WO2012114367A1 - 太陽熱利用ガスタービンシステム - Google Patents
太陽熱利用ガスタービンシステム Download PDFInfo
- Publication number
- WO2012114367A1 WO2012114367A1 PCT/JP2011/000931 JP2011000931W WO2012114367A1 WO 2012114367 A1 WO2012114367 A1 WO 2012114367A1 JP 2011000931 W JP2011000931 W JP 2011000931W WO 2012114367 A1 WO2012114367 A1 WO 2012114367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- gas turbine
- air
- solar heat
- turbine system
- Prior art date
Links
- 239000007789 gas Substances 0.000 claims abstract description 38
- 239000007921 spray Substances 0.000 claims abstract description 23
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 238000005507 spraying Methods 0.000 claims abstract description 9
- 239000000446 fuel Substances 0.000 claims abstract description 8
- 239000000567 combustion gas Substances 0.000 claims abstract description 4
- 238000011084 recovery Methods 0.000 claims description 15
- 239000002918 waste heat Substances 0.000 claims description 14
- 239000007788 liquid Substances 0.000 abstract description 19
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 238000007906 compression Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/05—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the present invention relates to a solar heat utilization gas turbine system that heats compressed air with solar heat.
- One of the power plants that support industrial power is a gas turbine power plant that uses fossil resources such as natural gas and oil as fuel. Since this gas turbine power plant uses fossil resources as fuel, it is required to suppress as much as possible the emission of carbon dioxide (CO 2 ), which is one of the global warming substances.
- the thermal cycle of the gas turbine power generation system basically follows the Braiton cycle, and the thermal efficiency is determined by the compression ratio of the air.
- the compressed air can be heated by solar heat, the solar heat can be used effectively due to high thermal efficiency.
- the air temperature increases due to adiabatic compression.
- heating of air by solar heat is suppressed. That is, the problem that solar heat cannot be used effectively arises. For this reason, the method of suppressing the temperature rise accompanying air compression is desired.
- Non-Patent Document 1 discloses a gas turbine power generation system in which a compression process is divided into two stages, subjected to intermediate cooling, the temperature of compressed air is lowered, and heating is performed by solar heat.
- Patent Document 1 discloses a gas turbine power generation system in which droplets are sprayed on an intake portion and air is cooled by evaporation in a compressor stage.
- Non-Patent Document 1 the temperature of compressed air is lowered by an intercooler to promote heating by solar heat. The effect of reducing the power of the compressor is also expected. However, there is a demerit that the thermal efficiency decreases because the energy is released to the external system by the intercooler.
- Patent Document 1 since air is cooled by evaporation of droplets sprayed on the sucked air, there is no demerit that energy is released to the external system.
- the purpose is to increase output and improve efficiency, and the cooled air increases the amount of fuel consumed and is heated to a predetermined temperature.
- the use of solar heat is not considered at all.
- An object of the present invention is to provide a solar heat utilization gas turbine system capable of reducing the release of energy to the outside of the system due to the intermediate cooling of the compressor and effectively utilizing solar heat.
- the temperature of the compressed air is lowered by intake spray cooling, and the cooled compressed air is heated by solar heat.
- the air heated by solar heat is heated again by combustion to a predetermined temperature, and work is taken out by the turbine.
- the solar heat utilization gas turbine system of the present invention includes a compressor that compresses air, a combustor that combusts air and fuel compressed by the compressor, and a combustion gas generated by the combustor. And a spray device for spraying fine droplets on the intake air of the compressor, and an air heater for heating the air compressed by the compressor by solar heat.
- Example 1 It is a block diagram of a solar heat utilization gas turbine system (Example 1).
- Example 2 which is a block diagram of a solar heat utilization gas turbine system.
- Example 3 which is a block diagram of a solar heat utilization gas turbine system.
- Example 4 which is a block diagram of a solar heat utilization gas turbine system.
- Droplets are sprayed on the intake air of the compressor of the gas turbine power generation system.
- the droplets start to evaporate immediately after spraying, and cool the air by the amount corresponding to the latent heat of vaporization. This is a maximum and continues until the vapor partial pressure reaches the saturated vapor pressure.
- the cooled air then flows into the compressor stage.
- air is adiabatically compressed to increase not only the pressure but also the temperature. This causes the droplets to evaporate and cool the air, thereby suppressing the temperature increase.
- the droplets evaporate, the mass flow rate of the mixed gas of air and steam increases, but the volume flow rate decreases, so the power of the compressor is reduced.
- the temperature of the compressed air flowing out of the compressor decreases.
- sunlight is collected by a mirror or the like and is usually collected by a heat collecting medium that is a fluid.
- the heat collection medium is heated from a cold temperature to a high temperature. Sunlight can be obtained only in the daytime, and the amount of solar radiation varies depending on the weather.
- the heat collection medium that has reached a high temperature is temporarily stored in a high-temperature tank and heats the previous compressed air.
- the low temperature heat collection medium is stored in a low temperature tank.
- the heated compressed air is sent to the combustor and heated to a predetermined temperature by combustion. It is then sent to the turbine for work.
- FIG. 1 shows a basic configuration of a solar heat utilizing gas turbine system.
- the gas turbine system in the present embodiment includes a compressor 1 that compresses air, a combustor 2 that combusts air and fuel compressed by the compressor 1, and solar air that is compressed by the compressor and supplied to the combustor 2. It is comprised by the air heater 3 heated by the, the turbine 4 driven by the combustion gas produced
- a liquid spray 11 (a spraying device) that sprays fine droplets on the atmosphere 10 that is intake air taken into the compressor 1 and a liquid tank 12 that stores water supplied to the liquid spray 11 are further provided.
- a collecting mirror 20 that collects sunlight
- a heat collecting tube 21 that collects solar heat collected by the collecting mirror 20
- a low-temperature tank 7 that stores a heated medium supplied to the heat collecting tube 21,
- a high-temperature tank 6 for storing a heated medium heated by the heat tube 21 and heated.
- the compressor 1, the turbine 4, and the generator 9 are connected by a shaft, and the power generated in the turbine 4 is transmitted to the compressor 1 and the generator 9.
- a liquid spray 11 is provided on the intake side of the compressor 1, and fine droplets (for example, a particle diameter of 1 to 50 ⁇ m) are sprayed on the intake air of the compressor 1.
- the droplets sprayed by the liquid spray 11 are vaporized until part of the droplets are introduced into the compressor 1, and unvaporized droplets are introduced into the compressor, and all of the droplets pass through the compressor 1. It evaporates during the flow down (compression process).
- sunlight is collected by the collecting mirror 20 and collected in the heat collecting tube 21.
- the heat collecting medium is heated and stored in the high temperature tank 6.
- a high temperature heat collecting medium is sent from the high temperature tank 6 to the air heater 3 to heat the compressed air.
- the droplets sprayed into the intake air of the compressor 1 start to evaporate immediately after spraying, and cool the air by an amount corresponding to the latent heat of evaporation. This is a maximum and continues until the vapor partial pressure reaches the saturated vapor pressure.
- the cooled air flows into the paragraph of the compressor 1.
- the air is adiabatically compressed and the temperature rises as well as the pressure. As a result, the droplets evaporate to cool the air. For this reason, a temperature rise is suppressed.
- the droplets evaporate, the mass flow rate of the mixed gas of air and steam increases, but the volume flow rate decreases, so the power of the compressor 1 is reduced. At the same time, the temperature of the compressed air flowing out from the compressor 1 decreases.
- the heated compressed air is sent to the combustor 2 and heated to a predetermined temperature by combustion. Next, it is sent to the turbine 4 to obtain work.
- the liquid spray 11 sprays and cools the intake air of the compressor, and further evaporates the liquid droplets while flowing through the compressor, so that the intermediate cooler releases energy to the outside of the system (non-patent document).
- the thermal efficiency is reduced as in 1), and solar heat can be used effectively.
- the gas is reheated to a predetermined temperature by combustion, the gas turbine system can be operated at a planned design point. Thereby, a stable output can be obtained regardless of the amount of solar radiation accompanying the weather.
- Solar heat is used as an auxiliary, but in general, the thermal efficiency of gas turbine systems is higher at larger scales due to the merit of scale. For this reason, applying the present invention to a large-scale gas turbine system can be expected to greatly improve the utilization efficiency of solar heat.
- FIG. 2 is a configuration diagram applied to a combined power plant that recovers exhaust heat of the turbine 4 and operates a steam turbine.
- the components added by the present embodiment are a steam turbine 5, an exhaust heat recovery boiler 15, and a condenser 16.
- the exhaust from the turbine 4 is still hot, and steam is generated by the exhaust heat in the exhaust heat recovery boiler 15.
- the steam is sent to the steam turbine 5 to obtain an output, and is finally condensed in the condenser 16.
- the solar heat input to the combined power plant is sent to the steam turbine 5 via the turbine 4, so that high thermal efficiency is obtained.
- the well-known use of solar heat is generally to supply steam to a steam turbine alone or to a combined plant steam turbine. It is possible to increase it further.
- FIG. 3 is a configuration diagram applied to a combined power plant using an intercooled gas turbine.
- the compressor 1 is separated into a low-pressure compressor 1a and a high-pressure compressor 1b, and an air cooler 17 is newly provided between them.
- the liquid spray 11 is provided with an intake 11a for the low-pressure compressor 1a and an intake 11b for the high-pressure compressor 1b.
- the intake spray flow rate can be set independently for the liquid spray 11a and the liquid spray 11b.
- the flow rate of the cooling medium for intermediate cooling can also be set according to the purpose.
- cooling can be performed even inside the paragraphs of the low-pressure compressor 1a and the high-pressure compressor 1b, and the power of the low-pressure compressor 1a and the high-pressure compressor 1b is more effectively reduced. it can. Cooling inside the paragraph of the high-pressure compressor 1b further reduces the temperature of the compressed air.
- the cooling medium of the air cooler 17 may be eliminated and only the intake spray from the liquid spray 11a may be used.
- the intake spray flow rate can be changed between the liquid spray 11a and the liquid spray 11b in accordance with the operating conditions.
- the atmospheric temperature may be below the freezing point and liquid spraying may not be possible, but this is not the case for the high-pressure compressor 1b. This is because the air temperature rises due to adiabatic compression in the low-pressure compressor 1a.
- FIG. 4 is a configuration diagram in which other waste heat is used together.
- a waste heat recovery unit 30 is provided, and the high temperature tank 6 is divided into a first high temperature tank 6a and a second high temperature tank 6b. It is a point provided.
- the heat collection medium supplied from the low temperature tank 7 is heated by the waste heat recovery unit 30, and then supplied to the air heater 3 via the first high temperature tank 6a.
- a system for further heating by solar heat in the heat collecting tube 21 after passing through the heat recovery unit 30 is configured.
- the waste heat recovered by the waste heat recovery unit 30 is assumed to be waste heat from a factory or a waste incinerator. These can be obtained more stably than solar heat for a long time during the day. For this reason, the waste heat from the waste heat recovery unit 30 is used as a base, and during a period in which solar heat can be used, a higher temperature heat collection medium can be obtained and fuel consumption can be reduced.
- It can be used as a gas turbine system that applies solar heat to a gas turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本発明の目的は、圧縮機の中間冷却によるエネルギーの系外への放出を低減し、太陽熱を有効に利用できる太陽熱利用ガスタービンシステムを提供することにある。 空気を圧縮する圧縮機1と、該前記圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器2と、該燃焼器で生成した燃焼ガスにより駆動されるタービン4と、前記圧縮機の吸気に微細液滴を噴霧する液スプレー11と、前記圧縮機で圧縮された空気を太陽熱により加熱する空気加熱器3とを備えたことを特徴とする太陽熱利用ガスタービンシステム。
Description
本発明は、圧縮空気を太陽熱で加熱する太陽熱利用ガスタービンシステムに関する。
産業用電力を支える発電プラントのひとつに天然ガスや石油などの化石資源を燃料とするガスタービン発電プラントがある。このガスタービン発電プラントは化石資源を燃料とするため、地球温暖化物質のひとつである二酸化炭素(CO2)の排出量をできる限り抑制することが求められている。ガスタービン発電システムの熱サイクルは基本的にBraitonサイクルに従い、熱効率は空気の圧縮比によって決まる。
もし圧縮空気を太陽熱で加熱できるなら、高い熱効率により太陽熱の有効利用を期待できる。一方、圧縮過程では断熱圧縮により空気温度が増加する。空気温度が高いと、太陽熱による空気の加熱が抑制される。すなわち、太陽熱を有効に利用できない問題が生じる。このため、空気圧縮に伴う温度上昇を抑制する方法が望まれる。
非特許文献1には、圧縮過程を二段階に分け中間冷却し圧縮空気の温度を低下させ、太陽熱で加熱するガスタービン発電システムが開示されている。特許文献1には吸気部に液滴を噴霧し圧縮機段落内での蒸発により空気を冷却するガスタービン発電システムが開示されている。
COMILLAS report"Integration of Solar Energy in Hybrid Power Plants",p.66
非特許文献1では、中間冷却器により圧縮空気の温度を下げ、太陽熱による加熱を促進している。圧縮機の動力を減らす効果も期待される。だが、中間冷却器によりエネルギーが外系に放出されるため、熱効率が低下するデメリットがある。
特許文献1は、吸気される空気に噴霧した液滴の蒸発により空気を冷却するため、エネルギーが外系に放出されるデメリットは生じない。出力増大と効率向上が目的とされ、冷却された空気は消費される燃料を増やし、所定の温度に加熱される。しかし、太陽熱の利用は何ら考慮されていない。
本発明の目的は、圧縮機の中間冷却によるエネルギーの系外への放出を低減し、太陽熱を有効に利用できる太陽熱利用ガスタービンシステムを提供することにある。
上記目的を達成するために、吸気噴霧冷却により圧縮空気の温度を下げ、冷却された圧縮空気を太陽熱で加熱する。太陽熱で加熱された空気は所定の温度まで燃焼により再度加熱され、タービンで仕事が取り出される。
具体的には、本発明の太陽熱利用ガスタービンシステムは、空気を圧縮する圧縮機と、該前記圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で生成した燃焼ガスにより駆動されるタービンと、前記圧縮機の吸気に微細液滴を噴霧する噴霧装置と、前記圧縮機で圧縮された空気を太陽熱により加熱する空気加熱器とを備えたことを特徴とする。
本発明によれば、圧縮機の中間冷却によるエネルギーの系外への放出を低減し、太陽熱を有効に利用できる太陽熱利用ガスタービンシステムを提供することが可能となる。
先ず、各実施例に共通する本発明の基本原理について説明する。ガスタービン発電システムの圧縮機の吸気に液滴を噴霧する。液滴は噴霧直後から蒸発を開始し、蒸発潜熱に相当する分、空気を冷却する。これは最大で、蒸気分圧が飽和蒸気圧力になるまで続く。次に、冷却された空気は圧縮機段落へ流入する。圧縮機では空気が断熱圧縮され圧力だけでなく温度が上昇するが、これにより液滴が蒸発し空気を冷却するため、温度上昇が抑制される。液滴の蒸発に伴い空気と蒸気の混合ガスの質量流量が増加するが、体積流量が減少するため、圧縮機の動力が低減される。同時に、圧縮機から流出する圧縮空気の温度が低下する。
一方、太陽光はミラーなどにより集光され、通常、流体である集熱媒体に集熱される。集熱媒体は冷温から高温に加熱される。太陽光が得られるのは昼間に限られ、また、日射量は天候により変動する。この変動の影響を緩和するため、高温となった集熱媒体は一旦、高温タンクに蓄えられ、先の圧縮空気を加熱する。低温となった集熱媒体は低温タンクに蓄えられる。
加熱された圧縮空気は燃焼器に送られ、燃焼により所定の温度まで加熱される。次にタービンに送られ仕事を得る。
本発明の実施例1を図1により説明する。図1は太陽熱利用ガスタービンシステムの基本構成を示す。本実施例におけるガスタービンシステムは、空気を圧縮する圧縮機1、圧縮機1で圧縮された空気と燃料とを燃焼させる燃焼器2、圧縮機で圧縮され燃焼器2に供給される空気を太陽熱によって加熱する空気加熱器3、燃焼器2で生成した燃焼ガスによって駆動されるタービン4、タービン4とシャフトを介して連結される発電機9により構成されている。本実施例ではさらに、圧縮機1に取り込まれる吸気である大気10に微細液滴を噴霧する液スプレー11(噴霧装置)、この液スプレー11に供給する水を貯蔵する液タンク12を備えている。また、太陽光を集光する集光ミラー20、集光ミラー20で集光され得られる太陽熱を集熱する集熱管21、集熱管21に供給される被加熱媒体を貯蔵する低温タンク7、集熱管21で加熱され昇温した被加熱媒体を貯蔵する高温タンク6とを備えている。図1において圧縮機1,タービン4,発電機9はシャフトで繋がれ、タービン4で発生した動力は圧縮機1と発電機9に伝達される。圧縮機1の吸気側には液スプレー11が設けられ、圧縮機1の吸気に微細な液滴(例、粒径1~50μm)が噴霧される。液スプレー11で噴霧された液滴は、その一部が圧縮機1に導入されるまでの間で気化するとともに、未気化の液滴が圧縮機内に導入され、その全ては圧縮機1内を流下(圧縮工程)中に蒸発する。一方、太陽光は集光ミラー20により集光され集熱管21に集まる。集熱管21では集熱媒体が加熱され高温タンク6に蓄えられる。高温タンク6から空気加熱器3に高温の集熱媒体が送られ、圧縮空気を加熱する構成となっている。
圧縮機1の吸気に噴霧された液滴は噴霧直後から蒸発を開始し、蒸発潜熱に相当する分、空気を冷却する。これは最大で、蒸気分圧が飽和蒸気圧力になるまで続く。次に、冷却された空気は圧縮機1の段落へ流入する。圧縮機1では空気が断熱圧縮され圧力だけでなく温度が上昇するが、これにより液滴が蒸発し空気を冷却する。このため、温度上昇が抑制される。液滴の蒸発に伴い空気と蒸気の混合ガスの質量流量が増加するが、体積流量が減少するため、圧縮機1の動力が低減される。同時に、圧縮機1から流出する圧縮空気の温度が低下する。
一方、太陽光はミラー20により集熱管21に集光される。集熱管21で集熱媒体は冷温から高温に加熱される。太陽光が得られるのは昼間に限られ、また、日射量は天候により変動する。このため、本実施例では高温タンク6と低温タンク7を設けることによりこの変動の影響を緩和している。すなわち、日射量の多いときは高温タンク6に蓄熱し、日射量の少ない、あるいは無いときは蓄熱された熱を消費する。高温の集熱媒体は空気加熱器3で圧縮空気を加熱する。低温となった集熱媒体は低温タンク7に蓄えられる。
加熱された圧縮空気は燃焼器2に送られ、燃焼により所定の温度まで加熱される。次にタービン4に送られ仕事を得る。
本実施例によれば、液スプレー11で圧縮機の吸気を噴霧冷却させ、さらに圧縮機内を流下中に液滴を蒸発させるため、中間冷却器でエネルギーを系外に放出するタイプ(非特許文献1)のように熱効率が低下するデメリットが無く、太陽熱を効果的に利用できる。さらに、燃焼により所定の温度まで再加熱するため、ガスタービンシステムの計画設計点での稼動を可能とする。これにより、天候に伴う日射量によらず安定した出力を得られる。太陽熱は補助的に使われるが、一般的にガスタービンシステムの熱効率はスケールメリットにより大規模なほど高い。このため、大規模なガスタービンシステムへ本発明を適用することにより、太陽熱の利用効率の大幅な向上を期待できる。
本発明の実施例2を図2により説明する。図2はタービン4の排熱を回収し蒸気タービンを稼動させるコンバインド発電プラントへの適用した構成図である。本実施例により追加された構成は、蒸気タービン5,排熱回収ボイラ15,復水器16である。タービン4の排気はなお高温であり、排熱回収ボイラ15で排熱により蒸気を生成する。蒸気は蒸気タービン5に送られ出力を得、最終的に復水器16で凝縮する。
本実施例によれば、コンバインド発電プラントに投入された太陽熱はタービン4を経由し、蒸気タービン5に送られるため、高い熱効率を得る。また、良く知られている太陽熱の利用は蒸気タービン単独、あるいはコンバインドプラントの蒸気タービンへ蒸気を供給するのが一般的であるが、本実施例ではガスタービンを経由するため、太陽熱の利用効率をより高めることが可能である。
本発明の実施例3を図3により説明する。図3は中間冷却型のガスタービンを用いたコンバインド発電プラントへの適用した構成図である。圧縮機1は低圧圧縮機1aと高圧圧縮機1bに分離され、その間に空気冷却器17が新たに設けられる。これに合わせ、液スプレー11は低圧圧縮機1aの吸気用11aと、高圧圧縮機1bの吸気用11bが設けられる。
吸気噴霧流量は液スプレー11aと液スプレー11bをそれぞれ独立に設定できる。中間冷却の冷却媒体の流量も目的に合わせ設定できる。非特許文献1に対して液スプレー11a,11bがあることにより、低圧圧縮機1aと高圧圧縮機1bの段落内部でも冷却でき、低圧圧縮機1a,高圧圧縮機1bの動力をより効果的に低減できる。高圧圧縮機1bの段落内部での冷却は圧縮空気の温度をさらに低下させる。空気冷却器17の冷却媒体を無くし液スプレー11aからの吸気噴霧のみにしても良い。この場合、運転条件に合わせ、吸気噴霧流量を液スプレー11aと液スプレー11bで変えられる。例えば、高緯度地域では寒冷時、大気温度が氷点以下となり液スプレーができない恐れがあるが、高圧圧縮機1b用にはその限りでない。低圧圧縮機1aでの断熱圧縮により空気温度が上昇するためである。
本発明の実施例4を図4により説明する。図4は他の廃熱を併用した構成図であり、新たな構成としては廃熱回収部30を設けた点と、高温タンク6を第1の高温タンク6aと第2の高温タンク6bに分割して設けた点である。本実施例により、低温タンク7から供給される集熱媒体は、廃熱回収部30で昇温された後、第1の高温タンク6aを経由して空気加熱器3に供給する系統と、廃熱回収部30を経由後に集熱管21で太陽熱により更に加熱する系統が構成される。
廃熱回収部30で回収する廃熱としては、工場或いはごみ焼却炉の廃熱を想定する。これらは一日の中で太陽熱より安定して長時間得られる。このため、ベースとして廃熱回収部30からの廃熱を用い、太陽熱が利用できる期間は、さらに高温の集熱媒体を得、燃料消費を低減できる。
ガスタービンに太陽熱を適用したガスタービンシステムとして利用することが可能である。
1 圧縮機
1a 低圧圧縮機
1b 高圧圧縮機
2 燃焼器
3 空気加熱器
4 タービン
5 蒸気タービン
6 高温タンク
7 低温タンク
9 発電機
10 大気
11 液スプレー
12 液タンク
15 排熱回収ボイラ
16 復水器
17 空気冷却器
20 集光ミラー
21 集熱管
30 廃熱回収部
1a 低圧圧縮機
1b 高圧圧縮機
2 燃焼器
3 空気加熱器
4 タービン
5 蒸気タービン
6 高温タンク
7 低温タンク
9 発電機
10 大気
11 液スプレー
12 液タンク
15 排熱回収ボイラ
16 復水器
17 空気冷却器
20 集光ミラー
21 集熱管
30 廃熱回収部
Claims (6)
- 空気を圧縮する圧縮機と、該前記圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で生成した燃焼ガスにより駆動されるタービンと、前記圧縮機の吸気に微細液滴を噴霧する噴霧装置と、前記圧縮機で圧縮された空気を太陽熱により加熱する空気加熱器とを備えたことを特徴とする太陽熱利用ガスタービンシステム。
- 前記噴霧装置は、前記圧縮機に導入されるまでの間に噴霧された液滴の一部を気化させ、前記空気と共に前記圧縮機内に導入された未気化の液滴を前記圧縮機内を流下中に気化させることを特徴とする請求項1に記載の太陽熱利用ガスタービンシステム。
- ガスタービン排ガスから排熱を回収する排熱回収ボイラと、該排熱回収ボイラで発生した蒸気により駆動される蒸気タービンとを備えたことを特徴とする請求項1に記載の太陽熱利用ガスタービンシステム。
- 前記圧縮機を低圧段と高圧段に分割し、その間に中間冷却部を設け、該中間冷却部に液滴を噴霧する第2の噴霧装置を備えたことを特徴とする請求項1に記載の太陽熱利用ガスタービンシステム。
- ガスタービンの系外の排熱を回収する廃熱回収部を備え、該廃熱回収部で加熱された媒体を太陽熱で更に加熱して前記空気加熱器に供給することを特徴とする請求項1に記載の太陽熱利用ガスタービンシステム。
- 前記空気加熱器は、廃熱回収部で加熱された媒体と、前記廃熱回収部と太陽熱とで加熱された媒体とが切替えて供給されることを特徴とする請求項1に記載の太陽熱利用ガスタービンシステム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/000931 WO2012114367A1 (ja) | 2011-02-21 | 2011-02-21 | 太陽熱利用ガスタービンシステム |
JP2013500660A JPWO2012114367A1 (ja) | 2011-02-21 | 2011-02-21 | 太陽熱利用ガスタービンシステム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/000931 WO2012114367A1 (ja) | 2011-02-21 | 2011-02-21 | 太陽熱利用ガスタービンシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012114367A1 true WO2012114367A1 (ja) | 2012-08-30 |
Family
ID=46720196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000931 WO2012114367A1 (ja) | 2011-02-21 | 2011-02-21 | 太陽熱利用ガスタービンシステム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012114367A1 (ja) |
