is a diagram showing a configuration of a polar modulation circuit according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態による電力増幅部の AM— AM特性、 AM— PM特性 を示す図 FIG. 2 is a diagram showing AM-AM characteristics and AM-PM characteristics of the power amplification unit according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施形態による極座標変調回路の他の構成を示す図 FIG. 3 is a diagram showing another configuration of the polar modulation circuit according to the first embodiment of the present invention.
[図 4]本発明の第 1の実施形態による電力増幅部の構成を示す図 FIG. 4 is a diagram showing a configuration of a power amplifying unit according to the first embodiment of the present invention.
[図 5]本発明の第 1の実施形態による電力増幅部のステップ応答特性を示す図 FIG. 5 is a diagram showing step response characteristics of the power amplifying unit according to the first embodiment of the present invention.
[図 6]本発明の第 2の実施形態による極座標変調回路の構成を示す図 FIG. 6 is a diagram showing a configuration of a polar modulation circuit according to a second embodiment of the present invention.
[図 7]本発明の第 3の実施形態による極座標変調回路の構成を示す図 FIG. 7 is a diagram showing a configuration of a polar modulation circuit according to a third embodiment of the present invention.
[図 8]本発明の第 4の実施形態による遅延調整部の構成を示す図 FIG. 8 is a diagram showing a configuration of a delay adjustment unit according to a fourth embodiment of the present invention.
[図 9]本発明の第 5の実施形態による極座標変調回路の構成を示す図 圆 10]本発明の第 5の実施形態による電力増幅部の AM— PM特性を示す図 圆 11]従来の技術による 8— PSK変調時の振幅信号一例を示す図 圆 12]従来の技術による送信装置の構成を示すブロック図 FIG. 9 is a diagram showing a configuration of a polar modulation circuit according to a fifth embodiment of the present invention. 圆 10] Diagram showing AM-PM characteristics of power amplifier according to the fifth embodiment of the present invention 圆 11] Diagram showing an example of amplitude signal during 8-PSK modulation by conventional technology 圆 12] Transmission by conventional technology Block diagram showing the configuration of the device
[図 13]従来の技術による電力増幅部の AM— PM特性の変化を示す図 [Fig. 13] Diagram showing changes in AM-PM characteristics of the power amplifier using conventional technology
[図 14]従来の技術による送信装置の構成を示すブロック図 FIG. 14 is a block diagram showing a configuration of a transmission device according to a conventional technique
符号の説明 Explanation of symbols
101、 302、 903 メモリ 101, 302, 903 memory
102 遅延量判断部 102 Delay amount judgment unit
103、 103B、 104、 301、 902 遅延調整部 103, 103B, 104, 301, 902 Delay adjuster
103C 第一の遅延調整部 103C First delay adjuster
103D 第二の遅延調整部 103D Second delay adjuster
105、 900 電力増幅部 105, 900 Power amplifier
106、 901 極座標変換部 106, 901 Polar coordinate converter
107、 904 振幅情報補正部 107, 904 Amplitude information correction unit
108、 905 振幅変調部 108, 905 Amplitude modulation section
109、 906 振幅コントローラ部 109, 906 Amplitude controller
110、 907 位相情報補正部 110, 907 Phase information correction unit
111、 908 位相変調部 111, 908 Phase modulator
112、 112B、 112C、 909 位相変調信号発生部 112, 112B, 112C, 909 Phase modulation signal generator
111C 直交変調部 111C quadrature modulator
113 直交座標変換部 113 Cartesian coordinate converter
201 AM— AM特性 201 AM— AM characteristics
202、 701、 702 AM— PM特性 202, 701, 702 AM—PM characteristics
203 振幅信号 203 Amplitude signal
204 補正後振幅信号 204 Corrected amplitude signal
205 位相補正信号 205 Phase correction signal
401 トランジスタ 401 transistors
402 ベース端子 403 ェミッタ端子 402 Base terminal 403 emitter terminal
404 コレクタ端子 404 Collector terminal
405 ベース コレクタ間容量 405 Base-collector capacity
501、 502 電力増幅部もステップ応答特性 501 and 502 Step response characteristics of power amplifier
503 遅延量 503 delay
601 位相調整量判断部 601 Phase adjustment amount judgment unit
602 位相調整部 602 Phase adjuster
1101、 1102 DAコンバータ 1101, 1102 DA converter
1103 基準クロック 1103 Reference clock
1104 変化点検出回路 1104 Change point detection circuit
1105 遅延部 1105 Delay section
[0057] (第 1の実施形態) [0057] (First embodiment)
本発明の第 1の実施形態は、極座標変調回路における電力増幅部の動作を解析 して遅延発生要因を推定し、前記遅延発生要因を特定することで、プリディストーショ ン方式の同期調整を行い、電力増幅器力もの出力信号を分岐するフィードバック系 を用いな!/、で同期を確保する方法につ!、て説明するものである。 The first embodiment of the present invention analyzes the operation of the power amplifying unit in the polar modulation circuit, estimates the cause of the delay, and identifies the cause of the delay, thereby performing the synchronization adjustment of the predistortion method. This section explains how to ensure synchronization by using a feedback system that branches the output signal of the power amplifier.
[0058] 図 1は、本発明の第 1の実施形態における極座標変調回路の概略構成の一例を示 す図である。図 1に示すように、この極座標変調回路は、電力増幅部 105と、極座標 変換部 106と、振幅情報補正部 107及び振幅変調部 108を有する振幅コントローラ 部 109と、位相情報補正部 110及び位相変調部 111を有する位相変調信号発生部 112と、メモリ 101と、遅延量判断部 102と、遅延調整部 103、 104とを備える。 FIG. 1 is a diagram showing an example of a schematic configuration of a polar modulation circuit according to the first embodiment of the present invention. As shown in FIG. 1, this polar modulation circuit includes a power amplification unit 105, a polar coordinate conversion unit 106, an amplitude controller unit 109 having an amplitude information correction unit 107 and an amplitude modulation unit 108, a phase information correction unit 110, and a phase A phase modulation signal generation unit 112 having a modulation unit 111, a memory 101, a delay amount determination unit 102, and delay adjustment units 103 and 104 are provided.
[0059] 極座標変換部 106は、本発明の極座標変調回路を送信装置に用いた場合に、図 示しない送信装置のベースバンド信号生成部より入力された送信データである IQ信 号 (1、 Q)を、振幅信号 rと定振幅の位相信号 Θとに分離する。ここで、例えば、振幅 信号 r (t)は最大値が 1となるように正規化される。 Polar coordinate conversion unit 106 uses IQ signal (1, Q) as transmission data input from a baseband signal generation unit (not shown) of the transmission device when the polar modulation circuit of the present invention is used in the transmission device. ) Is separated into an amplitude signal r and a constant amplitude phase signal Θ. Here, for example, the amplitude signal r (t) is normalized so that the maximum value is 1.
[0060] 振幅情報補正部 107は、メモリ 101から出力された振幅補正信号をもとに、入力振 幅信号に対する補正を行う。振幅変調部 108は、振幅情報補正部 107からの出力信 号をもとに、電力増幅部 105の制御電圧を高速に駆動する。 [0061] 位相情報補正部 110は、メモリ 101から出力された位相補正信号をもとに、入力位 相信号に対する補正を実施する。位相変調部 111は、位相情報補正部 110からの 出力信号をもとに、無線周波数帯の位相変調信号を生成し、電力増幅部 105に対し て出力する。 The amplitude information correction unit 107 corrects the input amplitude signal based on the amplitude correction signal output from the memory 101. The amplitude modulation unit 108 drives the control voltage of the power amplification unit 105 at high speed based on the output signal from the amplitude information correction unit 107. The phase information correction unit 110 performs correction on the input phase signal based on the phase correction signal output from the memory 101. Phase modulation section 111 generates a radio frequency phase modulation signal based on the output signal from phase information correction section 110 and outputs the phase modulation signal to power amplification section 105.
[0062] 電力増幅部 105は、位相変調部 111より出力される位相変調信号を入力高周波信 号として入力するとともに、振幅変調部 108より出力される振幅変調信号を制御信号 として入力することで、無線周波数帯の送信データを生成する。 [0062] The power amplifying unit 105 receives the phase modulation signal output from the phase modulation unit 111 as an input high-frequency signal and inputs the amplitude modulation signal output from the amplitude modulation unit 108 as a control signal. Transmission data in the radio frequency band is generated.
[0063] 送信レベル情報 S1は、本発明の極座標変調回路を送信装置に用いた場合に、図 示しない送信装置の制御部より送信される電力増幅部 105の後段に配置する図示し ないアンテナ力もの平均出力レベルを決定する情報であり、メモリ 101及び遅延量判 断部 102に入力される。ここで、送信レベル情報とは、例えば、 900MHz帯 GSMバ ンドにおいて 8— PSK変調にて送信している移動局の場合、 33dBmから 5dBmの間 を 2dBステップにて規定されるアンテナ出力レベルに対応するものである。 [0063] Transmission level information S1 is an unillustrated antenna force that is arranged after the power amplifying unit 105 transmitted from the control unit of the not-shown transmitter when the polar modulation circuit of the present invention is used in the transmitter. This is information for determining the average output level, and is input to the memory 101 and the delay amount judgment unit 102. Here, the transmission level information corresponds to the antenna output level specified in 2 dB steps between 33 dBm and 5 dBm, for example, in the case of a mobile station transmitting by 8-PSK modulation in the 900 MHz band GSM band. To do.
[0064] メモリ 101は、電力増幅部 105に所定の入力高周波信号振幅を与えた状態で、電 力増幅部 105に入力される制御信号に対する AM— AM特性と AM— PM特性とを 格納する。 The memory 101 stores AM-AM characteristics and AM-PM characteristics for a control signal input to the power amplification unit 105 in a state where a predetermined input high-frequency signal amplitude is given to the power amplification unit 105.
[0065] また、メモリ 101は、極座標変換部 106より出力される振幅信号 r(t)を参照信号とし て、格納されている AM— AM特性と AM— PM特性とにアクセスし、前記 AM— AM 特性の逆特性となる振幅補正信号 Rcomp (t)を振幅情報補正部 107に出力し、前 記 AM— PM特性の逆特性となる位相補正信号 Tcomp (t)を位相情報補正部 110 に出力する。 [0065] Further, the memory 101 accesses the stored AM-AM characteristic and AM-PM characteristic using the amplitude signal r (t) output from the polar coordinate converter 106 as a reference signal, and the AM- Outputs amplitude correction signal Rcomp (t), which is the inverse of AM characteristics, to amplitude information correction unit 107, and outputs phase correction signal Tcomp (t), which is the inverse of AM-PM characteristics, to phase information correction unit 110 To do.
