WO2013004366A1 - Module de filtre utilisé pour isoler des biomolécules - Google Patents
Module de filtre utilisé pour isoler des biomolécules Download PDFInfo
- Publication number
- WO2013004366A1 WO2013004366A1 PCT/EP2012/002759 EP2012002759W WO2013004366A1 WO 2013004366 A1 WO2013004366 A1 WO 2013004366A1 EP 2012002759 W EP2012002759 W EP 2012002759W WO 2013004366 A1 WO2013004366 A1 WO 2013004366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- column
- binding
- filter module
- clarification
- Prior art date
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 13
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 48
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 45
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 32
- 230000027455 binding Effects 0.000 claims description 138
- 239000000463 material Substances 0.000 claims description 133
- 238000005352 clarification Methods 0.000 claims description 57
- 239000013612 plasmid Substances 0.000 claims description 42
- 238000001914 filtration Methods 0.000 claims description 26
- 239000002244 precipitate Substances 0.000 claims description 22
- 239000006260 foam Substances 0.000 claims description 20
- -1 polyethylene Polymers 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 16
- 239000004698 Polyethylene Substances 0.000 claims description 14
- 239000000872 buffer Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 12
- 238000000746 purification Methods 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 9
- 230000009977 dual effect Effects 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000011534 wash buffer Substances 0.000 claims description 5
- 239000004615 ingredient Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 239000012149 elution buffer Substances 0.000 claims description 3
- 239000002657 fibrous material Substances 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000877 Melamine resin Polymers 0.000 claims description 2
- 241001465754 Metazoa Species 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 102000006382 Ribonucleases Human genes 0.000 claims description 2
- 108010083644 Ribonucleases Proteins 0.000 claims description 2
- 239000012139 lysis buffer Substances 0.000 claims description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 2
- 238000006386 neutralization reaction Methods 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 239000011550 stock solution Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 25
- 239000007788 liquid Substances 0.000 abstract description 17
- 239000013592 cell lysate Substances 0.000 abstract description 12
- 239000011236 particulate material Substances 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 65
- 108020004414 DNA Proteins 0.000 description 59
- 239000000523 sample Substances 0.000 description 37
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 29
- 239000013598 vector Substances 0.000 description 29
- 229920002521 macromolecule Polymers 0.000 description 23
- 238000005119 centrifugation Methods 0.000 description 22
- 108090000623 proteins and genes Proteins 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 241000243142 Porifera Species 0.000 description 15
- 239000006166 lysate Substances 0.000 description 15
- 239000000377 silicon dioxide Substances 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 13
- 239000012634 fragment Substances 0.000 description 11
- 230000004568 DNA-binding Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- 241000588724 Escherichia coli Species 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 238000011109 contamination Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 239000011543 agarose gel Substances 0.000 description 7
- 238000010828 elution Methods 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229920000936 Agarose Polymers 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000013013 elastic material Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920000491 Polyphenylsulfone Polymers 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 238000013492 plasmid preparation Methods 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229920005830 Polyurethane Foam Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000002934 lysing effect Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000011496 polyurethane foam Substances 0.000 description 3
- 238000011045 prefiltration Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 108091092566 Extrachromosomal DNA Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 238000000703 high-speed centrifugation Methods 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 125000001174 sulfone group Chemical group 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000010396 two-hybrid screening Methods 0.000 description 2
- 210000003501 vero cell Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 1
- BDOYKFSQFYNPKF-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].[Na].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O BDOYKFSQFYNPKF-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241001468185 Caryophanon Species 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- QRLVDLBMBULFAL-UHFFFAOYSA-N Digitonin Natural products CC1CCC2(OC1)OC3C(O)C4C5CCC6CC(OC7OC(CO)C(OC8OC(CO)C(O)C(OC9OCC(O)C(O)C9OC%10OC(CO)C(O)C(OC%11OC(CO)C(O)C(O)C%11O)C%10O)C8O)C(O)C7O)C(O)CC6(C)C5CCC4(C)C3C2C QRLVDLBMBULFAL-UHFFFAOYSA-N 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108091092584 GDNA Proteins 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108090000988 Lysostaphin Proteins 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 108010011834 Streptolysins Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 229940009976 deoxycholate Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- UVYVLBIGDKGWPX-KUAJCENISA-N digitonin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)C[C@@H](O)[C@H](O[C@H]5[C@@H]([C@@H](O)[C@@H](O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)CO7)O)[C@H](O)[C@@H](CO)O6)O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O7)O)[C@@H](O)[C@@H](CO)O6)O)[C@@H](CO)O5)O)C[C@@H]4CC[C@H]3[C@@H]2[C@@H]1O)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 UVYVLBIGDKGWPX-KUAJCENISA-N 0.000 description 1
- UVYVLBIGDKGWPX-UHFFFAOYSA-N digitonine Natural products CC1C(C2(CCC3C4(C)CC(O)C(OC5C(C(O)C(OC6C(C(OC7C(C(O)C(O)CO7)O)C(O)C(CO)O6)OC6C(C(OC7C(C(O)C(O)C(CO)O7)O)C(O)C(CO)O6)O)C(CO)O5)O)CC4CCC3C2C2O)C)C2OC11CCC(C)CO1 UVYVLBIGDKGWPX-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000010502 episomal replication Effects 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 108010056929 lyticase Proteins 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 108010009719 mutanolysin Proteins 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 108010090409 novozym 234 Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- LHBNLZDGIPPZLL-UHFFFAOYSA-K praseodymium(iii) chloride Chemical compound Cl[Pr](Cl)Cl LHBNLZDGIPPZLL-UHFFFAOYSA-K 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229940016590 sarkosyl Drugs 0.000 description 1
- 108700004121 sarkosyl Proteins 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 108010082737 zymolyase Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/12—Purification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
Definitions
- the present invention relates to a device for rapid isolation of target molecules from cell lysates and other liquid mixtures comprising particulate material, a method for isolating the target molecules, in particular nucleic acids, using said device and a kit for carrying out said method comprising said device.
- plasmid purification from bacteria typically involves the generation of a cell lysate containing soluble plasmid material and insoluble cell debris, protein and genomic DNA particles.
- the lysate is clarified by removing the insoluble particulate material, typically by centrifugation or by a filtration device.
- the clarified lysate is then transferred to a nucleic acid binding solid material which binds the desired plasmid DNA. After optional washing steps the target DNA is then eluted from the binding material and collected.
- Clarification of cell lysates and elution of plasmid DNA are widely used and described in the art, wherein the filtering step in numerous different embodiments is carried out by a filter device in combination with a DNA binding column.
- Such solutions are described e.g. in WO 95 / 02049 A1 , KR 2004 / 085927 A, DE 202005010007 U1 , WO 2008 / 121121 A2, WO 2008 / 150838 A1 , WO 2009 / 157679 A1 or WO 2010 / 075116 A2.
- a filter for precipitate retention and a DNA binding material is contained, thus the filter cannot be removed.
- Such an embodiment is shown e.g. in WO 2008 / 150826 A1.
- a pre-filter is commonly a coarse filter retaining e.g. non-lysed cells, cell debris and further particles, wherein the depth filter retains the finer precipitate or flocculants.
