WO2008038363A1 - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- WO2008038363A1 WO2008038363A1 PCT/JP2006/319272 JP2006319272W WO2008038363A1 WO 2008038363 A1 WO2008038363 A1 WO 2008038363A1 JP 2006319272 W JP2006319272 W JP 2006319272W WO 2008038363 A1 WO2008038363 A1 WO 2008038363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- heat exchanger
- fluid return
- tube
- straight
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 36
- 239000007788 liquid Substances 0.000 abstract description 19
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/14—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
Definitions
- the present invention relates to a double-tube heat exchanger composed of an outer tube and an inner tube inside the outer tube, or a heat exchanger having a single-tube heat transfer section.
- a double-pipe type apparatus comprising an outer tube and an inner tube inside the outer tube. One of them is made to flow a high-temperature fluid, and the other is made to flow a low-temperature fluid.
- a gas is allowed to flow through one of the inner pipe and the outer pipe and cooling water is allowed to flow through the other, or a gas is allowed to flow through each of the inner pipe and the outer pipe.
- reaction gas when a reaction fluid (gas) is allowed to flow through either the inner tube or the outer tube and cooling water is allowed to flow through the other, the reaction gas may be condensed in the tube. There is. If the liquid that condenses and stays in the pipe becomes corrosive depending on the conditions, the inner pipe or the outer pipe may be corroded by the liquid that stays condensed.
- the liquid when a liquid that causes corrosiveness is flowed depending on conditions, the liquid may stay in the pipe when the apparatus is stopped, etc., and the inner pipe or the outer pipe may be corroded.
- the present invention has been made to solve such a conventional problem, and the purpose of the present invention is to quickly discharge the liquid condensed in the pipe out of the pipe without stagnation.
- An object of the present invention is to provide a heat exchanger that prevents corrosion of the pipe and prevents scaling in the pipe.
- the heat exchanger according to the invention of claim 1 is provided with a fluid return portion that is bent on one side or both sides of the pipe, and is formed in a U-shape or a meandering shape in the vertical direction.
- V and the above fluid return part in the container, and a straight upper pipe part arranged vertically in the horizontal direction.
- the straight lower piping section is inclined so as to be separated from each other as the fluid return section force increases.
- the invention according to claim 2 is the heat exchanger according to claim 1, wherein the pipe is formed by an outer pipe and a double pipe having an inner pipe force provided inside the outer pipe.
- the invention described in claim 3 is characterized in that, in the heat exchanger according to claim 1, the pipe is formed by a single-tube heat transfer section.
- the invention according to claim 4 is the heat exchanger according to claim 1, 2 or 3, wherein the inclination angle ⁇ of the straight upper pipe portion and the inclination angle ⁇ of the straight lower pipe portion with respect to the horizontal line H are
- 1 2 is defined as 0.5 ° to 3.0 °, respectively.
- the heat exchanger according to the invention of claim 1 is provided with a fluid return portion that is bent on one side or both sides of the pipe, and is formed in a U-shape or a meandering shape in the vertical direction.
- V and the above fluid return part in the container, and a straight upper pipe part arranged vertically in the horizontal direction.
- the condensed liquid is inclined even if the reaction gas condenses and liquefies in the pipeline. It flows down along the straight piping section. Therefore, the liquid condensed in the pipe line can be quickly discharged out of the pipe through the inclined linear pipe part and the bent fluid return part. For this reason, even if the liquid condensed in the pipe line is corrosive depending on the conditions, the pipe line is less likely to be corroded by the condensed liquid, and the heat exchanger and thus the heat exchange are reduced. It became possible to improve the reliability of the whole apparatus used. In addition, it has become possible to prevent scaling in the pipes and prevent performance degradation of heat exchange.
- FIG. 1 is a front view of heat exchange according to the present invention.
- FIG. 2 is a plan view of a heat exchanger according to the present invention.
- FIG. 3 is an enlarged cross-sectional view of a main part of a heat exchanger according to the present invention.
- FIG. 4 is an enlarged front view of the main part of the heat exchanger according to the present invention.
- a double-tube heat exchanger composed of an outer tube and an inner tube inside the outer tube is taken as an example.
- a heat exchanger having a single-tube heat transfer section is also used. It can be applied.
