WO2007038490A2 - Low melting temperature compliant solders - Google Patents
Low melting temperature compliant solders Download PDFInfo
- Publication number
- WO2007038490A2 WO2007038490A2 PCT/US2006/037441 US2006037441W WO2007038490A2 WO 2007038490 A2 WO2007038490 A2 WO 2007038490A2 US 2006037441 W US2006037441 W US 2006037441W WO 2007038490 A2 WO2007038490 A2 WO 2007038490A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- melting temperature
- low melting
- indium
- alloy
- weight
- Prior art date
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 62
- 238000002844 melting Methods 0.000 title claims abstract description 42
- 230000008018 melting Effects 0.000 title claims abstract description 42
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 95
- 239000000956 alloy Substances 0.000 claims abstract description 95
- 229910052738 indium Inorganic materials 0.000 claims abstract description 88
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000010949 copper Substances 0.000 claims abstract description 21
- 229910052709 silver Inorganic materials 0.000 claims abstract description 17
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 239000004332 silver Substances 0.000 claims abstract description 12
- 229910052718 tin Inorganic materials 0.000 claims abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 8
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052693 Europium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052765 Lutetium Inorganic materials 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 229910052773 Promethium Inorganic materials 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 4
- 229910052776 Thorium Inorganic materials 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 4
- 229910052767 actinium Inorganic materials 0.000 claims description 4
- QQINRWTZWGJFDB-UHFFFAOYSA-N actinium atom Chemical compound [Ac] QQINRWTZWGJFDB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 4
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 4
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 4
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 4
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 claims description 4
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 230000000704 physical effect Effects 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 4
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 claims description 4
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 4
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 4
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 claims description 4
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 36
- 229910017944 Ag—Cu Inorganic materials 0.000 description 19
- 239000000463 material Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 10
- 229910000846 In alloy Inorganic materials 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229910017692 Ag3Sn Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002471 indium Chemical class 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
Definitions
- the present disclosure relates generally to solder compositions and, more particularly, to low melting temperature compliant solders.
- low dielectric constant (low K) materials are more frequently employed to replace conventional insulators (e.g., silicon oxide) in the manufacturing of semiconductor devices.
- silicon oxide e.g., silicon oxide
- SiOC carbon-doped silicon oxide
- Carbon-doped silicon oxide typically comprises numerous air pockets to improve low K performance.
- these air pockets make this low K material very brittle and susceptible to fracture. Consequently, during electronic packaging and assembly processes, this low K material is known to crack due to stresses generated during soldering processes.
- solder paste reflow processes require reflow temperatures approximately 20 - 30 0 C above the liquidus temperatures of solder alloys.
- the reflow temperature is typically around 210 - 230 0 C.
- the recent conversion to Sn-Ag-Cu lead free solder alloys has resulted in a great increase in reflow temperatures to typically around 235 - 260 0 C.
- the liquidus temperatures and yield strengths of some of these Sn-Ag-Cu lead free solder alloys is summarized in the table of Figure 1.
- solder alloys with low liquidus temperatures In addition to the requirement for solder alloys with low liquidus temperatures, the ability of a solder to deform to accommodate possible stresses or impact loading is critical to the reliability of electronic devices employing low k materials. In general, solders with low yield strengths are softer and easier to deform so as to relieve stresses.
- Common low melting temperature solder alloys presently consist mainly of generic 91Sn9Zn solder alloy and patented Sn-Ag-In and Sn- Ag-Cu-In solder alloys. However, in comparison with Sn-Ag-Cu solder alloys, these common low melting temperature solder alloys are at least 50% greater in yield strength and rigidity. A brief summary of these common low melting temperature solder alloys is provided in the table of Figure 2.
- 91Sn9Zn solder has a melting point of 199 0 C, and this solder is very strong (yield strength of 9.1 ksi) and very rigid.
- patented Sn-Ag-In and Sn-Ag-Cu-In solder alloys are also very strong and rigid.
- U.S. Patent No. 5,580,520 discloses a solder alloy with (71.5-91.9) %Sn, (2.6-3.3) %Ag, and (4.8- 25.9)%In, which has a melting point below 213 0 C, but is too strong for use in low K material embedded semiconductor devices.
- 6,176,947 discloses a solder alloy with (76-96) %Sn, (0.2-2.5) %Cu, (2.5-4.5) %Ag, and (6- 12)%In, which has a liquidus temperature below 215 °C, but has proven too rigid for use with low K material embedded semiconductor devices.
- U.S. Patent No. 6,843,862 discloses an alloy composition with (88.5-93.5) %Sn, (3.5- 4.5) %Ag, (2-6) %In, (0.3-1) %Cu, and up to 0.5% of an antioxidant and anti-skinning additive. This alloy is also too strong and rigid for use in low K material embedded semiconductor devices.
- 6,689,488 reveals a solder alloy with (l-3.5)%Ag, (0.1-0.7) %Cu, (0.1- 2)%In, balanced with Sn, but this alloy composition has shown to be either too high in melting temperature or too rigid for use in low K material embedded semiconductor devices.
- a low melting temperature compliant solder alloy comprises from about 91.5% to about 97.998% by weight tin, from about 0.001% to about 3.5% by weight silver, from about 0.0% to about 1.0% by weight copper, and from about 2.001% to about 4.0% by weight indium.
- the low melting temperature compliant solder alloy may comprise at most about 3.0% by weight indium.
- the low melting temperature compliant solder alloy may comprise at most about 2.5% by weight indium.
- the low melting temperature compliant solder alloy may further comprise traces of impurities .
- the low melting temperature compliant solder alloy does not comprise traces of impurities.
- the low melting temperature compliant solder alloy may further comprise from about 0.01% to about 3.0% by weight at least one dopant selected from the group consisting of zinc (Zn), nickel (Ni), iron (Fe), cobalt (Co), germanium (Ge) , phosphorus (P) , aluminum (Al) , antimony (Sb) , cadmium (Cd) , tellurium (Te) , bismuth (Bi) , platinum (Pt) , rare earth elements, and combinations thereof to improve oxidation resistance and increase physical properties and thermal fatigue resistance.