[0066] また、メモリ 101では、送信レベル情報 S1をもとにした AM— AM特性の正規化処 理を行っている。具体的には、所望出力レベル (平均電力)に対して、変調方式に応 じた振幅情報の最大値 平均値 (ピークファクタ)を考慮した最大送信電力をもとに、 格納 AM— AMデータにおける出力信号振幅の正規ィ匕を実施することで、所望出力 レベルごとに補正を行うものである。この正規ィ匕によって、入力振幅情報 r (t)をァドレ ス指定信号とした AM— AMデータへのアクセスが可能となる。 [0066] In addition, the memory 101 performs normalization processing of AM-AM characteristics based on the transmission level information S1. Specifically, for the desired output level (average power), based on the maximum transmission power considering the maximum value (peak factor) of the amplitude information according to the modulation method, the stored AM-AM data By performing normalization of the output signal amplitude, correction is performed for each desired output level. This regularity enables access to AM-AM data using the input amplitude information r (t) as an address designation signal.
[0067] 遅延量判断部 102は、極座標変換部 106より出力された振幅信号!: (t)の振幅値と 送信レベル情報 siとに対応する予め求めた遅延量をデータテーブル力 参照する ことで、振幅信号 rと位相信号 Θとの間の同期ズレを算出する。そして、同期ズレを補 正するための遅延量情報を遅延調整部 103、 104に送信する。この遅延量判断部 1 02の詳細な動作は後述する。 [0067] The delay amount determination unit 102 receives the amplitude signal!: (T) output from the polar coordinate conversion unit 106 and The synchronization shift between the amplitude signal r and the phase signal Θ is calculated by referring to the data table power for the delay amount obtained in advance corresponding to the transmission level information si. Then, the delay amount information for correcting the synchronization shift is transmitted to the delay adjustment units 103 and 104. The detailed operation of the delay amount determination unit 102 will be described later.
[0068] 遅延調整部 103は、遅延量判断部 102より送信された遅延量情報をもとに、極座 標変換部 106より出力される位相信号 Θ (t)に対して、時間てだけ遅延を与えた位 相信号 0 (t— τ )を生成し、位相情報補正部 110に出力する。 [0068] Based on the delay amount information transmitted from delay amount determination unit 102, delay adjustment unit 103 delays only the time with respect to phase signal Θ (t) output from polar coordinate conversion unit 106. The phase signal 0 (t—τ) given is generated and output to the phase information correction unit 110.
[0069] 遅延調整部 104は、遅延量判断部 102より送信された遅延量情報をもとに、メモリ 1 01より送信される位相補正信号 Tcomp (t)に対して、時間 τだけ遅延を与えた位相 補正信号 Tcomp (t— τ )を生成し、位相情報補正部 110に出力する。 [0069] Based on the delay amount information transmitted from delay amount determination unit 102, delay adjustment unit 104 gives a delay of time τ to phase correction signal Tcomp (t) transmitted from memory 101. The phase correction signal Tcomp (t—τ) is generated and output to the phase information correction unit 110.
[0070] ここで、遅延調整部 104にて、遅延調整部 103と同等の遅延量を与えることで、位 相情報補正部 110への入力信号である、位相信号と位相情報補正信号との間の同 期を確保している。 [0070] Here, the delay adjustment unit 104 gives a delay amount equivalent to that of the delay adjustment unit 103, whereby the phase signal and the phase information correction signal, which are input signals to the phase information correction unit 110, are provided. The same period is secured.
[0071] 次に、振幅信号及び位相信号の補正方法の一例を、図 2を用いて説明する。図 2 は、電力増幅部 105の AM— AM特性、 AM— PM特性の一例を示す図である。 Next, an example of a method for correcting the amplitude signal and the phase signal will be described with reference to FIG. FIG. 2 is a diagram illustrating an example of AM-AM characteristics and AM-PM characteristics of the power amplifying unit 105.
[0072] 図 2において、 AM— AM特性 201は、制御電圧に対する出力電圧特性 (AM— A M特性)であり、 AM— PM特性 202は、制御電圧に対する通過位相特性 (AM— P M特性)であり、ネットワークアナライザ等を用いて簡易に取得できるものである。図 2 は、所望の電力増幅部 105における出力電圧、制御電圧、位相回転量の関係を示 したものであり、歪補償方法の一例も併記して ヽる。 In FIG. 2, AM—AM characteristic 201 is an output voltage characteristic (AM—AM characteristic) with respect to the control voltage, and AM—PM characteristic 202 is a pass phase characteristic (AM—PM characteristic) with respect to the control voltage. It can be easily obtained using a network analyzer or the like. FIG. 2 shows the relationship between the output voltage, the control voltage, and the phase rotation amount in the desired power amplifying unit 105. An example of a distortion compensation method is also shown.
[0073] すなわち、 AM— AM特性 201に関して、出力電圧軸力も制御電圧軸への変換を 行うことは、 AM— AM特性 201の逆特性を求めることになり、極座標変換部 106より 出力される信号が、 AM— AM特性 201の逆特性より求めた補正後振幅信号 r2 (t) 2 04となり、振幅信号の歪補償を行うことができる。 [0073] That is, regarding the AM-AM characteristic 201, converting the output voltage axial force to the control voltage axis also determines the inverse characteristic of the AM-AM characteristic 201, and the signal output from the polar coordinate conversion unit 106 However, the corrected amplitude signal r2 (t) 2 04 obtained from the inverse characteristic of the AM-AM characteristic 201 becomes the distortion signal of the amplitude signal.
[0074] また、 AM— PM特性 202に関しては、補正後振幅信号 r2 (t)が電力増幅部 105へ 入力する制御電圧となることから、制御電圧軸から位相回転量軸への変換を行うこと で、メモリ 101より送信される位相補正信号 Tcomp (t) 205を求めることができる。こ の位相補正信号 Tcomp (t) 205を入力位相信号カゝら減算することで、位相信号の歪 補償を行うことができる。 [0074] In addition, regarding the AM-PM characteristic 202, the corrected amplitude signal r2 (t) becomes the control voltage input to the power amplifier 105, and therefore, conversion from the control voltage axis to the phase rotation amount axis is performed. Thus, the phase correction signal Tcomp (t) 205 transmitted from the memory 101 can be obtained. By subtracting this phase correction signal Tcomp (t) 205 from the input phase signal, distortion of the phase signal is achieved. Compensation can be performed.
[0075] 以上のように構成することにより、本発明の第 1の実施形態の一つ目の効果として、 電力増幅部への入力制御信号に対する出力特性の逆特性を考慮して予め歪ませた 振幅変調信号及び位相変調信号は、電力増幅部にて発生する遅延量を考慮するこ とで、実際の振幅、位相歪の影響を受けて所望の出力振幅、位相となり、入力制御 電圧に対する出力信号の線形性を向上させることができる。 [0075] By configuring as described above, as a first effect of the first embodiment of the present invention, predistortion is performed in consideration of the reverse characteristic of the output characteristic with respect to the input control signal to the power amplifying unit. The amplitude modulation signal and phase modulation signal take into account the amount of delay generated in the power amplification unit, and are affected by the actual amplitude and phase distortion, resulting in the desired output amplitude and phase. The output signal for the input control voltage The linearity of can be improved.
[0076] また、本発明の第 1の実施形態における送信装置の他の例として、図 3に示す構成 を備えてもよい。 [0076] Further, as another example of the transmission apparatus according to the first embodiment of the present invention, the configuration shown in FIG. 3 may be provided.
[0077] 図 3は、本発明の第 1の実施形態の極座標変調回路の概略構成の他の例を示す 図である。図 3に示すように、この極座標変調回路は、電力増幅部 105と、極座標変 換部 106と、振幅情報補正部 107及び振幅変調部 108を有する振幅コントローラ部 109と、位相情報補正部 110及び位相変調部 111を有する位相変調信号発生部 11 2と、遅延量判断部 102と、遅延調整部 103、 301と、メモリ 302とを備える。そして、 図 1の極座標変調回路において、遅延調整部 104の代わりに遅延調整部 301が、メ モリ 101の代わりにメモリ 302が、それぞれ設けられている。なお、図 1の極座標変調 回路と重複する部分については、同一の符号を付す。 FIG. 3 is a diagram showing another example of a schematic configuration of the polar modulation circuit according to the first embodiment of the present invention. As shown in FIG. 3, the polar modulation circuit includes a power amplification unit 105, a polar coordinate conversion unit 106, an amplitude controller unit 109 having an amplitude information correction unit 107 and an amplitude modulation unit 108, a phase information correction unit 110, and A phase modulation signal generation unit 112 having a phase modulation unit 111, a delay amount determination unit 102, delay adjustment units 103 and 301, and a memory 302 are provided. In the polar modulation circuit of FIG. 1, a delay adjustment unit 301 is provided instead of the delay adjustment unit 104, and a memory 302 is provided instead of the memory 101. Parts that overlap with the polar modulation circuit in FIG.
[0078] 送信レベル情報 S 1は、本発明の極座標変調回路を送信装置に用いた場合に、図 示しない送信装置の制御部より送信される電力増幅部 105の送信レベル情報であり 、メモリ 302及び遅延量判断部 102に入力される。 The transmission level information S 1 is transmission level information of the power amplifying unit 105 transmitted from the control unit of the transmission device (not shown) when the polar coordinate modulation circuit of the present invention is used for the transmission device, and the memory 302 And input to the delay amount determination unit 102.
[0079] 遅延調整部 301は、遅延量判断部 102より送信された遅延量情報をもとに、極座 標変換部 106より送信される振幅信号!: (t)に対して、時間 τだけ遅延を与えた振幅 信号 r (t— τ )を生成し、メモリ 302に対して、 AM— ΡΜ特性の参照信号として振幅 信号 r (t— τ )を出力するとともに、 AM— AM特性の参照信号として振幅信号!: (t)を 出力する。 [0079] Based on the delay amount information transmitted from delay amount determination unit 102, delay adjustment unit 301 performs time τ only on the amplitude signal!: (T) transmitted from polar coordinate conversion unit 106. Amplitude signal r (t—τ) with delay is generated, and amplitude signal r (t—τ) is output as a reference signal of AM—ΡΜ characteristic to memory 302, and a reference signal of AM—AM characteristic Output an amplitude signal!: (T).