- the pipe line 20 meanders in a zigzag shape.
- This pipe line 20 is formed by an outer pipe 30 and an inner pipe 40 inside the outer pipe.
- a fluid inlet 41 is attached to the lower end portion of the inner pipe 40, and a fluid discharge port is attached to the upper end portion of the inner pipe 40. Exit 42 is installed.
- a fluid inlet 31 is attached to the upper end of the outer tube 30 (see FIG. 2), and a fluid outlet 32 is attached to the lower end of the outer tube 30.
- the inner tube 40 is provided with a plurality (eg, three) of distance pieces 43 on the outer peripheral surface thereof radially and at equal intervals in the circumferential direction.
- the distances between the inner tube 40 and the outer tube 30 are maintained at equal intervals by the plurality of distance pieces 43.
- the conduit 20 is provided with a fluid return portion 21 bent on one side or both sides thereof, and is formed in a U shape or a meandering shape in the vertical direction. Then, linear pipes connected to both ends of the fluid return part 21 are arranged vertically with the axis centering in the horizontal direction, and the upper pipe part 23 is connected to the upper end of the fluid return part 21.
- the lower piping part 25 is connected to the lower end connection part 24 of the fluid return part 21.
- a straight upper pipe portion 23 connected to the upper end connection portion 22 of the fluid return portion 21 and a straight lower pipe portion connected to the lower end connection portion 24 of the fluid return portion 21. 25 is inclined so as to be separated from each other as the distance from the fluid return portion 21 increases.
- the inclination angle 0 of the straight upper piping part 23 with respect to the horizontal line H is made equal to the inclination angle 0 of the linear lower piping part 25.
- the inclination angle 0 of the straight upper piping part 23 with respect to the horizontal line H is made equal to the inclination angle 0 of the linear lower piping part 25.
- ⁇ is preferably 0.5 to 3 °, more preferably 1 to 2 °, respectively.
- water W at room temperature is supplied from the fluid inlet 41 provided at the lower end of the inner tube 40, and the fluid is introduced at the upper end of the outer tube 30.
- high-pressure and high-temperature modified gas G is supplied from the port 31
- water W is heated by the high-pressure and high-temperature modified gas G while passing through the meandering inner tube 40, and is formed as water vapor S at the upper end of the inner tube 40. It is supplied to the next process from the fluid discharge port 42.
- the high-pressure and high-temperature modified gas G is cooled by water S while passing through the meandering outer tube 30, and becomes a high-pressure and low-temperature modified gas G ′, which is a fluid discharge port 32 provided at the lower end of the outer tube 30. To be supplied to the next process.
- a straight upper pipe portion 23 connected to the upper end connection portion 22 of the fluid return portion 21 and a straight lower pipe portion connected to the lower end connection portion 24 of the fluid return portion 21. 25 is inclined so as to be separated from each other as the distance from the fluid return portion 21 increases.
- the gas G 'condenses and becomes liquid, or the water W does not remain. Since it flows down along the straight piping section, it can be discharged quickly without being retained in the pipe.
- the heat exchanger of the present invention is particularly useful as a heat exchanger for high-temperature fluids.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
To prevent a pipe from being corroded by quickly discharging a liquid condensed in the pipe to the outside of the pipe. This heat exchanger, in which fluid return bent parts (21) are provided on one or both sides of a pipeline (20), is formed in a U-shape or zigzag shape in the vertical direction. The straight upper pipe part (23) and straight lower pipe part (25) which are horizontally directed from the fluid return part (21) and disposed on its upper and lower sides are so tilted as to be gradually separated from each other in the direction away from the fluid return part (21).
Description
明 細 書 Specification
熱交換器 Heat exchanger
技術分野 Technical field
[0001] 本発明は、外管と外管内部の内管とからなる二重管式の熱交換器、あるいは、単管 式の伝熱部を有する熱交換器に関する。 [0001] The present invention relates to a double-tube heat exchanger composed of an outer tube and an inner tube inside the outer tube, or a heat exchanger having a single-tube heat transfer section.
背景技術 Background art
[0002] 通常、高温高圧の流体を処理する熱交換器としては、外管と外管内部の内管とか らなる二重管式の装置が用いられ、外管と外管内部の内管の何れか一方には、高温 の流体を流し、他方には、低温の流体を流すことが行われている。例えば、内管と外 管の何れか一方にガスを流し、他方に冷却水を流す場合、或いは、内管と外管のそ れぞれにガスを流す場合などがある。 [0002] Normally, as a heat exchanger for processing a high-temperature and high-pressure fluid, a double-pipe type apparatus comprising an outer tube and an inner tube inside the outer tube is used. One of them is made to flow a high-temperature fluid, and the other is made to flow a low-temperature fluid. For example, there are cases where a gas is allowed to flow through one of the inner pipe and the outer pipe and cooling water is allowed to flow through the other, or a gas is allowed to flow through each of the inner pipe and the outer pipe.
[0003] 二重管式の熱交換器で十分な熱交換を行う場合には、管路の総延長に所定の長 さが必要になるが、熱交^^のスペースは限られている。そこで、管路の総延長を長 くしつつ熱交翻自体の小スペース化を図ったり、あるいは、熱交翻の継ぎ手など の部品点数の低減が図られている。例えば、熱交^^の管路を蛇行状にしたり、ある いは、螺旋状にすることによって管路の総延長が長くされ、かつ、熱交^^の小スぺ ース化が図られている(例えば、特許文献 1参照)。 [0003] When sufficient heat exchange is performed with a double-pipe heat exchanger, a predetermined length is required for the total extension of the pipe line, but the space for heat exchange is limited. Therefore, the space for heat exchange itself has been reduced while increasing the total length of the pipe, or the number of parts such as heat exchange joints has been reduced. For example, by making the heat exchange pipes meandering or spiraling, the total length of the pipes can be lengthened and the heat exchange ^^ can be made smaller. (For example, refer to Patent Document 1).
[0004] 二重管式の熱交換器の場合、例えば、内管と外管の何れか一方に反応流体 (ガス )を流し、他方に冷却水を流す場合、反応ガスが管内で凝縮することがある。そして、 管内で凝縮して滞留した液が条件により腐食性を生じる場合には、凝縮して滞留し た液によって内管または外管が腐食される恐れがある。 [0004] In the case of a double-tube heat exchanger, for example, when a reaction fluid (gas) is allowed to flow through either the inner tube or the outer tube and cooling water is allowed to flow through the other, the reaction gas may be condensed in the tube. There is. If the liquid that condenses and stays in the pipe becomes corrosive depending on the conditions, the inner pipe or the outer pipe may be corroded by the liquid that stays condensed.
また、条件により腐食性を生じる液体を流す場合においても、液体が装置の停止時 などに管内で滞留して内管または外管が腐食される恐れがある。 In addition, when a liquid that causes corrosiveness is flowed depending on conditions, the liquid may stay in the pipe when the apparatus is stopped, etc., and the inner pipe or the outer pipe may be corroded.
さらに、滞留した液が固化して塩、無機物や有機物などになり管内壁に固着すれば 、このスケーリングは熱交^^の伝熱面積を減少させることになり、熱交^^の効率 を低下することになる。 Furthermore, if the accumulated liquid solidifies and becomes salt, inorganic or organic matter and adheres to the inner wall of the pipe, this scaling will reduce the heat transfer area of the heat exchange ^^ and reduce the efficiency of the heat exchange ^^ Will do.
[0005] ところで、従来の二重管式の熱交換器の場合は、直線状の管の部分が水平になつ
ているから、管内で凝縮した液が水平な直線状の管の部分に滞留し易くなり、この液 に条件によって腐食性が生じ、このため、管が腐食して割れるなどの損傷があった。 [0005] By the way, in the case of a conventional double-tube heat exchanger, the straight tube portion is horizontal. As a result, the liquid condensed in the pipe tends to stay in the horizontal straight pipe section, and this liquid is corrosive depending on the conditions.
[0006] また、単管式熱交換器の場合、例えば、加熱炉内に単管式の伝熱管を設けた蒸発 用加熱器の場合は、加熱器入口カゝら流入した液体は管内途中で加熱されて加熱器 出口力も蒸気となって出る。運転停止時には、水平部の直線状の管が水平になって いるから、管内には液が滞留することがあり、この滞留した液が条件により腐食性を生 じて管内部が腐食されるという二重管式熱交^^の場合と同様な恐れがあった。 特許文献 1:特開 2004— 53222号公報 [0006] In the case of a single-tube heat exchanger, for example, in the case of an evaporation heater having a single-tube heat transfer tube in a heating furnace, the liquid flowing in from the heater inlet is in the middle of the tube. When heated, the outlet power of the heater also becomes steam. When the operation is stopped, the straight pipe in the horizontal section is horizontal, so liquid may stay in the pipe, and the staying liquid will corrode depending on conditions, and the inside of the pipe is corroded. There was the same fear as in the case of double-tube heat exchange. Patent Document 1: Japanese Patent Laid-Open No. 2004-53222
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0007] 本発明は、このような従来の問題を解消するためになされたものであり、その目的と するところは、管内で凝縮した液などが滞留することなく管外に速やかに排出して管 の腐食防止を図り、かつ管内のスケーリング防止を図った熱交換器を提供することに ある。 [0007] The present invention has been made to solve such a conventional problem, and the purpose of the present invention is to quickly discharge the liquid condensed in the pipe out of the pipe without stagnation. An object of the present invention is to provide a heat exchanger that prevents corrosion of the pipe and prevents scaling in the pipe.
課題を解決するための手段 Means for solving the problem
[0008] 請求項 1に記載の発明に係る熱交換器は、管路の片側または両側に屈曲した流体 返し部が設けられ、鉛直方向に U字状または蛇行状に形成されて ヽる熱交換器にお V、て、上記流体返し部と水平方向に向 、て上下に配置される直線状の上段配管部と[0008] The heat exchanger according to the invention of claim 1 is provided with a fluid return portion that is bent on one side or both sides of the pipe, and is formed in a U-shape or a meandering shape in the vertical direction. V, and the above fluid return part in the container, and a straight upper pipe part arranged vertically in the horizontal direction.
、直線状の下段配管部とを、上記流体返し部力 遠のくにしたがって互いに離反する ように傾斜させたことを特徴とする。 The straight lower piping section is inclined so as to be separated from each other as the fluid return section force increases.
請求項 2に記載の発明は、請求項 1記載の熱交換器において、上記管路を、外管 と、該外管の内部に設けた内管力もなる二重管により形成させたことを特徴とする。 請求項 3に記載の発明は、請求項 1記載の熱交換器において、上記管路を、単管 式の伝熱部により形成させたことを特徴とする。 The invention according to claim 2 is the heat exchanger according to claim 1, wherein the pipe is formed by an outer pipe and a double pipe having an inner pipe force provided inside the outer pipe. And The invention described in claim 3 is characterized in that, in the heat exchanger according to claim 1, the pipe is formed by a single-tube heat transfer section.
請求項 4に記載の発明は、請求項 1、 2または 3記載の熱交換器において、水平線 Hに対して直線状の上段配管部の傾斜角 Θ と直線状の下段配管部の傾斜角 Θ と The invention according to claim 4 is the heat exchanger according to claim 1, 2 or 3, wherein the inclination angle Θ of the straight upper pipe portion and the inclination angle Θ of the straight lower pipe portion with respect to the horizontal line H are
1 2 を、それぞれ、 0. 5° 〜3. 0° としたことを特徴とする。
発明の効果 1 2 is defined as 0.5 ° to 3.0 °, respectively. The invention's effect
[0009] 請求項 1に記載の発明に係る熱交換器は、管路の片側または両側に屈曲した流体 返し部が設けられ、鉛直方向に U字状または蛇行状に形成されて ヽる熱交換器にお V、て、上記流体返し部と水平方向に向 、て上下に配置される直線状の上段配管部と [0009] The heat exchanger according to the invention of claim 1 is provided with a fluid return portion that is bent on one side or both sides of the pipe, and is formed in a U-shape or a meandering shape in the vertical direction. V, and the above fluid return part in the container, and a straight upper pipe part arranged vertically in the horizontal direction.
、直線状の下段配管部とを、上記流体返し部力 遠のくにしたがって互いに離反する ように傾斜させたので、仮に、管路内で反応ガスが凝縮して液化した場合でも、凝縮 した液が傾斜した直線状の配管部に沿って流下する。従って、管路内で凝縮した液 を、傾斜した直線状の配管部および屈曲した流体返し部を経て管外に速やかに排 出させることができる。このため、仮に、管路内で凝縮した液が条件により腐食性を生 じる場合であっても、凝縮した液によって管路が腐食する恐れが少なくなり、熱交換 器の、ひいては熱交 を用いた装置全体の信頼性を高めることが可能になった。 また、管路内のスケーリングを防止し、熱交^^の性能低下を防止することが可能に なった。 In addition, since the linear lower piping section is inclined so as to be separated from each other as the fluid return force increases, the condensed liquid is inclined even if the reaction gas condenses and liquefies in the pipeline. It flows down along the straight piping section. Therefore, the liquid condensed in the pipe line can be quickly discharged out of the pipe through the inclined linear pipe part and the bent fluid return part. For this reason, even if the liquid condensed in the pipe line is corrosive depending on the conditions, the pipe line is less likely to be corroded by the condensed liquid, and the heat exchanger and thus the heat exchange are reduced. It became possible to improve the reliability of the whole apparatus used. In addition, it has become possible to prevent scaling in the pipes and prevent performance degradation of heat exchange.
なお、液体どうしの熱交換の場合にも、同様の効果を奏する。 In addition, the same effect is exhibited also in the case of heat exchange between liquids.
図面の簡単な説明 Brief Description of Drawings
[0010] [図 1]本発明に係る熱交翻の正面図である。 FIG. 1 is a front view of heat exchange according to the present invention.
[図 2]本発明に係る熱交^^の平面図である。 FIG. 2 is a plan view of a heat exchanger according to the present invention.
[図 3]本発明に係る熱交換器の要部拡大断面図である。 FIG. 3 is an enlarged cross-sectional view of a main part of a heat exchanger according to the present invention.
[図 4]本発明に係る熱交換器の要部拡大正面図である。 FIG. 4 is an enlarged front view of the main part of the heat exchanger according to the present invention.
符号の説明 Explanation of symbols
[0011] 10 熱交^^ [0011] 10 heat exchange ^^
20 管路 20 pipelines
21 流体返し部 21 Fluid return section
22 上端接続部 22 Top connection
23 上段配管部 23 Upper piping section
24 下端接続部 24 Bottom connection
25 下段配管部
発明を実施するための最良の形態 25 Lower piping section BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明の実施の形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
なお、この実施の形態では、外管と外管内部の内管とからなる二重管式の熱交換 器を例に取るが、例えば、単管式の伝熱部を有する熱交換器にも適用することがで きる。 In this embodiment, a double-tube heat exchanger composed of an outer tube and an inner tube inside the outer tube is taken as an example. However, for example, a heat exchanger having a single-tube heat transfer section is also used. It can be applied.
[0013] 図 1に示すように、二重管式の熱交換器 10は、管路 20がジグザグ状に蛇行してい る。この管路 20は、外管 30と、外管内部の内管 40から形成され、内管 40の下端部 には、流体導入口 41が取り付けられ、内管 40の上端部には、流体排出口 42が取り 付けられている。また、外管 30の上端部には、流体導入口 31が取り付けられ(図 2参 照)、外管 30の下端部には、流体排出口 32が取り付けられている。 [0013] As shown in FIG. 1, in the double-pipe heat exchanger 10, the pipe line 20 meanders in a zigzag shape. This pipe line 20 is formed by an outer pipe 30 and an inner pipe 40 inside the outer pipe. A fluid inlet 41 is attached to the lower end portion of the inner pipe 40, and a fluid discharge port is attached to the upper end portion of the inner pipe 40. Exit 42 is installed. A fluid inlet 31 is attached to the upper end of the outer tube 30 (see FIG. 2), and a fluid outlet 32 is attached to the lower end of the outer tube 30.
[0014] 図 3に示すように、上記内管 40は、その外周面に複数 (例えば、 3個)のディスタン スピース 43を放射状に、かつ、周方向に等間隔に設けている。そして、これらの複数 のディスタンスピース 43によって内管 40と外管 30との間の間隔を等間隔に維持して いる。 As shown in FIG. 3, the inner tube 40 is provided with a plurality (eg, three) of distance pieces 43 on the outer peripheral surface thereof radially and at equal intervals in the circumferential direction. The distances between the inner tube 40 and the outer tube 30 are maintained at equal intervals by the plurality of distance pieces 43.
[0015] 図 1に示すように、上記管路 20は、その片側または両側に屈曲した流体返し部 21 を設けられ、鉛直方向に U字状または蛇行状に形成されている。そして、この流体返 し部 21の両端に、それぞれ、接続される直線状の配管部が、軸心が水平方向に向 いて上下に配置され、上段配管部 23が上記流体返し部 21の上端接続部 22に接続 され、下段配管部 25が上記流体返し部 21の下端接続部 24に接続されている。 As shown in FIG. 1, the conduit 20 is provided with a fluid return portion 21 bent on one side or both sides thereof, and is formed in a U shape or a meandering shape in the vertical direction. Then, linear pipes connected to both ends of the fluid return part 21 are arranged vertically with the axis centering in the horizontal direction, and the upper pipe part 23 is connected to the upper end of the fluid return part 21. The lower piping part 25 is connected to the lower end connection part 24 of the fluid return part 21.
[0016] さらに、上記流体返し部 21の上端接続部 22に接続している直線状の上段配管部 2 3と、流体返し部 21の下端接続部 24に接続している直線状の下段配管部 25とは、 流体返し部 21から遠のくにしたがって互いに離反するように傾斜して 、る。 [0016] Furthermore, a straight upper pipe portion 23 connected to the upper end connection portion 22 of the fluid return portion 21 and a straight lower pipe portion connected to the lower end connection portion 24 of the fluid return portion 21. 25 is inclined so as to be separated from each other as the distance from the fluid return portion 21 increases.
[0017] 具体的には、図 4に示すように、水平線 Hに対して直線状の上段配管部 23の傾斜 角 0 と、直線状の下段配管部 25の傾斜角 0 とを等しくさせている。しかし、所望に Specifically, as shown in FIG. 4, the inclination angle 0 of the straight upper piping part 23 with respect to the horizontal line H is made equal to the inclination angle 0 of the linear lower piping part 25. . But as desired
1 2 1 2
より、水平線 Hに対して直線状の上段配管部 23の傾斜角 0 と、直線状の下段配管 部 25の傾斜角 Θ とが異なるようにしても支障がない。 Therefore, there is no problem even if the inclination angle 0 of the straight upper piping part 23 with respect to the horizontal line H is different from the inclination angle Θ of the linear lower piping part 25.
2 2
[0018] ここで、直線状の上段配管部 23の傾斜角 Θ と、直線状の下段配管部 25の傾斜角 [0018] Here, the inclination angle Θ of the straight upper piping part 23 and the inclination angle of the linear lower piping part 25
Θ は、それぞれ、好ましくは 0. 5〜3° 、さらに好ましくは 1〜2° である。
[0019] 上段配管部 23の傾斜角 Θ および下段配管部 25の傾斜角 Θ が 0. 5° 未満の場 Θ is preferably 0.5 to 3 °, more preferably 1 to 2 °, respectively. [0019] When the inclination angle Θ of the upper piping section 23 and the inclination angle Θ of the lower piping section 25 are less than 0.5 °
1 2 1 2
合は、管路 20内、ひいては、直線状の上段配管部 23または直線状の下段配管部 2 5内で凝縮した液が流下し難くなる。これとは逆に、上段配管部 23の傾斜角 Θ およ び下段配管部 25の傾斜角 Θ が 3° を超える場合は、管路 20の高さが高くなり、装 In this case, the liquid condensed in the pipe 20 and thus in the straight upper pipe part 23 or the straight lower pipe part 25 becomes difficult to flow down. On the contrary, if the inclination angle Θ of the upper piping part 23 and the inclination angle Θ of the lower piping part 25 exceed 3 °, the height of the pipe line 20 becomes higher,
2 2
置自体が大型化する欠点がある。 There is a disadvantage that the device itself becomes large.
[0020] いま、上記二重管式の熱交翻10において、内管 40の下端部に設けた流体導入 口 41から常温の水 Wを供給し、外管 30の上端部に設けた流体導入口 31から高圧 高温の変成ガス Gを供給すると、水 Wは蛇行した内管 40を通過する間に高圧高温の 変成ガス Gによって加熱され、水蒸気 Sとなって内管 40の上端部に設けた流体排出 口 42から次の工程に供給される。他方、高圧高温の変成ガス Gは、蛇行した外管 30 を通過する間に水 Sによって冷却され、高圧低温の変成ガス G'となって外管 30の下 端部に設けた流体排出口 32から次の工程に供給される。 [0020] Now, in the above-described double-pipe heat exchanger 10, water W at room temperature is supplied from the fluid inlet 41 provided at the lower end of the inner tube 40, and the fluid is introduced at the upper end of the outer tube 30. When high-pressure and high-temperature modified gas G is supplied from the port 31, water W is heated by the high-pressure and high-temperature modified gas G while passing through the meandering inner tube 40, and is formed as water vapor S at the upper end of the inner tube 40. It is supplied to the next process from the fluid discharge port 42. On the other hand, the high-pressure and high-temperature modified gas G is cooled by water S while passing through the meandering outer tube 30, and becomes a high-pressure and low-temperature modified gas G ′, which is a fluid discharge port 32 provided at the lower end of the outer tube 30. To be supplied to the next process.
[0021] 上記工程において、流体返し部 21の上端接続部 22に接続させた直線状の上段配 管部 23と、上記流体返し部 21の下端接続部 24に接続させた直線状の下段配管部 25とを、流体返し部 21から遠のくにしたがって互いに離反するように傾斜させたので 、装置の停止時などにおいて変成ガス G'が凝縮して液ィ匕した場合や水 Wが残留せ ずに傾斜した直線状の配管部に沿って流下するため、管内に滞留させることなく速 やかに排出させることができる。 [0021] In the above process, a straight upper pipe portion 23 connected to the upper end connection portion 22 of the fluid return portion 21 and a straight lower pipe portion connected to the lower end connection portion 24 of the fluid return portion 21. 25 is inclined so as to be separated from each other as the distance from the fluid return portion 21 increases.When the device is shut down, the gas G 'condenses and becomes liquid, or the water W does not remain. Since it flows down along the straight piping section, it can be discharged quickly without being retained in the pipe.
産業上の利用可能性 Industrial applicability
[0022] 本発明の熱交換器は、特に高温流体用の熱交換器に有用である。
[0022] The heat exchanger of the present invention is particularly useful as a heat exchanger for high-temperature fluids.
Claims
[1] 管路の片側または両側に屈曲した流体返し部が設けられ、鉛直方向に U字状また は蛇行状に形成されて 、る熱交^^にぉ 、て、上記流体返し部と水平方向に向 ヽ て上下に配置される直線状の上段配管部と、直線状の下段配管部とを、上記流体返 し部から遠のくにしたがって互いに離反するように傾斜させたことを特徴とする熱交換 [1] A bent fluid return section is provided on one or both sides of the pipe, and is formed in a U-shape or meandering shape in the vertical direction. The heat is characterized in that the linear upper piping section and the linear lower piping section arranged vertically in the direction are inclined so as to be separated from each other as the distance from the fluid return section increases. Exchange
[2] 上記管路を、外管と、該外管の内部に設けた内管力 なる二重管により形成させた 請求項 1記載の熱交換器。 [2] The heat exchanger according to claim 1, wherein the conduit is formed by an outer tube and a double tube having an inner tube force provided inside the outer tube.
[3] 上記管路を、単管式の伝熱部により形成させた請求項 1記載の熱交換器。 [3] The heat exchanger according to claim 1, wherein the pipe line is formed by a single pipe heat transfer section.
[4] 水平線 Hに対して直線状の上段配管部の傾斜角 Θ と直線状の下段配管部の傾 斜角 Θ とが、それぞれ、 0. 5° 〜3. 0° である請求項 1、 2または 3記載の熱交換器
[4] The inclination angle Θ of the straight upper pipe portion with respect to the horizontal line H and the inclination angle Θ of the straight lower pipe portion are 0.5 ° to 3.0 °, respectively. Heat exchanger according to 2 or 3
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/319272 WO2008038363A1 (en) | 2006-09-28 | 2006-09-28 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/319272 WO2008038363A1 (en) | 2006-09-28 | 2006-09-28 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008038363A1 true WO2008038363A1 (en) | 2008-04-03 |
Family
ID=39229810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/319272 WO2008038363A1 (en) | 2006-09-28 | 2006-09-28 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008038363A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITPR20130098A1 (en) * | 2013-11-29 | 2015-05-30 | Ncr Logistica S R L | HEAT EXCHANGER AND METHOD TO REALIZE IT |
EP3089257A1 (en) * | 2015-04-29 | 2016-11-02 | Samsung SDI Co., Ltd. | Cooling system for a battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0712787U (en) * | 1993-08-06 | 1995-03-03 | 株式会社荏原シンワ | Heat exchanger |
JP2004044896A (en) * | 2002-07-11 | 2004-02-12 | Daikin Ind Ltd | Heat exchanger for hot water supply |
JP2004053222A (en) * | 2002-07-24 | 2004-02-19 | Komatsu Ltd | Heat exchanger for hydrothermal reaction |
JP2005077018A (en) * | 2003-09-02 | 2005-03-24 | Sharp Corp | Loop thermosyphon and Stirling refrigerator, and loop thermosyphon assembly structure |
-
2006
- 2006-09-28 WO PCT/JP2006/319272 patent/WO2008038363A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0712787U (en) * | 1993-08-06 | 1995-03-03 | 株式会社荏原シンワ | Heat exchanger |
JP2004044896A (en) * | 2002-07-11 | 2004-02-12 | Daikin Ind Ltd | Heat exchanger for hot water supply |
JP2004053222A (en) * | 2002-07-24 | 2004-02-19 | Komatsu Ltd | Heat exchanger for hydrothermal reaction |
JP2005077018A (en) * | 2003-09-02 | 2005-03-24 | Sharp Corp | Loop thermosyphon and Stirling refrigerator, and loop thermosyphon assembly structure |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITPR20130098A1 (en) * | 2013-11-29 | 2015-05-30 | Ncr Logistica S R L | HEAT EXCHANGER AND METHOD TO REALIZE IT |
WO2015079391A1 (en) * | 2013-11-29 | 2015-06-04 | Ncr Logistica S.R.L. | A heat exchanger and a method of realising it |
EP3089257A1 (en) * | 2015-04-29 | 2016-11-02 | Samsung SDI Co., Ltd. | Cooling system for a battery |
US20160322678A1 (en) * | 2015-04-29 | 2016-11-03 | Samsung Sdi Co., Ltd. | Cooling system for battery |
CN106099241A (en) * | 2015-04-29 | 2016-11-09 | 三星Sdi株式会社 | Cooling system for battery |
US10205201B2 (en) * | 2015-04-29 | 2019-02-12 | Samsung Sdi Co., Ltd. | Cooling system for battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050189094A1 (en) | Helical coil-on-tube heat exchanger | |
JP2013512409A (en) | Solid matrix tube heat exchanger | |
EP2622297B1 (en) | Waste heat boiler | |
JP2016217669A (en) | Double-pipe heat exchanger and heat-pump type water heater | |
AU2009234819B2 (en) | Heat exchanger and hot water supply system using the same | |
JP2017194261A (en) | Heat exchanger | |
CN103424012A (en) | Immersion type ring tube heat exchanger | |
CN201032440Y (en) | Snake structure separated heat pipe heat exchange system | |
JP4572662B2 (en) | Heat exchanger | |
JP7199842B2 (en) | water heat exchanger, gas cooler | |
WO2008038363A1 (en) | Heat exchanger | |
US20060162912A1 (en) | Heat exchanger | |
JP2008096071A (en) | Double pipe heat exchanger | |
JP2008267631A (en) | Heat exchanger | |
JP4615422B2 (en) | Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters | |
JP2010255856A (en) | Heat exchanger and heat pump water heater using the same | |
KR101604536B1 (en) | Haet exchanger for heat pump | |
JP2007218461A (en) | Double tube heat exchanger | |
CN114963800A (en) | Heat exchanger | |
JP2013200116A (en) | Falling liquid film type heat exchanger and in-pipe insertion member | |
EP1995542A2 (en) | Heat exchange device | |
JP2008057908A (en) | Heat exchanger | |
JP2010255980A (en) | Heat exchanger and heat pump water heater using the same | |
US11371694B2 (en) | Fire tube | |
KR20110016263A (en) | Flex tube mounting module for heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06810720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06810720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |