[go: up one dir, main page]

WO2007013269A1 - 反射膜用積層体 - Google Patents

反射膜用積層体 Download PDF

Info

Publication number
WO2007013269A1
WO2007013269A1 PCT/JP2006/313326 JP2006313326W WO2007013269A1 WO 2007013269 A1 WO2007013269 A1 WO 2007013269A1 JP 2006313326 W JP2006313326 W JP 2006313326W WO 2007013269 A1 WO2007013269 A1 WO 2007013269A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
oxide
adhesion improving
silver
Prior art date
Application number
PCT/JP2006/313326
Other languages
English (en)
French (fr)
Inventor
Takehiko Hiruma
Naoko Shin
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to EP06767843A priority Critical patent/EP1918740A4/en
Priority to JP2007528392A priority patent/JPWO2007013269A1/ja
Publication of WO2007013269A1 publication Critical patent/WO2007013269A1/ja
Priority to US12/021,621 priority patent/US20080131693A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • G02B1/105
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a laminated body mainly used for a reflection member of a production television.
  • a mirror using a metal film for reflection has been widely used as a reflecting mirror used in electronic devices such as display devices.
  • Increasing the reflectivity of the reflector is important for improving the brightness and saving energy of electronic equipment.
  • liquid crystal displays used for mobile phones, etc. a force that uses a mirror that reflects knocklights is used.
  • This mirror uses a film as a substrate for weight reduction, and requires a high reflectivity and reflecting mirror. .
  • a plurality of reflecting mirrors are required in the optical system, so the amount of light decreases as the number of reflections increases. As a result, there is a problem that the finally obtained light quantity is reduced and the brightness of the screen is lowered, and a reflector having a higher reflectance than before is required.
  • silver having a higher reflectance in the visible light region than aluminum is used as a material for the metal film.
  • silver has a higher reflectance in the visible light region than aluminum, it has low durability such as moisture resistance and salt water resistance and weak film strength.
  • this laminate is composed of A1 on the opposite side of the Ag film substrate.
  • a reflecting mirror in which an Al 2 O film, a ZrO film, and an SiO film are formed on an Ag film is disclosed.
  • the Al 2 O film is a protective layer for increasing the durability of the Ag film.
  • ZrO film is a film for improving reflection efficiency
  • SiO film is a protective film.
  • Rucoum silicon dioxide, titanium oxide, hafnium oxide, tin oxide, antimony oxide
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-4919
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-226927
  • Patent Document 3 Japanese Patent Laid-Open No. 5-127004
  • Patent Document 4 JP 2000-81505 A
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-241612
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2001-74922
  • An object of the present invention is to provide a laminate having high reflectivity over the entire visible light region and excellent durability and adhesion such as moisture resistance and salt water resistance.
  • the present invention has the following configuration.
  • a silver film, an adhesion improving film, a low refractive index film, and a high refractive index film were laminated in this order on the substrate.
  • the layer on the adhesion improving film side in the low refractive index film is formed by a high frequency sputtering method using an oxide target and a sputtering gas containing nitrogen, and the adhesion
  • the improvement film has an extinction coefficient of 0.1 or less and a film thickness of 0.5 to 4 nm, the extinction coefficient of the low refractive index film is 0.01 or less, and the extinction coefficient of the high refractive index film. Is a laminated body characterized by being 0.0 1 or less.
  • the layer on the adhesion improving film side is formed by a sputtering method in which oxygen is not included in the notched gas, and the extinction coefficient of the adhesion improving film is 0.1 or less and the film thickness is 0.5 to 4 nm.
  • film thickness means a geometric film thickness in the present invention.
  • the laminate of the present invention uses silver as the material of the metal film, the reflectance in the visible light region can be increased, and the durability is also excellent, so it is useful as an optical component for displays. It also contributes to the improvement of display brightness and the ease of optical design.
  • the laminate of the present invention does not require the formation of an extra layer for preventing oxidization and is excellent in productivity. Further, since it has high reflectivity and is excellent in durability such as moisture resistance, it is particularly useful as an optical component of a rear projection television having a large number of reflections.
  • FIG. 1 is a cross-sectional view of a laminate of the present invention.
  • the type of the substrate is not particularly limited.
  • 1) glass such as soda lime glass, 2) film of PET (polyethylene terephthalate) resin, acrylic resin, polycarbonate, etc. Etc.
  • PET polyethylene terephthalate
  • the thickness of the substrate is preferably 0.4 to 8. Omm from the viewpoint of the strength and ease of use of the laminate.
  • the thickness is 30 to 500 ⁇ m because the weight can be reduced.
  • the shape of the substrate is not particularly limited as long as it is a shape required as a substrate of various reflecting optical members such as a plane mirror, a concave mirror, a convex mirror, and a trapezoidal mirror.
  • a film formed by the sputtering method is superior to a film formed by a vapor deposition method or the like, so that the film can be formed on a large substrate.
  • a substrate having a large area such as a substrate area of 0.1 to 5 m 2 can be formed, so that it is particularly an optical component for a large area rear projection television. And useful.
  • the silver film that effectively reflects light is a film containing silver as a main component, and preferably contains 90 atomic% or more of silver in terms of reflectivity of visible light castle.
  • the silver film may contain impurities such as copper, but its content is preferably 10 atomic% or less.
  • the “visible light region” means a wavelength region of 400 to 700 nm.
  • the silver film may be an alloy film of silver and other metals! Specific examples of other metals include Au.
  • An alloy film with Au is preferable because the durability of the silver film is improved.
  • the content of other metals in the alloy film is preferably 0.5 to 10 atomic% from the viewpoint of improving durability. Further, the silver content in the alloy film is preferably 90 atomic% or more from the viewpoint of the reflectance in the visible light region.
  • the film thickness of the silver film is preferably 60 to 200 nm, particularly 80 to 120 nm.
  • the wavelength is less than 60 nm, the reflectance in the visible light region decreases, and when it exceeds 200 nm, light absorption occurs due to surface irregularities. As a result, the reflectance of the visible light castle is lowered, which is not preferable.
  • the low refractive index film of the present invention preferably has a refractive index of 1.35 to L75 at a wavelength of 550 nm.
  • the low refractive index film needs to be a film having a transparent point of reflectivity, and specifically has an extinction coefficient in the visible light region (hereinafter simply referred to as an extinction coefficient) of 0.01 or less. 0.08 or less, and particularly preferably 0.005 or less.
  • the material of the low refractive index film is preferably an oxide such as an acid silicate, since it has a small variation in optical characteristics.
  • the low refractive index film is an oxide film, the content of the oxide in the oxide film includes all metal elements (including semiconductor elements in the oxide film).
  • the metal oxide film may contain other metals such as aluminum.
  • the refractive index means the real part of the complex refractive index
  • the extinction coefficient means the imaginary part of the complex refractive index in the visible light castle, each of which is a spectroscopic ellipsometer (for example, VASE: JA Woollam) Can be measured.
  • the laminate of the present invention has a high-frequency sputtering method (hereinafter also referred to as an RF sputtering method) in which the layer on the adhesion improving film side in the low refractive index film uses an oxide target. It is formed by. By using the oxide target, it is not necessary to introduce oxygen when forming the low refractive index film, so that the oxidation of the silver film can be prevented.
  • an RF sputtering method a high-frequency sputtering method in which the layer on the adhesion improving film side in the low refractive index film uses an oxide target. It is formed by.
  • the oxide target it is not necessary to introduce oxygen when forming the low refractive index film, so that the oxidation of the silver film can be prevented.
  • a laminate having a configuration similar to that of the present invention is described in JP-A-2006-010930 (hereinafter referred to as Reference 1).
  • a low refractive index film is formed by a reactive sputtering method using a metal target.
  • the adhesion improving film also has a function of preventing oxidation, but when the adhesion improving film is thin (for example, about 0.5 to 4 nm), the effect of preventing oxidation is sufficiently high. It was found that the reflectivity of the reflector was low.
  • the film thickness is large (for example, more than 4 nm), it has become a component that the reflectivity of the high reflector decreases due to the absorption of the adhesion improving film.
  • the low refractive index film by forming the low refractive index film by the RF sputtering method using an oxide target, the low refractive index film can be formed without introducing oxygen, and the adhesion improving film can be oxidized. It is no longer necessary to add a function to prevent wrinkles. Therefore, it is possible to design the film thickness of the adhesion improving film only from the viewpoint of adhesion.
  • Document 1 proposes the formation of an antioxidant layer. Has been.
  • the present invention is excellent in productivity because it is not necessary to form a new layer such as the anti-oxidation layer.
  • the adhesion improving film side layer in the low refractive index film is formed in a sputtering gas containing nitrogen gas.
  • the layer at least on the adhesion improving film side in the low refractive index film means a layer or a part of the layer closer to the adhesion improving film among the low refractive index films, and the low refractive index film is directly formed on the adhesion improving layer. In the case of forming, it means a layer in contact with the adhesion improving film in the low refractive index film or a part of the layer.
  • the addition of nitrogen may be performed over the entire layer in forming the low refractive index film, or may be performed only on a part of the layer on the adhesion improving film side.
  • a sputtering gas containing nitrogen By using a sputtering gas containing nitrogen, the film formation rate is likely to decrease. Therefore, it is preferable to add nitrogen only to the layer on the adhesion improving film side from the viewpoint of productivity.
  • the film thickness of the nitrogen added layer is preferably 1 to 5 nm, from the viewpoint of suppression of absorption of the adhesion improving film and productivity.
  • the content of nitrogen gas in the sputtering gas is preferably 2 to 20% by volume of the entire sputtering gas from the viewpoint of preventing absorption of the adhesion improving film.
  • the film thickness of the low refractive index film is preferably 25 to 60 nm, particularly 35 to 50 nm, from the viewpoint of obtaining an optimum reflectance.
  • the low refractive index film is an oxide film
  • the content of the oxide in the oxide film is 90% by mass or more with respect to all metals and semiconductor elements in the oxide film. It is preferable in that a film having a desired refractive index can be obtained.