[0080] ここで、 AM— PM特性の参照信号に対して与える遅延時間ては、遅延調整部 10 3が極座標変換部 106より送信される位相信号 Θ (t)に対して与える遅延時間てと同 一とすることで、位相情報補正部 110への入力信号である、位相信号と位相情報補 正信号との間の同期を確保している。 [0081] メモリ 302は、所定振幅の高周波信号入力時の電力増幅部 105の、入力制御信号 に対する AM— AM特性と AM— PM特性を格納する。また、メモリ 302は、遅延調整 部 301より出力される信号のうち、一方の振幅信号 r(t)を参照信号として AM— AM 特性にアクセスし、前記 AM— AM特性の逆特性となる振幅補正信号 Rcomp (t)を 振幅情報補正部 107に出力し、遅延調整部 301より出力される信号のうち、他方の 振幅信号 r (t— τ )を参照信号として AM— PM特性にアクセスし、前記 AM— PM特 性の逆特性となる位相補正信号 Tcomp (t)を位相情報補正部 110に出力する。 Here, the delay time given to the reference signal of AM-PM characteristic is the delay time given to the phase signal Θ (t) transmitted from the polar coordinate conversion unit 106 by the delay adjustment unit 103. By making them the same, synchronization between the phase signal and the phase information correction signal, which is an input signal to the phase information correction unit 110, is ensured. The memory 302 stores AM-AM characteristics and AM-PM characteristics for the input control signal of the power amplifying unit 105 when a high-frequency signal having a predetermined amplitude is input. Further, the memory 302 accesses the AM-AM characteristic by using one amplitude signal r (t) of the signals output from the delay adjustment unit 301 as a reference signal, and performs amplitude correction that is the inverse characteristic of the AM-AM characteristic. The signal Rcomp (t) is output to the amplitude information correction unit 107, and the AM-PM characteristic is accessed using the other amplitude signal r (t—τ) of the signals output from the delay adjustment unit 301 as a reference signal. A phase correction signal Tcomp (t), which is an inverse characteristic of AM—PM characteristics, is output to the phase information correction unit 110.
[0082] また、メモリ 302では、メモリ 101と同様な送信レベル情報 S1をもとにした AM— A M特性の正規ィ匕処理を行っているが、既に図 1において説明したため、ここでの説明 は省略する。なお、図 3における他の構成要件については、図 1における動作、作用 と同様であり、説明を省略する。以上のように構成することにより、図 1に示す極座標 変調回路と同等の効果を得ることができる。 [0082] Further, the memory 302 performs AM-AM characteristic normality processing based on the transmission level information S1 similar to that of the memory 101, but since it has already been described with reference to FIG. Omitted. The other constituent elements in FIG. 3 are the same as the operations and functions in FIG. By configuring as described above, the same effect as the polar modulation circuit shown in FIG. 1 can be obtained.
[0083] 次に、遅延量判断部 102の動作を詳述する。ここで、動作説明に先立ち、極座標 変調方式に用いられる電力増幅部 105の特徴にっ 、て説明する。 Next, the operation of the delay amount determination unit 102 will be described in detail. Here, prior to the description of the operation, the characteristics of the power amplifying unit 105 used in the polar modulation method will be described.
[0084] 図 4は、極座標変調方式における電力増幅部 105の周辺ブロック図である。図 4に おいて、トランジスタ 401は、電力増幅部 105を構成するものであり、トランジスタ 401 のベース端子 402、ェミッタ端子 403、コレクタ端子 404により構成され、空乏層容量 405は、トランジスタ 401のベース端子 402とコレクタ端子 404との間に形成される容 量である。なお、この例では簡略ィ匕するため、電力増幅部 105がトランジスタ 401— 段にて構成されるとした。 FIG. 4 is a peripheral block diagram of the power amplifying unit 105 in the polar coordinate modulation method. In FIG. 4, the transistor 401 constitutes the power amplification unit 105, and is configured by the base terminal 402, the emitter terminal 403, and the collector terminal 404 of the transistor 401, and the depletion layer capacitance 405 is the base terminal of the transistor 401. This is the capacitance formed between 402 and the collector terminal 404. In this example, for the sake of simplicity, it is assumed that the power amplifying unit 105 includes a transistor 401-stage.
[0085] 極座標変調方式に用いる電力増幅部 105では、図 4に示すように信号が入力され る。すなわち、ベース端子 402にベースバンド帯信号をキャリア変調した位相変調信 号が入力され、コレクタ端子 404にはベースバンド帯信号が入力される。ここで、通常 、ベースバンド帯信号とキャリア信号との周波数は大幅に異なる。 [0085] The power amplifier 105 used in the polar modulation method receives a signal as shown in FIG. That is, a phase modulation signal obtained by carrier-modulating a baseband signal is input to the base terminal 402, and a baseband signal is input to the collector terminal 404. Here, usually, the frequencies of the baseband signal and the carrier signal are significantly different.
[0086] この時、ベースバンド帯の振幅信号をもとに、振幅変調部 108にて生成されるトラン ジスタ 401の制御信号、つまり、図 4では、振幅信号に応じてコレクタ端子 404のコレ クタ電位が変化するため、空乏層容量 405が変化する。特に、トランジスタ 401の出 力平均電力を低減するために、コレクタ端子 404の平均電位を下げるよう制御してい る場合には、空乏層容量 405は増大する。 [0086] At this time, based on the amplitude signal of the baseband, the control signal of the transistor 401 generated by the amplitude modulation unit 108, that is, in FIG. 4, the collector of the collector terminal 404 according to the amplitude signal. Since the potential changes, the depletion layer capacitance 405 changes. In particular, in order to reduce the average output power of the transistor 401, control is performed to lower the average potential of the collector terminal 404. In this case, the depletion layer capacitance 405 increases.
[0087] 本願発明者は、極座標変調方式では、ベース端子 402への入力信号とコレクタ端 子 404への入力信号との周波数が異なることと、制御電圧の変化に起因してベース 端子 402とコレクタ端子 404との間の空乏層容量 405が変化することに着目した。こ の場合、制御電圧の振幅値に応じた空乏層容量 405の変化の影響で、ベース端子 402に入力する位相変調信号と、振幅変調信号との信号間の相対遅延量が変化す る。 In the polar modulation method, the inventor of the present application has found that the frequency of the input signal to the base terminal 402 is different from the frequency of the input signal to the collector terminal 404 and the base terminal 402 and the collector due to the change in the control voltage. It was noted that the depletion layer capacitance 405 between the terminals 404 changes. In this case, the relative delay amount between the phase modulation signal input to the base terminal 402 and the amplitude modulation signal changes due to the influence of the change of the depletion layer capacitance 405 according to the amplitude value of the control voltage.
[0088] 具体的には、図 4の例では、振幅信号最大値レベルの制御電圧を印加する際に同 期を合わせても、振幅信号の最大値レベルでの空乏層容量 405の容量値と最小値 レベルでの容量値が異なり、最小値レベルでの容量値は最大値レベルでの容量値 よりも増大する。このため、振幅信号最小値レベル時には、振幅信号最大値レベル 時よりも振幅信号の遅延量が増加して同期が外れてしまうというメカニズムである。 Specifically, in the example of FIG. 4, even when synchronization is applied when the control voltage of the amplitude signal maximum value level is applied, the capacitance value of the depletion layer capacitor 405 at the maximum value level of the amplitude signal is The capacity value at the minimum value level is different, and the capacity value at the minimum value level is larger than the capacity value at the maximum value level. For this reason, the mechanism is such that when the amplitude signal is at the minimum value level, the amount of delay of the amplitude signal increases and synchronization is lost compared to when the amplitude signal is at the maximum value level.
[0089] 送信電力制御を行う無線システムでは、この容量値の変化がさらに大きくなり、最大 送信電力レベル時と、最小送信電力レベル時では、同期を取り直すことが必要となる [0089] In the wireless system that performs transmission power control, the change in the capacity value is further increased, and it is necessary to re-synchronize at the maximum transmission power level and at the minimum transmission power level.
[0090] そこで、電力増幅部 105への制御電圧の振幅値に応じて同期を調整することで、 信号変化点以外に同期が外れる要因への対応と、電力増幅部 105の出力信号をフ イードバックする系を不要とすることを実現した。 [0090] Therefore, by adjusting the synchronization according to the amplitude value of the control voltage to the power amplification unit 105, it is possible to cope with a cause of loss of synchronization other than the signal change point and to feed the output signal of the power amplification unit 105 to the feed. It realized that the back system was unnecessary.
[0091] 次に、遅延量判断部 102の動作説明を行う。上述の通り、電力増幅部 105への制 御電圧の振幅値に応じて、同期外れが生じる。そこで、制御電圧の振幅値 (振幅変 調部 108の出力信号)に応じて、どの程度の遅延が生じるのかを求めた。図 5は、電 力増幅部 105に、一定値の出力レベルを得るために、固定の制御電圧を印加する際 のステップ応答特性を示す。図 5において、横軸は制御電圧を印加してから所望出 カレベルに達するまでの起動時間、縦軸は電力増幅部 105の出力電力を示す。 Next, the operation of the delay amount determination unit 102 will be described. As described above, out-of-synchronization occurs according to the amplitude value of the control voltage to the power amplification unit 105. Therefore, how much delay occurs was determined according to the amplitude value of the control voltage (the output signal of the amplitude modulation unit 108). FIG. 5 shows a step response characteristic when a fixed control voltage is applied to the power amplification unit 105 in order to obtain a constant output level. In FIG. 5, the horizontal axis represents the start-up time from application of the control voltage until the desired output level is reached, and the vertical axis represents the output power of the power amplifier 105.
[0092] また、ステップ応答特性 A501、ステップ応答特性 B502は、ステップ応答特性 A50 1、ステップ応答特性 B502の順に出力電力レベルを下げた場合のステップ応答特 性を示す。また、遅延量 503はステップ応答特性 A501とステップ応答特性 B502と の間で生じる遅延量を示す。 [0093] 図 5に示す例では、コレクタ端子 404に入力される制御電圧レベル(出力電カレべ ル)に対して 2種類のステップ応答特性を示す力 さらに細かい間隔及び、範囲を拡 大した制御電圧を印加した際のステップ応答特性を事前に取得しておくこともできる 。その場合、例えば、ターゲットとなる無線システムの送信平均電力レベルのうち、最 大値レベル時にて、振幅信号と位相信号間の同期を合わせておく。そして、送信レ ベルを制御した際には、上述のように事前に求めた、制御電圧値(出力電力)毎の遅 延量 503をもとに、送信レベル変更に伴う遅延調整を行うことで、常に同期を確保す ることができる。また、同一送信レベルでも、変調信号の振幅成分を表現する制御信 号の振幅値に応じて遅延調整を行うことで、さらに精度よく同期を確保することができ る。 Step response characteristics A501 and step response characteristics B502 indicate step response characteristics when the output power level is lowered in the order of step response characteristics A501 and step response characteristics B502. A delay amount 503 indicates a delay amount generated between the step response characteristic A501 and the step response characteristic B502. [0093] In the example shown in FIG. 5, the force showing two types of step response characteristics with respect to the control voltage level (output power level) input to the collector terminal 404 is controlled with a finer spacing and range. The step response characteristics when a voltage is applied can be obtained in advance. In this case, for example, synchronization between the amplitude signal and the phase signal is matched at the maximum value level among the transmission average power levels of the target wireless system. When the transmission level is controlled, the delay adjustment associated with the transmission level change is performed based on the delay amount 503 for each control voltage value (output power) obtained in advance as described above. Therefore, synchronization can always be ensured. In addition, even with the same transmission level, synchronization can be ensured with higher accuracy by performing delay adjustment according to the amplitude value of the control signal representing the amplitude component of the modulation signal.
[0094] すなわち、遅延量判断部 102では、上述のように求めた遅延量 503を、振幅信号 の振幅値、送信レベル情報 S1毎にテーブルデータとして用意しておき、振幅信号の 振幅値、あるいは、送信レベル情報 S1を参照信号として、遅延調整部に遅延量情報 を送信することで、振幅信号と位相信号との同期調整を行うことができる。 That is, the delay amount determination unit 102 prepares the delay amount 503 obtained as described above as table data for each amplitude value and transmission level information S1 of the amplitude signal, and the amplitude value of the amplitude signal, or Then, by using the transmission level information S1 as a reference signal, the delay amount information is transmitted to the delay adjustment unit, so that the synchronization adjustment of the amplitude signal and the phase signal can be performed.
[0095] なお、振幅信号 r (t)の信号変化点に対応するためには、遅延量判断部 102にて、 所定時間内の振幅信号をサンプリングし、前記振幅信号の相対関係を求めることで 、信号変化点での同期確保を行うこともできる。例えば、前サンプリング値と現サンプ リング値とを引き算し、算出結果の符号が反転した場合を、信号変化点であると判断 する。 In order to correspond to the signal change point of the amplitude signal r (t), the delay amount determination unit 102 samples the amplitude signal within a predetermined time and obtains the relative relationship of the amplitude signal. It is also possible to ensure synchronization at the signal change point. For example, when the previous sampling value and the current sampling value are subtracted and the sign of the calculation result is inverted, it is determined as the signal change point.
[0096] 以上説明してきたように、本発明の第 1の実施形態では、遅延量判断部 102に、電 力増幅部 105のステップ応答特性をもとにした、振幅信号の振幅値と送信レベル情 報 S1とに対する遅延量情報をテーブルデータとして格納し、振幅信号の振幅に応じ て、位相変調信号の遅延量を調整する。これにより、本発明の第 1の実施形態の二 つ目の効果として、従来技術では解決できな力つた、信号変化点を含める振幅信号 の振幅値の変化に起因する、位相変調信号と振幅変調信号との合成時における同 期外れへの対応を、電力増幅部 105の出力信号を分岐し、フィードバックする系を用 いることなく行うことができる。 As described above, in the first embodiment of the present invention, the delay amount determination unit 102 includes the amplitude value of the amplitude signal and the transmission level based on the step response characteristics of the power amplification unit 105. The delay amount information for the information S1 is stored as table data, and the delay amount of the phase modulation signal is adjusted according to the amplitude of the amplitude signal. As a result, the second effect of the first embodiment of the present invention is that the phase modulation signal and the amplitude modulation caused by the change of the amplitude value of the amplitude signal including the signal change point, which cannot be solved by the conventional technique, are obtained. It is possible to deal with out-of-synchronization at the time of synthesizing with a signal without using a system in which the output signal of the power amplifier 105 is branched and fed back.
[0097] なお、キャリア周波数、ベースバンド周波数に応じて、遅延量が変化するため、キヤ リア周波数、あるいは、ベースバンド信号帯域幅に対応した遅延量のテーブルデー タを用意してもよい。そして、図示しない送信装置の制御部より送信されるキャリア周 波数情報や、ベースバンド帯域幅と等価となるシステム情報をもとに遅延量を調整す ることで、より高精度に同期を確保することができることは言うまでもない。 [0097] Since the delay amount changes according to the carrier frequency and the baseband frequency, Table data of delay amounts corresponding to the rear frequency or baseband signal bandwidth may be prepared. Then, by adjusting the delay amount based on the carrier frequency information transmitted from the control unit of the transmission device (not shown) and system information equivalent to the baseband bandwidth, synchronization can be ensured with higher accuracy. It goes without saying that it can be done.
[0098] また、本発明の第 1の実施形態では、位相信号経路に遅延調整部を挿入し、それ に伴 、位相補正信号生成経路にも遅延調整部を挿入する構成としたが、これに限ら ず、振幅信号経路と、振幅補正信号生成経路に遅延調整部を挿入してもよい。また 、振幅信号経路、振幅補正信号生成経路、位相信号経路、位相補正信号生成経路 の両経路に遅延調整部を挿入してもよ ヽことは言うまでもな 、。 Further, in the first embodiment of the present invention, the delay adjustment unit is inserted into the phase signal path, and accordingly, the delay adjustment unit is also inserted into the phase correction signal generation path. However, the delay adjusting unit may be inserted in the amplitude signal path and the amplitude correction signal generation path. Needless to say, the delay adjustment unit may be inserted into both the amplitude signal path, the amplitude correction signal generation path, the phase signal path, and the phase correction signal generation path.
[0099] なお、本発明の第 1の実施形態では、電力増幅器からの出力信号を分岐するフィ ードバック系を使用せずに同期を確保する方法を説明したが、同期確保以外の目的 にて、フィードバック回路を設けている極座標変調回路と組み合わせて使用してもよ いことは言うまでもない。 [0099] In the first embodiment of the present invention, the method of ensuring synchronization without using a feedback system for branching the output signal from the power amplifier has been described. For purposes other than ensuring synchronization, Needless to say, it may be used in combination with a polar modulation circuit provided with a feedback circuit.
[0100] また、本発明の第 1の実施形態における極座標変調回路を送信装置に用いる場合 には、図 1、あるいは、図 3における振幅情報補正部 107と振幅変調部 108との段間 、位相情報補正部 110と位相変調部 111との段間に、図示しない DAコンバータを配 置する。 [0100] When the polar modulation circuit according to the first embodiment of the present invention is used in the transmission device, the phase between the amplitude information correction unit 107 and the amplitude modulation unit 108 in FIG. 1 or FIG. A DA converter (not shown) is arranged between the information correction unit 110 and the phase modulation unit 111.
[0101] (第 2の実施形態) [0101] (Second Embodiment)
本発明の第 2の実施形態は、本発明の第 1の実施形態よりも回路規模を低減可能 な回路構成について説明するものである。 In the second embodiment of the present invention, a circuit configuration capable of reducing the circuit scale as compared with the first embodiment of the present invention will be described.
[0102] 図 6は、本発明の第 2の実施形態の極座標変調回路の概略構成の一例を示す図 である。図 6に示すように、この極座標変調回路は、電力増幅部 105と、極座標変換 部 106と、振幅情報補正部 107及び振幅変調部 108を有する振幅コントローラ部 10 9と、位相情報補正部 110と遅延調整部 103Bと位相変調部 111とを有する位相変 調信号発生部 112Bと、遅延量判断部 102と、メモリ 101とを備える。また、本発明の 第 1の実施形態に示す図 1の極座標変調回路において、極座標変換部 106と位相 情報補正部 110との段間に位置する遅延調整部 103の代わりに、位相情報補正部 1 10と位相変調部 111との段間に遅延調整部 103Bを設けるとともに、遅延調整部 10 4を削除する構成とした。なお、図 1の極座標変調回路と重複する部分については、 同一の符号を付す。 FIG. 6 is a diagram showing an example of a schematic configuration of a polar modulation circuit according to the second embodiment of the present invention. As shown in FIG. 6, this polar modulation circuit includes a power amplification unit 105, a polar coordinate conversion unit 106, an amplitude controller unit 109 having an amplitude information correction unit 107 and an amplitude modulation unit 108, a phase information correction unit 110, A phase modulation signal generation unit 112B having a delay adjustment unit 103B and a phase modulation unit 111, a delay amount determination unit 102, and a memory 101 are provided. Further, in the polar coordinate modulation circuit of FIG. 1 shown in the first embodiment of the present invention, instead of the delay adjustment unit 103 located between the polar coordinate conversion unit 106 and the phase information correction unit 110, the phase information correction unit 1 10 and the phase modulation unit 111 are provided with a delay adjustment unit 103B, and the delay adjustment unit 10 4 was deleted. Note that the same reference numerals are assigned to portions that overlap with the polar modulation circuit in FIG.
[0103] 遅延量判断部 102は、極座標変換部 106より出力された振幅信号!: (t)の振幅値と 送信レベル情報 S1とに対応する予め求めた遅延量を、データテーブル力も参照す る。そして、振幅信号 rと位相信号 Θとの間の同期ズレを算出し、同期ズレを補正する ための遅延量情報を、遅延調整部 103Bに送信する。この遅延量判断部 102の動作 は、実施の形態 1にて説明済みであり、再度の説明は省略する。 [0103] The delay amount determination unit 102 also refers to the data table power for the delay amount obtained in advance corresponding to the amplitude value of the amplitude signal!: (T) output from the polar coordinate conversion unit 106 and the transmission level information S1. . Then, a synchronization shift between the amplitude signal r and the phase signal Θ is calculated, and delay amount information for correcting the synchronization shift is transmitted to the delay adjustment unit 103B. The operation of the delay amount determination unit 102 has been described in the first embodiment, and a description thereof will not be repeated.
[0104] 遅延調整部 103Bは、遅延量判断部 102より送信された遅延量情報をもとに、位相 情報補正部 110より出力される位相補正後の位相信号 Θ 2 (t)に対して、時間てだ け遅延を与えた位相信号 Θ 2 (t- τ )を生成し、位相変調部 111に出力する。 Based on the delay amount information transmitted from the delay amount determination unit 102, the delay adjustment unit 103B performs phase correction on the phase signal Θ 2 (t) output from the phase information correction unit 110. A phase signal Θ 2 (t-τ) given a delay with time is generated and output to the phase modulator 111.
[0105] なお、図 6における他の構成要件については、図 1における動作、作用と同様であ り、説明を省略する。以上のように構成することにより、図 1に示す極座標変調回路と 同等の効果を得ることができるとともに、図 1に示す極座標変調回路よりも回路規模を 低減することができる。 [0105] The other constituent elements in FIG. 6 are the same as the operations and functions in FIG. With the configuration described above, the same effects as those of the polar modulation circuit shown in FIG. 1 can be obtained, and the circuit scale can be reduced as compared with the polar modulation circuit shown in FIG.
[0106] なお、本発明の第 2の実施形態では、位相信号経路に遅延調整部 103Bを挿入す る構成としたが、これに限らず、振幅信号経路に遅延調整部 103Bを挿入しても、振 幅信号経路、位相信号経路の両経路に遅延調整部 103Bを挿入してもよ ヽことは言 うまでもない。 In the second embodiment of the present invention, the delay adjustment unit 103B is inserted into the phase signal path. However, the present invention is not limited to this, and the delay adjustment unit 103B may be inserted into the amplitude signal path. Needless to say, the delay adjustment unit 103B may be inserted into both the amplitude signal path and the phase signal path.
[0107] また、本発明の第 2の実施形態における極座標変調回路を送信装置に用いる場合 には、図 6における振幅情報補正部 107と振幅変調部 108との段間、遅延調整部 10 3Βと位相変調部 111との段間に、図示しない DAコンバータを配置する。ただし、遅 延調整部 103Bをアナログ回路にて構成する場合には、位相情報補正部 110と遅延 調整部 103Bとの段間に図示しない DAコンバータを配置する。 [0107] When the polar modulation circuit according to the second embodiment of the present invention is used in the transmission device, the interval between the amplitude information correction unit 107 and the amplitude modulation unit 108 in FIG. A DA converter (not shown) is disposed between the phase modulation unit 111 and the stage. However, when the delay adjustment unit 103B is configured by an analog circuit, a DA converter (not shown) is arranged between the phase information correction unit 110 and the delay adjustment unit 103B.
[0108] (第 3の実施形態) [0108] (Third embodiment)
本発明の第 3の実施形態は、本発明の第 2の実施形態における位相変調部として 直交変調器を用いる場合にっ 、て説明するものである。 The third embodiment of the present invention will be described when a quadrature modulator is used as the phase modulation section in the second embodiment of the present invention.
[0109] 図 7は、本発明の第 3の実施形態の極座標変調回路の概略構成の一例を示す図 である。図 7に示すように、この極座標変調回路は、電力増幅部 105と、極座標変換 部 106と、振幅情報補正部 107及び振幅変調部 108を有する振幅コントローラ部 10 9と、位相情報補正部 110と遅延調整部 103Bと直交座標変換部 113と直交変調部 111じとを有する位相変調信号発生部112じと、遅延量判断部 102と、メモリ 101とを 備える。また、本発明の第 2の実施形態に示す図 6の極座標変調回路に対して、直 交座標変換部 113を追加するとともに、位相変調部 111を直交変調部 111Cへと置 き換える構成とした。なお、図 6の極座標変調回路と重複する部分については、同一 の符号を付す。 FIG. 7 is a diagram showing an example of a schematic configuration of a polar modulation circuit according to the third embodiment of the present invention. As shown in Fig. 7, this polar modulation circuit includes a power amplifier 105 and a polar coordinate converter. Unit 106, amplitude controller unit 109 having amplitude information correction unit 107 and amplitude modulation unit 108, phase information correction unit 110, delay adjustment unit 103B, orthogonal coordinate conversion unit 113, and phase modulation unit 111 A signal generation unit 112, a delay amount determination unit 102, and a memory 101 are provided. Further, an orthogonal coordinate conversion unit 113 is added to the polar coordinate modulation circuit of FIG. 6 shown in the second embodiment of the present invention, and the phase modulation unit 111 is replaced with a quadrature modulation unit 111C. . Note that portions that overlap with the polar coordinate modulation circuit in FIG.
[0110] 遅延調整部 103Bは、遅延量判断部 102より送信された遅延量情報をもとに、位相 情報補正部 110より出力される位相補正後の位相信号 Θ 2 (t)に対して、時間てだ け遅延を与えた位相情報 Θ 2 (t- τ )を生成し、直交座標変換部 113に出力する。 [0110] Based on the delay amount information transmitted from the delay amount determination unit 102, the delay adjustment unit 103B performs the phase correction Θ 2 (t) output from the phase information correction unit 110 on the basis of the delay amount information. Phase information Θ 2 (t−τ) given a delay with time is generated and output to the orthogonal coordinate transformation unit 113.
[0111] 直交座標変換部 113は、遅延調整部 103Bより出力される位相情報 0 2 (t— τ )を もとに、所定の振幅値を有する直交信号を生成し、直交変調部 111Cに対して出力 する。 [0111] The orthogonal coordinate conversion unit 113 generates an orthogonal signal having a predetermined amplitude value based on the phase information 0 2 (t-τ) output from the delay adjustment unit 103B, and outputs the orthogonal signal to the orthogonal modulation unit 111C. Output.
[0112] 直交変調部 111Cは、直交座標変換部 113より出力される直交信号をもとに、無線 周波数帯の位相変調信号を生成し、電力増幅部 105に対して出力する。 The orthogonal modulation unit 111 C generates a radio frequency band phase modulation signal based on the orthogonal signal output from the orthogonal coordinate conversion unit 113 and outputs the phase modulation signal to the power amplification unit 105.
[0113] 電力増幅部 105は、直交変調部 111Cより出力される位相変調信号を入力高周波 信号として入力するとともに、振幅変調部 108より出力される振幅変調信号を制御信 号として入力することで、無線周波数帯の送信データを生成する。 [0113] The power amplification unit 105 receives the phase modulation signal output from the quadrature modulation unit 111C as an input high-frequency signal, and also receives the amplitude modulation signal output from the amplitude modulation unit 108 as a control signal. Transmission data in the radio frequency band is generated.
[0114] なお、図 7における他の構成要件については、図 6における動作、作用と同様であ り、説明を省略する。以上ように構成することで、直交変調器を用いて極座標変調回 路を構成することができる。 [0114] The other components in FIG. 7 are the same as the operations and functions in FIG. With the above configuration, a polar modulation circuit can be configured using a quadrature modulator.
[0115] なお、本発明の第 3の実施形態では、位相信号経路に遅延調整部 103Bを挿入す る構成としたが、これに限らず、振幅信号経路に遅延調整部 103Bを挿入しても、振 幅信号経路、位相信号経路の両経路に遅延調整部 103Bを挿入してもよ ヽことは言 うまでもない。 [0115] In the third embodiment of the present invention, the delay adjustment unit 103B is inserted into the phase signal path. However, the present invention is not limited to this, and the delay adjustment unit 103B may be inserted into the amplitude signal path. Needless to say, the delay adjustment unit 103B may be inserted into both the amplitude signal path and the phase signal path.
[0116] また、本発明の第 3の実施形態における極座標変調回路を送信装置に用いる場合 には、図 7における振幅情報補正部 107と振幅変調部 108との段間、直交座標変換 部 113と直交変調部 111Cとの段間に、図示しな 、DAコンバータを配置する。 [0117] (第 4の実施形態) [0116] When the polar modulation circuit according to the third embodiment of the present invention is used in the transmission device, the interstage between the amplitude information correction unit 107 and the amplitude modulation unit 108 in FIG. A DA converter (not shown) is arranged between the stage and the quadrature modulation unit 111C. [0117] (Fourth embodiment)
本発明の第 4の実施形態は、本発明の第 1から第 3の実施形態における遅延調整 部の回路構成の一例について説明するものである。また、本発明の第 4の実施形態 は、前記遅延調整部を用いた遅延調整動作について説明するものである。 The fourth embodiment of the present invention describes an example of the circuit configuration of the delay adjustment unit in the first to third embodiments of the present invention. The fourth embodiment of the present invention describes a delay adjustment operation using the delay adjustment unit.
[0118] 本発明の第 4の実施形態の極座標変調回路の概略構成の一例を図 6により説明す る。なお、図 6は、本発明の第 2の実施形態にて説明したものであり、重複する部分の 説明は省略する。 An example of a schematic configuration of the polar coordinate modulation circuit according to the fourth embodiment of the present invention will be described with reference to FIG. Note that FIG. 6 has been described in the second embodiment of the present invention, and the description of the overlapping parts is omitted.
[0119] 図 6に示す極座標変調回路を用いて送信装置を構成する場合、デジタル信号処理 部は、所定周波数のクロックを基準として動作するため、デジタル回路における一般 的な遅延回路を用いることで、前記基準クロックの周期単位の遅延調整 (第一の遅延 調整部)は容易である。 [0119] When the transmission apparatus is configured using the polar modulation circuit shown in FIG. 6, the digital signal processing unit operates with a clock having a predetermined frequency as a reference, and therefore, by using a general delay circuit in the digital circuit, The delay adjustment (first delay adjustment unit) in units of the reference clock is easy.
[0120] また、前記基準クロックを分周して周期時間を短縮することで、高精度な遅延調整 が可能である。し力しながら、分周回路を動作させること、あるいは、デジタル回路を 高速動作させることにより消費電流が増加するため、基準クロックの分周による遅延 調整の高精度化と消費電流とはトレードオフの関係となる。 [0120] Further, by dividing the reference clock to reduce the cycle time, it is possible to perform highly accurate delay adjustment. However, since the current consumption increases when the divider circuit is operated or the digital circuit is operated at high speed, there is a trade-off between the accuracy of delay adjustment by dividing the reference clock and the current consumption. It becomes a relationship.
[0121] ここで、本発明の第 1から第 3の実施形態における遅延調整部は、基準クロックの周 期単位未満の遅延調整ステップを実現することで、遅延量判断部からの出力信号に 応じた高精度な遅延調整を行うことを特徴とする。このため、基準クロックの分周構成 以外の方法にて、基準クロックの周期単位未満の遅延調整ステップを得ることが必要 である。 [0121] Here, the delay adjustment unit according to the first to third embodiments of the present invention realizes the delay adjustment step of less than the period unit of the reference clock, and thereby responds to the output signal from the delay amount determination unit. It is characterized by highly accurate delay adjustment. For this reason, it is necessary to obtain a delay adjustment step less than the reference clock cycle by a method other than the frequency division configuration of the reference clock.
[0122] そこで、分周回路構成を用いずに、演算処理にて、基準クロックの周期単位未満の 遅延調整ステップを得る一例について説明する。 [0122] Therefore, an example will be described in which a delay adjustment step of less than a reference clock cycle unit is obtained by arithmetic processing without using a frequency divider circuit configuration.
[0123] 基準クロックの 1周期をて とする。また、時刻 tに対して、基準クロックの n周期、 (n [0123] Let one cycle of the reference clock be. In addition, for time t, the reference clock is n cycles, (n
elk elk
+ 1)周期の遅延を与えた時刻 (t-n X τ )、及び、時刻 (t- (n+ 1) X τ ) (ただ + 1) Time (t-n X τ) and (t- (n + 1) X τ) (just
elk elk し、 nは 0以上の整数)における位相信号の振幅値を 0 (t— n)、及び、 Θ (t_n+ l) とする。ここで、 1周期未満の遅延時間を τ とすると、 τ が十分に短ければ、時刻 (t elk elk, where n is an integer greater than or equal to 0) and the amplitude value of the phase signal is 0 (t−n) and Θ (t_n + l). Here, if the delay time of less than one cycle is τ, if τ is sufficiently short, the time (t
d elk d elk
一(n X τ + τ ) )における位相信号の振幅値は、下記に示す式(1)にて近似する The amplitude value of the phase signal at one (n X τ + τ)) is approximated by the following formula (1)
elk d elk d
ことができる。 [数 1] β t _ η + τά / τΜ ) = θ (i ^ + \) τ, + θ (ί _ ?i) x (l - rd) - , . ( 1 ) be able to. [ Equation 1] β t _ η + τ ά / τ Μ ) = θ (i ^ + \) τ, + θ (ί _? I) x (l-r d )-,. (1)
[0124] 上記式(1)を実現する遅延調整部 103Bの一構成例を図 8に示す。ここで所定の遅 延調整量を τ ( = η Χ τ + τ )として、基準クロックの η周期分の遅延調整は、第一 FIG. 8 shows an example of the configuration of the delay adjustment unit 103B that realizes the above equation (1). Here, assuming that the predetermined delay adjustment amount is τ (= η Χ τ + τ), the delay adjustment for the η period of the reference clock is the first
elk d elk d
の遅延調整部 103Cにて行い、一般的な遅延回路として、 Z— nと表現した。また、基準 クロック単位未満の遅延調整は、第二の遅延調整部 103Dにて行うものである。 The delay adjustment unit 103C is expressed as Z− n as a general delay circuit. Further, the delay adjustment of less than the reference clock unit is performed by the second delay adjustment unit 103D.
[0125] 以上のように、図 6に示す極座標変調回路において、図 8のように遅延調整部 103 Bを構成するとともに、図 5に示すようなステップ応答特性をもとに、振幅信号、あるい は、送信レベル情報 S1に応じた n及び τ を遅延量判断部 102にテーブルデータと As described above, in the polar modulation circuit shown in FIG. 6, the delay adjustment unit 103 B is configured as shown in FIG. 8, and the amplitude signal is based on the step response characteristics as shown in FIG. Or, n and τ corresponding to the transmission level information S1 are sent to the delay amount judgment unit 102 as table data.
d d
して格納し、振幅信号の振幅に応じて、位相信号の遅延量を調整することで、従来 技術のような電力増幅部 105の出力信号を分岐し、フィードバックする系を用いること なぐ位相信号と振幅信号の経路間遅延差を精度よく補償することが可能となる。 By adjusting the delay amount of the phase signal according to the amplitude of the amplitude signal, the output signal of the power amplifying unit 105 as in the conventional technique is branched and fed back using a system that feeds back. It becomes possible to accurately compensate for the delay difference between the paths of the amplitude signal.
[0126] なお、本発明の第 4の実施形態では、隣接する 2つの時刻の信号振幅から、線形 補間にて所望の信号振幅を求める方法を示したが、 3以上の時刻の信号振幅を用い て、各信号振幅に対する重み付けを実施した上で加算すること、信号変化に対する 正負を考慮することで、近似精度を向上可能である。 [0126] In the fourth embodiment of the present invention, a method has been described in which a desired signal amplitude is obtained by linear interpolation from the signal amplitudes at two adjacent times. However, signal amplitudes at three or more times are used. The approximation accuracy can be improved by weighting each signal amplitude and then adding it, and taking into account the positive and negative of the signal change.
[0127] (第 5の実施形態) [0127] (Fifth embodiment)
本発明の第 5の実施形態は、乗算回路により構成される位相調整部にて、本発明 の第 1の実施形態における遅延調整部と等価な作用を得る回路構成を説明するもの であり、本発明の第 1の実施形態に比べ、さらに回路規模を低減できる回路構成に ついて説明する。 The fifth embodiment of the present invention describes a circuit configuration in which a phase adjustment unit configured by a multiplier circuit obtains an action equivalent to that of the delay adjustment unit in the first embodiment of the present invention. A circuit configuration capable of further reducing the circuit scale as compared with the first embodiment of the invention will be described.
[0128] 図 9は、本発明の第 5の実施形態における極座標変調回路の概略構成を示す図で ある。図 9に示すように、この極座標変調回路は、電力増幅部 105と、極座標変換部 106と、振幅情報補正部 107及び振幅変調部 108を有する振幅コントローラ部 109 と、位相情報補正部 110及び位相変調部 111を有する位相変調信号発生器 112と 、メモリ 101と、位相調整量判断部 601と、位相調整部 602とを備える。また、図 1の 極座標変調回路において、遅延調整部 103を削除し、遅延量判断部 102の代わり に位相調整量判断部 601が、遅延調整部 104の代わりに位相調整部 602が、それ ぞれ設けられている。本発明の第 1の実施形態における図 1の極座標変調回路と重 複する部分については、同一の符号を付す。 FIG. 9 is a diagram showing a schematic configuration of a polar modulation circuit in the fifth embodiment of the present invention. As shown in FIG. 9, the polar modulation circuit includes a power amplification unit 105, a polar coordinate conversion unit 106, an amplitude controller unit 109 including an amplitude information correction unit 107 and an amplitude modulation unit 108, a phase information correction unit 110, and a phase A phase modulation signal generator 112 having a modulation unit 111, a memory 101, a phase adjustment amount determination unit 601, and a phase adjustment unit 602 are provided. Further, in the polar modulation circuit of FIG. 1, the delay adjustment unit 103 is deleted, and the delay amount determination unit 102 is replaced. In addition, a phase adjustment amount determination unit 601 is provided, and a phase adjustment unit 602 is provided in place of the delay adjustment unit 104. In the first embodiment of the present invention, the same reference numerals are given to the portions overlapping with the polar modulation circuit of FIG.
[0129] 送信レベル情報 S1は、本発明の極座標変調回路を送信装置に用いた場合に、図 示しな 、制御部より出力される電力増幅部 105の送信レベル情報であり、メモリ 101 及び位相調整量判断部 601に入力される。 [0129] Transmission level information S1 is transmission level information of the power amplification unit 105 output from the control unit, not shown, when the polar modulation circuit of the present invention is used in the transmission device, and includes memory 101 and phase adjustment. The amount is input to the quantity determination unit 601.
[0130] 位相調整量判断部 601は、極座標変換部 106より出力された振幅信号!: (t)の振幅 値と送信レベル情報 S1から、振幅信号 r (t)と位相信号 Θとの間の同期ズレを算出し 、同期ズレを補正するのと等価になる位相調整量情報を位相調整部 602に出力する 。この位相調整量判断部 601の詳細な動作は後述する。 [0130] The phase adjustment amount determination unit 601 calculates the amplitude signal!: (T) between the amplitude signal r (t) and the phase signal Θ from the amplitude value and transmission level information S1 output from the polar coordinate conversion unit 106. The synchronization shift is calculated, and phase adjustment amount information equivalent to correcting the synchronization shift is output to the phase adjustment unit 602. The detailed operation of the phase adjustment amount determination unit 601 will be described later.
[0131] 位相調整部 602は、位相調整量判断部 601より送信された位相調整量情報をもと に、メモリ 101より出力される位相補正信号 Tcomp (t)に対して、所定の位相調整を 行い、位相補正信号 Tcomp2 (t)を生成して、位相情報補正部 110に出力する。こ の位相調整部 602の詳細な動作は後述する。なお、図 9における他の構成要件につ いては、図 1における動作、作用と同様であり、説明を省略する。 The phase adjustment unit 602 performs a predetermined phase adjustment on the phase correction signal Tcomp (t) output from the memory 101 based on the phase adjustment amount information transmitted from the phase adjustment amount determination unit 601. The phase correction signal Tcomp2 (t) is generated and output to the phase information correction unit 110. The detailed operation of the phase adjustment unit 602 will be described later. The other constituent elements in FIG. 9 are the same as the operations and functions in FIG.
[0132] 次に、位相調整量判断部 601と位相調整部 602の動作を詳述する。ここで、動作 説明に先立ち、同期ズレの補正と位相調整が等価となることを説明する。図 10は、補 償用の AM— PM特性を示す。図 10において、横軸は制御電圧 (x)、縦軸は通過位 相回転量 (y)を示す。 Next, the operations of the phase adjustment amount determination unit 601 and the phase adjustment unit 602 will be described in detail. Here, prior to explaining the operation, it will be explained that the correction of the synchronization shift and the phase adjustment are equivalent. Figure 10 shows AM-PM characteristics for compensation. In Fig. 10, the horizontal axis represents the control voltage (x), and the vertical axis represents the passing phase rotation (y).
[0133] 図 10において実線で示す AM— PM特性 A701は、ネットワークアナライザ等を用 いて、制御電圧毎に電力増幅部 105の入力信号と出力信号との位相関係を求め、 グラフ化したものであり、図 2における AM— PM特性と同一のものである。また、点線 で示す AM— PM特性 B702は、実際の極座標変調回路において予想される電力増 幅部 105の入力信号と出力信号との位相関係を示している。 [0133] The AM-PM characteristic A701 indicated by the solid line in FIG. 10 is a graph showing the phase relationship between the input signal and output signal of the power amplifier 105 for each control voltage using a network analyzer or the like. The AM-PM characteristics in Fig. 2 are the same. An AM-PM characteristic B702 indicated by a dotted line indicates a phase relationship between the input signal and the output signal of the power amplifier 105 expected in an actual polar modulation circuit.
[0134] このような測定においては、入力信号と出力信号間の相対関係を求めているため、 例えば、図 4におけるベース コレクタ間の空乏層容量 405の影響のうち、入力信号 と出力信号との関係に作用するものに関しては、測定データに現れる。すなわち、制 御電圧が低い領域では、ベース コレクタ間の空乏層容量 405が増大し、電力増幅 部 105の出力端には、電力増幅部 105において増幅される成分以外に、増大する ベース コレクタ間の空乏層容量 405を介して入力部から出力部に漏洩する成分が 増え、通過位相特性が変化する。 In such a measurement, since the relative relationship between the input signal and the output signal is obtained, for example, among the influences of the depletion layer capacitance 405 between the base collector in FIG. 4, the input signal and the output signal Anything that affects the relationship will appear in the measurement data. That is, in the region where the control voltage is low, the depletion layer capacitance 405 between the base and collector increases, and power amplification In addition to the component amplified by the power amplifier 105, the component that leaks from the input to the output via the depletion layer capacitance 405 between the base and collector increases at the output end of the unit 105, and the passing phase characteristic changes. To do.
[0135] 一方、本発明の第 1の実施形態において説明したように、ベース コレクタ間の空 乏層容量 405の影響のうち、振幅信号と位相信号との間に関係する影響、電力増幅 部 105で表現すると、入力信号と制御電圧との間の関係に作用するものに関しては 、測定データには現れてこない。よって、 AM— PM特性A701をそのまま用ぃょぅと すると、ベース—コレクタ間の空乏層容量 405の影響を排除するために、本発明の 第 1の実施形態に示すような同期調整技術が必須となる。 On the other hand, as described in the first embodiment of the present invention, among the influences of the depletion layer capacitance 405 between the base collector and the influences related to the amplitude signal and the phase signal, the power amplification unit 105 In other words, what affects the relationship between the input signal and the control voltage does not appear in the measurement data. Therefore, if the AM-PM characteristic A701 is used as it is, a synchronous adjustment technique as shown in the first embodiment of the present invention is essential in order to eliminate the influence of the depletion layer capacitance 405 between the base and the collector. It becomes.
[0136] 本発明の第 5の実施形態では、同期を調整することを、位相を調整することに置き 換えること、すなわち、制御電圧を低減する領域では、ベース コレクタ間の空乏層 容量 405の影響で、振幅信号に対して位相信号が遅れることに着目した。 In the fifth embodiment of the present invention, the adjustment of the synchronization is replaced with the adjustment of the phase, that is, the influence of the depletion layer capacitance 405 between the base collector in the region where the control voltage is reduced. Thus, attention was paid to the fact that the phase signal is delayed with respect to the amplitude signal.
[0137] 具体的には、図 10の実線で示す AM— PM特性 A701と比べ、同図の点線に示す ような AM— PM特性 B702を補償データとする。すなわち、 AM— PM特性A701が 式(2)の関数にて表現できる場合に、制御電圧の低い領域ほど、ベース—コレクタ間 の空乏層容量 405が増大して、振幅信号に対して位相信号が遅れることを考慮し、 AM— PM特性 B702として式(3)に示す関数を位相調整量として与える。ここで、式 (3)における RF_freqは、電力増幅部 105の高周波信号入力端子への入力信号の 周波数を示し、ベース コレクタ間の空乏層容量 405の変化と振幅信号と位相信号 との周波数差に起因して、振幅信号と位相信号との間の同期がズレることを考慮して いる。 Specifically, compared to the AM-PM characteristic A701 indicated by the solid line in FIG. 10, the AM-PM characteristic B702 as indicated by the dotted line in FIG. 10 is used as the compensation data. That is, when the AM-PM characteristic A701 can be expressed by the function of equation (2), the depletion layer capacitance 405 between the base and the collector increases in the region where the control voltage is low, and the phase signal becomes smaller than the amplitude signal. Considering the delay, the function shown in Equation (3) is given as the phase adjustment amount as AM-PM characteristic B702. Here, RF_freq in Equation (3) indicates the frequency of the input signal to the high-frequency signal input terminal of the power amplifier 105, and the change in the depletion layer capacitance 405 between the base collector and the frequency difference between the amplitude signal and the phase signal. Due to this, it is considered that the synchronization between the amplitude signal and the phase signal is shifted.
[数 2] = /i · · · ( 2 ) [Equation 2] = / i · · · (2)
[数 3] y = Mx) f2 (x, RF_ freq) * · · ( 3 ) [Equation 3] y = Mx) f 2 (x, RF_ freq) * · · (3)
[0138] 図 9は、上述の同期調整を、位相調整に置換する構成を示す。すなわち、振幅信 号 r (t)と送信レベル情報 SIと既知の AM— AM特性とより、振幅信号に対する式 (3 )中の f2 (x、 RFjreq)にて示す位相調整量を求めておき、位相調整量判断部 601 に、振幅信号に対するテーブルデータとして格納し、振幅信号 r (t)を参照信号として 、位相調整量情報を位相調整部 602に出力する。 FIG. 9 shows a configuration in which the synchronization adjustment described above is replaced with a phase adjustment. That is, the amplitude signal The phase adjustment amount indicated by f2 (x, RFjreq) in equation (3) for the amplitude signal is obtained from the signal r (t), transmission level information SI, and known AM-AM characteristics, and the phase adjustment amount is determined. The unit 601 stores the amplitude signal as table data, and outputs the phase adjustment amount information to the phase adjustment unit 602 using the amplitude signal r (t) as a reference signal.
[0139] 位相調整部 602では、位相調整量判断部 601より送信されてきた位相調整量情報 をもとに、メモリ 101より出力される位相補正信号 Tcomp (t)に対して、位相調整量 (f 2 (x、 RFjreq) )を乗算して、 Tcomp2 (t)を生成し、位相情報補正部 110へと出力 する。 The phase adjustment unit 602 uses the phase adjustment amount (for the phase correction signal Tcomp (t) output from the memory 101 based on the phase adjustment amount information transmitted from the phase adjustment amount determination unit 601). f 2 (x, RFjreq)) is multiplied to generate Tcomp2 (t), which is output to the phase information correction unit 110.
[0140] 以上説明してきたように、本発明の第 5の実施形態では、同期調整と位相調整とを 等価なものとして扱えるようにすることで、回路規模の大きい遅延調整部を、回路規 模の小さい乗算回路により構成される位相調整部に変更するとともに、従来技術で は解決できな力 た信号変化点以外に、位相変調信号と振幅変調信号との合成時 における同期外れの対応を、電力増幅部 105の出力信号をフィードバックする系を 用いることなく行うことができる。 [0140] As described above, in the fifth embodiment of the present invention, the delay adjustment unit having a large circuit scale can be handled on a circuit scale by enabling the synchronization adjustment and the phase adjustment to be handled as equivalents. In addition to the powerful signal change point that could not be solved by the conventional technology, the phase adjustment unit is configured with a small multiplier circuit. This can be done without using a system that feeds back the output signal of the amplifier 105.
[0141] なお、ベースバンド周波数に応じて、位相調整量が変化するため、ベースバンド信 号帯域幅に対応した遅延量のテーブルデータを用意し、図示しな 、送信装置の制 御部より送信されるベースバンド帯域幅と等価となるシステム情報をもとに遅延量を 調整することで、より高精度に同期を確保することができることは言うまでもない。 [0141] Since the phase adjustment amount changes according to the baseband frequency, table data of the delay amount corresponding to the baseband signal bandwidth is prepared and transmitted from the control unit of the transmission device, not shown. It goes without saying that synchronization can be ensured with higher accuracy by adjusting the amount of delay based on system information equivalent to the baseband bandwidth that is generated.
[0142] また、位相調整部 602での乗算処理を、メモリ 101に格納する AM— PMデータに 対して、あらかじめ実施しておいても同様な効果を実現できるとともに、回路規模をさ らに低減できることは言うまでもない。 [0142] In addition, the same effect can be achieved and the circuit scale can be further reduced even if the multiplication processing in the phase adjustment unit 602 is performed on AM-PM data stored in the memory 101 in advance. Needless to say, you can.
[0143] さらに、本発明の第 1の実施形態と第 5の実施形態を組み合わせることで、さらに正 確な同期確保を実現できることは言うまでもない。 Furthermore, it goes without saying that more accurate synchronization can be ensured by combining the first embodiment and the fifth embodiment of the present invention.
[0144] なお、上記実施の形態に記載の極座標変調回路は、メモリ部 101から振幅信号の 振幅値に応じた振幅補正信号及び位相補正信号を出力することで、電力増幅部 10 5における歪補償を行う構成を示したが、メモリ部 101、振幅情報補正部 107、位相 情報補正部 110、遅延調整部 104を省略することで、同期確保のみを目的とする極 座標変調回路も構成することができる。 [0145] なお、上記実施の形態に記載の極座標変調回路は、シリコン基板上に生成するこ とで、集積回路として構成することができる。 It should be noted that the polar modulation circuit described in the above embodiment outputs an amplitude correction signal and a phase correction signal corresponding to the amplitude value of the amplitude signal from the memory unit 101, so that the distortion compensation in the power amplification unit 105 is performed. However, by omitting the memory unit 101, the amplitude information correction unit 107, the phase information correction unit 110, and the delay adjustment unit 104, it is possible to configure a polar modulation circuit only for ensuring synchronization. it can. [0145] Note that the polar modulation circuit described in the above embodiment can be configured as an integrated circuit by being generated on a silicon substrate.