WO (1) | WO2012114367A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101531931B1 (ko) * | 2014-05-13 | 2015-06-26 | 지에스건설 주식회사 | 복합 화력 발전 시스템 |
JP2017020458A (ja) * | 2015-07-14 | 2017-01-26 | 三菱日立パワーシステムズ株式会社 | 圧縮空気供給方法、圧縮空気供給設備、及びこの設備を備えるガスタービン設備 |
WO2019100359A1 (zh) * | 2017-11-27 | 2019-05-31 | 贵州智慧能源科技有限公司 | 太阳能燃气轮机发电系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61138833A (ja) * | 1984-12-08 | 1986-06-26 | Mitsui Eng & Shipbuild Co Ltd | 固体燃料を使用する発電装置 |
JPH03279100A (ja) * | 1990-03-29 | 1991-12-10 | Toshiba Corp | 宇宙用熱発電設備 |
JPH1136817A (ja) * | 1997-07-16 | 1999-02-09 | Mitsubishi Heavy Ind Ltd | 発電設備 |
JP2002021582A (ja) * | 2000-04-28 | 2002-01-23 | General Electric Co <Ge> | ガスタービンエンジンの排出物質低減方法及び装置 |
JP2008121483A (ja) * | 2006-11-10 | 2008-05-29 | Kawasaki Heavy Ind Ltd | 熱媒体供給設備および太陽熱複合発電設備なびにこれらの制御方法 |
JP2008175149A (ja) * | 2007-01-19 | 2008-07-31 | Hitachi Ltd | 圧縮機の吸気噴霧装置 |
JP2009191762A (ja) * | 2008-02-15 | 2009-08-27 | Panasonic Corp | コンバインドサイクル装置 |
JP2010144725A (ja) * | 2008-12-22 | 2010-07-01 | General Electric Co <Ge> | 太陽熱加熱システムを使用した燃料加熱のためのシステムおよび方法 |
JP2010281272A (ja) * | 2009-06-05 | 2010-12-16 | Mitsubishi Heavy Ind Ltd | 太陽熱ガスタービン及び太陽熱ガスタービン発電装置 |
JP2010285926A (ja) * | 2009-06-11 | 2010-12-24 | Mitsubishi Heavy Ind Ltd | タービン装置及びその制御方法 |
-
2011
- 2011-02-21 JP JP2013500660A patent/JPWO2012114367A1/ja active Pending
- 2011-02-21 WO PCT/JP2011/000931 patent/WO2012114367A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61138833A (ja) * | 1984-12-08 | 1986-06-26 | Mitsui Eng & Shipbuild Co Ltd | 固体燃料を使用する発電装置 |
JPH03279100A (ja) * | 1990-03-29 | 1991-12-10 | Toshiba Corp | 宇宙用熱発電設備 |
JPH1136817A (ja) * | 1997-07-16 | 1999-02-09 | Mitsubishi Heavy Ind Ltd | 発電設備 |
JP2002021582A (ja) * | 2000-04-28 | 2002-01-23 | General Electric Co <Ge> | ガスタービンエンジンの排出物質低減方法及び装置 |
JP2008121483A (ja) * | 2006-11-10 | 2008-05-29 | Kawasaki Heavy Ind Ltd | 熱媒体供給設備および太陽熱複合発電設備なびにこれらの制御方法 |
JP2008175149A (ja) * | 2007-01-19 | 2008-07-31 | Hitachi Ltd | 圧縮機の吸気噴霧装置 |
JP2009191762A (ja) * | 2008-02-15 | 2009-08-27 | Panasonic Corp | コンバインドサイクル装置 |
JP2010144725A (ja) * | 2008-12-22 | 2010-07-01 | General Electric Co <Ge> | 太陽熱加熱システムを使用した燃料加熱のためのシステムおよび方法 |
JP2010281272A (ja) * | 2009-06-05 | 2010-12-16 | Mitsubishi Heavy Ind Ltd | 太陽熱ガスタービン及び太陽熱ガスタービン発電装置 |
JP2010285926A (ja) * | 2009-06-11 | 2010-12-24 | Mitsubishi Heavy Ind Ltd | タービン装置及びその制御方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101531931B1 (ko) * | 2014-05-13 | 2015-06-26 | 지에스건설 주식회사 | 복합 화력 발전 시스템 |
JP2017020458A (ja) * | 2015-07-14 | 2017-01-26 | 三菱日立パワーシステムズ株式会社 | 圧縮空気供給方法、圧縮空気供給設備、及びこの設備を備えるガスタービン設備 |
WO2019100359A1 (zh) * | 2017-11-27 | 2019-05-31 | 贵州智慧能源科技有限公司 | 太阳能燃气轮机发电系统 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012114367A1 (ja) | 2014-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8286431B2 (en) | Combined cycle power plant including a refrigeration cycle | |
Mehrpooya et al. | Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy | |
Modi et al. | Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation | |
Li et al. | Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat | |
AU2010278676A1 (en) | Thermal power plants | |
KR20050056941A (ko) | 캐스케이딩 폐루프 사이클 발전 | |
Jiang et al. | Thermodynamic performance analysis, assessment and comparison of an advanced trigenerative compressed air energy storage system under different operation strategies | |
KR20150109102A (ko) | Orc 발전시스템 | |
JP2010038536A (ja) | ターボ機械用の熱回収システム及びターボ機械用の熱回収システムを作動させる方法 | |
Zhou et al. | Conceptual design, modelling and optimization of an integrated system by combining Organic Rankine Cycle and absorption refrigeration cycle for efficient energy recovery | |
JP2013076383A (ja) | バイナリー発電システム | |
WO2012114367A1 (ja) | 太陽熱利用ガスタービンシステム | |
EP2940256A1 (en) | Hybrid plant with a combined solar-gas cycle, and operating method | |
Sheykhlou et al. | Analysis of a combined power and ejector–refrigeration cycle based on solar energy | |
Sonsaree et al. | Organic rankine cycle power generation from industrial waste heat recovery integrated with solar hot water system by using vapor compression heat pump as heating booster in Thailand | |
KR20150096266A (ko) | 소형 열병합 orc발전시스템 | |
CN105840312A (zh) | 一种液态燃料液氧高压直燃蒸汽动力系统 | |
CN102383882A (zh) | 新型空气能制冷发电装置 | |
KR20150094190A (ko) | 소형 열병합 orc발전시스템 | |
CN109630269B (zh) | 天然气-蒸汽联合循环洁净发电工艺 | |
KR20150105162A (ko) | Orc 발전시스템 | |
Modi et al. | Feasibility of using ammonia-water mixture in high temperature concentrated solar power plants with direct vapour generation | |
Gupta et al. | First and second law analysis of solar operated combined Rankine and ejector refrigeration cycle | |
CN114370719B (zh) | 一种充分利用光伏热和地热能的多联供系统及其工作方法 | |
AU2023349726A1 (en) | Combination system and method for operating a combination system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11859501 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013500660 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11859501 Country of ref document: EP Kind code of ref document: A1 |