- at least one dopant selected from the group consisting of zinc (Zn), nickel (Ni), iron (Fe), cobalt (Co), germanium (Ge) , phosphorus (P) , aluminum (Al) , antimony (Sb) , cadmium (Cd) , tellurium (Te) , bismuth (Bi) , platinum (Pt) , rare earth elements, and combinations thereof
- the rare earth elements may be selected from the group consisting of cerium (Ce) , lanthanum (La) , praseodymium (Pr) , neodymium (Nd) , promethium (Pm) , samarium (Sm) , europium (Eu) , gadolinium (Gd) , terbium (Tb) , dysprosium (Dy) , holmium (Ho) , erbium (Er) , thulium (Tm) , ytterbium (Yb) , lutetium (Lu) , actinium (Ac) , thorium (Th), protactinium (Pa), and combinations thereof.
- Ce cerium
- La lanthanum
- Pr praseodymium
- Nd neodymium
- Sm samarium
- Eu europium
- Gd gadolinium
- Tb terb
- a low melting temperature compliant solder alloy comprises from about 89.7% to about 94.499% by weight tin, from about 3.5% to about 6.0% by weight silver, from about 0.0% to about 0.3% by weight copper, and from about 2.001% to about 4.0% by weight indium.
- the low melting temperature compliant solder alloy may comprise at most about 3.0% by weight indium.
- the low melting temperature compliant solder alloy may comprise at most about 2.5% by weight indium.
- the low melting temperature compliant solder alloy may further comprise traces of impurities .
- the low melting temperature compliant solder alloy does not comprise traces of impurities.
- the low melting temperature compliant solder alloy may further comprise from about 0.01% to about 3.0% by weight at least one dopant selected from the group consisting of zinc (Zn) , nickel (Ni) , iron (Fe) , cobalt (Co) , germanium (Ge), phosphorus (P), aluminum (Al), antimony (Sb), cadmium (Cd) , tellurium (Te) , bismuth (Bi) , platinum (Pt) , rare earth elements, and combinations thereof to improve oxidation resistance and increase physical properties and thermal fatigue resistance.
- the rare earth elements may be selected from the group consisting of cerium (Ce) , lanthanum (La) , praseodymium (Pr) , neodymium (Nd) , promethium (Pm) , samarium (Sm) , europium (Eu) , gadolinium (Gd) , terbium (Tb) , dysprosium (Dy) , holmium (Ho) , erbium (Er) , thulium (Tm) , ytterbium (Yb) , lutetium (Lu) , actinium (Ac) , thorium (Th), protactinium (Pa), and combinations thereof.
- Ce cerium
- La lanthanum
- Pr praseodymium
- Nd neodymium
- Sm samarium
- Eu europium
- Gd gadolinium
- Tb terb
- Figure 1 is a table showing the liquidus temperatures and yield strengths of several Sn-Ag-Cu lead free solder alloys.
- Figure 2 is a table showing the liquidus temperatures and yield strengths of several common low melting temperature solder alloys.
- Figure 3 is a graph showing the effect of adding indium (In) to standard Sn-Ag-Cu (SAC) alloys.
- Figure 4 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-IAg-O.5Cu alloy compositions with respect to the concentration of indium (In) .
- Figure 5 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-2Ag-0.5Cu alloy compositions with respect to the concentration of indium (In) .
- Figure 6 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-2.5Ag-O .5Cu alloy compositions with respect to the concentration of indium (In) .
- Figure 7 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-3Ag-0.5Cu alloy compositions with respect to the concentration of indium (In) .
- Figure 8 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-4Ag-0.2Cu alloy compositions with respect to the concentration of indium (In) .
- Figure 9 is a graph showing the yield strengths of Sn-Ag- Cu-In alloys with respect to the concentration of indium (In) .
- Figure 10 shows a scanning electron microscopy (SEM) snapshot where energy dispersive spectrometry (EDS) is used to identify major strengthening particles in an indium (In) added Sn-Ag-Cu alloy composition.
- SEM scanning electron microscopy
- FIG. 3 there is shown a graph showing the effect of adding indium (In) to standard Sn-Ag-Cu (SAC) alloys.
- the addition of indium (In) to the standard Sn-Ag-Cu (SAC) alloys results in a decrease of liquidus temperature.
- indium (In) is added to the standard Sn-Ag-Cu (SAC) alloys in an amount greater than 2%, the liquidus temperatures of the resultant Sn-Ag-Cu- In alloys are reduced to below the liquidus temperatures of the standard Sn-Ag-Cu (SAC) alloys.
- Such Sn-Ag-Cu-In alloy compositions include Ag(O.001 - 3.5)%, Cu(O - 1)%, In (2.001 - 4)%, balanced with Sn, and Ag (3.5 - 6)%, Cu(O - 0.3)%, In (2.001 - 4)%, balanced with Sn.
- These Sn-Ag-Cu-In alloy compositions were derived through a series of multiple experimentations as exemplified below.
- the liquidus temperatures and yield strengths of indium (In) added Sn-3Ag-0.5Cu alloy compositions with respect to the concentration of indium (In) are shown in the table of Figure 7.
- the yield strengths of the resultant alloy compositions decreased slightly as the concentration of indium (In) increased up to about 2.5%. However, when the concentration of indium (In) exceeded 2.5%, the yield strengths increased as the concentration of indium (In) increased.
- the liquidus temperatures and yield strengths of indium (In) added Sn-4Ag-0.2Cu alloy compositions with respect to the concentration of indium (In) are shown in the table of Figure 8. Due to a high yield strength (> 6 ksi) developed because of a high silver (Ag) concentration (> 3.5%), a lower copper (Cu) concentration (0.2%) with respect to standard Sn-Ag-Cu (SAC) alloys (i.e., 0.5%) was employed. The yield strengths of the resultant alloy compositions decreased (approximately 20%) as the concentration of indium (In) increased up to about 2.5%. However, when the concentration of indium (In) exceeded 2.5%, the yield strengths increased as the concentration of indium (In) increased.
- the yield strengths of the Sn-Ag-Cu-In alloys with respect to the concentration of indium (In) are shown in the graph of Figure 9. As shown in Figure 9, it is clear that the yield strengths of the indium (In) added Sn-IAg-O.5Cu alloy compositions increased very rapidly as the concentration of indium (In) increased, and thus these alloy compositions are unacceptable for use in low K material embedded semiconductor devices. However, with higher silver (Ag) concentrations, the yield strengths of the indium (In) added Sn-Ag-Cu alloy compositions either remained about constant or decreased slightly as the concentration of indium (In) increased up to about 2.5%, after which the yield strengths increased as the concentration of indium (In) increased.
- the yield strengths of the indium (In) added Sn-2Ag-0.5Cu, Sn- 2.5Ag-O.5Cu and Sn-3Ag-0.5Cu alloy compositions resulted in a slight decrease in yield strength as the concentration of indium (In) .increased up to about 2.5-3%.
- the silver (Ag) concentration increased to 4% and the copper (Cu) concentration decreased to 0.2% i.e., Sn-4Ag-0.2Cu
- the reduction in yield strength was very significant (approximately 20%) , although this low yield strength compositional range was shortened very significantly.
- FIG. 10 shows an SEM snapshot where EDS is used to identify major strengthening particles in an indium (In) added Sn-Ag-Cu alloy composition.
- the major strengthening particles of this indium (In) added Sn-Ag-Cu alloy composition is identified using EDS to be Sn66. 6 Ag 29 . 4 In 4 .
- the bright domains may be identified as Sn-Ag-In within the composition Sn 66 . 6 Ag 29 .
- the dark grey matrix may be identified as a solid solution of indium (In) in tin (Sn) .
- This is in contrast to the well established microstructure of the standard Sn-Ag-Cu (SAC) alloys where the major strengthening Ag 3 ⁇ n particles (the minor strengthening particles are CUeSn 5 due to copper (Cu) ) are homogeneously distributed in the tine (Sn) matrix. That is, because of the addition of indium (In) to the stoichiometric Ag 3 Sn, the indium (In) doped Sn 6S-6 Ag 2S-4 In 4 particles are disordered and off- stoichiometric. More specifically, these off-stoichiometric Sn 66 . 6 Ag 29 . 4 In4 particles do not strengthen the solder as much as Ag 3 Sn particles do due to a softer nature of the off- stoichiometric compounds and a loss of coherency in the tin (Sn) matrix.
- the yield strengths of the presently disclosed indium (In) added Sn-Ag-Cu alloy- compositions decrease as the concentration of indium (In) increases (i.e., between (2.001-4) %In) .
- Figure 10 also reveals that as the concentration of silver (Ag) decreases below 2%, Sn 66 . 6 Ag 29 . 4 In 4 particles are found to be sparsely distributed because less indium (In) is removed from the solution, and the softening effect is negligible. In contrast, as the concentration of silver (Ag) exceeds 6%, indium (In) available to form Sn 66 . 6 Ag 29 . 4 I.i 4 particles is exhausted. Nevertheless, the number of Ag 3 Sn particles continues to increase due to the increasing amount of available silver (Ag) , rendering the softening effect less conspicuous and the low strength compositional range shorter. In accordance with the present disclosure, further reduction of yield strength is achieved by reducing the number of the minor strengthening particles of Cu 6 Sns by reducing the copper (Cu) concentration, thereby resulting in even more advantageous alloy compositions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Multi-Conductor Connections (AREA)
- Powder Metallurgy (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Low melting temperature compliant solders are disclosed. In one particular exemplary embodiment, a low melting temperature compliant solder alloy comprises from about 91.5% to about 97.998% by weight tin, from about 0.001% to about 3.5% by weight silver, from about 0.0% to about 1.0% by weight copper, and from about 2.001% to about 4.0% by weight indium.
Description
LOW MELTING TEMPERATURE COMPLIANT SOLDERS
FIELD OP THE DISCLOSURE
The present disclosure relates generally to solder compositions and, more particularly, to low melting temperature compliant solders.
BACKGROUND OF THE DISCLOSURE
As feature sizes of semiconductor devices continue to shrink, low dielectric constant (low K) materials are more frequently employed to replace conventional insulators (e.g., silicon oxide) in the manufacturing of semiconductor devices. Currently, carbon-doped silicon oxide (SiOC) (K ~ 2.5 - 3) is the industry' s primary choice for a low K material in the manufacturing of semiconductor devices.
Carbon-doped silicon oxide (SiOC) typically comprises numerous air pockets to improve low K performance. However, these air pockets make this low K material very brittle and susceptible to fracture. Consequently, during electronic packaging and assembly processes, this low K material is known to crack due to stresses generated during soldering processes. In particular, solder paste reflow processes require reflow temperatures approximately 20 - 30 0C above the liquidus temperatures of solder alloys. For example, for a conventional Sn63Pb37 solder paste, the reflow temperature is typically around 210 - 230 0C. However, the recent conversion to Sn-Ag-Cu lead free solder alloys has resulted in a great increase in reflow temperatures to typically around 235 - 260 0C. The liquidus temperatures and yield strengths of some of these Sn-Ag-Cu lead free solder alloys is summarized in the table of Figure 1.
Due to the higher liquidus temperatures ( > 218 0C) of the Sn-Ag-Cu lead free solder alloys and mismatches in
coefficients of thermal expansion between these Sn-Ag-Cu lead free solder alloys and low K materials, high stresses develop in low K materials during cooling from high temperature reflow processes and thus cause cracking and failures in the low K materials. In light of the above, solder alloys with lower melting temperatures are required.
In addition to the requirement for solder alloys with low liquidus temperatures, the ability of a solder to deform to accommodate possible stresses or impact loading is critical to the reliability of electronic devices employing low k materials. In general, solders with low yield strengths are softer and easier to deform so as to relieve stresses. Common low melting temperature solder alloys presently consist mainly of generic 91Sn9Zn solder alloy and patented Sn-Ag-In and Sn- Ag-Cu-In solder alloys. However, in comparison with Sn-Ag-Cu solder alloys, these common low melting temperature solder alloys are at least 50% greater in yield strength and rigidity. A brief summary of these common low melting temperature solder alloys is provided in the table of Figure 2.
As shown in Figure 2, 91Sn9Zn solder has a melting point of 199 0C, and this solder is very strong (yield strength of 9.1 ksi) and very rigid. As also shown in Figure 2, patented Sn-Ag-In and Sn-Ag-Cu-In solder alloys are also very strong and rigid. Specifically, U.S. Patent No. 5,580,520 discloses a solder alloy with (71.5-91.9) %Sn, (2.6-3.3) %Ag, and (4.8- 25.9)%In, which has a melting point below 213 0C, but is too strong for use in low K material embedded semiconductor devices. Also, U.S. Patent No. 6,176,947 discloses a solder alloy with (76-96) %Sn, (0.2-2.5) %Cu, (2.5-4.5) %Ag, and (6- 12)%In, which has a liquidus temperature below 215 °C, but has proven too rigid for use with low K material embedded semiconductor devices. Similarly, U.S. Patent No. 6,843,862 discloses an alloy composition with (88.5-93.5) %Sn, (3.5-
4.5) %Ag, (2-6) %In, (0.3-1) %Cu, and up to 0.5% of an antioxidant and anti-skinning additive. This alloy is also too strong and rigid for use in low K material embedded semiconductor devices. In addition, U.S. Patent No. 6,689,488 reveals a solder alloy with (l-3.5)%Ag, (0.1-0.7) %Cu, (0.1- 2)%In, balanced with Sn, but this alloy composition has shown to be either too high in melting temperature or too rigid for use in low K material embedded semiconductor devices.
In view of the foregoing, it would be desirable to provide low melting temperature compliant solders which overcome the above-described inadequacies and shortcomings.
SUMMARY OP THE DISCLOSURE
Low melting temperature compliant solders are disclosed. In one particular exemplary embodiment, a low melting temperature compliant solder alloy comprises from about 91.5% to about 97.998% by weight tin, from about 0.001% to about 3.5% by weight silver, from about 0.0% to about 1.0% by weight copper, and from about 2.001% to about 4.0% by weight indium.
In accordance with other aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy may comprise at most about 3.0% by weight indium.
In accordance with further aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy may comprise at most about 2.5% by weight indium.
In accordance with still further aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy may further comprise traces of impurities .
In accordance with still further aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy does not comprise traces of impurities.
In accordance with additional aspects of this particular exemplary embodiment, the low melting temperature compliant
solder alloy may further comprise from about 0.01% to about 3.0% by weight at least one dopant selected from the group consisting of zinc (Zn), nickel (Ni), iron (Fe), cobalt (Co), germanium (Ge) , phosphorus (P) , aluminum (Al) , antimony (Sb) , cadmium (Cd) , tellurium (Te) , bismuth (Bi) , platinum (Pt) , rare earth elements, and combinations thereof to improve oxidation resistance and increase physical properties and thermal fatigue resistance.
In accordance with still additional aspects of this particular exemplary embodiment, the rare earth elements may be selected from the group consisting of cerium (Ce) , lanthanum (La) , praseodymium (Pr) , neodymium (Nd) , promethium (Pm) , samarium (Sm) , europium (Eu) , gadolinium (Gd) , terbium (Tb) , dysprosium (Dy) , holmium (Ho) , erbium (Er) , thulium (Tm) , ytterbium (Yb) , lutetium (Lu) , actinium (Ac) , thorium (Th), protactinium (Pa), and combinations thereof.
In another particular exemplary embodiment, a low melting temperature compliant solder alloy comprises from about 89.7% to about 94.499% by weight tin, from about 3.5% to about 6.0% by weight silver, from about 0.0% to about 0.3% by weight copper, and from about 2.001% to about 4.0% by weight indium.
In accordance with other aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy may comprise at most about 3.0% by weight indium.
In accordance with further aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy may comprise at most about 2.5% by weight indium.
In accordance with still further aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy may further comprise traces of impurities .
In accordance with still further aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy does not comprise traces of impurities.
In accordance with additional aspects of this particular exemplary embodiment, the low melting temperature compliant solder alloy may further comprise from about 0.01% to about 3.0% by weight at least one dopant selected from the group consisting of zinc (Zn) , nickel (Ni) , iron (Fe) , cobalt (Co) , germanium (Ge), phosphorus (P), aluminum (Al), antimony (Sb), cadmium (Cd) , tellurium (Te) , bismuth (Bi) , platinum (Pt) , rare earth elements, and combinations thereof to improve oxidation resistance and increase physical properties and thermal fatigue resistance.
In accordance with still additional aspects of this particular exemplary embodiment, the rare earth elements may be selected from the group consisting of cerium (Ce) , lanthanum (La) , praseodymium (Pr) , neodymium (Nd) , promethium (Pm) , samarium (Sm) , europium (Eu) , gadolinium (Gd) , terbium (Tb) , dysprosium (Dy) , holmium (Ho) , erbium (Er) , thulium (Tm) , ytterbium (Yb) , lutetium (Lu) , actinium (Ac) , thorium (Th), protactinium (Pa), and combinations thereof.
The present disclosure will now be described in more detail with reference to exemplary embodiments thereof as shown in the accompanying drawings . While the present disclosure is described below with reference to exemplary embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like
numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be exemplary only.
Figure 1 is a table showing the liquidus temperatures and yield strengths of several Sn-Ag-Cu lead free solder alloys.
Figure 2 is a table showing the liquidus temperatures and yield strengths of several common low melting temperature solder alloys.
Figure 3 is a graph showing the effect of adding indium (In) to standard Sn-Ag-Cu (SAC) alloys.
Figure 4 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-IAg-O.5Cu alloy compositions with respect to the concentration of indium (In) .
Figure 5 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-2Ag-0.5Cu alloy compositions with respect to the concentration of indium (In) .
Figure 6 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-2.5Ag-O .5Cu alloy compositions with respect to the concentration of indium (In) .
Figure 7 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-3Ag-0.5Cu alloy compositions with respect to the concentration of indium (In) .
Figure 8 is a table showing the liquidus temperatures and yield strengths of indium (In) added Sn-4Ag-0.2Cu alloy compositions with respect to the concentration of indium (In) .
Figure 9 is a graph showing the yield strengths of Sn-Ag- Cu-In alloys with respect to the concentration of indium (In) . Figure 10 shows a scanning electron microscopy (SEM) snapshot where energy dispersive spectrometry (EDS) is used to identify major strengthening particles in an indium (In) added Sn-Ag-Cu alloy composition.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
Referring to Figure 3, there is shown a graph showing the effect of adding indium (In) to standard Sn-Ag-Cu (SAC)
alloys. As shown in Figure 3, the addition of indium (In) to the standard Sn-Ag-Cu (SAC) alloys results in a decrease of liquidus temperature. Specifically, when indium (In) is added to the standard Sn-Ag-Cu (SAC) alloys in an amount greater than 2%, the liquidus temperatures of the resultant Sn-Ag-Cu- In alloys are reduced to below the liquidus temperatures of the standard Sn-Ag-Cu (SAC) alloys. Thus, it may be advantageous to utilize Sn-Ag-Cu-In alloys with indium (In) concentrations greater than 2% in semiconductor devices using low K materials.
However, adding indium (In) to the standard Sn-Ag-Cu (SAC) alloys also results in a rapid increase of the yield strength due to solution hardening, and high strength Sn-Ag- Cu-In alloys may cause high stresses and unacceptable high defects. Thus, it would be beneficial to determine compositional ranges for Sn-Ag-Cu-In alloys that result in low liquidus temperatures, low yield strength, and low rigidity. Indeed, the present disclosure is directed to Sn-Ag-Cu-In alloy compositions exhibiting low liquidus temperatures, low yield strength, and low rigidity. Such Sn-Ag-Cu-In alloy compositions include Ag(O.001 - 3.5)%, Cu(O - 1)%, In (2.001 - 4)%, balanced with Sn, and Ag (3.5 - 6)%, Cu(O - 0.3)%, In (2.001 - 4)%, balanced with Sn. These Sn-Ag-Cu-In alloy compositions were derived through a series of multiple experimentations as exemplified below.
Example 1
The liquidus temperatures and yield strengths of indium (In) added Sn-IAg-O.5Cu alloy compositions with respect to the concentration of indium (In) are shown in the table of Figure 4. The yield strengths of the resultant alloy compositions increased rapidly as the concentration of indium (In) increased.
Example 2
The liquidus temperatures and yield strengths of indium (In) added Sn-2Ag-0.5Cu alloy compositions with respect to the concentration of indium (In) are shown in the table of Figure 5. The yield strengths of the resultant alloy compositions remained about constant as the concentration of indium (In) increased up to 2.5%. However, when the concentration of indium (In) exceeded 2.5%, the yield strengths increased as the concentration of indium (In) increased.
Example 3
The liquidus temperatures and yield strengths of indium (In) added Sn-2.5Ag-O .5Cu alloy compositions with respect to the concentration of indium (In) are shown in the table of Figure 6. The yield strengths of the resultant alloy compositions remained approximately constant as the concentration of indium (In) increased up to about 2.5%. However, when the concentration of indium (In) exceeded 2.5%, the yield strengths increased as the concentration of indium (In) increased.
Example 4
The liquidus temperatures and yield strengths of indium (In) added Sn-3Ag-0.5Cu alloy compositions with respect to the concentration of indium (In) are shown in the table of Figure 7. The yield strengths of the resultant alloy compositions decreased slightly as the concentration of indium (In) increased up to about 2.5%. However, when the concentration of indium (In) exceeded 2.5%, the yield strengths increased as the concentration of indium (In) increased.
Example 5
The liquidus temperatures and yield strengths of indium (In) added Sn-4Ag-0.2Cu alloy compositions with respect to the
concentration of indium (In) are shown in the table of Figure 8. Due to a high yield strength (> 6 ksi) developed because of a high silver (Ag) concentration (> 3.5%), a lower copper (Cu) concentration (0.2%) with respect to standard Sn-Ag-Cu (SAC) alloys (i.e., 0.5%) was employed. The yield strengths of the resultant alloy compositions decreased (approximately 20%) as the concentration of indium (In) increased up to about 2.5%. However, when the concentration of indium (In) exceeded 2.5%, the yield strengths increased as the concentration of indium (In) increased.
The yield strengths of the Sn-Ag-Cu-In alloys with respect to the concentration of indium (In) are shown in the graph of Figure 9. As shown in Figure 9, it is clear that the yield strengths of the indium (In) added Sn-IAg-O.5Cu alloy compositions increased very rapidly as the concentration of indium (In) increased, and thus these alloy compositions are unacceptable for use in low K material embedded semiconductor devices. However, with higher silver (Ag) concentrations, the yield strengths of the indium (In) added Sn-Ag-Cu alloy compositions either remained about constant or decreased slightly as the concentration of indium (In) increased up to about 2.5%, after which the yield strengths increased as the concentration of indium (In) increased. For example, the yield strengths of the indium (In) added Sn-2Ag-0.5Cu, Sn- 2.5Ag-O.5Cu and Sn-3Ag-0.5Cu alloy compositions resulted in a slight decrease in yield strength as the concentration of indium (In) .increased up to about 2.5-3%. However, as the silver (Ag) concentration increased to 4% and the copper (Cu) concentration decreased to 0.2% (i.e., Sn-4Ag-0.2Cu) , the reduction in yield strength was very significant (approximately 20%) , although this low yield strength compositional range was shortened very significantly. By the same token, it is reasonable to expect that as the silver (Ag)
concentration becomes greater than 4% (e.g., Sn-6Ag-O.2Cu) , an even more significant reduction in yield strength would be produced, but the low yield strength compositional range would become even shorter. These results indicate that the yield strengths of indium (In) added Sn- (0-2) %Ag-0.5Cu alloy compositions increase as the concentration of indium (In) increases, but the yield strengths of indium (In) added Sn- (2- 3.5) %Ag-0.5Cu alloy compositions decrease as the concentration of indium (In) increases (i.e., (2.001-4) %In) . The latter alloy compositions give rise to the low melting temperature compliant solders of the present disclosure for use in low K material embedded semiconductor devices . In addition, when the copper (Cu) concentration is further reduced to 0.2%, the yield strengths of indium (In) added Sn- (3.5-6) %Ag-0.2Cu alloy compositions are most significantly reduced.
In order to obtain a better understanding of the above results, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were performed on the above mentioned alloys. For example, Figure 10 shows an SEM snapshot where EDS is used to identify major strengthening particles in an indium (In) added Sn-Ag-Cu alloy composition. As shown in Figure 10, the major strengthening particles of this indium (In) added Sn-Ag-Cu alloy composition is identified using EDS to be Sn66.6Ag29.4In4. Specifically, the bright domains may be identified as Sn-Ag-In within the composition Sn66.6Ag29.4In4, and the dark grey matrix may be identified as a solid solution of indium (In) in tin (Sn) . This is in contrast to the well established microstructure of the standard Sn-Ag-Cu (SAC) alloys where the major strengthening Ag3≤n particles (the minor strengthening particles are CUeSn5 due to copper (Cu) ) are homogeneously distributed in the tine (Sn) matrix. That is, because of the addition of indium (In) to the stoichiometric Ag3Sn, the indium (In) doped Sn6S-6Ag2S-4In4 particles are disordered and off-
stoichiometric. More specifically, these off-stoichiometric Sn66.6Ag29.4In4 particles do not strengthen the solder as much as Ag3Sn particles do due to a softer nature of the off- stoichiometric compounds and a loss of coherency in the tin (Sn) matrix.
In addition, it has been discovered that solution hardening of indium was typically the main mechanism for strengthening Sn-Ag-Cu-In solder alloys. However, in the Sn- Ag-Cu-In compositions of the present disclosure, indium (In) is removed from the solution, thus reducing the solution hardening effect, and instead forms the off-stoichiometric Sn66.6Ag29.4In4 particles, which did not strengthen the alloy as much as the replaced stoichiometric Ag3Sn particles . As a result of the above-mentioned effects, the yield strengths of the presently disclosed indium (In) added Sn-Ag-Cu alloy- compositions decrease as the concentration of indium (In) increases (i.e., between (2.001-4) %In) .
Figure 10 also reveals that as the concentration of silver (Ag) decreases below 2%, Sn66.6Ag29.4In4 particles are found to be sparsely distributed because less indium (In) is removed from the solution, and the softening effect is negligible. In contrast, as the concentration of silver (Ag) exceeds 6%, indium (In) available to form Sn66.6Ag29.4I.i4 particles is exhausted. Nevertheless, the number of Ag3Sn particles continues to increase due to the increasing amount of available silver (Ag) , rendering the softening effect less conspicuous and the low strength compositional range shorter. In accordance with the present disclosure, further reduction of yield strength is achieved by reducing the number of the minor strengthening particles of Cu6Sns by reducing the copper (Cu) concentration, thereby resulting in even more advantageous alloy compositions.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other
various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the1 foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.
Claims
1. A low melting temperature compliant solder alloy comprising from about 91.5% to about 97.998% by weight tin, from about 0.001% to about 3.5% by weight silver, from about 0.0% to about 1.0% by weight copper, and from about 2.001% to about 4.0% by weight indium.
2. The low melting temperature compliant solder alloy of claim 1, wherein the alloy comprises at most about 3.0% by weight indium.
3. The low melting temperature compliant solder alloy of claim 1, wherein the alloy comprises at most about 2.5% by weight indium.
4. The low melting temperature compliant solder alloy of claim 1, wherein the alloy further comprises traces of impurities .
5. The low melting temperature compliant solder alloy of claim 1, wherein the alloy does not comprise traces of impurities .
6. The low melting temperature compliant solder alloy of claim 1, further comprising from about 0.01% to about 3.0% by weight at least one dopant selected from the group consisting of zinc (Zn), nickel (Ni), iron (Fe), cobalt (Co), germanium (Ge) , phosphorus (P) , aluminum (Al) , antimony (Sb) , cadmium (Cd) , tellurium (Te) , bismuth (Bi) , platinum (Pt) , rare earth elements, and combinations thereof to improve oxidation resistance and increase physical properties and thermal fatigue resistance.
7. The low melting temperature compliant solder alloy of claim 6, wherein the rare earth elements are selected from the group consisting of cerium (Ce) , lanthanum (La) , praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu) , gadolinium (Gd) , terbium (Tb) , dysprosium (Dy) , hσlmium (Ho) , erbium (Er) , thulium (Tm) , ytterbium (Yb) , lutetium (Lu) , actinium (Ac) , thorium (Th) , protactinium (Pa) , and combinations thereof.
8. A low melting temperature compliant solder alloy comprising from about 89.7% to about 94.499% by weight tin, from about 3.5% to about 6.0% by weight silver, from about 0.0% to about 0.3% by weight copper, and from about 2.001% to about 4.0% by weight indium.
9. The low melting temperature compliant solder alloy of claim 8, wherein the alloy comprises at most about 3.0% by weight indium.
10. The low melting temperature compliant solder alloy of claim 8, wherein the alloy comprises at most about 2.5% by weight indium.
11. The low melting temperature compliant solder alloy of claim 8, wherein the alloy further comprises traces of impurities .
12. The low melting temperature compliant solder alloy of claim 8, wherein the alloy does not comprise traces of impurities .
13. The low melting temperature compliant solder alloy of claim 8, further comprising from about 0.01% to about 3.0% by weight at least one dopant selected from the group consisting of zinc (Zn), nickel (Ni), iron (Fe), cobalt (Co), germanium (Ge) , phosphorus (P) , aluminum (Al) , antimony (Sb) , cadmium (Cd), tellurium (Te), bismuth (Bi), platinum (Pt), rare earth elements, and combinations thereof to improve oxidation resistance and increase physical properties and thermal fatigue resistance.
14. The low melting temperature compliant solder alloy of claim 13, wherein the rare earth elements are selected from the group consisting of cerium (Ce) , lanthanum (La) , praseodymium (Pr) , neodymium (Nd) , promethium (Pm) , samarium (Sm) , europium (Eu) , gadolinium (Gd) , terbium (Tb) , dysprosium (Dy) , holmium (Ho) , erbium (Er) , thulium (Tm) , ytterbium (Yb) , lutetium (Lu) , actinium (Ac) , thorium (Th) , protactinium (Pa) , and combinations thereof.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US72003905P | 2005-09-26 | 2005-09-26 | |
| US60/720,039 | 2005-09-26 | ||
| US11/422,782 | 2006-06-07 | ||
| US11/422,782 US20070071634A1 (en) | 2005-09-26 | 2006-06-07 | Low melting temperature compliant solders |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| WO2007038490A2 true WO2007038490A2 (en) | 2007-04-05 |
| WO2007038490A3 WO2007038490A3 (en) | 2007-05-31 |
| WO2007038490A8 WO2007038490A8 (en) | 2008-06-12 |
Family
ID=37894223
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/037441 WO2007038490A2 (en) | 2005-09-26 | 2006-09-26 | Low melting temperature compliant solders |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20070071634A1 (en) |
| WO (1) | WO2007038490A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190076966A1 (en) * | 2013-08-05 | 2019-03-14 | Senju Metal Industry Co., Ltd. | Lead-Free Solder Alloy |
| CN110952017A (en) * | 2019-12-27 | 2020-04-03 | 华北水利水电大学 | A kind of high entropy super silver solder alloy and preparation method thereof |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101265449B1 (en) * | 2007-07-13 | 2013-05-16 | 센주긴조쿠고교 가부시키가이샤 | Lead-free solder for vehicle,and in-vehicle electronic circuit |
| KR101167549B1 (en) * | 2007-07-18 | 2012-07-20 | 센주긴조쿠고교 가부시키가이샤 | In-containing lead-free solder for on-vehicle electronic circuit |
| GB2455486A (en) * | 2008-03-05 | 2009-06-17 | Quantum Chem Tech Singapore | A sputtered film, solder spheres and solder paste formed from an Sn-Ag-Cu-In alloy |
| JP4787384B1 (en) * | 2010-10-29 | 2011-10-05 | ハリマ化成株式会社 | Low silver solder alloy and solder paste composition |
| JP2013252548A (en) * | 2012-06-08 | 2013-12-19 | Nihon Almit Co Ltd | Solder paste for joining micro component |
| KR101639220B1 (en) | 2012-12-18 | 2016-07-13 | 센주긴조쿠고교 가부시키가이샤 | Lead-free solder alloy |
| US11229979B2 (en) * | 2015-05-05 | 2022-01-25 | Indium Corporation | High reliability lead-free solder alloys for harsh environment electronics applications |
| CN113146093A (en) * | 2015-05-05 | 2021-07-23 | 铟泰公司 | High reliability lead-free solder alloys for harsh environment electronic device applications |
| CN106884107B (en) * | 2017-03-09 | 2018-05-22 | 宁波新瑞清科金属材料有限公司 | A kind of liquid metal thermal interface material with anti-molten characteristic and preparation method thereof |
| CN109082559B (en) * | 2018-09-03 | 2021-09-28 | 云南锡业锡材有限公司 | SnAgCuNiGeCe low-silver high-reliability lead-free solder alloy |
| TWI820277B (en) * | 2018-12-27 | 2023-11-01 | 美商阿爾發金屬化工公司 | Lead-free solder compositions |
| CN110303270A (en) * | 2019-07-30 | 2019-10-08 | 广东省焊接技术研究所(广东省中乌研究院) | Lead-free brazing, preparation method, its application, solder profile and electronic component |
| CN114700653A (en) * | 2022-04-13 | 2022-07-05 | 北京理工大学 | A kind of high hardness all intermetallic compound solder joint and preparation method thereof |
| CN118808991A (en) * | 2024-09-14 | 2024-10-22 | 同享(苏州)电子材料科技股份有限公司 | A method for preparing lead-free solder with antioxidant ability |
Family Cites Families (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB8807730D0 (en) * | 1988-03-31 | 1988-05-05 | Cookson Group Plc | Low toxicity soldering compositions |
| US5256370B1 (en) * | 1992-05-04 | 1996-09-03 | Indium Corp America | Lead-free alloy containing tin silver and indium |
| US5405577A (en) * | 1993-04-29 | 1995-04-11 | Seelig; Karl F. | Lead-free and bismuth-free tin alloy solder composition |
| US5527628A (en) * | 1993-07-20 | 1996-06-18 | Iowa State University Research Foudation, Inc. | Pb-free Sn-Ag-Cu ternary eutectic solder |
| US5435857A (en) * | 1994-01-06 | 1995-07-25 | Qualitek International, Inc. | Soldering composition |
| US5520752A (en) * | 1994-06-20 | 1996-05-28 | The United States Of America As Represented By The Secretary Of The Army | Composite solders |
| JPH10146690A (en) * | 1996-11-14 | 1998-06-02 | Senju Metal Ind Co Ltd | Solder paste for soldering chip part |
| US5985212A (en) * | 1996-12-12 | 1999-11-16 | H-Technologies Group, Incorporated | High strength lead-free solder materials |
| US5863493A (en) * | 1996-12-16 | 1999-01-26 | Ford Motor Company | Lead-free solder compositions |
| KR19980068127A (en) * | 1997-02-15 | 1998-10-15 | 김광호 | Lead-Free Alloys for Soldering |
| JP3688429B2 (en) * | 1997-04-25 | 2005-08-31 | 株式会社東芝 | Electronic component mounting substrate and electronic component mounting substrate |
| AU8066498A (en) * | 1997-06-14 | 1999-01-04 | Board Of Trustees Of The Leland Stanford Junior University | Ethylene enhancement of processes for synthesis of high melting thermoplast ic elastomeric alpha-olefin polymers (pre/epe effects) |
| US5833921A (en) * | 1997-09-26 | 1998-11-10 | Ford Motor Company | Lead-free, low-temperature solder compositions |
| JP2000094181A (en) * | 1998-09-24 | 2000-04-04 | Sony Corp | Solder alloy composition |
| US6176947B1 (en) * | 1998-12-31 | 2001-01-23 | H-Technologies Group, Incorporated | Lead-free solders |
| US6365097B1 (en) * | 1999-01-29 | 2002-04-02 | Fuji Electric Co., Ltd. | Solder alloy |
| JP3074649B1 (en) * | 1999-02-23 | 2000-08-07 | インターナショナル・ビジネス・マシーンズ・コーポレ−ション | Lead-free solder powder, lead-free solder paste, and methods for producing them |
| JP3753168B2 (en) * | 1999-08-20 | 2006-03-08 | 千住金属工業株式会社 | Solder paste for joining microchip components |
| US6306516B1 (en) * | 1999-12-17 | 2001-10-23 | Agere Systems Guardian Corp. | Article comprising oxide-bondable solder |
| WO2001078931A1 (en) * | 2000-04-17 | 2001-10-25 | Fujitsu Limited | Solder joining |
| US6896172B2 (en) * | 2000-08-22 | 2005-05-24 | Senju Metal Industry Co., Ltd. | Lead-free solder paste for reflow soldering |
| JP4438974B2 (en) * | 2000-10-05 | 2010-03-24 | 千住金属工業株式会社 | Solder paste |
| US6783057B2 (en) * | 2000-10-18 | 2004-08-31 | Indium Corporation Of America | Anti-tombstoning solder alloys for surface mount applications |
| US6928433B2 (en) * | 2001-01-05 | 2005-08-09 | Creative Technology Ltd | Automatic hierarchical categorization of music by metadata |
| US6689488B2 (en) * | 2001-02-09 | 2004-02-10 | Taiho Kogyo Co., Ltd. | Lead-free solder and solder joint |
| CN100444365C (en) * | 2001-05-24 | 2008-12-17 | 弗莱氏金属公司 | thermal interface material |
| SG139507A1 (en) * | 2001-07-09 | 2008-02-29 | Quantum Chem Tech Singapore | Improvements in or relating to solders |
| JP3734731B2 (en) * | 2001-09-06 | 2006-01-11 | 株式会社ノリタケカンパニーリミテド | Ceramic electronic component and method for manufacturing the same |
| US6805974B2 (en) * | 2002-02-15 | 2004-10-19 | International Business Machines Corporation | Lead-free tin-silver-copper alloy solder composition |
| US7273540B2 (en) * | 2002-07-25 | 2007-09-25 | Shinryo Electronics Co., Ltd. | Tin-silver-copper plating solution, plating film containing the same, and method for forming the plating film |
| US20040187976A1 (en) * | 2003-03-31 | 2004-09-30 | Fay Hua | Phase change lead-free super plastic solders |
| US7111771B2 (en) * | 2003-03-31 | 2006-09-26 | Intel Corporation | Solders with surfactant-refined grain sizes, solder bumps made thereof, and methods of making same |
| TWI222910B (en) * | 2003-08-04 | 2004-11-01 | Univ Nat Central | Constituents of solder |
| US20050100474A1 (en) * | 2003-11-06 | 2005-05-12 | Benlih Huang | Anti-tombstoning lead free alloys for surface mount reflow soldering |
| JP4770733B2 (en) * | 2004-04-21 | 2011-09-14 | 日本電気株式会社 | Solder and mounted products using it |
| US7749336B2 (en) * | 2005-08-30 | 2010-07-06 | Indium Corporation Of America | Technique for increasing the compliance of tin-indium solders |
| US9260768B2 (en) * | 2005-12-13 | 2016-02-16 | Indium Corporation | Lead-free solder alloys and solder joints thereof with improved drop impact resistance |
-
2006
- 2006-06-07 US US11/422,782 patent/US20070071634A1/en not_active Abandoned
- 2006-09-26 WO PCT/US2006/037441 patent/WO2007038490A2/en active Application Filing
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190076966A1 (en) * | 2013-08-05 | 2019-03-14 | Senju Metal Industry Co., Ltd. | Lead-Free Solder Alloy |
| CN110952017A (en) * | 2019-12-27 | 2020-04-03 | 华北水利水电大学 | A kind of high entropy super silver solder alloy and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US20070071634A1 (en) | 2007-03-29 |
| WO2007038490A3 (en) | 2007-05-31 |
| WO2007038490A8 (en) | 2008-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070071634A1 (en) | Low melting temperature compliant solders | |
| EP4025378B1 (en) | High temperature ultra-high reliability alloys | |
| KR102207301B1 (en) | Lead-free solder alloy with high reliability | |
| US7749340B2 (en) | Technique for increasing the compliance of lead-free solders containing silver | |
| EP3321025B1 (en) | Lead-free solder alloy, flux composition, solder paste composition, electronic circuit board and electronic control device | |
| CN101563185B (en) | Lead-free soft solder having improved properties at elevated temperatures | |
| US7749336B2 (en) | Technique for increasing the compliance of tin-indium solders | |
| CN101351297A (en) | Low melting temperature compliant solders | |
| CN101700605A (en) | Low melting point lead-free welding material alloy | |
| WO2012056753A1 (en) | Low-silver-content solder alloy and solder paste composition | |
| Kanlayasiri et al. | Property alterations of Sn-0.6 Cu-0.05 Ni-Ge lead-free solder by Ag, Bi, in and Sb addition | |
| CN101700606B (en) | Sn-Ag-Cu misch metal lead-free solder with low content of Cu and preparation method thereof | |
| CN103028863A (en) | High-anti-oxidation lead-free solder | |
| CN101081463A (en) | Sn-Ag-Cu-Dy Lead-free solder alloy | |
| CN120265420A (en) | Soldering methods, solder pastes, solder additives and solder joints | |
| CN1281372C (en) | SnZn series lead-free welding flux | |
| EP2679335B1 (en) | Solder alloy | |
| EP3476520B1 (en) | Lead-free solder alloy, electronic circuit board, and electronic control device | |
| CN101342643B (en) | Oxidation-resistant lead-free solder containing rare earth neodymium | |
| EP2974818B1 (en) | Solder joining method | |
| US6059900A (en) | Lead-based solders for high temperature applications | |
| CN105290642A (en) | Antioxidant tin-copper alloy brazing filler metal | |
| CN111151911A (en) | Corrosion-resistant high-strength low-temperature welding material and preparation method thereof | |
| JP7698233B1 (en) | Solder alloys, solder pastes, solder balls, solder preforms, and solder joints | |
| KR20240155028A (en) | Solder alloy, solder paste, solder ball, solder joint, and electronic device comprising the solder joint |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200680032609.0 Country of ref document: CN |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 06804161 Country of ref document: EP Kind code of ref document: A2 |