  • the oxide film may contain other metals such as aluminum.
  • the low refractive index film may be composed of a single layer or a plurality of layers. In the case of a plurality of layers, it is preferable that the refractive index at all layer force wavelengths of 550 nm is 1.35-1.75.
  • the low refractive index film has a plurality of layers, it must be transparent, and the extinction coefficient of all the layers is 0.01 or less, preferably 0.008 or less, and particularly preferably 0.005 or less. Yes.
  • the total thickness of the plurality of layers is 25 to 60 nm, particularly 35 to 50 nm, in order to obtain an optimum reflectance.
  • the high refractive index film of the present invention preferably has a refractive index of 1.8 to 2.8 at a wavelength of 550 nm.
  • the high refractive index film needs to be a transparent film having a point of reflectivity, and specifically has an extinction coefficient of 0.01 or less, more preferably 0.008 or less, and particularly 0.005 or less. It is preferable.
  • the material of the high refractive index film may be at least one selected from the group consisting of niobium oxide, acid-zirconium, acid-tantalum, acid-hafnium, titanium oxide, and tin oxide. It is preferable in terms of reflectance.
  • niobium oxide is preferable because it has a high refractive index, a low absorptance, and a high film formation rate.
  • the material for the high refractive index film may be a complex oxide.
  • the film thickness of the high refractive index film is preferably 35 to 70 nm, particularly 45 to 65 nm from the viewpoint of obtaining an optimum reflectance.
  • the high refractive index film is a niobium oxide film
  • the content of niobium in the acid / niobium film is desirably 90% by mass or more based on the total metal elements in the acid / niobium film. This is preferable in that a refractive index film can be obtained.
  • the high refractive index film may be a single layer or a plurality of layers.
  • the refractive index at all layer force wavelengths of 550 nm is preferably 1.8 to 2.8.
  • each layer must be transparent, and the extinction coefficient of all layers is preferably 0.01 or less, more preferably 0.008 or less, and particularly preferably 0.005 or less. That's right.
  • the total film thickness of the plurality of layers is 35 to 70 nm, particularly 45 to 65 nm in that an optimum reflectance can be obtained.
  • the low refractive index film and the high refractive index film are laminated once in this order.
  • the low refractive index film and the high refractive index are not limited to once.
  • the film may be laminated a plurality of times in this order. By laminating a plurality of times, it is possible to form a laminate with further improved reflectivity. Furthermore, it is possible to form a layer for improving durability as a layer having the most substrate strength.
  • the material of the base film is at least one selected from the group consisting of oxide, oxynitride, and nitride power from the viewpoint of adhesion between the substrate and the silver film.
  • oxide oxynitride
  • nitride power from the viewpoint of adhesion between the substrate and the silver film.
  • zinc oxide, oxide It is preferable that at least one kind selected from the group power of tin, indium oxide, acid-aluminum, titanium oxide, niobium oxide, and acid-chromium.
  • the acid key since the acid key is inferior in adhesion to silver, it can be used as a base film as long as the acid key film is not in contact with the silver film.
  • the material of the base film may be a complex oxide.
  • the film thickness of the base film is preferably 1 to 20 nm, more preferably 2 to: LOnm, and particularly preferably 3 to 7 nm. If it is less than lnm, the effect of improving the adhesion is difficult to appear. If it exceeds 20 nm, the surface irregularities become large and the reflectance becomes low.
  • the base film may be a single layer or a plurality of layers. In the case of a plurality of layers, the total film thickness is preferably within the above range.
  • the zinc content in the acid-zinc film is preferably 90% by mass or more based on the total metal elements in the zinc oxide film.
  • the metal oxide zinc film may contain other metals. By containing other metals, the adhesion between the substrate and the silver film can be further improved. Examples of other metals include aluminum, gallium, tin, titanium, and silicon, and the content thereof is 2 to 10% by mass in terms of oxides. It is preferable in that it can improve.
  • an adhesion improving film is provided on the side opposite to the silver film substrate.
  • the adhesion improving film contributes to improving the moisture resistance of the laminate, and can also improve the adhesion between the low refractive index film and the silver film.
  • the adhesion improving film has an extinction coefficient of 0.1 or less, preferably 0.05 or less, particularly preferably 0.02 or less from the viewpoint of reflectance.
  • the material of the adhesion improving film is different from the material of the adjacent low refractive index film and is an oxide having an extinction coefficient of 0.1 or less from the viewpoint of adhesion between the low refractive index film and the silver film.
  • the low-refractive index film is inferior in adhesion to silver, it can be used as an adhesion-improving film if it does not contact the silver film with the silver film. Is possible.
  • the material of the adhesion improving film may be a complex oxide.
  • the film thickness of the adhesion improving film is 0.5 to 4 nm, and preferably 0.5 to 2 nm. Less than 5 nm makes it difficult to improve the adhesion. If the thickness exceeds 4 nm, the reflectivity of the stack is lowered by the absorption of the adhesion improving film.
  • the adhesion improving film may be a single layer or a multi-layer force. In the case of multiple layers, the total film thickness is preferably within the above range.
  • the adhesion improving film is an acid-zinc film
  • the zinc content in the acid-zinc film is 90% by mass or more based on the total metal elements in the acid-zinc film.
  • the zinc oxide film may contain other metals.
  • the adhesion between the low refractive index film and the silver film can be further improved.
  • Specific examples of the other metal include one or more selected from the group force of gallium, tin, silicon, and titanium, and the content of other metals is 2 to 2 in total in terms of oxides. : LO mass% is preferable in terms of stress relaxation.
  • aluminum is not preferable in that it has absorption in the visible light region.
  • the adhesion improving film is a zinc oxide film (hereinafter referred to as a GSTZO film) including one or more types in which a group force including gallium, tin, and titanium force is also selected
  • silicon may further be included. By containing silicon, the film is reduced and a film having stable optical characteristics can be formed.
  • the silicon content in the GSTZO film is preferably 0.05 to 1% by mass with respect to the total metal elements in the GSTZO film.
  • the adhesion improving film is an indium oxide film, it may further contain other metals.
  • the other metal is preferably zinc in terms of adhesion.
  • An indium oxide film containing zinc has an amorphous structure and is characterized in that a homogeneous film is easily formed over the entire surface. For this reason, when an indium oxide film containing zinc is used as an adhesion improving film, a uniform film is formed between the silver film and the low refractive index film even if the film thickness is relatively thin. I guess it will be good.
  • the film thickness of the adhesion improving film is preferably 0.5 to 4 nm from the viewpoint of reflectance.
  • the content of zinc in the indium oxide film containing zinc is 5 to 15% by mass with respect to all the metal elements in the indium oxide film containing zinc. Is preferable.
  • the laminate of the present invention has a silver film, an adhesion improving film, a low refractive index on one side of the substrate.
  • a multilayer film including a configuration of a film and a high refractive index film is formed, but these multilayer films may be provided on both sides of the substrate.
  • the configuration of the multilayer film on both sides may be the same or different.
  • the laminate of the present invention has a reflectance with respect to incident light on the film surface to the layer in contact with air of the laminate.
  • the minimum value in the entire visible light region (hereinafter referred to as “film surface reflectance”) is 93% or more, particularly 94% or more when the incident angle is in the range of 0 to 75 degrees.
  • the incident angle is 5 degrees and is 93% or more, particularly 94% or more.
  • the average value of the film surface reflectance in the visible light region is preferably 97.5% or more, particularly 98% or more when the incident angle is in the range of 0 to 75 degrees.
  • the incident angle is 97.5% or more, particularly 98% or more at 5 degrees.
  • the incident angle means an angle with respect to a line perpendicular to the film surface, and the average value of the film surface reflectance in the visible light region is the film surface reflection measured every 5 nm at a wavelength of 400 to 700 nm. This is a simple average of the rates.
  • the laminate of the present invention is also excellent in that it has a small incident angle dependency (reflectance hardly varies depending on the incident angle of light! /).
  • the laminate of the present invention can be formed by sputtering using a metal target or a metal oxide target.
  • a method for manufacturing a laminated body in the case where the laminated body has a configuration such as a base film, a silver film, an adhesion improving film, a low refractive index film, and a high refractive index film in order from the substrate will be described below.
  • a base film is formed on a substrate by a sputtering method using a metal oxide target
  • a silver film is formed on the base film by a sputtering method using a silver or silver alloy target.
  • An adhesion improving film is formed on this silver film by a sputtering method using a metal oxide target.
  • a low refractive index film is formed on this adhesion improving film and an oxide target.
  • a high-refractive-index film is formed on this low-refractive-index film by a reactive sputtering method using a metal oxide target or a metal-oxygen oxygen-deficient target.
  • the adhesion improving film of 3 it is preferable to form the adhesion improving film in an atmosphere in which an oxidizing gas such as oxygen is not present in order to prevent silver oxidation.
  • the acid in the sputtering gas The content of the chemical gas is preferably 10% by volume or less.
  • nitrogen gas is included in the sputtering gas.
  • the nitrogen content in the sputtering gas is preferably 2 to 20% by volume. Nitrogen addition may be performed over the entire layer in forming the low refractive index film, or may be performed only on a part of the layer on the adhesion improving film side.
  • the laminate 10 of the present invention has a configuration such as a base film 2, a silver film 3, an adhesion improving film 4, a low refractive index film 5, and a high refractive index film 6 in order from the substrate 1.
  • a high frequency (RF) or direct current (DC) sputtering method can be used.
  • DC sputtering includes pulsed DC sputtering.
  • the no-less DC sputtering method is effective in preventing abnormal discharge.
  • the sputtering method can be formed on a large-area substrate, and the deviation of the film surface distribution of the film thickness is small. There are few points, and it is excellent in point.
  • the laminate of the present invention has a very high reflectance, it is effective as an optical member that is a reflection member of a light source such as a display used in a flat panel display, a projection television, a mobile phone, and the like. .
