[go: up one dir, main page]

WO2009065667A1 - Contrôle des capteurs de température d'un convertisseur d'impulsions - Google Patents

Contrôle des capteurs de température d'un convertisseur d'impulsions Download PDF

Info

Publication number
WO2009065667A1
WO2009065667A1 PCT/EP2008/063539 EP2008063539W WO2009065667A1 WO 2009065667 A1 WO2009065667 A1 WO 2009065667A1 EP 2008063539 W EP2008063539 W EP 2008063539W WO 2009065667 A1 WO2009065667 A1 WO 2009065667A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
error
plausibility
errors
temperature sensors
Prior art date
Application number
PCT/EP2008/063539
Other languages
German (de)
English (en)
Inventor
Beqir Pushkolli
Arnold Winter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009065667A1 publication Critical patent/WO2009065667A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the present invention relates to a method for monitoring temperature sensors in circuit breakers of a pulse-controlled inverter, in particular a pulse inverter of a hybrid drive, a pulse inverter, which is designed to operate an electrical machine. Furthermore, the invention relates to an apparatus for carrying out the method. The present invention also relates to a control device for monitoring the power of the electric machine or the hybrid drive.
  • pulse inverters in particular those designed for operating an electric machine, in (hybrid) vehicles.
  • Such a pulse inverter determines the power and mode of operation of the electric machine.
  • the electric machine is used as an electric drive in (hybrid) vehicles.
  • temperature sensors are integrated in the circuit breakers (for example IGBTs) of a pulse inverter, each of which monitors temperature values of a respective phase which connects the pulse-controlled inverter to the electrical machine for operating the electrical machine.
  • the functionality of the temperature sensors must be constantly monitored. That is, to be monitored for possible electrical or area errors. If a malfunction occurs in relation to the temperature sensors or temperature values, an indication indicates that at least one temperature detected by the temperature sensors is incorrect and that the power of the electric machine or the hybrid drive must be adapted accordingly.
  • the hidden errors represent the effects of which will only be visible at a later date.
  • it may cause damage or damage to the power electronics. It thus requires much more extensive monitoring of the temperature sensors than is currently the case.
  • the erfmdungsdorfe method defined in claim 1 for monitoring a number of temperature sensors of circuit breakers of a pulse inverter offers the advantage that with respect to the temperature sensors occurred Fahler can be detected faster before they are displayed.
  • the idea on which the present invention is based is to carry out a monitoring or plausibility check or test with regard to the temperature values recorded by the temperature sensors, in the course of which the temperature values are checked as to whether they are plausible, thus acceptable and comprehensible.
  • This monitoring can be done at any time regardless of whether there is a malfunction or not.
  • the temperature values determined by the temperature sensors are checked for their (plausible) value range and their time course.
  • a plausibility error generally represents a deviation from a functionally plausible and acceptable value in a system, apparatus, or method.
  • plausibility errors indicates that the functionality of the power switches (e.g., IGBTs) having the temperature sensors is no longer guaranteed. This means that a malfunction has occurred.
  • hidden errors errors that are not yet displayed, can be detected in a timely, fast and effective manner at each point in time of operation. After such a determination, an error message will arise in time.
  • measures can be taken in good time to protect the power electronics of the electric machine and of the (hybrid) drive as a whole.
  • a limiting factor can be calculated by means of the ascertained plausibility errors and used for limiting the power of the electric machine and of the (hybrid) drive.
  • the method for monitoring or plausibility checking of the temperature sensors of circuit breakers of the pulse-controlled inverter generally has the following steps:
  • the method outlined above and described in more detail below may be used to monitor the power of the electric machine operated by the pulse-controlled inverter when, for example, a vehicle operated by the electric machine is operated at a speed exceeding a predetermined speed.
  • control device for monitoring the temperature sensors of the circuit breakers of the pulse-controlled inverter can be used, wherein the control device is designed to carry out the method outlined above and explained in more detail below.
  • the determination of the power limitation factor is achieved by means of one of the following steps:
  • This step in determining the performance restriction factor provides a refined or more accurate value of the performance restriction factor that is better matched to a situation that has arisen.
  • the power can be accurately tailored to the situation without the need for complex calculations, i. be restricted accordingly quickly and effectively. This achieves faster, more efficient and precisely tuned power electronics protection.
  • the method can also be used to determine a general error expressing the situation of the malfunction and to be displayed for further actions or analyzes. This can also happen if at least two temperature sensors have plausibility errors, what then
  • FIG. 1 shows an exemplary pulse-controlled inverter used in a hybrid drive and having power switches with temperature sensors monitored according to the present invention and a control device which controls the monitoring of the temperature sensors;
  • FIG. 2 is a block diagram describing the monitoring of temperature sensors according to one embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating the calculation of a temperature difference of two temperature values detected by two different temperature sensors according to an embodiment of the present invention
  • FIG. 4 is a block diagram illustrating the determination of the errors of the determined too high or too low temperature differences according to an embodiment of the present invention
  • FIG. 5 is a block diagram illustrating the determination of plausibility errors for each temperature sensor whose temperature differences have temperature difference errors by means of temperature difference errors of the corresponding temperature sensors according to an embodiment of the present invention
  • FIG. 6 is a block diagram in which plausibility errors of the temperature sensors are detected using the errors of the temperature sensors according to an embodiment of the present invention.
  • FIG. 7 is a block diagram for detecting whether more than one temperature sensor provides implausible values, according to one embodiment of the present invention. DESCRIPTION OF EMBODIMENTS
  • FIG. 1 shows an exemplary pulse inverter 11 used in a hybrid drive having power switches 111, 112, 113 with temperature sensors 1111, 1112, 1113 monitored according to the present invention and a controller 12 which monitors the temperature sensors 1111, 1112, 1113 controls.
  • the pulse inverter determines the power and operating mode of the electric machine 13 and is connected to the electric machine 13 via three phases U, V and W. As a result, the electric machine can be operated either in motor or generator mode.
  • the electric machine 13 is here 3-phase by the three phases U, V and W executed.
  • the power switches 111, 112, 113 of the pulse inverter 11 are connected to the phases U, V and W, for. connected to a DC link potential or a reference potential or ground.
  • the temperature sensors 1111, 1112, 1113 are each arranged for one of the three phases U, V and W, temperature sensor 1111 for the phase U, temperature sensor 1112 for the phase V and temperature sensor 1113 for the phase W.
  • the general configuration of a pulse inverter and an electrical Machine is known from the prior art.
  • a (hybrid) vehicle exceeds a certain speed, sensor errors such as a short circuit to the battery, to earth or line interruption can occur. In such case, the generally known methods or procedures for remedying the damage will be undertaken. However, if no sensor errors occur, it can not always be ensured that no errors have actually occurred. For example, it is not necessarily certain that the temperature readings are still correct. If the displayed temperatures are not correct, the power electronics must be protected. Consequently, the performance of the vehicle should be reduced.
  • the method outlined above and described in more detail below is used to monitor a number of temperature sensors 1111, 1112, 1113 of power switches 111, 112, 113 of a pulse inverter 11 in a hybrid drive.
  • the plausibility of the temperatures measured by temperature sensors 1111, 1112, 1113 of the power switches 111, 112, 113 of the pulse-controlled inverter 11 is tested. It is checked whether the temperature sensors 1111, 1112, 1113 measure plausible or appropriate temperature values for the respective state of the hybrid drive.
  • a control device 12 For monitoring the temperature sensors 1111, 1112, 1113 and thus for monitoring the electric machine, and thus for monitoring the hybrid drive, ie, a control device 12 can be used, which is connected to the pulse inverter in a suitable manner and performs the method outlined above and explained in more detail below. That is, the control device 12 has means and means configured to perform the steps of the method accordingly. These facilities and resources are not detailed here, but they arise from the steps to be taken.
  • the control device 12 is mounted outside of the pulse-controlled inverter 11, but it can also be provided inside the pulse-controlled inverter 11 for monitoring the temperature sensors 1111, 1112, 1113 and for checking the plausibility of the signals supplied by the temperature sensors 1111, 1112, 1113 Temperature values can be arranged.
  • Fig. 2 describes the monitoring of temperature sensors according to an embodiment of the present invention.
  • the method of monitoring the performance of the electrical machine i. the performance of a hybrid drive, in particular when the (hybrid) vehicle exceeds a predetermined speed and no visible sensor errors have occurred.
  • a predetermined limit speed 22 and no obvious sensor errors 23 occur or is present the method for monitoring the temperature sensors 24 and thus the performance of the electric machine and thus a hybrid drive is started, in particular the plausibility of Temperature sensors of the circuit breaker of the pulse inverter measured temperature is checked.
  • the method of monitoring temperature sensors themselves is illustrated by the block diagram of Fig. 2b.
  • These temperature values T 1, T 2 and T 3 are initially guided in pairs to the subtractors 21 1, 212, 213.
  • temperature differences of the temperature values T 1, T 2 and T 3 measured by two respective temperature sensors are determined by respective, correspondingly configured computing units 214, 215, 216.
  • the calculation units 214, 215, 216 have, as further inputs, a maximum limit value 217 and a minimum limit value 218 as a frame for a plausible temperature difference.
  • the computing units 214, 215, 216 check whether the temperature differences determined lie within or outside the range determined by the limit values. In the determined temperature differences 221, 222, 223, 224, 225, 226, a distinction is made as to whether the temperature differences 221, 222, 223, 224, 225, 226 determined have high or low values, ie whether the temperature differences 221, 222, 223, 224, 225, 226 are above the maximum threshold 217 or below the minimum threshold 218.
  • the output 221 represents a high value of the difference of the temperature values T1 and T2, the output 222 a low value of the difference of the temperature values T1 and T2, the output 223 a high value of the difference of the temperature values T1 and T3, the output 224 a low value the difference of the temperature values Tl and T3, the output 225 a high value of the difference of the temperature values T2 and T3 and the output 226 a low value of the difference of the temperature values T2 and T3.
  • the temperature difference values are determined for the respective temperature sensors depending on whether they are above or below the range predetermined by the thresholds 217 and 218.
  • the arithmetic unit 227 is configured to determine errors of the determined temperature differences.
  • An error may e.g. a deviation from the expected norm given by the limits 217 and 218.
  • the temperature difference errors also differentiate between high and too low values.
  • the output 231 represents a temperature difference error of too high a temperature difference of T1 and T2
  • the output 232 represents a temperature difference error of too low a temperature difference of T1 and T2
  • the output 233 represents a temperature difference error of too high a temperature difference of T1 and T3
  • the output 234 represents a temperature difference error of the too low temperature difference of Tl and T3
  • the output 235 represents a temperature difference error of too high a temperature difference of T2 and T3
  • the output 236 represents a temperature difference error of too low a temperature difference of T2 and T3.
  • the arithmetic unit 237 is designed to detect high and / or low plausibility errors for each temperature sensor whose temperature differences have temperature difference errors by means of the temperature difference errors of the corresponding temperature sensors.
  • the temperature difference errors of the corresponding temperature sensors can be combined with each other.
  • the plausibility errors of the temperature sensors show that the threshold values for the respective temperature sensors are above or below threshold values, which leads to a distinction between implausibly high and / or implausibly low plausibility errors of the temperature sensors.
  • the output 241 represents an implausibly high plausibility error of the temperature sensor T1 determining the temperature value
  • the output 242 represents an implausibly low plausibility error of the temperature sensor T1 determining temperature sensor
  • the output 243 represents an implausible high plausibility error of the temperature value T2 determining temperature sensor
  • the output 244 represents one implausible low plausibility error of the temperature sensor T2 determining temperature sensor
  • the output 245 represents an implausible high plausibility error of the temperature value T3 detecting temperature sensor
  • the output Gang 246 represents an implausible low plausibility error of the temperature sensor T3 determining temperature.
  • the arithmetic unit 247 is designed to combine the high and / or low plausibility errors 241, 242, 243, 244, 245, 246 of the temperature sensors with each other and to determine a plausibility error 251, 252, 253 per temperature sensor.
  • a power restriction factor 269 for limiting the performance of the hybrid drive using the plausibility errors 251, 252, 253 is determined. For this purpose, a distinction is made between three different cases, which are controlled by the correspondingly configured units 265 and 268.
  • a maximum temperature value 261 of all three temperature values is determined and converted by means of a computing unit 266 such as an integrator to the power limitation factor 269.
  • the determination of the maximum temperature value 261 is carried out by a correspondingly configured computing unit 256.
  • the output 261 represents, for example, the determined maximum temperature value selected from T1, T2 and T3.
  • Plausibility error is formed by the computing unit 256, a maximum temperature value 262, 263, 264 from the temperature values of the other two temperature sensors. This is converted by means of the arithmetic unit 266 by including the calculated plausibility error to the power restriction factor 269.
  • the outputs 262, 263 and 264 represent respective maximum temperature values determined from pairwise considerations of temperature values Tl, T2 and T3. For example, the output 262 represents the maximum temperature value of T2 and T3, the output 263 the maximum temperature value of T1 and T3 and Output 264 the maximum temperature value of Tl and T2.
  • the power limiting factor is a predetermined power limiting factor 267 used to protect the power electronics.
  • FIG. 3 shows a block diagram which is used to calculate a temperature difference between two temperature values detected by two different temperature sensors according to an embodiment of the present invention. underlying invention represents.
  • the determination of the temperature difference shown in FIG. 3 can be carried out by the arithmetic units 214, 215 and 216 of FIG. 2.
  • the inputs of the logic circuit shown in Fig. 3 are as follows: the input 31 represents a temperature difference of two of the detected temperatures Tl, T2 and / or T3, the input 217 is the aforementioned maximum limit for a plausible temperature difference and the input 218 is the aforementioned minimum limit for a plausible temperature difference.
  • the output 32 correspondingly represents a high value of the difference of two temperature values.
  • the output 33 correspondingly represents a low value of the difference of two temperature values.
  • FIG. 4 shows a block diagram which represents the determination of the errors of the determined too high or too low temperature differences or temperature differences, which are outside the predetermined range, according to an embodiment of the present invention.
  • the determination shown in FIG. 4 may be performed by the arithmetic unit 227 shown in FIG. 2.
  • the inputs 221 to 226 and the outputs 231 to 236 correspond to the inputs and outputs of the arithmetic unit 227 shown in FIG. 2 and explained above.
  • the low and too high temperature differences 221 to 226 are determined by means of error logics 421, 422, 423, 424, 425, 426 analyzed.
  • the error logics thereby decide on temperature difference errors, with time factors 411, 412, 413, such as predetermined times 412 or 413 and time intervals 421, being included in the decisions of the error logics.
  • the result is the temperature difference error 231 to 236 explained above with reference to FIG. 2.
  • FIG. 5 is a block diagram illustrating the determination of plausibility errors for each temperature sensor whose temperature differences have temperature difference errors by means of temperature difference errors of the corresponding temperature sensors according to an embodiment of the present invention.
  • the determination shown in FIG. 5 may be performed by the arithmetic unit 237 shown in FIG.
  • the inputs 231 to 236 and the outputs 241 to 246 correspond to the inputs and outputs of FIG. 2 explained above.
  • the excessively high temperature difference errors and the excessively low temperature difference errors of a temperature sensor are combined with one another in order to determine a high plausibility error of the temperature sensor.
  • the combination of the excessively high temperature difference error of the temperatures T1 and T2 231 and of the temperatures T1 and T3 results in the too high plausibility error 241 of the temperature sensor determining the temperature value T1. Accordingly, too low plausibility errors are determined.
  • the combining may be performed by AND gates 51, 52, 53, 54, 55, 56 as shown in FIG.
  • FIG. 6 shows a block diagram in which plausibility errors of the temperature sensors are determined using the high and / or low plausibility errors of the temperature sensors according to an embodiment of the present invention.
  • the determination shown in FIG. 6 may be performed by the arithmetic unit 247 shown in FIG. 2.
  • the inputs 241 to 246 and the outputs 251, 252, 253 correspond to the corresponding inputs and outputs of FIG. 2 explained above.
  • the high and the low errors of a respective temperature sensor are combined with each other by means of comparisons 61, 62, 63.
  • a plausibility error 251, 252, 253 for the respective temperature sensor 1111, 1112, 1113 is determined per temperature sensor.
  • FIG. 7 shows a block diagram for detecting whether more than one temperature sensor provides implausible values, according to one embodiment of the present invention.
  • the detection shown in FIG. 7 can be carried out by the arithmetic unit 254 shown in FIG. 2 and described above.
  • the inputs 251, 252, 253 and the output 255 correspond to the corresponding inputs and the corresponding output of FIG. 2.
  • the plausibility errors 251, 252, 253 of the respective temperature sensors 1111, 1112, 1113 are paired with an AND gate 71 , 72, 73 combined. Subsequently, it is checked 74 whether at least one combination has come about in which two temperature sensors have plausibility errors. If such a combination exists, a general error 255 announcing the implausibility of the temperature values or the temperature sensors is set and displayed.
  • the present invention provides a methodology for monitoring a number of temperature sensors of circuit breakers of a pulse inverter, the method comprising: detecting a number of temperature values measured from the number of temperature sensors; Determining temperature differences of two detected temperature values; Calculating a temperature difference error for each of the detected temperature differences that is outside a predetermined range; and determining a plausibility error for each temperature sensor, whose temperature differences have temperature difference errors, by means of the temperature difference error of the temperature sensor.
  • the plausibility errors can be used to protect the power electronics, for which protection the power of an electric machine connected to the pulse inverter and operated by the pulse-controlled inverter is reduced by a factor determined on the basis of the plausibility error.
  • the method may be performed at any time and / or during or after occurrence of certain power electronics hazardous events.
  • control device may have a situation adapted placement in the overall system of a drive. It can e.g. also be mounted within a pulse inverter. Furthermore, it is to be understood from the exemplary embodiments that the control device has corresponding devices which are designed to execute the steps of the method described above in a suitable manner and which have a suitable placement due to a specific situation in the control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

La présente invention concerne un procédé de contrôle d'un nombre de capteurs de température de disjoncteurs d'un convertisseur d'impulsions, le procédé comprenant les étapes consistant à : saisir un nombre de valeurs de température qui ont été mesurées par un nombre de capteurs de température ; déterminer des différences de température de chacune des deux valeurs de température saisies , calculer une erreur de différence de température qui se trouve hors d'une plage prédéterminée ; et déterminer une erreur de plausibilité pour chaque capteur de température, dont les différences de température présentent des erreurs de différence de température, sur la base des erreurs de différence de température du capteur de température. Les erreurs de plausibilité peuvent également être utilisées pour protéger l'électronique de puissance, la puissance d'une machine électrique reliée au convertisseur d'impulsions et commandée par le convertisseur d'impulsion étant réduite d'un facteur, déterminé à l'aide des erreurs de plausibilité, afin de mettre en place cette protection. Le procédé peut être réalisé à chaque survenance et/ou lors de la survenance ou après la survenance de certains événements pouvant être dangereux pour l'électronique de puissance.
PCT/EP2008/063539 2007-11-23 2008-10-09 Contrôle des capteurs de température d'un convertisseur d'impulsions WO2009065667A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007056559A DE102007056559A1 (de) 2007-11-23 2007-11-23 Verfahren zum Überwachen von Temperatursensoren eines Pulswechselrichters und entsprechende Steuervorrichtung
DE102007056559.5 2007-11-23

Publications (1)

Publication Number Publication Date
WO2009065667A1 true WO2009065667A1 (fr) 2009-05-28

Family

ID=40293581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/063539 WO2009065667A1 (fr) 2007-11-23 2008-10-09 Contrôle des capteurs de température d'un convertisseur d'impulsions

Country Status (2)

Country Link
DE (1) DE102007056559A1 (fr)
WO (1) WO2009065667A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107389A (zh) * 2019-07-08 2019-08-09 潍柴动力股份有限公司 一种温度传感器的可信性检测方法和装置
CN110970679A (zh) * 2019-12-26 2020-04-07 重庆长安新能源汽车科技有限公司 一种基于热对称的电池包温度传感器合理性诊断方法
CN116451014A (zh) * 2023-06-20 2023-07-18 北京云摩科技股份有限公司 一种无线无源设备内动部件温度实时监测方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170907B2 (ja) * 2010-01-11 2013-03-27 日本特殊陶業株式会社 車両用被制御部品の制御装置
DE102011076906B4 (de) * 2011-06-01 2024-10-10 Robert Bosch Gmbh Verfahren zum Betreiben eines Wechselrichters sowie Wechselrichter
DE102011076908A1 (de) * 2011-06-01 2012-12-06 Robert Bosch Gmbh Verfahren zum Betreiben eines Wechselrichters sowie Wechselrichter
DE102011076907B4 (de) * 2011-06-01 2024-06-06 Robert Bosch Gmbh Verfahren zum Betreiben eines Wechselrichters sowie Wechselrichter
FR2979951B1 (fr) 2011-09-14 2015-05-01 Snecma Procede de surveillance d'au moins deux capteurs de temperature d'une turbomachine
DE102012210760A1 (de) * 2012-06-25 2014-01-02 Kaco New Energy Gmbh Verfahren zur Funktionskontrolle eines Kühlsystems eines Wechselrichters und Wechselrichter
DE102012217787B3 (de) 2012-09-28 2014-02-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose einer Einrichtung zur Bestimmung der Temperatur einer Komponente eines elektrischen Aggregates
JP6962455B2 (ja) * 2018-04-11 2021-11-05 日産自動車株式会社 機器保護装置及び機器保護方法
DE102020125642B4 (de) 2020-10-01 2024-05-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft System, Verfahren und Computerprogrammprodukt zur Überwachung der Kühlleistung für einen Halbleiter-Pulswechselrichter
DE102022104061A1 (de) 2022-02-22 2023-08-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Überprüfung von Temperatursensoren einer elektrischen Komponente

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072117A1 (en) * 2001-10-12 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Electric power conversion apparatus
WO2004040104A1 (fr) * 2002-10-23 2004-05-13 Robert Bosch Gmbh Procede permettant de controler au moins trois capteurs destines a detecter une grandeur de mesure relative a un moteur a combustion
WO2006087618A1 (fr) * 2005-02-15 2006-08-24 Toyota Jidosha Kabushiki Kaisha Appareil et procede de protection thermique pour vehicules hybrides
WO2006100992A1 (fr) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Dispositif d'alimentation electrique possedant une fonction de detection d'anomalie du detecteur de courant
US20070047616A1 (en) * 2005-08-25 2007-03-01 Honda Motor Co., Ltd. Failure determination system and method for temperature sensors, as well as engine control unit
US20080181280A1 (en) * 2007-01-31 2008-07-31 Wang Wei D Method and apparatus to monitor a temperature sensing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072117A1 (en) * 2001-10-12 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Electric power conversion apparatus
WO2004040104A1 (fr) * 2002-10-23 2004-05-13 Robert Bosch Gmbh Procede permettant de controler au moins trois capteurs destines a detecter une grandeur de mesure relative a un moteur a combustion
WO2006087618A1 (fr) * 2005-02-15 2006-08-24 Toyota Jidosha Kabushiki Kaisha Appareil et procede de protection thermique pour vehicules hybrides
WO2006100992A1 (fr) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Dispositif d'alimentation electrique possedant une fonction de detection d'anomalie du detecteur de courant
US20070047616A1 (en) * 2005-08-25 2007-03-01 Honda Motor Co., Ltd. Failure determination system and method for temperature sensors, as well as engine control unit
US20080181280A1 (en) * 2007-01-31 2008-07-31 Wang Wei D Method and apparatus to monitor a temperature sensing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107389A (zh) * 2019-07-08 2019-08-09 潍柴动力股份有限公司 一种温度传感器的可信性检测方法和装置
CN110970679A (zh) * 2019-12-26 2020-04-07 重庆长安新能源汽车科技有限公司 一种基于热对称的电池包温度传感器合理性诊断方法
CN110970679B (zh) * 2019-12-26 2022-06-17 重庆长安新能源汽车科技有限公司 一种基于热对称的电池包温度传感器合理性诊断方法
CN116451014A (zh) * 2023-06-20 2023-07-18 北京云摩科技股份有限公司 一种无线无源设备内动部件温度实时监测方法
CN116451014B (zh) * 2023-06-20 2023-08-15 北京云摩科技股份有限公司 一种无线无源设备内动部件温度实时监测方法

Also Published As

Publication number Publication date
DE102007056559A1 (de) 2009-05-28

Similar Documents

Publication Publication Date Title
WO2009065667A1 (fr) Contrôle des capteurs de température d'un convertisseur d'impulsions
DE102018217116B3 (de) Hochvoltsystem und Verfahren zur Überwachung von Isolationsfehlern in einem Hochvoltsystem
EP2225570B1 (fr) Procédé de reconnaissance d'une panne électrique dans un réseau électrique d'un véhicule
EP3126181B1 (fr) Procédé de contrôle d'une connexion entre un réseau basse tension et une batterie, et véhicule automobile
DE102010010042B4 (de) System und Verfahren zum Detektieren eines Isolationsverlusts in einem Motorsystem mit einem Wechselrichter
DE102020112679B4 (de) Fahrzeugantriebsvorrichtung
EP2887081B1 (fr) Dispositif destiné à la surveillance d'isolation
DE102019118804A1 (de) Anomalitätsbestimmungssystem
DE102011012588A1 (de) Verfahren und Vorrichtung zum Überwachen des Verlusts einer Masseisolierung einer Elektromotorantriebsschaltung
EP2797776B1 (fr) Procédé et dispositif de surveillance d'une réserve d'énergie et dispositif de sécurité pour un véhicule
DE102012219026B4 (de) Batterieschutzeinrichtung
EP3007963B1 (fr) Procédé permettant de vérifier l'absence de tension au niveau d'une unité électronique de puissance d'un véhicule automobile
DE102019112839B3 (de) Schutz- und Überwachungseinrichtung in einer Ladeinfrastruktur zum Laden von elektrisch angetriebenen Fahrzeugen und Verfahren zur Überwachung einer Ladeinfrastruktur
EP2721703B1 (fr) Procédé et dispositif de surveillance sécurisée d'un moteur triphasé
DE10163010B4 (de) Verfahren und Einrichtung zur sicheren Überwachung der Drehzahl einer elektrischen Maschine
DE112017005122T5 (de) Fahrzeugseitige Steuerung
EP3058652B1 (fr) Appareil de commande à débranchement de sécurité
DE102011117248A1 (de) Verfahren und Vorrichtung zur Überwachung von Komponenten eines Fahrzeugs
EP4114691B1 (fr) Procédé permettant de faire fonctionner un réseau de bord
DE102014017569A1 (de) Verfahren zum Betrieb eines Bordnetzes eines Kraftfahrzeugs und Kraftfahrzeug
DE102016220235A1 (de) Erkennung eines Fehlers in einer Generatoreinheit
WO2017089065A1 (fr) Procédé de détection d'une défaillance dans un groupe générateur
DE102015003446A1 (de) Versorgung eines Kraftfahrzeugs mit Spannungsprüfung
DE102018212845B3 (de) Diagnoseverfahren und Diagnosevorrichtung zum Verifizieren einer Funktionsfähigkeit einer elektromechanischen Last, sowie ein Computerprogrammprodukt und ein Fahrzeug
DE102021200814A1 (de) Verfahren zur Erfassung wenigstens eines Parameters einer elektrischen Maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805182

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08805182

Country of ref document: EP

Kind code of ref document: A1