- the pre- filters are commonly made of a rigid material like sintered porous polyethylene or polypropylene (e.g.
- the depth filter is most commonly prepared from fiber materials in form of membranes or layers, including paper, wherein the materials are selected from polysaccharides like cellulose, cellulose acetate, plastics like polyethylene, polypropylene, Teflon (PTFE), polyacrylate, polyamide or polyvinylidenefluoride or polymers including sulfone groups like polyphenylsulfone, polyethersulfone, polysulfone, polyarylsulfone or
- precipitates and flocculates are beads or meshes of glass, metal or plastics.
- the cell lysate includes genomic DNA representing a high molecular weight biomolecule which is very sensitive to shear forces.
- genomic DNA representing a high molecular weight biomolecule which is very sensitive to shear forces.
- Most of the filter materials used in the prior art are quite rigid. Thus, if high forces are applied to the genomic DNA, as for example during high speed centrifugation, such rigid material results in shearing the genomic DNA. The fragments of genomic DNA can then pass the filters and are bound to the DNA binding matrix resulting in a contamination of the desired plasmid DNA.
- agarose or another hydrogel is used as filter material
- the material itself is very sensitive to external forces.
- the column containing agarose as filter has to be prepared shortly before use, but then the column can be spinned in a centrifuge only in the range between 1000 rpm and 3000 rpm. If lower rpm is used, the DNA doesn't run through the agarose column, if higher rpm is used the agarose is damaged.
- a clarification/binding device comprising a filter module, wherein said filter module comprises an elastic filter material, the use of said device in a target isolation method and a kit for target isolation containing such a device.
- a clarification/binding device represents a device which is able to clarify a suspension comprising a liquid phase and solid particles, precipitates and/or flocculates by separating and/or retaining the particles, precipitates and/or flocculates from the liquid phase, e.g. by filtration, and further is able to bind at least one target molecule of the ingredients of the liquid phase passed through the clarification means (e.g. the filter), thereby separating said target from the remaining liquid phase.
- the clarification means e.g. the filter
- the invention provides a clarification/binding device for isolation of at least one target molecule from a sample comprising a filter module and a target binding column.
- the clarification/binding device can be a single column clarification/binding device, wherein the filter module is contained in a column further comprising a target binding material.
- the filter module is removable from said column.
- the clarification/binding device is a dual column clarification/binding device, wherein the filter module is in form of a further column which is inserted in the binding column.
- the filter module in form of a column containing the filter material preferably is configured to receive the lysate.
- the filter module comprises at least one filter material which is a "deep bed filtration” material essentially avoiding blockage of the filter.
- Said material is preferably elastic, which means that it is deformable e.g. by hand, preferably it is soft and flexible.
- the material preferably is selected form any foam (foamed material) or sponge having open pores (open cells).
- Said materials are known in the art, for example for air filter, e.g. for medical instruments, cushions for bandages, cleaning use or similar.
- the pores of the elastic material should be preferably in the range from 10 pm to 1000 pm, more preferred in the range from 25 to 500 pm and most preferred in the range from 50 to 200 pm.
- the foam has preferably a cell number per centimeter of 5 to 50, preferably from 20 to 40 cells/cm.
- the foam or sponge preferably is a "self-supporting" foam or sponge.
- the foam or sponge is an elastic material, deformable by pressure, however, returning essentially to its original shape when the applied pressure is removed.
- the elastic material is a soft material, which may be easily deformed by the power of a human finger.
- This elasticity as well can be determined by the so-called compression hardness (or compression strenthof the foam), e.g. as measured by DIN EN ISO 3386. It can be determined by compressing a standard sized piece of the foam to a predetermined amount (commonly to 40%) and measure the force required to obtain that
- the compression hardness (to 40%) of the preferred materials is in the range of 0,5 to 50 kPa, preferably in the range of 1 to 30 kPa, more preferred from 1 to 20 kPa and particularly preferred from 2 to 10 kPa.
- the filter module further preferably comprises one or two layers of a second filter, preferably below the elastic filter.
- a second filter preferably below the elastic filter.
- the second filter as well should not be prepared from a rigid material shearing sensitive molecules like the genomic DNA during high speed centrifugation.
- Said second filter can represent a commonly used depth filter, preferably prepared from fiber material.
- Said second filter may be in form of a membrane or layer, wherein the material may be selected from polysaccharides like cellulose, including paper, cellulose acetate, plastics like polyethylene, polypropylene, Teflon® (PTFE), polyethyleneterephthalat (PET), polyacrylate, polyamide, in particular Nylon®, polyvinylidenefluoride, polymers including sulfone groups like polyphenylsulfone, polyethersulfone, polysulfone, polyarylsulfone or polyphenylsulfone or not DNA binding silica.
- polysaccharides like cellulose including paper, cellulose acetate, plastics like polyethylene, polypropylene, Teflon® (PTFE), polyethyleneterephthalat (PET), polyacrylate, polyamide, in particular Nylon®, polyvinylidenefluoride, polymers including sulfone groups like polyphenylsulfone, polyethersulfone, polysulfone,
- the pores of the second filter are smaller that the pores of the elastic filter and are preferably in the range of 0.1 to 50 ⁇ , preferably in the range of 0.5 to 30 pm, most preferred in the range of 1 to 10 pm.
- the pore sizes of the elastic filter and the second filter described here are overlapping in its described ranges it should be clear that the pore size of the second filter should be smaller than the pore size of the elastic filter.
- the thickness of the elastic filter and the thickness of the second filter(s) is not limiting the present invention, however, it is preferred that the thickness of the elastic filter is for example between 1 and 10 mm, preferably 2 to 8 mm, more preferred 3 to 5 mm.
- the thickness of the second filter(s) is preferably lower than the thickness of the elastic filter, since intentionally the second filter(s) retain(s) less material than the elastic filter. Accordingly the thickness of the second filter(s) may range e.g. from 0.1 to 1 mm each.
- the filter(s) allow(s) the liquid phase to pass and retain(s) essentially all of the solid / particulate / flocculated material.
- the filter(s) is/are mounted in the filter module in a way that the lysate has to pass the filter(s) and is not allowed to by-pass.
- the filter(s) has/have contact to the side walls of said column or is/are placed in a holder having contact with said side walls.
- the elastic filter can be sized to fit inside of the column with contact to the side walls of the column, in particular when it is wet, e.g. by "oversizing” the filter compared to the inner diameter of the column. In this case the filter “grips” inside of the column. Further the filter can be hold in place by a ring under and / or over said filter. If a ring is placed over the filter this has the additional advantage that the liquid lysate is directed through the elastic filter and is hindered to by-pass the filter by running down the walls of the column.
- the elastic filter e.g. the foam or sponge
- a container having an inlet and an outlet like e.g. a tube, a column, a syringe or similar.
- Said container can be made of plastic, metal, composite material, glass, or any combination thereof, of any other suitable non- reactive or biocompatible material.
- the container can be fabricated using an injection moldable material that is able to withstand the force created by a centrifuge or moderate vacuum pressure.
- a second filter as well is placed inside said container, preferably below the elastic filter. At least one of the filters may be supported inside of the container e.g.
- the container in a way that the bottom end represents a liquid permeable supporting structure like e.g. a mesh, a fence, or any similar supporting structure like crossing, cartwheel or similar, or a channels including face or the filters are supported inside of the container by a supporting means, e.g. a holder, a ring, a mesh, a fence, or any similar supporting structure like crossing, cartwheel or similar, or a channels including face , or it may be adhered to the walls of the container, e.g. by a glue, gum, seal or similar adhesive.
- the support element can be a modification of the inner surface of the binding column, such as an annular ridge formed on the inner surface of the internal bore.
- a second filter is placed below of a foam or sponge into a column, wherein the second filter may be supported.
- the second filter itself can then serve as a support for the elastic filter.
- the so prepared filter module in form of a column can be inserted into a further column having therein a binding material for the desired target, resulting in a dual column device.
- the binding column preferably is configured to receive the filtered sample from the filter module.
- the binding column comprises a binding material for binding at least one target molecule.
- Said binding column may be represented by any of the columns known in the art for binding desired targets, in particular nucleic acids like plasmid DNA or RNA or proteins passed through the elastic filter or the filter module.
- nucleic acids like plasmid DNA or RNA or proteins passed through the elastic filter or the filter module.
- All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Generally, the nomenclature used herein are well known and commonly employed in the art. Terms of orientation such as “up” and “down”, “top” and “bottom”, “above” and “below” or “upper” or “lower” and the like refer to orientation of parts during use of a device.
- mini preparation or “mini prep” as used herein refers to a scale of purification from a starting culture volume of approximately 0.5-5 ml. Columns and other devices used in mini prep purification can also range from approximately 0.5 ml to approximately 5 ml.
- midi/maxi preparation or “midi/maxi prep” refers to a scale of purification starting from a culture volume of 5-100 ml. Columns and other devices used in midi prep purification can range from approximately 5 ml to
- column and “columns” as used herein refers to a device or container having an inlet and an outlet and which are able to hold a liquid. While columns generally refer to devices and containers having approximately cylindrical shapes, it is understood that the term “column” as used herein can refer to devices or containers having any shape, in particular a conical shape, or others, including but not limited to predominantly spherical, pyramidal, rectangular, irregular shapes and combinations thereof.
- target biomolecule or “target molecule” may comprise nucleic acids, proteins, lipids, glycolipids, pathway products or sugars, wherein the preferred target molecules are nucleic acids or proteins, particularly preferred nucleic acids.
- protein or “proteins” as used herein include full length proteins, protein fragments, proteins in their native state or denatured proteins. Mixture of proteins can be a mixture of full length proteins, a mixture of protein fragments, or a mixture of full length proteins and protein fragments.
- nucleic acid includes both DNA and RNA without regard to molecular weight or source.
- Nucleic acids include the full range of polymers of single or double stranded nucleotides, including chemically modified nucleotides, as known in the art that are capable of forming base pairs, joinable with other nucleic acids, and cleavable by endo- or exonucleases.
- Nucleic acids may be derived from any natural source or may be modified.
- a DNA molecule is any DNA molecule of any size, from any source, including DNA from viral, prokaryotic and eukaryotic organisms, as well as synthetic DNA and variants, derivatives and analogs thereof.
- the DNA may be genomic DNA or extrachromosomal DNA.
- RNA molecule is any RNA molecule of any size, from any source, including RNA from viral, prokaryotic and eukaryotic organisms, as well as synthetic RNA and variants, derivatives and analogs thereof.
- the RNA and DNA may be single stranded or double stranded, linear or circular, or supercoiled.
- the preferred nucleic acids are designated "target nucleic acids”.
- target nucleic acids preferably includes
- extrachromosomal DNA e.g., plasmids and their fragments, vectors and their fragments, , phagemids, cosmids, BACs, PACs, YACs, , mitochondrial nucleic acid molecules, chloroplast nucleic acid molecules, or combinations thereof.
- any vector and/or plasmid is preferred. They may be either commercially available, or synthesized, or engineered, or derived thereof. Such vectors and/or plasmids may be used for or derived from cloning or subcloning nucleic acid molecules of interest and therefore recombinant vectors containing inserts, nucleic acid fragments or genes may also be isolated in accordance with the invention.
- vectors of particular interest include prokaryotic and/or eukaryotic cloning vectors, expression vectors, fusion vectors, two-hybrid or reverse two-hybrid vectors, shuttle vectors for use in different hosts, mutagenesis vectors, transcription vectors, short hairpin vectors, vectors for receiving large inserts (yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs)) and the like.
- YACs yeast artificial chromosomes
- BACs bacterial artificial chromosomes
- PACs P1 artificial chromosomes
- vectors of interest include viral origin vectors (M13 vectors, bacterial phage vectors, baculovirus vectors, adenovirus vectors, and retrovirus vectors), high, low and adjustable copy number vectors, vectors which have compatible replicons for use in combination in a single host (e.g., pACYC184 and pBR322) and eukaryotic episomal replication vectors (e.g., pCDM8).
- the vectors contemplated by the invention include vectors containing inserted or additional nucleic acid fragments or sequences (e.g., recombinant vectors) as well as derivatives or variants of any of the vectors described herein.
- Expression vectors useful in accordance with the present invention include chromosomal-, episomal- and virus- derived vectors, e.g., vectors derived from bacterial plasmids or bacteriophages, and vectors derived from combinations thereof, such as cosmids and phagemids.
- Any cell, tissue, or organism may be used as the source of the target molecules to be isolated, such that the target molecules that are contained in the cell, tissue, or biological source (or portion thereof) are released from the cell, tissue, or organism.
- a cell may be prokaryotic or eukaryotic.
- An organism may be prokariotic, eukaryotic or viral, etc., and generally refers to any cell that contains a target molecule, e.g. a nucleic acid of interest.
- the terms "host” or “host cell” may be used interchangeably herein. For examples of such hosts, see Maniatis et al., "Molecular Cloning: A
- Preferred prokaryotic hosts include, but are not limited to, bacteria of the genus Escherichia (e.g., E. coli), Bacillus, Staphylococcus, Agrobacter (e.g., A.
- E. coli Bacterial hosts of particular interest in the present invention include E. coli strains K12, DH10B, DH5alpha, HB101 , JM109, XI1 blue, Top10, ToplOF and QIAGEN EZ Preferred eukaryotic hosts include, but are not limited to, fungi, fish cells, yeast cells, plant cells and animal cells, particularly insect cells, and mammalian cells including human cells, CHO cells, VERO cells, Bowes melanoma cells, HepG2 cells, and the like.
- Cells may be transformed cells, established cell lines, cancer cells, or normal cells.
- animal cells are insect cells such as Drosophila cells, Spodoptera Sf9, Sf21 cells and Trichoplusa High-Five cells; nematode cells such as C. elegans cells; and mammalian cells such as COS cells, CHO cells, VERO cells, 293 cells, PERC6 cells, BHK cells and human cells. Any virus may also be used as a cellular source of biological macromolecules, particularly nucleic acid molecules, in accordance with the invention.