  • the film thickness was formed on a separately prepared glass substrate under the same conditions as in Example 1 (only the film formation time was multiplied by 10), and the film thickness was changed to a stylus type surface. Measurement was performed using a shape measuring instrument DEKTAK3-ST (manufactured by Veeco), and the measured value force also calculated the film thickness of the underlying film. The following film thickness was also measured by the same method.
  • a DC sputtering method is used to deposit a silver alloy on the underlayer under an Ar gas atmosphere under an input power density of 1.4 WZcm 2 and a sputtering pressure of 0.3 Pa.
  • the film was formed with a film thickness of lOOnm.
  • the substrate was heated.
  • the composition of the silver alloy film was equivalent to the target.
  • an RF sputtering method was used, under an Ar gas atmosphere, at a power density of 0.5 WZcm 2 and a sputtering pressure of 0.3 Pa.
  • a gallium-doped zinc oxide film (refractive index at a wavelength of 550 nm: 1.99, extinction coefficient: 0.017) with a thickness of 2 nm was formed thereon. The substrate was not heated. The composition of the gallium-doped zinc oxide film was equivalent to the target.
  • Ar sputtering target is used to form Ar Oxidized on the low refractive index film under the conditions of mixed gas of oxygen and oxygen (oxygen gas content in sputtering gas: 10% by volume), input power density 3.3 WZcm 2 , sputtering pressure 0.3 Pa
  • An optical film (refractive index at a wavelength of 550 nm: 2.31, extinction coefficient: 0) was formed to a thickness of 57 nm. The substrate was heated.
  • the formed laminate was cut into 50 mm squares and used for samples.
  • the sample was allowed to stand for 24 hours in an atmosphere at a temperature of 80 ° C and a relative humidity of 95%, and the presence or absence of film peeling or corrosion was confirmed.
  • ⁇ in Table 2 means that corrosion was not detected without peeling, and X means that peeling or corrosion was detected on the film. O is practically preferable.
  • the formed laminate was cut into a 50 mm square and used as a sample.
  • the sample was allowed to stand for 48 hours in an atmosphere at a temperature of 200 ° C, and the presence or absence of film peeling or corrosion was confirmed.
  • Table 2 “O” means that no corrosion was detected without peeling, and “X” means that peeling or corrosion was detected on the membrane. O is practically preferable.
  • Cellophane tape CT-18 (manufactured by Chiban Co., Ltd.) was strongly adhered to the film surface of the formed laminate by hand, and the presence or absence of film peeling after peeling off vigorously was confirmed.
  • The film was not peeled off.
  • X Peeling of the film was observed. O is practically preferable.
  • the film surface reflectivity (reflectance of the silver film as viewed from the direction opposite to the substrate) of the formed laminate was measured using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.) at an incident angle of 5 degrees.
  • the minimum value and average value in the entire visible light castle were calculated.
  • the incident angle means an angle with respect to a line perpendicular to the film surface. ⁇ when the minimum reflectance is 93% or more and the average reflectance is 97.5% or more, the minimum reflectance is less than 93%, or the average reflectance is less than 97.5%
  • X X. O is practically preferable.
  • Adhesion (B) Measured according to the cross-cut method defined in JIS-K5600-5-6 (1999). 100 squares of lmm on one side were formed on the film surface, and cellophane tape CT-18 (manufactured by Ciba) was adhered to the squares, and the presence or absence of film peeling was confirmed after vigorous peeling. ⁇ : The film was not peeled off. ⁇ : Peeling of the film was observed, but it was a practically problematic force. X: Peeling of the film was observed. O and ⁇ are more preferable in practical use.
  • Example 1 using a silica target as the initial layer of the low-refractive index film, RF power was applied in an Ar gas atmosphere (that is, an atmosphere not containing nitrogen), and the input power density was 2.4 WZcm 2 , the sputtering pressure was 0.
  • a laminated body was formed by the same method and conditions as in Example 1 except that the silicon oxide film was formed to a thickness of 3 nm under the condition of 3 Pa. This laminate was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 2 a laminate was formed by the same method and conditions as in Example 2, except that the adhesion improving film was not formed. This laminate was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 2 a laminate was formed by the same method and conditions as in Example 2 except that the film thickness of the adhesion improving film was 1 nm. This laminate was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 2 a laminate was formed by the same method and conditions as in Example 2 except that the film thickness of the adhesion improving film was 5 nm. This laminate was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • RF sputtering is used to deposit gallium-doped oxide on a glass substrate under an Ar gas atmosphere with an input power density of 1.6 WZcm 2 and a sputtering pressure of 0.3 Pa.
  • a zinc film with a thickness of 6 nm was formed.
  • the heating power of the substrate was great.
  • the composition of the gallium-doped oxide-zinc film was equivalent to the target.
  • a DC sputtering method is used to deposit a silver alloy on the underlayer under an Ar gas atmosphere under an input power density of 1.4 WZcm 2 and a sputtering pressure of 0.3 Pa.
  • the film was formed with a film thickness of lOOnm.
  • the substrate was heated.
  • the composition of the silver alloy film was equivalent to the target.
  • the power density is 2 under the atmosphere of a mixed gas of Ar and oxygen (content ratio of oxygen gas in the sputtering gas: 34% by volume) by the nore DC sputtering method.
  • a silicon oxide film (refractive index at a wavelength of 550 nm: 1.46, extinction coefficient: 0) was formed to a thickness of 42 nm under the conditions of 4 WZcm 2 and a sputtering pressure of 0.3 Pa. There was no burning of the substrate.
  • Ar sputtering target is used to form Ar Oxidized on the low refractive index film under the conditions of mixed gas of oxygen and oxygen (oxygen gas content in sputtering gas: 10% by volume), input power density 3.3 WZcm 2 , sputtering pressure 0.3 Pa
  • An optical film (refractive index at a wavelength of 550 nm: 2.31, extinction coefficient: 0) was formed to a thickness of 57 nm.
  • the substrate was heated.
  • This laminate was evaluated in the same manner as in Example 1, and the results are shown in Table 2. In Example 9, the film was transparent due to the acidity of the silver alloy film.
  • the adhesion improving film is thin, and the sputter gas containing nitrogen gas is used when forming the initial layer of the low refractive index film, so that the adhesion is improved.
  • the film surface absorption is small and the film surface reflectance is excellent.
  • it has excellent durability such as moisture resistance and heat resistance due to the formation of an adhesion improving film.
  • Adhesion is also at a level where there is no practical problem in both the adhesion (A) and adhesion (B) tests.
  • Example 5 since the sputtering gas containing no nitrogen is used when forming the initial layer of the low refractive index film, the adhesion improving film is absorbed, and the film surface reflectance is inferior. Absent.
  • the laminate of Example 6 does not have an adhesion improving film, durability such as adhesion and moisture resistance is inferior.
  • the laminate of Example 8 is not preferable because the adhesion improving film has a thickness of 5 nm, and thus the adhesion performance is sufficient, but the absorption of the adhesion improving film is large and the film surface reflectance is inferior.
  • the laminate of Example 9 is not preferable because oxygen is introduced when the low refractive index film is formed, so that the silver alloy film is oxidized and becomes a transparent film, and the film surface reflectance is greatly inferior.
  • Example 10 since the adhesion improving film was formed, the acidity of the silver alloy film was suppressed to some extent, and the film was not a transparent film, but a low refractive index film was formed. Oxygen is sometimes introduced, resulting in poor film surface reflectance.
  • a zinc-doped indium oxide film was formed on a glass substrate by RF sputtering using an indium oxide target doped with zinc under an Ar gas atmosphere with an input power density of 1.6 WZcm 2 and a sputtering pressure of 0.3 Pa.
  • the film was formed with a thickness of 6 nm. Heating the substrate won.
  • the composition of the zinc-doped indium oxide film was equivalent to the target.
  • a DC sputtering method is used to deposit a silver alloy on the underlayer under an Ar gas atmosphere under an input power density of 1.4 WZcm 2 and a sputtering pressure of 0.3 Pa.
  • the film was formed with a film thickness of lOOnm.
  • the substrate was heated.
  • the composition of the silver alloy film was equivalent to the target.
  • RF sputtering is performed on the silver alloy film under an Ar gas atmosphere with an input power density of 0.5 WZcm 2 and a sputtering pressure of 0.3 Pa.
  • a zinc-doped indium oxide film (refractive index at a wavelength of 550 nm: 1.99, extinction coefficient: 0.015) was formed with a film thickness shown in Table 3. The substrate was heated with great force. The composition of the zinc-doped indium oxide film was equivalent to the target.
  • Example 12 a laminate was formed by the same method and conditions as in Example 12 except that the film thickness of the adhesion improving film was changed to 5 nm. This laminate was evaluated in the same manner as in Example 1, and the results are shown in Table 4.
  • Example 13 a silica target was used as the initial layer of the low refractive index film, and RF power was applied in an Ar gas atmosphere (that is, an atmosphere not containing nitrogen), with an input power density of 2.4 WZcm 2 and a sputtering pressure of 0.
  • Ar gas atmosphere that is, an atmosphere not containing nitrogen
  • a laminated body was formed by the same method and conditions as in Example 13 except that the silicon oxide film was formed to a thickness of 3 nm under the condition of 3 Pa. This laminate was evaluated in the same manner as in Example 1, and the results are shown in Table 4.
  • the laminate of Example 12 14 has a thin adhesion-improving film, and the sputtering of the adhesion-improving film is small because a sputter gas containing nitrogen gas is used when forming the initial layer of the low refractive index film. Excellent surface reflectivity. In addition, by forming an adhesion improving film, moisture resistance, heat resistance, etc. Excellent durability. Furthermore, since a zinc-doped indium oxide film is used as the adhesion improving film, the adhesion is particularly excellent.
  • the laminate of Example 15 is not preferable because the adhesion improving film has a thick film thickness of 5 nm, and the film surface reflectance is inferior and the absorption of the adhesion improving film is large.
  • Example 16 since the sputtering gas containing nitrogen is used when forming the initial layer of the low refractive index film, the adhesion improving film is absorbed and the film surface reflectance is inferior, which is not preferable. Industrial applicability
  • the laminate of the present invention is useful as a laminate for use in small backlight modules for liquid crystal displays such as projection televisions and mobile phones.
  • the specifications of Japanese patent application 2005-220927 filed on July 29, 2005 and Japanese patent application 2006-123827 filed on April 27, 2006, scope of patent request The entire contents of the drawings and abstract are hereby incorporated by reference as the disclosure of the specification of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 可視光域全域にわたって高い反射率を有し、耐湿性や耐塩水性等の耐久性に優れた積層体を提供する。  基板上に、銀膜、密着改善膜、低屈折率膜、高屈折率膜がこの順で積層された積層体であって、前記低屈折率膜中の少なくとも密着改善膜側の層が、酸化物ターゲットを用い、かつ窒素を含有したスパッタガスを用いた高周波スパッタリング法により形成され、前記密着改善膜の消衰係数が0.1以下で膜厚が0.5~4nmであり、前記低屈折率膜の消衰係数が0.01以下であり、前記高屈折率膜の消衰係数が0.01以下であることを特徴とする積層体。

Description

反射膜用積層体
技術分野
[0001] 本発明は、主としてプロジヱクシヨンテレビの反射部材に用いられる積層体に関する 背景技術
[0002] 従来、表示ディスプレイ等の電子機器に使用される反射鏡としてメタル膜を反射に 利用した鏡が広く用いられて ヽる。電子機器の輝度向上および省エネルギー化のた めには反射鏡の反射率を高くすることが重要である。例えば、携帯電話等に使用さ れる液晶ディスプレイでは、ノ ックライトを反射させる鏡が使用されている力 この鏡は 軽量化のために基板としてフィルムが用いられ、反射率の高 、反射鏡が求められる。 また、プロジェクシヨンテレビのような大画面のスクリーンへ画像を映し出すためには、 光学系において複数枚の反射鏡が必要であるため、反射回数が増加するにつれて 光量は低下する。その結果、最終的に得られる光量が小さくなり画面の輝度が低下 してしまうという問題があり、従来よりもさらに反射率の高い反射鏡が求められる。
[0003] 従来より、メタル膜の材料としてアルミニウムが用いられている。しかし、メタル膜の 材料としてアルミニウムを使用した場合、光の入射角によって反射率が変化し、反射 色がばらつく問題を生じる。
[0004] 上記問題点を解決するために、アルミニウムよりも可視光域の反射率が高い銀をメ タル膜の材料として使用することが行われている。しかし、銀はアルミニウムと比較し て可視光域での反射率は高いものの、耐湿性ゃ耐塩水性等の耐久性が低ぐまた 膜の強度も弱ぐ基板との密着性が悪 、ため傷つきやす!、と 、う問題があった。
[0005] メタル膜として Ag膜を用い、高反射率を有しかつ耐久性に優れた鏡として、ガラス 基板上に Al O膜、 Ag膜、 Al O膜、 TiO膜と順に積層した積層体が開示されてい
2 3 2 3 2
る(例えば、特許文献 1参照。 ) oしかし、この積層体は、 Ag膜の基板と反対側の A1
2
O膜を製造する場合に酸素を導入しているため銀が酸化されやすぐ反射率が低く
3
なるという問題がある。 [0006] また、 Ag膜と基板との密着性を改善するために、 Agに Ce、 Ndと 、つた金属を混合 させた反射膜も開示されている (例えば、特許文献 2参照。 )0しかし、この反射膜は 銀の単膜であるため、 Ag膜と基板との密着性について記載されているのみであり、 A g膜と他の層との密着性にっ 、ては全く評価されて 、な 、。
[0007] また、 Ag膜の上に Al O膜、 ZrO膜、 SiO膜を形成した反射鏡が開示されている
2 3 2 2
(例えば、特許文献 3参照。 ) 0ここで、 Al O膜は Ag膜の耐久性を上げるための保
2 3
護膜であり、 ZrO膜は反射効率向上のための膜であり、 SiO膜は保護膜である旨が
2 2
記載されている。また、基板と Ag膜との密着性を向上させるために、基板と Ag膜との 間に酸化クロム力 なる膜を形成することが開示されている (例えば、特許文献 4参照 。 )。また、 Ag膜の上に Al O膜を形成し、さらに耐久性を向上させるために、酸ィ匕ジ
2 3
ルコ-ゥム、二酸化ケイ素、酸化チタン、酸化ハフニウム、酸化スズ、酸化アンチモン
、酸ィ匕タングステン等の層を設けることが記載されている(例えば、特許文献 5参照。 ) 。また、耐久性向上のために、基板と Ag膜との間に酸ィ匕ケィ素カもなる下地膜を設 けることが開示されている (例えば、特許文献 6参照。 )0しかし、これらの反射膜は可 視光城の反射率が低!、と 、う点で問題がある。
[0008] 特許文献 1 :特開 2003— 4919号公報
特許文献 2:特開 2002— 226927号公報
特許文献 3:特開平 5 - 127004号公報
特許文献 4:特開 2000 -81505号公報
特許文献 5:特開 2000— 241612号公報
特許文献 6:特開 2001 - 74922号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、可視光域全域にわたって高 、反射率を有し、耐湿性ゃ耐塩水性等の 耐久性や密着性に優れた積層体を提供することを目的とする。
課題を解決するための手段
[0010] 本発明は以下に示す構成を有している。
(1)基板上に、銀膜、密着改善膜、低屈折率膜、高屈折率膜がこの順で積層された 積層体であって、前記低屈折率膜中の少なくとも密着改善膜側の層が、酸化物ター ゲットを用い、かつ窒素を含有したスパッタガスを用いた高周波スパッタリング法によ り形成され、前記密着改善膜の消衰係数が 0. 1以下で膜厚が 0. 5〜4nmであり、前 記低屈折率膜の消衰係数が 0. 01以下であり、前記高屈折率膜の消衰係数が 0. 0 1以下であることを特徴とする積層体。
[0011] (2)基板上に、銀膜、密着改善膜、低屈折率膜、高屈折率膜をこの順で積層する積 層体の製造方法であって、前記低屈折率膜中の少なくとも密着改善膜側の層が、ス ノッタガス中に酸素を含まないようなスパッタリング法により形成され、前記密着改善 膜の消衰係数が 0. 1以下で膜厚が 0. 5〜4nmであり、前記低屈折率膜の消衰係数 が 0. 01以下であり、前記高屈折率膜の消衰係数が 0. 01以下であることを特徴とす る積層体の製造方法。
[0012] なお、膜厚とは、本発明においては幾何学的膜厚を意味する。
発明の効果
[0013] 本発明の積層体は、メタル膜の材料として銀を用いて 、るので可視光域の反射率 を高めることができ、さらに耐久性にも優れるのでディスプレイ用の光学部品として有 用であり、ディスプレイの輝度向上および光学設計の容易ィ匕にも寄与する。また、本 発明の積層体は、酸ィ匕防止のための余分な層の形成が不要であり生産性に優れる 。また、高反射率を有し、かつ耐湿性等の耐久性に優れるため、特に反射の回数が 多いリアプロジェクシヨンテレビの光学部品として有用である。 図面の簡単な説明
[0014] [図 1]本発明の積層体の断面図である。
符号の説明
[0015] 1 :基板
2 :下地膜
3 :銀膜
4 :密着改善膜
5 :低屈折率膜
6 :高屈折率膜 10 :積層体
発明を実施するための最良の形態
[0016] 本発明の積層体において、基板の種類は、特に制限されず、例えば、 1)ソーダライ ムガラス等のガラス、 2) PET (ポリエチレンテレフタレート)榭脂、アクリル榭脂、ポリ力 ーボネート等のフィルムなどが挙げられる。ガラスを用いることが大面積であっても反 りや曲がりが生じにくい点で好ましぐフィルムを用いることが軽量ィ匕できる点で好まし い。基板の厚さは、基板がガラスの場合は 0. 4〜8. Ommであることが積層体の強度 や使いやすさの点で好ましい。基板がフィルムの場合は 30〜500 μ mであることが 軽量化できる点で好まし ヽ。
[0017] 基板の形状は、平面鏡、凹面鏡、凸面鏡、台形鏡などの各種の反射用光学部材の 基体として求められる形状であれば特に限定されない。本発明の積層体をスパッタリ ング法で形成する場合、スパッタリング法で形成された膜は、蒸着法等で形成された 膜よりも膜の均一性に優れるため、大きい基板に膜を形成することが可能である。例 えば、基板の面積が 0. l〜5m2であるような大きい面積を有する基板であっても成膜 することが可能であるため、特に大面積のリアプロジェクシヨンテレビ用の光学部品と して有用である。
[0018] 光を有効に反射させる銀膜は、銀を主成分とする膜であり、銀を 90原子%以上含 むことが可視光城の反射率の点で好ま 、。銀膜を用いることで可視光城の反射率 を高め、入射角による反射率の依存性を低減させることができる。銀膜は、銅等の不 純物を含んでいてもよいが、その含有量は 10原子%以下であることが好ましい。なお 、本発明において「可視光域」とは、 400〜700nmの波長域を意味する。
[0019] また、銀膜は、銀とその他の金属との合金膜であってもよ!/、。その他の金属としては 、具体的には Auが挙げられる。 Auとの合金膜にすることにより銀膜の耐久性が向上 するため好ましい。合金膜中のその他の金属の含有量は、 0. 5〜10原子%であるこ とが耐久性向上の点で好ましい。また、合金膜中における銀の含有量は、 90原子% 以上であることが可視光域の反射率の点で好ましい。
[0020] 銀膜の膜厚は、 60〜200nm、特に 80〜120nmであることが好ましい。 60nm未 満では可視光域の反射率が低下し、 200nm超では表面の凹凸により光吸収が生じ 、結果的に可視光城の反射率が低下するため好ましくない。
[0021] 本発明の低屈折率膜は、波長 550nmにおける屈折率が 1. 35〜: L 75であること が好ましい。また、低屈折率膜は、反射率の点力も透明な膜である必要があり、具体 的には可視光域の消衰係数 (以下、単に消衰係数という。)が 0. 01以下であり、 0. 0 08以下、特に 0. 005以下であることが好ましい。低屈折率膜の材料は具体的には、 酸ィ匕ケィ素等の酸ィ匕物であることが光学的特性の変動が少な 、点で好ま 、。また、 低屈折率膜が酸ィ匕ケィ素膜であるとき、酸化ケィ素膜のケィ素の含有量は、酸ィ匕ケィ 素膜中の全金属元素(半導体元素を含む。以下も同様。)に対して 90質量%以上で あることが所望の屈折率を有する膜を得ることができる点で好まし、。酸化ケィ素膜 中にアルミニウム等の他の金属を含んでいてもよい。なお、屈折率とは複素屈折率の 実数部を意味し、消衰係数とは可視光城における複素屈折率の虚数部を意味し、そ れぞれ分光エリプソメーター(例えば、 VASE :J. A. Woollam社製)により測定でき る。
[0022] 本発明の積層体は、前記低屈折率膜中の少なくとも密着改善膜側の層が酸ィ匕物タ 一ゲットを用いた高周波スパッタリング法(以下、 RFスパッタリング法ということもある。 )により形成される。酸化物ターゲットを用いることにより、低屈折率膜の形成時に酸 素を導入する必要がなくなるため、銀膜の酸ィ匕を防止できる。
[0023] なお、本発明と似通った構成を有する積層体が特開 2006— 010930号 (以下、文 献 1という。 )に記載されている。文献 1においては、低屈折率膜を金属ターゲットによ る反応性スパッタリング法により形成することとしている。この場合、密着改善膜は酸 化防止の機能をも有しているが、密着改善膜の膜厚が薄い場合 (例えば 0. 5〜4nm 程度の場合)、酸化防止の効果は充分でなぐ高反射鏡の反射率が低くなることが分 かった。また、膜厚が厚い場合 (例えば 4nm超)、密着改善膜の吸収により、高反射 鏡の反射率が低くなることが分力つた。つまり、酸ィ匕物ターゲットを用いた RFスパッタ リング法により低屈折率膜の形成を行うことで、低屈折率膜の形成を、酸素を導入せ ずに行うことができ、密着改善膜に酸ィ匕防止の機能を付与する必要がなくなる。従つ て、密着性の観点のみから密着改善膜の膜厚を設計することが可能となる。
[0024] また、上記反射率の低下を防止するため、文献 1には、酸化防止層の形成が提案 されている。しかし、本発明においては、そのような酸ィ匕防止層といった新たな層を形 成する必要がなぐ生産性の点で優れている。
[0025] 本発明においては、低屈折率膜中の少なくとも密着改善膜側の層を、窒素ガスを 含むスパッタガス中で形成する。低屈折率膜中の少なくとも密着改善膜側の層とは、 低屈折率膜のうち密着改善膜に近い方の層または層の一部を意味し、密着改善層 上に直接低屈折率膜を形成する場合は、低屈折率膜中の密着改善膜と接する層ま たは層の一部を意味する。
[0026] 酸ィ匕物ターゲットを用いた高周波スパッタリング法により低屈折率膜の形成を行うと 、微少ながらも密着改善膜に吸収が生じ、積層体の反射率が低くなる傾向にある。一 方、低屈折率膜の形成時に、少量の窒素を含むガスをスパッタガスとして用いること により、密着改善膜の吸収化が抑制され、高反射鏡の反射率の低下を防止できる。 この密着改善膜の吸収化が抑制される理由は、現時点ではよく分力つていない。低 屈折率膜の形成を、酸ィ匕物ターゲットを用いた RFスパッタリング法で行うと、密着改 善膜に何らかの膜質の変質が起きる可能性がある力 スパッタガス中に窒素を含有さ せることで、この膜質の変質が抑えられるために、密着改善膜の吸収化が抑制される と推測している。
[0027] 窒素の添カ卩は、低屈折率膜の形成において、全体の層に渡って行ってもよいし、 密着改善膜側の一部の層にのみに行ってもょ ヽ。窒素を含むスパッタガスを用いるこ とにより、成膜速度の低下が生じやすいので、密着改善膜側の層のみに窒素の添加 を行うことが生産性の観点力 好ましい。密着改善膜側の層に窒素の添加を行う場 合、窒素添加の層の膜厚は l〜5nmとすることが、密着改善膜の吸収化抑制や生産 性の観点力 好ましい。スパッタガス中の窒素ガスの含有率は、スパッタガス全体の 2 〜20体積%であることが密着改善膜の吸収化防止の点で好ましい。
[0028] 低屈折率膜の膜厚は、 25〜60nm、特に 35〜50nmであることが最適な反射率が 得られる点で好ましい。また、低屈折率膜が酸ィ匕ケィ素膜であるとき、酸化ケィ素膜 のケィ素の含有量は、酸ィ匕ケィ素膜中の全金属および半導体元素に対して 90質量 %以上であることが所望の屈折率を有する膜を得ることができる点で好ま 、。酸ィ匕 ケィ素膜中にアルミニウム等の他の金属を含んで 、てもよ 、。 [0029] 前記低屈折率膜は単層でもよぐ複数層からなっていてもよい。複数層からなる場 合は、すべての層力 波長 550nmにおける屈折率が 1. 35-1. 75であることが好ま しい。低屈折率膜は複数層であってもそれぞれ透明である必要があり、すべての層 の消衰係数が 0. 01以下であり、 0. 008以下、特に 0. 005以下であることが好まし い。また、複数層の膜厚の合計が、 25〜60nm、特に 35〜50nmであることが最適 な反射率が得られる点で好まし ヽ。
[0030] 本発明の高屈折率膜は、波長 550nmにおける屈折率が 1. 8〜2. 8であることが 好ましい。また、高屈折率膜は、反射率の点力 透明な膜である必要があり、具体的 には消衰係数が 0. 01以下であり、さらに 0. 008以下、特に 0. 005以下であることが 好ましい。高屈折率膜の材料は、具体的には、酸化ニオブ、酸ィ匕ジルコニウム、酸ィ匕 タンタル、酸ィ匕ハフニウム、酸化チタンおよび酸化スズからなる群から選ばれる 1種以 上であることが反射率の点で好ましい。特に、酸ィ匕ニオブであることが、屈折率が高く 、吸収率が低ぐかつ成膜速度が速い点で好ましい。また、高屈折率膜の材料は、複 合酸化物であってもよい。高屈折率膜の膜厚は、 35〜70nm、特に 45〜65nmであ ることが最適な反射率が得られる点で好ま ヽ。高屈折率膜が酸化ニオブ膜であると き、酸ィ匕ニオブ膜中のニオブの含有量は、酸ィ匕ニオブ膜中の全金属元素に対して 9 0質量%以上であることが所望の屈折率膜を得ることができる点で好ましい。
[0031] 前記高屈折率膜は単層でもよぐ複数層からなっていてもよい。複数層からなる場 合は、すべての層力 波長 550nmにおける屈折率が 1. 8〜2. 8であることが好まし い。高屈折率膜は複数層であってもそれぞれ透明である必要があり、すべての層の 消衰係数が 0. 01以下であり、さらに 0. 008以下、特に 0. 005以下であることが好ま しい。また、複数層の膜厚の合計が、 35〜70nm、特に 45〜65nmであることが最適 な反射率が得られる点で好まし ヽ。
[0032] 本発明にお ヽては、低屈折率膜と高屈折率膜とをこの順で 1回積層した例を説明し たが、 1回のみならず、低屈折率膜と高屈折率膜とをこの順で複数回積層してもよい 。複数回積層することにより、さらに反射率を向上させた積層体を形成することができ る。さらに基板力も最も離れた層として、耐久性を向上させるための層を形成させるこ とも可能である。 [0033] 本発明の積層体は、銀膜の基板側に下地膜を形成することが好ましい。下地膜を 形成することにより、銀膜と基板との密着性を高めることが可能となり、耐久性の優れ る積層体を得ることができる。下地膜の材料は、基板と銀膜との密着性の点から、酸 化物、酸窒化物および窒化物力 なる群力 選ばれる 1種以上であることが好ましぐ 具体的には酸化亜鉛、酸化スズ、酸化インジウム、酸ィ匕アルミニウム、酸化チタン、酸 化ニオブおよび酸ィ匕クロム力もなる群力も選ばれる 1種以上であることが好ま 、。ま た、酸ィ匕ケィ素は銀との密着性が劣るため、酸ィ匕ケィ素膜と銀膜とは接触しないよう な構成であれば下地膜として使用することが可能である。また、下地膜の材料は、複 合酸化物であってもよい。下地膜の膜厚は、 l〜20nm、さらに 2〜: LOnm、特に 3〜 7nmであることが好ましい。 lnm未満では密着性向上の効果が現われにくぐ 20nm 超では表面の凹凸が大きくなり反射率が低くなる。また、前記下地膜は単層でもよぐ 複数層からなっていてもよい。複数層である場合は、膜厚の合計が上記範囲であるこ とが好ましい。
[0034] 下地膜が酸ィ匕亜鉛膜である場合、酸ィ匕亜鉛膜中の亜鉛の含有量は、酸化亜鉛膜 中の全金属元素に対して 90質量%以上であることが好ましい。酸ィ匕亜鉛膜中に他の 金属を含んでいてもよい。他の金属を含有することでさらに基板と銀膜との密着性を 改善できる。他の金属としては、アルミニウム、ガリウム、スズ、チタン、シリコン等が挙 げられ、その含有量は、酸ィ匕物換算で 2〜10質量%であることが基板と銀膜との密 着性を改善できる点で好まし ヽ。
[0035] 本発明の積層体は、銀膜の基板と反対側に密着改善膜を設ける。密着改善膜によ り、積層体の耐湿性の向上に寄与するとともに、低屈折率膜と銀膜との密着性をも向 上させることができる。密着改善膜は、反射率の点から、消衰係数が 0. 1以下であり 、好ましくは 0. 05以下、特に好ましくは 0. 02以下である。密着改善膜の材料は、隣 接する低屈折率膜の材料とは異なる材料であって、低屈折率膜と銀膜との密着性の 点から消衰係数が 0. 1以下の酸化物であり、具体的には、酸化亜鉛、酸化スズ、酸 ィ匕インジウム、酸ィ匕アルミニウムおよび酸ィ匕チタン力もなる群力も選ばれる 1種以上で あることが好ましい。また、低屈折率膜である酸ィ匕ケィ素は銀との密着性が劣るため、 酸ィ匕ケィ素膜と銀膜とは接触しないような構成であれば密着改善膜として使用するこ とが可能である。また、密着改善膜の材料は、複合酸ィ匕物であってもよい。密着改善 膜の膜厚は、 0. 5〜4nmであり、特に 0. 5〜2nmであることが好ましい。 0. 5nm未 満では密着性向上の効果が現われにくぐ 4nm超では密着改善膜の吸収により、積 層体の反射率が低くなるため好ましくない。前記密着改善膜は単層でもよぐ複数層 力もなつていてもよい。複数層である場合は、膜厚の合計が上記範囲であることが好 ましい。
[0036] 密着改善膜が酸ィ匕亜鉛膜である場合、酸ィ匕亜鉛膜中の亜鉛の含有量は、酸ィ匕亜 鉛膜中の全金属元素に対して 90質量%以上であることが好ましい。酸化亜鉛膜中 に他の金属を含んでいてもよい。他の金属を含有することでさらに低屈折率膜と銀膜 との密着性を改善できる。他の金属としては、具体的には、ガリウム、スズ、シリコンお よびチタン力 なる群力 選ばれる 1種以上が挙げられ、他の金属の含有量は、酸ィ匕 物換算で合計で 2〜: LO質量%であることが応力緩和の点で好ましい。なお、他の金 属として、アルミニウムは、可視光域での吸収がある点で好ましくない。
[0037] 密着改善膜がガリウム、スズおよびチタン力もなる群力も選ばれる 1種以上を含む酸 化亜鉛膜 (以下、 GSTZO膜という。)である場合、さらにシリコンを含んでいてもよい 。シリコンを含有させることで膜が還元されに《なり、安定的な光学特性を有する膜 を形成できる。 GSTZO膜中のシリコンの含有量は、 GSTZO膜中の全金属元素に 対して 0. 05〜1質量%であることが好ましい。
[0038] 密着改善膜が酸化インジウム膜である場合、さらに他の金属を含んでもよい。前記 他の金属は亜鉛であることが密着性の点で好ま ヽ。亜鉛を含む酸化インジウム膜 は、アモルファス構造を示し、全面に渡って均質な膜が形成されやすいという特徴が ある。そのため、亜鉛を含む酸化インジウム膜を密着改善膜に用いた場合、比較的 膜厚が薄くても均質な膜が銀膜と低屈折率膜との間に形成されるため、密着性がさら に良好となると推測している。この場合、密着改善膜の膜厚は、 0. 5〜4nmであるこ とが反射率の点で好ましい。亜鉛を含む酸化インジウム膜中の亜鉛の含有量は、亜 鉛を含む酸化インジウム膜中の全金属元素に対して 5〜 15質量%であることが、密 着性および反射率を良好にできる点で好ましい。
[0039] 本発明の積層体は、前述したとおり、基板の片面に、銀膜、密着改善膜、低屈折率 膜、高屈折率膜の構成を含む多層膜を形成しているが、これらの多層膜を基板の両 面に設けてもよい。また、両面に有する多層膜の構成は、同じであってもよぐ異なつ ていてもよい。
[0040] 本発明の積層体は、積層体の空気に接する層への膜面の入射光に対する反射率
(以下、膜面反射率という。)の可視光城全域における最低値が、入射角が 0〜75度 の範囲で 93%以上、特に 94%以上であることが好ましい。特に、入射角が 5度で 93 %以上、特に 94%以上であることが好ましい。また、可視光域の膜面反射率の平均 値力 入射角が 0〜75度の範囲で 97. 5%以上、特に 98%以上であることが好まし い。特に、入射角が 5度で 97. 5%以上、特に 98%以上であることが好ましい。本発 明の積層体は、膜面反射率が上記のように高い値となるため、プロジェクシヨンテレビ などの電子機器において反射を繰り返しても、輝度を下げることなく画像を映し出す ことが可能となる。なお、入射角とは、膜面に対して垂直な線に対する角度を意味し、 可視光域の膜面反射率の平均値とは、波長 400〜700nmにおいて、 5nm毎に測 定した膜面反射率を単純平均した値である。
[0041] また、本発明の積層体は、入射角依存性が小さい (光の入射角によって反射率が 変動しにく!/、)点でも優れて 、る。
[0042] 本発明の積層体は、金属ターゲットや金属酸ィ匕物ターゲットを用いてスパッタリング 法により形成することができる。積層体が、基板から順に、下地膜、銀膜、密着改善 膜、低屈折率膜、高屈折率膜のような構成を有する場合の積層体の製造方法を下 記に説明する。まず、基板上に、 1)下地膜を、金属酸ィ匕物ターゲットを用いてスパッ タリング法により形成し、 2)この下地膜の上に銀膜を銀または銀合金のターゲットを 用いてスパッタリング法により形成し、 3)この銀膜の上に密着改善膜を、金属酸化物 ターゲットを用いてスパッタリング法により形成し、 4)この密着改善膜の上に低屈折率 膜を、酸ィ匕物ターゲットを用いて高周波スパッタリング法により形成し、 5)この低屈折 率膜の上に高屈折率膜を金属酸ィヒ物ターゲットまたは金属酸ィヒ物の酸素欠損ター ゲットを用いて反応性スパッタリング法により形成する。 3)の密着改善膜を形成する 場合、銀の酸化を防止するため、酸素等の酸化性ガスが存在しない雰囲気で密着 改善膜を形成することが好ましい。密着改善膜を形成する場合、スパッタガス中の酸 化性ガスの含有量は、 10体積%以下であることが好ましい。また、 4)の低屈折率膜 を形成する場合、スパッタガス中に窒素ガスを含む。スパッタガス中の窒素の含有量 は、 2〜20体積%であることが好ましい。窒素の添カ卩は、低屈折率膜の形成におい て、全体の層に渡って行ってもよいし、密着改善膜側の一部の層にのみに行ってもよ い。
[0043] 本発明の積層体 10は、図 1に示すとおり、基板 1から順に、下地膜 2、銀膜 3、密着 改善膜 4、低屈折率膜 5、高屈折率膜 6のような構成を有する。
[0044] スパッタリング法としては、高周波 (RF)または直流(DC)スパッタリング法を用いる ことができる。 DCスパッタリング法には、パルス DCスパッタリング法を含む。ノ レス D Cスパッタリング法は異常放電の防止の点で有効である。また、蒸着法と比較して、ス ノ ッタリング法は大面積の基板に成膜でき、かつ膜厚の膜面分布の偏差が小さい点 で、反射を繰り返しても面内の光度分布の変動が少な 、点で優れて 、る。
[0045] 本発明の積層体は、非常に高 ヽ反射率を有するため、フラットパネルディスプレイ、 プロジェクシヨンテレビ、携帯電話等に用いられる表示ディスプレイ等の光源の反射 部材である光学部材として有効である。
実施例
[0046] 以下に実施例を示すが、これに限定されるものではない。
[0047] (例 1〜4)
厚さ 1. 1mmのソーダライムガラス基板を洗浄後、ノ ツチ式のスパッタ装置にガラス 基板を設置し、ターゲットとしてガリウムを添加した酸ィ匕亜鉛ターゲット(酸化ガリウム の含有率 5. 7質量%、酸化亜鉛の含有率 94. 3質量%)、 Auを添加した銀合金ター ゲッ HAu含有率 1原子%、銀の含有率 99原子%)、シリカターゲット(SiO含有率 9
2
9. 9原子%)、酸素欠損型酸化ニオブターゲット (Nb O (X=0〜1) )をそれぞれ
2 5-x
基板の対向位置に設置し、真空槽内を 8 X 10_4Paまで排気した。そして、下記の A) 〜E)の膜を順に形成することにより積層体を得た。
[0048] A) · (下地膜 (酸化亜鉛膜)の形成)
ガリウムを添カ卩した酸ィ匕亜鉛ターゲットを用いて、 RFスパッタリング法により、 Arガス 雰囲気下、投入電力密度 1. 6WZcm2、スパッタ圧力 0. 3Paの条件で、ガラス基板 上にガリウムドープ酸ィ匕亜鉛膜を 6nmの膜厚で形成した。基板の加熱はしな力 た 。ガリウムドープ酸ィ匕亜鉛膜の組成はターゲットと同等であった。
[0049] なお、膜厚は、別途準備したガラス基板上に、例 1と同様の条件 (成膜時間のみを 1 0倍にした)で下地膜を形成し、その膜厚を触針式表面形状測定器 DEKTAK3-ST (Veeco社製)を用いて測定し、その測定値力も下地膜の膜厚を算出した。以下の膜 厚も同様の方法で測定した。
[0050] B) · (銀合金膜の形成)
残存ガスを排気後、 Auを添加した銀合金ターゲットを用いて、 DCスパッタリング法 により、 Arガス雰囲気下、投入電力密度 1. 4WZcm2、スパッタ圧力 0. 3Paの条件 で、下地膜上に銀合金膜を lOOnmの膜厚で形成した。基板の加熱はしなカゝつた。 銀合金膜の組成はターゲットと同等であった。
[0051] C) · (密着改善膜 (酸化亜鉛膜)の形成)
残存ガスを排気後、ガリウムを添加した酸ィ匕亜鉛ターゲットを用いて、 RFスパッタリ ング法により、 Arガス雰囲気下、投入電力密度 0. 5WZcm2、スパッタ圧力 0. 3Pa の条件で、銀合金膜上にガリウムドープ酸ィ匕亜鉛膜 (波長 550nmにおける屈折率: 1. 99、消衰係数: 0. 017)を 2nmの膜厚で形成した。基板の加熱はしなかった。ガ リウムドープ酸ィ匕亜鉛膜の組成はターゲットと同等であった。
[0052] D) · (低屈折率膜 (酸ィ匕ケィ素膜)の形成)
残存ガスを排気後、シリカターゲットを用いて、 RFスパッタリング法により、表 1に記 載の体積割合の Arと窒素との混合ガス (酸素を含有せず)を用い、表 1に記載の投 入電力密度、スパッタ圧力 0. 3Paの条件で、密着改善膜上に低屈折率膜の初期層 として、酸ィ匕ケィ素膜を 3nmの膜厚で形成した。基板の加熱はしな力つた。続いて、 残存ガスを排気後、シリカターゲットを用いて、 RFスパッタリング法により、 Arガス (酸 素を含有せず)雰囲気下、投入電力密度 2. 4WZcm2、スパッタ圧力 0. 3Paの条件 で、酸ィ匕ケィ素膜 (波長 550nmにおける屈折率: 1. 47、消衰係数: 0)を 41nmの膜 厚で形成した。基板の加熱はしなカゝつた。
[0053] E) · (高屈折率膜 (酸ィ匕ニオブ膜)の形成)
残存ガスを排気後、酸ィ匕ニオブターゲットを用いて、 DCスパッタリング法により、 Ar と酸素との混合ガス (スパッタガス中の酸素ガスの含有率: 10体積%)雰囲気下、投 入電力密度 3. 3WZcm2、スパッタ圧力 0. 3Paの条件で、低屈折率膜上に酸化- ォブ膜 (波長 550nmにおける屈折率: 2. 31、消衰係数: 0)を 57nmの膜厚で形成し た。基板の加熱はしな力つた。
形成された積層体の耐久性と反射率を(1)〜 (4)の方法で評価し、その結果を表 2 に示した。
[0054] (1)高温高湿試験
形成した積層体を 50mm角に切り出しサンプルに供した。温度 80°C、相対湿度 95 %の雰囲気中にサンプルを 24時間放置し、放置後の膜剥離や腐食の有無を確認し た。表 2中の〇は、膜の剥離もなぐ腐食の検出も見られな力つた、 Xは、膜に剥離 や腐食の検出が見られた、を意味する。〇が実用上好ましい。
[0055] (2)高温試験
形成した積層体を 50mm角に切り出しサンプルとして供した。温度 200°Cの雰囲気 中にサンプルを 48時間放置し、放置後の膜剥離や腐食の有無を確認した。表 2中の 〇は、膜の剥離もなぐ腐食の検出も見られな力つた、 Xは、膜に剥離や腐食の検出 が見られた、を意味する。〇が実用上好ましい。
[0056] (3)密着性 (A)
形成した積層体の膜面に、セロハンテープ CT— 18 (-チバン社製)を手の力で強 く貼り付け、勢い良く剥がした後の膜剥離の有無を確認した。〇:膜の剥離がなかつ た。 X:膜の剥離が見られた。〇が実用上好ましい。
[0057] (4)膜面反射率
形成した積層体の膜面反射率 (銀膜における基板と反対方向から見た場合の反射 率)を、入射角 5度において、分光光度計 U - 4000 (日立製作所製)を用 、て測定し 、可視光城全域における最低値および平均値を算出した。なお、入射角とは、膜面 に対して垂直な線に対する角度を意味する。反射率の最低値が 93%以上、かつ反 射率の平均値が 97. 5%以上のときを〇、反射率の最低値が 93%未満、または反射 率の平均値が 97. 5%未満のときを Xとした。〇が実用上好ましい。
[0058] (5)密着性 (B) JIS—K5600— 5— 6 (1999年)で定義されるクロスカット法に準じて測定した。一 辺が lmmの升目を膜面に 100個形成し、升目にセロハンテープ CT— 18 (-チバン 製)を付着し、勢い良く剥がした後の膜剥離の有無を確認した。〇:膜の剥離がなか つた。△:膜の剥離が見られたが実用上問題な力つた。 X:膜の剥離が見られた。〇 および△が実用上好ましぐ〇がさらに好ましい。
[0059] (例 5) (比較例)
例 1において、低屈折率膜の初期層として、シリカターゲットを用いて、 RFスパッタリ ング法により、 Arガス雰囲気(つまり、窒素を含まない雰囲気)下、投入電力密度 2. 4WZcm2、スパッタ圧力 0. 3Paの条件で、酸化ケィ素膜を 3nmの膜厚で形成した 以外は、例 1と同様な方法と条件により、積層体を形成した。この積層体について例 1 と同様の方法で評価し、その結果を表 2に示した。
[0060] (例 6) (比較例)
例 2において、密着改善膜を形成しな力つた以外は、例 2と同様な方法と条件により 、積層体を形成した。この積層体について例 1と同様の方法で評価し、その結果を表 2に示した。
[0061] (例 7)
例 2において、密着改善膜の膜厚を lnmとした以外は、例 2と同様な方法と条件に より、積層体を形成した。この積層体について例 1と同様の方法で評価し、その結果 を表 2に示した。
[0062] (例 8) (比較例)
例 2において、密着改善膜の膜厚を 5nmとした以外は、例 2と同様な方法と条件に より、積層体を形成した。この積層体について例 1と同様の方法で評価し、その結果 を表 2に示した。
[0063] (例 9〜 11) (比較例)
厚さ 1. lmmのソーダライムガラス基板を洗浄後、ノ ツチ式のスパッタ装置にガラス 基板を設置し、ターゲットとしてガリウムを添加した酸ィ匕亜鉛ターゲット(酸化ガリウム の含有率 5. 7質量%、酸化亜鉛の含有率 94. 3質量%)、 Auを添加した銀合金ター ゲッ HAu含有率 1原子%、銀の含有率 99原子%)、金属シリコンターゲット(Si含有 率 99. 9原子%)、酸素欠損型酸ィ匕ニオブターゲット (Nb O (X=0〜1) )をそれ
2 5-x
ぞれ基板の対向位置に設置し、真空槽内を 8 X 10_4Paまで排気した。そして、下記 の A)〜E)の膜を順に形成することにより積層体を得た。
[0064] A) (下地膜 (酸化亜鉛膜)の形成)
ガリウムを添カ卩した酸ィ匕亜鉛ターゲットを用いて、 RFスパッタリング法により、 Arガス 雰囲気下、投入電力密度 1. 6WZcm2、スパッタ圧力 0. 3Paの条件で、ガラス基板 上にガリウムドープ酸ィ匕亜鉛膜を 6nmの膜厚で形成した。基板の加熱はしな力 た 。ガリウムドープ酸ィ匕亜鉛膜の組成はターゲットと同等であった。
[0065] B) (銀合金膜の形成)
残存ガスを排気後、 Auを添加した銀合金ターゲットを用いて、 DCスパッタリング法 により、 Arガス雰囲気下、投入電力密度 1. 4WZcm2、スパッタ圧力 0. 3Paの条件 で、下地膜上に銀合金膜を lOOnmの膜厚で形成した。基板の加熱はしなカゝつた。 銀合金膜の組成はターゲットと同等であった。
[0066] C) (密着改善膜 (酸化亜鉛膜)の形成)
残存ガスを排気後、ガリウムを添加した酸ィ匕亜鉛ターゲットを用いて、 RFスパッタリ ング法により、 Arガス雰囲気下、投入電力密度 0. 5WZcm2、スパッタ圧力 0. 3Pa の条件で、銀合金膜上にガリウムドープ酸ィ匕亜鉛膜 (波長 550nmにおける屈折率: 1. 99、消衰係数 : 0. 017)を表 1記載の膜厚で形成した (例 9は密着改善膜なし)。 基板の加熱はしな力つた。ガリウムドープ酸ィ匕亜鉛膜の組成はターゲットと同等であ つた o
[0067] D) (低屈折率膜 (酸化ケィ素膜)の形成)
残存ガスを排気後、金属シリコンターゲットを用いて、ノ レス DCスパッタリング法に より、 Arと酸素との混合ガス (スパッタガス中の酸素ガスの含有率: 34体積%)雰囲気 下、投入電力密度 2. 4WZcm2、スパッタ圧力 0. 3Paの条件で、酸化ケィ素膜 (波 長 550nmにおける屈折率: 1. 46、消衰係数: 0)を 42nmの膜厚で形成した。基板 のカ卩熱はしなかった。
[0068] E) (高屈折率膜 (酸化ニオブ膜)の形成)
残存ガスを排気後、酸ィ匕ニオブターゲットを用いて、 DCスパッタリング法により、 Ar と酸素との混合ガス (スパッタガス中の酸素ガスの含有率: 10体積%)雰囲気下、投 入電力密度 3. 3WZcm2、スパッタ圧力 0. 3Paの条件で、低屈折率膜上に酸化- ォブ膜 (波長 550nmにおける屈折率: 2. 31、消衰係数: 0)を 57nmの膜厚で形成し た。基板の加熱はしな力つた。この積層体について、例 1と同様の方法で評価し、そ の結果を表 2に示した。なお、例 9は銀合金膜の酸ィ匕により透明な膜となっていた。
[0069] [表 1]
Figure imgf000018_0001
[0070] [表 2] 例 tun. 密着性 膜面反 密着性
湿試験 験 (A) 射率 (B)
(1) (2) (3) (4) (5)
1 〇 〇 〇 〇 Δ
2 O o 〇 〇 Δ
3 O 〇 〇 〇 △
4 〇 〇 〇 〇 Δ
5 〇 〇 〇 X Δ
6 X 〇 X 〇 X
7 〇 〇 〇 〇 Δ
8 〇 〇 〇 X 〇
9 X X X X X
1 0 〇 〇 〇 X Δ
1 1 〇 〇 〇 X △ [0071] 例 1〜4および例 7の積層体は、密着改善膜の膜厚が薄ぐまた、低屈折率膜の初 期層形成時に窒素ガスを含むスパッタガスを用いているため、密着改善膜の吸収が 小さぐ膜面反射率が優れている。また、密着改善膜の形成により、耐湿性、耐熱性 等の耐久性に優れている。密着性についても、密着性 (A)、密着性 (B)の両方の試 験において、実用上問題のないレベルである。
[0072] これに対し、例 5では、低屈折率膜の初期層形成時に窒素を含まな 、スパッタガス を用いているため、密着改善膜の吸収化が生じ、膜面反射率が劣り、好ましくない。
[0073] 例 6の積層体は、密着改善膜を形成していないため、密着性や耐湿性等の耐久性 が劣り、好ましくない。
[0074] また、例 8の積層体は、密着改善膜の膜厚が 5nmと厚 、ため密着性の性能は十分 だが、密着改善膜の吸収が大きぐ膜面反射率が劣り、好ましくない。
[0075] 例 9の積層体は、低屈折率膜の形成時に酸素を導入しているため、銀合金膜が酸 化し透明な膜となり、膜面反射率が大幅に劣り、好ましくない。
[0076] 例 10および例 11の積層体は、密着改善膜を形成しているため銀合金膜の酸ィ匕が ある程度抑えられ、透明な膜とはなっていないが、低屈折率膜の形成時に酸素を導 入しているため、膜面反射率が劣っている。
[0077] (例 12〜14)
厚さ 1. 1mmのソーダライムガラス基板を洗浄後、ノ ツチ式のスパッタ装置にガラス 基板を設置し、ターゲットとして亜鉛を添加した酸化インジウムターゲット (酸ィ匕亜鉛の 含有率 10. 7質量%、酸化インジウムの含有率 89. 3質量%)、 Auを添加した銀合 金ターゲット (Au含有率 1原子%、銀の含有率 99原子%)、シリカターゲット(SiO含
2 有率 99. 9原子%)、酸素欠損型酸ィ匕ニオブターゲット (Nb O ( =0〜1) )をそ
2 5—
れぞれ基板の対向位置に設置し、真空槽内を 8 X 10_4Paまで排気した。そして、下 記の A)〜E)の膜を順に形成することにより積層体を得た。
[0078] A) (下地膜 (亜鉛ドープ酸化インジウム膜)の形成)
亜鉛を添カ卩した酸化インジウムターゲットを用いて、 RFスパッタリング法により、 Ar ガス雰囲気下、投入電力密度 1. 6WZcm2、スパッタ圧力 0. 3Paの条件で、ガラス 基板上に亜鉛ドープ酸化インジウム膜を 6nmの膜厚で形成した。基板の加熱はしな かった。亜鉛ドープ酸化インジウム膜の組成はターゲットと同等であった。
[0079] B) (銀合金膜の形成)
残存ガスを排気後、 Auを添加した銀合金ターゲットを用いて、 DCスパッタリング法 により、 Arガス雰囲気下、投入電力密度 1. 4WZcm2、スパッタ圧力 0. 3Paの条件 で、下地膜上に銀合金膜を lOOnmの膜厚で形成した。基板の加熱はしなカゝつた。 銀合金膜の組成はターゲットと同等であった。
[0080] C) (密着改善膜 (亜鉛ドープ酸化インジウム膜)の形成)
残存ガスを排気後、亜鉛を添加した酸化インジウムターゲットを用いて、 RFスパッタ リング法により、 Arガス雰囲気下、投入電力密度 0. 5WZcm2、スパッタ圧力 0. 3Pa の条件で、銀合金膜上に亜鉛ドープ酸化インジウム膜 (波長 550nmにおける屈折率 : 1. 99、消衰係数: 0. 015)を表 3記載の膜厚で形成した。基板の加熱はしな力つた 。亜鉛ドープ酸化インジウム膜の組成はターゲットと同等であった。
[0081] D) (低屈折率膜 (酸化ケィ素膜)の形成)
残存ガスを排気後、シリカターゲットを用いて、 RFスパッタリング法により、 Arと窒素 との混合ガス (スパッタガス中の窒素ガスの含有率: 9体積%)雰囲気下、投入電力密 度 2. 4WZcm2、スパッタ圧力 0. 3Paの条件で、密着改善膜上に低屈折率膜の初 期層として、酸ィ匕ケィ素膜を 3nmの膜厚で形成した。基板の加熱はしなカゝつた。続い て、残存ガスを排気後、シリカターゲットを用いて、 RFスパッタリング法により、 Arガス (酸素を含有せず)雰囲気下、投入電力密度 2. 4WZcm2、スパッタ圧力 0. 3Paの 条件で、酸ィ匕ケィ素膜 (波長 550nmにおける屈折率: 1. 47、消衰係数: 0)を 41nm の膜厚で形成した。基板の加熱はしな力つた。
[0082] E) (高屈折率膜 (酸化ニオブ膜)の形成)
残存ガスを排気後、酸ィ匕ニオブターゲットを用いて、 DCスパッタリング法により、 Ar と酸素との混合ガス (スパッタガス中の酸素ガスの含有率: 10体積%)雰囲気下、投 入電力密度 3. 3WZcm2、スパッタ圧力 0. 3Paの条件で、低屈折率膜上に酸化- ォブ膜 (波長 550nmにおける屈折率: 2. 31、消衰係数: 0)を 57nmの膜厚で形成し た。基板の加熱はしな力つた。この積層体について例 1と同様の方法で評価し、その 結果を表 4に示した。 [0083] (例 15) (比較例)
例 12において、密着改善膜の膜厚を 5nmとした以外は、例 12と同様な方法と条件 により、積層体を形成した。この積層体について例 1と同様の方法で評価し、その結 果を表 4に示した。
[0084] (例 16) (比較例)
例 13において、低屈折率膜の初期層として、シリカターゲットを用いて、 RFスパッタ リング法により、 Arガス雰囲気(つまり、窒素を含まない雰囲気)下、投入電力密度 2 . 4WZcm2、スパッタ圧力 0. 3Paの条件で、酸化ケィ素膜を 3nmの膜厚で形成した 以外は、例 13と同様な方法と条件により、積層体を形成した。この積層体について例 1と同様の方法で評価し、その結果を表 4に示した。
[0085] [表 3]
Figure imgf000021_0001
[0086] [表 4]
Figure imgf000021_0002
例 12 14の積層体は、密着改善膜の膜厚が薄ぐまた、低屈折率膜の初期層形 成時に窒素ガスを含むスパッタガスを用いているため、密着改善膜の吸収が小さぐ 膜面反射率が優れている。また、密着改善膜の形成により、耐湿性、耐熱性等の耐 久性に優れている。更に、密着改善膜として亜鉛ドープ酸化インジウム膜を使用して いるため、特に密着性に優れている。
[0088] これに対し、例 15の積層体は、密着改善膜の膜厚が 5nmと厚いため、密着改善膜 の吸収が大きぐ膜面反射率が劣り、好ましくない。
[0089] また、例 16では、低屈折率膜の初期層形成時に窒素を含まな 、スパッタガスを用 いているため、密着改善膜の吸収化が生じ、膜面反射率が劣り、好ましくない。 産業上の利用可能性
[0090] 本発明の積層体は、プロジェクシヨンテレビや携帯電話等の小型の液晶ディスプレ ィ用バックライトモジュールに用いられる積層体として有用である。 なお、 2005年 7月 29曰〖こ出願された曰本特許出願 2005— 220927号、および 2 006年 4月 27日に出願された日本特許出願 2006— 123827号の明細書、特許請 求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として 、取り入れるものである。

Claims

請求の範囲
[I] 基板上に、銀膜、密着改善膜、低屈折率膜、高屈折率膜がこの順で積層された積 層体であって、前記低屈折率膜中の少なくとも密着改善膜側の層が窒素を含有した スパッタガスを用いたスパッタリング法により形成されており、前記密着改善膜の消衰 係数が 0. 1以下で膜厚が 0. 5〜4nmであり、前記低屈折率膜の消衰係数が 0. 01 以下であり、前記高屈折率膜の消衰係数が 0. 01以下であることを特徴とする積層 体。
[2] 前記低屈折率膜中の少なくとも前記密着改善膜側の層の膜厚カ^〜 5nmである請 求項 1に記載の積層体。
[3] 前記スパッタガス中の窒素の含有率力 スパッタガス全体に対して 5〜20体積%で ある請求項 1または 2に記載の積層体。
[4] 前記銀膜が銀と金との合金膜である請求項 1、 2または 3に記載の積層体。
[5] 前記銀膜中の金の含有率が 0. 5〜10原子%である請求項 4に記載の積層体。
[6] 前記低屈折率膜の材料の主成分が酸ィ匕ケィ素である請求項 1〜5の 、ずれかに記 載の積層体。
[7] 前記高屈折率膜の材料が酸化ニオブ、酸化ジルコニウム、酸化タンタル、酸化ハフ ユウム、酸ィ匕チタンおよび酸化スズからなる群力も選ばれる 1種以上である請求項 1 〜6の 、ずれかに記載の積層体。
[8] 前記高屈折率膜の材料が酸ィ匕ニオブである請求項 1〜6の 、ずれかに記載の積層 体。
[9] 前記密着改善膜の材料が酸化亜鉛、酸化スズ、酸化インジウム、酸化アルミニウム および酸ィ匕チタン力もなる群力も選ばれる 1種以上である請求項 1〜8のいずれかに 記載の積層体。
[10] 前記密着改善膜が酸化亜鉛膜であり、前記酸化亜鉛膜は他の金属を含み、かつ 前記他の金属はガリウム、スズ、シリコンおよびチタン力もなる群力も選ばれる 1種以 上である請求項 9に記載の積層体。
[II] 前記他の金属の含有量は、酸化亜鉛膜中の全金属元素に対して酸化物換算で合 計で 2〜10質量%である請求項 10に記載の積層体。
[12] 前記密着改善膜が酸化インジウム膜であり、前記酸化インジウム膜は亜鉛を含んで いる請求項 9に記載の積層体。
[13] 前記亜鉛の含有量は、密着改善膜中の全金属元素に対して 5〜15質量%である 請求項 12に記載の積層体。
[14] 前記銀膜の基板側には下地膜が形成され、前記下地膜の幾何学的膜厚が 1〜20 nmであり、前記下地膜の材料が酸ィ匕亜鉛、酸化スズ、酸化インジウム、酸化アルミ- ゥム、酸化チタン、酸ィ匕ニオブおよび酸ィ匕クロム力もなる群力も選ばれる 1種以上であ る請求項 1〜13のいずれかに記載の積層体。
[15] 前記銀膜、前記密着改善膜、前記高屈折率膜および前記下地膜がスパッタリング 法により形成される請求項 1〜14のいずれかに記載の積層体。
[16] 前記銀膜の膜厚が 60〜200nmであり、前記低屈折率膜の膜厚が 25〜60nmで あり、前記高屈折率膜の膜厚が 35〜70nmである請求項 1〜15のいずれかに記載 の積層体。
[17] 請求項 1〜16のいずれかに記載の積層体力 表示ディスプレイの光源の反射部材 として使用される表示ディスプレイ。
[18] 基板上に、銀膜、密着改善膜、低屈折率膜、高屈折率膜をこの順で積層する積層 体の製造方法であって、前記低屈折率膜中の少なくとも密着改善膜側の層が窒素を 含有したスパッタガスを用いたスパッタリング法により形成され、前記密着改善膜の消 衰係数が 0. 1以下で膜厚が 0. 5〜4nmであり、前記低屈折率膜の消衰係数が 0. 0 1以下であり、前記高屈折率膜の消衰係数が 0. 01以下となるように形成されることを 特徴とする積層体の製造方法。
PCT/JP2006/313326 2005-07-29 2006-07-04 反射膜用積層体 WO2007013269A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06767843A EP1918740A4 (en) 2005-07-29 2006-07-04 LAMINATED BODY FOR A REFLECTION FILM
JP2007528392A JPWO2007013269A1 (ja) 2005-07-29 2006-07-04 反射膜用積層体
US12/021,621 US20080131693A1 (en) 2005-07-29 2008-01-29 Laminate for reflection film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005220927 2005-07-29
JP2005-220927 2005-07-29
JP2006-123827 2006-04-27
JP2006123827 2006-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/021,621 Continuation US20080131693A1 (en) 2005-07-29 2008-01-29 Laminate for reflection film

Publications (1)

Publication Number Publication Date
WO2007013269A1 true WO2007013269A1 (ja) 2007-02-01

Family

ID=37683171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313326 WO2007013269A1 (ja) 2005-07-29 2006-07-04 反射膜用積層体

Country Status (5)

Country Link
US (1) US20080131693A1 (ja)
EP (1) EP1918740A4 (ja)
JP (1) JPWO2007013269A1 (ja)
KR (1) KR20080031174A (ja)
WO (1) WO2007013269A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114493A1 (en) * 2008-03-11 2009-09-17 Ppg Industries Ohio, Inc. Reflective article
WO2012014664A1 (ja) * 2010-07-29 2012-02-02 セントラル硝子株式会社 反射積層膜およびその製造方法
CN103507322A (zh) * 2012-06-29 2014-01-15 北川工业株式会社 透明红外线反射层叠体及其制造方法
WO2014103817A1 (ja) * 2012-12-27 2014-07-03 コニカミノルタ株式会社 タッチパネル用透明電極、タッチパネル、および表示装置
JP2014178401A (ja) * 2013-03-14 2014-09-25 Asahi Glass Co Ltd 反射性部材、太陽熱発電システム用の二次ミラー、および反射性部材の製造方法
JP2015145936A (ja) * 2014-02-03 2015-08-13 ジオマテック株式会社 高反射膜、高反射膜付き基板及び高反射膜の製造方法
JP2019151087A (ja) * 2018-02-28 2019-09-12 日本板硝子株式会社 ガラス積層体の製造方法
JPWO2022185944A1 (ja) * 2021-03-01 2022-09-09
WO2022270475A1 (ja) * 2021-06-25 2022-12-29 Agc株式会社 ミラー及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2012008288A (es) 2010-01-19 2012-08-31 Guardian Industries Panel reflector secundario mejorado (srp) con recubrimiento tratable con calor para aplicaciones de energia solar concentrada y/o metodos para hacer el mismo.
WO2012104680A1 (en) * 2011-01-31 2012-08-09 Indian Institute Of Science Apparatus and methods for sensing or imaging using stacked thin films
US9341748B2 (en) 2011-12-28 2016-05-17 Guardian Industries Corp. Mirror for use in humid environments, and/or method of making the same
US9556069B2 (en) 2011-12-28 2017-01-31 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique (C.R.V.C.) Sarl Mirror with optional protective paint layer, and/or methods of making the same
US9365450B2 (en) * 2012-12-27 2016-06-14 Intermolecular, Inc. Base-layer consisting of two materials layer with extreme high/low index in low-e coating to improve the neutral color and transmittance performance
TR201802321T4 (tr) * 2013-05-14 2018-03-21 Asahi Glass Co Ltd Koruyucu film, yansıtıcı eleman ve koruyucu film için üretim yöntemi.
JP6236987B2 (ja) * 2013-08-23 2017-11-29 ミツミ電機株式会社 光走査装置及び光走査ユニット
DE102013221029A1 (de) * 2013-10-16 2015-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Herstellung uniformer Schichten auf bewegten Substraten und derart hergestellte Schichten
DE202015009393U1 (de) * 2015-08-25 2017-05-30 Alanod Gmbh & Co. Kg Reflektierendes Verbundmaterial mit einem Aluminium-Träger und mit einer Silber-Reflexionsschicht
KR102594844B1 (ko) * 2018-04-10 2023-10-27 주식회사 엘지화학 장식 부재
CN109837517A (zh) * 2019-03-26 2019-06-04 江苏北方湖光光电有限公司 一种基于磁控溅射的外反射银膜制备方法
CN111218648A (zh) * 2019-10-30 2020-06-02 河南镀邦光电股份有限公司 一种超高附着力复合板材颜色膜及其镀膜工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102231A1 (ja) * 2003-05-15 2004-11-25 Mitsui Chemicals, Inc. 反射体、その用途および反射体の製造方法
US20050008879A1 (en) * 2003-06-27 2005-01-13 Asahi Glass Company Limited High reflectance mirror

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712990B1 (fr) * 1993-11-22 1996-04-05 Commissariat Energie Atomique Miroir à large bande et à haute réflectivité et procédé de réalisation d'un tel miroir.
US6078425A (en) * 1999-06-09 2000-06-20 The Regents Of The University Of California Durable silver coating for mirrors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102231A1 (ja) * 2003-05-15 2004-11-25 Mitsui Chemicals, Inc. 反射体、その用途および反射体の製造方法
US20050008879A1 (en) * 2003-06-27 2005-01-13 Asahi Glass Company Limited High reflectance mirror

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1918740A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114493A1 (en) * 2008-03-11 2009-09-17 Ppg Industries Ohio, Inc. Reflective article
US8445098B2 (en) 2008-03-11 2013-05-21 Ppg Industries Ohio, Inc. Reflective article having multiple reflective coatings
US8497015B2 (en) 2008-03-11 2013-07-30 Ppg Industries Ohio, Inc. Reflective article
US8628820B2 (en) 2008-03-11 2014-01-14 Ppg Industries Ohio, Inc. Reflective article and method of making a reflective article
WO2012014664A1 (ja) * 2010-07-29 2012-02-02 セントラル硝子株式会社 反射積層膜およびその製造方法
JP2012032551A (ja) * 2010-07-29 2012-02-16 Central Glass Co Ltd 反射積層膜
CN103507322A (zh) * 2012-06-29 2014-01-15 北川工业株式会社 透明红外线反射层叠体及其制造方法
WO2014103817A1 (ja) * 2012-12-27 2014-07-03 コニカミノルタ株式会社 タッチパネル用透明電極、タッチパネル、および表示装置
JP2014178401A (ja) * 2013-03-14 2014-09-25 Asahi Glass Co Ltd 反射性部材、太陽熱発電システム用の二次ミラー、および反射性部材の製造方法
JP2015145936A (ja) * 2014-02-03 2015-08-13 ジオマテック株式会社 高反射膜、高反射膜付き基板及び高反射膜の製造方法
JP2019151087A (ja) * 2018-02-28 2019-09-12 日本板硝子株式会社 ガラス積層体の製造方法
JP7252713B2 (ja) 2018-02-28 2023-04-05 日本板硝子株式会社 ガラス積層体の製造方法
JPWO2022185944A1 (ja) * 2021-03-01 2022-09-09
WO2022185944A1 (ja) * 2021-03-01 2022-09-09 国立大学法人東海国立大学機構 光学製品及び集光器
JP7751268B2 (ja) 2021-03-01 2025-10-08 国立大学法人東海国立大学機構 光学製品及び集光器
WO2022270475A1 (ja) * 2021-06-25 2022-12-29 Agc株式会社 ミラー及びその製造方法

Also Published As

Publication number Publication date
JPWO2007013269A1 (ja) 2009-02-05
EP1918740A4 (en) 2010-04-28
KR20080031174A (ko) 2008-04-08
EP1918740A1 (en) 2008-05-07
US20080131693A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2007013269A1 (ja) 反射膜用積層体
CN100403067C (zh) 高反射镜
CN101233434A (zh) 反射膜用层叠体
JP5262110B2 (ja) 反射防止膜付き基体
CN102548923B (zh) 包含介电层的低辐射率玻璃及其制备方法
JP6299755B2 (ja) 保護膜、反射性部材、および保護膜の製造方法
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
KR20080109899A (ko) 피복 판유리
WO1999044080A1 (fr) Corps antireflecteur d'absorption de lumiere et procede de production de celui-ci
WO2014191472A2 (en) Low-emissivity glazing
JP2002055213A (ja) 高反射ミラー
US20020140885A1 (en) Heat-resistant reflecting layer, laminate formed of the reflecting layer, and liquid crystal display device having the reflecting layer or the laminate
CN104246005A (zh) 含有具多层护膜的低辐射涂层的涂层制品及制备其的方法
JP2012533514A (ja) 低放射ガラス及びその製造方法
JP2016538220A (ja) 銀製の機能性層とTiOx製の厚いブロッキング下層とを含む積重体で被覆された基材を含むグレージング
JP4428152B2 (ja) 高反射鏡
JP2007310335A (ja) 表面鏡
WO2014171149A1 (ja) 透明導電体及びその製造方法
JP2006010930A (ja) 高反射鏡
JPH03187735A (ja) 選択透過膜付きガラスの製造方法
JP2001226765A (ja) 高耐熱性反射膜及びこの反射膜を用いた積層体
JPH10139491A (ja) 低反射濃色グレ−ガラス
JPWO2007007570A1 (ja) 反射鏡およびその製造方法
JP2006317603A (ja) 表面鏡
JP4751675B2 (ja) 反射鏡

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027724.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528392

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077028290

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006767843

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE