[go: up one dir, main page]

WO2008138167A1 - Procédé de production de gaz de houille - Google Patents

Procédé de production de gaz de houille Download PDF

Info

Publication number
WO2008138167A1
WO2008138167A1 PCT/CN2007/001547 CN2007001547W WO2008138167A1 WO 2008138167 A1 WO2008138167 A1 WO 2008138167A1 CN 2007001547 W CN2007001547 W CN 2007001547W WO 2008138167 A1 WO2008138167 A1 WO 2008138167A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
temperature
gasifying agent
coal
heat
Prior art date
Application number
PCT/CN2007/001547
Other languages
English (en)
French (fr)
Inventor
Zhiping Xie
Original Assignee
Foshan Keda Energy Resource Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Keda Energy Resource Machinery Co., Ltd. filed Critical Foshan Keda Energy Resource Machinery Co., Ltd.
Priority to PCT/CN2007/001547 priority Critical patent/WO2008138167A1/zh
Priority to AU2007353260A priority patent/AU2007353260B2/en
Priority to EP07721120.9A priority patent/EP2149595B1/en
Publication of WO2008138167A1 publication Critical patent/WO2008138167A1/zh
Priority to US12/618,462 priority patent/US8029581B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/80Other features with arrangements for preheating the blast or the water vapour
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • C10J2300/0933Coal fines for producing water gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • C10J2300/0936Coal fines for producing producer gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a method of producing coal gas, and more particularly to a method of producing coal gas from pulverized coal. Background technique
  • the process of producing coal gas using pulverized coal generally includes feeding pulverized coal, steam, air and oxygen into a gas generating furnace to cause a reaction at a high temperature to generate gas, and the generated gas is returned to the pulverized coal through a cyclone.
  • the gas is used to generate steam through the waste heat boiler, and the cleaned and cooled gas is sent to the user. Since the temperature of the gas coming out of the gas generator is very high, the steam generated after the waste heat boiler exceeds the gas production requirements, and the excess is used for other purposes; and because of the steam, air and oxygen entering the gas furnace.
  • the temperature of the gasifying agent is relatively low, usually 65 °C ⁇ 12 (TC, and the temperature of the gasifying agent needs to rise to 100 (TC ⁇ 1100 °C) during the reaction in the furnace, which is consumed during the temperature increase of the gasifying agent.
  • TC 65 °C ⁇ 12
  • the above factors all cause a relatively high coal consumption per unit of gas produced, usually at 0.3 Kg/Nm 3 ⁇ 0.4 Kg/Nm 3 or more; and the gas produced by the above conventional process has a low calorific value.
  • an object of the present invention is to provide a gas production method which not only reduces coal consumption but also increases the heat value of the generated gas.
  • the present invention provides a gas production method comprising: adding a raw material pulverized coal and a high-temperature gasifying agent to a gas generating furnace to generate a gas;
  • the hot gas is exchanged with the gasifying agent to generate a high temperature gasifying agent
  • the gas after heat exchange with the gasifying agent exchanges heat with water to produce steam, which is a component of the gasifying agent
  • the gas after heat exchange with water is further dedusted and desulfurized and then output.
  • the gas After the gas is generated and before the heat exchange with the gasifying agent, it is subjected to a thousand-type high-temperature separation treatment, and the separated pulverized coal is sent back to the gas generator.
  • the gas After the high-temperature gasification agent is produced, the gas is exchanged with the water to produce steam, and the dry coal is subjected to dry low-temperature separation treatment, and the separated pulverized coal is sent back to the gas generator.
  • the temperature of the heat exchange between the tapping gas and the gasifying agent is 50 (TC - 700 'C; the heat exchange between the gas and the water is carried out in a waste heat boiler, and the inlet temperature of the waste heat boiler is 400 ° C - 500. C.
  • the gasifying agent is air and steam, oxygen-enriched air and steam, or pure oxygen and steam.
  • the raw coal powder When initially operated, the raw coal powder is added from the lower portion of the gas generator. When the temperature of the gas generator is operating normally, the raw coal powder is fed from the upper portion of the gas generator.
  • the high temperature gasifying agent is fed from three locations of the gas generator; the first of the three positions is located at a lower portion of the gas generator, and the high temperature gasifying agent is fed in a amount of 50% - 60%; the second is located in the middle of the gas generator, the high-temperature gasifying agent is fed in an amount of 35% - 45%; the third is located in the middle of the gas generating furnace;
  • the pulverized coal separated by the cryogenic separator is sent to a gas generator together, and the high-temperature gasifying agent is fed in an amount of 5%.
  • the high temperature gasifying agent has a temperature of from 750 ° C to 850 ° C.
  • the coal gas supplied to the user has a pulverized coal content of 5 mg/Nm 3 .
  • the proportion of air, oxygen-enriched air or pure oxygen in the gasifying agent is: 50 - 80 %, and the proportion of steam in the gasifying agent is 20 - 50%.
  • the gas production method provided by the invention exchanges the gasification agent entering the furnace with the gas discharged from the furnace, so that the temperature of the gasification agent entering the furnace reaches 750 ° C ⁇ 850 ° C, so the reaction of the pulverized coal with the high temperature gasification agent
  • the calorie consumption is 20% to 30% lower than that of the normal temperature gasifying agent, and the combustible component of the gas is 20% to 30% higher than the mixed gas of the normal temperature gasifying agent.
  • the present invention heats the gas from 950 ° C to 1100 ° C of the gas furnace and 60 ° C ⁇ 10 (the gasification agent of TC exchanges heat through the heat exchanger, and the temperature of the gasification agent after heat exchange rises to 750 ° C - 850 ° C, the temperature drops to 40 (TC ⁇ 500 °C gas and then enter the waste heat boiler to produce steam, after the waste heat boiler comes out, the gas temperature drops to about 150 °C, into the Venturi dust collector and washing tower dust removal, After the final desulfurization, it is sent to the user.
  • the gasification agent of TC exchanges heat through the heat exchanger, and the temperature of the gasification agent after heat exchange rises to 750 ° C - 850 ° C, the temperature drops to 40 (TC ⁇ 500 °C gas and then enter the waste heat boiler to produce steam, after the waste heat boiler comes out, the gas temperature drops to about 150 °C, into the Venturi dust collector and washing tower dust removal, After the final desulfurization
  • the gas heat is supplied to the gasifying agent, and the temperature of the gasifying agent rises, so that the steam content increases, and the reaction speed with the coal increases, not only the coal
  • the gas generator has low coal consumption and good gas composition. More importantly, the heat in the gas is effectively recovered, and the coal consumption is reduced by 20% to 30%. Compared with the coal consumption of the prior art gas furnace using the normal temperature gasifying agent of 0.3 g/Nm 3 to 0.4 Kg/Nm 3 , the coal consumption of the mixed gas of the present invention is reduced to 0.22 g/Nm 3 to 0.25 Kg/Nm 3 0 .
  • the invention adopts two separations of high temperature and low temperature to greatly reduce the amount of pulverized coal carried by the gas, and the separated pulverized coal is reintroduced into the furnace, thereby further reducing the coal consumption of the gas generator.
  • the calorific value of the mixed gas produced by the air-steaming gasification agent is 5600 KJ/Nm 3 - 6000 KJ/Nra 3 , (1350 kcal/Nm 3 ⁇ 1450 kcal/Nm 3 ), and the coal consumption is only 0.22 Kg/Nm 3 ⁇ 0.25 Kg/Nm 3 , low coal consumption, high calorific value, high production efficiency and low cost.
  • FIG. 1 is a flow chart 1 of an embodiment of a gas generating method of the present invention. detailed description
  • the raw material pulverized coal 1 with water content ⁇ 8% is sent to the gas generator through the coal feeder. If the water content of the raw pulverized coal is higher than 8%, it needs to be dried first.
  • the raw pulverized coal 1 is generated from the gas.
  • the lower part of the furnace is fed.
  • the high temperature gasifying agent 7 having a temperature of 750 - 850 ° C is fed into the gas generating furnace from three positions. A reaction occurs in the gas generator to generate gas.
  • One of the three locations is added from the lower portion of the gas generator, the amount of addition is 50% - 60%, and the other is added from the middle of the gas generator.
  • the addition amount is from 35% to 45%, and the third enters from the circulating coal inlet of the gas generator, and the circulating coal is sent to the gas generator, which accounts for 5% of the total high-temperature gasification dose; the gas passes through a dry high temperature
  • the separator separates the pulverized coal 1 carrying the particles having a diameter larger than 10 ⁇ m, and is sent back to the gas generator as circulating coal, and then separated into a heat exchanger, and exchanges heat to the air 3 and steam 4 Composed of a gasifying agent, making The chemical is heated to 750 - 850 high temperature gasification agent 7, the temperature of the gas is 500 - 700 ° C, the temperature of the gas out of the heat exchanger is 400 - 500 ° C, and then enters a dry low temperature
  • the separator further separates all of the coal particles larger than 5
  • the air may also be oxygen-enriched air or pure oxygen;
  • the gas production process reduces the coal consumption by heating the gasification agent into the gas generator after preheating; and the raw material pulverized coal enters the gas generator from two inlets, and The gas-carrying pulverized coal is returned to the gas generator, which further reduces the coal consumption, so that the coal consumption is only 0.22 g/Nm 3 ⁇ 0.25 Kg/Nm 3 of gas, and the calorific value of the gas is increased to 600 KJ/Nm 3 gas.
  • ⁇ 6000n/Nm 3 gas (1350 kcal / Nm 3 gas ⁇ 1450kcal / Nm 3 gas).
  • the air consumption is 0.6 - 0.65 Kg / Nm 3 of gas.
  • the composition of the gas composition obtained is: H 2 : 15% - 20%; CO: 25% - 30%; C0 2 : 5 % - 8 %; N 2 : 40% - 50%; (3 ⁇ 4: 2% -3 %; 0 2 : 0.2% - 0.5%.
  • the ratio of air, oxygen-enriched air or pure oxygen in the gasifying agent is: 75 - 80%, and the proportion of steam is 20 - 25 %.
  • the parameters in this embodiment are as follows: Combination:
  • Gas specific heat is 0.33kcal/Nm 3 gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Industrial Gases (AREA)

Description

一种煤气生产方法 技术领域
本发明涉及一种煤气的生产方法, 尤其涉及用粉煤生产煤气的方法。 背景技术
利用粉煤生产煤气的工艺通常包括, 把粉煤、 蒸汽、 空气和氧气送入煤 气发生炉, 使之在在高温状态下发生反应, 产生煤气, 所产生的煤气经旋风 除尘器将粉煤返回煤气发生炉, 煤气则经过废热锅炉用于产生蒸汽, 经洗涤 冷却后的煤气送入用户。 由于从煤气发生炉出来的煤气温度非常高, 经过废 热锅炉后产生的蒸汽超出了煤气生产所需, 超出部分就会用于其它的用途; 同时由于进入煤气炉内的蒸汽、 空气和氧气组成的气化剂的温度比较低, 通 常为 65 °C ~ 12(TC, 而在炉内反应时, 气化剂温度需要升到 100(TC ~ 1100°C, 在提高气化剂温度期间就会消耗大量的反应热量。 以上因素都造成了生产的单 位煤气煤耗比较高, 通常在 0. 3 Kg/Nm3 ~ 0. 4Kg/Nm3以上; 而且以上述传统工 艺生产的煤气热值低。 发明内容
为了解决上述问题, 本发明的目的是提供一种煤气生产方法, 不仅降低 煤耗, 而且增加所产生煤气的热值。
为了实现上述目的, 本发明提供了一种煤气生产方法, 包括: 向煤气发生炉内加入原料粉煤和高温气化剂, 反应生成煤气;
出炉煤气与气化剂进行热交换, 产生高温气化剂;
与气化剂热交换后的煤气与水进行热交换, 生产蒸汽, 所述蒸汽为气化剂 的组成部分;
将与水进行热交换后的煤气进一步除尘和脱硫后输出。 在生成煤气之后、 与气化剂进行热交换之前还经过千式高温分离处理, 所 分离出的粉煤被送回煤气发生炉。 在产生高温气化剂之后、 煤气与水进行热交 换生产蒸汽之前还经过干式低温分离处理,所分离出的粉煤被送回煤气发生炉。
所述出炉煤气与气化剂进行热交换的温降为 50(TC - 700'C;。 所述煤气与 水进行热交换在废热锅炉中进行, 在所述废热锅炉的入口温度为 400°C - 500 。C。
所述气化剂为空气和蒸汽、 富氧空气和蒸汽、 或纯氧和蒸汽。
当初始运行时, 所述原料煤粉从所述煤气发生炉的下部加入。 当所述煤气 发生炉的温度运行正常时, 所述原料煤粉从所述煤气发生炉的上部加入。
所述高温气化剂从所述煤气发生炉的三个位置送入;所述三个位置中第一 个位于所述煤气发生炉的下部, 所述高温气化剂送入量为 50%- 60%; 第二个位 于所述煤气发生炉的中部, 所述高温气化剂送入量为 35%- 45%; 第三个位于所 述煤气发生炉的中部; 将所述高温分离器和低温分离器分离出的粉煤一起送入 煤气发生炉, 所述高温气化剂送入量为 5%。
所述高温气化剂的温度为 750°C - 850°C。
所述供给用户的煤气的粉煤含量 5mg/Nm3。 空气、 富氧空气或纯氧在气 化剂中的比例为: 50 - 80 % , 蒸汽在气化剂中的比例为 20 - 50 %。
本发明提供的煤气生产方法, 使入炉的气化剂与出炉的煤气经热交换, 从而入炉的气化剂温度达到 750°C ~ 850°C , 因此粉煤与高温气化剂的反应 热量消耗比常温气化剂低 20% ~ 30%, 而且煤气的可燃成份较常温气化剂的 混合煤气高 20% ~ 30%。 具体地, 本发明将出煤气炉的 950 °C ~ 1100 °C煤气与 60°C ~ 10(TC的气化剂通过换热器进行换热, 换热后的气化剂温度上升达到 750 °C - 850°C , 温度下降至 40(TC ~ 500 °C的煤气再进入废热锅炉生产水蒸 汽, 从废热锅炉出来后煤气温度降至 150°C左右, 进入文丘里除尘器和洗涤 塔除尘, 最后脱硫后送往用户。 通过煤气和气化剂热交换, 煤气热量供给气 化剂, 气化剂温度上升导致蒸汽含量增大, 与煤的反应速度加快, 不仅使煤 气发生炉煤耗低、 煤气成分好, 更主要的是有效回收了煤气中的热量, 使煤 耗下降 20%~ 30%。与使用常温气化剂的现有技术煤气炉的煤耗 0.3 g/Nm3~ 0.4 Kg/Nm3相比, 本发明混合煤气的煤耗下降至 0.22 g/Nm3~ 0.25 Kg/Nm3 0 此外, 本发明通过采用高温、 低温两次分离, 使煤气携带的粉煤量大幅度降 低,而且分离下来的粉煤又重新入炉,因此进一步降低了煤气发生炉的煤耗。 本发明由空气加蒸汽的气化剂生产的混合煤气热值在 5600 KJ/Nm3 - 6000KJ/Nra3, ( 1350 kcal/ Nm3 ~ 1450kcal/ Nm3 ) , 煤耗仅为 0.22Kg/Nm3~ 0.25 Kg/Nm3, 煤耗低, 热值高, 生产效率高,成本低。
附图说明
图 1为本发明煤气发生方法实施例流程图一。 具体实施方式
以下参考图 1具体说明本发明的实施:
将含水量< 8%的原料粉煤 1经送煤机送入煤气发生炉, 如果原料粉煤的 含水量高于 8%则需要先干燥, 在刚开始运行时, 原料粉煤 1从煤气发生炉的 下部送入, 当炉温正常时, 原料粉煤 1改从煤气发生炉的上部送入; 同时将温 度为 750 - 850°C的高温气化剂 7从三个位置加入煤气发生炉, 在所述煤气发生 炉中发生反应, 产生煤气, 所述的三个位置其中一个是从煤气发生炉的下部加 入, 加入量为 50% - 60%, 另一个是从煤气发生炉的中部加入, 加入量为 35 % -45%, 第三个从煤气发生炉的循环煤入口进入, 同时将循环煤送入煤气发 生炉, 占总高温气化剂量的 5%; 所述煤气经过一干式高温分离器, 将其中所 携带的颗粒直径大于 10 μπι的粉煤 1分离,被作为循环煤重新送回煤气发生炉, 经过分离的煤气再进入一热交换器, 将热量交换给空气 3和蒸汽 4组成的气化 剂, 使得气化剂升温成 750 - 850 高温气化剂 7, 所述煤气的温降为 500 - 700 °C, 所述煤气出所述热交换器的温度为 400 - 500°C, 再进入一干式低温分离器 进一步分离其中的全部大于 5 μπι粉煤颗粒, 且分离 0- 5μηι直径颗粒的 50%, 分离出的粉煤 5被作为循环煤重新送回煤气发生炉; 出低温分离器后煤气进入 一废热锅炉用于产生蒸汽 4, 蒸汽 4是气化剂的组成部分, 出所述废热锅炉的 煤气进入一文丘里湿式除尘器和洗涤塔中进行脱^ _和进一步除尘处理, 其中通 过一水泵保持洗液 8在文丘里湿式除尘器和洗潦塔以及沉降设备中的循环, 经 过上述湿式除尘分离 90%的颗粒小于 5 μηι粉煤, 并经过沉降设备沉降后, 粉 渣 9过滤后排出, 通过洗涤塔洗涤后的煤气 6可以输送给用户。 上述工艺中空 气还可以为富氧空气或纯氧; 上述煤气生产工艺由于使气化剂预热后进入煤气 发生炉, 减少了煤耗; 同时采用原料粉煤从两个入口进入煤气发生炉, 而且将 煤气携带的粉煤重新送回煤气发生炉, 进一步减少了煤耗, 使得煤耗仅为 0.22 g/Nm3 ~ 0.25 Kg/Nm3煤气, 同时使得煤气的热值提高, 为 600 KJ/Nm3 煤气〜 6000n/Nm3煤气 ( 1350 kcal/ Nm3煤气〜 1450kcal/ Nm3煤气) 。 具体 地, 本实施例中, 空气耗量为 0.6- 0.65 Kg/Nm3煤气。 所得到的煤气成分组 成为: H2: 15% - 20%; CO: 25% - 30%; C02: 5 % - 8 %; N2: 40% - 50%; (¾: 2% -3%; 02: 0.2% - 0.5%。 气化剂中空气、 富氧空气或纯氧的比例为: 75― 80%, 蒸汽的比例为 20 - 25 %。 本实施例中的参数有以下多种组合:
气化剂预热温 换热器出口气 煤耗 Kg/Nm3 煤气热值 Π/Nm3 度。 C 体温度 °C
750 500 0.25 5600
850 400 0.22 6000
800 450 0.24 5800 以下以空气和蒸汽为气化剂生产 IKcal的煤气耗热计算从理论上进一步 支持本发明的实施。
25°C气化剂 +25°C煤 ► 1050° 煤气+ 1050°(:蒸汽
850°C气化
Figure imgf000007_0001
85(TC气化剂 + 950°C煤 ► 25°C煤气 + 25°C蒸汽 混合气比热: 0.33kcal/Nm3oC
ΔΗ! =混合气带入热量 = INm3煤气的混合气量 X 850°C χ 0.33
= 0.8066 χ 850 0.33 = 5068kcal/kmol.煤气
煤耗 = 0.25kg/Nm3=5.6kg/kmol
原料比热 = 0.5kal/kg°C
ΔΗ, =冷煤升温热 =煤耗 X原料比热 X煤温 X原料水蒸发热
= (0.25-0.25 X 0.1) X 0.5 X (950-25) 22.4 + 0.25 0.1 χ 580 χ 22.4 = 2655.8kcal/kmol
C+02——► C02co2= 97700kcal/kmol
C+02/2 ► CO H°co= 29400kcal/kmol
C+H20 ►CO H°co= -28300kcal/kmol
C02含量 7% , lkmal煤气用空气 4.55/7.19 = 0.632kcal/kmol煤气 0.632kmol空气含氧 0.132kmol, CO耗氧为 C02的一半
△ H反 =空气生成 C02的热量 +空气生成 CO的热量 +蒸汽生成 C02的热量 = 0.07 X 97700 + [(0.132-0.07) χ 2 29400] + [0.265-2 χ (0.132-0.07)] χ (-28300) -64694.3kcal/kmol煤气
煤气比热 0.33kcal/Nm3煤气;
lNm3煤气生成 1.04Nm3湿煤气;
ΔΗ3= 8025.5kcal/kmol 因此, 生产 lkmol煤气耗热: Q= ΔΗ2+ ΔΗ3+ ΔΗ反
= 5068 + (-2655.8 ) + 8025.5 + 6494.3
= 881kcal/kmol煤气
由计算可以看出结果近似平衡, 尚余 881kcal/kmol煤气, 可用于多生成 H 最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非限制, 尽 管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的 精神和范围。

Claims

权 利 要 求 书
1、 一种煤气生产方法, 其特征是, 包括:
向煤气发生炉内加入原料粉煤和高温气化剂, 反应生成煤气;
出炉煤气与气化剂进行热交换, 产生高温气化剂;
与气化剂热交换后的煤气与水进行热交换, 生产蒸汽, 所述蒸汽为气化剂 的组成部分;
将与水进行热交换后的煤气进一步除尘和脱硫后输出。
2、 根据权利要求 1所述的煤气生产方法, 其中, 在生成煤气之后、 与气 化剂进行热交换之前还经过干式高温分离处理, 所分离出的粉煤被送回煤气发 生炉。
3、 才艮据权利要求 1所述的煤气生产方法, 其中, 在产生高温气化剂之后、 煤气与水进行热交换生产蒸汽之前还经过干式低温分离处理, 所分离出的粉煤 被送回煤气发生炉。
4、 根据权利要求 1所述的煤气生产方法, 其中, 所述出炉煤气与气化剂 进行热交换的温降为 500°C - 700 ° ( 。
5、 根据权利要求 1所述的煤气生产方法, 其中, 所述煤气与水进行热交 换在废热锅炉中进行, 在所述废热锅炉的入口温度为 400 °C - 500 °C。
6、 根据权利要求 1所述的煤气生产方法, 其中, 所述气化剂为空气和蒸 汽、 富氧空气和蒸汽、 或纯氧和蒸汽。
7、 根据权利要求 1所述的煤气生产方法, 其中, 所述原料煤粉从所述煤 气发生炉的下部加入。
8、 根据权利要求 1所述的煤气生产方法, 其中, 所述原料煤粉从所述煤 气发生炉的上部加入。
9、 根据权利要求 1 - 8任一所述的煤气生产方法, 其中, 所述高温气化剂 从所述煤气发生炉的三个位置送入; 所述三个位置中第一个位于所述煤气发生 炉的下部, 所述高温气化剂送入量为 50%- 60%; 第二个位于所述煤气发生炉的 中部, 所述高温气化剂送入量为 35%-45%; 第三个位于所述煤气发生炉的中部; 所述高温气化剂送入量为 5%。
10、 根据权利要求 1 -8任一项所述的煤气生产方法, 其中, 所述高温气 化剂的温度为 750°C - 850°C。
PCT/CN2007/001547 2007-05-14 2007-05-14 Procédé de production de gaz de houille WO2008138167A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2007/001547 WO2008138167A1 (fr) 2007-05-14 2007-05-14 Procédé de production de gaz de houille
AU2007353260A AU2007353260B2 (en) 2007-05-14 2007-05-14 A method for producing coal gas
EP07721120.9A EP2149595B1 (en) 2007-05-14 2007-05-14 A method for producing coal gas
US12/618,462 US8029581B2 (en) 2007-05-14 2009-11-13 Method for producing coal gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/001547 WO2008138167A1 (fr) 2007-05-14 2007-05-14 Procédé de production de gaz de houille

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/618,462 Continuation US8029581B2 (en) 2007-05-14 2009-11-13 Method for producing coal gas

Publications (1)

Publication Number Publication Date
WO2008138167A1 true WO2008138167A1 (fr) 2008-11-20

Family

ID=40001659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001547 WO2008138167A1 (fr) 2007-05-14 2007-05-14 Procédé de production de gaz de houille

Country Status (4)

Country Link
US (1) US8029581B2 (zh)
EP (1) EP2149595B1 (zh)
AU (1) AU2007353260B2 (zh)
WO (1) WO2008138167A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105318314B (zh) * 2014-07-28 2017-12-01 河北九鼎冶金设备制造有限公司 一种加热炉用煤气发生炉系统
CN104152165B (zh) * 2014-08-19 2016-03-30 北京乾海环保科技有限公司 煤气循环煤炭全粒径分级热解耦合冶金还原工艺及系统
CN104152164B (zh) * 2014-08-19 2016-03-09 北京乾海环保科技有限公司 煤气循环煤炭全粒径分级热解工艺及系统
CN105602625B (zh) * 2016-03-14 2018-09-21 鲁西化工集团股份有限公司煤化工分公司 一种粉煤灰回收利用新工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105896A (zh) * 1986-09-06 1988-03-23 国家经济委员会中国科学院能源研究所 煤的高温气化法
CN2055503U (zh) * 1989-07-08 1990-04-04 清华大学 新型单级流化床粉煤气化炉
US5154732A (en) * 1987-08-28 1992-10-13 A. Ahlstrom Corporation Apparatus for gasifying or combusting solid carbonaceous
US5658359A (en) * 1994-08-23 1997-08-19 Foster Wheeler Energia Oy Method of operating a fluidized bed reactor system, and system for cleaning gas cooler
CN2461925Y (zh) * 2001-02-13 2001-11-28 王同章 一种循环流化床气化炉
CN1944590A (zh) * 2006-10-17 2007-04-11 西安热工研究院有限公司 多级粉煤携带床固态排渣气化炉
CN101063050A (zh) * 2007-05-14 2007-10-31 佛山市科达能源机械有限公司 一种煤气生产方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991557A (en) * 1974-07-22 1976-11-16 Donath Ernest E Process for converting high sulfur coal to low sulfur power plant fuel
US4198212A (en) * 1977-05-24 1980-04-15 The Lummus Company Coal gasification effluent treatment
US4272256A (en) * 1979-10-15 1981-06-09 Koppers Company Inc. Method for heating oxygen containing gas in conjunction with a gasification system
US4400181A (en) 1982-01-28 1983-08-23 Hydrocarbon Research, Inc. Method for using fast fluidized bed dry bottom coal gasification
US4483692A (en) * 1983-01-27 1984-11-20 Institute Of Gas Technology Process for the recycling of coal fines from a fluidized bed coal gasification reactor
WO1994016037A1 (en) 1992-12-30 1994-07-21 Combustion Engineering, Inc. High performance coal gasifier system
JP2003500518A (ja) * 1999-05-21 2003-01-07 株式会社荏原製作所 ガス化発電システム
TWI241392B (en) * 1999-09-20 2005-10-11 Japan Science & Tech Agency Apparatus and method for gasifying solid or liquid fuel
CN1095494C (zh) 2000-09-11 2002-12-04 抚顺恩德机械有限公司 沸腾床粉煤气化装置及使用该装置生产煤气的方法
CN101063053B (zh) 2007-05-14 2010-05-26 广东科达机电股份有限公司 循环煤流化床煤气发生炉系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105896A (zh) * 1986-09-06 1988-03-23 国家经济委员会中国科学院能源研究所 煤的高温气化法
US5154732A (en) * 1987-08-28 1992-10-13 A. Ahlstrom Corporation Apparatus for gasifying or combusting solid carbonaceous
CN2055503U (zh) * 1989-07-08 1990-04-04 清华大学 新型单级流化床粉煤气化炉
US5658359A (en) * 1994-08-23 1997-08-19 Foster Wheeler Energia Oy Method of operating a fluidized bed reactor system, and system for cleaning gas cooler
CN2461925Y (zh) * 2001-02-13 2001-11-28 王同章 一种循环流化床气化炉
CN1944590A (zh) * 2006-10-17 2007-04-11 西安热工研究院有限公司 多级粉煤携带床固态排渣气化炉
CN101063050A (zh) * 2007-05-14 2007-10-31 佛山市科达能源机械有限公司 一种煤气生产方法

Also Published As

Publication number Publication date
US8029581B2 (en) 2011-10-04
EP2149595A4 (en) 2010-11-17
US20100058664A1 (en) 2010-03-11
EP2149595B1 (en) 2013-07-17
AU2007353260A1 (en) 2008-11-20
AU2007353260B2 (en) 2011-09-15
EP2149595A1 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
CN101063050B (zh) 一种煤气生产方法
CN102099496B (zh) 能量优化和二氧化碳排放优化的铁生产方法和设备
CN102200277B (zh) 一种使用固体燃料化学链燃烧的方法及其装置
CN106554826B (zh) 带细粉灰熔融的循环流化床煤气化方法及装置
TW200905061A (en) Process and installation for generating electrical energy in a gas and steam turbine (combined cycle) power generating plant
CN101063053B (zh) 循环煤流化床煤气发生炉系统
CN103764854B (zh) 用于处理来自生铁制造设备的排气和/或合成气的方法
US9222042B2 (en) Process for regulating joule value of offgases from plants for pig iron production or of synthesis gas
CN102517089B (zh) 一种生物质气化熔融制取高热值可燃气的装置及方法
CN102066248A (zh) 生产电石的方法及系统
CN102585947B (zh) 一种由煤制备含甲烷的气体的方法及设备
CN107337179B (zh) 一种气基竖炉还原气的制备系统及方法
CN102373089B (zh) 一种煤气化方法
CN105885953B (zh) 褐煤气化多联产制取还原气的装置及方法
CN102816606B (zh) 一种可燃固体废弃物气化制取富烃可燃气的方法
CN107043641A (zh) 带细粉灰回送的循环流化床煤气化方法及装置
CN114686633A (zh) 利用直接还原铁炉顶煤气预热变换氢气的方法
CN108949240A (zh) 水煤浆气化炉与气基竖炉联合生产直接还原铁的系统和方法
WO2008138167A1 (fr) Procédé de production de gaz de houille
WO2014101370A1 (zh) 煤炭气化方法、设备及其发电系统和发电方法
TW202129014A (zh) 高爐之操作方法及高爐附帶設備
CN116287521A (zh) 富氢石化尾气耦合炉顶煤气回用方法与竖炉回路流程系统
TWI785506B (zh) 高爐之操作方法及高爐附帶設備
CN113462434A (zh) 一种带飞灰再气化的气化方法和系统
CN115261542B (zh) 一种煤粉与矿粉短流程冶炼的循环流化床直接还原系统及工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007721120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7603/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007353260

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009146040

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: PI 20094860

Country of ref document: MY

ENP Entry into the national phase

Ref document number: 2007353260

Country of ref document: AU

Date of ref document: 20070514

Kind code of ref document: A