[go: up one dir, main page]

WO2008016015A1 - Display device, method for generating four or more primary color signals, and program causing computer to execute processing for generating four or more primary color signals - Google Patents

Display device, method for generating four or more primary color signals, and program causing computer to execute processing for generating four or more primary color signals Download PDF

Info

Publication number
WO2008016015A1
WO2008016015A1 PCT/JP2007/064911 JP2007064911W WO2008016015A1 WO 2008016015 A1 WO2008016015 A1 WO 2008016015A1 JP 2007064911 W JP2007064911 W JP 2007064911W WO 2008016015 A1 WO2008016015 A1 WO 2008016015A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
primary
primary color
colors
complementary
Prior art date
Application number
PCT/JP2007/064911
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunari Tomizawa
Shun Ueki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to CN2007800289128A priority Critical patent/CN101501751B/en
Priority to US12/375,741 priority patent/US8233007B2/en
Publication of WO2008016015A1 publication Critical patent/WO2008016015A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing

Definitions

  • the present invention relates to a display device that performs display using four or more primary colors.
  • one pixel is composed of three sub-pixels that display the three primary colors of light, red, green, and blue, which enables color display.
  • FIG. 13 shows the color reproduction range of a conventional display device that displays using the three primary colors.
  • FIG. 13 is an xy chromaticity diagram in the XYZ color system, and a triangle having apexes at three points corresponding to the three primary colors red, green, and blue represents the color reproduction range.
  • the surface colors (see Non-Patent Document 1) of various objects that exist in nature, as revealed by Pointer, are plotted with X marks.
  • object colors that are not included in the color reproduction range, and some display colors cannot be displayed on a display device that displays using the three primary colors.
  • the color reproduction range of the display device is compared with the standard color reproduction range (EBU ratio, EBU (European Broadcasting Union) and NT ⁇ > C (National Television System Committee)). It is often expressed by NTSC ratio).
  • EBU ratio EBU
  • EBU European Broadcasting Union
  • NT ⁇ > C National Television System Committee
  • the conventional display device has a narrow color reproduction range, even if the imaging device can record a wide V and range of colors, some colors (that is, out of the color reproduction range). (Color) cannot be displayed. Therefore, it is necessary to perform signal processing for correcting a color outside the color reproduction range of the display device to a color within the color reproduction range at the signal processing stage on either the imaging device side or the display device side. More specific description will be given below.
  • a YCrCb signal including a luminance signal Y and two color difference signals Cr and Cb is transmitted.
  • the transmitted YCrCb signal is converted into an RGB signal containing components indicating the luminance (ie, gradation) of red, green, and blue, and the display device uses this RGB signal. Display based on the signal.
  • the YCrCb signal itself is capable of expressing colors outside the EBU standard color reproduction range if all possible signal levels are used. YCrCb signals that express colors outside the EBU standard are simply displayed. When converted to RGB signals, at least one of the components corresponding to red, green, and blue becomes negative. Since conventional display devices cannot display colors outside the EBU standard, when RGB signals containing negative level components are input, negative level components are treated as zero (referred to as clipping). ) Can be corrected to a color within the EBU standard that can be displayed by the display device.
  • Patent Document 1 As shown in FIG. 14, there are six sub-pixels R, G, B, Ye, C, and M that display red, green, blue, yellow, cyan, and magenta.
  • a liquid crystal display device 800 in which the pixel P is configured is disclosed.
  • the color reproduction range of this liquid crystal display device 800 is shown in FIG.
  • FIG. 15 As shown in Fig. 15, the color reproduction range represented by a hexagon with six points as vertices corresponding to the six primary colors almost covers the object color.
  • the color reproduction range can be widened by increasing the number of primary colors used for display.
  • display devices that perform display using four or more primary colors are collectively referred to as “multi-primary color display devices”.
  • Patent Document 1 Special Table 2004-529396
  • Non-Patent Document 1 MR Pointer, 'The gamut of real surface colors, Color Research and Application, Vol. 5, No. 3, pp. 145—155 (19 80)
  • the conventional broadcasting standard is based on the premise that a display device that performs display using three primary colors is used! /. Therefore, the multi-primary color display disclosed in Patent Document 1 is used. Even if the device is used simply, the color reproduction range is wide! /, And! /, And the characteristics of the multi-primary color display device cannot be used, and the color reproduction range can be sufficiently wide and displayed. What! /
  • the present invention has been made in view of the above problems, and an object of the present invention is to faithfully reproduce a color indicated by a video signal including a component at a negative level, and to achieve a sufficient color reproduction range.
  • An object of the present invention is to provide a display device capable of performing a wide display.
  • the display device of the present invention is a display device that performs display using n (n is a natural number of 4 or more) primary colors, and m (m is smaller than n! /, A natural number) primary colors.
  • a video signal converting unit that receives a corresponding m primary color signal and converts the m primary color signal into an n primary color signal corresponding to the n primary colors, wherein the n primary colors are included in the m primary colors;
  • the color component corresponding to the one primary color of the m primary color signals is at a negative level, the primary color that is in the relationship between the one primary color and the complementary color is included.
  • the luminance of the primary color in the complementary color relationship is higher than that in the case where the color component corresponding to the one primary color is zero, and the luminance of the primary colors other than the primary color in the complementary color relationship is lower.
  • the n primary color signals are generated.
  • the video signal conversion unit generates a color matching color signal by performing color matching on the m primary color signal, and linearly combines the color components of the color matching color signal. As a result, each color component of the n primary color signal is generated.
  • the color matching conversion color signal corresponds to the one primary color.
  • a color component including a color component and corresponding to the one primary color is assigned a coefficient used for the primary combination to each of the n primary colors! / Among the coefficients assigned to the color components corresponding to one primary color, the coefficient for the primary color having the complementary color relationship and the coefficient for the primary color other than the primary color having the complementary color relationship have different signs. .
  • the video signal conversion unit generates each color component of the n primary color signal by linearly combining the color components of the m primary color signal.
  • a coefficient used when performing the primary combination is assigned to each of the n primary colors! /, To the color component corresponding to the one primary color.
  • the coefficient for the primary color related to the complementary color and the coefficient for the primary color other than the primary color related to the complementary color are mutually The sign of the sign is different.
  • a pixel including a plurality of sub-pixels is provided, and each of the plurality of sub-pixels displays a corresponding one of the n primary colors.
  • the certain primary color is red, and the primary color complementary to the certain primary color is cyan.
  • the one primary color is green, and the primary color complementary to the one primary color is magenta.
  • the certain primary color is blue, and the primary color complementary to the certain primary color is yellow.
  • the n is 5 and the m is 3.
  • the five primary colors are red, yellow, green, cyan, and blue
  • the video signal conversion unit is a color component corresponding to red of the five primary color signals. Is at a negative level, the luminance of cyan, which is complementary to the red color, is higher than that when the color component corresponding to red is zero, and the luminance of primary colors other than cyan is lower. Generate the five primary color signals.
  • the five primary colors are red, yellow, green, cyan, and blue
  • the video signal conversion unit is a color component corresponding to blue of the five primary color signals. Is at a negative level When the color component corresponding to the blue color is zero, the brightness of the yellow color that is complementary to the blue color is higher and the brightness of the primary colors other than yellow is lower. Is generated.
  • the method of the present invention is a method for generating n primary color signals corresponding to the n primary colors for display using n (n is a natural number of 4 or more) primary colors, Includes a conversion step of receiving m primary color signals corresponding to m primary colors (m is a natural number smaller than n) and converting the m primary color signals into the n primary color signals, wherein the n primary colors are including a primary color that is complementary to one primary color among the m primary colors, and the converting step includes a negative level of a color component corresponding to the one primary color of the m primary color signals.
  • the luminance of the primary color other than the primary color having the complementary color relationship is higher than that when the color component corresponding to the one primary color is zero.
  • the program of the present invention causes a computer to execute generation processing for generating n primary color signals corresponding to the n primary colors for display using n (n is a natural number of 4 or more) primary colors.
  • the generation processing includes a conversion step of receiving m primary color signals corresponding to m primary colors (m is a natural number smaller than n) and converting the m primary color signals into the n primary color signals.
  • the n primary colors include a primary color that is complementary to a primary color of the m primary colors, and the conversion step includes the one primary color signal of the m primary color signals.
  • the luminance of the primary color in the complementary color relationship is higher than when the color component corresponding to the one primary color is zero, and the complementary color
  • the brightness of the primary colors other than the relevant primary colors Characterized in that it comprises the step of generating said n-primary signal in Kunar so.
  • n primary color signals with increased brightness of primary colors that are complementary to one primary color.
  • n is a natural number greater than or equal to 4
  • m is a natural number smaller than n.
  • the color component is at a negative level Since colors (ie, colors outside the m primary color reproduction range) can be expressed, it is possible to display in a wide and / or color reproduction range.
  • FIG. 1 is a diagram showing a display device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing four pixels among the pixels of the multi-primary color panel according to the embodiment of the present invention.
  • FIG. 3 is an XY chromaticity diagram in an XYZ color system showing a color reproduction range of a display device according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the luminance ratio of the five primary colors when displaying EBU-R, G, B, Y, C, ⁇ , and W colors according to the embodiment of the present invention.
  • FIG. 5 is an xy chromaticity diagram in an XYZ color system representing a color having a negative color component according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing signal processing when an RGB signal according to an embodiment of the present invention does not include a negative level color component.
  • FIG. 7 is a diagram showing signal processing when an RGB signal includes a negative level color component according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a relationship between a color in which any one of red, green, and blue color components is at a negative level and a pointer color according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing an RGB signal having a negative red color component level according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing an RGB signal having a negative green color component level according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing a method for calculating coefficients corresponding to color matching conversion color signals according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a method for calculating a coefficient corresponding to a color signal having a negative color component according to an embodiment of the present invention.
  • FIG. 13 An xy chromaticity diagram in the XYZ color system, with triangles having vertices at three points corresponding to the three primary colors red, green, and blue, representing the color reproduction range.
  • FIG. 14 is a diagram showing a liquid crystal display device in which one pixel P is configured by six sub-pixels R, G, B, Ye, C, and M that display red, green, blue, yellow, cyan, and magenta. .
  • FIG. 15 is a diagram showing a color reproduction range of the liquid crystal display device shown in FIG.
  • FIG. 16 is a diagram showing a color in which the component corresponding to red is at a negative level.
  • FIG. 1 is a diagram showing a liquid crystal display device 100 according to an embodiment of the present invention.
  • the display device 100 includes a video signal conversion unit 110 that converts a received video signal to generate a multi-primary color signal, and a multi-primary color panel 120 that performs display according to the multi-primary color signal.
  • the video signal conversion unit 110 includes a matrix conversion unit 111 and a three primary color / multi-primary color conversion unit 112.
  • the display device 100 performs display using five primary colors.
  • the video signal converter 110 receives the three primary color signals corresponding to the three primary colors, and converts the three primary color signals into the five primary color signals corresponding to the five primary colors.
  • the three primary colors corresponding to the three primary color signals are red, green, and blue.
  • the five primary colors corresponding to are collectively referred to as “5 primary colors”) are red, green, blue, yellow, and cyan.
  • the components corresponding to the respective primary colors of the 3 primary color signal and the 5 primary color signal are expressed as “ This is called “color component”.
  • the color component substantially represents luminance.
  • the three primary color signals include a red component, a green component, and a blue component
  • the five primary color signals include a red component, a green component, a blue component, a yellow component, and a cyan component.
  • the five primary colors include primary colors that are complementary to one of the three primary colors.
  • cyan is a complementary color of red and yellow is a complementary color of blue.
  • the dominant wavelength of red is about 610 to 635 nm
  • the dominant wavelength of green is about 520 to 550 nm
  • the dominant wavelength of blue is about 470 nm or less
  • the dominant wavelength of cyan is about 475 to 515 nm and is the complementary color of blue.
  • the dominant wavelength of yellow is about 560 to 585 nm.
  • the display device 100 may have magenta (green complementary color) as a primary color. In this case, the auxiliary main wavelength of magenta is about 495 to 565 nm.
  • the multi-primary color panel 120 includes a plurality of pixels arranged in a matrix.
  • FIG. 2 shows four pixels 121 among the pixels of the multi-primary color panel 120.
  • Each pixel 121 is defined by a plurality of sub-pixels as shown in FIG. Specifically, the plurality of sub-pixels that define the pixel 121 display a red sub-pixel R that displays red, a green sub-pixel G that displays green, a blue sub-pixel B that displays blue, and yellow. Yellow sub-pixel Ye and cyan sub-pixel C displaying cyan. In the example shown in FIG. 2, these five sub-pixels are arranged in one row and five columns in the pixel 121.
  • sRGB, BT.709, and BT.601 are video signal formats that include only colors within the color reproduction range equivalent to EBU.
  • the display device 100 receives a video signal in any of these formats, the display device 100 displays the color within the color reproduction range of the EBU.
  • adobeRGB and DCI are video formats that can express colors outside the EBU color reproduction range by taking the chromaticity points of the three primary colors wider than the EBU color reproduction range.
  • sYCC, xvYCC ,: BT. 1361 is a video signal format including chromaticity points of the three primary colors of the EBU, but also including colors outside the color reproduction range of the EBU by having a negative value.
  • the display device 100 receives a video signal (also referred to as a high color gamut signal) of these formats. In this case, it is possible to faithfully represent colors outside the EBU color reproduction range, which is not limited to colors within the EBU color reproduction range.
  • At least one color component is negative in the three primary color signals indicating colors outside the color reproduction range (hereinafter simply referred to as "reference range") defined by a standard (for example, EBU).
  • reference range defined by a standard (for example, EBU).
  • EBU color reproduction range
  • the video signal converter 110 has a complementary color relationship than when the color component corresponding to the one primary color is zero.
  • the 5 primary color signals are generated so that the brightness of the primary colors in is increased.
  • the red component is at a negative level
  • the five primary color signals are generated so that the luminance of cyan, which is a complementary color, is high, and the luminance other than cyan is low.
  • FIG. 16 shows a color R ⁇ indicated by the three primary color signals whose red component is at a negative level and a color R0 indicated by the three primary color signals whose red component is zero.
  • the color R0 when the red component is zero is located on the boundary of the reference range, while the color R- when the red component is at the negative level is the reference range.
  • To the cyan side that is, in the direction of increasing the saturation of cyan).
  • the color displayed on the multi-primary panel 120 will have zero red component. This is the same as the color R0 indicated by the three primary color signals.
  • the color displayed by the multi-primary panel 120 is in the direction of increasing the saturation of cyan. It can be shifted in the direction from R0 to R— and in the opposite direction, and can display the color R— faithful to the received three primary color signals.
  • the red component changes from 0 to a negative level, the overall luminance is reduced by the negative level. Therefore, it is necessary to reduce the luminance other than cyan in consideration of the increased luminance of cyan. is there.
  • the color indicated by the three primary color signals having a negative color component corresponding to a certain primary color deviates from the reference range in the direction in which the saturation of the complementary color of the primary color increases. Yes. Therefore, the brightness of the primary color that is in a complementary color relationship is higher than when the primary color component is zero.
  • the five primary color signals are generated, thereby faithfully reproducing the received three primary color signals.
  • Various colors can be displayed.
  • the video signal conversion unit 110 in the present embodiment first generates a transient color signal (referred to as a “color matching color signal”) by performing color matching of the three primary color signals.
  • a transient color signal referred to as a “color matching color signal”
  • the uniform color conversion refers to converting a combination of color components expressing a certain color into a combination of other color components without changing the expressed color.
  • the video signal conversion unit 110 generates each color signal of the five primary color signals by multiplying each color component of the equal color conversion color signal by a coefficient and adding the result. That is, the video signal conversion unit 110 generates the respective color components of the five primary color signals by linearly combining the respective color components of the color matching conversion color signals.
  • FIG. 3 is an xy chromaticity diagram in the XYZ color system.
  • the positions on the chromaticity diagram of the five primary colors used by the display device 100 are represented by MPC—R, G, B, Y, C.
  • a pentagon having five points corresponding to the five primary colors of red, green, blue, yellow, and cyan represents the color reproduction range of the display device 100.
  • the triangle with the three vertices corresponding to the three primary colors of red, green, and blue represents the above-mentioned reference range. This standard range is expressed based on the technical standards regarding the color of color television receivers established by the EBU.
  • Red, green, blue, yellow, cyan, and magenta located at the boundary of the reference range are represented as EBU—R, G, B, Y, C, and ⁇ .
  • the color reproduction range of the five primary colors surrounds the reference range, and the display device 100 can faithfully display colors outside the reference range.
  • Fig. 4 is a table showing an example of the ratio of the luminance of the five primary colors when displaying EBU—R, G, B, Y, C, ⁇ , and W colors.
  • EBU-W represents white.
  • each of EBU—R, G, B, Y, C, and ⁇ is basically represented by three primary colors located near the five primary colors.
  • EBU-R is expressed as the ratio of ⁇ [? 1 ⁇ 1 luminance 1.015, ⁇ [? Ji: 6 luminance 0.010, ⁇ ? ⁇ ⁇ luminance 0.094. The this In this way, the predetermined luminance ratio becomes a coefficient used when generating each color component of the five primary color signals by the linear combination described later.
  • the imaging device receives light indicating the color of the subject (represented by tristimulus values (X, Y, ⁇ ) in the XYZ color system), performs color space conversion, and outputs a signal L , L and L are generated.
  • the color space conversion is expressed by, for example, the following (Equation 1) in the xvYCC standard.
  • E force luminance signal Y and color difference Generate signals Cb and Cr.
  • the generated luminance signal Y and color difference signals Cb, Cr are transmitted as, for example, video signals and received on the display device side.
  • the matrix conversion unit 111 included in the display device 100 performs color signal conversion shown in (Equation 5), and converts the received luminance signal Y and color difference signals Cb and Cr into RGB signals R, G, and B.
  • the chromaticity diagram shown in FIG. 5 is referred to.
  • the actual color of the subject (X, Y, ⁇ ) (0. 233, 0. 379, 0. 345)
  • this color is located at the boundary of the reference range.
  • red color component is at a negative level, it cannot be displayed as it is, and signal processing is required to faithfully represent this color.
  • Figure 6 shows the signal processing when the RGB signal does not contain negative level color components
  • Figure 7 shows the signal processing when the RGB signal contains negative level color components.
  • RGB signal R G B is converted from matrix converter 111 (Fig. 1) to three primary colors / multi-primary colors converter 11
  • the three primary color / multi-primary color conversion unit 112 converts the RGB signal R GB into a uniform color.
  • the level of the lowest blue component B in the in in in level is the white component DW of the color conversion signal.
  • the difference is the level of the yellow component DY of the color conversion signal, and the highest red component R
  • the difference between the in level and the level of the green component G is the level of the red component of the color conversion color signal.
  • the type of the color component included in the force color conversion color signal in which the color conversion color signal including the white component DW, the yellow component DY, and the red component DR is generated is not limited to this.
  • the color conversion color signal is the red component R, green component G, and blue of the input RGB signal.
  • blue component DB blue component DB
  • cyan component DC cyan component DC corresponding to these complementary colors
  • magenta component DM and yellow component DY yellow component DY
  • white component DW white component DW which is an achromatic component.
  • the three primary color / multi-primary color conversion unit 112 generates each color component R G B Y C of the five primary color signals by linearly combining the respective color components DW DY DR of the equal color conversion color signals.
  • Coefficients Wr Wc Yr Yc Rr Rc used for the primary combination are assigned in advance to each color component DW DY DR of the color conversion color signal for each of the five primary colors used for display.
  • the coefficient used for the primary combination represents the ratio of the luminance of each of the five primary colors assigned in advance to each color component of the color matching conversion color signal.
  • Rr Rc is a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a yellow sub-pixel for the red component DR. It shows the ratio of luminance that each pixel and cyan sub-pixel should bear.
  • the three primary colors / multi-primary color conversion unit 112 includes color components R to C corresponding to the five primary colors, respectively.
  • the five primary color signals are generated and output to the multi-primary color panel 120, and the multi-primary color panel 120 displays colors according to the received five primary color signals.
  • a color whose color component B is at a negative level is a color belonging to region 1 shown in FIG. Figure 8 is red
  • Regions 1 to 3 are regions outside the reference range.
  • a color whose level of blue component B is negative is a color belonging to region 1.
  • Red component R level is negative in in
  • the colors that belong to area 2 are Colors with a negative green component G level belong to region 3.
  • FIG. 7 shows the levels of the red component R, green component G, and blue component B (representing red, green, and blue luminances, respectively) in the RGB signal.
  • RGB signal R R, G, B by color conversion, blue component NB, yellow component DY,
  • a color conversion color signal including the red component DR is generated.
  • the procedure for color matching is as described with reference to FIG.
  • the level of the blue color component NB is also negative.
  • the three primary color / multi-primary color conversion unit 112 generates the respective color components R G B Y C of the five primary color signals by linearly combining the color components NB DY DR of the equal color conversion color signals.
  • Each color component NB DY DR of the color conversion color signal is pre-assigned with the coefficient Br Be—Yr Yc Rr Rc used for the primary combination for each of the five primary colors used for display! / .
  • the coefficients Br Be— assigned to the blue component NB of the color conversion color signal the coefficient By— corresponding to the primary color yellow that is complementary, and the coefficient Br Bg— Bb corresponding to the primary colors other than yellow — Signs of positive and negative are different from Be-.
  • each color component R C of the five primary color signals is obtained by performing a linear combination.
  • R DRXRr + DYXYr + NBXBr-out
  • a primary color signal can be generated. By increasing the brightness of yellow, it belongs to region 1 shown in Color can be faithfully reproduced.
  • the blue component NB is a negative value in (Equation 7)
  • the brightness of the primary colors other than yellow is reduced by NB X Bx— and the blue component B is zero.
  • Figure 9 shows an RGB signal with a negative red component R level.
  • FIG. 10 shows an RGB signal having a negative green component G level. Magenta
  • magenta In the case of 5 primary colors, the present invention is not applicable! /.
  • the brightness of magenta which is a complementary color of green, increases. Therefore, the 5 primary color signals should be generated so that the brightness of the primary colors other than magenta is low.
  • the coefficient for the color component at the positive level can be calculated as described with reference to FIG.
  • the coefficient for the color component at the negative level can be calculated as follows.
  • FIG. 11 is a diagram illustrating a method of calculating a coefficient corresponding to the blue component NB at a negative level.
  • Chromaticity of yellow MPC—Y
  • all lit the brightness corresponding to the highest gradation
  • the color component levels of the red component DR, yellow component DY, and blue component NB of the color matching conversion color signal are
  • FIG. 11 (IV) shows the luminances of the five primary colors MPC-R to C when only the yellow sub-pixel is lit.
  • the brightness of the five primary colors MPC—R to C for displaying the red component DR the brightness of the five primary colors MPC—R to C for displaying the yellow component DY, and the blue component NB are displayed.
  • the luminance shown in (III) corresponds to the luminance when the level of the blue component NB is 0.058, dividing the luminance shown in (III) by 0.058 gives the level of the blue component NB.
  • the luminance (reference value) when is 1 is obtained as shown in (V).
  • the luminance ratio shown in (V) It is none other than the ratio of the five primary colors for displaying the tonal blue color. From the value shown in (V), it can be seen that as the absolute value of the level of the blue component NB increases, the luminance of yellow as a complementary color increases and the luminance of the other primary colors decreases.
  • the value shown in (VI) is obtained by inverting the sign of the value shown in (V), and the coefficient for the blue component NB in the negative level It can be. In this way, the coefficient for the blue component NB at the negative level (coefficient for linear coupling) can be obtained.
  • the level of each color component of the input RGB signal is assumed from the chromaticity and brightness when only the yellow sub-pixel is fully lit, and the coefficient for the blue component NB is calculated backward.
  • the coefficient for the blue component NB can be calculated back from the chromaticity and brightness of the color displayed in other lighting states.
  • the coefficient used when the level of the red color component is negative can be obtained in the same procedure as described above based on the luminance when only the cyan primary color is lit.
  • the five primary color signals may be generated by performing linear combination of the color components of the RGB signal without performing color matching.
  • FIG. 12 is a diagram illustrating a method for calculating the coefficient corresponding to the blue component NB at the negative level.
  • Each color component R, G, B of the RGB signal has coefficients Rr to Rc in in in which linear combination is performed.
  • the level of each color component of the RGB signal is
  • the coefficient is multiplied by the green component G level, as shown in (II) of Fig. 12.
  • the brightness of the five primary colors MPC—R to C for displaying the green component G is obtained.
  • the luminance shown in (III) corresponds to the luminance when the level of the blue component NB is 0.058, dividing the luminance shown in (III) by 0.058 gives the level of the blue component NB.
  • the luminance (reference value) when is 1 is obtained as shown in (V).
  • the luminance ratio shown in (V) is none other than the ratio of the five primary colors for displaying negative gray levels. From the value shown in (V), it can be seen that as the absolute value of the level of the blue component NB increases, the luminance of yellow as a complementary color increases and the luminance of the other primary colors decreases.
  • the value shown in (VI) is obtained by inverting the sign of the value shown in (V), and the coefficient for the blue component NB in the negative level It can be. In this way, the coefficient for the blue component NB at the negative level (coefficient for linear coupling) can be obtained.
  • the level of each color component of the input RGB signal is assumed from the chromaticity and brightness when only the yellow sub-pixel is fully lit, and the coefficient for the blue component NB
  • the coefficient for the blue component NB can be back calculated from the chromaticity and brightness of the color displayed in other lighting states.
  • the present invention relates to the phenomenon that the saturation of the complementary color side increases and the overall luminance decreases due to the fact that a signal of a primary color shows a negative value from 0.
  • this is a means of increasing the brightness of the primary colors of the complementary colors while lowering the brightness of the primary colors other than the complementary colors. Therefore, as long as such a signal can be generated, the calculation method introduced in the description of the present embodiment is not necessarily required.
  • the generated five primary color signals may be input to the multi-primary color panel 120 after performing gamma correction.
  • the display device that converts the three primary color signals into the five primary color signals and displays them is exemplified, but the number of primary colors employed in the present invention is not limited to these.
  • the present invention receives m primary signals corresponding to m primary colors (m is smaller than n! /, A natural number), and n primary color signals corresponding to n primary colors (n is a natural number of 4 or more). Applies to display devices that convert to and display. For example, the present invention is also applied to a display device that converts and displays three primary color signals into six primary color signals.
  • the present invention is also applied to a field sequential drive type display device.
  • the components of the display device 100 described above can be realized by hardware, and some or all of them can also be realized by software.
  • these components When these components are realized by software, they may be configured by a computer, and this computer executes a CPU (central processing unit) for executing various programs and these programs. RAM (random access memory) that functions as a work area. Then, a program for realizing the function of each component is executed on the computer, and this computer is operated as each component.
  • CPU central processing unit
  • RAM random access memory
  • the program may be supplied from a recording medium to a computer or may be a communication. It may be supplied to the computer via a network.
  • the recording medium may be configured so as to be separable from the computer or may be incorporated in the computer. This recording medium can be read via a program reading device connected to the computer as an external storage device even if the recording program code is attached to the computer so that the computer can directly read the recorded program code. Even if it is something that is worn like
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes: magnetic disks such as flexible disks / hard disks, magneto-optical disks such as MO and MD, and optical disks such as CD-ROM, DVD and CD-R.
  • Disk IC card (including memory card), optical card, etc .: Or semiconductor such as mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), flash ROM A memory or the like can be used.
  • the program takes the form of a carrier wave or a data signal in which the program code is embodied by electronic transmission.
  • the present invention is suitably used for various display devices, such as a liquid crystal display device, a CRT (brown tube), an organic EL display device, a plasma display panel, and a surface-conduction electron-emitter display (SED). Is preferably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Of Color Television Signals (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Color Image Communication Systems (AREA)

Abstract

It is possible to provide a display device capable of faithfully reproducing a color indicated by a video signal including a component of a negative level and performing display of a sufficiently wide color reproduction range. The display device performs display by using n (n is a natural number not smaller than 4) primary colors. The display device includes a video signal conversion unit which receives m (m is a natural number smaller than n) primary color signals corresponding to m primary colors and converts the m primary color signals into n primary color signals corresponding to the n primary colors. The n primary colors contain the primary colors in the relationship of complementary colors against one of the m primary colors. When the color component corresponding to one of the m primary colors is at a negative level, the video signal conversion unit generates n primary color signals so that the luminance of the primary color in the relationship of the complementary colors is higher and the luminance of the primary colors other than the primary color in the relationship of the complementary colors is lower than when a color component corresponding to one of the primary colors is zero.

Description

明 細 書  Specification

表示装置  Display device

技術分野  Technical field

[0001] 本発明は、 4つ以上の原色を用いて表示を行う表示装置に関する。  The present invention relates to a display device that performs display using four or more primary colors.

背景技術  Background art

[0002] 現在、種々の表示装置が様々な用途に利用されている。一般的な表示装置では、 光の 3原色である赤、緑、青を表示する 3つのサブ画素によって 1つの画素が構成さ れており、そのことによってカラー表示が可能になっている。  Currently, various display devices are used for various purposes. In a typical display device, one pixel is composed of three sub-pixels that display the three primary colors of light, red, green, and blue, which enables color display.

[0003] しかしながら、従来の表示装置は、表示可能な色の範囲(「色再現範囲」と呼ばれる )が狭いという問題を有している。図 13に、 3原色を用いて表示を行う従来の表示装 置の色再現範囲を示す。図 13は、 XYZ表色系における xy色度図であり、赤、緑、青 の 3原色に対応した 3つの点を頂点とする三角形が色再現範囲を表している。また、 図中には、 Pointerによって明らかにされた、自然界に存在する様々な物体の表面 色(非特許文献 1参照)が X印でプロットされている。図 13からわかるように、色再現 範囲に含まれない物体色が存在しており、 3原色を用いて表示を行う表示装置では、 一部の物体色を表示することができない。なお、表示装置の色再現範囲は、 EBU (E uropean Broadcasting Union)や NT≥>C (National Television System C ommittee)などの団体によって策定された、基準となる色再現範囲との比較(EBU 比、 NTSC比などと表記される)によって表されることが多い。  However, the conventional display device has a problem that a displayable color range (referred to as “color reproduction range”) is narrow. Figure 13 shows the color reproduction range of a conventional display device that displays using the three primary colors. FIG. 13 is an xy chromaticity diagram in the XYZ color system, and a triangle having apexes at three points corresponding to the three primary colors red, green, and blue represents the color reproduction range. In the figure, the surface colors (see Non-Patent Document 1) of various objects that exist in nature, as revealed by Pointer, are plotted with X marks. As can be seen from FIG. 13, there are object colors that are not included in the color reproduction range, and some display colors cannot be displayed on a display device that displays using the three primary colors. The color reproduction range of the display device is compared with the standard color reproduction range (EBU ratio, EBU (European Broadcasting Union) and NT≥> C (National Television System Committee)). It is often expressed by NTSC ratio).

[0004] 上述したように、従来の表示装置は色再現範囲が狭いので、たとえ撮像装置が広 V、範囲の色を記録可能であったとしても、一部の色(つまり色再現範囲外の色)を表 示することができない。そのため、撮像装置側および表示装置側の何れかの信号処 理の段階で、表示装置の色再現範囲外の色を色再現範囲内の色に補正する信号 処理を行う必要がある。以下、より具体的に説明する。  [0004] As described above, since the conventional display device has a narrow color reproduction range, even if the imaging device can record a wide V and range of colors, some colors (that is, out of the color reproduction range). (Color) cannot be displayed. Therefore, it is necessary to perform signal processing for correcting a color outside the color reproduction range of the display device to a color within the color reproduction range at the signal processing stage on either the imaging device side or the display device side. More specific description will be given below.

[0005] 例えば、一般的なテレビ放送では、輝度信号 Yと 2つの色差信号 Crおよび Cbとを 含む YCrCb信号が伝送される。伝送された YCrCb信号は、赤、緑、青のそれぞれ の輝度(つまり階調)を示す成分を含む RGB信号に変換され、表示装置はこの RGB 信号に基づレ、て表示を行う。 [0005] For example, in general television broadcasting, a YCrCb signal including a luminance signal Y and two color difference signals Cr and Cb is transmitted. The transmitted YCrCb signal is converted into an RGB signal containing components indicating the luminance (ie, gradation) of red, green, and blue, and the display device uses this RGB signal. Display based on the signal.

[0006] YCrCb信号自体は仮に可能な信号レベルをすベて使うと、 EBU規格の色再現範 囲外の色を表現することができる力 EBU規格外の色を表現する YCrCb信号を単 純に RGB信号に変換すると、赤、緑、青に対応した成分の少なくとも 1つが負のレべ ノレになってしまう。従来の表示装置では、 EBU規格外の色を表示することはできない ため、負のレベルの成分を含む RGB信号が入力された場合には、負のレベルの成 分をゼロとして取り扱う(クリッピングと呼ばれる)ことにより、表示装置が表示可能な E BU規格内の色に補正することができる。  [0006] The YCrCb signal itself is capable of expressing colors outside the EBU standard color reproduction range if all possible signal levels are used. YCrCb signals that express colors outside the EBU standard are simply displayed. When converted to RGB signals, at least one of the components corresponding to red, green, and blue becomes negative. Since conventional display devices cannot display colors outside the EBU standard, when RGB signals containing negative level components are input, negative level components are treated as zero (referred to as clipping). ) Can be corrected to a color within the EBU standard that can be displayed by the display device.

[0007] 例えば、図 16に示すような EBU規格外のシアン(図 16中に点 R—で示されている 。)を示す YCrCb信号を RGB信号に変換すると、赤に対応した成分が負のレベルと なってしまい、いわばマイナスの階調を示す信号が生成されてしまう。このようなシァ ンは、従来の表示装置では表示できないので、赤に対応した成分をクリッピングして ゼロとして取り扱うことにより、 EBU規格内のシアン(図 16中に点 R0で示されて!/、る。 )に補正して表示を行う。このような補正処理により、従来の表示装置での表示が可 能となるが、表示される色は補正された色であるので、本来の物体色を表現できてい ないという問題がある。  [0007] For example, when a YCrCb signal indicating cyan (indicated by a point R- in Fig. 16) that is not an EBU standard as shown in Fig. 16 is converted into an RGB signal, the component corresponding to red is negative. Level, and so to speak, a signal indicating a negative gradation is generated. Since such a scene cannot be displayed on a conventional display device, the component corresponding to red is clipped and treated as zero, so that cyan within the EBU standard (indicated by point R0 in FIG. 16! /, Display after correcting to). Such correction processing enables display on a conventional display device, but there is a problem that the original object color cannot be expressed because the displayed color is a corrected color.

[0008] 一方、近年、表示装置の色再現範囲を広くするために、表示に用いる原色の数を 4 つ以上に増やす手法が提案されて!/、る。  [0008] On the other hand, in recent years, a method for increasing the number of primary colors used for display to four or more has been proposed in order to widen the color reproduction range of display devices.

[0009] 例えば、特許文献 1には、図 14に示すように、赤、緑、青、黄、シアン、マゼンダを 表示する 6つのサブ画素 R、 G、 B、 Ye、 C、 Mによって 1つの画素 Pが構成された液 晶表示装置 800が開示されている。この液晶表示装置 800の色再現範囲を図 15に 示す。図 15に示すように、 6つの原色に対応した 6つの点を頂点とする六角形によつ て表される色再現範囲は、物体色をほぼ網羅している。このように、表示に用いる原 色の数を増やすことによって、色再現範囲を広くすることができる。本願明細書では、 4色以上の原色を用いて表示を行う表示装置を「多原色表示装置」と総称する。 特許文献 1 :特表 2004— 529396号公報  [0009] For example, in Patent Document 1, as shown in FIG. 14, there are six sub-pixels R, G, B, Ye, C, and M that display red, green, blue, yellow, cyan, and magenta. A liquid crystal display device 800 in which the pixel P is configured is disclosed. The color reproduction range of this liquid crystal display device 800 is shown in FIG. As shown in Fig. 15, the color reproduction range represented by a hexagon with six points as vertices corresponding to the six primary colors almost covers the object color. Thus, the color reproduction range can be widened by increasing the number of primary colors used for display. In the present specification, display devices that perform display using four or more primary colors are collectively referred to as “multi-primary color display devices”. Patent Document 1: Special Table 2004-529396

非特許文献 1 : M. R. Pointer, 'The gamut of real surface colors, Color Research and Application, Vol. 5, No. 3, pp. 145— 155 (19 80) Non-Patent Document 1: MR Pointer, 'The gamut of real surface colors, Color Research and Application, Vol. 5, No. 3, pp. 145—155 (19 80)

発明の開示  Disclosure of the invention

発明が解決しょうとする課題  Problems to be solved by the invention

[0010] しかしながら、従来の放送規格は、 3原色を用いて表示を行う表示装置が使用され ることを前提として!/、るので、特許文献 1に開示されてレ、るような多原色表示装置を単 純に用いても、色再現範囲が広!/、と!/、う多原色表示装置の特性を活かすことはでき ず、十分に色再現範囲の広レ、表示を行うことはできな!/、。 [0010] However, the conventional broadcasting standard is based on the premise that a display device that performs display using three primary colors is used! /. Therefore, the multi-primary color display disclosed in Patent Document 1 is used. Even if the device is used simply, the color reproduction range is wide! /, And! /, And the characteristics of the multi-primary color display device cannot be used, and the color reproduction range can be sufficiently wide and displayed. What! /

[0011] 例えば、マイナスの階調を示す信号を従来と同様にクリッピングしてしまうと、結局、 従来の表示装置と同程度の色再現範囲しか実現することはできないし、負のレベル にある成分を含む映像信号が示す色を多原色表示装置において忠実に再現する手 法はレヽまだ確立されて!/ヽなレヽ。 [0011] For example, if a signal indicating a negative gradation is clipped in the same manner as in the past, it is possible to achieve only the same color reproduction range as that of a conventional display device, and a component at a negative level. A method to faithfully reproduce the colors indicated by video signals including multi-color display devices has not yet been established!

[0012] 本発明は、上記課題に鑑みてなされたものであり、その目的は、負のレベルにある 成分を含む映像信号が示す色を忠実に再現することができ、十分に色再現範囲の 広い表示を行うことができる表示装置を提供することにある。 [0012] The present invention has been made in view of the above problems, and an object of the present invention is to faithfully reproduce a color indicated by a video signal including a component at a negative level, and to achieve a sufficient color reproduction range. An object of the present invention is to provide a display device capable of performing a wide display.

課題を解決するための手段  Means for solving the problem

[0013] 本発明の表示装置は、 n個(nは 4以上の自然数)の原色を用いて表示を行う表示 装置であって、 m個(mは nより小さ!/、自然数)の原色に対応した m原色信号を受け取 り、前記 m原色信号を前記 n個の原色に対応した n原色信号へ変換する映像信号変 換部を備え、前記 n個の原色は、前記 m個の原色のうちのある 1つの原色と補色の関 係にある原色を含んでおり、前記映像信号変換部は、前記 m原色信号のうちの前記 ある 1つの原色に対応した色成分が負のレベルにあるとき、前記ある 1つの原色に対 応した色成分がゼロであるときよりも前記補色の関係にある原色の輝度が高くなるよう に、かつ前記補色の関係にある原色以外の原色の輝度が低くなるようにした前記 n 原色信号を生成することを特徴とする。  [0013] The display device of the present invention is a display device that performs display using n (n is a natural number of 4 or more) primary colors, and m (m is smaller than n! /, A natural number) primary colors. A video signal converting unit that receives a corresponding m primary color signal and converts the m primary color signal into an n primary color signal corresponding to the n primary colors, wherein the n primary colors are included in the m primary colors; When the color component corresponding to the one primary color of the m primary color signals is at a negative level, the primary color that is in the relationship between the one primary color and the complementary color is included. The luminance of the primary color in the complementary color relationship is higher than that in the case where the color component corresponding to the one primary color is zero, and the luminance of the primary colors other than the primary color in the complementary color relationship is lower. The n primary color signals are generated.

[0014] ある実施形態によれば、前記映像信号変換部は、前記 m原色信号を等色変換する ことによって等色変換色信号を生成し、前記等色変換色信号の各色成分を一次結 合することによって前記 n原色信号の各色成分を生成する。  [0014] According to an embodiment, the video signal conversion unit generates a color matching color signal by performing color matching on the m primary color signal, and linearly combines the color components of the color matching color signal. As a result, each color component of the n primary color signal is generated.

[0015] ある実施形態によれば、前記等色変換色信号は、前記ある 1つの原色に対応した 色成分を含み、前記ある 1つの原色に対応した色成分には、前記 1次結合をするとき に用いる係数が前記 n個の原色のそれぞれにつ!/、て割り当てられており、前記ある 1 つの原色に対応した色成分に割り当てられた係数の中で、前記補色の関係にある原 色についての係数と、前記補色の関係にある原色以外の原色についての係数とは 互いに正負の符合が異なる。 [0015] According to an embodiment, the color matching conversion color signal corresponds to the one primary color. A color component including a color component and corresponding to the one primary color is assigned a coefficient used for the primary combination to each of the n primary colors! / Among the coefficients assigned to the color components corresponding to one primary color, the coefficient for the primary color having the complementary color relationship and the coefficient for the primary color other than the primary color having the complementary color relationship have different signs. .

[0016] ある実施形態によれば、前記映像信号変換部は、前記 m原色信号の各色成分を 一次結合することによって前記 n原色信号の各色成分を生成する。  According to an embodiment, the video signal conversion unit generates each color component of the n primary color signal by linearly combining the color components of the m primary color signal.

[0017] ある実施形態によれば、前記ある 1つの原色に対応した色成分には、前記 1次結合 をするときに用いる係数が前記 n個の原色のそれぞれにつ!/、て割り当てられており、 前記ある 1つの原色に対応した色成分に割り当てられた係数の中で、前記補色の関 係にある原色についての係数と、前記補色の関係にある原色以外の原色について の係数とは互いに正負の符合が異なる。  [0017] According to an embodiment, a coefficient used when performing the primary combination is assigned to each of the n primary colors! /, To the color component corresponding to the one primary color. Among the coefficients assigned to the color component corresponding to the one primary color, the coefficient for the primary color related to the complementary color and the coefficient for the primary color other than the primary color related to the complementary color are mutually The sign of the sign is different.

[0018] ある実施形態によれば、複数のサブ画素を含む画素を備え、前記複数のサブ画素 のそれぞれは、前記 n原色のうちの対応する 1つを表示する。  [0018] According to an embodiment, a pixel including a plurality of sub-pixels is provided, and each of the plurality of sub-pixels displays a corresponding one of the n primary colors.

[0019] ある実施形態によれば、前記ある 1つの原色は赤であり、前記ある 1つの原色と補 色の関係にある原色はシアンである。  According to an embodiment, the certain primary color is red, and the primary color complementary to the certain primary color is cyan.

[0020] ある実施形態によれば、前記ある 1つの原色は緑であり、前記ある 1つの原色と補 色の関係にある原色はマゼンダである。  [0020] According to an embodiment, the one primary color is green, and the primary color complementary to the one primary color is magenta.

[0021] ある実施形態によれば、前記ある 1つの原色は青であり、前記ある 1つの原色と補 色の関係にある原色は黄である。  [0021] According to an embodiment, the certain primary color is blue, and the primary color complementary to the certain primary color is yellow.

[0022] ある実施形態によれば、前記 nは 5であり、前記 mは 3である。  In one embodiment, the n is 5 and the m is 3.

[0023] ある実施形態によれば、前記 5個の原色は、赤、黄、緑、シアン、青であり、前記映 像信号変換部は、前記 5原色信号のうちの赤色に対応した色成分が負のレベルにあ るとき、前記赤色に対応した色成分がゼロであるときよりも前記赤色と補色の関係に あるシアンの輝度が高くなるように、かつシアン以外の原色の輝度が低くなるようにし た 5原色信号を生成する。  [0023] According to one embodiment, the five primary colors are red, yellow, green, cyan, and blue, and the video signal conversion unit is a color component corresponding to red of the five primary color signals. Is at a negative level, the luminance of cyan, which is complementary to the red color, is higher than that when the color component corresponding to red is zero, and the luminance of primary colors other than cyan is lower. Generate the five primary color signals.

[0024] ある実施形態によれば、前記 5個の原色は、赤、黄、緑、シアン、青であり、前記映 像信号変換部は、前記 5原色信号のうちの青色に対応した色成分が負のレベルにあ るとき、前記青色に対応した色成分がゼロであるときよりも前記青色と補色の関係に ある黄色の輝度が高くなるように、かつ黄色以外の原色の輝度が低くなるようにした 5 原色信号を生成する。 [0024] According to an embodiment, the five primary colors are red, yellow, green, cyan, and blue, and the video signal conversion unit is a color component corresponding to blue of the five primary color signals. Is at a negative level When the color component corresponding to the blue color is zero, the brightness of the yellow color that is complementary to the blue color is higher and the brightness of the primary colors other than yellow is lower. Is generated.

[0025] 本発明の方法は、 n個(nは 4以上の自然数)の原色を用いて表示を行うための前記 n個の原色に対応した n原色信号を生成する方法であって、前記方法は、 m個(mは nより小さい自然数)の原色に対応した m原色信号を受け取り、前記 m原色信号を前 記 n原色信号へ変換する変換ステップを包含し、前記 n個の原色は、前記 m個の原 色のうちのある 1つの原色と補色の関係にある原色を含んでおり、前記変換ステップ は、前記 m原色信号のうちの前記ある 1つの原色に対応した色成分が負のレベルに あるとき、前記ある 1つの原色に対応した色成分がゼロであるときよりも前記補色の関 係にある原色の輝度が高くなるように、かつ前記補色の関係にある原色以外の原色 の輝度が低くなるようにした前記 n原色信号を生成するステップを含むことを特徴とす  [0025] The method of the present invention is a method for generating n primary color signals corresponding to the n primary colors for display using n (n is a natural number of 4 or more) primary colors, Includes a conversion step of receiving m primary color signals corresponding to m primary colors (m is a natural number smaller than n) and converting the m primary color signals into the n primary color signals, wherein the n primary colors are including a primary color that is complementary to one primary color among the m primary colors, and the converting step includes a negative level of a color component corresponding to the one primary color of the m primary color signals. When the color component corresponding to the one primary color is zero, the luminance of the primary color other than the primary color having the complementary color relationship is higher than that when the color component corresponding to the one primary color is zero. Generating the n primary color signals so that the It is characterized by

[0026] 本発明のプログラムは、 n個(nは 4以上の自然数)の原色を用いて表示を行うため の前記 n個の原色に対応した n原色信号を生成する生成処理をコンピュータに実行 させるためのプログラムであって、前記生成処理は、 m個(mは nより小さい自然数)の 原色に対応した m原色信号を受け取り、前記 m原色信号を前記 n原色信号へ変換す る変換ステップを包含し、前記 n個の原色は、前記 m個の原色のうちのある 1つの原 色と補色の関係にある原色を含んでおり、前記変換ステップは、前記 m原色信号のう ちの前記ある 1つの原色に対応した色成分が負のレベルにあるとき、前記ある 1つの 原色に対応した色成分がゼロであるときよりも前記補色の関係にある原色の輝度が 高くなるように、かつ前記補色の関係にある原色以外の原色の輝度が低くなるように した前記 n原色信号を生成するステップを含むことを特徴とする。 [0026] The program of the present invention causes a computer to execute generation processing for generating n primary color signals corresponding to the n primary colors for display using n (n is a natural number of 4 or more) primary colors. The generation processing includes a conversion step of receiving m primary color signals corresponding to m primary colors (m is a natural number smaller than n) and converting the m primary color signals into the n primary color signals. The n primary colors include a primary color that is complementary to a primary color of the m primary colors, and the conversion step includes the one primary color signal of the m primary color signals. When the color component corresponding to the primary color is at a negative level, the luminance of the primary color in the complementary color relationship is higher than when the color component corresponding to the one primary color is zero, and the complementary color The brightness of the primary colors other than the relevant primary colors Characterized in that it comprises the step of generating said n-primary signal in Kunar so.

発明の効果  The invention's effect

[0027] 本発明によれば、 m原色信号のある 1つの原色に対応した色成分が負のレベルに あるとき、そのある 1つの原色に対応した色成分がゼロであるときよりも、そのある 1つ の原色と補色の関係にある原色の輝度を高くした n原色信号を生成する。ここで、 n は 4以上の自然数であり、 mは nより小さい自然数である。色成分が負のレベルとなる 色(すなわち m原色の色再現範囲外の色)を表現することができるので、広!/、色再現 範囲で表示を行うことができる。 [0027] According to the present invention, when a color component corresponding to one primary color of the m primary color signal is at a negative level, the color component corresponding to one primary color is smaller than when the color component corresponding to the one primary color is zero. Generates n primary color signals with increased brightness of primary colors that are complementary to one primary color. Here, n is a natural number greater than or equal to 4, and m is a natural number smaller than n. The color component is at a negative level Since colors (ie, colors outside the m primary color reproduction range) can be expressed, it is possible to display in a wide and / or color reproduction range.

図面の簡単な説明 Brief Description of Drawings

[図 1]本発明の実施形態による表示装置を示す図である。 FIG. 1 is a diagram showing a display device according to an embodiment of the present invention.

[図 2]本発明の実施形態による多原色パネルの画素のうちの 4つの画素を示す図で ある。  FIG. 2 is a diagram showing four pixels among the pixels of the multi-primary color panel according to the embodiment of the present invention.

[図 3]本発明の実施形態による表示装置の色再現範囲を示す XYZ表色系における X y色度図である。  FIG. 3 is an XY chromaticity diagram in an XYZ color system showing a color reproduction range of a display device according to an embodiment of the present invention.

[図 4]本発明の実施形態による EBU— R、 G、 B、 Y、 C、 Μ、 Wの色を表示するときの 5原色の輝度の割合を表す図である。  FIG. 4 is a diagram showing the luminance ratio of the five primary colors when displaying EBU-R, G, B, Y, C, Μ, and W colors according to the embodiment of the present invention.

[図 5]本発明の実施形態による色成分が負のレベルになる色を表す XYZ表色系にお ける xy色度図である。  FIG. 5 is an xy chromaticity diagram in an XYZ color system representing a color having a negative color component according to an embodiment of the present invention.

[図 6]本発明の実施形態による RGB信号が負のレベルの色成分を含まないときの信 号処理を示す図である。  FIG. 6 is a diagram showing signal processing when an RGB signal according to an embodiment of the present invention does not include a negative level color component.

[図 7]本発明の実施形態による RGB信号が負のレベルの色成分を含むときの信号処 理を示す図である。  FIG. 7 is a diagram showing signal processing when an RGB signal includes a negative level color component according to an embodiment of the present invention.

[図 8]本発明の実施形態による赤、緑、青の色成分の何れかが負のレベルにある色と ポインターズカラーとの関係を示す図である。  FIG. 8 is a diagram illustrating a relationship between a color in which any one of red, green, and blue color components is at a negative level and a pointer color according to the embodiment of the present invention.

[図 9]本発明の実施形態による赤の色成分のレベルがマイナスの RGB信号を示す図 である。  FIG. 9 is a diagram showing an RGB signal having a negative red color component level according to an embodiment of the present invention.

[図 10]本発明の実施形態による緑の色成分のレベルがマイナスの RGB信号を示す 図である。  FIG. 10 is a diagram showing an RGB signal having a negative green color component level according to an embodiment of the present invention.

[図 11]本発明の実施形態による等色変換色信号に対応する係数の算出方法を示す 図である。  FIG. 11 is a diagram showing a method for calculating coefficients corresponding to color matching conversion color signals according to an embodiment of the present invention.

[図 12]本発明の実施形態による色成分が負のレベルの色信号に対応する係数の算 出方法を示す図である。  FIG. 12 is a diagram illustrating a method for calculating a coefficient corresponding to a color signal having a negative color component according to an embodiment of the present invention.

[図 13]XYZ表色系における xy色度図であり、赤、緑、青の 3原色に対応した 3つの点 を頂点とする三角形が色再現範囲を表している。 [図 14]赤、緑、青、黄、シアン、マゼンダを表示する 6つのサブ画素 R、 G、 B、 Ye、 C 、 Mによって 1つの画素 Pが構成された液晶表示装置を示す図である。 [Fig. 13] An xy chromaticity diagram in the XYZ color system, with triangles having vertices at three points corresponding to the three primary colors red, green, and blue, representing the color reproduction range. FIG. 14 is a diagram showing a liquid crystal display device in which one pixel P is configured by six sub-pixels R, G, B, Ye, C, and M that display red, green, blue, yellow, cyan, and magenta. .

[図 15]図 14に示す液晶表示装置の色再現範囲を示す図である。  15 is a diagram showing a color reproduction range of the liquid crystal display device shown in FIG.

[図 16]赤に対応した成分が負のレベルとなる色を示す図である。  FIG. 16 is a diagram showing a color in which the component corresponding to red is at a negative level.

符号の説明  Explanation of symbols

[0029] 100 表示装置 [0029] 100 display device

110 映像信号変換部  110 Video signal converter

11 1 マトリクス変換部  11 1 Matrix converter

112 3原色/多原色変換部  112 3-primary / multi-primary color converter

120 多原色パネル  120 multi-primary color panel

121 画素  121 pixels

発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION

[0030] 以下、図面を参照して本発明の実施形態を説明する。なお、以下では液晶表示装 置を例として本発明を説明するが、本発明は、液晶表示装置だけでなぐ CRT (ブラ ゥン管)、有機 EL表示装置、プラズマディスプレイパネル、 SED (Surface -conduc tion Electron - emitter Display)などの種々の表示装置に好適に用いられる。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, the present invention will be described using a liquid crystal display device as an example. However, the present invention is not limited to a liquid crystal display device. tion Electron-emitter Display) and the like.

[0031] 図 1は、本発明の実施形態による液晶表示装置 100を示す図である。表示装置 10 0は、受信した映像信号を変換して多原色信号を生成する映像信号変換部 110と、 多原色信号に応じた表示を行う多原色パネル 120とを備える。映像信号変換部 110 は、マトリクス変換部 111と、 3原色/多原色変換部 112とを備える。  FIG. 1 is a diagram showing a liquid crystal display device 100 according to an embodiment of the present invention. The display device 100 includes a video signal conversion unit 110 that converts a received video signal to generate a multi-primary color signal, and a multi-primary color panel 120 that performs display according to the multi-primary color signal. The video signal conversion unit 110 includes a matrix conversion unit 111 and a three primary color / multi-primary color conversion unit 112.

[0032] 表示装置 100は 5個の原色を用いて表示を行う。映像信号変換部 110は、 3個の 原色に対応した 3原色信号を受け取り、 3原色信号を 5個の原色に対応した 5原色信 号へ変換する。  [0032] The display device 100 performs display using five primary colors. The video signal converter 110 receives the three primary color signals corresponding to the three primary colors, and converts the three primary color signals into the five primary color signals corresponding to the five primary colors.

[0033] この例では、 3原色信号に対応した 3個の原色(以下ではこの 3個の原色を総称し て単に「3原色」とも呼ぶ。)は赤、緑、青であり、 5原色信号に対応した 5個の原色(以 下ではこの 5個の原色を総称して単に「5原色」とも呼ぶ。)は赤、緑、青、黄、シアン である。  [0033] In this example, the three primary colors corresponding to the three primary color signals (hereinafter, these three primary colors are collectively referred to simply as "three primary colors") are red, green, and blue. The five primary colors corresponding to (hereinafter, these five primary colors are collectively referred to as “5 primary colors”) are red, green, blue, yellow, and cyan.

[0034] なお、本願明細書では、 3原色信号や 5原色信号の個々の原色に対応した成分を「 色成分」と呼ぶ。色成分は実質的には輝度を表している。本実施形態では、 3原色信 号は赤色成分、緑色成分、青色成分を含み、 5原色信号は赤色成分、緑色成分、青 色成分、黄色成分、シアン色成分を含んでいる。 In the present specification, the components corresponding to the respective primary colors of the 3 primary color signal and the 5 primary color signal are expressed as “ This is called “color component”. The color component substantially represents luminance. In the present embodiment, the three primary color signals include a red component, a green component, and a blue component, and the five primary color signals include a red component, a green component, a blue component, a yellow component, and a cyan component.

[0035] 5原色は、 3原色のうちのある 1つの原色と補色の関係にある原色を含んでいる。例 えば、シアンは赤の補色であり、黄は青の補色である。赤の主波長は約 610〜635n m、緑の主波長は約 520〜550nm、青の主波長は約 470nm以下、赤の補色である シアンの主波長は約 475〜515nm、青の補色である黄の主波長は約 560〜585n mとする。なお、表示装置 100が原色としてマゼンダ(緑の補色)を有していてもよぐ その場合、マゼンダの補助主波長は約 495〜565nmとする。  [0035] The five primary colors include primary colors that are complementary to one of the three primary colors. For example, cyan is a complementary color of red and yellow is a complementary color of blue. The dominant wavelength of red is about 610 to 635 nm, the dominant wavelength of green is about 520 to 550 nm, the dominant wavelength of blue is about 470 nm or less, and is the complementary color of cyan.The dominant wavelength of cyan is about 475 to 515 nm and is the complementary color of blue. The dominant wavelength of yellow is about 560 to 585 nm. The display device 100 may have magenta (green complementary color) as a primary color. In this case, the auxiliary main wavelength of magenta is about 495 to 565 nm.

[0036] 多原色パネル 120は、マトリクス状に配列された複数の画素を備えている。図 2は、 多原色パネル 120の画素のうちの 4つの画素 121を示している。各画素 121は、図 2 に示すように、複数のサブ画素によって規定されている。画素 121を規定する複数の サブ画素は、具体的には、赤を表示する赤サブ画素 Rと、緑を表示する緑サブ画素 Gと、青を表示する青サブ画素 Bと、黄を表示する黄サブ画素 Yeと、シアンを表示す るシアンサブ画素 Cである。図 2に示す例では、これら 5つのサブ画素が画素 121内 で 1行 5列に配置されている。  [0036] The multi-primary color panel 120 includes a plurality of pixels arranged in a matrix. FIG. 2 shows four pixels 121 among the pixels of the multi-primary color panel 120. Each pixel 121 is defined by a plurality of sub-pixels as shown in FIG. Specifically, the plurality of sub-pixels that define the pixel 121 display a red sub-pixel R that displays red, a green sub-pixel G that displays green, a blue sub-pixel B that displays blue, and yellow. Yellow sub-pixel Ye and cyan sub-pixel C displaying cyan. In the example shown in FIG. 2, these five sub-pixels are arranged in one row and five columns in the pixel 121.

[0037] 表示装置 100が受信する映像信号のフォーマットは、現在提案中のものも含めて 様々なものが存在し、例えば、図 1に示すように sRGB、 BT. 709、 BT. 601、 sYCC 、 adobeRGB, DCI、 xvYCCおよび BT. 1361カ る。  [0037] There are various formats of video signals received by the display device 100 including those currently proposed. For example, as shown in FIG. 1, sRGB, BT.709, BT.601, sYCC, adobeRGB, DCI, xvYCC and BT.

[0038] 図 1に例示したフォーマットのうち、 sRGB、 BT. 709、 BT. 601は、 EBUと同等の 色再現範囲内の色のみを含む映像信号のフォーマットである。表示装置 100は、こ れらのフォーマットの映像信号を受信した場合は、 EBUの色再現範囲内の色で表示 を行う。  [0038] Of the formats illustrated in FIG. 1, sRGB, BT.709, and BT.601 are video signal formats that include only colors within the color reproduction range equivalent to EBU. When the display device 100 receives a video signal in any of these formats, the display device 100 displays the color within the color reproduction range of the EBU.

[0039] また、 adobeRGB、 DCIは、 3原色の色度点を EBUの色再現範囲より広く取ること により、 EBUの色再現範囲外の色を表現できる映像フォーマットである。  [0039] Further, adobeRGB and DCI are video formats that can express colors outside the EBU color reproduction range by taking the chromaticity points of the three primary colors wider than the EBU color reproduction range.

[0040] 一方、 sYCC、 xvYCC、: BT. 1361は EBUの 3原色の色度点でありながら負の値 も极うことにより EBUの色再現範囲外の色も含む映像信号のフォーマットである。表 示装置 100は、これらのフォーマットの映像信号(高色域信号とも称する)を受信した 場合は、 EBUの色再現範囲内の色だけでなぐ EBUの色再現範囲外の色について も忠実に表現できる。 [0040] On the other hand, sYCC, xvYCC ,: BT. 1361 is a video signal format including chromaticity points of the three primary colors of the EBU, but also including colors outside the color reproduction range of the EBU by having a negative value. The display device 100 receives a video signal (also referred to as a high color gamut signal) of these formats. In this case, it is possible to faithfully represent colors outside the EBU color reproduction range, which is not limited to colors within the EBU color reproduction range.

[0041] 既に述べたように、規格(例えば EBU)によって定められた色再現範囲(以下では 単に「基準範囲」と呼ぶ。)外の色を示す 3原色信号は、少なくとも 1つの色成分が負 のレベルにある。映像信号変換部 110は、 3原色信号のうちのある 1つの原色に対応 した色成分が負のレベルにあるとき、そのある 1つの原色に対応した色成分がゼロで あるときよりも補色の関係にある原色の輝度が高くなるように 5原色信号を生成する。 例えば、赤色成分が負のレベルにあるとき、補色の関係にあるシアンの輝度が高くな るように、かつシアン以外の輝度は低くなるように 5原色信号を生成する。このような信 号処理を行うことにより、基準範囲外の色を忠実に表示することができる。この理由を 図 16を参照しながら説明する。  [0041] As already described, at least one color component is negative in the three primary color signals indicating colors outside the color reproduction range (hereinafter simply referred to as "reference range") defined by a standard (for example, EBU). Is at the level of When the color component corresponding to one primary color of the three primary color signals is at a negative level, the video signal converter 110 has a complementary color relationship than when the color component corresponding to the one primary color is zero. The 5 primary color signals are generated so that the brightness of the primary colors in is increased. For example, when the red component is at a negative level, the five primary color signals are generated so that the luminance of cyan, which is a complementary color, is high, and the luminance other than cyan is low. By performing such signal processing, colors outside the reference range can be displayed faithfully. The reason for this will be explained with reference to FIG.

[0042] 図 16には、赤色成分が負のレベルにある 3原色信号が示す色 R—と、赤色成分が ゼロである 3原色信号が示す色 R0とを示している。図 16に示すように、赤色成分が ゼロである場合の色 R0が、基準範囲の境界上に位置しているのに対し、赤色成分が 負のレベルにある場合の色 R—は、基準範囲からシアン側に(つまりシアンの彩度が 高くなる方向に)外れている。  FIG. 16 shows a color R− indicated by the three primary color signals whose red component is at a negative level and a color R0 indicated by the three primary color signals whose red component is zero. As shown in Figure 16, the color R0 when the red component is zero is located on the boundary of the reference range, while the color R- when the red component is at the negative level is the reference range. To the cyan side (that is, in the direction of increasing the saturation of cyan).

[0043] 赤色成分が負のレベルにある 3原色信号について、従来と同じ様にクリッピングを 行う(つまり赤色成分をゼロとして扱う)と、多原色パネル 120で表示される色は、赤色 成分がゼロである 3原色信号が示す色 R0と同じになってしまう。これに対し、赤色成 分がゼロであるときよりもシアンの輝度が高くなるように 5原色信号を生成することによ り、多原色パネル 120が表示する色をシアンの彩度が高くなる方向(R0から R—へ向 力、う方向)にシフトさせることができ、受け取った 3原色信号に忠実な色 R—を表示す ること力 Sできる。またこのとき、赤色成分が 0から負のレベルになることで全体の輝度が 負のレベル分低くなるため、シアンの輝度を高くした分も考慮して、シアン以外の輝 度を低くする必要がある。  [0043] For the three primary color signals whose red component is at a negative level, if clipping is performed in the same manner as before (that is, the red component is treated as zero), the color displayed on the multi-primary panel 120 will have zero red component. This is the same as the color R0 indicated by the three primary color signals. On the other hand, by generating the 5 primary color signals so that the cyan brightness is higher than when the red component is zero, the color displayed by the multi-primary panel 120 is in the direction of increasing the saturation of cyan. It can be shifted in the direction from R0 to R— and in the opposite direction, and can display the color R— faithful to the received three primary color signals. At this time, since the red component changes from 0 to a negative level, the overall luminance is reduced by the negative level. Therefore, it is necessary to reduce the luminance other than cyan in consideration of the increased luminance of cyan. is there.

[0044] 上述したように、ある原色に対応した色成分が負のレベルにある 3原色信号によつ て示される色は、その原色の補色の彩度が高くなる方向に基準範囲から外れている 。そのため、その原色成分がゼロであるときよりも補色の関係にある原色の輝度が高 くなるように、かつ負のレベル分の輝度を補償するために補色の関係にある原色以 外の原色の輝度を下げるように 5原色信号を生成することにより、受け取った 3原色信 号に忠実な色を表示することができる。 [0044] As described above, the color indicated by the three primary color signals having a negative color component corresponding to a certain primary color deviates from the reference range in the direction in which the saturation of the complementary color of the primary color increases. Yes. Therefore, the brightness of the primary color that is in a complementary color relationship is higher than when the primary color component is zero. In order to compensate the luminance of the negative level, and to reduce the luminance of the primary colors other than the primary colors that are in the complementary color relationship, the five primary color signals are generated, thereby faithfully reproducing the received three primary color signals. Various colors can be displayed.

[0045] 本実施形態における映像信号変換部 110は、まず、 3原色信号を等色変換するこ とによって過渡的な色信号(「等色変換色信号」と呼ぶ。)を生成する。ここで、等色変 換とは、ある色を表現する色成分の組合せを、表現される色を変化させることなく他 の色成分の組合せに変換することをレ、う。  The video signal conversion unit 110 in the present embodiment first generates a transient color signal (referred to as a “color matching color signal”) by performing color matching of the three primary color signals. Here, the uniform color conversion refers to converting a combination of color components expressing a certain color into a combination of other color components without changing the expressed color.

[0046] また、映像信号変換部 110は、等色変換色信号の各色成分にそれぞれ係数を乗じ て加算することにより、 5原色信号の各色信号を生成する。つまり、映像信号変換部 1 10は、等色変換色信号の各色成分を一次結合することによって 5原色信号の各色 成分を生成する。  In addition, the video signal conversion unit 110 generates each color signal of the five primary color signals by multiplying each color component of the equal color conversion color signal by a coefficient and adding the result. That is, the video signal conversion unit 110 generates the respective color components of the five primary color signals by linearly combining the respective color components of the color matching conversion color signals.

[0047] ここで、図 3を参照して、 5原色を用いる表示装置 100の色再現範囲を説明する。図  Here, with reference to FIG. 3, the color reproduction range of the display device 100 using the five primary colors will be described. Figure

3は、 XYZ表色系における xy色度図である。表示装置 100が用いる 5原色の色度図 上の位置を MPC— R、 G、 B、 Y、 Cで表している。赤、緑、青、黄、シアンの 5原色に 対応した 5つの点を頂点とする五角形が表示装置 100の色再現範囲を表している。 また、赤、緑、青の 3原色に対応した 3つの点を頂点とする三角形が上述した基準範 囲を表している。この基準範囲は、 EBUが定めたカラーテレビ受像機の色に関する 技術規格に基づいて表されている。基準範囲の境界に位置する赤、緑、青、黄、シ アン、マゼンダを EBU— R、 G、 B、 Y、 C、 Μと表している。 5原色の色再現範囲は基 準範囲の周りを囲っており、表示装置 100は基準範囲外の色も忠実に表示可能であ  3 is an xy chromaticity diagram in the XYZ color system. The positions on the chromaticity diagram of the five primary colors used by the display device 100 are represented by MPC—R, G, B, Y, C. A pentagon having five points corresponding to the five primary colors of red, green, blue, yellow, and cyan represents the color reproduction range of the display device 100. The triangle with the three vertices corresponding to the three primary colors of red, green, and blue represents the above-mentioned reference range. This standard range is expressed based on the technical standards regarding the color of color television receivers established by the EBU. Red, green, blue, yellow, cyan, and magenta located at the boundary of the reference range are represented as EBU—R, G, B, Y, C, and Μ. The color reproduction range of the five primary colors surrounds the reference range, and the display device 100 can faithfully display colors outside the reference range.

[0048] 液晶表示装置 100では 5原色を用いたカラー表示が行われるので、画素がある色 を表示するときには、当然ながら、 5つのサブ画素をそれぞれ所定の輝度で点灯させ ることになる。図 4は、 EBU— R、 G、 B、 Y、 C、 Μ、 Wの色を表示するときの 5原色の 輝度の割合の一例を表す表である。ここで EBU— Wは白色を表している。この例で は、 EBU— R、 G、 B、 Y、 C、 Μのそれぞれは、基本的には、 5原色のうちの近くに位 置する 3個の原色によって表される。例えば、 EBU— Rは、 ^[?じー1^の輝度1. 015 、 ^[?じー:6の輝度0. 010、 ^ ?じー丫の輝度0. 094の割合によつて表される。この ようにして予め定めた輝度の割合が、後述する一次結合により 5原色信号の各色成 分を生成する際に用いる係数となる。 [0048] Since the liquid crystal display device 100 performs color display using the five primary colors, naturally, when displaying a certain color, the five sub-pixels are each lit with a predetermined luminance. Fig. 4 is a table showing an example of the ratio of the luminance of the five primary colors when displaying EBU—R, G, B, Y, C, Μ, and W colors. Here, EBU-W represents white. In this example, each of EBU—R, G, B, Y, C, and Μ is basically represented by three primary colors located near the five primary colors. For example, EBU-R is expressed as the ratio of ^ [? 1 ^ 1 luminance 1.015, ^ [? Ji: 6 luminance 0.010, ^? じ 丫 luminance 0.094. The this In this way, the predetermined luminance ratio becomes a coefficient used when generating each color component of the five primary color signals by the linear combination described later.

[0049] 次に、撮影側での映像信号を生成する処理を説明する。 Next, a process for generating a video signal on the photographing side will be described.

[0050] 撮影装置(図示せず)は、被写体の色 (XYZ表色系における三刺激値 (X、 Y、 Ζ) で表される)を示す光を受け取り、色空間変換を行って信号 L、 L、 Lを生成する。  [0050] The imaging device (not shown) receives light indicating the color of the subject (represented by tristimulus values (X, Y, Ζ) in the XYZ color system), performs color space conversion, and outputs a signal L , L and L are generated.

R G B  R G B

色空間変換は、例えば xvYCC規格では以下の(式 1)によって表される。  The color space conversion is expressed by, for example, the following (Equation 1) in the xvYCC standard.

[数 1]  [Number 1]

Figure imgf000013_0002
Figure imgf000013_0002

Figure imgf000013_0001
Figure imgf000013_0001

(式 1)  (Formula 1)

[0051] 次に、(式 2)に示す光電変換 (逆ガンマ変換)を行うことによって、上記信号 L、 L  [0051] Next, by performing photoelectric conversion (inverse gamma conversion) shown in (Equation 2), the signals L, L

R  R

、 Lから信号 E、 E、 Eを生成する。  , L generate signals E, E, E.

B R G B  B R G B

E=l.099L045-0.099 for L≥0.018 E = l.099L 045 -0.099 for L≥0.018

E = 4.500L for 0.018>L>-0.018  E = 4.500L for 0.018> L> -0.018

E=-l.099(-L)045 + 0.099 for -0.018≥L E = -l.099 (-L) 045 + 0.099 for -0.018≥L

(式 2)  (Formula 2)

[0052] -0.018≥Lのときの信号 Eも計算することにより、負 :ある色成分を映像 信号に含めることができる。  [0052] By calculating the signal E when -0.018≥L, negative: a certain color component can be included in the video signal.

[0053] 次に、(式 3)に示す色信号変換を行い、信号 E、 E、 E力 信号 E、 E 、 E を生  [0053] Next, the color signal conversion shown in (Equation 3) is performed to generate signals E, E, E force signals E, E, E.

R G B Y Cb Cr 成する。  R G B Y Cb Cr

E =0.2126E +0.7152E +0.0722E  E = 0.2126E + 0.7152E + 0.0722E

E 0. 1146E -0.3854E +0.5000E  E 0. 1146E -0.3854E + 0.5000E

E =0.5000E -0.4542E —0.458E  E = 0.5000E -0.4542E --0.458E

(式 3)  (Formula 3)

[0054] 、E 力 輝度信号 Yおよび色差 信号 Cb、 Crを生成する。 [0054], E force luminance signal Y and color difference Generate signals Cb and Cr.

Y = 219Ε + 16 16≤ Y≤235  Y = 219Ε + 16 16≤ Y≤235

Cb = 224E + 128 1≤ Cb≤254  Cb = 224E + 128 1≤ Cb≤254

Cr = 224E + 128 1≤ Cr≤254  Cr = 224E + 128 1≤ Cr≤254

(式 4)  (Formula 4)

[0055] 生成された輝度信号 Yおよび色差信号 Cb、 Crは例えばビデオ信号として伝 送され、表示装置側で受信される。  The generated luminance signal Y and color difference signals Cb, Cr are transmitted as, for example, video signals and received on the display device side.

[0056] 次に、表示装置側での映像信号処理を説明する。  Next, video signal processing on the display device side will be described.

[0057] 表示装置 100が備えるマトリクス変換部 111は、(式 5)に示す色信号変換を行い、 受信した輝度信号 Yおよび色差信号 Cb、 Crを RGB信号 R、 G、 Bに変 換する。 The matrix conversion unit 111 included in the display device 100 performs color signal conversion shown in (Equation 5), and converts the received luminance signal Y and color difference signals Cb and Cr into RGB signals R, G, and B.

[数 2]  [Equation 2]

Figure imgf000014_0001
ソ ,
Figure imgf000014_0001
Seo

(式 5) (Formula 5)

[0058] ここで、図 5に示す色度図を参照する。被写体の実際の色 (X、 Y、 Ζ) = (0. 233、 0. 379、 0. 345)のとき、この色は基準範囲の境界に位置している。このとき、(式 5) 力、ら得られる RGB信号は、( R、 G、 B) = (0、 180、 138)となり、色成分力 S負の レベルに無いので、このまま表示可能である。  Here, the chromaticity diagram shown in FIG. 5 is referred to. When the actual color of the subject (X, Y, Ζ) = (0. 233, 0. 379, 0. 345), this color is located at the boundary of the reference range. At this time, the RGB signal obtained from (Equation 5) is (R, G, B) = (0, 180, 138), and since it is not at the negative level of the color component force S, it can be displayed as it is.

[0059] しかし、被写体の実際の色が基準範囲外の色、例えば (X、 Y、 Ζ) = (0. 151、 0. 3 37、 0. 341)のとき、(式 5)から得られる RGB信号は、( R、 G、 B) = (— l l l、 [0059] However, when the actual color of the subject is out of the reference range, for example, (X, Y, Ζ) = (0.151, 0.33 37, 0.341), it is obtained from (Equation 5) RGB signals are (R, G, B) = (—lll,

180、 138)となり、赤の色成分が負のレベルにあるので、このままでは表示すること ができず、この色を忠実に表現するための信号処理が必要となる。 180, 138), and since the red color component is at a negative level, it cannot be displayed as it is, and signal processing is required to faithfully represent this color.

[0060] 図 6および図 7を参照して、負のレベルの色成分を含む RGB信号の色を忠実に表 現するための信号処理を説明する。  With reference to FIG. 6 and FIG. 7, signal processing for faithfully expressing the color of an RGB signal including negative level color components will be described.

[0061] 図 6は、 RGB信号が負のレベルの色成分を含まないときの信号処理を示しており、 図 7は、 RGB信号が負のレベルの色成分を含むときの信号処理を示している。 [0061] Figure 6 shows the signal processing when the RGB signal does not contain negative level color components, Figure 7 shows the signal processing when the RGB signal contains negative level color components.

[0062] まず、図 6を参照して、 RGB信号が負のレベルの色成分を含まないときの 5原色信 号を生成する処理を説明する。 First, with reference to FIG. 6, a process for generating five primary color signals when the RGB signal does not include a negative level color component will be described.

[0063] RGB信号 R G Bがマトリクス変換部 111 (図 1)から 3原色/多原色変換部 11 [0063] RGB signal R G B is converted from matrix converter 111 (Fig. 1) to three primary colors / multi-primary colors converter 11

in in in  in in in

2へ入力される。図 6中左側に示す棒グラフは、 RGB信号に含まれる赤色成分 R  Input to 2. The bar graph on the left side of Fig. 6 shows the red component R contained in the RGB signal.

in 緑色成分 G 、青色成分 B (それぞれ赤、緑、青の輝度を示す)のレベルを表してい  in Indicates the level of green component G and blue component B (indicating red, green, and blue brightness respectively)

in in  in in

る。 3原色/多原色変換部 112は、 RGB信号 R G Bを等色変換することによつ  The The three primary color / multi-primary color conversion unit 112 converts the RGB signal R GB into a uniform color.

in in in  in in in

て、白色成分 DW、黄色成分 DY、赤色成分 DRを含む等色変換色信号を生成する  Generates a color conversion color signal including white component DW, yellow component DY, and red component DR.

[0064] 図からもわかるように、 RGB信号の赤色成分 R、緑色成分 G、青色成分 B のレべ [0064] As can be seen from the figure, the levels of the red component R, green component G, and blue component B of the RGB signal are shown.

in in in ルのうち、もっとも低い青色成分 B のレベルが、等色変換色信号の白色成分 DWの  The level of the lowest blue component B in the in in in level is the white component DW of the color conversion signal.

in  in

レベルとなる。また、 2番目に低い緑色成分 G のレベルと、青色成分 B のレベルとの  Become a level. Also, the level of the second lowest green component G and the level of blue component B

in in  in in

差分が、等色変換色信号の黄色成分 DYのレベルとなり、もっとも高い赤色成分 Rの  The difference is the level of the yellow component DY of the color conversion signal, and the highest red component R

in レベルと、緑色成分 Gのレベルとの差分が、等色変換色信号の赤色成分のレベルと  The difference between the in level and the level of the green component G is the level of the red component of the color conversion color signal.

in  in

なる。なお、ここでは白色成分 DW、黄色成分 DY、赤色成分 DRを含む等色変換色 信号が生成される例を示した力 等色変換色信号が含む色成分の種類はこれに限ら れない。等色変換色信号は、入力される RGB信号の赤色成分 R、緑色成分 G 、青  Become. Here, the type of the color component included in the force color conversion color signal in which the color conversion color signal including the white component DW, the yellow component DY, and the red component DR is generated is not limited to this. The color conversion color signal is the red component R, green component G, and blue of the input RGB signal.

in in 色成分 B の大小関係に応じ、 3原色に対応した赤色成分 DR、緑色成分 DGおよび  in in Red component DR, Green component DG and Green component DG corresponding to the three primary colors according to the magnitude relationship of color component B

in  in

青色成分 DBと、これらの補色に対応したシアン色成分 DC、マゼンダ色成分 DMお よび黄色成分 DYと、無彩色成分である白色成分 DWの 7種類の色成分を含み得る  It can contain seven types of color components: blue component DB, cyan component DC corresponding to these complementary colors, magenta component DM and yellow component DY, and white component DW which is an achromatic component.

[0065] 3原色/多原色変換部 112は、これら等色変換色信号の各色成分 DW DY DR を 1次結合することによって、 5原色信号の各色成分 R G B Y C を生成 [0065] The three primary color / multi-primary color conversion unit 112 generates each color component R G B Y C of the five primary color signals by linearly combining the respective color components DW DY DR of the equal color conversion color signals.

out out out out out する。等色変換色信号の各色成分 DW DY DRには、表示に用いる 5原色のそれ ぞれについて、 1次結合をするときに用いる係数 Wr Wc Yr Yc Rr Rcが予め 割り当てられている。ここで 1次結合するときに用いる係数とは、等色変換色信号の各 色成分に予め割り当てられた、 5原色それぞれの輝度の割合を表している。例えば、 Rr Rcは、赤色成分 DRについて、赤サブ画素、緑サブ画素、青サブ画素、黄サブ 画素、シアンサブ画素がそれぞれ担うべき輝度の割合を示しており、具体的には、( Rr、 Rg、 Rb、 Ry、 Rc) = (1. 015、 0. 000、 0. 010、 0. 094、 0. 000)である。以 下の(式 6)に示すように、これら係数に等色変換色信号の白色成分 DW、黄色成分 DY、赤色成分 DRを乗算してそれらの和を求める(1次結合する)ことで、 5原色信号 の各色成分 R 〜C が決まる。 out out out out Coefficients Wr Wc Yr Yc Rr Rc used for the primary combination are assigned in advance to each color component DW DY DR of the color conversion color signal for each of the five primary colors used for display. Here, the coefficient used for the primary combination represents the ratio of the luminance of each of the five primary colors assigned in advance to each color component of the color matching conversion color signal. For example, Rr Rc is a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a yellow sub-pixel for the red component DR. It shows the ratio of luminance that each pixel and cyan sub-pixel should bear. Specifically, (Rr, Rg, Rb, Ry, Rc) = (1.015, 0.000, 0.010, 0.094, 0.000). As shown in (Equation 6) below, these coefficients are multiplied by the white component DW, yellow component DY, and red component DR of the color matching conversion color signal to obtain the sum (primary combination). 5 Color components R to C of the primary color signal are determined.

out out  out out

R =DRX Rr + DYXYr + DWXWr  R = DRX Rr + DYXYr + DWXWr

out  out

G =DR X Rg + DYXYg + DW XWg  G = DR X Rg + DYXYg + DW XWg

out  out

B =DRX Rb + DY XYb + DW XWb  B = DRX Rb + DY XYb + DW XWb

out  out

Y =DR X Ry+DYXYy+DW XWy  Y = DR X Ry + DYXYy + DW XWy

out  out

C =DR X Rc + DY XYc + DW XWc  C = DR X Rc + DY XYc + DW XWc

out  out

(式 6)  (Formula 6)

[0066] 3原色/多原色変換部 112は、 5原色それぞれに対応した色成分 R 〜C を含む  [0066] The three primary colors / multi-primary color conversion unit 112 includes color components R to C corresponding to the five primary colors, respectively.

out out out out

5原色信号を生成して多原色パネル 120へ出力し、多原色パネル 120は、受け取つ た 5原色信号に応じた色の表示を行う。 The five primary color signals are generated and output to the multi-primary color panel 120, and the multi-primary color panel 120 displays colors according to the received five primary color signals.

[0067] 次に、図 7を参照して、 RGB信号が負のレベルの色成分を含むときの 5原色信号を 生成する処理を説明する。図 7に示す例では、青色成分 Bが負のレベルにある。青 [0067] Next, with reference to FIG. 7, a process of generating five primary color signals when the RGB signal includes negative level color components will be described. In the example shown in Fig. 7, the blue component B is at a negative level. Blue

in  in

色成分 B が負のレベルにある色は、図 8に示す領域 1に属する色である。図 8は、赤  A color whose color component B is at a negative level is a color belonging to region 1 shown in FIG. Figure 8 is red

in  in

色成分 R、緑色成分 G、青色成分 B の何れかが負のレベルにある色とポインター  Color and pointer with negative color component R, green component G, or blue component B

in in in  in in in

ズカラーとの関係を示す図である。領域 1〜3は基準範囲外の領域である。青色成分 B のレベルが負である色は領域 1に属する色である。赤色成分 Rのレベルが負であ in in  It is a figure which shows the relationship with a color. Regions 1 to 3 are regions outside the reference range. A color whose level of blue component B is negative is a color belonging to region 1. Red component R level is negative in in

る色は領域 2に属する色である。緑色成分 G のレベルが負である色は領域 3に属す  The colors that belong to area 2 are Colors with a negative green component G level belong to region 3.

in  in

る色である。  Color.

[0068] 青色成分 Bが負のレベルにあるとき、青と補色の関係にある黄の輝度が高くなるよ  [0068] When the blue component B is at a negative level, the luminance of yellow, which is complementary to blue, increases.

in  in

うに 5原色信号を生成することで、領域 1に属する色を表示することができる。  By generating the 5 primary color signals, colors belonging to area 1 can be displayed.

[0069] 再び図 7を参照する。図 7中左側に示す棒グラフは、 RGB信号に含まれる赤色成 分 R、緑色成分 G、青色成分 B (それぞれ赤、緑、青の輝度を示す)のレベルを表 in in in [0069] Referring again to FIG. The bar graph shown on the left side of Fig. 7 shows the levels of the red component R, green component G, and blue component B (representing red, green, and blue luminances, respectively) in the RGB signal.

している。青色成分 Bの色成分のレベルは負である。 3原色/多原色変換部 112は  is doing. The level of the color component of blue component B is negative. 3 primary color / multi-primary color converter 112

in  in

、 RGB信号 R 、 G 、 Bを等色変換することによって、青色成分 NB、黄色成分 DY、  , RGB signal R, G, B by color conversion, blue component NB, yellow component DY,

in in in 赤色成分 DRを含む等色変換色信号を生成する。等色変換の手順は、図 6を参照し て説明したとおりである。 RGB信号の青色成分 B (負のレベルにある)のレベルがそ in in in A color conversion color signal including the red component DR is generated. The procedure for color matching is as described with reference to FIG. The level of blue component B (which is at a negative level) of the RGB signal

in  in

のまま等色変換色信号の青色成分 NBとなるため、この青色成分 NBのレベルも負で ある。  Since the blue color component NB of the color matching color signal remains unchanged, the level of the blue color component NB is also negative.

[0070] 3原色/多原色変換部 112は、これら等色変換色信号の各色成分 NB DY DR を 1次結合することによって、 5原色信号の各色成分 R G B Y C を生成  [0070] The three primary color / multi-primary color conversion unit 112 generates the respective color components R G B Y C of the five primary color signals by linearly combining the color components NB DY DR of the equal color conversion color signals.

out out out out out する。等色変換色信号の各色成分 NB DY DRには、表示に用いる 5原色のそれ ぞれについて、 1次結合をするときに用いる係数 Br Be— Yr Yc Rr Rcが 予め割り当てられて!/、る。等色変換色信号の青色成分 NBに割り当てられた係数 Br Be—の中で、補色の関係にある原色である黄に対応する係数 By—と、黄以外 の原色に対応する係数 Br Bg— Bb— Be—とは互いに正負の符合が異なって いる。  out out out out Each color component NB DY DR of the color conversion color signal is pre-assigned with the coefficient Br Be—Yr Yc Rr Rc used for the primary combination for each of the five primary colors used for display! / . Among the coefficients Br Be— assigned to the blue component NB of the color conversion color signal, the coefficient By— corresponding to the primary color yellow that is complementary, and the coefficient Br Bg— Bb corresponding to the primary colors other than yellow — Signs of positive and negative are different from Be-.

[0071] 以下の(式 7)に示すように、 1次結合を行うことで、 5原色信号の各色成分 R C  [0071] As shown in (Equation 7) below, each color component R C of the five primary color signals is obtained by performing a linear combination.

out ou が決まる。  out ou is decided.

t  t

R =DRXRr + DYXYr + NBXBr- out  R = DRXRr + DYXYr + NBXBr-out

G =DRXRg + DYXYg + NBXBg- out  G = DRXRg + DYXYg + NBXBg-out

B =DRXRb + DYXYb + NBXBb- out  B = DRXRb + DYXYb + NBXBb- out

Y =DRXRy+DYXYy+NBXBy- out  Y = DRXRy + DYXYy + NBXBy-out

C =DRXRc + DYXYc + NBXBc- out  C = DRXRc + DYXYc + NBXBc- out

(式 7)  (Formula 7)

[0072] (式 7)では、赤色成分 DRとそれに対応した係数との積(DRXRr DRXRg"')と 、黄色成分 DYとそれに対応した係数との積(DYXYr DYXYg'-')と、青色成分 [0072] In (Equation 7), the product of the red component DR and the corresponding coefficient (DRXRr DRXRg "'), the product of the yellow component DY and the corresponding coefficient (DYXYr DYXYg'-'), and the blue component

NBとそれに対応した係数との積(NB X Br- NB X Bg )とが加算されて!/、る。 青色成分 NBに対応する係数の組み合わせでは、 By—の係数がマイナスの値を有 しており、その他の原色の係数はプラスの値を有している。 (負の値) X (負の値) = ( 正の値)となるため、 5原色信号の黄色成分 Y のレベルは NBX By—の分だけ高く The product of the NB and the corresponding coefficient (NB X Br-NB X Bg) is added! In the combination of coefficients corresponding to the blue component NB, the By coefficient has a negative value, and the other primary color coefficients have positive values. (Negative value) X (Negative value) = (Positive value), so the level of yellow component Y of 5 primary signals is higher by NBX By—

out  out

なり、青の補色である黄の輝度カ、青色成分 Bがゼロであるときよりも高くなるような 5  5 which is higher than when the blue component B is zero.

in  in

原色信号を生成することができる。黄の輝度を高くすることで、図 8に示す領域 1に属 する色を忠実に再現することができる。また、(式 7)で青色成分 NBが負の値であるた め、黄以外の原色の輝度は、 NB X Bx—の分だけ低くなり、青色成分 Bがゼロであ A primary color signal can be generated. By increasing the brightness of yellow, it belongs to region 1 shown in Color can be faithfully reproduced. In addition, since the blue component NB is a negative value in (Equation 7), the brightness of the primary colors other than yellow is reduced by NB X Bx— and the blue component B is zero.

in  in

るときよりも黄以外の原色の輝度が低くなるような 5原色信号を生成することができる。 黄以外の原色の輝度を低くすることで、図 8に示す領域 1に属する色をより忠実に再 現すること力 Sでさる。  5 primary color signals can be generated such that the brightness of the primary colors other than yellow is lower than that of By reducing the brightness of the primary colors other than yellow, the power S can be reproduced more faithfully to reproduce the colors belonging to region 1 shown in FIG.

[0073] 図 7を参照した説明では、青色成分 B のレベルが負である例を示した力 図 9に示  [0073] In the description with reference to FIG. 7, a force showing an example in which the level of the blue component B is negative is shown in FIG.

in  in

すように赤色成分 Rのレベルが負の場合も同様に、赤の補色であるシアンの輝度が  Similarly, when the level of the red component R is negative, the luminance of cyan, which is the complementary color of red,

in  in

高くなり、シアン以外の原色の輝度が低くなるような 5原色信号を生成する。図 9は、 赤色成分 Rのレベルが負の RGB信号を示している。  Generates 5 primary color signals that become higher and lower in brightness for the primary colors other than cyan. Figure 9 shows an RGB signal with a negative red component R level.

in  in

[0074] また、図 10は、緑色成分 Gのレベルが負の RGB信号を示している。マゼンダのな  FIG. 10 shows an RGB signal having a negative green component G level. Magenta

in  in

い 5原色の場合には本発明は適用されな!/、が、 6原色を用いる表示装置のように原 色としてマゼンダを有している場合は、緑の補色であるマゼンダの輝度が高くなり、マ ゼンダ以外の原色の輝度が低くなるように 5原色信号を生成すればよい。  In the case of 5 primary colors, the present invention is not applicable! /. However, when a magenta is used as a primary color as in a display device using 6 primary colors, the brightness of magenta, which is a complementary color of green, increases. Therefore, the 5 primary color signals should be generated so that the brightness of the primary colors other than magenta is low.

[0075] 次に、図 11、図 12を参照して、上述の 1次結合で用いる係数の算出方法の一例を 説明する。 [0075] Next, an example of a method for calculating coefficients used in the above-described linear combination will be described with reference to FIGS.

[0076] 等色変換色信号に含まれる色成分のうち、正のレベルにある色成分に対する係数 は、図 4を参照しながら説明したようにして算出することができる。一方、負のレベル にある色成分に対する係数は、以下のようにして算出することができる。  Of the color components included in the color matching conversion color signal, the coefficient for the color component at the positive level can be calculated as described with reference to FIG. On the other hand, the coefficient for the color component at the negative level can be calculated as follows.

[0077] 図 11は、負のレベルにある青色成分 NBに対応する係数の算出方法を示す図であ る。青の補色である黄を表示する黄サブ画素のみを最高階調に対応した輝度で点灯 (以下「全点灯」と呼ぶ。)させたとき、表示される黄色(MPC—Y)の色度 x、yおよび 明度 Yは、  [0077] FIG. 11 is a diagram illustrating a method of calculating a coefficient corresponding to the blue component NB at a negative level. Chromaticity of yellow (MPC—Y) that is displayed when only the yellow sub-pixel that displays yellow, the complementary color of blue, is lit at the brightness corresponding to the highest gradation (hereinafter referred to as “all lit”) x , Y and brightness Y are

x = 0. 465  x = 0. 465

y = 0. 522  y = 0. 522

Y = 0. 486  Y = 0. 486

(式 8)  (Formula 8)

である。このような色度 x、 yおよび明度 Υの黄色を表示するための RGB信号の各色 成分 R 、 G 、 B のレベルは、  It is. The level of each color component R, G, B of the RGB signal to display such chromaticity x, y and lightness Υ yellow is

in in in R =0. 668 in in in R = 0. 668

in  in

G =0. 498  G = 0.498

in  in

B = 0· 058  B = 0

in  in

(式 9)  (Formula 9)

であること力 S想定される。 RGB信号の各色成分 R、 G、 Bのレベルがそのような値  Power S is assumed. The level of each color component R, G, B of the RGB signal is such a value

in in in  in in in

のときは、等色変換色信号の赤色成分 DR、黄色成分 DY、青色成分 NBの色成分の レベルは、  In this case, the color component levels of the red component DR, yellow component DY, and blue component NB of the color matching conversion color signal are

DR=0. 170  DR = 0. 170

DY = 0. 498  DY = 0. 498

NB= -0. 058  NB = -0. 058

(式 10)  (Formula 10)

となる。赤色成分 DRに割り当てられた係数(図 4に示す EBU— Rの行に示されてい る係数)と赤色成分 DRのレベルとを乗算することにより、図 11の(I)に示すように赤 色成分 DRを表示するための 5原色 MPC— R〜Cの輝度が得られる。  It becomes. By multiplying the coefficient assigned to the red component DR (the coefficient shown in the EBU-R row shown in Fig. 4) by the level of the red component DR, the red component as shown in (I) of Fig. 11 is obtained. The luminance of the five primary colors MPC—R to C for displaying the component DR is obtained.

[0078] 同様に、黄色成分 DYに割り当てられた係数(図 4に示す EBU— Yの行に示されて V、る係数)と黄色成分 DYのレベルとを乗算することにより、図 11の(II)に示すように 黄色成分 DYを表示するための 5原色 MPC— R〜Cの輝度が得られる。  [0078] Similarly, by multiplying the coefficient assigned to the yellow component DY (the coefficient V, shown in the EBU—Y row shown in FIG. 4) by the level of the yellow component DY, ( As shown in II), the brightness of the five primary colors MPC—RC for displaying the yellow component DY can be obtained.

[0079] 黄サブ画素のみを全点灯させたときの 5原色 MPC— R〜Cの輝度を図 11の(IV) に示す。ここでは、赤色成分 DRを表示するための 5原色 MPC— R〜Cの輝度と、黄 色成分 DYを表示するための 5原色 MPC— R〜Cの輝度と、青色成分 NBを表示す るための 5原色 MPC— R〜Cの輝度との合計力 黄サブ画素のみを全点灯させたと きの 5原色 MPC— R〜Cの輝度に相当するので、この(IV)に示す輝度から、(I)およ び (II)に示す輝度を減算することにより、図 11の(III)に示すように、青色成分 NBを 表示するための 5原色 MPC— R〜Cの輝度が得られる。つまり(III) = (IV)一((1) + (II) )が成り立つ。  [0079] Fig. 11 (IV) shows the luminances of the five primary colors MPC-R to C when only the yellow sub-pixel is lit. Here, the brightness of the five primary colors MPC—R to C for displaying the red component DR, the brightness of the five primary colors MPC—R to C for displaying the yellow component DY, and the blue component NB are displayed. This is the total power of the five primary colors MPC—R to C. This corresponds to the luminance of the five primary colors MPC—R to C when all the yellow sub-pixels are fully lit. ) And (II) are subtracted to obtain the luminances of the five primary colors MPC-RC for displaying the blue component NB, as shown in (III) of FIG. That is, (III) = (IV) one ((1) + (II)) holds.

[0080] (III)に示す輝度は、青色成分 NBのレベルが 0. 058のときの輝度に対応するの で、(III)に示す輝度を 0. 058で割ることにより、青色成分 NBのレベルが一 1のとき の輝度(基準値)が (V)に示すように求まる。 (V)に示す輝度の割合は、マイナス階 調の青を表示するための 5原色の割合に他ならない。 (V)に示す値から、青色成分 NBのレベルの絶対値が大きくなるにつれて、補色である黄の輝度が高くなり、他の 原色の輝度が低くなることが分かる。一次結合を行なうときの青色成分 NBのレベル の符号は負であるので、(V)に示す値の符号を反転させた (VI)に示す値を、負のレ ベルにある青色成分 NBに対する係数とすることができる。このようにして、負のレべ ルにある青色成分 NBに対する係数 (一次結合のための係数)を求めることができる。 [0080] Since the luminance shown in (III) corresponds to the luminance when the level of the blue component NB is 0.058, dividing the luminance shown in (III) by 0.058 gives the level of the blue component NB. The luminance (reference value) when is 1 is obtained as shown in (V). The luminance ratio shown in (V) It is none other than the ratio of the five primary colors for displaying the tonal blue color. From the value shown in (V), it can be seen that as the absolute value of the level of the blue component NB increases, the luminance of yellow as a complementary color increases and the luminance of the other primary colors decreases. Since the sign of the level of the blue component NB when performing the linear combination is negative, the value shown in (VI) is obtained by inverting the sign of the value shown in (V), and the coefficient for the blue component NB in the negative level It can be. In this way, the coefficient for the blue component NB at the negative level (coefficient for linear coupling) can be obtained.

[0081] なお、上述の説明では、黄サブ画素のみを全点灯させたときの色度および明度か ら、入力される RGB信号の各色成分のレベルを想定し、青色成分 NBに対する係数 を逆算したが、勿論、他の点灯状態において表示される色の色度および明度からも 、青色成分 NBに対する係数を逆算することができる。  [0081] In the above description, the level of each color component of the input RGB signal is assumed from the chromaticity and brightness when only the yellow sub-pixel is fully lit, and the coefficient for the blue component NB is calculated backward. However, of course, the coefficient for the blue component NB can be calculated back from the chromaticity and brightness of the color displayed in other lighting states.

[0082] なお、赤の色成分のレベルがマイナスであるときに用いる係数は、シアンの原色の みが全点灯するときの輝度に基づいて、上述と同様の手順で求めることができる。  It should be noted that the coefficient used when the level of the red color component is negative can be obtained in the same procedure as described above based on the luminance when only the cyan primary color is lit.

[0083] なお、等色変換を行うことなく RGB信号の色成分の一次結合を行うことで 5原色信 号を生成してもよい。図 12を参照して、そのような一次結合で用いる係数の算出方法 の一例を説明する。図 12は、負のレベルにある青色成分 NBに対応する係数の算出 方法を示す図である。  [0083] Note that the five primary color signals may be generated by performing linear combination of the color components of the RGB signal without performing color matching. With reference to FIG. 12, an example of a method for calculating coefficients used in such a linear combination will be described. FIG. 12 is a diagram illustrating a method for calculating the coefficient corresponding to the blue component NB at the negative level.

[0084] RGB信号の各色成分 R 、 G 、 B には、一次結合をするときに用いる係数 Rr〜Rc in in in  [0084] Each color component R, G, B of the RGB signal has coefficients Rr to Rc in in in which linear combination is performed.

、 Gr〜Gc、 Br—〜 Be—が予め割り当てられている。以下の(式 11)に示すように、一 次結合を行うことで、 5原色信号の各色成分 R 、G 、B 、Y 、 C が決まる。  , Gr to Gc, Br— to Be— are assigned in advance. As shown in the following (Equation 11), by performing the linear combination, the respective color components R, G, B, Y, and C of the five primary color signals are determined.

out out out out out  out out out out out

R =R X Rr + G X Gr+NB X Br- out in in  R = R X Rr + G X Gr + NB X Br- out in in

G =R X Rg + G X Gg + NB X Bg- out in in  G = R X Rg + G X Gg + NB X Bg- out in in

B =R X Rb + G X Gb + NB X Bb- out in in  B = R X Rb + G X Gb + NB X Bb- out in in

Y =R X Ry+G X Gy+NB X By- out in in  Y = R X Ry + G X Gy + NB X By- out in in

C =R X Rc + G X Gc + NB X Bc - out in in  C = R X Rc + G X Gc + NB X Bc-out in in

(式 11)  (Formula 11)

[0085] 図 12を参照して、 RGB信号の各色成分のレベルが、  [0085] Referring to FIG. 12, the level of each color component of the RGB signal is

R =0. 668  R = 0. 668

in  in

G =0. 498 B = 0· 058 G = 0.498 B = 0

in  in

(式 12)  (Formula 12)

と導き出されるところまでは、図 11に示す方法と同様である。次に、図 12に示す方法 では、赤色成分 Rに割り当てられた係数(図 4に示す EBU— Rの行に示されている  Is the same as the method shown in Fig. 11. Next, in the method shown in FIG. 12, the coefficient assigned to the red component R (shown in the EBU-R row shown in FIG. 4).

in  in

係数)と赤色成分 Rのレベルとを乗算することにより、図 12の(I)に示すように赤色成  Coefficient) and the level of the red component R, the red component as shown in (I) of FIG.

in  in

分 Rを表示するための 5原色 MPC— R〜Cの輝度が得られる。  Minutes MPC—R to C brightness for displaying the minute R is obtained.

in  in

[0086] 同様に、緑色成分 G に割り当てられた係数(図 4に示す EBU— Gの行に示されて  [0086] Similarly, the coefficient assigned to the green component G (shown in the EBU-G row shown in Fig. 4).

in  in

いる係数)と緑色成分 Gのレベルとを乗算することにより、図 12の(II)に示すように  The coefficient is multiplied by the green component G level, as shown in (II) of Fig. 12.

in  in

緑色成分 Gを表示するための 5原色 MPC— R〜Cの輝度が得られる。  The brightness of the five primary colors MPC—R to C for displaying the green component G is obtained.

in  in

[0087] 黄サブ画素のみを全点灯させたときの 5原色 MPC— R〜Cの輝度を図 12の(IV) に示す。ここでは、赤色成分 Rを表示するための 5原色 MPC— R〜Cの輝度と、緑  [0087] The luminances of the five primary colors MPC-R to C when only the yellow sub-pixel is lit are shown in (IV) of FIG. Here, the brightness of the five primary colors MPC—R to C for displaying the red component R, and green

in  in

色成分 Gを表示するための 5原色 MPC— R〜Cの輝度と、青色成分 NBを表示する ための 5原色 MPC— R〜Cの輝度との合計力 S、黄サブ画素のみを全点灯させたとき の 5原色 MPC— R〜Cの輝度に相当するので、この(IV)に示す輝度から、(I)およ び (II)に示す輝度を減算することにより、図 12の(III)に示すように、青色成分 NBを 表示するための 5原色 MPC— R〜Cの輝度が得られる。つまり(III) = (IV)一((1) + (II) )が成り立つ。  The total power of the five primary colors MPC—R to C for displaying the color component G and the five primary colors MPC—R to C for displaying the blue component NB. Therefore, by subtracting the luminance shown in (I) and (II) from the luminance shown in (IV), (III) in Fig. 12 As shown in Fig. 5, the luminance of the five primary colors MPC—RC for displaying the blue component NB is obtained. That is, (III) = (IV) one ((1) + (II)) holds.

[0088] (III)に示す輝度は、青色成分 NBのレベルが 0. 058のときの輝度に対応するの で、(III)に示す輝度を 0. 058で割ることにより、青色成分 NBのレベルが一 1のとき の輝度(基準値)が (V)に示すように求まる。 (V)に示す輝度の割合は、マイナス階 調の青を表示するための 5原色の割合に他ならない。 (V)に示す値から、青色成分 NBのレベルの絶対値が大きくなるにつれて、補色である黄の輝度が高くなり、他の 原色の輝度が低くなることが分かる。一次結合を行なうときの青色成分 NBのレベル の符号は負であるので、(V)に示す値の符号を反転させた (VI)に示す値を、負のレ ベルにある青色成分 NBに対する係数とすることができる。このようにして、負のレべ ルにある青色成分 NBに対する係数 (一次結合のための係数)を求めることができる。  [0088] Since the luminance shown in (III) corresponds to the luminance when the level of the blue component NB is 0.058, dividing the luminance shown in (III) by 0.058 gives the level of the blue component NB. The luminance (reference value) when is 1 is obtained as shown in (V). The luminance ratio shown in (V) is none other than the ratio of the five primary colors for displaying negative gray levels. From the value shown in (V), it can be seen that as the absolute value of the level of the blue component NB increases, the luminance of yellow as a complementary color increases and the luminance of the other primary colors decreases. Since the sign of the level of the blue component NB when performing the linear combination is negative, the value shown in (VI) is obtained by inverting the sign of the value shown in (V), and the coefficient for the blue component NB in the negative level It can be. In this way, the coefficient for the blue component NB at the negative level (coefficient for linear coupling) can be obtained.

[0089] なお、上述の説明では、黄サブ画素のみを全点灯させたときの色度および明度か ら、入力される RGB信号の各色成分のレベルを想定し、青色成分 NBに対する係数 を逆算したが、勿論、他の点灯状態において表示される色の色度および明度からも 、青色成分 NBに対する係数を逆算することができる。 [0089] In the above description, the level of each color component of the input RGB signal is assumed from the chromaticity and brightness when only the yellow sub-pixel is fully lit, and the coefficient for the blue component NB However, of course, the coefficient for the blue component NB can be back calculated from the chromaticity and brightness of the color displayed in other lighting states.

[0090] 図 11、図 12からわかるように算出方法によって NBの係数の値が異なってはいるが 、補色である黄色が負の値を示し、補色以外の色は正の値を示すことに関しては同 じであること力 Sゎカゝる。 [0090] As can be seen from FIGS. 11 and 12, although the value of the NB coefficient differs depending on the calculation method, yellow as a complementary color shows a negative value, and colors other than the complementary color show a positive value. Have the same power.

[0091] つまり別の見方をすると本発明は、ある原色の信号が 0から負の値を示すことによつ て、補色側の彩度が上がるという現象と全体の輝度が低くなるという現象を同時に解 決するために、補色の原色の輝度を高くする一方、補色以外の原色の輝度を下げる という手段であることがわかる。そのため、このような信号が生成できれば、必ずしも本 実施形態の説明で紹介した算出方法でなくてもよい。  In other words, from another viewpoint, the present invention relates to the phenomenon that the saturation of the complementary color side increases and the overall luminance decreases due to the fact that a signal of a primary color shows a negative value from 0. In order to solve simultaneously, it can be seen that this is a means of increasing the brightness of the primary colors of the complementary colors while lowering the brightness of the primary colors other than the complementary colors. Therefore, as long as such a signal can be generated, the calculation method introduced in the description of the present embodiment is not necessarily required.

[0092] なお、生成した 5原色信号は、ガンマ補正が行われた後に多原色パネル 120へ入 力されてもよい。  Note that the generated five primary color signals may be input to the multi-primary color panel 120 after performing gamma correction.

[0093] 上述の実施形態の説明では、 3原色信号を 5原色信号へ変換して表示する表示装 置を例示したが、本発明で採用される原色の数はこれらに限定されない。本発明は、 m個(mは nより小さ!/、自然数)の原色に対応した m原色信号を受け取り、 m原色信号 を n個(nは 4以上の自然数)の原色に対応した n原色信号へ変換して表示する表示 装置に適用される。例えば、本発明は、 3原色信号を 6原色信号へ変換して表示する 表示装置にも適用される。  In the above description of the embodiment, the display device that converts the three primary color signals into the five primary color signals and displays them is exemplified, but the number of primary colors employed in the present invention is not limited to these. The present invention receives m primary signals corresponding to m primary colors (m is smaller than n! /, A natural number), and n primary color signals corresponding to n primary colors (n is a natural number of 4 or more). Applies to display devices that convert to and display. For example, the present invention is also applied to a display device that converts and displays three primary color signals into six primary color signals.

[0094] また、本発明は、フィールドシーケンシャル駆動方式の表示装置にも適用される。  Further, the present invention is also applied to a field sequential drive type display device.

[0095] なお、上述した表示装置 100の構成要素は、ハードウェアによって実現できるほか 、これらの一部または全部をソフトウェアによって実現することもできる。  Note that the components of the display device 100 described above can be realized by hardware, and some or all of them can also be realized by software.

[0096] これらの構成要素をソフトウェアによって実現する場合、コンピュータを用いて構成 してもよく、このコンピュータは、各種プログラムを実行するための CPU (central pr ocessing unit)や、それらのプログラムを実行するためのワークエリアとして機能す る RAM (random access memory)などを備える。そして各構成要素の機能を実 現するためのプログラムをコンピュータにおいて実行し、このコンピュータを各構成要 素として動作させる。  [0096] When these components are realized by software, they may be configured by a computer, and this computer executes a CPU (central processing unit) for executing various programs and these programs. RAM (random access memory) that functions as a work area. Then, a program for realizing the function of each component is executed on the computer, and this computer is operated as each component.

[0097] また、プログラムは、記録媒体からコンピュータに供給されてもよぐあるいは、通信 ネットワークを介してコンピュータに供給されてもよい。 [0097] Further, the program may be supplied from a recording medium to a computer or may be a communication. It may be supplied to the computer via a network.

[0098] 記録媒体は、コンピュータと分離可能に構成されてもよぐコンピュータに組み込む ようになつていてもよい。この記録媒体は、記録したプログラムコードをコンピュータが 直接読み取ることができるようにコンピュータに装着されるものであっても、外部記憶 装置としてコンピュータに接続されたプログラム読取装置を介して読み取ることができ るように装着されるものであってもよレ、。  [0098] The recording medium may be configured so as to be separable from the computer or may be incorporated in the computer. This recording medium can be read via a program reading device connected to the computer as an external storage device even if the recording program code is attached to the computer so that the computer can directly read the recorded program code. Even if it is something that is worn like

[0099] 記録媒体としては、例えば、磁気テープやカセットテープなどのテープ:フレキシブ ルディスク/ハードディスク等の磁気ディスク、 MO、 MD等の光磁気ディスク、 CD- ROM, DVD, CD— R等の光ディスクを含むディスク: ICカード(メモリカードを含む) 、光カード等のカード:あるいは、マスク ROM、 EPROM (Erasable Programmabl e Read Only Memory)、 EEPROM (Electrically Erasable Programmabl e Read Only Memory)、フラッシュ ROM等の半導体メモリなどを用いることがで きる。  [0099] Examples of the recording medium include tapes such as magnetic tapes and cassette tapes: magnetic disks such as flexible disks / hard disks, magneto-optical disks such as MO and MD, and optical disks such as CD-ROM, DVD and CD-R. Disk: IC card (including memory card), optical card, etc .: Or semiconductor such as mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), flash ROM A memory or the like can be used.

[0100] また、通信ネットワークを介してプログラムを供給する場合、プログラムは、そのプロ グラムコードが電子的な伝送で具現化された搬送波あるいはデータ信号の形態をと  [0100] When a program is supplied via a communication network, the program takes the form of a carrier wave or a data signal in which the program code is embodied by electronic transmission.

産業上の利用可能性 Industrial applicability

[0101] 本発明は、種々の表示装置に好適に用いられ、例えば、液晶表示装置、 CRT (ブ ラウン管)、有機 EL表示装置、プラズマディスプレイパネル、 SED (Surface— cond uction Electron― emitter Display)に好適に用いられる。 [0101] The present invention is suitably used for various display devices, such as a liquid crystal display device, a CRT (brown tube), an organic EL display device, a plasma display panel, and a surface-conduction electron-emitter display (SED). Is preferably used.

Claims

請求の範囲 The scope of the claims [1] n個(nは 4以上の自然数)の原色を用いて表示を行う表示装置であって、  [1] A display device that performs display using n (n is a natural number of 4 or more) primary colors, m個(mは nより小さ!/、自然数)の原色に対応した m原色信号を受け取り、前記 m原 色信号を前記 n個の原色に対応した n原色信号へ変換する映像信号変換部を備え、 前記 n個の原色は、前記 m個の原色のうちのある 1つの原色と補色の関係にある原 色を含んでおり、  A video signal conversion unit that receives m primary color signals corresponding to m primary colors (m is smaller than n! /, a natural number) and converts the m primary color signals into n primary color signals corresponding to the n primary colors is provided. The n primary colors include a primary color complementary to a certain primary color among the m primary colors, 前記映像信号変換部は、前記 m原色信号のうちの前記ある 1つの原色に対応した 色成分が負のレベルにあるとき、前記ある 1つの原色に対応した色成分がゼロである ときよりも前記補色の関係にある原色の輝度が高くなるように、かつ前記補色の関係 にある原色以外の原色の輝度が低くなるようにした前記 n原色信号を生成する表示 装置。  When the color component corresponding to the one primary color of the m primary color signals is at a negative level, the video signal conversion unit is more than the case where the color component corresponding to the one primary color is zero. A display device that generates the n primary color signal so that the luminance of a primary color having a complementary color relationship is high and the luminance of a primary color other than the primary color having a complementary color relationship is low. [2] 前記映像信号変換部は、前記 m原色信号を等色変換することによって等色変換色 信号を生成し、前記等色変換色信号の各色成分を一次結合することによって前記 n 原色信号の各色成分を生成する、請求項 1に記載の表示装置。  [2] The video signal conversion unit generates a color conversion color signal by performing color conversion of the m primary color signal, and linearly combines each color component of the color conversion color signal to thereby convert the n primary color signal. The display device according to claim 1, wherein each color component is generated. [3] 前記等色変換色信号は、前記ある 1つの原色に対応した色成分を含み、  [3] The color matching conversion color signal includes a color component corresponding to the one primary color, 前記ある 1つの原色に対応した色成分には、前記 1次結合をするときに用いる係数 が前記 n個の原色のそれぞれにつ!/、て割り当てられており、  The color component corresponding to the one primary color is assigned a coefficient used for the primary combination to each of the n primary colors! /, 前記ある 1つの原色に対応した色成分に割り当てられた係数の中で、前記補色の 関係にある原色についての係数と、前記補色の関係にある原色以外の原色につい ての係数とは互いに正負の符合が異なる、請求項 2に記載の表示装置。  Among the coefficients assigned to the color component corresponding to the one primary color, the coefficient for the primary color having the complementary color relationship and the coefficient for the primary color other than the primary color having the complementary color relationship are mutually positive and negative. The display device according to claim 2, wherein the signs are different. [4] 前記映像信号変換部は、前記 m原色信号の各色成分を一次結合することによって 前記 n原色信号の各色成分を生成する、請求項 1に記載の表示装置。  4. The display device according to claim 1, wherein the video signal conversion unit generates the color components of the n primary color signals by linearly combining the color components of the m primary color signals. [5] 前記ある 1つの原色に対応した色成分には、前記 1次結合をするときに用いる係数 が前記 n個の原色のそれぞれにつ!/、て割り当てられており、  [5] The color component corresponding to the one primary color is assigned a coefficient used for the primary combination to each of the n primary colors! /, 前記ある 1つの原色に対応した色成分に割り当てられた係数の中で、前記補色の 関係にある原色についての係数と、前記補色の関係にある原色以外の原色につい ての係数とは互いに正負の符合が異なる、請求項 4に記載の表示装置。  Among the coefficients assigned to the color component corresponding to the one primary color, the coefficient for the primary color having the complementary color relationship and the coefficient for the primary color other than the primary color having the complementary color relationship are mutually positive and negative. The display device according to claim 4, wherein the signs are different. [6] 複数のサブ画素を含む画素を備え、 前記複数のサブ画素のそれぞれは、前記 n原色のうちの対応する 1つを表示する、 請求項 1に記載の表示装置。 [6] comprising a pixel including a plurality of sub-pixels; The display device according to claim 1, wherein each of the plurality of sub-pixels displays a corresponding one of the n primary colors. [7] 前記ある 1つの原色は赤であり、前記ある 1つの原色と補色の関係にある原色はシ アンである、請求項 1に記載の表示装置。 7. The display device according to claim 1, wherein the one primary color is red and the primary color complementary to the one primary color is cyan. [8] 前記ある 1つの原色は緑であり、前記ある 1つの原色と補色の関係にある原色はマ ゼンダである、請求項 1に記載の表示装置。 8. The display device according to claim 1, wherein the one primary color is green, and the primary color complementary to the one primary color is magenta. [9] 前記ある 1つの原色は青であり、前記ある 1つの原色と補色の関係にある原色は黄 である、請求項 1に記載の表示装置。 9. The display device according to claim 1, wherein the one primary color is blue, and a primary color complementary to the one primary color is yellow. [10] 前記 nは 5であり、前記 mは 3である、請求項 1に記載の表示装置。 10. The display device according to claim 1, wherein n is 5 and m is 3. [11] 前記 5個の原色は、赤、黄、緑、シアン、青であり、 [11] The five primary colors are red, yellow, green, cyan, and blue. 前記映像信号変換部は、前記 5原色信号のうちの赤色に対応した色成分が負のレ ベルにあるとき、前記赤色に対応した色成分がゼロであるときよりも前記赤色と補色 の関係にあるシアンの輝度が高くなるように、かつシアン以外の原色の輝度が低くな るようにした 5原色信号を生成する、請求項 10に記載の表示装置。  When the color component corresponding to red in the five primary color signals is at a negative level, the video signal converter has a relationship between the red color and the complementary color more than when the color component corresponding to red is zero. 11. The display device according to claim 10, wherein five primary color signals are generated so that a certain cyan luminance is increased and a luminance of primary colors other than cyan is decreased. [12] 前記 5個の原色は、赤、黄、緑、シアン、青であり、 [12] The five primary colors are red, yellow, green, cyan, and blue. 前記映像信号変換部は、前記 5原色信号のうちの青色に対応した色成分が負のレ ベルにあるとき、前記青色に対応した色成分がゼロであるときよりも前記青色と補色 の関係にある黄色の輝度が高くなるように、かつ黄色以外の原色の輝度が低くなるよ うにした 5原色信号を生成する、請求項 10に記載の表示装置。  When the color component corresponding to blue in the five primary color signals is at a negative level, the video signal conversion unit has a relationship between the blue and the complementary color more than when the color component corresponding to blue is zero. 11. The display device according to claim 10, wherein five primary color signals are generated so that a certain yellow luminance is increased and luminances of primary colors other than yellow are decreased. [13] n個(nは 4以上の自然数)の原色を用いて表示を行うための前記 n個の原色に対応 した n原色信号を生成する方法であって、 [13] A method for generating n primary color signals corresponding to the n primary colors for display using n primary colors (n is a natural number of 4 or more), 前記方法は、 m個(mは nより小さ!/、自然数)の原色に対応した m原色信号を受け 取り、前記 m原色信号を前記 n原色信号へ変換する変換ステップを包含し、  The method includes a conversion step of receiving m primary color signals corresponding to m primary colors (m is less than n! /, A natural number) and converting the m primary color signals into the n primary color signals, 前記 n個の原色は、前記 m個の原色のうちのある 1つの原色と補色の関係にある原 色を含んでおり、  The n primary colors include primary colors that are complementary to one primary color among the m primary colors, 前記変換ステップは、前記 m原色信号のうちの前記ある 1つの原色に対応した色成 分が負のレベルにあるとき、前記ある 1つの原色に対応した色成分がゼロであるときよ りも前記補色の関係にある原色の輝度が高くなるように、かつ前記補色の関係にある 原色以外の原色の輝度が低くなるようにした前記 n原色信号を生成するステップを含 む、方法。 In the converting step, when the color component corresponding to the certain primary color of the m primary color signals is at a negative level, the conversion step is more than when the color component corresponding to the certain primary color is zero. The primary color that is in a complementary color relationship has a high luminance and is in the complementary color relationship. A method comprising the step of generating the n primary color signal in which the luminance of primary colors other than the primary color is lowered. [14] n個(nは 4以上の自然数)の原色を用いて表示を行うための前記 n個の原色に対応 した n原色信号を生成する生成処理をコンピュータに実行させるためのプログラムで あって、  [14] A program for causing a computer to execute generation processing for generating n primary color signals corresponding to the n primary colors for display using n primary colors (n is a natural number of 4 or more). , 前記生成処理は、 m個(mは nより小さ!/、自然数)の原色に対応した m原色信号を 受け取り、前記 m原色信号を前記 n原色信号へ変換する変換ステップを包含し、 前記 n個の原色は、前記 m個の原色のうちのある 1つの原色と補色の関係にある原 色を含んでおり、  The generation processing includes a conversion step of receiving m primary color signals corresponding to m primary colors (m is smaller than n! /, A natural number), and converting the m primary color signals into the n primary color signals. Includes primary colors that are complementary to one of the m primary colors, 前記変換ステップは、前記 m原色信号のうちの前記ある 1つの原色に対応した色成 分が負のレベルにあるとき、前記ある 1つの原色に対応した色成分がゼロであるときよ りも前記補色の関係にある原色の輝度が高くなるように、かつ前記補色の関係にある 原色以外の原色の輝度が低くなるようにした前記 n原色信号を生成するステップを含 む、プログラム。  In the converting step, when the color component corresponding to the certain primary color of the m primary color signals is at a negative level, the conversion step is more than when the color component corresponding to the certain primary color is zero. A program including the step of generating the n primary color signal so that the luminance of a primary color having a complementary color relationship is increased and the luminance of a primary color other than the primary color having a complementary color relationship is decreased.
PCT/JP2007/064911 2006-08-02 2007-07-30 Display device, method for generating four or more primary color signals, and program causing computer to execute processing for generating four or more primary color signals WO2008016015A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800289128A CN101501751B (en) 2006-08-02 2007-07-30 Display device, method for generating four or more primary color signals
US12/375,741 US8233007B2 (en) 2006-08-02 2007-07-30 Display device, method for generating four or more primary color signals, and program causing computer to execute processing for generating four or more primary color signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-210898 2006-08-02
JP2006210898 2006-08-02

Publications (1)

Publication Number Publication Date
WO2008016015A1 true WO2008016015A1 (en) 2008-02-07

Family

ID=38997191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064911 WO2008016015A1 (en) 2006-08-02 2007-07-30 Display device, method for generating four or more primary color signals, and program causing computer to execute processing for generating four or more primary color signals

Country Status (3)

Country Link
US (1) US8233007B2 (en)
CN (1) CN101501751B (en)
WO (1) WO2008016015A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171883A1 (en) * 2008-06-13 2010-07-08 Element Labs, Inc. Data Transmission Over a Video Link
CN102157122A (en) * 2010-02-11 2011-08-17 帆宣系统科技股份有限公司 Method and system for adjusting color purity of display panel and display device with adjusted display panel
WO2011115169A1 (en) * 2010-03-18 2011-09-22 シャープ株式会社 Multi-primary color liquid crystal panel drive circuit, multi-primary color liquid crystal panel drive method, liquid crystal display device and overdrive setting method
JP5314029B2 (en) * 2008-08-29 2013-10-16 パナソニック株式会社 Color signal conversion apparatus and color signal conversion method
JP2015516584A (en) * 2012-02-28 2015-06-11 アップル インコーポレイテッド Extended range color space
JP2019508993A (en) * 2016-02-09 2019-03-28 ザ・ユニバーシティ・オブ・マンチェスターThe University Of Manchester Improvement of image formation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329838B2 (en) * 2007-04-18 2009-09-09 ソニー株式会社 Image signal processing apparatus, image signal processing method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261332A (en) * 1993-03-03 1994-09-16 Nippon Hoso Kyokai <Nhk> Primary color conversion method for multi-primary color display
JP2006058604A (en) * 2004-08-20 2006-03-02 Seiko Epson Corp Electro-optical device, color filter, and electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800375A (en) 1986-10-24 1989-01-24 Honeywell Inc. Four color repetitive sequence matrix array for flat panel displays
JP3362758B2 (en) 1996-03-15 2003-01-07 富士ゼロックス株式会社 Reflective color display
US5903274A (en) * 1997-02-27 1999-05-11 Mitsubishi Electric Information Technology Center America, Inc. System for color and opacity transfer function specification in volume rendering
JP4034022B2 (en) 2000-01-25 2008-01-16 シャープ株式会社 Liquid crystal display
JP2001306023A (en) 2000-04-18 2001-11-02 Seiko Epson Corp Image display device
JP4170899B2 (en) 2001-06-11 2008-10-22 ゲノア・テクノロジーズ・リミテッド Apparatus, system and method for color display
WO2003088203A1 (en) 2002-04-11 2003-10-23 Genoa Color Technologies Ltd. Color display devices and methods with enhanced attributes
US7355597B2 (en) * 2002-05-06 2008-04-08 Brown University Research Foundation Method, apparatus and computer program product for the interactive rendering of multivalued volume data with layered complementary values
JP4549881B2 (en) * 2004-03-18 2010-09-22 シャープ株式会社 Color signal conversion apparatus, display unit, color signal conversion program, and computer-readable recording medium recording the color signal conversion program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261332A (en) * 1993-03-03 1994-09-16 Nippon Hoso Kyokai <Nhk> Primary color conversion method for multi-primary color display
JP2006058604A (en) * 2004-08-20 2006-03-02 Seiko Epson Corp Electro-optical device, color filter, and electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171883A1 (en) * 2008-06-13 2010-07-08 Element Labs, Inc. Data Transmission Over a Video Link
JP5314029B2 (en) * 2008-08-29 2013-10-16 パナソニック株式会社 Color signal conversion apparatus and color signal conversion method
CN102157122A (en) * 2010-02-11 2011-08-17 帆宣系统科技股份有限公司 Method and system for adjusting color purity of display panel and display device with adjusted display panel
WO2011115169A1 (en) * 2010-03-18 2011-09-22 シャープ株式会社 Multi-primary color liquid crystal panel drive circuit, multi-primary color liquid crystal panel drive method, liquid crystal display device and overdrive setting method
US9230494B2 (en) 2010-03-18 2016-01-05 Sharp Kabushiki Kaisha Multi-primary color liquid crystal panel drive circuit, multi-primary color liquid crystal panel drive method, liquid crystal display device and overdrive setting method
JP2015516584A (en) * 2012-02-28 2015-06-11 アップル インコーポレイテッド Extended range color space
JP2019508993A (en) * 2016-02-09 2019-03-28 ザ・ユニバーシティ・オブ・マンチェスターThe University Of Manchester Improvement of image formation
US11100619B2 (en) 2016-02-09 2021-08-24 The University Of Manchester Image formation

Also Published As

Publication number Publication date
US20090322779A1 (en) 2009-12-31
US8233007B2 (en) 2012-07-31
CN101501751A (en) 2009-08-05
CN101501751B (en) 2011-11-09

Similar Documents

Publication Publication Date Title
US8436875B2 (en) Display device
US8427411B2 (en) Color signal converter, display unit, color signal conversion program, computer-readable storage medium storing color signal conversion program, and color signal conversion method
JP4976404B2 (en) Liquid crystal display
US8411206B2 (en) Apparatus and method for decoding extended color space data
US8542246B2 (en) Color conversion device, color conversion table and color conversion method
JP4735605B2 (en) Test pattern signal generation device, test pattern signal generation method, colorimetry system, and display device
US20080259216A1 (en) Color signal converting apparatus, video display apparatus including the same, and color signal converting method
WO2008016015A1 (en) Display device, method for generating four or more primary color signals, and program causing computer to execute processing for generating four or more primary color signals
WO2007039957A1 (en) Display
US8643664B2 (en) Gamut converting device and gamut converting method
CN103270551B (en) Signal conversion circuit and the multiple-primary-color liquid crystal display device possessing it
EP2482559B1 (en) System and method for generating rgb primaries for a wide color gamut, and color encoding system using rgb primaries
CN103000145A (en) Multi-primary color liquid crystal display and color signal conversion device and method thereof
US8077968B2 (en) Image processing method
US9177512B2 (en) Display device
WO2008012969A1 (en) Multiple original color display device
Takaya et al. Fast color conversion for multiprimary displays using a classification technique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028912.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12375741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07791596

Country of ref document: EP

Kind code of ref document: A1