[0146] また、上記実施の形態に記載した極座標変調回路は、任意の IQ信号を生成する 信号発生器からの IQ信号を極座標変換部に入力し、電力増幅部 105の出力をアン テナに接続することで、送信装置として、構成することも可能である。 In addition, the polar modulation circuit described in the above embodiment inputs an IQ signal from a signal generator that generates an arbitrary IQ signal to the polar coordinate conversion unit, and connects the output of the power amplification unit 105 to the antenna. Thus, it is possible to configure as a transmission device.
[0147] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 [0147] Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
本出願は、 2005年 4月 28日出願の日本特許出願(特願 2005-131998)、 2006年 4月 1 9日出願の日本特許出願 (特願 2006-116185)に基づくものであり、その内容はここに 参照として取り込まれる。 This application is based on a Japanese patent application filed on April 28, 2005 (Japanese Patent Application 2005-131998) and a Japanese patent application filed on April 19, 2006 (Japanese Patent Application 2006-116185). Are incorporated herein by reference.
産業上の利用可能性 Industrial applicability
[0148] 本発明の極座標変調回路は、極座標変調方式において、回路規模の増大を抑制 しながら、位相信号と振幅信号の経路間遅延差を補償することが可能な効果を有し、 同期調整方法、無線送信装置等に有用である。 [0148] The polar modulation circuit of the present invention has an effect capable of compensating for a delay difference between paths of a phase signal and an amplitude signal while suppressing an increase in circuit scale in the polar modulation method, and a synchronization adjustment method. It is useful for wireless transmission devices and the like.
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/814,181 US7715808B2 (en) | 2005-04-28 | 2006-04-26 | Polar modulating circuit, polar coordinate modulating method, integrated circuit and radio transmission device |
CN2006800037175A CN101111992B (en) | 2005-04-28 | 2006-04-26 | Polar modulation, polar coordinate modulation method, integrated circuit and radio transmission equipment |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-131998 | 2005-04-28 | ||
JP2005131998 | 2005-04-28 | ||
JP2006116185A JP2006333450A (en) | 2005-04-28 | 2006-04-19 | Polar coordinate modulation circuit, polar coordinate modulation method, integrated circuit, and wireless transmission device |
JP2006-116185 | 2006-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006118147A1 true WO2006118147A1 (en) | 2006-11-09 |
Family
ID=37307946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/308739 Ceased WO2006118147A1 (en) | 2005-04-28 | 2006-04-26 | Polar coordinate modulation circuit, polar coordinate modulation method, integrated circuit, and radio transmitting apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2006333450A (en) |
CN (1) | CN101111992B (en) |
WO (1) | WO2006118147A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009290283A (en) * | 2008-05-27 | 2009-12-10 | Sumitomo Electric Ind Ltd | Amplifier circuit |
WO2013176147A1 (en) * | 2012-05-25 | 2013-11-28 | 株式会社村田製作所 | Power amplification circuit |
CN114981616A (en) * | 2020-01-29 | 2022-08-30 | 舍弗勒技术股份两合公司 | Clutch actuator, detection system and method for detecting the angular position of a rotating part |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007074839A1 (en) * | 2005-12-27 | 2007-07-05 | Matsushita Electric Industrial Co., Ltd. | Multimode-corresponding polar-coordinate modulating transmission device, and multimode radio communication method |
WO2008129611A1 (en) * | 2007-04-06 | 2008-10-30 | Panasonic Corporation | High frequency transmitter apparatus |
WO2008146354A1 (en) * | 2007-05-28 | 2008-12-04 | Panasonic Corporation | Power amplifier |
JP5152059B2 (en) * | 2009-03-19 | 2013-02-27 | 富士通株式会社 | Power amplification device and power amplification method |
US8638878B2 (en) * | 2011-12-15 | 2014-01-28 | Intel Mobile Communications GmbH | Method and faculty to measure and compensate DCO frequency distortions using a DPLL |
EP3007398A4 (en) | 2013-05-31 | 2017-01-25 | Nec Corporation | Transmission circuit |
EP3243274B1 (en) | 2015-01-05 | 2019-09-18 | Telefonaktiebolaget LM Ericsson (publ) | Technique for determining a time alignment error |
US10454747B1 (en) * | 2018-09-07 | 2019-10-22 | Innophase, Inc. | Systems and methods for up-sampling a polar amplitude sample stream in a polar modulator |
CN111030611A (en) * | 2019-11-15 | 2020-04-17 | 安凯(广州)微电子技术有限公司 | Polar coordinate modulation circuit and modulation method thereof |
CN112073015B (en) * | 2020-04-02 | 2024-09-10 | 昆山聂尔精密仪器有限公司 | Automatic gain feedback control method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004501527A (en) * | 2000-02-02 | 2004-01-15 | トロピアン・インク | High efficiency power modulator |
JP2004173249A (en) * | 2002-10-28 | 2004-06-17 | Matsushita Electric Ind Co Ltd | Transmitter |
JP2005020696A (en) * | 2003-06-24 | 2005-01-20 | Northrop Grumman Corp | Multi-mode amplification system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000286915A (en) * | 1999-03-31 | 2000-10-13 | Toshiba Corp | Signal modulation circuit and signal modulation method |
JP2001203772A (en) * | 2000-01-24 | 2001-07-27 | Nec Corp | Non-linear distortion compensation device |
ATE316722T1 (en) * | 2003-03-20 | 2006-02-15 | Lucent Technologies Inc | OPTICAL MULTI-CHANNEL EQUALIZER TO REDUCE INTERSYMBOL INTERFERENCE |
CN100337484C (en) * | 2003-06-20 | 2007-09-12 | 华为技术有限公司 | Synchronous error measuring method and apparatus with envelope elimination and digital power amplifier restoration |
JP3844352B2 (en) * | 2003-08-07 | 2006-11-08 | 松下電器産業株式会社 | Transmitter |
-
2006
- 2006-04-19 JP JP2006116185A patent/JP2006333450A/en active Pending
- 2006-04-26 WO PCT/JP2006/308739 patent/WO2006118147A1/en not_active Ceased
- 2006-04-26 CN CN2006800037175A patent/CN101111992B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004501527A (en) * | 2000-02-02 | 2004-01-15 | トロピアン・インク | High efficiency power modulator |
JP2004173249A (en) * | 2002-10-28 | 2004-06-17 | Matsushita Electric Ind Co Ltd | Transmitter |
JP2005020696A (en) * | 2003-06-24 | 2005-01-20 | Northrop Grumman Corp | Multi-mode amplification system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009290283A (en) * | 2008-05-27 | 2009-12-10 | Sumitomo Electric Ind Ltd | Amplifier circuit |
WO2013176147A1 (en) * | 2012-05-25 | 2013-11-28 | 株式会社村田製作所 | Power amplification circuit |
CN104380598A (en) * | 2012-05-25 | 2015-02-25 | 株式会社村田制作所 | Power amplification circuit |
US9106181B2 (en) | 2012-05-25 | 2015-08-11 | Murata Manufacturing Co., Ltd. | Power amplifier circuit |
CN104380598B (en) * | 2012-05-25 | 2017-04-12 | 株式会社村田制作所 | Power amplification circuit |
CN114981616A (en) * | 2020-01-29 | 2022-08-30 | 舍弗勒技术股份两合公司 | Clutch actuator, detection system and method for detecting the angular position of a rotating part |
CN114981616B (en) * | 2020-01-29 | 2024-03-15 | 舍弗勒技术股份两合公司 | Clutch actuator, detection system and method for detecting an angular position of a rotating component |
Also Published As
Publication number | Publication date |
---|---|
CN101111992B (en) | 2010-05-19 |
CN101111992A (en) | 2008-01-23 |
JP2006333450A (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006118147A1 (en) | Polar coordinate modulation circuit, polar coordinate modulation method, integrated circuit, and radio transmitting apparatus | |
US7715808B2 (en) | Polar modulating circuit, polar coordinate modulating method, integrated circuit and radio transmission device | |
JP4767583B2 (en) | Distortion compensation circuit | |
JP4951238B2 (en) | Polar coordinate modulation transmission apparatus, adaptive distortion compensation processing system, polar modulation transmission method, and adaptive distortion compensation processing method | |
US7072626B2 (en) | Polar modulation transmitter | |
JP4323968B2 (en) | Timing adjustment method for wireless communication device | |
US7560984B2 (en) | Transmitter | |
US7792214B2 (en) | Polar modulation transmitter circuit and communications device | |
JP4903718B2 (en) | Multi-mode compatible polar modulation transmitter and multi-mode wireless communication method | |
US20080144539A1 (en) | Simplified Digital Predistortion in a Time-Domain Duplexed Transceiver | |
EP1710918A1 (en) | Transmitter and wireless communication apparatus | |
WO2006118015A1 (en) | Polar coordinate modulating circuit, integrated circuit and radio apparatus | |
WO2011108057A1 (en) | Transmitter circuit using polar modulation system, and communication device | |
JP2008022513A (en) | Amplification device with distortion control function | |
US7474708B1 (en) | Multimode transmitter architecture | |
US8909180B1 (en) | Method and apparatus for power supply modulation of a radio frequency signal | |
US6904267B2 (en) | Amplifying device | |
JP2011250285A (en) | Transmission circuit and transmission method | |
JP2008172511A (en) | Distortion compensation amplifier | |
JP2009232296A (en) | Amplification circuit and adjustment method thereof | |
JP2008098781A (en) | Communication device | |
US20240313711A1 (en) | Distortion correction for fast supply voltage changes in power amplifier | |
EP2104998A1 (en) | Wireless communication unit, linearised transmitter circuit and method of linearising therein | |
CN101375493A (en) | polar modulation device | |
HK1119010B (en) | Method and system for minimizing power consumption in a communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11814181 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680003717.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 11814181 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06745717 Country of ref document: EP Kind code of ref document: A1 |