[go: up one dir, main page]

WO2007011759A2 - Inhibiteurs de la kinesine mitotique - Google Patents

Inhibiteurs de la kinesine mitotique Download PDF

Info

Publication number
WO2007011759A2
WO2007011759A2 PCT/US2006/027449 US2006027449W WO2007011759A2 WO 2007011759 A2 WO2007011759 A2 WO 2007011759A2 US 2006027449 W US2006027449 W US 2006027449W WO 2007011759 A2 WO2007011759 A2 WO 2007011759A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
aryl
heteroaryl
hydrogen
Prior art date
Application number
PCT/US2006/027449
Other languages
English (en)
Other versions
WO2007011759A3 (fr
Inventor
Anthony B. Pinkerton
Robert L. Davis
Timothy Z. Hoffman
Mark R. Herbert
Original Assignee
Kalypsys, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kalypsys, Inc. filed Critical Kalypsys, Inc.
Publication of WO2007011759A2 publication Critical patent/WO2007011759A2/fr
Publication of WO2007011759A3 publication Critical patent/WO2007011759A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention is directed to new heterocyclic compounds and compositions and their application as pharmaceuticals for the treatment of disease.
  • Methods of inhibition of mitotic kinesin KSP activity in a human or animal subject are also provided for the treatment of cellular proliferative diseases, such as cancer, hyperplasias, restenosis, cardiac hypertrophy, Immune disorders and inflammation.
  • the mitotic spindle is responsible for distribution of replicate copies of the genome to each of the two daughter cells that result from cell division. Disruption of the mitotic spindle can inhibit cell division, and induce cell death.
  • Microtubules are the primary structural element of the mitotic spindle; they are the site of action of certain existing therapeutic agents used to treat cancer, such as taxanes and vinca alkaloids. Microtubules, however, exist as elements in other types of cellular structures (including tracks for intracellular transport in nerve processes). The therapeutic targeting of microtubules can, therefore, modulate processes in addition to cellular proliferation, leading to side effects that limit the usefulness of such drugs.
  • One novel anti-proliferative mechanism entails selective inhibition of mitotic kinesins, enzymes that are essential for assembly and function of the mitotic spindle, but are not generally part of other microtubule structures, such as in nerve processes. See, e.g., Guidebook to the Cytoskeletal and Motor Proteins, Kreis and Vale, Eds., pp. 389-394 (Oxford University Press 1999). Mitotic kinesins play essential roles during all phases of mitosis. These enzymes are "molecular motors" that transform energy released by hydrolysis of ATP into mechanical force that drives the directional movement of cellular cargoes along microtubules. The catalytic domain sufficient for this task is a compact structure of approximately 340 amino acids.
  • kinesins organize microtubules into the bipolar structure that is the mitotic spindle. Kinesins mediate movement of chromosomes along spindle microtubules, as well as structural changes in the mitotic spindle associated with specific phases of mitosis. Experimental perturbation of mitotic kinesin function causes malformation or dysfunction of the mitotic spindle, frequently resulting in cell cycle arrest and cell death. Mitotic kinesins are attractive targets for the discovery and development of novel anti-mitotic chemotherapeutics.
  • KSP belongs to an evolutionarily conserved kinesin subfamily of plus end-directed microtubule motors that assemble into bipolar homotetramers consisting of antiparallel homodimers.
  • KSP associates with microtubules of the mitotic spindle.
  • Microinjection of antibodies directed against KSP into human cells prevents spindle pole separation during prometaphase, giving rise to monopolar spindles and causing mitotic arrest and induction of programmed cell death.
  • KSP and related kinesins in other, non-human, organisms bundle antiparallel microtubules and slide them relative to one another, thus forcing the two spindle poles apart.
  • KSP may also mediate in anaphase B spindle elongation and focusing of microtubules at the spindle pole.
  • Human KSP (also termed HsEg5 or EG-5) has been described [Blangy, et al., Cell, 83:1159-69 (1995); Whitehead, et al., Arthritis Rheum., 39:1635-42 (1996); Galgio et al., J. Cell Biol., 135:339-414 (1996); Blangy, et al., J Biol. Chem., 272:19418-24 (1997); Blangy, et al., Cell Motil. Cytoskeleton, 40:174-82 (1998); Whitehead and Rattner, J. Cell Sci., 111:2551-61 (1998); Kaiser, et al., JBC
  • Novel compounds and pharmaceutical compositions that treat cellular proliferative diseases by inhibiting KSP have been found together with methods of synthesizing and using the compounds including methods for inhibiting or modulating KSP in a patient by administering the compounds.
  • the present invention discloses a class of compounds, useful in treating KSP-mediated disorders and conditions, defined by structural Formula I:
  • R 1 and R 2 are independently selected from the group consisting of hydrogen, acyl, lower alkyl, lower alkenyl, lower alkynyl, lower alkoxyalkyl, lower alkylamino, lower alkylaminoalkyl, lower alkylcarbonyl, lower alkylthio, amido, lower aminoalkyl, aryl, arylalkyl, arylalkenyl, arylalkynyl, lower cycloalkyl, lower cycloalkylalkyl, lower haloalkyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heterocycloalkyl, any of which may be optionally substituted; or R 1 and R 2 , together with the atoms to which they are attached, may be joined to form an optionally substituted lower cycloalkyl or optionally substituted heterocycloalkyl moiety;
  • R 3 is selected from the group consisting of hydrogen, lower acyl, lower alkyl, lower alkenyl, lower alkynyl, lower alkoxyalkyl, lower alkylamino, lower alkylaminoalkyl, lower alkylcarbonyl, lower alkylthio, amido, lower aminoalkyl, aryl, arylalkyl, arylalkenyl, arylalkynyl, lower cycloalkyl, lower cycloalkylalkyl, lower haloalkyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heterocycloalkyl, any of which may be optionally substituted;
  • G 1 and G 2 are independently selected from the group consisting of aryl, heteroaryl, C-linked heterocycloalkyl, and lower cycloalkyl, any of which may be optionally substituted;
  • G 3 is selected from the group consisting of aryl, heteroaryl, C-linked heterocycloalkyl, and lower cycloalkyl, any of which may be optionally substituted, and a group having the following structural formula:
  • Q 3 , and Q 4 are independently selected from the group consisting of C(R 4 ), N, N(R 5 ), S, and O;
  • R 5 is selected from the group consisting of hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkoxyalkyl, lower alkylaminoalkyl, lower alkylcarbonyl, lower alkylsulfonyl, lower aminoalkyl, aryl, arylalkyl, arylsulfonyl, heteroarylsulfonyl, lower cycloalkyl, lower cycloalkylalkyl, lower perhaloalkyl, heteroaryl, heteroarylalkyl,and heterocycloalkyl, any of which may be optionally substituted; and
  • G 4 is selected from the group consisting of null, hydrogen, aryl, heteroaryl, heterocycloalkyl and lower cycloalkyl, any of which may be optionally substituted.
  • the present invention also provides pharmaceutical compositions comprising one or more compounds of the present invention together with a pharmaceutically acceptable carrier, as well as methods of making and using the compounds and compositions.
  • the present invention provides methods for inhibiting KSP.
  • the present invention provides methods for treating a KSP-mediated disorder in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of a compound or composition according to the present invention.
  • the present invention also contemplates the use of compounds disclosed herein for use in the manufacture of a medicament for the treatment of a disease or condition ameliorated by the inhibition of KSP activity.
  • the present invention further discloses a class of compounds, useful in treating KSP-mediated disorders and conditions, defined by structural Formula II:
  • R 3 is selected from the group consisting of lower acyl, lower alkyl, lower alkenyl, lower alkynyl, lower alkoxyalkyl, lower alkylamino, lower alkylaminoalkyl, lower alkylcarbonyl, lower alkylthio, amido, aminoalkyl, aryl, arylalkyl, arylalkenyl, arylalkynyl, lower cycloalkyl, lower cycloalkyl alkyl, lower haloalkyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heterocycloalkyl, any of which may be optionally substituted;
  • G 1 is selected from the group consisting of aryl, heteroaryl, C-linked heterocycloalkyl, and lower cycloalkyl; any of which may be optionally substituted;
  • G 3 is selected from the group consisting of aryl, heteroaryl, C-linked heterocycloalkyl, and lower cycloalkyl, any of which may be optionally substituted as defined herein, and a group having the following structural formula:
  • R 5 is selected from the group consisting of hydrogen, lower alkyl,
  • G 4 is selected from the group consisting of null, hydrogen aryl, heteroaryl, heterocycloalkyl and lower cycloalkyl.
  • the compounds of the present invention have structural Formula II wherein: X 1 is selected from the group consisting of -O-, -S-, -SO 2 -, -SO 2 N(R 1 )-, -N(R 3 )-, -
  • R 1 and R 2 are independently selected from the group consisting of hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, arylalkyl, lower cycloalkyl, lower cycloalkylalkyl, heteroaryl, heteroarylalkyl, and heterocycloalkyl, any of which may be optionally substituted; or R 1 and R 2 , together with the atoms to which they are attached, may be joined to form an optionally substituted lower cycloalkyl or optionally substituted heterocycloalkyl moiety;
  • R 3 is selected from the group consisting of lower acyl, lower alkyl, lower alkenyl, lower alkynyl, aryl, arylalkyl, lower cycloalkyl, lower cycloalkylalkyl, heteroaryl, heteroarylalkyl, and heterocycloalkyl, any of which which may be optionally substituted;
  • G 1 is selected from the group consisting of aryl and heteroaryl, either of which may be optionally substituted;
  • G 3 is selected from the group consisting of aryl and heteroaryl, either of which may be optionally substituted, and a group having the following structural formula:
  • Q 1 , Q 2 , Q 3 , and Q 4 are independently selected from the group consisting of C(R 4 ), N, N(R 5 ), S, and O;
  • R 4 is selected from the group consisting of a bond, hydrogen, halogen, cyano, nitro, lower perhaloalkyl, lower alkyl, lower alkoxy, aryl, aralkyl, heterocycloalkyl, heteroaryl, heteroaralkyl, lower alkenyl, and lower alkynyl, any of which may be optionally substituted;
  • R 5 is selected from the group consisting of hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkylsulfonyl, lower cycloalkyl, and lower cycloalkylalkyl, any of which may be optionally substituted; and G 4 is selected from the group consisting of null, hydrogen, aryl, and heteroaryl, any of which may be optionally substituted.
  • the compounds of the present invention have structural Formula II wherein: X 1 is selected from the group consisting of -O-, -S-, -N(R 3 )-, -0[C(R')R 2 ] m , and -[C(R')R 2 ] m -; m is 1 ;
  • R 1 and R 2 are independently selected from the group consisting of hydrogen and optionally substituted lower alkyl; or R 1 and R 2 , together with the atoms to which they are attached, may be joined to form an optionally substituted lower cycloalkyl moiety;
  • R 3 is selected from the group consisting of lower alkyl, lower cycloalkyl, and lower cycloalkylalkyl, any of which which may be optionally substituted;
  • G 1 is optionally substituted aryl
  • G 3 is selected from the group consisting of optionally substituted aryl, optionally substituted heteroaryl, and a group having the following structural formula:
  • Q 2 is C(R 4 );
  • R 4 is selected from the group consisting of a bond, hydrogen, halogen, lower alkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl, any of which may be optionally substituted;
  • G 4 is null.
  • the compounds of the present invention have structural Formula II wherein:
  • X 1 is selected from the group consisting of -O-, -S-, -N(R 3 )-, -O[C(R')R 2 ] m , and -[C(R')R 2 ] m -; m is 1;
  • R 1 and R 2 are independently selected from the group consisting of hydrogen and optionally substituted lower alkyl
  • R 3 is selected from the group consisting of lower alkyl, lower cycloalkyl, and lower cycloalkylalkyl, any of which which may be optionally substituted; G 1 is optionally substituted aryl;
  • G 3 has the following structural formula:
  • R 4 is selected from the group consisting of optionally substituted aryl and optionally substituted heteroaryl
  • G 4 is null.
  • the compounds of the present invention have structural Formula II wherein:
  • X 1 is selected from the group consisting of -0-, -S-, -N(R 3 )-, -0[C(R')R 2 ] m , and -[C(R')R 2 ] m -; m is l;
  • R 1 and R 2 are independently selected from the group consisting of hydrogen and optionally substituted lower alkyl
  • R 3 is selected from the group consisting of lower alkyl, lower cycloalkyl, and lower cycloalkylalkyl, any of which which may be optionally substituted; G 1 is optionally substituted aryl;
  • G 3 is selected from optionally substituted aryl
  • G 4 is hydrogen.
  • the compounds of the present invention have structural Formula II wherein: X 1 is selected from the group consisting of -O-, -S-, -N(R 3 )s -0[C(R 1 )R 2 ] m , and -[C(R ⁇ R 2 ],,,-; m is 1;
  • R 1 and R 2 are independently selected from the group consisting of hydrogen and optionally substituted lower alkyl
  • R 3 is selected from the group consisting of lower alkyl, lower cycloalkyl, and lower cycloalkylalkyl, any of which which may be optionally substituted;
  • G 1 is optionally substituted aryl
  • G 3 is selected from optionally substituted heteroaryl
  • G 4 is hydrogen.
  • the compounds of the present invention have structural Formula II wherein:
  • X 1 is -S-;
  • G 1 is selected from the group consisting of phenyl, 3-fluorophenyl, 4-fluorophenyl, 3- trifluoromethylphenyl, and 4-trifluoromethylphenyl;
  • G 3 has the following structural formula:
  • R 4 is selected from the group consisting of 2- ⁇ yridyl, 3- ⁇ yridyl, 4-pyridyl, 3-chlorophenyl, 4- chlorophenyl, 3-fluorophenyl, 4-fluorophenyl, 3-trifluoromethylphenyl, 4-trifIuoromethylphenyl, and 4- cyanophenyl; and
  • G 4 is null.
  • the compounds of the present invention have structural Formula II wherein: X' is -0-;
  • G 1 is selected from the group consisting of phenyl, 3-fluorophenyl, 4-fluorophenyl, 3- trifluoromethylphenyl, and 4-trifiuoromethylphenyl;
  • G 3 is 4-cyanophenyl
  • G 4 is null.
  • the compounds of the present invention have structural
  • X 1 is -O-
  • G 1 is selected from the group consisting of phenyl, 3-fluorophenyl, 4-fiuorophenyl, 3- trifluoromethylphenyl, and 4-trifluoromethylphenyl;
  • G 3 is 4-pyridyl;
  • G 4 is null.
  • the invention provides for compounds selected from Examples 1 to 54, as shown in Tables 1 and 2.
  • acyl refers to a carbonyl attached to an alkenyl, alkyl, aryl, cycloalkyl, heteroaryl, heterocycle, or any other moiety were the atom attached to the carbonyl is carbon.
  • An “acetyl” group refers to a -C(O)CH 3 group. Examples of acyl groups include formyl, alkanoyl and aroyl radicals.
  • acylamino embraces an amino radical substituted with an acyl group.
  • An example of an “acylamino” radical is acetylamino (CH 3 C(O)NH-).
  • alkenyl refers to a straight-chain or branched-chain hydrocarbon radical having one or more double bonds and containing from 2 to 20, preferably 2 to 6, carbon atoms.
  • suitable alkenyl radicals include ethenyl, 1-propenyl, 2-propenyl (allyl), 2-methyl-l-propenyl, 2-methyl-2-propenyl (methylallyl), 3-methyl-2-butenyl (prenyl), 1,4-butadienyl and the like.
  • alkoxy refers to an alkyl ether radical, wherein the term alkyl is as defined below.
  • suitable alkyl ether radicals include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, and the like.
  • alkoxy alkoxy refers to one or more alkoxy groups attached to the parent molecular moiety through another alkoxy group. Examples include ethoxyethoxy, methoxypropoxyethoxy, ethoxypentoxyethoxyethoxy and the like.
  • alkoxyalkyl refers to an alkoxy group attached to the parent molecular moiety through an alkyl group.
  • alkoxyalkyl also embraces alkoxyalkyl groups having one or more alkoxy groups attached to the alkyl group, that is, to form monoalkoxyalkyl and dialkoxyalkyl groups.
  • alkoxycarbonyl refers to an alkoxy group attached to the parent molecular moiety through a carbonyl group.
  • alkoxycarbonyl examples include methoxycarbonyl, ethoxy carbonyl, propoxycarbonyl, butoxycarbonyl and hexyloxy carbonyl .
  • alkoxycarbonylalkyl embraces radicals having "alkoxycarbonyl", as defined above substituted to an alkyl radical.
  • alkoxycarbonylalkyl radicals are "lower alkoxycarbonylalkyl” having lower alkoxycarbonyl radicals as defined above attached to one to six carbon atoms. Examples of such lower alkoxycarbonylalkyl radicals include methoxy carbonylmethyl.
  • alkyl refers to a straight-chain or branched-chain alkyl radical containing from 1 to and including 20, preferably 1 to 10, and more preferably 1 to 6, carbon atoms. Alkyl groups may be optionally substituted as defined herein. Examples of alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl, noyl and the like.
  • alkylene as used herein, alone or in combination, refers to a saturated aliphatic group derived from a straight or branched chain saturated hydrocarbon attached at two or more positions, such as methylene (-CH 2 -).
  • alkylamino refers to an alkyl group attached to the parent molecular moiety through an amino group. Suitable alkylamino groups may be mono- or dialkylated, forming groups such as, for example, N-methylamino, N-ethylamino, N 5 N- dimethylamino, N,N-diethylamino and the like.
  • alkylaminocarbonyl refers to an alkylamino group attached to the parent molecular moiety through a carbonyl group. Examples of such radicals include N-methylaminocarbonyl and N,N-dimethylcarbonyl.
  • alkylcarbonyl and “alkanoyl,” as used herein, alone or in combination, refers to an alkyl group attached to the parent molecular moiety through a carbonyl group. Examples of such groups include methyl carbonyl and ethylcarbonyl.
  • alkylidene refers to an alkenyl group in which one carbon atom of the carbon-carbon double bond belongs to the moiety to which the alkenyl group is attached.
  • alkylsulfinyl refers to an alkyl group attached to the parent molecular moiety through a sulfinyl group. Examples of alkylsulfinyl groups include methylsulf ⁇ nyl, ethylsulf ⁇ nyl, butylsulfinyl and hexylsulfinyl.
  • alkylsulfonyl refers to an alkyl group attached to the parent molecular moiety through a sulfonyl group.
  • alkylsulfinyl groups include methanesulfonyl, ethanesulfonyl, tert-butanesulfonyl, and the like.
  • alkylthio refers to an alkyl thioether (R-S- ) radical wherein the term alkyl is as defined above.
  • suitable alkyl thioether radicals include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, iso-butylthio, sec-butylthio, tert-butylthio, ethoxyethylthio, methoxypropoxyethylthio, ethoxypentoxyethoxyethylthio and the like.
  • alkylthioalkyl embraces alkylthio radicals attached to an alkyl radical.
  • Alkylthioalkyl radicals include "lower alkylthioalkyl” radicals having alkyl radicals of one to six carbon atoms and an alkylthio radical as described above. Examples of such radicals include methylthiomethyl.
  • alkynyl refers to a straight-chain or branched chain hydrocarbon radical having one or more triple bonds and containing from 2 to 20, preferably from 2 to 6, more preferably from 2 to 4, carbon atoms.
  • Alkynylene refers to a carbon- carbon triple bond attached at two positions such as ethynylene (-C:::C-, -C ⁇ C-).
  • alkynyl radicals include ethynyl, propynyl, hydroxypropynyl, butyn-1-yl, butyn-2-yl, pentyn-1-yl, pentyn-2-yl, 4-methoxypentyn-2-yl, 3-methylbutyn-l-yl, hexyn-1-yl, hexyn-2-yl, hexyn-3-yl, 3,3-dimethylbutyn-l-yl, and the like.
  • amido refers to an amino group as described below attached to the parent molecular moiety through a carbonyl group.
  • amino refers to — NRR , wherein R and R are independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxy carbonyl, alkyl, alkylcarbonyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, haloalkylcarbonyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocycloalkenyl, and heterocycloalkyl, wherein the aryl, the aryl part of the arylalkenyl, the arylalkyl, the heteroaryl, the heteroaryl part of the heteroarylalkenyl and the heteroarylalkyl, the heterocycle, and the heterocycle part of the heterocycloalkenyl and the heterocycloalkyl can be optionally substituted as defined herein with one, two, three, four, or five
  • aminoalkyl refers to an amino group attached to the parent molecular moiety through an alkyl group. Examples include aminomethyl, aminoethyl and aminobutyl.
  • aminocarbonyl and “carbamoyl,” as used herein, alone or in combination, refer to an amino-substituted carbonyl group, wherein the amino group can be a primary or secondary amino group containing substituents selected from alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl radicals and the like.
  • aminocarbonylalkyl refers to an aminocarbonyl radical attached to an alkyl radical, as described above.
  • An example of such radicals is aminocarbonylmethyl.
  • aminocarbonylalkyl denotes an -C(NH)NH 2 radical.
  • cyanoamidino denotes an -C(N-CN)NH 2 radical.
  • alkenyl or arylalkenyl, as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkenyl group.
  • aralkoxy or "arylalkoxy,” as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkoxy group.
  • aralkyl or "arylalkyl,” as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkyl group.
  • aralkylamino or "arylalkylamino,” as used herein; alone or in combination, refers to an arylalkyl group attached to the parent molecular moiety through a nitrogen atom, wherein the nitrogen atom is substituted with hydrogen.
  • aralkylidene or "arylalkylidene,” as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkylidene group
  • aralkylthio or "arylalkylthio,” as used herein, alone or in combination, refers to an arylalkyl group attached to the parent molecular moiety through a sulfur atom.
  • aralkynyl or “arylalkynyl,” as used herein, alone or in combination, refers to an aryl group attached to the parent molecular moiety through an alkynyl group.
  • aralkoxycarbonyl refers to a radical of the formula aralkyl-O-C(O)- in which the term "aralkyl,” has the significance given above.
  • aralkoxycarbonyl radical examples include benzyloxycarbonyl (Z or Cbz) and 4-methoxyphenylmethoxycarbonyl (MOS).
  • aralkanoyl refers to an acyl radical derived from an aryl-substituted alkanecarboxylic acid such as benzoyl, phenylacetyl, 3-phenylpropionyl (hydrocinnamoyl), 4- ⁇ henylbutyryl, (2-naphthyl)acetyl, 4-chlorohydrocinnamoyl, A- aminohydrocinnamoyl, 4-methoxyhydrocinnamoyl, and the like.
  • aroyl refers to an acyl radical derived from an arylcarboxylic acid, "aryl” having the meaning given below.
  • aroyl radicals include substituted and unsubstituted benzoyl or napthoyl such as benzoyl, 4- chlorobenzoyl, 4-carboxybenzoyl, 4-(benzyloxycarbonyl)benzoyl, 1-naphthoyl, 2-naphthoyl, 6-carboxy- 2-naphthoyl, 6-(benzyloxycarbonyl)-2-naphthoyl, 3-benzyloxy-2-naphthoyl, 3-hydroxy-2-naphthoyl, 3- (benzyloxyformamido)-2-naphthoyl, and the like.
  • aryl as used herein, alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused.
  • aryl embraces aromatic radicals such as benzyl, phenyl, naphthyl, anthracenyl, phenanthryl, indanyl, indenyl, annulenyl, azulenyl, tetrahydronaphthyl, and biphenyl.
  • arylamino as used herein, alone or in combination, refers to an aryl group attached to the parent moiety through an amino group, such as methylamino, N-phenylamino, and the like.
  • arylcarbonyl and aroyl refer to an aryl group attached to the parent molecular moiety through a carbonyl group.
  • aryloxy refers to an aryl group attached to the parent molecular moiety through an oxygen atom.
  • arylsulfonyl refers to an aryl group attached to the parent molecular moiety through a sulfonyl group.
  • arylthio refers to an aryl group attached to the parent molecular moiety through a sulfur atom.
  • O-carbamyl as used herein, alone or in combination, refers to a -OC(O)NRR', group-with R and R' as defined herein.
  • N-carbamyl as used herein, alone or in combination, refers to a ROC(O)NR'- group, with R and R' as defined herein.
  • carbonyl when alone includes formyl [-C(O)H] and in combination is a -C(O)- group.
  • Carboxy refers to -C(O)OH or the corresponding “carboxylate” anion, such as is in a carboxylic acid salt.
  • An "O-carboxy” group refers to a RC(O)O- group, where R is as defined herein.
  • a “C-carboxy” group refers to a -C(O)OR groups where R is as defined herein.
  • C-linked heterocycloalkyl refers to a saturated, partially unsaturated, or fully unsaturated monocyclic, bicyclic, or tricyclic heterocyclic radical containing at least one, preferably 1 to 4, and more preferably 1 to 2 heteroatoms as ring members, wherein each said heteroatom may be independently selected from the group consisting of nitrogen, oxygen, and sulfur, and wherein there are preferably 3 to 8 ring members in each ring, more preferably 3 to 7 ring members in each ring, and most preferably 5 to 6 ring members in each ring , which is attached to the parent molecular moiety through a ring carbom atom.
  • Heterocycloalkyl and “heterocycle” are intended to include sulfones, sulfoxides, N-oxides of tertiary nitrogen ring members, and carbocyclic fused and benzo fused ring systems; additionally, both terms also include systems where a heterocycle ring is fused to an aryl group, as defined herein, or an additional heterocycle group.
  • Heterocycle groups of the invention are exemplified by aziridinyl, azetidinyl, 1,3-benzodioxolyl, dihydroisoindolyl, dihydroisoquinolinyl, dihydrocinnolinyl, dihydrobenzodioxinyl, dihydro[l,3]oxazolo[4,5-b]pyridinyl, benzothiazolyl, dihydroindolyl, dihy-dropyridinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-dioxolanyl, isoindolinyl, morpholinyl, piperazinyl, pyrrolidinyl, tetrahydropyridinyl, piperidinyl, thiomorpholinyl, and the like.
  • the heterocycle groups may be optionally substituted unless specifically prohibited.
  • cyano as used herein, alone or in combination, refers to -CN.
  • cycloalkyl refers to a saturated or partially saturated monocyclic, bicyclic or tricyclic alkyl radical wherein each cyclic moiety contains from 3 to 12, preferably five to seven, carbon atom ring members and which may optionally be a benzo fused ring system which is optionally substituted as defined herein.
  • cycloalkyl radicals include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, octahydronaphthyl, 2,3-dihydro-lH- indenyl, adamantyl and the like.
  • "Bicyclic” and “tricyclic” as used herein are intended to include both fused ring systems, such as decahydonapthalene, octahydronapthalene as well as the multicyclic
  • ester refers to a carboxyl group bridging two moieties linked at carbon atoms.
  • ether refers to an oxy group bridging two moieties linked at carbon atoms.
  • halo or halogen, as used herein, alone or in combination, refers to fluorine, chlorine, bromine, or iodine.
  • haloalkoxy refers to a haloalkyl group attached to the parent molecular moiety through an oxygen atom.
  • haloalkyl refers to an alkyl radical having the meaning as defined above wherein one or more hydrogens are replaced with a halogen. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals.
  • a monohaloalkyl radical for one example, may have an iodo, bromo, chloro or fluoro atom within the radical.
  • Dihalo and polyhaloalkyl radicals may have two or more of the same halo atoms or a combination of different halo radicals.
  • haloalkyl radicals include fluoromethyl, difluoromethyl, trifiuoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl.
  • Haloalkylene refers to a halohydrocarbyl group attached at two or more positions. Examples include fluoromethylene (-CFH-), difluoromethylene (-CF 2 -), chloromethylene (-CHC1-) and the like.
  • heteroalkyl refers to a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, fully saturated or containing from 1 to 3 degrees of unsaturation, consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N, and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
  • the heteroatom(s) O, N and S may be placed at any interior position of the heteroalkyl group. Up to two heteroatoms may be consecutive, such as, for example, -CH2-NH-OCH3.
  • heteroaryl refers to 3 to 7 membered, preferably 5 to 7 membered, unsaturated heterocyclic rings wherein at least one atom is selected from the group consisting of O, S, and N.
  • Heteroaryl groups are exemplified by: unsaturated 3 to 7 membered heteromonocyclic groups containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-l,2,4-triazolyl, 1H-1,2,3- triazolyl, 2H-l,2,3-triazolyl, etc.]tetrazolyl [e.g.
  • unsaturated condensed heterocyclic group containing 1 to 5 nitrogen atoms for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo[l,5-b]pyridazinyl, etc.], etc.; unsaturated 3 to 6-membered heteromonocyclic groups containing an oxygen atom, for example, pyranyl, furyl, etc.; unsaturated 3 to 6-membered heteromonocyclic groups containing a sulfur atom, for example, thienyl, etc.; unsaturated 3- to 6-membered heteromonocyclic groups containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example,
  • benzoxazolyl, benzoxadiazolyl, etc.] unsaturated 3 to 6-membered heteromonocyclic groups containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1 ,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.]and isothiazolyl; unsaturated condensed heterocyclic groups containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., benzothiazolyl, benzothiadiazolyl, etc.]and the like.
  • the term also embraces radicals where heterocyclic radicals are fused with aryl radicals. Examples of such fused bicyclic radicals include benzofuryl, benzothienyl, and the like.
  • heteroarylkenyl or “heteroaryl alkenyl,” as used herein, alone or in combination, refers to a heteroaryl group attached to the parent molecular moiety through an alkenyl group.
  • heteroarylkoxy or “heteroarylalkoxy,” as used herein, alone or in combination, refers to a heteroaryl group attached to the parent molecular moiety through an alkoxy group.
  • heteroarylalkyl refers to a heteroaryl group attached to the parent molecular moiety through an alkyl group.
  • heteroarylkylidene or “heteroarylalkylidene,” as used herein, alone or in combination, refers to a heteroaryl group attached to the parent molecular moiety through an alkylidene group.
  • heteroaryloxy refers to a heteroaryl group attached to the parent molecular moiety through an oxygen atom.
  • heteroarylsulfonyl refers to a heteroaryl group attached to the parent molecular moiety through a sulfonyl group.
  • Heterocycloalkyl and “heterocycle” are intended to include sulfones, sulfoxides, N-oxides of tertiary nitrogen ring members, and carbocyclic fused and benzo fused ring systems; additionally, both terms also include systems where a heterocycle ring is fused to an aryl group, as defined herein, or an additional heterocycle group.
  • Heterocycle groups of the invention are exemplified by aziridinyl, azetidinyl, 1,3-benzodioxolyl, dihydroisoindolyl, dihydroisoquinolinyl, dihydrocinnolinyl, dihydrobenzodioxinyl, dihydro[l,3]oxazolo[4,5-b]pyridinyl, benzothiazolyl, dihydroindolyl, dihy- dropyridinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1 ,3-dioxolanyl, isoindolinyl, morpholinyl, piperazinyl, pyrrolidinyl, tetrahydropyridinyl, piperidinyl, thiomorpholinyl, and the like.
  • the heterocycle groups may be optionally substituted unless specifically prohibited.
  • heterocycloalkylalkenyl refers to a heterocycle group attached to the parent molecular moiety through an alkenyl group.
  • heterocycloalkylalkoxy refers to a heterocycle group attached to the parent molecular group through an oxygen atom.
  • heterocycloalkylalkylidene refers to a heterocycle group attached to the parent molecular moiety through an alkylidene group.
  • hydrazinyl as used herein, alone or in combination, refers to two amino groups joined by a single bond, i.e., -N-N-.
  • hydroxy as used herein, alone or in combination, refers to -OH.
  • hydroxyalkyl refers to a hydroxy group attached to the parent molecular moiety through an alkyl group.
  • the phrase "in the main chain” refers to the longest contiguous or adjacent chain of carbon atoms starting at the point of attachment of a group to the compounds of this invention.
  • isocyanato refers to a -NCO group.
  • isothiocyanato refers to a— NCS group.
  • linear chain of atoms refers to the longest straight chain of atoms independently selected from carbon, nitrogen, oxygen and sulfur.
  • lower means containing from 1 to and including 6 carbon atoms.
  • mercaptoalkyl as used herein, alone or in combination, refers to an R' SR- group, where R and R' are as defined herein.
  • mercaptomercaptyl as used herein, alone or in combination, refers to a RSR' S- group, where R is as defined herein.
  • mercaptyl as used herein, alone or in combination, refers to an RS- group, where R is as defined herein.
  • nitro refers to — NO 2 .
  • oxy or "oxa,” as used herein, alone or in combination, refer to -O-.
  • perhaloalkoxy refers to an alkoxy group where all of the hydrogen atoms are replaced by halogen atoms.
  • perhaloalkyl refers to an alkyl group where all of the hydrogen atoms are replaced by halogen atoms.
  • sulfonate refers the -SO 3 H group and its anion as the sulfonic acid is used in salt formation.
  • sulfonyl as used herein, alone or in combination, refers to -SO 2 -.
  • thia and thio refer to a — S- group or an ether wherein the oxygen is replaced with sulfur.
  • the oxidized derivatives of the thio group namely sulfinyl and sulfonyl, are included in the definition of thia and thio.
  • thiol refers to an -SH group.
  • thiocarbonyl when alone includes thioformyl -C(S)H and in combination is a -C(S)- group.
  • N-thiocarbamyl refers to an ROC(S)NR'- group, with R and R' as defined herein.
  • O-thiocarbamyl refers to a -OC(S)NRR', group with R and R' as defined herein.
  • thiocyanato refers to a -CNS group.
  • trihalomethanesulfonamido refers to a X 3 CS(O) 2 NR- group with X is a halogen and R as defined herein.
  • trihalomethanesulfonyl refers to a X 3 CS(O) 2 - group where X is a halogen.
  • trimethoxy refers to a X 3 CO- group where X is a halogen.
  • trimethysilyl as used herein, alone or in combination, refers to a silicone group substituted at its three free valences with groups as listed herein under the definition of substituted amino. Examples include trimethysilyl, tert-butyldimethylsilyl, triphenylsilyl and the like.
  • the term "optionally substituted” means the anteceding group may be substituted or unsubstituted.
  • the substituents of an "optionally substituted” group may include, without limitation, one or more substituents independently selected from the following groups or a particular designated set of groups, alone or in combination: lower alkyl, lower alkenyl, lower alkynyl, lower heteroalkyl, lower heterocycloalkyl, lower haloalkyl, lower haloalkenyl, lower haloalkynyl, lower perhaloalkyl, lower perhaloalkoxy, lower cycloalkyl, phenyl, aryl, aryloxy, lower alkoxy, lower haloalkoxy, oxo, lower acyloxy, carbonyl, lower carboxyester, lower carboxamido, cyano, hydrogen, halogen, hydroxy, amino, lower alkylamino, arylamino, amido, thiol, lower alkyl
  • Two substituents may be joined together to form a fused five-, six-, or seven-menbered carbocyclic or heterocyclic ring consisting of zero to three heteroatoms, for example forming methylenedioxy or ethylenedioxy.
  • An optionally substituted group may be unsubstituted
  • An optionally substituted group may be unsubstituted (e.g., -CH 2 CH 3 ), fully substituted (e.g., -CF 2 CF 3 ), monosubstituted (e.g., -CH 2 CH 2 F) or substituted at a level anywhere in-between fully substituted and monosubstituted (e.g., -CH 2 CF 3 ).
  • aryl, heterocycle, R, etc. occur more than one time in a formula or generic structure, its definition at each occurrence is independent of the definition at every other occurrence.
  • Asymmetric centers exist in the compounds of the present invention. These centers are designated by the symbols "R” or “S,” depending on the configuration of substituents around the chiral carbon atom. It should be understood that the invention encompasses all stereochemical isomeric forms, including diastereomeric, enantiomeric, and epimeric forms,as well as d-isomers and 1 -isomers, and mixtures thereof.
  • Individual stereoisomers of compounds can be prepared synthetically from commercially available starting materials which contain chiral centers or by preparation of mixtures of enantiomeric products followed by separation such as conversion to a mixture of diastereomers followed by separation or recrystallization, chromatographic techniques, direct separation of enantiomers on chiral chromatographic columns, or any other appropriate method known in the art.
  • Starting compounds of particular stereochemistry are either commercially available or can be made and resolved by techniques known in the art.
  • the compounds of the present invention may exist as geometric isomers.
  • the present invention includes all cis, trans, syn, anti,
  • compounds may exist as tautomers; all tautomeric isomers are provided by this invention.
  • the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.
  • bonds refers to a covalent linkage between two atoms, or two moieties when the atoms joined by the bond are considered to be part of larger substructure.
  • a bond may be single, double, or triple unless otherwise specified.
  • combination therapy means the administration of two or more therapeutic agents to treat a therapeutic condition or disorder described in the present disclosure. Such administration encompasses co-administration of these therapeutic agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of active ingredients or in multiple, separate capsules for each active ingredient. In addition, such administration also encompasses use of each type of therapeutic agent in a sequential manner. In either case, the treatment regimen will provide beneficial effects of the drug combination in treating the conditions or disorders described herein.
  • KSP inhibitor is used herein to refer to a compound that exhibits an IC 50 with respect to KSP activity of no more than about 100 ⁇ M and more typically not more than about 50 ⁇ M, as measured in the KSP ATP depletion assay described generally hereinbelow.
  • IC 50 is that concentration of inhibitor which reduces the activity of an enzyme / (e.g., KSP) to half-maximal level. Representative compounds of the present invention have been discovered to exhibit inhibition against KSP.
  • Compounds of the present invention preferably exhibit an IC 5O with respect to KSP of no more than about 10 ⁇ M, more preferably, no more than about 5 ⁇ M, even more preferably not more than about 1 ⁇ M, and most preferably, not more than about 200 nM, as measured in the KSP ATP depletion as assay described herein.
  • the phrase "therapeutically effective” is intended to qualify the amount of active ingredients used in the treatment of a disease or disorder. This amount will achieve the goal of reducing or eliminating the said disease or disorder.
  • treatment of a patient is intended to include prophylaxis.
  • patient means all mammals including humans. Examples of patients include humans, cows, dogs, cats, goats, sheep, pigs, and rabbits. Preferably, the patient is a human.
  • prodrug refers to a compound that is made more active in vivo.
  • the present compounds can also exist as prodrugs, as described in Hydrolysis in Drug and Prodrug Metabolism : Chemistry, Biochemistry, and Enzymology (Testa, Bernard and Mayer, Joachim M. Wiley-VHCA,
  • Prodrugs of the compounds described herein are structurally modified forms of the compound that readily undergo chemical changes under physiological conditions to provide the compound. Additionally, prodrugs can be converted to the compound by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to a compound when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent. Prodrugs are often useful because, in some situations, they may be easier to administer than the compound, or parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug.
  • prodrug derivatives are known in the art, such as those that rely on hydrolytic cleavage or oxidative activation of the prodrug.
  • An example, without limitation, of a prodrug would be a compound which is administered as an ester (the "prodrug"), but then is metabolically hydrolyzed to the carboxylic acid, the active entity. Additional examples include peptidyl derivatives of a compound.
  • therapeutically acceptable prodrug refers to those prodrugs or zwitterions which are suitable for use in contact with the tissues of patients without undue toxicity, irritation, and allergic response, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
  • terapéuticaally acceptable salt represents salts or zwitterionic forms of the compounds of the present invention which are water or oil-soluble or dispersible; which are suitable for treatment of diseases without undue toxicity, irritation, and allergic-response; which are commensurate with a reasonable benefit/risk ratio; and which are effective for their intended use.
  • the salts can be prepared during the final isolation and purification of the compounds or separately by reacting the appropriate compound in the form of the free base with a suitable acid.
  • Representative acid addition salts include acetate, adipate, alginate, L-ascorbate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, butyrate, camphorate, camphorsulfonate, citrate, digluconate, formate, fumarate, gentisate, glutarate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, malonate, DL-mandelate, mesitylenesulfonate, methanesulfonate, naphthylenesulfonate, nicotinate, 2- naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-pheny
  • basic groups in the compounds of the present invention can be quaternized with methyl, ethyl, propyl, and butyl chlorides, bromides, and iodides; dimethyl, diethyl, dibutyl, and diamyl sulfates; decyl, lauryl, myristyl, and steryl chlorides, bromides, and iodides; and benzyl and phenethyl bromides.
  • acids which can be employed to form therapeutically acceptable addition salts include inorganic acids such as hydrochloric, hydrobromic, sulfuric, and phosphoric, and organic acids such as oxalic, maleic, succinic, and citric.
  • Salts can also be formed by coordination of the compounds with an alkali metal or alkaline earth ion.
  • the present invention contemplates sodium, potassium, magnesium, and calcium salts of the compounds of the compounds of the present invention and the like.
  • Basic addition salts can be prepared during the final isolation and purification of the compounds by reacting a carboxy group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine.
  • the cations of therapeutically acceptable salts include lithium, sodium, potassium, calcium, magnesium, and aluminum, as well as nontoxic quaternary amine cations such as ammonium, tetramethylammonium, tetraethyl ammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, ⁇ '-dimethylaniline, 7V-methylpiperidine, ⁇ '-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, #,7V-dibenzylphenethylamine, 1-ephenamine, and N,1 ⁇ - dibenzylethylenediamine.
  • Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
  • the compounds of the present invention can exist as therapeutically acceptable salts.
  • the present invention includes compounds listed above in the form of salts, in particular acid addition salts. Suitable salts include those formed with both organic and inorganic acids. Such acid addition salts will normally be pharmaceutically acceptable. However, salts of non-pharmaceutically acceptable salts may be of utility in the preparation and purification of the compound in question.
  • Salts of non-pharmaceutically acceptable salts may be of utility in the preparation and purification of the compound in question.
  • Pharmaceutical Salts Properties, Selection, and Use (Stahl, P. Heinrich. Wiley- VCHA, Zurich, Switzerland, 2002). While it may be possible for the compounds of the subject invention to be administered as the raw chemical, it is also possible to present them as a pharmaceutical formulation.
  • the subject invention provides a pharmaceutical formulation comprising a compound or a pharmaceutically acceptable salt, ester, prodrug or solvate thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutic ingredients.
  • the carrier(s) must be "acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences.
  • compositions of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or compression processes.
  • the formulations include those suitable for oral, parenteral (including subcutaneous, intradermal, intramuscular, intravenous, intraarticular, and intramedullary), intraperitoneal, transmucosal, transdermal, rectal and topical (including dermal, buccal, sublingual and intraocular) administration although the most suitable route may depend upon for example the condition and disorder of the recipient.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing into association a compound of the subject invention or a pharmaceutically acceptable salt, ester, prodrug or solvate thereof ("active ingredient”) with the carrier which constitutes one or more accessory ingredients.
  • active ingredient a pharmaceutically acceptable salt, ester, prodrug or solvate thereof
  • the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.
  • Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
  • the active ingredient may also be presented as a bolus, electuary or paste.
  • Pharmaceutical preparations which can be used orally include tablets, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
  • Tablets may be made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with binders, inert diluents, or lubricating, surface active or dispersing agents. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein. All formulations for oral administration should be in dosages suitable for such administration.
  • the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
  • the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
  • suitable liquids such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
  • stabilizers may be added.
  • Dragee cores are provided with suitable coatings.
  • concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
  • the compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
  • Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
  • the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in powder fo ⁇ n or in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, saline or sterile pyrogen-free water, immediately prior to use.
  • sterile liquid carrier for example, saline or sterile pyrogen-free water
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
  • Formulations for parenteral administration include aqueous and non-aqueous (oily) sterile injection solutions of the active compounds which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
  • Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
  • the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
  • the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • compositions may take the form of tablets, lozenges, pastilles, or gels formulated in conventional manner.
  • Such compositions may comprise the active ingredient in a flavored basis such as sucrose and acacia or tragacanth.
  • the compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, polyethylene glycol, or other glycerides.
  • Compounds of the present invention may be administered topically, that is by non-systemic administration. This includes the application of a compound of the present invention externally to the epidermis or the buccal cavity and the instillation of such a compound into the ear, eye and nose, such that the compound does not significantly enter the blood stream.
  • systemic administration refers to oral, intravenous, intraperitoneal and intramuscular administration.
  • Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site of inflammation such as gels, liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear or nose.
  • the active ingredient may comprise, for topical administration, from 0.001% to 10% w/w, for instance from 1% to 2% by weight of the formulation. It may however comprise as much as 10% w/w but preferably will comprise less than 5% w/w, more preferably from 0.1% to 1% w/w of the formulation.
  • the compounds according to the invention are conveniently delivered from an insufflator, nebulizer pressurized packs or other convenient means of delivering an aerosol spray.
  • Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • the compounds according to the invention may take the form of a dry powder composition, for example a powder mix of the compound and a suitable powder base such as lactose or starch.
  • the powder composition may be presented in unit dosage form, in for example, capsules, cartridges, gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.
  • Preferred unit dosage formulations are those containing an effective dose, as herein below recited, or an appropriate fraction thereof, of the active ingredient.
  • formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
  • the compounds of the invention may be administered orally or via injection at a dose of from 0.1 to 500 mg/kg per day.
  • the dose range for adult humans is generally from 5 mg to 2 g/day.
  • Tablets or other forms of presentation provided in discrete units may conveniently contain an amount of compound of the invention which is effective at such dosage or as a multiple of the same, for instance, units containing 5 mg to 500 mg, usually around 10 mg to 200 mg.
  • the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
  • the compounds of the subject invention can be administered in various modes, e.g. orally, topically, or by injection.
  • the precise amount of compound administered to a patient will be the responsibility of the attendant physician.
  • the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diets, time of administration, route of administration, rate of excretion, drug combination, the precise disorder being treated, and the severity of the indication or condition being treated.
  • the route of administration may vary depending on the condition and its severity.
  • the compounds described herein may be administered in combination with another therapeutic agent.
  • another therapeutic agent such as a pharmaceutically acceptable salt, ester, or prodrug thereof.
  • the therapeutic effectiveness of one of the compounds described herein may be enhanced by administration of an adjuvant (i.e., by itself the adjuvant may only have minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the patient is enhanced).
  • the benefit of experienced by a patient may be increased by administering one of the compounds described herein with another therapeutic agent (which also includes a therapeutic regimen) that also has therapeutic benefit.
  • another therapeutic agent which also includes a therapeutic regimen
  • increased therapeutic benefit may result by also providing the patient with another therapeutic agent for diabetes.
  • the overall benefit experienced by the patient may simply be additive of the two therapeutic agents or the patient may experience a synergistic benefit.
  • chemotherapeutic agents including, but not limited to, the group consisting of aromatase inhibitors, antiestrogen, anti-androgen, gonadorelin agonists, topoisomerase land 2 inhibitors, microtubule active agents, alkylating agents, antineoplastic antimetabolites, or platinum-containing compounds, lipid or protein kinase targeting agents, protein or lipid phosphatase targeting agents, anti-angiogenic agents, agents that induce cell differentiation, bradykinin 1 receptor and angiotensin II antagonists, cyclooxygenase inhibitors, heparanase inhibitors, Iymphokines or cytokine inhibitors, bisphosphonates, rapamycin derivatives, anti-apoptotic pathway inhibitors, apoptotic pathway agonists, PPAR agonists, inhibitors of Ras iso
  • chemotherapeutic agents including, but not limited to, the group consisting of aromatase inhibitors, antiestrogen, anti-androgen
  • the chemotherapeutic agents include, but are not limited to the group consisting of the actinomycins (e.g. actinomycin C 2 , C 3 , D, and F
  • actinomycins e.g. actinomycin C 2 , C 3 , D, and F
  • alkylating agents e.g. cyclophosphamide, melphalan, estramustine
  • ansa macrolides e.g. maytansinol, rifamycin, and streptovaricin
  • anthracycline derivatives e.g.
  • doxorubicin daunorubicin, epirubicin, idarubicin, detorubicin, carminomycin, idarubicin, epirubicin, esorubicin, and mitoxantrone
  • bleomycins e.g. bleomycin A, A 2 , and B
  • camptothecins e.g. Irinotecan ® , Topotecan ® , 9-aminocamptothecin, 10,11- methylenedioxycamptothecin, 9-nitrocamptothecin, and TASl 03
  • combretastatins e.g.
  • combretastatin combretastatin, combretastatin A-2, and combretastatin A-4
  • diynenes e. g. calicheamicins , neocarcinostatins
  • epothilones e.g. epothilone A B, C, and semi-synthetic variants
  • enzymes proteins and antibodies
  • proteins and antibodies e.g. Herceptin ® , Rituxan ® , asparaginase, interleukins, interferons, leuprolide, and pegaspargase
  • fluoropyrimi dines e.g.
  • 5-fluorouracil 5-fluorouracil
  • 5-FU 5-fluorouracil
  • ptorafur fluorodeoxyuridine
  • 5'-deoxyfluorouridine UFT
  • S-I capecitabine hormones and hormonal analogues
  • hormones and hormonal analogues e.g. diethylstilbestrol, tamoxifen, toremefine, tolmudex, thymitaq, flutamide, fluoxymesterone, bicalutamide, finasteride, estradiol, trioxifene, dexamethasone, leuproelin acetate, estramustine, droloxifene, medroxyprogesterone, megesterol acetate, aminoglutethimide, testolactone, testosterone, diethylstilbestrol, and hydroxyprogesterone), the mitomycins (e.g.
  • mitomycins A, B and C porf ⁇ romycin
  • platinum analogues e.g. cisplatin, carboplatin, oxaliplatin, tetraplatin, platinum-DACH, ormaplatin, CI-973, and JM-216
  • podophyllotoxin and epipodophyllotoxins e.g. etoposide and teniposide
  • protein kinase inhibitors e.g. Tarceva ® , Iressa ® , Imatinib ® , Miltefosine ® and Perifosine ®
  • pteridines e.g.
  • the chemotherapeutic agents for the treatment of multiple myeloma include, but are not limited to, alkylating agents (e.g., melphalan), anthracyclines (e.g. doxorubicin, daunorubicin, epirubicin, idarubicin, and mitoxantrone), corticosteroids (e.g. dexamethasome), IMiDs (eg.
  • alkylating agents e.g., melphalan
  • anthracyclines e.g. doxorubicin, daunorubicin, epirubicin, idarubicin, and mitoxantrone
  • corticosteroids e.g. dexamethasome
  • IMiDs eg.
  • thalidomide lenalidomide
  • protease inhibitors e.g. bortezomib, NPI0052
  • IGF-I inhibitors CD40 antibodies
  • Smac mimetics e.g. telomestatin
  • FGF3 modulator e.g. CHIR258
  • mTOR inhibitor Rad 001
  • HDAC inhibitors e.g. SAHA, Tubacin
  • IKK inhibitors e.g. 17- AAG
  • HSP90 inhibitors e.g. 17- AAG
  • Akt inhibitors e.g. Perifosine
  • the preferred chemotherapeutic agents used in combination with the compounds of the present invention include without limitation melphalan, doxorubicin (including lyophilized), dexamethasone, prednisone, thalidomide, lenalidomide, bortezomib, and NPI0052.
  • the multiple chemotherapeutic agents may be administered in any order or even simultaneously. If simultaneously, the multiple chemotherapeutic agents may be provided in a single, unified form, or in multiple forms (by way of example only, either as a single pill or as two separate pills). One of the chemotherapeutic agents may be given in multiple doses, or both may be given as multiple doses. If not simultaneous, the timing between the multiple doses may be any duration of time ranging from a few minutes to four weeks.
  • the present invention provides methods for treating KSP-mediated disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of the present invention effective to reduce or prevent said disorder in the subject in combination with at least one additional agent for the treatment of said disorder that is known in the art.
  • the present invention provides therapeutic compositions comprising at least one compound of the present invention in combination with one or more additional agents for the treatment of KSP-mediated disorders.
  • the disease is a hyperproliferative condition of the human or animal body, including, but not limited to cancer, hyperplasias, restenosis, inflammation, immune disorders, cardiac hypertrophy, atherosclerosis, pain, migraine, angiogenesis-related conditions or disorders, proliferation induced after medical conditions, including but not limited to surgery, angioplasty, or other conditions.
  • said hyperproliferative condition is selected from the group consisting of hematologic and nonhematologic cancers.
  • said hematologic cancer is selected from the group consisting of multiple myeloma, leukemias, and lymphomas.
  • said leukemia is selected from the group consisting of acute and chronic leukemias.
  • said acute leukemia is selected from the group consisting of acute lymphocytic leukemia (ALL) and acute nonlymphocytic leukemia (ANLL).
  • said chronic leukemia is selected from the group consisting of chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML).
  • said lymphoma is selected from the group consisting of Hodgkin's lymphoma and non-Hodgkin's lymphoma.
  • said hematologic cancer is multiple myeloma.
  • said hematologic cancer is of low, intermediate, or high grade.
  • said nonhematologic cancer is selected from the group consisting of: brain cancer, cancers of the head and neck, lung cancer, breast cancer, cancers of the reproductive system, cancers of the digestive system, pancreatic cancer, and cancers of the urinary system.
  • said cancer of the digestive system is a cancer of the upper digestive tract or colorectal cancer.
  • said cancer of the urinary system is bladder cancer or renal cell carcinoma.
  • said cancer of the reproductive system is prostate cancer. Additional types of cancers which may be treated using the compounds and methods described herein include: cancers of oral cavity and pharynx, cancers of the respiratory system, cancers of bones and joints, cancers of soft tissue, skin cancers, cancers of the genital system, cancers of the eye and orbit, cancers of the nervous system, cancers of the lymphatic system, and cancers of the endocrine system.
  • these cancer s may beselected from the group consisting of: cancer of the tongue, mouth, pharynx, or other oral cavity; esophageal cancer, stomach cancer, or cancer of the small intestine; colon cancer or rectal, anal, or anorectal cancer; cancer of the liver, intrahepatic bile duct, gallbladder, pancreas, or other biliary or digestive organs; laryngeal, bronchial, and other cancers of the respiratory organs; heart cancer, melanoma, basal cell carcinoma, squamous cell carcinoma, other non-epithelial skin cancer; uterine or cervical cancer; uterine corpus cancer; ovarian, vulvar, vaginal, or other female genital cancer; prostate, testicular, penile or other male genital cancer; urinary bladder cancer; cancer of the kidney; renal, pelvic, or urethral cancer or other cancer of the genito-urinary organs; thyroid cancer or other
  • cancers which may be treated using the compounds and methods described herein include: adenocarcinoma, angiosarcoma, astrocytoma, acoustic neuroma, anaplastic astrocytoma, basal cell carcinoma, blastoglioma, chondrosarcoma, choriocarcinoma, chordoma, craniopharyngioma, cutaneous melanoma, cystadenocarcinoma, endotheliosarcoma, embryonal carcinoma, ependymoma, Ewing's tumor, epithelial carcinoma, fibrosarcoma, gastric cancer, genitourinary tract cancers, glioblastoma multiforme, hemangioblastoma, hepatocellular carcinoma, hepatoma, Kaposi's sarcoma, large cell carcinoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, lymphangioend
  • the disease to be treated by the methods of the present invention may be a hematologic disorder.
  • said hematologic disorder is selected from the group consisting of sickle cell anemia, myelodysplastic disorders (MDS), and myeloproliferative disorders.
  • said myeloproliferative disorder is selected from the group consisting of polycythemia vera, myelofibrosis and essential thrombocythemia.
  • the disease to be treated by the methods of the present invention may be a neurological disorder.
  • said neurologic disorder is selected from the group consisting of Parkinson's disease, Alzheimer's disease, Alzheimer's dementia, and central nervous system damage resulting from stroke, ischemia and trauma.
  • said neurological disorder is selected from the group consisting of epilepsy, neuropathic pain, depression and bipolar disorders.
  • the disease to be treated by the methods of the present invention may be a cardiovascular condition.
  • said cardiovascular condition is selected from the group consisting of atherosclerosis, cardiac hypertrophy, idiopathic cardiomyopathies, heart failure, angiogenesis-related conditions or disorders, and proliferation induced after medical conditions, including, but not limited to restenosis resulting from surgery and angioplasty.
  • the disease to be treated by the methods of the present invention may be an autoimmune disease.
  • the autoimmune disease to be treated may be selected from the group consisting of: autoimmune disease that targets the nervous system, e.g., multiple sclerosis, myasthenia gravis, autoimmune neuropathies such as Guillain-Barre syndrome, autoimmune uveitis; autoimmune disease that targets the gastrointestinal system, e.g., Crohn's disease, ulcerative colitis, primary biliary cirrhosis; autoimmune hepatitis; autoimmune disease that targets the blood, e.g., autoimmune hemolytic anemia, pernicious anemia, autoimmune thrombocytopenia; autoimmune disease that targets endocrine glands, e.g., Type 1 or immune-mediated diabetes mellitus,
  • Grave's disease Hashimoto's thyroiditis, autoimmune oophoritis and orchitis, autoimmune disease of the adrenal gland
  • autoimmune disease that targets blood vessels, e.g., temporal arteritis, anti-phospholipid syndrome, vasculitides such as Wegener's granulomatosis, Behcet's disease
  • autoimmune disease that targets multiple organs including the musculoskeletal system, e.g., rheumatoid arthritis, scleroderma, polymyositis, dermatomyositis, spondyloarthropathies such as ankylosing spondylitis, Sjogren's syndrome
  • autoimmune disease that targets skin, e.g., psoriasis, dermatitis herpetiformis, pemphigus vulgaris, or vitiligo.
  • said autoimmune disease is selected from the group consisting of systemic lupus erythromatosus (SLE), multiple sclerosis (MS), and systemic lupus nephritis.
  • the disease to be treated by the methods of the present invention may be a dermatologic disorder.
  • said dermatologic disorder is selected from the group consisting of fungal infections, psoriasis, melanoma, basal cell carcinoma, squamous cell carcinoma, and other non-epithelial skin cancers.
  • the disease to be treated by the methods of the present invention may be an ophthalmologic disorder.
  • the present invention provides methods and compositions for the treatment of ophthalmic diseases and other diseases in which angiogenesis plays a role in pathogenesis, such as glaucoma, retinal ganglion degeneration, occular ischemia, retinitis, retinopathies, uveitis, ocular photophobia, and of inflammation and pain associated with acute injury to the eye tissue.
  • said ophthalmologic disorder is selected from the group consisting of dry eye, closed angle glaucoma and wide angle glaucoma.
  • the disease to be treated by the methods of the present invention may be an inflammatory condition.
  • the inflammatory condition is selected from the group consisting of Rheumatoid Arthritis (RA), Inflammatory Bowel Disease (IBD), ulcerative colitis and psoriasis.
  • tissue damage In further accordance with the present invention, methods and compositions are provided for treating disease states characterized by tissue damage, where the disease states include, but are not limited to, vascular diseases, migraine headaches, periarteritis nodosa, thyroiditis, aplastic anemia, Hodgkin's disease, sclerodoma, rheumatic fever, type I diabetes, neuromuscular junction disease including myasthenia gravis, white matter disease including multiple sclerosis, sarcoidosis, nephrotic syndrome, Behcet's syndrome, polymyositis, gingivitis, nephritis, hypersensitivity, swelling occurring after injury, myocardial ischemia, and the like.
  • methods and compositions are provided for treating the fibrosis which occurs with radiation therapy.
  • compositions of the invention are used for treating subjects having adenomatous polyps, including those with familial adenomatous polyposis (FAP). Additionally, the present compounds and methods can be used to prevent polyps from forming in patients at risk of FAP.
  • FAP familial adenomatous polyposis
  • the present invention provides methods and compositions of the invention are used for treating a neurological or polyglutamine-repeat disorder including, but not limited to, Huntington's disease, Spinocerebellar ataxia 1 (SCA 1), Machado- Joseph disease (MJDySpinocerebella ataxia 3 (SCA 3), Kennedy disease/Spinal and bulbar muscular atrophy (SBMA) and Dentatorubral pallidolusyian atrophy (DRPLA).
  • a neurological or polyglutamine-repeat disorder including, but not limited to, Huntington's disease, Spinocerebellar ataxia 1 (SCA 1), Machado- Joseph disease (MJDySpinocerebella ataxia 3 (SCA 3), Kennedy disease/Spinal and bulbar muscular atrophy (SBMA) and Dentatorubral pallidolusyian atrophy (DRPLA).
  • a neurological or polyglutamine-repeat disorder including, but not limited to, Huntington'
  • the compounds and formulations of the present invention are also useful for veterinary treatment of companion animals, exotic animals and farm animals, including mammals, rodents, and the like. More preferred animals include horses, dogs, and cats. All references, patents or applications, U.S. or foreign, cited in the application are hereby incorporated by reference as if written herein.
  • acetophenones 1-1 are reacted with dimethylcarbonate and a base such as sodium hydride in solvents such as tetrahydrofuran to give ketoesters 1-2.
  • ketoesters 1-2 are then condensed with aminotriazine (1-3) to give hydroxytriazolopyrimidines 1-4.
  • Hydroxytriazolopyrimidines 1-4 are converted to their chloro derivatives 1-7 using reagents such as phosphoryl chloride.
  • Hydrazides 1-5 are reacted with carbon disulfide and bases such as potassium hydroxide in solvents such as methanol or water at elevated temperatures to give thio-oxadiazoles 1-6.
  • the compounds are then reaced with chlorides 1 -7 with bases such as potassium carbonate in solvents such as DMF to give mitotic kinesin inhibitors 1-8.
  • These compounds can exist as mixtures of stereoisomers. These can be separated by a variety of methods, including by HPLC using a column with a chiral stationary phase.
  • Example 1 can be synthesized using the following general synthetic procedure set forth in Scheme I. In some cases the order of carrying out the foregoing reaction scheme may be varied to facilitate the reaction or to avoid unwanted reaction products.
  • the following examples are provided for the purpose of further illustration only and are not intended to be limitations on the disclosed invention.
  • Examples 50-54 can be synthesized using the following general synthetic procedure set forth in Scheme 2. In some cases the order of carrying out the foregoing reaction scheme may be varied to facilitate the reaction or to avoid unwanted reaction products.
  • the following examples are provided for the purpose of further illustration only and are not intended to be limitations on the disclosed invention.
  • SMILES Simplified Molecular Input Line Entry System
  • SMILES is a modern chemical notation system, developed by David Weininger and Daylight Chemical Information Systems, Inc., that is built into all major commercial chemical structure drawing software packages. Software is not needed to interpret SMILES text strings, and an explanation of how to translate SMILES into structures can be found in Weininger, D., J. Chem. Inf. Comput. ScL 1988, 28, 31-36.
  • the compounds of Examples 1 to 54 have been shown to be KSP inhibitors by using the following assays.
  • the other compounds listed above, which have not yet been made and/or tested, are predicted to have activity in these assays as well.
  • the activity of the compounds as KSP inhibitors can be illustrated in the following assay.
  • KSP is expressed in and purified from E. coli bacteria as recombinant C-terminal His6-tagged human KSP (amino acids 1-386, Genbank accession NM_004523) and stored in (2OmM PIPES buffer, pH 7.3, 20OmM NaCl, ImM MgCl 2 , O.lmM TCEP [Tris(2-carboxyethyl)phosphine]). KSP stock is diluted in PME (25mM PIPES buffer, pH 7.0, 5mM MgCl 2 , O.lmM EDTA) containing 0.3mg/ml BSA and 0.005% Brij 35 (PME++). Taxol-stabilized microtubules are prepared as follows.
  • 2.5 ⁇ l KSP (1OnM) is dispensed into wells of a 1536 multi-well black solid plate.
  • the plate is centrifuged for 1 ' at ⁇ 200 x g.
  • 60nl of IOOX concentration of test compound in DMSO is dispensed to the wells by passive pin transfer and incubated for 10 minutes at room temperature.
  • 2.5 ⁇ l of PME++ containing ImM taxol-stabilized microtubules and 6 ⁇ M ATP is then dispensed and the combined reaction is allowed to incubate at room temperature for 2 hours.
  • the assay plate is sealed between reagent additions and during the combined reaction incubation.
  • 2.5 ⁇ l of PKLight assay reagent (Cambrex, cat.
  • LT07-501 is dispensed. After a further 10 minute incubation at room temperature, luminescence is measured on a Molecular Devices Analyst multi-mode plate reader (or other suitable plate reader). An increase in luminescence signal correlates with an increase in final ATP concentration, which correlates with KSP inhibition.
  • Negative control activity is measured with DMSO lacking any test compound. Positive control activity is measured with l-[3-(2,5-Difluoro-phenyl)-5-(3- hydroxy-phenyl)-4,5-dihydro-pyrazol-l-yl]-ethanone (Cox, C. D. et al., Bioorg. Med. Chem. Lett., 15:2041-2045 (2005)).
  • Efficacy is measured as a percentage of positive control activity.
  • the invention is illustrated by the examples and the associated in vitro activity shown in Table 3.
  • the IC 50 values reported below were derived from the preceding in vitro protocol.
  • the symbol (-) denotes an IQo value of ⁇ 10 ⁇ M while the symbol (+) denotes an IC 50 value of >10 ⁇ M.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention porte sur des composés et des procédés d'inhibition de la kinésine mitotique (KSP) pour traiter ou prévenir les maladies à prolifération cellulaire.
PCT/US2006/027449 2005-07-15 2006-07-13 Inhibiteurs de la kinesine mitotique WO2007011759A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US69952205P 2005-07-15 2005-07-15
US60/699,522 2005-07-15
US76024706P 2006-01-17 2006-01-17
US60/760,247 2006-01-17

Publications (2)

Publication Number Publication Date
WO2007011759A2 true WO2007011759A2 (fr) 2007-01-25
WO2007011759A3 WO2007011759A3 (fr) 2007-04-12

Family

ID=37616876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/027449 WO2007011759A2 (fr) 2005-07-15 2006-07-13 Inhibiteurs de la kinesine mitotique

Country Status (1)

Country Link
WO (1) WO2007011759A2 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809372B2 (en) 2011-09-30 2014-08-19 Asana Biosciences, Llc Pyridine derivatives
US8993576B2 (en) 2010-10-27 2015-03-31 Glaxo Group Limited 6-(1H-indol-4-yl)-4-(5-{[4-1-methylethyl)-1-piperazinyl]methyl}-1,3-oxazol-2-yl)-1H-indazole hemi succinate salt, polymorphs and pharmaceutical compositions thereof
US9199975B2 (en) 2011-09-30 2015-12-01 Asana Biosciences, Llc Biaryl imidazole derivatives for regulating CYP17
US9334286B2 (en) 2012-09-07 2016-05-10 Cancer Research Technology Limited Pharmacologically active compounds
US9371319B2 (en) 2011-03-14 2016-06-21 Cancer Research Technology Limited Pyrrolopyridineamino derivatives as MPS1 inhibitors
CN108484612A (zh) * 2018-05-08 2018-09-04 郑州大学 嘧啶并1,2,4–三氮唑类化合物及其制备方法和应用
US10159712B2 (en) 2013-08-13 2018-12-25 Ostara Biomedical Ltd. Embryo implantation
US10293029B2 (en) 2015-01-27 2019-05-21 Ostara Biomedical Ltd. Embryo implantation
US10588944B2 (en) 2015-10-05 2020-03-17 Ostara Biomedical Ltd. Methods and compositions for managing reproduction
US10894797B2 (en) 2018-09-18 2021-01-19 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as SRC homology-2 phosphatase inhibitors
US11161850B2 (en) 2018-07-05 2021-11-02 Incyte Corporation Fused pyrazine derivatives as A2A / A2B inhibitors
US11168089B2 (en) 2018-05-18 2021-11-09 Incyte Corporation Fused pyrimidine derivatives as A2A / A2B inhibitors
US11390624B2 (en) 2019-01-29 2022-07-19 Incyte Corporation Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors
US11673894B2 (en) 2018-02-27 2023-06-13 Incyte Corporation Imidazopyrimidines and triazolopyrimidines as A2A / A2B inhibitors
US11697666B2 (en) 2021-04-16 2023-07-11 Gilead Sciences, Inc. Methods of preparing carbanucleosides using amides
US11767337B2 (en) 2020-02-18 2023-09-26 Gilead Sciences, Inc. Antiviral compounds
US12030903B2 (en) 2020-02-18 2024-07-09 Gilead Sciences, Inc. Antiviral compounds
US12054507B2 (en) 2020-02-18 2024-08-06 Gilead Sciences, Inc. Antiviral compounds
US12116380B2 (en) 2021-08-18 2024-10-15 Gilead Sciences, Inc. Phospholipid compounds and methods of making and using the same
CN119060061A (zh) * 2024-08-26 2024-12-03 浙江师范大学 一类苯并嘧啶硫醚类化合物作为sting蛋白小分子抑制剂的应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1567554A (fr) * 1968-05-29 1969-05-16
JPS4984639A (fr) * 1972-12-19 1974-08-14
JPS6157587A (ja) * 1984-08-29 1986-03-24 Shionogi & Co Ltd 縮合複素環誘導体および抗潰瘍剤
US5869486A (en) * 1995-02-24 1999-02-09 Ono Pharmaceutical Co., Ltd. Fused pyrimidines and pyriazines as pharmaceutical compounds
WO2002002563A2 (fr) * 2000-06-30 2002-01-10 Wyeth Triazolopyrimidines substitues comme agents anticancereux
US20040038856A1 (en) * 2002-05-17 2004-02-26 Sarvajit Chakravarty Treatment of fibroproliferative disorders using TGF-beta inhibitors
WO2004065392A1 (fr) * 2003-01-24 2004-08-05 Smithkline Beecham Corporation Pyridines et pyrimidines condensees et leur utilisation en tant que ligands du recepteur alk-5
CA2520465A1 (fr) * 2003-03-28 2004-10-14 Scios Inc. Inhibiteurs bi-cycliques a base de pyrimidine de tgf.beta.
WO2004108136A1 (fr) * 2003-06-04 2004-12-16 Vernalis (Cambridge) Limited Triazolo`1,5-a!pyrimidines et leur utilisation en medecine
DE10356579A1 (de) * 2003-12-04 2005-07-07 Merck Patent Gmbh Aminderivate
CN100594903C (zh) * 2004-09-30 2010-03-24 泰博特克药品有限公司 Hcv抑制性双环嘧啶
JP5094412B2 (ja) * 2005-01-19 2012-12-12 メルク・シャープ・エンド・ドーム・コーポレイション 糖尿病治療用又は予防用のジペプチジルペプチダーゼ−iv阻害剤としての二環系ピリミジン

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993576B2 (en) 2010-10-27 2015-03-31 Glaxo Group Limited 6-(1H-indol-4-yl)-4-(5-{[4-1-methylethyl)-1-piperazinyl]methyl}-1,3-oxazol-2-yl)-1H-indazole hemi succinate salt, polymorphs and pharmaceutical compositions thereof
US9371319B2 (en) 2011-03-14 2016-06-21 Cancer Research Technology Limited Pyrrolopyridineamino derivatives as MPS1 inhibitors
US9199975B2 (en) 2011-09-30 2015-12-01 Asana Biosciences, Llc Biaryl imidazole derivatives for regulating CYP17
US9266873B2 (en) 2011-09-30 2016-02-23 Asana Biosciences, Llc Pyridine derivatives
US9371316B2 (en) 2011-09-30 2016-06-21 Asana Biosciences, Llc Pyridine derivatives
US9533981B2 (en) 2011-09-30 2017-01-03 Asana Biosciences, Llc Pyridine derivatives
US8809372B2 (en) 2011-09-30 2014-08-19 Asana Biosciences, Llc Pyridine derivatives
US10188642B2 (en) 2012-09-07 2019-01-29 Cancer Research Technology Limited Pharmacologically active compounds
US9334286B2 (en) 2012-09-07 2016-05-10 Cancer Research Technology Limited Pharmacologically active compounds
US9895364B2 (en) 2012-09-07 2018-02-20 Cancer Research Technology Limited Pharmacologically active compounds
US10159712B2 (en) 2013-08-13 2018-12-25 Ostara Biomedical Ltd. Embryo implantation
US10293029B2 (en) 2015-01-27 2019-05-21 Ostara Biomedical Ltd. Embryo implantation
US10987406B2 (en) 2015-01-27 2021-04-27 Ostara Biomedical Ltd. Embryo implantation
US10588944B2 (en) 2015-10-05 2020-03-17 Ostara Biomedical Ltd. Methods and compositions for managing reproduction
US11673894B2 (en) 2018-02-27 2023-06-13 Incyte Corporation Imidazopyrimidines and triazolopyrimidines as A2A / A2B inhibitors
CN108484612A (zh) * 2018-05-08 2018-09-04 郑州大学 嘧啶并1,2,4–三氮唑类化合物及其制备方法和应用
US11168089B2 (en) 2018-05-18 2021-11-09 Incyte Corporation Fused pyrimidine derivatives as A2A / A2B inhibitors
US11873304B2 (en) 2018-05-18 2024-01-16 Incyte Corporation Fused pyrimidine derivatives as A2A/A2B inhibitors
US11999740B2 (en) 2018-07-05 2024-06-04 Incyte Corporation Fused pyrazine derivatives as A2A / A2B inhibitors
US11161850B2 (en) 2018-07-05 2021-11-02 Incyte Corporation Fused pyrazine derivatives as A2A / A2B inhibitors
US11034705B2 (en) 2018-09-18 2021-06-15 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as Src homology-2 phosphate inhibitors
US10894797B2 (en) 2018-09-18 2021-01-19 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as SRC homology-2 phosphatase inhibitors
US11459340B2 (en) 2018-09-18 2022-10-04 Nikang Therapeutics, Inc. Tri-substituted heteroaryl derivatives as Src homology-2 phosphatase inhibitors
US12264167B2 (en) 2018-09-18 2025-04-01 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as SRC homology-2 phosphate inhibitors
US11518772B2 (en) 2018-09-18 2022-12-06 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as Src homology-2 phosphate inhibitors
US11390624B2 (en) 2019-01-29 2022-07-19 Incyte Corporation Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors
US11884665B2 (en) 2019-01-29 2024-01-30 Incyte Corporation Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors
US11767337B2 (en) 2020-02-18 2023-09-26 Gilead Sciences, Inc. Antiviral compounds
US12030903B2 (en) 2020-02-18 2024-07-09 Gilead Sciences, Inc. Antiviral compounds
US12054507B2 (en) 2020-02-18 2024-08-06 Gilead Sciences, Inc. Antiviral compounds
US12264173B2 (en) 2020-02-18 2025-04-01 Gilead Sciences, Inc. Antiviral compounds
US11697666B2 (en) 2021-04-16 2023-07-11 Gilead Sciences, Inc. Methods of preparing carbanucleosides using amides
US12116380B2 (en) 2021-08-18 2024-10-15 Gilead Sciences, Inc. Phospholipid compounds and methods of making and using the same
CN119060061A (zh) * 2024-08-26 2024-12-03 浙江师范大学 一类苯并嘧啶硫醚类化合物作为sting蛋白小分子抑制剂的应用

Also Published As

Publication number Publication date
WO2007011759A3 (fr) 2007-04-12

Similar Documents

Publication Publication Date Title
WO2007011759A2 (fr) Inhibiteurs de la kinesine mitotique
WO2007011760A2 (fr) Inhibiteurs de la kinesine mitotique
US11840536B2 (en) Heterocyclic inhibitors of PTPN11
AU2019263294A1 (en) Substituted heterocyclic inhibitors of PTPN11
US20070049591A1 (en) Inhibitors of MAPK/Erk Kinase
WO2017156397A1 (fr) Inhibiteurs hétérocycliques de ptpn11
WO2006124780A2 (fr) Inhibiteurs de la b-raf kinase
AU2019245403A1 (en) Imidazopiperazine inhibitors of transcription activating proteins
WO2007016354A1 (fr) Composes de sulfonamide multicyclique utilises en tant qu'inhibiteurs d'histone desacetylase pour le traitement de maladies
WO2007011721A1 (fr) Inhibiteurs de kinesine mitotique
WO2007015866A2 (fr) Inhibiteurs de la p38 kinase et procédés de traitement d’affections inflammatoires
WO2007067994A1 (fr) Inhibiteurs de l'histone désacétylase pour le traitement d'une maladie
WO2006124874A2 (fr) Inhibiteurs de la b-raf kinase
EP2037924A2 (fr) Inhibiteurs de pde4 à base de composés d'hétéroaryle bicyclique
WO2007084868A2 (fr) Traitement d'une inflammation et de troubles associes par l'activation de la reponse upr (proteine depliee)
WO2019195846A1 (fr) Inhibiteurs d'imidazopipérazinone de protéines d'activation de la transcription
WO2018213777A1 (fr) Inhibiteurs hétérocycliques de kdm5 pour le traitement de maladies
US20230312588A1 (en) Imidazopiperazine inhibitors of transcription activating proteins
WO2007011647A2 (fr) Inhibiteurs de la kinesine mitotique
US11466017B2 (en) Heterocyclic inhibitors of PTPN11
EP4221708A1 (fr) Inhibiteurs imidazopipérazines de protéines d'activation de la transcription
HK40006960B (en) Heterocyclic inhibitors of ptpn11
HK40006960A (en) Heterocyclic inhibitors of ptpn11

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06774657

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 06774657

Country of ref document: EP

Kind code of ref document: A2