- Also suitable for use as sources of biological macromolecules are blood or mammalian tissues of organs such as those derived from brain, kidney, liver, pancreas, blood, bone marrow, muscle, nervous, skin, genitourinary, circulatory, lymphoid, gastrointestinal and connective tissue sources, as well as those derived from a mammalian (including human) embryo or fetus. These cells, tissues and organs may be normal,
- transformed, or established cell lines may be pathological such as those involved in infectious diseases (caused by bacteria, fungi or yeast, viruses (including AIDS) or parasites), in genetic or biochemical pathologies (e.g., cystic fibrosis, hemophilia, Alzheimer's disease, schizophrenia, muscular dystrophy or multiple sclerosis), or in cancers and cancerous processes.
- Other cells, tissues, viruses, organs and organisms that will be familiar to one of ordinary skill in the art may also be used as sources of biological macromolecules for the preparation of biological macromolecules according to the present invention.
- a host or host cell may serve as the cellular source for the desired macromolecule to be isolated.
- cell disrupting or “cell lysing” refers to cell opening using a composition or a component of a composition that effects lysis, rupture, or poration of the cells, tissues, or organisms used as the source of the biological macromolecules to be isolated, such that the macromolecules that are contained in the cell, tissue, or biological source (or portion thereof) are released from the cell, tissue, or organism.
- the cells, tissues, or organisms need not be completely lysed, ruptured or porated, and all of the macromolecules of interest contained in the source cells, tissues or organisms need not be released therefrom.
- a cell disrupting or cell lysis compound or composition effects the release of at least 25 percent, 50 percent, 75 percent, 80 percent, 85 percent, 90 percent, 95 percent, 97 percent, 99 percent, or more of the total biological macromolecules of interest, that are contained in the cell, tissue, or organism.
- the cells may be lysed or disrupted by contacting them with a composition or compound which causes or aids in cell lysis or disruption, although mechanical or physical forces (e.g., pressure, sonication, temperature (heating, freezing), and/or freeze-thawing etc.) may be used in accordance with the invention.
- mechanical or physical forces e.g., pressure, sonication, temperature (heating, freezing), and/or freeze-thawing etc.
- any combination of mechanical forces, physical forces or lysis compositions/compounds maybe used to disrupt/lyse the cells, so long as the method does not substantially damage the biological macromolecules of interest.
- the cell disrupting or cell lysing compound or composition used is not limiting the invention.
- the components comprised in the lysing composition are preferably adapted to the desired target biomolecule to be isolated or purified.
- components are preferably included for what type of desired biomolecule is known to a skilled artisan and doesn't limit the present invention. It may comprise one or more detergents, such as sodium dodecylsulfate (SDS), Sarkosyl, Triton X-100, Tween 20, NP-40, Nalkylglucosides, N-alkylmaltosides, glucamides, digitonin, deoxycholate, 3- [(3cholamidopropyl)-dimethylammonio]-1 -propane-sulfonate (CHAPS),
- SDS sodium dodecylsulfate
- Sarkosyl Sarkosyl
- Triton X-100 Triton X-100
- Tween 20 NP-40
- Nalkylglucosides N-alkylmaltosides
- glucamides digitonin
- deoxycholate 3- [(3cholamidopropyl)-dimethylammonio]-1 -propan
- cetyltrimethyl-ammoniumbromide CTL, or Brij 35.
- concentration may be any suitable, e.g. about 0.01 percent -10 percent (w/v), more preferably about 0.1 percent -5 percent,.
- One or more chaotropic agents such as sodium iodide, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium
- perchlorate, guanidine or a salt thereof or urea may be present.
- one or more enzymes may be present such as lysozyme, lyticase, zymolyase, neuraminidase, Novozym 234, streptolysin, cellulysin, mutanolysin or lysostaphin.
- One or more inorganic salts may be present such as sodium chloride, potassium chloride, magnesium chloride, lithium chloride, or praseodymium chloride, e.g. at a
- One or more organic solvents such as toluene, phenol, butanol, isopropyl alcohol, isoamyl alcohol, ethanol, an ether (e.g., diethyl ether, dimethyl ether, or ethylmethyl ether), or chloroform may be present as far as they have no negative effects to any of the filters used according to the invention.
- Any other compound which disrupts the integrity of (i.e., lyses or causes the formation of pores in) the membrane and/or cell wall of the cellular source of biological macromolecules e.g., polymixin B
- compositions may also comprise other components, such as chelating agents (e.g., disodium ethylenediaminetetraacetic acid (Na EDTA), EGTA, CDTA), one or more proteases (Protinase K, Pronase, pepsin, trypsin, papain, subtilisin) or any combination of the foregoing. Desired concentrations and combinations of the active ingredients of the lysis/disruption compositions are not limiting the invention and may be readily determined by those skilled in the art with routine experimentation.
- chelating agents e.g., disodium ethylenediaminetetraacetic acid (Na EDTA), EGTA, CDTA
- proteases Protinase K, Pronase, pepsin, trypsin, papain, subtilisin
- Desired concentrations and combinations of the active ingredients of the lysis/disruption compositions are not limiting the invention and may be readily determined by those skilled in the art
- the term "clarification” as used herein refers to the process of removing unwanted solid, precipitated or flocculated materials like e.g. cellular debris and/or large insoluble molecules from a liquid mixture, e.g. a cell lysate. Common methods of clarifying a cell lysate include centrifugation and filtration. Preferably the unwanted debris is essentially retained in the filter module, allowing the essentially clarified lysate to pass through the binding column containing the binding material.
- elution refers to the release of the desired target molecules bound by the binding matrix by means of a solvent.
- eluting solution refers to the solvent used to release a molecule from the material.
- eluate refers to the liquid solution resulting from an elution and containing the desired molecule.
- the “eluate” may contain nucleic acid that may be considered “isolated”.
- isolated as in “isolated biological macromolecule” means that the isolated material, component, or composition has been at least partially purified away from other materials, contaminants, and the like which are not part of the material, component, or composition that has been isolated.
- an "isolated biological macromolecule” is a macromolecule that has been treated in such a way as to remove at least some of the other macromolecules and cellular components with which it may be associated in the cell, tissue, organ or organism.
- isolated biological macromolecule refers to macromolecule preparations or plasmid preparations which contain about 10 percent, 20 percent, 30 percent, 40 percent, 50 percent, 55 percent, 60 percent, 65 percent, 70 percent, 75 percent, 80 percent, 85 percent, 90 percent, and 93 percent, preferably more than 95 percent, 97.5 percent, and 98 percent, and most preferably more than 99 percent, 99.5 percent, and 99.9 percent (percentages by weight) of the biological macromolecule of interest.
- a solution comprising an isolated macromolecule may comprise further ingredients e.g. one or more buffer salts and/or a solvents, e.g., water or an organic solvent and the like, and yet the macromolecule may still be considered an "isolated" macromolecule with respect to its starting materials.
- nucleic acid molecules that are isolated by the devices, methods and kits of the present invention may be further characterized or manipulated, for example by amplification, cloning, sequencing, labeling, transfections, transformations, in vitro transcription, in vitro translation, nucleic acid synthesis, endonuclease digestion, other enzymatic modifications and the like, methods that are routinely used by one of ordinary skill in the art.
- the present invention provides a dual device comprising a filtering module in form of a clarification/filtering column inserted at least partially into a binding column, where the clarification column retains solid, precipitated or
- the filter module is inserted in the same column as the binding material.
- the filter module is not a column, but e.g. a disc, enclosing the elastic and optionally the second filter described above, which can be placed on an intended lace inside of the binding column.
- the binding column preferably is designed in a way that the filter module is hold in its intended place by a means described above. According to the present invention it is preferred that the filter module is removed after passing the sample through the filter. Accordingly the filter module preferably is removable from the binding column.
- the clarification/binding device can be used for the clarification of a sample and the subsequent isolation of at least one target molecule from the sample, wherein the contamination of fragments of shear-sensitive molecules is minimized.
- the sample can be a liquid sample or a dry sample that has been suspended in a liquid.
- the device described herein can clarify a cell lysate sample and isolate a nucleic acid molecule from the clarified lysate. After the sample, for example, lysate, is filtered and the target molecule(s) is captured by the binding material, the internal filter module (along with the unwanted debris) can be removed and discarded. The nucleic acid or other target molecule(s) bound to the binding material can then be optionally washed and eluted.
- Both, the inner clarification/filtering column and the binding column can be made of plastic, metal, composite material, glass, or any combination thereof, of any other suitable non- reactive or biocompatible material, able to withstand the force created by a centrifuge being used with the device.
- the filter module is in form of a column which can be inserted into a binding column
- the inlet or upper open end of the filter module/clarification column is oriented in the same direction as the inlet or upper open end of the binding column
- the outlet of the filter module/clarification column is oriented in the same direction as the outlet of the binding column.
- the filter module/clarification column can extend all the way through the internal bore so that the outlet of the filter module/clarification column is adjacent to the binding material in the binding column.
- the filter module/clarification column can extend only partially through the internal bore so that there is a gap between the outlet of the filter module/clarification column and the binding material.
- the filter module comprises any means for holding the filter module at its intended place when inserted into the binding column, even during centrifugation.
- Said means may be for example a ring, a crank, a shoulder or similar which preferably either renders the perimeter of the filter module bigger than the perimeter of the binding column, resulting in that the filter module cannot be inserted deeper in the binding column, or it corresponds to a crank or shoulder inside of the binding column, whereon the filter module is placed.
- FIG. 1 An example of a dual column device wherein both columns having a shoulder is shown in figure 1 (the binding material in the outer column is not shown).
- the binding column (binding material not shown) is shown as (1 )
- the filter module inserted in the binding column is shown as (2).
- the elastic filter (3) is placed above the second filter (4).
- the filter module e.g. in form of a clarification column, may be designed in a way that it may be inserted into the binding column (without any means for holding the column in place), but can be removed after the filtration step.
- the internal diameter of the binding column can be sized to accommodate the size of the clarification column so that at least a portion of the outer surface of the clarification column contacts a portion of the inner surface of the binding column and provides an close fit between the clarification column and binding column.
- a close fit can be a connection between two surfaces which can be achieved by friction after the surfaces are contacted together.
- a close fit may also be achieved by shaping the clarification column and binding column so that one or the other (or both) slightly deviate in size from the nominal dimension, or by conical shape of both of the columns.
- the close fit can be obtained by shaping the crank or shoulder of the columns serving for holding the clarification column in place in a way that the shoulders or cranks are in close contact to each other. The fit between the
- clarification column and binding column can be sufficiently airtight so that negative pressure applied to the outlet of the binding column will create a vacuum in the dual column system.
- the clarification column when positioned into the binding column, the clarification column will be of such a dimension that at least a part of the outer surface of the clarification column contacts at least a part of the inner surface of the binding column and forms a vacuum seal with the binding column when negative pressure is applied. The fit between the outer and clarification column will not prevent the clarification column from being removed from the binding column when negative pressure is not applied.
- the binding column comprises a binding material for binding the desired target.
- the binding material can be any suitable material for capturing the target molecule including, but not limited to, fiber, matrix, resin, membrane, disc or filter, or any other suitable material or combination thereof.
- the binding material can capture at least one type of target molecule including, but not limited to, nucleic acids.
- the binding material is a DNA or RNA binding material, in particular a material able to bind plasmid DNA.
- Suitable DNA binding materials include silica and non-silica DNA binding materials or a combination thereof.
- the DNA binding material further can be any suitable chromatography material including, but not limited to, silica gel, aluminium oxide, titanium dioxide, porous glass, polymers, or any combination thereof.
- the binding material can be a charge switch membrane, including glass fiber or nitrocellulose, or an anion exchange matrix, including derivatized glass fiber.
- the binding material can be further a combination of several types of said material, e.g. in different layers.
- the binding material can be located inside of the binding column at or near the outlet. The binding material can be positioned at any suitable location so that the sample passing through the binding column and exiting through the outlet aperture must pass through the binding material.
- the binding material preferably comprises pores of a suitable size to provide for adequate flow of the fluid or clarified sample through the device while providing high surface area to which the molecule can bind and thereby providing good yield of the at least one target molecule.
- the pore size can be any suitable size to allow for the binding of at least one target molecule, e.g. in the range of between approximately 0.5 pm and approximately 5 pm.
- the binding column can comprise one or more support elements for the binding material or it may be adhered to the walls of the container, e.g. by a glue, gum, seal or similar adhesive.
- the support element can maintain the position of the binding material inside of the column.
- the support element(s) can be of any structure that physically restricts movement of the binding material. Suitable support elements include, but are not limited to, a holder, a ring, a mesh or a frit.
- the support element can be a modification of the inner surface of the binding column, such as an annular ridge formed on the inner surface of the internal bore.
- the present invention further provides a method for clarifying a suspension, comprising at least one target molecule and solid particles, precipitates and/or flocculates, wherein the suspension further may comprise shear-sensitive molecules, including a filtration step involving the filter module as defined above for separating said solid particles, precipitates and/or flocculates from the target molecule, whererin the target molecule remains in solution.
- said method is suitable for isolating and/or purifying desired target molecules from such a suspension, wherein the suspension further may comprise shear-sensitive molecules, like high molecular weight molecules, including a filtration step involving the filter module as described above.
- the obtained flow-through contains the desired target molecule in solution essentially free of particulate material like solids, precipitates and flocculates. Further, the obtained solution is preferably essentially free from fragments of shear-sensitive macromolecules or fragments thereof.
- the flow-through may be contacted with a target binding material to isolate / separate the target from said flow-through.
- nucleic acids are isolated or purified, preferably DNA, most preferred plasmid DNA.
- the isolation and/or purification of the nucleic acids includes a step of binding the nucleic acids to a nucleic acid binding material, preferably in a binding column.
- the present invention provides a method for isolating and/or purifying nucleic acids, comprising the steps of:
- Said method preferably comprises further the steps:
- step (iii) contacting the flow-through of step (ii) with a nucleic acid binding material
- the sample preferably is a cell lysate, particularly a cell lysate comprising genomic DNA and a target biomolecule.
- the preferred target biomolecule is a target nucleic acid or a protein, in particular plasmid DNA.
- the sample containing the desired molecule can be added to a column including the filter module. If the filter module is in the form of a clarification column as described above, the sample is applied in the clarification column through the open end of the clarification column.
- centrifugal force or negative pressure passes the sample through the filter module / clarification column.
- the flow-through passes into a binding column.
- large insoluble molecules can be prevented from passing through the outlet of the clarification column by the comprised filter(s).
- shear-sensitive molecules like e.g. genomic DNA are essentially not sheared, even in case high centrifugation speed is applied to the sample. Thus, the amount of fragments of the shear-sensitive molecules is minimized.
- the filtered sample comes preferably in contact with the binding material located in the binding column.
- the binding material can bind the desired molecule or molecules while the centrifugal force or vacuum manipulates the rest of the liquid out of the device through the outlet of the binding column.
- the filter module/clarification column can then be removed.
- One or more washing solutions may be optionally added and forced by centrifugation or vacuum to pass through the binding material and out of the device. The washing increases purification of the desired molecules by removing unbound molecules, impurities, or other debris from the binding material.
- An eluting solution can then added to the binding column to elute the desired molecule from the binding material.
- the eluate preferably is collected. Multiple aliquots of eluting solution can be used.
- the suspension or liquid mixture is a cell lysate and the filter module operates in form of a clarification column.
- the clarified lysate is passed through the binding material which binds a nucleic acid of interest, preferably plasmid DNA.
- the clarification column can then be removed and the bound plasmid DNA is eluted and collected.
- the dual column device of the present invention enables clarification and binding in a single short (1-3 minute) centrifugation or vacuum step.
- the present invention provides a method for isolating and/or purifying plasmid DNA, comprising the steps of:
- step (iii) contacting the flow-through of step (ii) with a DNA binding material
- kits for isolating a target molecule of interest from a sample comprises at least a filter module as described herein.
- the kit comprises a clarification/binding device for isolation of at least one target molecule from a sample comprising: a filter module/clarification column configured to receive the sample, the clarification column comprising at least one filter made of an elastic filter material as described above, preferably a self- supporting foam or sponge, configured to filter at least one non- target molecule from the sample, and a binding column configured to receive the filtered sample from the filter module/clarification column, the binding column comprising a binding material for binding at least one target molecule.
- the kit comprises a column comprising a filter module including at least one filter made of an elastic material as described above, preferably a foam or sponge, and a binding material, wherein preferably the filter module is removable from the column.
- the kit may further comprise at least one further ingredient, selected from: at least one lysis buffer; at least one RNase stock solution; at least one resuspension buffer; at least one neutralization buffer; at least one wash buffer; at least one elution buffer; instructions for carrying out the target isolation / purification method.
- Figure 1 shows a filter module in a spin column for combined filtration and binding, wherein the binding material in the spin column is not shown.
- (1 ) Spin column (binding material not shown, (2) Filter module, (3) Soft, elastic upper filter material,
- Figure 2 shows a possible design of the filter module, wherein the bottom of the column represents a supporting means (filter materials are not shown)
- Figure 3 shows plasmid preparations as isolated according to Example 2 on an agarose gel.
- Figure 4 shows mini preparations on a agarose gel including (1 ) a needle punched felt and the (2) reference: 10 minutes centrifugation for pelleting the precipitate according to Example 3.
- Figure 5 shows an agarose gel representing the results of plasmid preparations performed according to Example 1 , using a filter module comprising the foam (1 ) and of preparations according to the reference(10 minutes centrifugation for pelleting the precipitate (2)
- Figure 6 shows the content of genomic DNA in comparison to the isolated plasmid according to Example 5, dependent from the type of filter used for lysate clearance. Mini preparations are shown as follows. (1 ) reference: 10 minutes centrifugation for pelleting the precipitate instead of filtering, (2) the plasmid isolated using a foam as filtering material and (3) the plasmid isolated using a needle punched felt as filtering material.
- Figure 7 shows the content of genomic DNA in comparison to the isolated plasmid according to Example 5, dependent from the type of filter used for lysate clearance. Two mini preparations are shown. (1 ) reference: 10 minutes centrifugation for pelleting the precipitate (2) the plasmid isolated using a foam as filtering material and (3) the plasmid isolated using a needle punched felt as filtering material.
- plasmid DNA was isolated from bacterial cells.
- Cells were harvested from bacterial cell culture by centrifugation by pelleting the cells in a 1 ,5 ml Eppendorf cup.
- the buffers, solutions and DNA binding columns used are those from the commercially available QIAprep Kit (QIAGEN; Hilden, Germany), designed for plasmid DNA isolation.
- the pelleted bacterial cells were resuspended in 250 ⁇ Buffer P1 and transferred to a microcentrifuge tube.
- the whole sample volume including precipitates from step 4 was applied to a filter module in form of a column, inserted in a QIAprep Spin Column by decanting or pipetting.
- the filter module comprised a polyurethane foam and a non-binding silica membrane (i.e. a silica membrane not binding nucleic acids).
- the filter module was removed from QIAprep spin column and discarded.
- the QIAprep spin column was washed by adding 0.5 ml Buffer PB and centrifuging for 30-60 s. Flow-through was discarded.
- the QIAprep column was placed in a clean 1.5 ml microcentrifuge tube. To elute DNA, 50 ⁇ Buffer EB (10 mM Tris*CI, pH 8.5) were added to the center of each QIAprep spin column, let stand for 1 min, and centrifuged for 1 min. The eluate was collected.
- Buffer EB 10 mM Tris*CI, pH 8.5
- a vacuum manifold and QIAprep spin columns were prepared according to the details in QIAprep Miniprep handbook.
- the pelleted bacterial cells were resuspended in 250 ⁇ Buffer P1 and transferred to a microcentrifuge tube.
- the whole sample volume including precipitates from step 4 was applied to a filter module in form of a column, inserted in a QIAprep Spin Column which was on the vacuum manifold by decanting or pipetting.
- the filter module comprised a polyurethane foam and a non-binding silica membrane. 6.
- the vacuum source was switched on to draw the solution through the Filter module and the QIAprep spin columns, then vacuum source was switched off.
- the filter module was removed from QIAprep spin column and discarded.
- the QIAprep spin columns were placed into a 2 ml collection tube and
- the QIAprep column was placed in a clean 1.5 ml microcentrifuge tube.
- 50 pi Buffer EB (10 mM Tris'CI, pH 8.5) were added to the center of each QIAprep spin column, let stand for 1 min, and centrifuged for 1 min at 13.000rpm. The eluate was collected.
- the pelleted bacterial cells were resuspended in 250 ⁇ Buffer P1 and transferred to a microcentrifuge tube.
- step 5 The supernatant from step 4 was transferred to a QIAprep spin column.
- the QIAprep spin column was centrifuged for 60 s. The flow through was
- the QIAprep spin column was washed by adding 0.5 ml Buffer PB and centrifuging for 30-60 s. Flow-through was discarded. 8. The QIAprep spin column was washed by adding 0.75 ml Buffer PE and centrifuging for 30-60 s.
- the QIAprep column was placed in a clean 1.5 ml microcentrifuge tube. To elute DNA, 50 ⁇ Buffer EB (10 mM Tris-CI, pH 8.5) or water was added to the center of each QIAprep spin column, let stand for 1 min, and centrifuged for 1 min. The eluate was collected.
- Buffer EB 10 mM Tris-CI, pH 8.5
- Plasmid pUC19 was isolated from 5 ml LB culture of E.coli TOP10F cells according to the protocol for centrifugation as described in Example 1. Four different types of filter materials were used as the upper filter in the filter module.
- Plasmid pUC19 was isolated from 5 ml LB culture of E.coli DH10B cells or plasmid pCMN ⁇ was isolated from 5 ml LB culture of E.coli DH5alpha cells, respectively, according to the protocol for centrifugation as described in Example 1.
- As upper filter material in the filter module needle punched felt (1 ) (a rigid filter material) was used in comparison to the reference (2). All samples were analyzed in triplicate. 150ng DNA according to OD 2 6o of each of the eluates comprising the respective plasmid DNA were run on an agarose gel. The gel showed that the samples filtered with needle punched felt include clearly more (fragmented) genomic DNA than the samples cleared by pelletation.
- Plasmid pUC19 was isolated from 5 ml LB culture of E.coli DH10B cells or plasmid ⁇ was isolated from 5 ml LB culture of E.coli DH5alpha cells, respectively, according to the protocol for centrifugation as described in Example 1.
- As upper filter in the filter module polyurethane, polyethylene or polystyrene foam was used in comparison to the reference pelletation of the precipitate. All samples were analyzed in triplicate. 150ng DNA according to OD 2 6o of each of the eluates comprising the respective plasmid DNA were run on an agarose gel. According to the gel analysis as shown in figure 5, there is no genomic DNA visible for both types of samples.
- plasmids were isolated according to the protocol of Example 1 , which were pUC19 from 5 ml LB culture of TOP10F cells and pBRCMV ⁇ from 5 ml LB culture of DH5a cells.
- As upper filter material either a polyurethane foam as in Example 4 or a needle punched felt as in Example 3 was used.
- After elution of the plasmid DNA 125 ng plasmid DNA were used as a template in a real time PCR.
- primers annealing to a chromosomal pyruvat kinase gene and a DNA probe were used.
- primer A Teg taa gcg ttc tga cgt tat c primer B Cat gat gec gtc aga ggc ttc gag probe FAM-acc tga aag cgc acg gcg gcg aaa
- the amount of contaminating genomic DNA was quantified by means of a standard series of genomic DNA with known amounts.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP12737479.1A EP2726595A1 (fr) | 2011-07-01 | 2012-06-29 | Module de filtre utilisé pour isoler des biomolécules |
| US14/130,443 US20140134718A1 (en) | 2011-07-01 | 2012-06-29 | Filter module in biomolecule isolation |
| CN201280031951.4A CN103748208A (zh) | 2011-07-01 | 2012-06-29 | 生物分子分离中的过滤器模块 |
| JP2014517510A JP2014518074A (ja) | 2011-07-01 | 2012-06-29 | 生体分子の単離におけるフィルターモジュール |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP11005418 | 2011-07-01 | ||
| EP11005418.6 | 2011-07-01 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013004366A1 true WO2013004366A1 (fr) | 2013-01-10 |
Family
ID=46545723
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2012/002759 WO2013004366A1 (fr) | 2011-07-01 | 2012-06-29 | Module de filtre utilisé pour isoler des biomolécules |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP2726595A1 (fr) |
| JP (1) | JP2014518074A (fr) |
| CN (1) | CN103748208A (fr) |
| WO (1) | WO2013004366A1 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114585486A (zh) * | 2019-08-30 | 2022-06-03 | 普罗蒂菲有限责任公司 | 使用新型囊袋设计的不含洗涤剂的同时多组学样品制备方法 |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SG11201705625WA (en) * | 2015-01-21 | 2017-08-30 | Agency Science Tech & Res | Column-based device and method for retrieval of rare cells based on size, and uses thereof |
| CN106353137B (zh) * | 2016-08-30 | 2023-10-31 | 徐州憬美新材料科技有限公司 | 一种取液容器组件及取液方法 |
| GB2581489B (en) * | 2019-02-15 | 2021-02-24 | Revolugen Ltd | Purification method |
Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995002049A1 (fr) | 1993-07-09 | 1995-01-19 | Cambridge Molecular Technologies Limited | Appareil et procede de purification |
| US20030085167A1 (en) * | 2001-11-07 | 2003-05-08 | Fox John Edward | Dual density filter cartridge |
| WO2003046178A1 (fr) | 2001-11-20 | 2003-06-05 | Glaxo Group Limited | Traitement d'acides nucleiques |
| KR20040085927A (ko) | 2003-04-02 | 2004-10-08 | 코아바이오시스템 주식회사 | 플라스미드 디엔에이 추출용 필터장치 |
| WO2005012521A1 (fr) | 2003-07-21 | 2005-02-10 | Invitrogen Corporation | Isolement d'acide nucleique |
| JP2006149215A (ja) * | 2004-11-25 | 2006-06-15 | Asahi Kasei Corp | 核酸検出用カートリッジ及び核酸検出方法 |
| DE202005010007U1 (de) | 2005-06-23 | 2006-08-03 | Macherey, Nagel Gmbh & Co. Handelsgesellschaft | Trenneinrichtung für die Trennung von unlöslichen Inhaltsstoffen aus einer biologischen Probenflüssigkeit |
| US20060252142A1 (en) | 2005-05-06 | 2006-11-09 | Hitachi High-Technologies Corporation | Method for nucleic acid isolation and an instrument for nucleic acid isolation |
| EP1795612A1 (fr) * | 2004-08-31 | 2007-06-13 | Eiken Kagaku Kabushiki Kaisha | Procede d'analyse d'acide nucleique |
| KR20080018587A (ko) * | 2006-08-25 | 2008-02-28 | 코아바이오시스템 주식회사 | 플라스미드 디엔에이 필터 튜브 킷트 |
| WO2008050838A1 (fr) | 2006-10-27 | 2008-05-02 | Toshiyuki Aiba | Jeunes plants de type mat et leur procédé d'obtention |
| WO2008050826A1 (fr) | 2006-10-27 | 2008-05-02 | Aura Tec Co., Ltd. | Appareil d'aération |
| WO2008121121A2 (fr) | 2006-07-22 | 2008-10-09 | Zymo Research Corporation | Isolement d'un adn plasmidique |
| WO2008150826A1 (fr) | 2007-05-31 | 2008-12-11 | Ge Healthcare Uk Limited | Colonne à centrifuger modifiée pour une extraction simple et rapide d'adn plasmidique |
| WO2008150838A1 (fr) | 2007-05-31 | 2008-12-11 | Ge Healthcare Uk Limited | Système miniprep amélioré pour une extraction simple et rapide d'adn plasmidique |
| WO2009058414A1 (fr) | 2007-10-31 | 2009-05-07 | Akonni Biosystems | Appareil, système et procédé de purification d'acides nucléiques |
| WO2009060847A1 (fr) | 2007-11-05 | 2009-05-14 | Eiken Kagaku Kabushiki Kaisha | Procédé et trousse pour préparer un échantillon en vue d'une amplification d'acide nucléique |
| WO2009157680A1 (fr) | 2008-06-27 | 2009-12-30 | Postech Academy-Industry Foundation | Procédé d’extraction d’acides nucléiques |
| WO2009157679A1 (fr) | 2008-06-27 | 2009-12-30 | Postech Academy-Industry Foundation | Appareil d’extraction d’acide nucléique |
| WO2010075116A2 (fr) | 2008-12-15 | 2010-07-01 | Life Technologies Corporation | Appareil et procédé de purification d'acide nucléique |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060263773A1 (en) * | 2004-11-30 | 2006-11-23 | Kojiro Tanaka | Measuring kit, measuring method and measuring apparatus of microorganism in liquid sample |
-
2012
- 2012-06-29 EP EP12737479.1A patent/EP2726595A1/fr not_active Withdrawn
- 2012-06-29 CN CN201280031951.4A patent/CN103748208A/zh active Pending
- 2012-06-29 JP JP2014517510A patent/JP2014518074A/ja not_active Withdrawn
- 2012-06-29 WO PCT/EP2012/002759 patent/WO2013004366A1/fr active Application Filing
Patent Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995002049A1 (fr) | 1993-07-09 | 1995-01-19 | Cambridge Molecular Technologies Limited | Appareil et procede de purification |
| US20030085167A1 (en) * | 2001-11-07 | 2003-05-08 | Fox John Edward | Dual density filter cartridge |
| WO2003046178A1 (fr) | 2001-11-20 | 2003-06-05 | Glaxo Group Limited | Traitement d'acides nucleiques |
| KR20040085927A (ko) | 2003-04-02 | 2004-10-08 | 코아바이오시스템 주식회사 | 플라스미드 디엔에이 추출용 필터장치 |
| WO2005012521A1 (fr) | 2003-07-21 | 2005-02-10 | Invitrogen Corporation | Isolement d'acide nucleique |
| EP1795612A1 (fr) * | 2004-08-31 | 2007-06-13 | Eiken Kagaku Kabushiki Kaisha | Procede d'analyse d'acide nucleique |
| JP2006149215A (ja) * | 2004-11-25 | 2006-06-15 | Asahi Kasei Corp | 核酸検出用カートリッジ及び核酸検出方法 |
| US20060252142A1 (en) | 2005-05-06 | 2006-11-09 | Hitachi High-Technologies Corporation | Method for nucleic acid isolation and an instrument for nucleic acid isolation |
| DE202005010007U1 (de) | 2005-06-23 | 2006-08-03 | Macherey, Nagel Gmbh & Co. Handelsgesellschaft | Trenneinrichtung für die Trennung von unlöslichen Inhaltsstoffen aus einer biologischen Probenflüssigkeit |
| WO2008121121A2 (fr) | 2006-07-22 | 2008-10-09 | Zymo Research Corporation | Isolement d'un adn plasmidique |
| KR20080018587A (ko) * | 2006-08-25 | 2008-02-28 | 코아바이오시스템 주식회사 | 플라스미드 디엔에이 필터 튜브 킷트 |
| WO2008050838A1 (fr) | 2006-10-27 | 2008-05-02 | Toshiyuki Aiba | Jeunes plants de type mat et leur procédé d'obtention |
| WO2008050826A1 (fr) | 2006-10-27 | 2008-05-02 | Aura Tec Co., Ltd. | Appareil d'aération |
| WO2008150826A1 (fr) | 2007-05-31 | 2008-12-11 | Ge Healthcare Uk Limited | Colonne à centrifuger modifiée pour une extraction simple et rapide d'adn plasmidique |
| WO2008150838A1 (fr) | 2007-05-31 | 2008-12-11 | Ge Healthcare Uk Limited | Système miniprep amélioré pour une extraction simple et rapide d'adn plasmidique |
| WO2009058414A1 (fr) | 2007-10-31 | 2009-05-07 | Akonni Biosystems | Appareil, système et procédé de purification d'acides nucléiques |
| WO2009060847A1 (fr) | 2007-11-05 | 2009-05-14 | Eiken Kagaku Kabushiki Kaisha | Procédé et trousse pour préparer un échantillon en vue d'une amplification d'acide nucléique |
| WO2009157680A1 (fr) | 2008-06-27 | 2009-12-30 | Postech Academy-Industry Foundation | Procédé d’extraction d’acides nucléiques |
| WO2009157679A1 (fr) | 2008-06-27 | 2009-12-30 | Postech Academy-Industry Foundation | Appareil d’extraction d’acide nucléique |
| WO2010075116A2 (fr) | 2008-12-15 | 2010-07-01 | Life Technologies Corporation | Appareil et procédé de purification d'acide nucléique |
Non-Patent Citations (2)
| Title |
|---|
| "Protocol for Reference as described in the QlAprep Miniprep Handbook", June 2005, pages: 22 - 23 |
| MANIATIS ET AL.: "Molecular Cloning: A Laboratory Manual", COLD SPRING HARBOR LABORATORY |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114585486A (zh) * | 2019-08-30 | 2022-06-03 | 普罗蒂菲有限责任公司 | 使用新型囊袋设计的不含洗涤剂的同时多组学样品制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2014518074A (ja) | 2014-07-28 |
| CN103748208A (zh) | 2014-04-23 |
| EP2726595A1 (fr) | 2014-05-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20140134718A1 (en) | Filter module in biomolecule isolation | |
| US8158349B2 (en) | Method and device for purifying nucleic acids | |
| JP4175670B2 (ja) | 固体相核酸の単離 | |
| US20110313143A1 (en) | Nucleic acid purification apparatus and method | |
| US6274371B1 (en) | Process and device for the isolation of cell components, such as nucleic acids, from natural sources | |
| US20080026451A1 (en) | System for isolating biomolecules from a sample | |
| JPH07501223A (ja) | 核酸を単離する装置及び方法 | |
| CA2920248C (fr) | Fabrication de nanomembranes hierarchiques en silice et leurs utilisations pour l'extraction sur phase solide d'acides nucleiques | |
| AU778440B2 (en) | Sample processing device | |
| US10329553B2 (en) | Method for isolating RNA including small RNA with high yield | |
| US20070122809A1 (en) | Nucleic acid isolation | |
| EP1141234A1 (fr) | Procedes et compositions permettant d'isoler des molecules d'acide nucleique | |
| WO2013004366A1 (fr) | Module de filtre utilisé pour isoler des biomolécules | |
| US20120053328A1 (en) | Protein extraction methods | |
| EP2055385B1 (fr) | Procédé et dispositif de purification d'acides nucléiques | |
| US8685742B2 (en) | Apparatus and method for the more efficient isolation of nucleic acids | |
| CN111148834B (zh) | 以高收率分离rna的方法 | |
| US20230383281A1 (en) | Filtration methods and devices for fast nucleic acid extraction | |
| DE202004006675U1 (de) | Vorrichtung zur Reinigung von Nukleinsäuren | |
| CN111518161A (zh) | 一种柱式法从细胞中分离蛋白质的方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12737479 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2014517510 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14130443 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012737479 Country of ref document: EP |