[go: up one dir, main page]

WO2016158831A1 - Heat-convection-generating device and heat-convection-generating system - Google Patents

Heat-convection-generating device and heat-convection-generating system Download PDF

Info

Publication number
WO2016158831A1
WO2016158831A1 PCT/JP2016/059847 JP2016059847W WO2016158831A1 WO 2016158831 A1 WO2016158831 A1 WO 2016158831A1 JP 2016059847 W JP2016059847 W JP 2016059847W WO 2016158831 A1 WO2016158831 A1 WO 2016158831A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow path
thermal convection
annular flow
heater
Prior art date
Application number
PCT/JP2016/059847
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 麻生
忠宣 関矢
真人 齋藤
民谷 栄一
Original Assignee
コニカミノルタ株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, 国立大学法人大阪大学 filed Critical コニカミノルタ株式会社
Priority to JP2017509958A priority Critical patent/JP6596800B2/en
Publication of WO2016158831A1 publication Critical patent/WO2016158831A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a thermal convection generating device and a thermal convection generating system for performing, for example, a PCR method.
  • PCR Polymerase Chain Reaction
  • Patent Document 1 discloses a PCR thermal convection generator that performs PCR by generating thermal convection by heat supplied from the bottom of the container in an upright cylindrical container.
  • This thermal convection generation device performs solution driving by convection, and has an advantage that a PCR solution can be fed without using an external pump.
  • stable thermal convection cannot be obtained and reproducibility is poor because the convection state changes greatly due to a slight deviation in the position of the heat supply to the PCR solution and a slight difference in the inclination of the container containing the PCR solution. .
  • Patent Document 2 discloses a thermal convection generating device for PCR, and includes a plurality of rectangular parallelepiped first to third heat sources (1 st to 3 rd Heat Source) stacked with gaps (Gap). A hole in which a reaction tube is accommodated is formed, and a PCR reaction tube (Reaction Vessel) is inserted into the hole and fixed. In a state where the upper surface of the laminated body is inclined so as to form a predetermined angle with respect to a line in the radial direction, a centrifugal force is imparted to the liquid in the reaction tube by rotating the laminated body around the vertical axis to heat the laminated body. It is configured to promote convection.
  • the heat source temperature is set such that the first heat source> the second heat source> the third heat source.
  • Patent Document 3 a liquid is introduced into an annular channel of a thermal convection generating chip provided along a plane perpendicular to the rotation axis direction, and the liquid is heated around a rotation axis while being heated by a heat source.
  • a thermal convection generating device for PCR that applies centrifugal force to the liquid by rotating a convection generating chip is disclosed.
  • This thermal convection generating device can realize thermal convection which is excellent in reproducibility compared with Patent Documents 1 and 2.
  • it is more robust than the device of Patent Document 3 (the ability to prevent changes in external factors by an internal mechanism), has high reproducibility of thermal convection, and can perform thermal cycle of PCR more efficiently and quickly.
  • Devices and thermal convection generation systems are needed.
  • the present invention has been made in view of the above problems, and has excellent robustness, high reproducibility of heat convection, and heat convection capable of more efficiently and quickly performing heat convection such as PCR thermal cycle. It is an object to provide a generation device and a thermal convection generation system.
  • a thermal convection generation device reflecting one aspect of the present invention.
  • a rotating shaft capable of rotatably fixing a chip for generating heat convection having an annular flow path for circulating a liquid;
  • a first temperature adjustment unit having a first heat source unit for heating or cooling the liquid in the annular channel;
  • a second temperature adjustment unit having a second heat source unit for heating or cooling the liquid in the annular channel;
  • a rotation drive means for rotating the entire annular flow path around the rotation axis by rotationally driving the rotation shaft, and a direction in which the liquid flows through the annular flow path (a circle presented by the annular flow path)
  • the center of gravity of the annular flow path (center of the circular flow path) on the plane is the intersection of the axis and the plane.
  • a thermal convection generating device whose rotational axis does not coincide with the rotational center, With respect to a straight line connecting the rotation center and the center of gravity (center of the annular channel), the center of gravity (center of the annular channel) is 30 ° to 150 ° or 210 ° to 330 °.
  • the at least one second heat source part is positioned and the flow passage area of the annular flow passage is heated or cooled in the range,
  • the first heat source unit is a heat convection generating device that heats or cools a channel area other than the channel area of the annular channel heated or cooled by the second heat source unit.
  • a thermal convection generation system reflecting one aspect of the present invention.
  • the thermal convection generator A chip for generating heat convection having an annular flow path for circulating a liquid,
  • the thermal convection generating chip has a liquid supply path communicating with the annular flow path, and the liquid in the liquid supply path is supplied to the annular flow path by centrifugal force applied to the thermal convection generating chip by the rotational drive.
  • a thermal convection generation system A thermal convection generation system.
  • a convection PCR method reflecting one aspect of the present invention is a convection PCR method using the thermal convection generation apparatus or the thermal convection generation system described above, A liquid introduction step for introducing a sample solution, a reaction reagent solution, and other liquids necessary for a PCR reaction into a circular channel individually or integrally into a PCR reaction solution; A PCR reaction step of performing convection PCR by refluxing the PCR reaction solution at a predetermined speed in a circular channel, This is a convection PCR method in which the temperature difference between the heat source part of the first temperature control part and the heat source part of the second temperature control part is maintained at 10 ° C. or higher during the PCR reaction.
  • thermo convection generation device and a thermal convection generation system that are more robust than conventional ones, have high reproducibility of thermal convection, and can perform thermal convection more efficiently and quickly, for example, a PCR thermal cycle. Can be offered.
  • FIG. 1 is a diagram illustrating an appearance of the thermal convection generation system according to the first embodiment.
  • 1A is an exploded perspective view of a thermal convection generating device of the thermal convection generating system of FIG.
  • FIG. 2A shows a part (back surface) of the thermal convection generating chip shown in FIG. 1, and includes the annular flow path of the thermal convection generating chip and the first and second heaters of the thermal convection generating device. It is a figure explaining the positional relationship.
  • FIG. 2B is a view of the cross section along the line AA in FIG.
  • FIG. 3 is a diagram showing an example of another thermal convection generation chip that can be substituted for the thermal convection generation chip of the first embodiment.
  • FIG. 1A is an exploded perspective view of a thermal convection generating device of the thermal convection generating system of FIG.
  • FIG. 2A shows a part (back surface) of the thermal convection generating chip shown in FIG. 1, and includes the
  • FIG. 4 is a block diagram of a control system of the thermal convection generation system according to the first embodiment.
  • FIG. 5 is a diagram illustrating a state in which fluorescence emitted from the annular flow path is detected by the thermal convection generation system according to the first embodiment.
  • FIG. 6 is a diagram illustrating a thermal convection generation chip of the thermal convection generation system according to the second embodiment.
  • FIG. 7 is an exploded perspective view of the thermal convection generating chip of FIG.
  • FIG. 8A is an enlarged view of a part of the thermal convection generating chip of FIG.
  • FIG. 8B is an enlarged view of the back surface of the thermal convection generating chip substrate (the uppermost one of the stacked plates) of FIG.
  • FIG. 9 is a partial cross-sectional view of the thermal convection generating chip taken along the line BB in FIG.
  • FIG. 10 is an enlarged perspective view of the cover portion of the thermal convection generating chip shown in FIG.
  • FIG. 11 is a view schematically showing the guide passage of the thermal convection generating chip shown in FIG.
  • FIG. 12 is a diagram illustrating a thermal convection generation chip of the thermal convection generation system according to the third embodiment.
  • 13 is an exploded perspective view of the thermal convection generating chip shown in FIG.
  • FIG. 14 is a diagram showing the structure of the liquid supply path of the thermal convection generating chip shown in FIG. 12 and the positional relationship between the first heater, the second heater, and the annular flow path.
  • FIG. 15 is a partially enlarged perspective view of the first substrate of the thermal convection generating chip shown in FIG.
  • FIG. 16 is a partially enlarged perspective view of the second substrate of the thermal convection generating chip shown in FIG.
  • FIG. 17 is a partially enlarged perspective view of the third substrate of the thermal convection generating chip shown in FIG. 18 is a cross-sectional view taken along the line CC of the thermal convection generating chip shown in FIG. 12 as viewed in the direction of the arrow.
  • FIG. 19 is an enlarged perspective view of the cover portion of the thermal convection generating chip shown in FIG. FIG.
  • FIG. 21 is a graph showing the relationship between the relative gravitational acceleration and the voltage of the motor power supply.
  • FIG. 22A is a graph showing the results of Example 1.
  • FIG. FIG. 22B is a graph showing the results of Comparative Example 1.
  • FIG. 22C is a graph showing the results of Example 2.
  • FIG. 22D is a graph showing the results of Comparative Example 2.
  • FIG. 22E is a graph showing the results of Example 3.
  • FIG. 22F is a graph showing the results of Comparative Example 3.
  • FIG. 1 shows an external appearance (front surface) of a thermal convection generation system 100 according to the first embodiment of the present invention
  • FIG. 1A shows an exploded perspective view of the thermal convection generation apparatus 1 and the like of FIG.
  • the thermal convection generation system 100 includes a thermal convection generation chip 10 having an annular flow path 14 for circulating a liquid, and a thermal convection capable of rotatably attaching and detaching the thermal convection generation chip 10. And the generation device 1 (see FIG. 1A).
  • the thermal convection generating device 1 includes a shaft 41 for rotatably fixing the thermal convection generating chip 10 and a first heater (first temperature) for heating or cooling the liquid in the annular flow path 14 of the thermal convection generating chip 10.
  • the temperature (denaturation temperature) of the second temperature adjustment unit 32 is higher than the temperature (annealing temperature) of the first temperature adjustment unit 31.
  • the liquid in the annular flow path 14 that has been heated by the second temperature adjusting unit 32 is “cooled” by the first temperature adjusting unit 31, but the temperature of the second temperature adjusting unit 32 is also the first temperature. Since the temperature of the temperature adjusting unit 31 is also higher than room temperature (room temperature), a function of “heating” is required to obtain the denaturation temperature and the annealing temperature, respectively.
  • both the first temperature adjusting unit 31 and the second temperature adjusting unit 32 can be referred to as “heating” members, that is, “heaters”. Therefore, in the present specification, “first temperature adjusting unit”. Is replaced by “first heater”, and “second temperature control unit” is replaced by “second heater”, and the detailed description of the invention and specific embodiments are described.
  • the heat convection generating chip 10, the stage 20, the first heater 31, the second heater 32, and the like can be rotated integrally with the shaft 41 protruding from the motor 40.
  • the stage 20 is in a state where a specific portion of the annular flow path 14 is in contact with the first heater (first temperature adjustment unit) 31 and the second heater (second temperature adjustment unit) 32, and the thermal convection generation chip 10. Is a member on which can be placed.
  • the central axis AX of the shaft 41 becomes the rotation axis of the rotation.
  • FIG. 2A shows the back surface of the substrate 11 of the thermal convection generating chip 10.
  • FIG. 2B shows a cross-sectional view of the thermal convection generating chip 10 along the line AA in FIG.
  • the thermal convection generating chip 10 has at least an annular channel 14 for circulating the liquid.
  • the thermal convection generating chip 10 includes a disk-shaped substrate 11 in which a groove forming a part of the annular flow path 14 is formed, and a lid body 13 bonded to the surface of the substrate 11 in which the groove is formed.
  • An annular flow path 14 is formed by joining the substrate 11 and the lid 13.
  • the substrate 11 is formed with a center hole 17 for fixing the substrate 11 to the shaft 41 and a fixing portion (screw hole) (not shown) formed for fixing the substrate 11 to the stage 20.
  • the lid 13 has a substantially same diameter as the substrate 11 and is formed in a disk shape thinner than the substrate 11. The lid 13 is detachably fixed to the substrate 11 by appropriate fixing means while being laminated (bonded) to the lower surface of the substrate 11.
  • the material of the chip 10 for generating heat convection needs to be a material that can withstand the temperature of the first heater 31 and the second heater 32.
  • a transparent material is preferable from the viewpoint of visually recognizing liquid existing in the annular flow path 14 of the thermal convection generating chip 10.
  • a material for example, cyclic olefin, polypropylene, polycarbonate, a composite of polydimethylsiloxane and glass, or acrylic is preferable.
  • cyclic olefins are most preferable, and then polypropylene or polycarbonate is preferable in terms of excellent degassing property and heat resistance, and low gas permeability, water absorption, and autofluorescence.
  • the substrate 11 and the bottom plate 12 are preferably made of synthetic resin.
  • the substrate 11 of the heat convection generating chip 10 is not limited to a disk shape, but may be other shapes such as a rectangular plate shape. From the viewpoint of easy rotation, the disk-shaped (disk-shaped) substrate 11 and the lid 13 are preferable.
  • a thin adhesive resin sheet eg, a sheet made of the above material having airtightness and liquid-tightness is sandwiched between the substrate 11 and the lid 13, and the annular flow path 14, a liquid supply described later.
  • the passage 15 and the gas discharge passage 16 may be sealed.
  • the annular flow channel 14 is for introducing a liquid such as a mixed solution (details will be described later) of the sample liquid and the reaction reagent solution to cause thermal convection in the annular flow channel 14.
  • the annular channel 14 has a predetermined positional relationship with the rotation axis AX of the shaft 41 so that the liquid in the annular channel 14 circulates in the annular channel 14 when the thermal convection generating chip 10 is driven to rotate. Is provided.
  • the distance from the rotation axis AX of the annular flow path 14 is not particularly limited, but the compactness of the thermal convection generating device 1 when considering actual work and the efficiency of thermal convection performed using the present device. It is preferable to set the distance to 1 cm or more and 10 cm or less in relation to the property.
  • the annular flow path 14 is a circular plane drawn when the thermal convection generating chip 10 is driven to rotate about the rotation axis AX (example of FIG. 2).
  • the lower surface of the substrate or the like is preferably parallel to the lower surface of the substrate.
  • the angle ⁇ ′ formed between the annular flow path 14 and the rotation axis AX is 90 °.
  • the angle ⁇ ′ is not limited to 90 °, and may be set to an arbitrary angle in the range of 80 ° to 100 ° as long as the liquid circulates in the annular flow path 14.
  • the surface roughness Ra of the wall surface of the annular flow path 14 is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less.
  • the wet residue generated when the liquid is filled in the annular flow path 14 becomes gas as it is. If bubbles are generated in the liquid in the annular flow path 14, the thermal convection of the liquid in the annular flow path 14 is hindered, so it is desirable to reduce the remaining wet as much as possible.
  • the flow of the liquid in the annular flow path 14 becomes smooth, and switching between the first temperature adjustment and the second temperature adjustment is suitably performed, and the liquid convects in the annular flow path 14. There is an advantage that it becomes easy.
  • the base material 11 and the lid body 13 (or resin sheet portion) constituting the wall surface of the annular flow path may be polished by a predetermined method.
  • a polishing method for example, a tape-shaped polishing tool (polishing tape) in which abrasive grains having a particle size of submicron to several tens of ⁇ m are uniformly applied with an adhesive on a polyester film having a thickness of about 25 to 75 ⁇ m. ).
  • a test for actually checking the presence or absence of wet residue when the surface roughness of the wall surface of the annular channel 14 is within the above range and outside the above range polyethylene glycol is applied to the surface of the annular channel 14,
  • a test is performed to check whether bubbles are generated or not. In the former case, bubbles are generated, and in the latter case, bubbles are generated. Result.
  • the shape of the annular channel is typically a direction in which the liquid flows through the annular channel 14 (a circle presented by the annular channel 14 as illustrated in the first embodiment of FIGS. 1 and 1A).
  • the annular flow path 14 is viewed in a plane (when viewed as a plane) in a direction orthogonal to the plane that coincides with the plane, it is preferably a perfect circular belt shape.
  • the shape of the annular flow path is not limited to a perfect circle, but other shapes that allow the liquid in the flow path to circulate in the above-described plan view, for example, an oval shape or an elliptical shape It may be formed in a polygonal shape (eg, triangular shape, quadrangular shape, or more polygonal shape).
  • yen exhibited by the annular flow path is, for example, presented by the edge portion of the annular flow path 14 (the apex portion of the polygon appearing in the cross-sectional shape of the annular flow path 14 (see FIG. 2B)).
  • the cross section of the circular flow path 14 is not polygonal, it indicates a portion corresponding to the edge portion (for example, when the cross section of the circular flow path 14 is circular, it indicates the top of the circle).
  • annular flow paths 14 are provided on the peripheral edge of the lower surface of the substrate 11. These annular flow paths 14 are provided around the axis of the disk-shaped substrate 11 at predetermined equal angular intervals, and are arranged symmetrically with respect to the axis AX.
  • the axis of the substrate 11 coincides with the rotational axis AX of the shaft 41 in a state where the thermal convection generating device 1 is assembled and the thermal convection generating chip 10 is attached.
  • it is preferable to provide the annular flow path 14 at equiangular intervals it does not need to be provided at equiangular intervals.
  • the number, processing method, dimensions of each part, etc. of the annular channel 14 are not particularly limited.
  • the outer diameter (D) is 30 to 70 mm
  • the depth (S) of the annular channel is 300 to 500 ⁇ m
  • the width of the annular channel is shown in which (W) is set in the range of 400 to 600 ⁇ m (see FIG. 2B).
  • FIG. 1 As a typical example, as in the first embodiment (FIG. 1), four channels having the same shape and size are formed on a substrate having a diameter (D) of 40 mm by microfabrication technology.
  • D An example in which a 5 mm perfect circular groove (depth: 300 ⁇ m, width: 500 ⁇ m) is formed.
  • the thermal convection generating chip may optionally be provided with a liquid supply path communicating with the annular flow path for supplying liquid to the annular flow path.
  • a liquid supply path communicating with the annular flow path for supplying liquid to the annular flow path.
  • the direction perpendicular to the direction in which the liquid flows through the annular channel (a plane that coincides with the circle presented by the annular channel 14).
  • a liquid supply path 15 is provided so as to communicate with each other.
  • the “flow channel area” means an area of the annular flow channel 14 when the annular flow channel 14 is viewed in plan view.
  • the liquid supply path 15 includes, in order from the upper side of FIG. 2A, an elongated extending portion 15a that communicates with a liquid supply hole 15d formed in the substrate 11, and a teardrop-shaped liquid reservoir that communicates with one end thereof. 15b, and a communication portion 15c having a narrow width for connecting the tip portion thereof and the annular flow path 14 in communication.
  • the capacity of the liquid reservoir 15b is set larger than the capacity of the annular channel 14.
  • the liquid supply path 15 is configured so that the liquid in the liquid supply path 15 is supplied to the annular flow path 14 by centrifugal force applied to the thermal convection generation chip when the thermal convection generation chip 10 is rotationally driven. Yes.
  • the liquid is introduced and stored in the liquid reservoir 15b via the extending portion 15a of the liquid supply path 15 by a micropipette or the like.
  • the chip 10 is driven to rotate about the rotation axis AX
  • the liquid in the liquid supply path 14 extension part 15a, liquid reservoir part 15b
  • the liquid in the liquid supply path 14 is caused to flow through the communication part 15c by the centrifugal force applied to the thermal convection generation chip 10 through the communication part 15c. 14 (see FIG. 2A).
  • the heat convection generating chip may optionally be provided with a gas discharge path communicating with the annular flow path for extracting gas contained in the liquid in the annular flow path.
  • the gas discharge path 16 communicates with the hole 16d and the hole 16d for discharging the gas from the annular flow path 14 to the outside in order from the upper side of FIG.
  • the elongated elongated portion 16a extending along the radial line Z of the disk-shaped substrate 11, the teardrop-shaped gas reservoir portion 16b connected to one end thereof, and the tip portion thereof and the annular channel 14 are connected to each other. Narrow communication portion 16c (see FIG. 2A).
  • the gas discharge path 16 By providing the gas discharge path 16, the gas generated when the liquid in the annular flow path 14 is in thermal convection and the gas (such as bubbles) generated when the liquid is injected into the liquid flow path 15 are caused by centrifugal force to the gas discharge path 16. Since the gas can be removed from the liquid by being discharged through the extending portion 16a and the hole 16d, thermal convection of the liquid can be performed smoothly.
  • stage 20 The stage 20 supports the heat source 30 (the first heater 31 and the second heater 32) and transmits the rotational force of the motor 40 to the thermal convection generating chip 10 disposed on the stage 20.
  • a synthetic resin such as cycloolefin polymer or polycarbonate, or a metal can be used.
  • the stage 20 is preferably formed in a disk shape as illustrated in the first embodiment of FIG. 2 in consideration of ease of rotation, but is not particularly limited as long as it is rotatable.
  • the stage 20 used in the first embodiment positions the thermal convection generating chip 10 concentrically with respect to the stage 20 and relatively rotates the stage 20 and the thermal convection generating chip 10 relative to each other. It is impossible to connect by connecting means.
  • the structure of the connecting means is not particularly limited. For example, a concave portion or a convex portion is formed at the position of the lower surface of the thermal convection generating chip that is eccentric with respect to the central axis of the thermal convection generating chip 10, and is formed on the central axis of the stage.
  • a structure may be employed in which a convex portion or a concave portion is formed at a position on the upper surface of the stage that is eccentric, and the concave portion or convex portion of the stage and the convex portion or concave portion of the thermal convection generating chip are fitted.
  • the central axis of the thermal convection generating chip 10 coincides with the axis AX in a state where the thermal convection generating device is assembled with an axis passing through the center of the central hole 17.
  • the stage 20 is provided with a heater mounting hole 21 for inserting and mounting the first heater 31 and the second heater 32.
  • a plurality of heater mounting holes 21 may be provided according to the number of sets of the first heater 31 and the second heater 32, and it is preferable that the heater mounting holes 21 are arranged at equiangular intervals around the axis AX.
  • four arc-shaped heater mounting holes 21 are provided around the axis AX of the shaft 41 at an angular interval of 90 °, and are arranged on the target with respect to the axis AX.
  • the heat source 30 includes a ring-shaped second heater 32 and another ring-shaped second concentrically arranged inside the second heater 32, as shown in FIG. 1A. 1 heater 31.
  • the first heater 31 and the second heater 32 are individually temperature controlled and maintained.
  • the first heater heats or cools the liquid in a predetermined flow path area of the annular flow path.
  • heating means that the temperature of the liquid in the annular flow path 14 located above is raised by the heat source portion 31b of the first heater 31.
  • Cooling here means It means that the temperature of the liquid in the annular flow path 14 located above the heat source part 31b of the first heater 31 is lowered.
  • the first heater 31 has a ring-shaped connecting portion 31a and a transverse cross section provided at equal intervals in the circumferential direction. It has a U-shaped columnar heat source 31b.
  • the connecting portion 31a of the first heater 31 is provided with a pair of screw holes 31c, 31c, which are through holes, at an angular interval of 180 ° around the axis AX.
  • a pair of screw holes 31c, 31c is joined with shaft portions of screws passing through the second screw insertion holes 22, 22 of the stage 20, so that the first heater 31 is fixed and supported on the stage 20 by the engagement. It is configured.
  • the first heater 31 When the first heater 31 is fixed and supported on the stage 20, the upper end portions of the heat source portions 31 b of the first heater 31 protrude from the upper surface of the stage 20, and the annular flow path 14 is viewed in plan (described later). It contacts the position of the lower surface of the chip 10 for generating heat convection that overlaps a part of the annular channel 14 (see FIG. 1). In the state of contact, the first heater 31 is supplied with power and generates heat or cold, so that the upper end portion of the heat source of the first heater 31 is in contact with the flow path area portion of the annular flow path 14. The liquid is adjusted to a predetermined temperature. Fixing / supporting is not limited to the above-described mode, and other fixing / supporting modes may be used.
  • the second heater heats or cools the liquid in a predetermined flow path area of the annular flow path.
  • heating means that the temperature of the liquid in the annular flow path 14 located above is raised by the heat source portion 32b of the second heater 32
  • cooling here means It means that the temperature of the liquid in the annular flow path 14 located above the heat source portion 32b of the first heater 32 is lowered.
  • the second heater 32 is provided with a ring-shaped connecting portion 32a at equal intervals in the circumferential direction (four ) L-shaped columnar heat source 32b.
  • a pair of screw holes 32c and 32c are provided in the connecting portion 32a of the second heater 32 at an angular interval of 190 ° around the axis AX.
  • the pair of screw holes 32c, 32c are configured so that shaft portions of screws that penetrate the first screw insertion holes 23 of the stage 20 are combined, and the second heater 32 is fixed and supported by the stage 20 by the combination. Has been.
  • the annular flow path 14 is viewed in plan (described later). It contacts the position of the lower surface of the thermal convection generating chip that overlaps a part of the annular channel 14 (see FIG. 1).
  • the liquid in the part is adjusted to a predetermined temperature.
  • the first heater 31 and the second heater 32 are orthogonal to the direction in which the liquid flows through the annular flow path 14 (a plane coinciding with the circle presented by the annular flow path 14).
  • the annular channel 14 is viewed in plan in a direction, the center of rotation (center of the annular channel) Q of the annular channel 14 on the plane and the center of rotation of the rotating shaft that is the intersection of the axis AX and the plane And a straight line connecting the rotation center AX and the center of gravity (center of the annular flow path) Q (FIG. 2 (A), one-dot chain line Z (partially not shown) in FIG. 3).
  • at least one second heat source part 32b is located and the flow of the annular flow path 14 is within the range.
  • the area is heated or cooled, and the first heat source unit 31b heats or cools the flow channel area other than the flow channel area of the annular flow channel 14 heated or cooled by the second heat source unit 32b (FIG. 2A) or Refer to FIG. 3, hereinafter referred to as “heater installation conditions”).
  • the heat source portions of the heaters are formed and arranged so that the clearance CL, which is the gap between the first heater 31 and the second heater 32, surrounds the heat source portion 32b of the second heater 32 (the first heater and the second heater).
  • the clearance CL which is the gap between the first heater 31 and the second heater 32, surrounds the heat source portion 32b of the second heater 32 (the first heater and the second heater).
  • the first heater has a U-shape or a C-shape in a plan view and surrounds the second heater with a clearance CL.
  • the ratio of the first heater The area of the channel area that overlaps the upper surface of the heat source portion 31b of the first heater 31 when the annular channel 14 is viewed in plan as described above (when viewed in plan as shown in FIG. 2A or FIG. 3).
  • the ratio of the total flow area to the entire flow path area is not particularly limited as long as the above-mentioned conditions (heater installation conditions) are satisfied.
  • PCR reaction conditions especially annealing time, annealing temperature, and liquid flow rate in the circular flow path) ) Can be changed as appropriate. Details will be described in “Area ratio between first heater and second heater” described later.
  • the area of the first heater 31 that matches the flow area of the annular flow path 14 is set to 70 with respect to the entire flow path area. An example of setting to about 75% is given.
  • the area of the flow path area that overlaps the upper surface of the heat source portion 32b of the second heater 32 is the flow path area.
  • the proportion of the total area is not particularly limited as long as the above conditions (heater installation conditions) are satisfied.
  • PCR reaction conditions particularly, denaturation time, denaturation temperature in PCR, and flow rate of liquid in the circular channel) ) Can be changed as appropriate. Details will be described in “Area ratio between first heater and second heater” described later.
  • the area of the second heater 32 that matches the flow area of the annular flow path 14 is set to the area of the entire flow path area. An example of about 15 to 20% is given.
  • the ratio of the area where the heat source part of the second heater 32 overlaps with the channel area of the annular channel 14 to the area where the first heater 31 overlaps with the channel area of the annular channel is 1:11 to 1: 2. It is preferable. It is preferable that the first heater 31 and the second heater 32 are provided so that the clearance CL has an area ratio of the above ratio in the flow path area excluding the flow path area overlapping the annular flow path 14 in plan view.
  • the clearance CL is such that when the annular flow path 14 of the thermal convection generating system 100 is viewed in plan view, the area of the flow path area of the annular flow path 14 that overlaps the clearance CL is 0.1 to It is preferable to set so as to occupy a range of 15%.
  • the liquid that passes through the flow passage area of the annular flow passage 14 that overlaps the gap between the first heater 31 and the second heater 32 is air-cooled because air is present instead of the heat source 30 and the like below. It becomes.
  • the cooling of the liquid by this air cooling is considered to have higher cooling efficiency at first glance than cooling by a heat medium (such as the first heater) that is higher than the air and lower than the liquid. Since the rate is low, cooling with the above-described heat medium that is actually formed of a material having a higher thermal conductivity than air can provide higher cooling efficiency.
  • the ratio of the area of the annular flow path area 14 that overlaps the clearance CL to the total area of the flow path area is the first heater. 31 is sufficient to prevent or suppress mutual heat conduction through the air between the first heater 32 and the second heater 32 (air in the clearance portion), and cooling efficiency is reduced due to air cooling in the clearance CL portion.
  • it may be set within an allowable range, so it is preferable to set the ratio as small as possible within the range of 0.1 to 15%.
  • the clearance CL shown in FIGS. 2A and 3 is set to about 10 to 15% with respect to the entire flow path area.
  • the annealing temperature is a temperature determined based on the denaturation temperature (Tm value) of the primer, and generally (Tm value ⁇ 5 ° C.) is appropriate.
  • Tm value can be calculated from, for example, the following formula (1) based on the designed base sequence of the primer for PCR.
  • Tm value (° C) 2 (nA + nT) +4 (nC + nG) + 35-2 (nA + nT + nC + nG) (1)
  • nA, nT, nC and nG represent the number of bases of adenine, thymine, cytosine and guanine contained in the primer, respectively.
  • the Tm values of the forward and reverse primers are designed to be as close as possible, but if they are separated, the annealing temperature may be set based on the lower Tm value. In the case of RT-PCR, the Tm value is set to, for example, 50 ° C. or higher so as not to be lower than the reverse transcription reaction temperature.
  • the temperature of the first heater 31 is set to a temperature of 55 ° C. to 65 ° C. that is often used as the annealing temperature.
  • the temperature of the second heater 32 of the thermal convection generation system 100 is a temperature necessary for applying heat to the double-stranded nucleic acid portion to form a single-stranded nucleic acid. Generally, it is set to about 95 ° C. The second heater 32 is maintained at the above temperature at least during the convection PCR.
  • the condition (1) is for efficiently promoting thermal convection.
  • Temperature of the second heater ⁇ temperature of the first heater ⁇ 10 ° C.
  • the temperature of the second heater the temperature of the clearance portion) ⁇ 10 ° C.
  • the rotation driving means is means for rotating the rotating shaft and rotating the heat convection generating chip fixed to the rotating shaft in a predetermined manner.
  • the motor 40 or the like that has the shaft 41 as the rotation shaft and whose operation is controlled by the control means and rotates the rotation shaft in a desired manner corresponds to the rotation drive means. Any means can be used as long as it is not limited to a motor and can be driven in a desired manner.
  • heatsink As shown in FIG. 1A, a heat sink 60 that radiates heat generated in the first heater 31 and cools the first heater 31 may be provided.
  • the heat sink 60 can remove excess heat at a low manufacturing cost, and can improve the accuracy of thermal convection PCR.
  • the control means 50 of the thermal convection generation system 100 includes an arithmetic control unit 51, a display unit 52, and an input unit 53, and includes a first heater 31, a second heater 32, a motor 40, depending on circumstances.
  • the excitation light source 91, the fluorescence detector 92, the detection light source 93, the detection light detector 94) and the like are electrically connected to each other.
  • the arithmetic control unit 51 is configured by a microcomputer including a CPU, a ROM, a RAM, and the like. The CPU supplies power to the first heater 31, the second heater 32, and the motor 40 according to information input from the input unit and a program stored in the ROM, and controls its operation.
  • the program includes an operation program for PCR.
  • the display unit 52 includes a liquid crystal display device
  • the input unit 53 includes input devices such as a keyboard and a mouse.
  • the temperature of the first heater 31 and the second heater 32 and the rotational driving speed of the heat convection generating chip 10 by the motor 40 can be adjusted via the input unit 53 of the control means 50.
  • the thermal convection generation system 100 optionally includes an optical detection system 90 that receives and quantifies fluorescence emitted from the annular channel 14.
  • the optical detection system 90 includes an excitation light source 91, a fluorescence detector 92, a detection light source 93, and a detection light detector 94.
  • the optical detection system 90 is controlled by the control unit 50 to perform various operations, and transmits various data to the arithmetic control unit of the control unit 50.
  • a detected part P ⁇ b> 1 that reflects or scatters the detection light emitted from the detection light source 93 is provided.
  • the excitation light source 91 is a light source that emits light that excites the fluorescent dye contained in the liquid in the annular flow path 14 of the thermal convection generating chip 10, and is provided with an LED and a fluorescent filter that extracts only light of a desired wavelength.
  • a white light source or the like is used as an excitation light source.
  • the fluorescence detector 92 detects fluorescence L1 ′ emitted from the annular flow path, and includes, for example, a photomultiplier detector, a condensing lens, a fluorescence filter, and the like.
  • the detection light source 93 irradiates the detection light L2 toward the detection unit P1 on the thermal convection generation chip 10, and for example, a light source (LED or the like) that emits laser light is used as the detection light source.
  • the detection part P1 is a fixed point set on a rotation locus formed by the detected part as the thermal convection generation chip 10 rotates.
  • the detection light detector 93 includes, for example, a photomultiplier detector, a condensing lens, a band pass filter, and the like, and detects the detection light L2 ′ reflected or scattered.
  • the convection PCR method according to the present invention includes a liquid introduction step, a PCR reaction step, and a detection step in this order.
  • the “PCR” includes various PCRs such as reverse transcription PCR (RT-PCR) and real-time PCR which is quantitative PCR.
  • PCR reaction solution The PCR reaction solution used in the present invention is composed of a sample solution and a reaction reagent solution. Note that it is not necessary to mix the sample solution and the reaction reagent solution at the time before performing PCR.
  • the sample liquid means a liquid containing a nucleic acid to be amplified by PCR.
  • the sample liquid includes a solution containing the target DNA, RNA, pseudo nucleic acid, and the like, and a liquid containing the sample.
  • influenza virus, norovirus, other infectious disease viruses in general extracts of expressed RNA from cells, and the like are used as sample liquids.
  • influenza virus, norovirus, and other infectious disease viruses in general cells suspended in an appropriate solution such as buffer or water It can be used as a sample liquid.
  • reaction reagent solution means a solution containing a reagent and an enzyme necessary for amplifying the nucleic acid to be amplified contained in the sample solution by the PCR method.
  • the reaction reagent solution means a solution containing dNTP, MgCl 2 , various polymerases and the like.
  • the sample solution is a suspension of RNA virus and reverse transcription PCR is performed in one step including elution of RNA to be amplified from the sample
  • a reaction reagent solution for example, the product name “SuperScriptIII OneStep RT-PCR System "(Product No. 12574-018, Life Technology Co., Ltd.) can be used.
  • SuperScript is a registered trademark of Life Technology Corporation.
  • the product name “GeneAmp Ez rTth RNA PCR Kit” product number N8080179, manufactured by Applied Biosystems
  • the product name “PrimeScriptII High Fidelity One Step RT-PCR kit” product code R026A or R026B, Takara Bio Inc.
  • the liquid introduction process is a process for introducing the sample liquid, the reaction reagent solution, and other liquids necessary for the PCR reaction, which are included in the PCR reaction solution, individually or integrally into the annular flow path.
  • the reaction reagent solution is injected into the liquid supply hole 15d formed on the surface of the substrate 11 of the thermal convection generation chip 10 on the side opposite to the lid 13. .
  • the injected reagent solution passes through the extended portion 15a of the liquid supply path 15 and flows into the liquid reservoir 15b by capillary action.
  • the sample liquid is injected into the liquid supply hole 15d.
  • the injected specimen liquid passes through the extension part 15a of the liquid supply path 15 and flows into the liquid reservoir part 15b by capillary action.
  • reaction reagent solution and the sample liquid that have flowed into the liquid reservoir 15b stay in the liquid reservoir 15b while being mixed in a stopped state in which the thermal convection generating chip 10 is not rotated.
  • an oil is optionally introduced as described above to prevent evaporation of the reaction reagent solution. Note that the reaction reagent solution, the sample liquid, the oil, and the like may be pushed into the liquid reservoir 15b using a pipetter or the like regardless of the capillary phenomenon.
  • the PCR reaction step is a step for performing convection PCR by refluxing the PCR reaction solution at a predetermined rate in the circular flow path. Prior to the liquid introduction step, it is desirable to set the second heater 32 to the above-described predetermined PCR denaturation temperature and set the first heater 31 to the predetermined PCR annealing temperature.
  • the centrifugal force due to the rotation and the temperature difference between the second heater and the first heater The PCR reaction solution circulates in the circular channel 14 due to the thermal convection caused by.
  • the double-stranded nucleic acid in the PCR reaction solution passes through the flow path area above the second heater 32, it exchanges heat with the heat source portion 32b of the second heater 32 to a high temperature (eg, 90 to 98 ° C.). It is denatured by heating to form a single-stranded nucleic acid.
  • the gas moves by the centrifugal force described above and flows into the gas discharge path 16, so that the gas in the PCR reaction solution is removed. Can be removed. As a result, the PCR reaction solution can be smoothly convected.
  • the reaction reagent solution and the sample solution are mixed in advance to produce a mixed solution.
  • the mixed solution is injected into the liquid supply path 15 of the thermal convection generating chip 10, and the thermal convection generating chip 10 is rotated to allow the mixed solution to enter the annular flow path 14. Thereafter, the rotation of the thermal convection generating chip 10 is stopped, the first heater 31 and the second heater 32 are set to the same temperature (for example, 40 to 60 ° C.), and the mixed solution in the annular flow path 14 is kept for a certain time ( For example, the reverse transcription reaction is performed by heating for 60 seconds.
  • reaction reagent solution is filled in the annular flow path 14 of the thermal convection generation chip 10, and then the sample liquid is injected into the liquid supply path 15, and the thermal convection generation chip 10 is rotated.
  • the specimen liquid in the liquid supply path 15 is caused to enter the annular flow path 14.
  • the temperature of the first heater 31 and the temperature of the second heater 32 are made different from each other, and the liquid in the annular flow path 14 is convectively mixed to mix the reaction reagent solution and the sample liquid, thereby generating a mixed solution.
  • the rotation of the thermal convection generating chip 10 is stopped, the first heater 31 and the second heater 32 are set to the same temperature (for example, 40 to 60 ° C.), and the mixed solution in the annular flow path 14 is kept for a certain time (for example, the reverse transcription reaction is performed by heating for 60 seconds.
  • a template DNA (cDNA) is synthesized from RNA by reverse transcription reaction by any of the methods (a) and (b) described above. Then, the first heater 31 and the second heater 32 are set to temperatures suitable for PCR (for example, the temperature of the first heater 31 is set to 60 ° C. and the temperature of the second heater 32 is set to 95 ° C.), and the thermal convection PCR reaction is performed. Cause it to occur.
  • the rotational speed of the thermal convection generating chip 10 is such that the time required for the double-stranded DNA (nucleic acid molecule) contained in the PCR reaction solution in the circular channel 14 to denature and become single-stranded DNA is increased. 2 It is set so as to pass through the flow channel area above the first heater 31 and to pass through the flow channel area above the first heater 31 over a time required for primer annealing and nucleic acid molecule extension.
  • the time for the PCR reaction solution in the annular channel 14 to pass through the channel area above the second heater 32 is generally 5 to 60 seconds, preferably 10 to 20 Second
  • time to pass through the flow path area above the first heater 31 annealing time + extension time (B) is generally (5-30) seconds + (number of nucleic acid bases ⁇ 60 bases) seconds
  • Time passing through the clearance portion It is preferable that the air cooling time (C) satisfies the relational expression of 0.001 ⁇ (C) / (A) + (B) + (C) ⁇ 0.15.
  • the rotational speed of the thermal convection generating chip 10 is preferably set so that the PCR reaction solution passes through each flow channel area during the time (A) to (C).
  • the heat source portions 31b and 32b of the first heater and the second heater 32 described above adjust the area of the flow path area where the annular flow path 14 overlaps.
  • the extension speed (60 b / sec) used in the above calculation formula of annealing time + extension time (B) is 60 b / sec to 500 b / sec. You may change in the range of second. Note that “b” in the unit “b / sec” is an abbreviation for a base such as DNA.
  • FIG. 21 is a graph showing the relationship between the relative gravitational acceleration and the voltage of the power source of the motor 40.
  • the drive time of the motor 40 for rotating the heat convection generating chip 10 is set so that the heating by the second heater 32 and the cooling by the first heater 31 are the same as the number of PCR thermal cycles.
  • the detection step is a step of detecting and quantifying a substance contained in the liquid in the annular channel.
  • a fluorescent substance is intercalated in a double-stranded nucleic acid molecule that proliferates
  • the nucleic acid in the PCR reaction solution can be detected and quantified by detecting this fluorescence.
  • the chimera probe is cleaved by RNase H at the time of nucleic acid extension by a polymerase. Since the substance that emits fluorescence increases, the fluorescence can be detected and quantified.
  • the excitation light source 91 irradiates light (excitation light) L ⁇ b> 1 that excites the fluorescence toward the annular flow path 14 of the rotating thermal convection generating chip 10.
  • the excitation light L1 is applied to the fluorescent substance in the annular channel 14, and when the fluorescent substance is excited, fluorescence L1 ′ having a predetermined wavelength is emitted.
  • the fluorescence L1 ′ is detected and quantified by the fluorescence detector 92.
  • the detection light L2 is emitted from the detection light source 93 to the detected portion 95, and the detection light detector 93 detects the light L2 ′ reflected and scattered by the detected portion P1, thereby generating heat convection.
  • the position of the annular flow path 14 during rotation of the chip 10 is detected.
  • thermal convection generating device 1 functions and effects of the thermal convection generating device 1 and the thermal convection generating system 100 according to the first embodiment of the present invention will be described.
  • the thermal convection generating apparatus 100 of the first embodiment is It has the shaft 41 which can fix rotatably the chip
  • the first heater 31, the second heater 32 having the second heat source part 32 b that heats or cools the liquid in the annular flow path 14, and the shaft 41 is rotated to drive the entire annular flow path 14 along the axis of the shaft 41.
  • a motor 40 (rotation drive means) that rotates around the axis AX, and the annular channel 14 is seen in a plan view in a direction orthogonal to the direction in which the liquid flows through the annular channel 14 (circle exhibited by the annular channel).
  • the center of gravity (center of the annular channel 14) Q is 30 °. As shown in FIG. 2 (A) or FIG.
  • At least one second heat source part 32b is located in only one of the ranges of ⁇ 150 ° or less or 210 ° or more and ⁇ 330 ° or less. Then, the flow passage area of the annular flow passage is heated or cooled within the range, and the first heat source portion 31b is a flow other than the flow passage area of the annular flow passage 14 heated or cooled by the second heat source portion 32b. Since this is a thermal convection generating device that heats or cools the road area (the channel area excluding the area where the clearance CL and the annular channel 14 overlap in plan view), the thermal convection generating chip 10 is rotated to rotate the annular channel.
  • the liquid When the liquid is circulated, the liquid has two temperature regions in the annular channel 14 (the channel area of the annular channel 14 above the first heater 31 and the channel of the annular channel 14 above the second heater 32). Stable thermal convection generation that is repeated many times can be obtained with almost no time other than the area (see FIG. 2A or FIG. 3). Further, the same heat convection can be stably obtained even if the temperature of the environment in which the heat convection generating device is operated changes.
  • the clearance CL means a minimum clearance that does not cause heat conduction between the first heat source unit 31b and the second heat source unit 32b or does not adversely affect the PCR reaction even if heat conduction is performed. .
  • the first heat source unit 31b can be separated from the first heat source unit 31b by another temperature control unit or the like. Since the second heat source unit 32b only needs to be maintained at a predetermined temperature (even forcibly), in this case, the flow path area heated or cooled by the first heat source unit 31b is different from the above. In addition, the entire flow path area other than the flow path area of the annular flow path 14 heated or cooled by the second heat source unit 32b is provided.
  • the liquid is air-cooled by not providing a gap exceeding the minimum clearance CL.
  • the flow channel area can be reduced as much as possible. As a result, the efficiency of temperature adjustment of the liquid circulating in the annular flow channel can be increased, and rapid temperature control is realized.
  • the temperature adjustment of the liquid in the annular channel is not based on air cooling, the temperature adjustment of the liquid is not easily influenced by the outside air temperature as in the case of air cooling, and is excellent in robustness and reproducibility of heat convection.
  • the first heater 31 and the second heater 32 are installed on the left and right of the line Z, and the second heater 32 is higher in temperature than the first heater 31.
  • a temperature difference occurs in the liquid in the annular channel on the left and right of the line Z, and the density is also different. That is, the density of the liquid that passes through the flow path area above the first heater 31 is higher than that of the liquid that passes through the flow path area above the second heater 32, and the way the liquid is subjected to centrifugal force differs from left to right.
  • a force that promotes the circulation of the liquid in the annular flow path is applied. Even when the temperature settings of the first heater 31 and the second heater 32 are reversed, it is possible to promote the circulation of the liquid through the annular flow path 14 for the same reason.
  • the liquid is above the clearance CL.
  • the time for passing through the flow channel area in the annular flow channel is within a range that does not adversely affect the temperature control of the liquid, and the temperature of the liquid can be suitably adjusted.
  • the heat source portion 31b of the first heater 31 and the heat source portion 32b of the second heater 32 have a flat plate portion that is flush with the second heat source portion 32. Since the heat source portions 31b and 32b are formed and arranged so as to surround, the heat convection generating chip 10 that does not overlap the annular flow path 14 when viewed in plan (see FIG. 2A or FIG. 3). The first heater 31 and the second heater 32 are also in contact with the portion. As a result, the periphery and the inner side (the inner side of the ring) of the annular channel 14 are not air-cooled, and the liquid temperature can be adjusted more suitably.
  • each heat source part should just be formed and arrange
  • the channel area of the annular channel 14 in contact with the second heat source unit 32b of the second heater 32 is in contact with the first heat source unit 31b of the first heater 31. Since the area is smaller than the flow path area, the liquid heated by the second heater 32 can be efficiently cooled, adjusted to a predetermined temperature, and stably maintained at the temperature.
  • the PCR reaction solution that has reached the denaturation temperature by the second heater 32 is efficiently cooled from the denaturation temperature to the predetermined annealing extension temperature by the first heater 31. It will be stably maintained at the temperature, and the PCR reaction (annealing extension) will be stable.
  • the thermal convection generating chip 10 is a liquid that communicates with the annular flow path 14. If the thermal convection generating system has a liquid supply path 15 and the liquid in the liquid supply path 15 is supplied to the annular flow path 14 by the centrifugal force applied to the thermal convection generation chip 10 by the rotation driving, It is possible to immediately perform another PCR reaction by exchanging only the convection generating chip 10. Further, when performing the PCR reaction, the PCR reaction solution as a liquid is supplied into the annular flow path 14 simultaneously with the addition of the centrifugal force to start the reaction. Therefore, the PCR reaction start time and the heat convection start time are determined. Can be matched.
  • a gas discharge passage 16 is formed on the rotation axis (axis AX) side as viewed from the flow passage area of the annular flow passage 14 above the second heater 32 and in communication with the annular flow passage 14 in the vicinity of the flow passage area.
  • the material of the wall surface of the annular channel is any one of cyclic olefin, polypropylene, and polycarbonate, since it is a resin, it is easy to adjust the surface roughness of the wall surface of the annular channel. It is easy to ensure the transparency of the thermal convection generating chip 10 necessary for optically detecting the fluorescent substance in the annular channel.
  • the thermal convection generation system 100 applies an excitation light source that irradiates the liquid in the annular flow path 14A with excitation light that excites the fluorescent dye contained in the liquid in the annular flow path 14A, and the fluorescent dye.
  • a fluorescence detector that detects fluorescence emitted by the fluorescent dye by irradiating the excitation light, and an arithmetic control unit that calculates a replication amount of the nucleic acid based on the fluorescence detected by the fluorescence detector. It is a waste.
  • the temperature can be efficiently controlled as described in (1) above. Therefore, the PCR reaction solution has an unintended temperature in the PCR reaction (specifically, The range of 70 ° C. to 90 ° C.) is shortened, and unnecessary deactivation of an enzyme for PCR reaction such as Taq polymerase in a time zone that does not contribute to the PCR reaction can be reduced by shortening the time.
  • an enzyme for PCR reaction such as Taq polymerase in a time zone that does not contribute to the PCR reaction can be reduced by shortening the time.
  • the nucleic acid to be originally amplified is amplified with good reproducibility, the reproducibility of PCR itself is improved, and the fluorescence from the fluorescent substance labeled on the product (nucleic acid) of such a PCR reaction is detected. Accuracy in PCR and the like is increased.
  • the second heat source of the second heater 32 is used during the PCR reaction.
  • the thermal convection generation system 200 of the second embodiment includes at least a thermal convection generation chip (see FIGS. 6 and 7) 10A and the thermal convection generation device 1 of the first embodiment.
  • the thermal convection generating device 1 includes the shaft 41, the first heater 31, the second heater 32, the motor 40, and the like. Note that the configuration of the thermal convection generating device 1 itself is the same as that of the first embodiment, and thus the description thereof is omitted.
  • the thermal convection generating chip has a substrate 11A and a lid 13A laminated on the substrate 11A, and has a center hole 17 at the center of each member.
  • FIG. 8A shows the front surface of the substrate 11A
  • FIG. 8B shows the back surface of the substrate 11A.
  • the substrate 11A includes an annular flow path 14A and first to third liquid supply paths 15A, 15B, and 15C.
  • the plurality of liquid supply paths can be provided so as to store different liquids and supply them to the annular flow path 14A as described below.
  • the material of each member such as the substrate 11A is as described in the first embodiment.
  • the first liquid supply path 15A includes a first receiving portion 16A and a first suction path 17A.
  • the second liquid supply path 15B includes a second receiving portion 16B and a second suction path 17B.
  • the third liquid supply path 15C includes a third receiving portion 16C and a third suction path 17C. These first to third receiving portions 16A to 16C are for receiving a liquid.
  • the first to third suction passages 17A to 17C respectively connect the first to third receiving portions 16A to 16C and the annular flow path 14, and the liquids of the first to third receiving portions 16A to 16C are respectively capillary tubes. Suction by phenomenon.
  • Each suction passage has a first region T and a second region S.
  • the first region T is located between the intermediate portion of each of the suction passages 17A to 17C and the annular flow path 14A.
  • the second region S is located between the intermediate portions of the suction passages 17A to 17C and the receiving portions 16A to 16C.
  • the annular channel 14A is used for heat convection of a mixed solution (details will be described later) of the sample solution and the reaction reagent solution.
  • the annular channel 14A is an annular belt-like channel in plan view (see FIGS. 8A and 8B).
  • the annular channel 14A is configured by a groove (see FIG. 8B) formed on the lower surface of the substrate 11A and a part of the upper surface of the lid 13A (see FIG. 7).
  • the dimensions of each part of the annular flow path 14A are not particularly limited.
  • the outer diameter of the annular flow path 14A is 60 mm
  • the depth is 400 ⁇ m
  • the width is 500 ⁇ m, but the dimensions are set as described in the first embodiment. can do.
  • a plurality of annular flow paths 14A are provided at predetermined angular intervals around the central axis of the substrate 11A (see FIGS. 6 and 8).
  • the central axis coincides with the axis AX of the shaft 41 in a state where the thermal convection generating chip 10A is mounted on the thermal convection generating device 1.
  • the first receiving portion 16A is configured by a hole.
  • the first suction passage 17A is bent at an acute angle at an intermediate portion thereof, the first region T extends in the radial direction of the substrate 11A, and the second region S has an angle ⁇ between the first region T and the first region T. "Is extended in a direction that forms an acute angle (see FIG. 8B).
  • a groove that constitutes a part of the first suction passage 17A is formed in the first region T and the second region S.
  • the second to third receiving portions 16B and 16C are configured in the same manner as the first receiving portion 16A.
  • the third suction passages 17B and 17C are configured in the same manner as the first suction passage 17A.
  • the angle ⁇ ′′ is, for example, not less than 5 ° and not more than 85 °.
  • the suction passages 17A to 17C further have air holes 18A to 18C.
  • This air hole introduces air into the intermediate portion of each of the suction passages 17A to 17C.
  • the air holes 18A to 18C are constituted by holes, and each first region T and second region S are communicated with the space on the upper surface side of the substrate 11A.
  • the air holes 18A to 18C promote separation of the liquid in each first region T and the liquid in the second region S.
  • each of the two liquids is sucked in the direction of the gap. It becomes difficult for the liquid in T and the liquid in 2nd area
  • the air holes 18A to 18C air is introduced into the gap, so that the liquid in the first region T and the liquid in the second region S are smoothly separated. If the liquid in the first region T and the liquid in the second region S can be smoothly separated without introducing air into the intermediate portions of the suction passages 17A to 17C, the air holes 18A to 18C are provided. It can be omitted.
  • the thermal convection generating chip 10A further includes an introduction chamber 19 and an introduction passage 19a.
  • the introduction chamber 19 and the introduction passage 19a are provided between the first region T and the annular flow path 14A.
  • the liquid discharged from the first region T of each of the supply paths 15A to 15C flows into the introduction chamber 19. Details of the introduction chamber 19 will be described later with reference to FIG.
  • the liquid in the introduction chamber 19 flows into the annular channel 14A through the introduction passage 19a.
  • the introduction passage 19 is constituted by a groove formed on the lower surface of the substrate 11A and the upper surface of the lid 13A (see FIGS. 8B and 6).
  • the first liquid supply path 15A supplies the sample liquid to the annular flow path 14.
  • the sample liquid the same one as in the first embodiment can be used.
  • the dimensions (depth, width, length) of the first region T of the first liquid supply path 15A are, for example, as shown in Table 1 below.
  • the dimensions (depth, width, length) of the second region S of the first liquid supply path 15A are, for example, as shown in Table 1 below.
  • the amount of the sample liquid filled in the first region T of the first liquid supply path 15A is equal to the amount of the sample liquid to be supplied to the annular flow path 14A. Further, the volume of the first receiving portion 16A of the first liquid supply path is larger than the volume of the first suction passage 17A.
  • the second liquid supply path 15B supplies a reaction reagent solution for performing PCR to the annular flow path 14A.
  • the reaction reagent solution the same reaction reagent solution as that of the first embodiment can be used.
  • the dimensions (depth, width, length) of the first region T of the second liquid supply path 15B are, for example, as shown in Table 2 below.
  • the dimensions (depth, width, length) of the second region S of the second liquid supply path 15B are, for example, as shown in Table 2 below.
  • the amount of the reaction reagent solution filled in the first region T of the second liquid supply path 15B is equal to the amount of the reaction reagent solution to be supplied to the annular flow path 14A. Further, the volume of the second receiving portion 16B of the second liquid supply path is larger than the volume of the suction passage 17B of the second liquid supply path. Note that the total volume of the first region T of the first liquid supply path 15A and the volume of the first region T of the second liquid supply path 15B is equal to the volume of the annular flow path 14A.
  • the third liquid supply path 15C is for supplying an evaporation suppression liquid (eg, mineral oil for PCR) to the heat convection flow path 11.
  • the evaporation suppression liquid is a liquid that suppresses the evaporation of the liquid (for example, the sample liquid and the reaction reagent solution) in the annular channel 14A, and the maximum temperature of the heat source 30 (second heater) introduced into the annular channel 14. Those having a higher boiling point are used. Since the boiling point of the mineral oil is higher than the maximum temperature of the second heater 32 that heats the liquid in the annular channel 14A (eg, the sample liquid and the reaction reagent solution), the evaporation of the liquid in the annular channel 14A is suppressed. To do.
  • the specific gravity of mineral oil is smaller than the specific gravity of the liquid in the annular flow path 14A, it functions as a lid that closes the introduction passage 19a.
  • specific gravity is smaller than the specific gravity of the liquid (for example; sample liquid and reaction reagent solution) in annular flow path 14A, and / or a boiling point is higher than the maximum temperature of the 2nd heater 32. If it is too high, it can be used as a liquid for suppressing evaporation.
  • the annular channel 14A When the thermal convection generating chip 10A rotates around its central axis, the annular channel 14A is filled with the sample liquid and the reaction reagent solution having a specific gravity greater than that of the mineral oil, and the mineral oil stays in the introduction passage 19a.
  • the introduction passage 19a is blocked. As a result, evaporation of the sample solution and reaction reagent solution in the annular channel 14A and backflow into the introduction chamber 19 can be suppressed.
  • the dimensions (depth, width, length) of the first region T of the third liquid supply path 15C are, for example, as shown in Table 3 below.
  • the dimensions (depth, width, length) of the second region S of the third liquid supply path 15B are, for example, as shown in Table 3 below. It should be noted that the positions and the dimensions of each of the first liquid supply path 15A, the second liquid supply path 15B, and the third liquid supply path 15C (see Tables 1 to 3) are the first to third liquid supply paths 15A to 15C. Are set so as not to interfere with each other.
  • the amount of mineral oil filled in the first region T of the third liquid supply passage 15C is an amount that can prevent the introduction passage 19a.
  • the volume of the third receiving portion 16C of the third liquid supply path is larger than the volume of the third suction passage 17C of the third liquid supply path.
  • the thermal convection generating chip 10A further includes a cover portion 25 (see FIGS. 6, 7, 9, and 10).
  • An opening of the introduction chamber 19 is formed on the upper surface of the thermal convection generating chip 10A.
  • the cover portion 25 is provided on the substrate 11A of the thermal convection generating chip 10A and covers the opening (see FIGS. 6 and 7). Details of the introduction chamber 19 and the cover portion 25 will be described later with reference to FIGS. 9 and 10.
  • Each liquid supply passage 15A to 15C further includes a guide passage 26 (see FIG. 8A). That is, as shown in FIG. 11, a meniscus guide passage forming portion 26A is provided in each of the receiving portions 16A to 16C, and the guide passage 26 is formed. The guide passage 26 guides the liquid in each of the receiving portions 16A to 16C to each second region S.
  • FIG. 9 is a cross-sectional view taken along line BB in FIG. 6, and FIG. 10 is a perspective view of the cover portion 25. As shown in FIG. As shown in FIG. 9, a groove 27 and a hole 28 are formed in the substrate 11A.
  • the introduction chamber 19 is formed by a groove 27 and a hole 28.
  • the groove 27 has a semi-oval shape in plan view and is formed on the lower surface of the substrate 11A.
  • the hole 28 has a trapezoidal shape in vertical section and is provided above the groove 27. The hole 28 and the groove 27 communicate with each other.
  • the introduction chamber 19 communicates with one end of the first region T of each of the supply passages 15A to 15C (the lower right end of the first region T in FIG. 8A) and heats through the opening 19B. It communicates with the space outside the convection generating chip 10A.
  • the introduction chamber 19 communicates with the annular flow path 14A via an introduction passage 19a (see FIG. 8).
  • the cover portion 25 is a substantially rectangular parallelepiped member, and is formed of a synthetic resin or the like.
  • the cover portion 25 has a concave portion 25a, and the concave portion 25a communicates the space outside the thermal convection generating chip 10A with the introduction chamber 19.
  • the recess 25a includes a first inner wall surface 25b, a second inner wall surface 25c, and a boundary portion 25d.
  • the first inner wall surface 25 b faces the opening of the introduction chamber 19.
  • the second inner wall surface 25c intersects the first inner wall surface 25b and is inclined with respect to the first inner wall surface 25b.
  • the angle formed by the first inner wall surface 25b and the second inner wall surface 25c is an obtuse angle (see FIG. 9).
  • the boundary portion 25d is located between the first inner wall surface 25b and the second inner wall surface 25c.
  • the cover part 25 suppresses the liquid in the introduction chamber 19 from jumping out from the opening. Since the angle formed by the first inner wall surface 25b and the second inner wall surface 25c is an obtuse angle, the liquid adhering to the boundary portion 25d is difficult to stay. Therefore, the effect that it can suppress that the quantity of the liquid which flows in into 14 A of annular flow paths can be acquired can be acquired. Note that substantially the same effect can be obtained also when the boundary portion 25d is a curved surface having an arc cross section.
  • FIG. 11 is a diagram schematically showing the guide passage 26.
  • the guide passage 26 surrounds the entrance Sa of the second region S. That is, the guide passage 26 is formed by the arc-shaped inner peripheral wall surface of each of the receiving portions 16A to 16C, the substantially half-moon shaped bottom wall surface of the guide passage forming portion 25A, and the top wall surface of the bottom plate 13A (see FIG. 6).
  • the guide passage 26 has a rectangular opening 29.
  • the opening 29 faces the inlet Sa of the second region, and the area of the opening 29 is larger than the opening area of the inlet Sa.
  • each of the receiving portions 16A to 16C flows into the inlet Sa while wetting the wall surface around the inlet Sa of each second region S. Since each inlet Sa is surrounded by three wall surfaces, the liquid easily flows into the inlet Sa.
  • the area of the opening 29 of the guide passage 26 is larger than the opening area of the inlet Sa, the inflow of liquid to the inlet 122ba due to capillary action is promoted compared to the case where the area of the opening 29 is equal to or smaller than the opening area of the inlet Sa. Therefore, the liquid easily flows into the inlet Sa.
  • each of the receiving portions 16A to 16C is provided with a guide passage 26. That is, by providing the guide passage 26 in each of the receiving portions 16A to 16C, it is difficult for the liquid to flow into the inlet Sa even when there is a burr.
  • the thermal convection generating chip 10A includes a plurality of annular flow paths 14A and a plurality of first to third liquid supply paths 15A to 15C.
  • the first to third liquid supply paths 15A to 15C include Liquid is supplied only to one annular channel 14A. Since each annular channel 14A is not in communication with the other annular channels 14A, by supplying the liquid individually to each of the plurality of annular channels 14A, a liquid containing a separate sample is individually introduced. (E.g. PCR reaction etc.) Next, a method of using the thermal convection generating chip 10A will be described with reference to FIGS. First, the sample liquid is injected into the first receiving portion 16A of the first liquid supply path (see FIG. 8). The amount of the sample liquid injected into the first receiving portion 16A of the first liquid supply path is larger than the amount of the sample liquid filled in the first suction passage 17A of the first liquid supply path. It is not necessary to accurately weigh the amount.
  • the injected specimen fluid flows into the second region S of the first suction passage 17A and further into the first region T by capillary action.
  • the sample liquid reaches one end portion of the first region T located at the innermost position of the first suction passage 17A (the right lower end portion of the first region T in FIG. 8A)
  • the liquid due to capillary action Flow stops.
  • the sample liquid is filled over the entire length of the first suction passage 17A.
  • reaction reagent solution is injected into the second receiving portion 16B, and the second suction passage 17B is filled with the reaction reagent solution.
  • mineral oil is injected into the third receiving portion 16C, and the third suction passage 17C is filled with mineral oil.
  • the thermal convection generating chip 10A is mounted on the shaft 41 of the motor 40 of the thermal convection generating device 1 (see FIGS. 1 and 2) and the thermal convection generating chip 10A is rotated around the axis AX of the shaft 41.
  • the centrifugal force is applied to the liquid in the suction passages 17A to 17C.
  • the liquid in the first region T and the liquid in the second region S move away from each other, and the liquid in the first region T flows into the introduction chamber 19 Then, the liquid in the second region S returns to the receiving parts 16A to 16C.
  • a structure for example, a liquid absorbing member
  • sample liquid sample liquid, reaction reagent solution, and mineral oil
  • the sample liquid and the reaction reagent solution flow into the annular flow path 14A via the introduction passage 19a, and the mineral oil passes through the introduction passage 19a.
  • the sample liquid and the reaction reagent solution in the annular flow path 14A are heated by the second heater 32 and the first heater 31, thereby causing thermal convection and mixing the sample liquid and the reaction reagent solution.
  • the mineral oil blocks the introduction passage 19B, the evaporation of the liquid in the annular flow path 14A and the backflow to the introduction chamber 19 are suppressed.
  • the first heater 31 and the second heater 32 are in thermal convection in the state where the assembly is completed by attaching the thermal convection generating chip 10A to the thermal convection generating device 1. Abutting on the lower surface of the generation chip 10 ⁇ / b> A, as shown in FIG. 8A, the arrangement relationship is the same as that of the annular flow path 14, the first heater 31, and the second heater 32 of the first embodiment. This arrangement relationship may be changed as shown in FIG. Also in the second embodiment, the operation and effect described in the first embodiment can be obtained by the above configuration.
  • the liquid supply path 14A includes the receiving portions 16A to 16C that receive the liquid, communicates the receiving portions 16A to 16C with the annular flow path 14A, and supplies the liquid in the receiving portions 16A to 16C to the capillary tube.
  • Each of the suction passages 17A to 17C for sucking according to a phenomenon and each of the suction passages 17A to 17C includes a first region T positioned between the intermediate portion of the suction passages 17A to 17C and the annular flow path 14A, and A second region S located between the suction passages 17A to 17C and the receiving portions 16A to 16C;
  • the user can supply a predetermined amount of liquid to the annular channel 14A without weighing the liquid introduced into the annular channel 14. Accordingly, it is possible to save the user from weighing the liquid. In this way, the liquid can be accurately weighed without labor and the heat convection generating device 200 of the second embodiment has the same heat source configuration as the heat convection generating device 100 of the first embodiment. Since the temperature control of the liquid flowing through the annular channel 14A can be performed efficiently as in the case, the heat convection with extremely high reproducibility and stability regardless of the operator's technique, and the heat convection PCR using this. Can be realized.
  • each of the suction passages 17A to 17C is bent at an acute angle at the intermediate portion, it is easy to separate the liquid in the first region T, which is preferable from the viewpoint of weighing.
  • the suction passages 17A to 17C further include air holes 18A to 18C for introducing air into the intermediate portions, the liquid near the intermediate portions is caused by the centrifugal force due to the rotation of the thermal convection generating chip 10A.
  • a suction pressure is generated in the vicinity of the intermediate portion, and air is introduced into the intermediate portion from the air holes 18A to 18C. Is separated from the liquid in the second region S.
  • a plurality of liquid supply paths 15A to 15C are provided, and the plurality of liquid supply paths 15A to 15C supply different liquids (eg, reaction reagent solution, sample liquid) to the annular flow path for each liquid supply path. If it is a thing, thermal convection PCR of several types of liquid from which a component differs can be performed simultaneously.
  • liquids eg, reaction reagent solution, sample liquid
  • the thermal convection generation system 300 includes at least the thermal convection generation chip (FIG. 8) 10 ⁇ / b> B and the thermal convection generation apparatus 1 according to the first embodiment.
  • the thermal convection generating device 1 includes a shaft 41, a first heater 31, a second heater 32, a motor 40, and the like. Note that the configuration of the thermal convection generating device 1 itself is the same as that of the first embodiment, and thus the description thereof is omitted.
  • FIG. 12 is a perspective view of a thermal convection generating chip 10B according to the second embodiment of the present invention
  • FIG. 13 is an exploded perspective view of the thermal convection generating chip 10B.
  • the same reference numerals are used for portions corresponding to those in the second embodiment, and the description overlapping with that in the first embodiment is omitted.
  • the thermal convection generating chip 10B has a multilayer structure. That is, as shown in FIG. 13, the thermal convection generating chip 10B includes a first substrate 10Ba, a second substrate 10Bb, a third substrate 10Bc, and a lid 13B. The first substrate 10Ba, the second substrate 10Bb, the third substrate 10Bc, and the bottom plate 13B are stacked.
  • FIG. 14 is a diagram schematically showing the structure of the supply paths 15Aa to 15Ca of the thermal convection generating chip 10B.
  • a light gray portion is formed on the first substrate 10Ba
  • a dark gray portion is formed on the second substrate 10Bb
  • a colorless portion is formed on the third substrate 10Bc.
  • the thermal convection generating chip 10B has a plurality of annular channels 14B and a plurality of supply channels 15Aa to 15Ca.
  • the first liquid supply path 15Aa includes a first receiving part 101A and a plurality of first suction paths 102A.
  • the second liquid supply path 15Ba includes a second receiving part 101B and a plurality of second suction paths 102B.
  • the third liquid supply path 15Ca includes a third receiving part 101C and a plurality of third suction paths 102C.
  • Suction passages 102A to 102C are provided between each of the plurality of annular passages 14B and the receiving portions 101A to 101C of the supply passages 15Aa to 15Ca.
  • the supply passages 15Aa to 15Ca intersect three-dimensionally and form a labyrinth-like fluid passage.
  • the first liquid supply path 15Aa is formed in the first substrate 10Ba.
  • the first liquid supply path 15Ba is formed across the first substrate 10Ba and the second substrate 10Bb.
  • the third liquid supply path 15Ca is formed across the first substrate 10Ba, the second substrate 10Bb, and the third substrate 10Bc.
  • Each of the first to third suction passages 102A to 102C has a first region T ′ and a second region S ′ (see FIG. 14).
  • FIG. 15 is a perspective view of the first substrate.
  • the first substrate 10Ba includes a first receiving portion 101A, a first suction passage 102A, air holes 103A, holes 104U and 105U, air introduction holes 103Bu and 103Cu, and a rectangular hole 106U. And have.
  • a groove 109U forming a part of the first suction passage 102A is formed on the lower surface of the first substrate 10Ba, and the first suction passage 102A is formed by the groove 109U and the upper surface of the second substrate 10Bb. (See FIGS. 13 and 14).
  • FIG. 16 is a perspective view of the second substrate.
  • the second substrate 10Bb has one hole 104M, a second suction passage 102B extending from the hole 104M, one hole 105M, an air hole 103Bm, an air hole 103Cm, and a rectangular hole 106M.
  • a second receiving portion 101B of the second liquid supply path 15Ba is formed by the hole 104M and the hole 104U of the first substrate (see FIG. 14).
  • the air hole 103B of the second liquid supply path 15Ca is formed by the air introduction hole 103Bm and the air introduction hole 103Bu of the first substrate (see FIG. 14).
  • a groove 109M forming a part of the second suction passage 102B is formed on the lower surface of the second substrate 10Bb, and the second suction passage 102C is formed by the groove 109M and the upper surface of the third substrate 15Bc. (See FIG. 14).
  • FIG. 17 is a perspective view of the third substrate.
  • the third substrate 10Bc has one hole 105B, a third suction passage 102C, an air introduction hole 103Cb, a rectangular hole 106B, a groove 107, and an introduction passage 18.
  • the third receiving portion 101C of the third liquid supply path 15Ca is formed by the hole 105B, the hole 105M of the second substrate, and the hole 105U of the first substrate.
  • An air hole 103C (see FIG. 14) of the third liquid supply path 15Ca is formed by the air introduction hole 103Cb, the air introduction hole 103Cm of the second substrate, and the air introduction hole 103Cu of the first substrate.
  • a part of the introduction chamber 19 ⁇ / b> A is formed by the rectangular hole 106 ⁇ / b> B and the groove 107.
  • a groove 109B forming a part of the third suction passage 102C is formed on the lower surface of the third substrate 10Bc, and the third suction passage 102C ( (See FIG. 14). Further, a groove 107 is formed on the lower surface of the third substrate 10Bc, and an introduction passage is constituted by the groove 107 and the upper surface of the lid body 13B (see FIG. 18).
  • the third substrate 10Bc is provided with a plurality of annular flow paths 14B at a predetermined angular interval around the center of the center hole 17B of the third substrate 10Bc (see FIG. 17).
  • the center of the center hole 17B of the third substrate coincides with the axis AX of the shaft 41 of the motor 40 in a state where the thermal convection generating chip 10B is mounted on the thermal convection generating device 1.
  • 18 is a view of the cross section of the thermal convection generating chip 10B taken along the line CC of FIG.
  • the rectangular hole 106 ⁇ / b> B is trapezoidal in vertical section and is located above the groove 107.
  • the rectangular hole 106B of the third substrate communicates with the groove 107 and the rectangular hole 106M of the second substrate, and the rectangular hole 106M communicates with the rectangular hole 106U of the first substrate.
  • the rectangular hole 106U communicates with the outer space through the opening of the cover portion 25A.
  • FIG. 19 is a perspective view of the cover portion 25A.
  • the cover portion 25A is a C-shaped band-like member in plan view, and has a plurality of concave portions 25a.
  • the plurality of concave portions 25a are provided at predetermined intervals in the circumferential direction of the cover portion 25A.
  • the sample liquid is injected into the first receiving portion 101A of the first liquid supply path 15Aa.
  • the amount of the sample liquid injected into the first receiving portion 101A is larger than the amount of the sample liquid filled in the entire first suction passage 102A of the first liquid supply path, but the amount of the sample liquid needs to be accurately measured. There is no.
  • the sample liquid injected into the first receiving portion 101A is filled into the entire first suction passage 102A by capillary action.
  • reaction reagent solution is injected into the second receiving portion 101B of the second liquid supply path 15Ba, and the reaction reagent solution is filled in the entire suction passage 102B. Further, mineral oil is injected into the third receiving part 101C of the third liquid supply path 15Ca to fill all of the suction path 102C by capillary action.
  • the thermal convection generating chip 10B is mounted on the shaft 41 of the motor 40 of the thermal convection generating device 1 (see FIGS. 1 and 2), and the motor is driven to connect the thermal convection generating chip 10B to the axis AX of the shaft 41.
  • centrifugal force is applied to the liquid in the suction passages 102A to 102C.
  • the suction passages 102A to 102C the liquid in the first region T ′ and the liquid in the second region S ′ move away from each other, and the liquid in the first region T ′ moves to the introduction chamber 19B.
  • the liquid flows in and the liquid in the second region S ′ returns to the receiving parts 101A to 101C.
  • sample liquid sample liquid, reaction reagent solution, and mineral oil
  • the sample liquid and reaction reagent solution flow into the annular flow path 14B via the introduction passage 108 (see FIG. 17), and mineral oil.
  • the sample liquid and the reaction reagent solution in the annular channel 14B are heated by the second heater 32 or the first heater 31 to cause thermal convection to mix the sample liquid and the reaction reagent solution.
  • the mineral oil blocks the introduction passage 108, the evaporation of the liquid in the annular flow path 14B and the backflow to the introduction chamber 19B are suppressed.
  • the liquid supply path includes a first liquid supply path 15Aa for supplying the sample liquid to the annular flow path and a second liquid supply path 15Ba for supplying a reaction reagent solution for performing PCR to the annular flow path.
  • the liquid is separated at the intermediate portion of the liquid supply path by centrifugation, and only a predetermined amount of liquid flows into the annular flow path, so that the user can save time for weighing each liquid.
  • the thermal convection generating chip 51 it is possible to simultaneously supply liquid to each of the plurality of thermal convection flow paths 11. Therefore, when performing the thermal convection PCR of a plurality of liquids of the same component at the same time, it is possible to reduce the time and effort for the user to weigh the liquids.
  • the number of annular channels of the thermal convection generating chip of the first to third embodiments is not limited and may be one.
  • the number of supply paths and substrates of the heat convection generating chips of the second and third embodiments is not limited, and may be one or four or more.
  • the total capacity of the first region and the second region S of the first liquid supply path is equal to the annular flow path 14B.
  • the volume of the convection flow path may be equal, or the volume of one first region communicating with the heat convection flow path may be equal to the volume of the heat convection flow path.
  • the liquid weighing instrument for weighing not only the liquid to be convected but also other liquids.
  • the liquid weighing instrument has a receiving portion 16A and a suction passage 17A that communicates with the receiving portion 16A and sucks the liquid in the receiving portion 16A by capillary action.
  • the thermal convection generating chip 10A by rotating the thermal convection generating chip 10A, the liquid in the first region T is separated from the liquid in the second region S and is discharged from the distal end portion of the suction passage 17A. Weighed into the annular channel 14A.
  • various modifications can be made to the present embodiment without departing from the effects of the present invention.
  • Example 1 A temperature simulation was performed on the change of the liquid temperature by the thermal convection generation system 100 with the following contents.
  • the substrate 11 and the lid 13 constituting the thermal convection generating chip 10 were set to a thickness of 2.0 mm and a diameter of 40 mm, and the lid 13 was set to a thickness of 0.19 mm and a diameter of 40 mm.
  • the annular channel 14 was set to have a channel height (S): 0.3 mm, a channel width (W): 0.5 mm, and an annular channel diameter (outer diameter) (D): 6 mm (FIG. 2). (See (B)).
  • the ambient temperature around the thermal convection generating device 1 was set to 10 ° C., and this temperature was maintained during thermal convection described later.
  • the clearance CL between the first heater 31 and the second heater 32 was set to 0.5 mm.
  • the area of the clearance CL (when viewed in plan: see FIG. 2A) is about 7% of the entire channel area of the annular channel 14.
  • the rotation speed of the shaft 41 of the motor 40 (the rotation speed of the thermal convection generating chip 10) is set to a voltage equivalent to 5G, that is, the shaft obtained when 4.0V is applied to the motor.
  • the number of revolutions was determined (about 520 rpm). That is, it means that the thermal convection generating chip 10 is rotated at 520 rpm.
  • the temperature of the second heater 32 was set to 102 ° C.
  • the temperature of the first heater 31 was set to 60 ° C.
  • the motor 40 is driven to rotate the thermal convection generating chip 10 at a speed of 520 rpm and the liquid is subjected to centrifugal force, the liquid makes one round in the annular flow path 14 in about 8 seconds.
  • FIG. 22A shows a temperature profile that changes when the liquid makes one round of the annular flow path in the annular flow path 14.
  • Comparative Example 1 In Comparative Example 1, a heat source as shown in FIG. 4 of Japanese Patent Laid-Open No. 2014-39498 (Patent Document 3) (the total area of the clearance between two heaters when viewed in plan as in FIG. 2A) The temperature simulation of the liquid moving in the annular channel was performed in the same manner as in Example 1 using about 38% of the channel area of the entire annular channel 14). The result is shown in FIG.
  • Example 2 In Example 2, the temperature simulation of the liquid moving in the annular flow path was performed in the same manner as in Example 1 except that the ambient temperature around the thermal convection generating device was changed to 25 ° C. The result is shown in FIG.
  • Comparative Example 2 In Comparative Example 2, the total area of the clearance between the two heaters when viewed in plan as shown in FIG. 2 (A) in FIG. 4 of JP 2014-39498 A (Patent Document 3) The temperature simulation of the liquid moving in the annular channel was performed in the same manner as in Example 2 using about 38% of the channel area of the entire annular channel 14). The result is shown in FIG.
  • Example 3 In Example 3, the temperature simulation of the liquid moving in the annular flow path was performed in the same manner as in Example 2 except that the ambient temperature around the thermal convection generating device was changed to 40 ° C. The result is shown in FIG.
  • Comparative Examples 1 to 3 are shown in FIGS. 22 (B), (D), and (F).
  • the light gray band indicates that the liquid in the annular channel 14 passes through the channel area of the annular channel above the first heater 31.
  • the dark gray band portion means that the liquid in the annular flow path 14 passes through the flow path area of the annular flow path 14 above the second heater 32.
  • the white band means that the liquid in the annular channel 14 passes through the channel area of the annular channel 14 above the air where no heater or the like exists.
  • Comparative Examples 1 to 3 see FIGS. 22B, 22D and 22F
  • the first heater 31 and the second heater 32 are shown in FIG. 4 of Japanese Patent Laid-Open No. 2014-39498 (Patent Document 3). It arrange
  • the ratio of the portion where the liquid is air-cooled in the annular flow path 14 is calculated to be 31.8% or more with respect to the entire flow path area of the annular flow path 14. From the plot of the air-cooled liquid temperature, it is shown that the temperature of the liquid gradually decreases in the flow path area (see the mountain-shaped black line).
  • Example 1 to 3 the first heater 31 and the second heater 32 are arranged as shown in FIG. There is no gap between the first heater and the second heater for air-cooling the annular flow path (a minimum necessary clearance is provided so that the temperature of the first heater and the second heater can be maintained).
  • the clearance is set to about 7% with respect to the entire channel area of the annular channel (see FIG. 2A)).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

[Problem] To provide a heat-convection-generating device and heat-convection-generating system having high reproducibility of heat convection and robustness superior to that of the prior art, whereby heat convection such as thermal cycling in PCR, for example, can be rapidly performed with good efficiency. [Solution] A heat convection generation chip 10, a shaft 41 capable of rotatably fixing the heat convection generation chip 10, first and second heaters 31, 32 having first and second heat source parts 31b, 32b for heating or cooling a liquid in an annular flow channel 14, and a motor 40 for rotating the shaft 41 and thereby causing the entire annular flow channel 14 to rotate about an axis AX of the shaft 41 are provided, and in plan view of the annular flow channel 14 in the direction orthogonal to the direction in which the liquid flows through the annular flow channel 14, the center of gravity (center of the annular flow channel) Q of the annular flow channel 14 in the plane and the center of rotation of the shaft 41 which is the point of intersection of the axis AX and the plane do not coincide, at least one heat source part 32b of the second heater 32 is positioned in only one range among the ranges of 30° to 150° or 210° to 330° about the center of gravity (center of the annular flow channel) Q with respect to a straight line Z connecting the center of rotation and the center of gravity (center of the annular flow channel) Q, and heats or cools a flow channel area of the annular flow channel 14 in the one range, and the first heater 31 heats or cools a flow channel area other than the flow channel area of the annular flow channel 14 heated or cooled by the second heater 32.

Description

熱対流生成装置および熱対流生成システムThermal convection generating device and thermal convection generating system
 本発明は、例えばPCR法を行うための熱対流生成装置および熱対流生成システムに関する。 The present invention relates to a thermal convection generating device and a thermal convection generating system for performing, for example, a PCR method.
 遺伝子増幅方法として、ポリメラーゼ連鎖反応(Polymerase Chain Reaction、以下「PCR」と称する。)が知られている。PCRは、極めて微量のDNAサンプルから特定のDNA断片を短時間に大量に増幅できる方法であり、その走査の簡便さから、現在では基礎研究のみならず、臨床遺伝子診断から食品衛生検査、犯罪捜査に至るまで、幅広い分野に応用されている。 As a gene amplification method, the polymerase chain reaction (Polymerase Chain Reaction, hereinafter referred to as “PCR”) is known. PCR is a method that can amplify a large amount of a specific DNA fragment from a very small amount of DNA sample in a short time. Because of its simplicity of scanning, not only basic research but also clinical genetic diagnosis, food hygiene inspection, criminal investigation Has been applied to a wide range of fields.
 特許文献1には、直立したシリンダ状の容器内で、容器底部側から供給する熱により熱対流を生成させてPCRを行うPCR用の熱対流生成装置が開示されている。この熱対流生成装置は、対流による溶液駆動を行うものであり、外部ポンプを使用せずにPCR溶液の送液が可能という利点がある。しかしながら、PCR溶液に対する熱供給の位置の僅かなズレやPCR溶液を含む容器の傾きの僅かな違いで対流の状態が大きく変わるため、安定した熱対流が得られず再現性に乏しいという問題がある。 Patent Document 1 discloses a PCR thermal convection generator that performs PCR by generating thermal convection by heat supplied from the bottom of the container in an upright cylindrical container. This thermal convection generation device performs solution driving by convection, and has an advantage that a PCR solution can be fed without using an external pump. However, there is a problem that stable thermal convection cannot be obtained and reproducibility is poor because the convection state changes greatly due to a slight deviation in the position of the heat supply to the PCR solution and a slight difference in the inclination of the container containing the PCR solution. .
 特許文献2にはPCR用の熱対流生成装置が開示されており、隙間(Gap)を有して積層された複数の直方体状の第1~第3熱源(1st~3rd Heat Source)に反応管を収容するための孔(channel)を形成し、該孔にPCRの反応管(ReactionVessel)を差し込んで固定して、下層から順に第1~第3熱源を積層した積層体を、鉛直軸の径方向の線に対して前記積層体の上面が所定角度をなすように傾斜させた状態で、前記積層体を鉛直軸周りに回転させることにより反応管内の液体に遠心力を付与して熱対流を促進するように構成されている。なお、熱源温度は、第1熱源>第2熱源>第3熱源に設定されている。 Patent Document 2 discloses a thermal convection generating device for PCR, and includes a plurality of rectangular parallelepiped first to third heat sources (1 st to 3 rd Heat Source) stacked with gaps (Gap). A hole in which a reaction tube is accommodated is formed, and a PCR reaction tube (Reaction Vessel) is inserted into the hole and fixed. In a state where the upper surface of the laminated body is inclined so as to form a predetermined angle with respect to a line in the radial direction, a centrifugal force is imparted to the liquid in the reaction tube by rotating the laminated body around the vertical axis to heat the laminated body. It is configured to promote convection. The heat source temperature is set such that the first heat source> the second heat source> the third heat source.
 しかしながら、このPCR用の熱対流生成装置では、上述したように鉛直軸周りに回転させる熱源の積層体が所定角度傾斜しているため、遠心力を受けて反応管(ReactionVessel)の底部に移動した反応液が底部から上下2方向に分流した際、上向きに流れる場合と下向きに流れる場合とでは反応管内の液体に作用する回転軸方向の合力が異なるので、液体がスムーズに流れにくく、再現性の良い熱対流が得られないという問題があった。 However, in the PCR thermal convection generating apparatus, as described above, since the stack of heat sources that rotate around the vertical axis is inclined at a predetermined angle, it is moved to the bottom of the reaction tube (Reaction Vessel) under centrifugal force. When the reaction liquid splits from the bottom in two directions, the resultant force in the direction of the rotation axis acting on the liquid in the reaction tube differs between when flowing upward and when flowing downward, making it difficult for the liquid to flow smoothly and with reproducibility. There was a problem that good thermal convection could not be obtained.
 特許文献3は、回転軸方向に対して垂直な面に沿って設けられた熱対流生成用チップの環状流路内に液体を導入して該液体を熱源により加熱しつつ、回転軸周りに熱対流生成用チップを回転させることで前記液体に遠心力を付与するPCR用の熱対流生成装置が開示されている。この熱対流生成装置は、特許文献1,2と比べて再現性に優れる熱対流を実現することができる。しかしながら、特許文献3の装置よりもロバスト性(外的要因の変化を内部機構で阻止する性能)、熱対流の再現性が高くPCRのサーマルサイクルをより効率良く迅速に行うことができる熱対流生成装置や熱対流生成システムが求められている。 In Patent Document 3, a liquid is introduced into an annular channel of a thermal convection generating chip provided along a plane perpendicular to the rotation axis direction, and the liquid is heated around a rotation axis while being heated by a heat source. A thermal convection generating device for PCR that applies centrifugal force to the liquid by rotating a convection generating chip is disclosed. This thermal convection generating device can realize thermal convection which is excellent in reproducibility compared with Patent Documents 1 and 2. However, it is more robust than the device of Patent Document 3 (the ability to prevent changes in external factors by an internal mechanism), has high reproducibility of thermal convection, and can perform thermal cycle of PCR more efficiently and quickly. Devices and thermal convection generation systems are needed.
国際公開2002/072267号公報International Publication No. 2002/072267 国際公開2011/086497号公報International Publication No. 2011/086497 特開2014-39498号公報JP 2014-39498 A
 本発明は、上記問題に鑑みてなされたものであって、ロバスト性に優れ、熱対流の再現性が高く、例えばPCRのサーマルサイクル等の熱対流をより効率良く迅速に行うことができる熱対流生成装置および熱対流生成システムを提供することを課題とする。 The present invention has been made in view of the above problems, and has excellent robustness, high reproducibility of heat convection, and heat convection capable of more efficiently and quickly performing heat convection such as PCR thermal cycle. It is an object to provide a generation device and a thermal convection generation system.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した熱対流生成装置は、
 液体を循環させるための環状流路を有する熱対流生成用チップを回転可能に固定することができる回転軸と、
 前記環状流路内の液体を加熱又は冷却する第1熱源部を有する第1温度調節部と、
 前記環状流路内の液体を加熱又は冷却する第2熱源部を有する第2温度調節部と、
 前記回転軸を回転駆動することにより前記環状流路全体を前記回転軸回りに回転させる回転駆動手段とを備え、前記液体が前記環状流路を流通する方向(環状流路より呈される円と一致する平面)と直交する方向で前記環状流路を平面視したとき、該平面上にある前記環状流路の重心(環状流路の中心)と、前記軸線と前記平面との交点である前記回転軸の回転中心とが一致しない熱対流生成装置であって、
 前記回転中心と前記重心(環状流路の中心)とをつなげた直線に対して、前記重心(環状流路の中心)を中心として、30°以上~150°以下または210°以上~330°以下となる範囲のうち、いずれか一方の範囲のみに、前記第2熱源部が少なくとも1つ位置して該範囲内で前記環状流路の流路エリアを加熱又は冷却し、
 前記第1熱源部は、第2熱源部によって加熱または冷却される前記環状流路の流路エリア以外の流路エリアを加熱または冷却する、熱対流生成装置である。
In order to achieve at least one of the above-described objects, a thermal convection generation device reflecting one aspect of the present invention is provided.
A rotating shaft capable of rotatably fixing a chip for generating heat convection having an annular flow path for circulating a liquid;
A first temperature adjustment unit having a first heat source unit for heating or cooling the liquid in the annular channel;
A second temperature adjustment unit having a second heat source unit for heating or cooling the liquid in the annular channel;
A rotation drive means for rotating the entire annular flow path around the rotation axis by rotationally driving the rotation shaft, and a direction in which the liquid flows through the annular flow path (a circle presented by the annular flow path) When the annular flow path is viewed in plan in a direction orthogonal to the matching plane), the center of gravity of the annular flow path (center of the circular flow path) on the plane is the intersection of the axis and the plane. A thermal convection generating device whose rotational axis does not coincide with the rotational center,
With respect to a straight line connecting the rotation center and the center of gravity (center of the annular channel), the center of gravity (center of the annular channel) is 30 ° to 150 ° or 210 ° to 330 °. In any one of the ranges, the at least one second heat source part is positioned and the flow passage area of the annular flow passage is heated or cooled in the range,
The first heat source unit is a heat convection generating device that heats or cools a channel area other than the channel area of the annular channel heated or cooled by the second heat source unit.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した熱対流生成システムは、
 上記熱対流生成装置と、
 液体を循環させるための環状流路を有する熱対流生成用チップと、を含み、
 前記熱対流生成用チップは、前記環状流路に連通した液体供給路を有し、前記回転駆動により熱対流生成用チップに加わる遠心力により前記液体供給路中の液体が前記環状流路に供給される、熱対流生成システムである。
In order to achieve at least one of the above-described objects, a thermal convection generation system reflecting one aspect of the present invention is provided.
The thermal convection generator;
A chip for generating heat convection having an annular flow path for circulating a liquid,
The thermal convection generating chip has a liquid supply path communicating with the annular flow path, and the liquid in the liquid supply path is supplied to the annular flow path by centrifugal force applied to the thermal convection generating chip by the rotational drive. A thermal convection generation system.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したコンベクションPCR法は、上記の熱対流生成装置または熱対流生成システムを使用したコンベクションPCR法であって、
 PCR反応溶液を構成する検体液、反応試薬溶液、その他PCR反応に必要な液体を個別に又は一体に環状流路内に導入する液導入工程、
 環状流路内で前記PCR反応溶液を所定速度で還流させてコンベクションPCRを行うPCR反応工程、を含み、
 PCR反応中に、第1温度調節部の熱源部と第2温度調節部の熱源部との温度差を10℃以上に維持する、コンベクションPCR法である。
In order to achieve at least one of the above-described objects, a convection PCR method reflecting one aspect of the present invention is a convection PCR method using the thermal convection generation apparatus or the thermal convection generation system described above,
A liquid introduction step for introducing a sample solution, a reaction reagent solution, and other liquids necessary for a PCR reaction into a circular channel individually or integrally into a PCR reaction solution;
A PCR reaction step of performing convection PCR by refluxing the PCR reaction solution at a predetermined speed in a circular channel,
This is a convection PCR method in which the temperature difference between the heat source part of the first temperature control part and the heat source part of the second temperature control part is maintained at 10 ° C. or higher during the PCR reaction.
 本発明によれば、従来よりロバスト性に優れ、熱対流の再現性が高く、例えばPCRのサーマルサイクル等の熱対流をより効率良く迅速に行うことができる熱対流生成装置および熱対流生成システムを提供することできる。 According to the present invention, there is provided a thermal convection generation device and a thermal convection generation system that are more robust than conventional ones, have high reproducibility of thermal convection, and can perform thermal convection more efficiently and quickly, for example, a PCR thermal cycle. Can be offered.
図1は、第1実施形態の熱対流生成システムの外観を示した図である。FIG. 1 is a diagram illustrating an appearance of the thermal convection generation system according to the first embodiment. 図1Aは、図1の熱対流生成システムの熱対流生成装置の分解斜視図である。1A is an exploded perspective view of a thermal convection generating device of the thermal convection generating system of FIG. 図2(A)は、図1に示す熱対流生成用チップの一部(裏面)を示し、熱対流生成用チップの環状流路と、熱対流生成装置の第1ヒータおよび第2ヒータとの位置関係を説明した図である。図2(B)は、(A)のA-A線に沿った断面を矢視方向に見た図である。FIG. 2A shows a part (back surface) of the thermal convection generating chip shown in FIG. 1, and includes the annular flow path of the thermal convection generating chip and the first and second heaters of the thermal convection generating device. It is a figure explaining the positional relationship. FIG. 2B is a view of the cross section along the line AA in FIG. 図3は、第1実施形態の熱対流生成用チップに代替可能な別の熱対流生成用チップの例を示した図である。FIG. 3 is a diagram showing an example of another thermal convection generation chip that can be substituted for the thermal convection generation chip of the first embodiment. 図4は、第1実施形態の熱対流生成システムの制御系のブロック図である。FIG. 4 is a block diagram of a control system of the thermal convection generation system according to the first embodiment. 図5は、第1実施形態の熱対流生成システムにより環状流路から発した蛍光を検出している状態を示した図である。FIG. 5 is a diagram illustrating a state in which fluorescence emitted from the annular flow path is detected by the thermal convection generation system according to the first embodiment. 図6は、第2実施形態の熱対流生成システムの熱対流生成用チップを示した図である。FIG. 6 is a diagram illustrating a thermal convection generation chip of the thermal convection generation system according to the second embodiment. 図7は、図6の熱対流生成用チップの分解斜視図である。FIG. 7 is an exploded perspective view of the thermal convection generating chip of FIG. 図8(A)は、図6の熱対流生成用チップの一部を拡大した図である。図8(B)は、(A)の熱対流生成用チップの基板(積層された板の一番上のもの)の裏面を拡大した図である。FIG. 8A is an enlarged view of a part of the thermal convection generating chip of FIG. FIG. 8B is an enlarged view of the back surface of the thermal convection generating chip substrate (the uppermost one of the stacked plates) of FIG. 図9は、図6のB-B線に沿った熱対流生成用チップの部分断面を矢視方向に見た図である。FIG. 9 is a partial cross-sectional view of the thermal convection generating chip taken along the line BB in FIG. 図10は、図6に示される熱対流生成用チップのカバー部の拡大斜視図である。FIG. 10 is an enlarged perspective view of the cover portion of the thermal convection generating chip shown in FIG. 図11は、図6に示される熱対流生成用チップの案内通路を模式的に示した図である。FIG. 11 is a view schematically showing the guide passage of the thermal convection generating chip shown in FIG. 図12は、第3実施形態の熱対流生成システムの熱対流生成用チップを示した図である。FIG. 12 is a diagram illustrating a thermal convection generation chip of the thermal convection generation system according to the third embodiment. 図13は、図12に示される熱対流生成用チップの分解斜視図である。13 is an exploded perspective view of the thermal convection generating chip shown in FIG. 図14は、図12に示される熱対流生成用チップの液体供給路の構造および第1ヒータ,第2ヒータと環状流路との位置関係を示した図である。FIG. 14 is a diagram showing the structure of the liquid supply path of the thermal convection generating chip shown in FIG. 12 and the positional relationship between the first heater, the second heater, and the annular flow path. 図15は、図12に示される熱対流生成用チップの第1基板の一部拡大斜視図である。FIG. 15 is a partially enlarged perspective view of the first substrate of the thermal convection generating chip shown in FIG. 図16は、図12に示される熱対流生成用チップの第2基板の一部拡大斜視図である。FIG. 16 is a partially enlarged perspective view of the second substrate of the thermal convection generating chip shown in FIG. 図17は、図12に示される熱対流生成用チップの第3基板の一部拡大斜視図である。FIG. 17 is a partially enlarged perspective view of the third substrate of the thermal convection generating chip shown in FIG. 図18は、図12に示される熱対流生成用チップのC-C線に沿った断面を矢視方向に見た図である。18 is a cross-sectional view taken along the line CC of the thermal convection generating chip shown in FIG. 12 as viewed in the direction of the arrow. 図19は、図12に示される熱対流生成用チップのカバー部の拡大斜視図である。FIG. 19 is an enlarged perspective view of the cover portion of the thermal convection generating chip shown in FIG. 図20は第1実施形態で用いたモータの電源の電圧と該モータの回転数との関係を示すグラフであり、速度と遠心力との関係(F=mv2/r、g=(2πN)2r)より相対重力加速度と第1実施形態で用いたモータの回転数との関係を求め、さらに電圧と相対重力加速度との関係を求めることにより作成したものである。FIG. 20 is a graph showing the relationship between the voltage of the power source of the motor used in the first embodiment and the rotational speed of the motor, and the relationship between the speed and the centrifugal force (F = mv 2 / r, g = (2πN)). obtained relation between the rotational speed of the motor using from 2 r) with a relative acceleration of gravity in the first embodiment, which was developed by further determining the relationship between the voltage and the relative acceleration of gravity. 図21は、相対重力加速度と上記モータの電源の電圧との関係を示すグラフである。FIG. 21 is a graph showing the relationship between the relative gravitational acceleration and the voltage of the motor power supply. 図22(A)は実施例1の結果を示すグラフである。図22(B)は比較例1の結果を示すグラフである。図22(C)は実施例2の結果を示すグラフである。図22(D)は比較例2の結果を示すグラフである。図22(E)は実施例3の結果を示すグラフである。図22(F)は比較例3の結果を示すグラフである。FIG. 22A is a graph showing the results of Example 1. FIG. FIG. 22B is a graph showing the results of Comparative Example 1. FIG. 22C is a graph showing the results of Example 2. FIG. 22D is a graph showing the results of Comparative Example 2. FIG. 22E is a graph showing the results of Example 3. FIG. 22F is a graph showing the results of Comparative Example 3.
 以下、本発明に係る熱対流生成装置および熱対流生成システムについて、図面を参照しながら説明する。 Hereinafter, a thermal convection generation device and a thermal convection generation system according to the present invention will be described with reference to the drawings.
 [第1実施形態]
 図1に本発明に係る第1実施形態の熱対流生成システム100の外観(前面)を示し、図1Aに図1の熱対流生成装置1等の分解斜視図を示す。
[First Embodiment]
FIG. 1 shows an external appearance (front surface) of a thermal convection generation system 100 according to the first embodiment of the present invention, and FIG. 1A shows an exploded perspective view of the thermal convection generation apparatus 1 and the like of FIG.
 第1実施形態の熱対流生成システム100は、液体を循環させるための環状流路14を有する熱対流生成用チップ10と、該熱対流生成チップ10を回転可能に着脱固定することができる熱対流生成装置1とを含む(図1A参照)。 The thermal convection generation system 100 according to the first embodiment includes a thermal convection generation chip 10 having an annular flow path 14 for circulating a liquid, and a thermal convection capable of rotatably attaching and detaching the thermal convection generation chip 10. And the generation device 1 (see FIG. 1A).
 熱対流生成装置1は、熱対流生成用チップ10を回転可能に固定するためのシャフト41と、熱対流生成用チップ10の環状流路14の液体を加熱又は冷却する第1ヒータ(第1温度調節部)31および第2ヒータ(第2温度調節部)32と、前記シャフト41を回転駆動することにより環状流路14全体をシャフト41周りに回転させるモータ(回転駆動手段)40と、を少なくとも有する。 The thermal convection generating device 1 includes a shaft 41 for rotatably fixing the thermal convection generating chip 10 and a first heater (first temperature) for heating or cooling the liquid in the annular flow path 14 of the thermal convection generating chip 10. An adjustment unit) 31 and a second heater (second temperature adjustment unit) 32, and a motor (rotation drive means) 40 that rotates the shaft 41 around the shaft 41 by rotating the shaft 41. Have.
 後述するように、本発明に係るコンベクションPCRを実施している間は、第2温度調節部32の温度(変性温度)の方が第1温度調節部31の温度(アニーリング温度)よりも高くなり、相対的に見れば、第2温度調節部32により高温になった環状流路14の液体は第1温度調節部31によって"冷却"されるが、第2温度調節部32の温度も第1温度調節部31の温度も、常温(室温)よりは高いため、それぞれ変性温度およびアニーリング温度にするためには"加熱"する機能が必要となる。その意味で、第1温度調節部31および第2温度調節部32はいずれも"加熱"するための部材、すなわち"ヒータ"と称することができるため、本明細書では「第1温度調節部」を「第1ヒータ」に、「第2温度調節部」を「第2ヒータ」に置き換えて、発明の詳細な説明や具体的な実施形態を記載することとする。 As will be described later, during the convection PCR according to the present invention, the temperature (denaturation temperature) of the second temperature adjustment unit 32 is higher than the temperature (annealing temperature) of the first temperature adjustment unit 31. When viewed relatively, the liquid in the annular flow path 14 that has been heated by the second temperature adjusting unit 32 is “cooled” by the first temperature adjusting unit 31, but the temperature of the second temperature adjusting unit 32 is also the first temperature. Since the temperature of the temperature adjusting unit 31 is also higher than room temperature (room temperature), a function of “heating” is required to obtain the denaturation temperature and the annealing temperature, respectively. In this sense, both the first temperature adjusting unit 31 and the second temperature adjusting unit 32 can be referred to as “heating” members, that is, “heaters”. Therefore, in the present specification, “first temperature adjusting unit”. Is replaced by “first heater”, and “second temperature control unit” is replaced by “second heater”, and the detailed description of the invention and specific embodiments are described.
 図1および図1Aに示したように、モータ40から突出したシャフト41に対し、熱対流生成用チップ10、ステージ20、第1ヒータ31,及び第2ヒータ32等が一体となって回転可能に設けられている。ステージ20は、環状流路14の特定の部分を第1ヒータ(第1温度調節部)31および第2ヒータ(第2温度調節部)32に当接させた状態で、熱対流生成用チップ10を載置することのできる部材である。シャフト41の中心軸AXが上記回転の回転軸となる。 As shown in FIG. 1 and FIG. 1A, the heat convection generating chip 10, the stage 20, the first heater 31, the second heater 32, and the like can be rotated integrally with the shaft 41 protruding from the motor 40. Is provided. The stage 20 is in a state where a specific portion of the annular flow path 14 is in contact with the first heater (first temperature adjustment unit) 31 and the second heater (second temperature adjustment unit) 32, and the thermal convection generation chip 10. Is a member on which can be placed. The central axis AX of the shaft 41 becomes the rotation axis of the rotation.
 ≪熱対流生成用チップ≫
 図2(A)に熱対流生成用チップ10の基板11の裏面を示す。図2(B)に(A)のA―A線に沿った熱対流生成用チップ10の断面を矢視方向に見た図を示す。
≪Tip for thermal convection generation≫
FIG. 2A shows the back surface of the substrate 11 of the thermal convection generating chip 10. FIG. 2B shows a cross-sectional view of the thermal convection generating chip 10 along the line AA in FIG.
 図2(A)および(B)に示すように、熱対流生成用チップ10は、液体を循環させるための環状流路14を少なくとも有する。熱対流生成用チップ10では、環状流路14の一部をなす溝が形成されたディスク状の基板11と、溝が形成された基板11の面に接合される蓋体13とを有する。この基板11と蓋体13との接合により環状流路14が形成される。 2 (A) and 2 (B), the thermal convection generating chip 10 has at least an annular channel 14 for circulating the liquid. The thermal convection generating chip 10 includes a disk-shaped substrate 11 in which a groove forming a part of the annular flow path 14 is formed, and a lid body 13 bonded to the surface of the substrate 11 in which the groove is formed. An annular flow path 14 is formed by joining the substrate 11 and the lid 13.
 基板11には、該基板11を前記シャフト41に固定するための中心孔17と、ステージ20に固定するために形成された固定部(ネジ孔)(不図示)等が形成されている。蓋体13は、基板11と略同径であり、かつ、基板11よりも薄い円盤状に形成されている。蓋体13は、基板11の下面に積層(接合)された状態で適宜固定手段により基板11に対して着脱可能に固定される。 The substrate 11 is formed with a center hole 17 for fixing the substrate 11 to the shaft 41 and a fixing portion (screw hole) (not shown) formed for fixing the substrate 11 to the stage 20. The lid 13 has a substantially same diameter as the substrate 11 and is formed in a disk shape thinner than the substrate 11. The lid 13 is detachably fixed to the substrate 11 by appropriate fixing means while being laminated (bonded) to the lower surface of the substrate 11.
 熱対流生成用チップ10の材質は、第1ヒータ31および第2ヒータ32の温度に耐えうる材質である必要がある。また、熱対流生成用チップ10の環状流路14等に内在する液体を視認できる観点から透明の材質が好ましい。このような材質としては、例えば、環状オレフィン、ポリプロピレン、ポリカーボネート、ポリジメチルシロキサンとガラスとの複合体、又はアクリルが好ましい。上記の材質のうち、脱ガス性と耐熱性に優れ、ガス透過性、吸水性、及び自家蛍光性が低い点において、環状オレフィンが最も好ましく、次いで、ポリプロピレン又はポリカーボネートが好ましい。また、第1ヒータ31、第2ヒータ32からの熱伝導を考慮して、熱伝導率が0.1~1.0W/(m・K)の材料を選択するのが好ましい。基板11及び底板12は、好適には合成樹脂によって形成される。 The material of the chip 10 for generating heat convection needs to be a material that can withstand the temperature of the first heater 31 and the second heater 32. In addition, a transparent material is preferable from the viewpoint of visually recognizing liquid existing in the annular flow path 14 of the thermal convection generating chip 10. As such a material, for example, cyclic olefin, polypropylene, polycarbonate, a composite of polydimethylsiloxane and glass, or acrylic is preferable. Among the above materials, cyclic olefins are most preferable, and then polypropylene or polycarbonate is preferable in terms of excellent degassing property and heat resistance, and low gas permeability, water absorption, and autofluorescence. In consideration of the heat conduction from the first heater 31 and the second heater 32, it is preferable to select a material having a thermal conductivity of 0.1 to 1.0 W / (m · K). The substrate 11 and the bottom plate 12 are preferably made of synthetic resin.
 熱対流生成用チップ10の基板11は、ディスク状に限らず、矩形の板状等の他の形状であってもよい。回転しやすさの観点からディスク状(円盤状)の基板11および蓋体13が好ましい。なお、基板11と蓋体13との間に気密性及び液密性を有する薄い粘着性のある樹脂製シート(例;上記材質のシート)を挟みこんで、環状流路14、後述する液体供給路15およびガス排出路16を封閉するようにしてもよい。 The substrate 11 of the heat convection generating chip 10 is not limited to a disk shape, but may be other shapes such as a rectangular plate shape. From the viewpoint of easy rotation, the disk-shaped (disk-shaped) substrate 11 and the lid 13 are preferable. A thin adhesive resin sheet (eg, a sheet made of the above material) having airtightness and liquid-tightness is sandwiched between the substrate 11 and the lid 13, and the annular flow path 14, a liquid supply described later. The passage 15 and the gas discharge passage 16 may be sealed.
 《環状流路》
 環状流路14は、検体液と反応試薬溶液との混合液(詳細は後述)等の液体を導入して環状流路14内で熱対流させるためのものである。環状流路14は、熱対流生成用チップ10が回転駆動された際に環状流路14内の液体が環状流路14を循環するようにシャフト41の回転軸AXと所定の位置関係を有して設けられている。
<Annular channel>
The annular flow channel 14 is for introducing a liquid such as a mixed solution (details will be described later) of the sample liquid and the reaction reagent solution to cause thermal convection in the annular flow channel 14. The annular channel 14 has a predetermined positional relationship with the rotation axis AX of the shaft 41 so that the liquid in the annular channel 14 circulates in the annular channel 14 when the thermal convection generating chip 10 is driven to rotate. Is provided.
 本発明において、環状流路14の回転軸AXからの距離に特に制限はないが、実際の作業を考慮したときの熱対流生成装置1のコンパクト性と、本装置を用いて行う熱対流の効率性との関係で、上記距離を1cm以上10cm以下に設定することが好ましい。 In the present invention, the distance from the rotation axis AX of the annular flow path 14 is not particularly limited, but the compactness of the thermal convection generating device 1 when considering actual work and the efficiency of thermal convection performed using the present device. It is preferable to set the distance to 1 cm or more and 10 cm or less in relation to the property.
 また、図1の第1実施形態で例示されるように、環状流路14は、熱対流生成用チップ10が回転軸AX周りに回転駆動された際に描かれる円の平面(図2の例では基板の下面等が該当する。)と平行となるように設けられていることが好ましい。換言すれば、図2(B)に示したように、環状流路14と回転軸AXとなす角度θ'が90°となるように設けられていることが好ましい。角度θ'は、90°に限らず、上記液体が環状流路14を循環するのであれば、80°以上~100°以下の範囲で任意の角度に設定してもよい。 Further, as illustrated in the first embodiment of FIG. 1, the annular flow path 14 is a circular plane drawn when the thermal convection generating chip 10 is driven to rotate about the rotation axis AX (example of FIG. 2). In this case, the lower surface of the substrate or the like is preferably parallel to the lower surface of the substrate. In other words, as shown in FIG. 2B, it is preferable that the angle θ ′ formed between the annular flow path 14 and the rotation axis AX is 90 °. The angle θ ′ is not limited to 90 °, and may be set to an arbitrary angle in the range of 80 ° to 100 ° as long as the liquid circulates in the annular flow path 14.
 (環状流路の表面粗さ)
 環状流路14の壁面の表面粗さを所定以下に抑えることより環状流路14のぬれ残り(環状流路等の壁面の濡れ性が撥水的であることにより液体が付着しない部分)の発生を抑制することができる観点から、環状流路14の壁面の表面粗さRaは、好ましくは100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは30nm以下である。
(Surface roughness of the annular channel)
Occurrence of wet residue of the annular channel 14 (part where the liquid does not adhere due to the water-repellent wall repellent property such as the annular channel) by suppressing the surface roughness of the wall of the annular channel 14 to a predetermined level or less. From the viewpoint of suppressing the surface roughness Ra, the surface roughness Ra of the wall surface of the annular flow path 14 is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less.
 環状流路14内の液体中に気泡が発生する原因の1つとして、例えば環状流路14内に液体を満たす際に生じるぬれ残りがそのまま気体となることが挙げられる。環状流路14内の液体に気泡が発生すると、環状流路14内の液体の熱対流が阻害されるため、ぬれ残りを極力減らすことが望ましい。 As one of the causes of the generation of bubbles in the liquid in the annular flow path 14, for example, the wet residue generated when the liquid is filled in the annular flow path 14 becomes gas as it is. If bubbles are generated in the liquid in the annular flow path 14, the thermal convection of the liquid in the annular flow path 14 is hindered, so it is desirable to reduce the remaining wet as much as possible.
 ぬれ残りを極力減らすことで、環状流路14内における液体の流通がスムーズとなり、第1温度調節と第2温度調節との切り替えが好適に行われるとともに、環状流路14内で液体が対流しやすくなるという利点がある。 By reducing the amount of wet residue as much as possible, the flow of the liquid in the annular flow path 14 becomes smooth, and switching between the first temperature adjustment and the second temperature adjustment is suitably performed, and the liquid convects in the annular flow path 14. There is an advantage that it becomes easy.
 環状流路14の表面粗さRaを上記範囲とするには、上記表面粗さの要件を満たす熱対流生成用チップ10の基材11および蓋体13(場合によっては上記樹脂製シート)の材質を選択する方法の他に、環状流路の壁面を構成する基材11、蓋体13(または樹脂製シート部分)を所定の方法で研磨する方法が挙げられる。研磨する方法としては、例えば、厚さ25~75μm程度のポリエステルフィルムの上に、サブミクロンから数十μmの粒径の砥粒が接着剤で均一に塗布されたテープ状の研磨工具(研磨テープ)を用いて行うフィルム研磨を挙げることができる。 In order to make the surface roughness Ra of the annular channel 14 in the above range, the material of the base material 11 and the lid 13 (in some cases, the resin sheet in some cases) of the chip 10 for generating heat convection satisfying the requirements of the surface roughness. In addition to the method of selecting, the base material 11 and the lid body 13 (or resin sheet portion) constituting the wall surface of the annular flow path may be polished by a predetermined method. As a polishing method, for example, a tape-shaped polishing tool (polishing tape) in which abrasive grains having a particle size of submicron to several tens of μm are uniformly applied with an adhesive on a polyester film having a thickness of about 25 to 75 μm. ).
 環状流路14の壁面の表面粗さが上記範囲内である場合と上記範囲外である場合とで実際にぬれ残りの有無を確認する試験(ポリエチレングリコールを環状流路14の表面を塗布し、食紅を含む水を環状流路14内に充填して95℃で加熱した場合に気泡発生の有無を確認する試験)を行うと、前者の場合では気泡が発生し、後者の場合では気泡が発生しない結果となる。 A test for actually checking the presence or absence of wet residue when the surface roughness of the wall surface of the annular channel 14 is within the above range and outside the above range (polyethylene glycol is applied to the surface of the annular channel 14, When water containing red food is filled in the annular channel 14 and heated at 95 ° C., a test is performed to check whether bubbles are generated or not. In the former case, bubbles are generated, and in the latter case, bubbles are generated. Result.
 (環状流路の形状)
 環状流路の形状は、典型的には、図1および図1Aの第1実施形態で例示されるように、前記液体が環状流路14を流通する方向(環状流路14により呈される円と一致する平面)と直交する方向で環状流路14を平面視したとき(平面として見たとき)に真円状の帯状であることが好ましい。環状流路14を真円状とすることにより、流路長を最短にでき、コンベクションPCRを短時間で効率よく行うことができる。しかしながら、熱対流が生じるのであれば環状流路の形状は真円状に限定されず、上記平面視した状態で流路内の液が循環可能なその他の形状、例えば、長円状、楕円状、多角形状(例;三角形状、四角形状、それ以上の多角形状)の環状に形成されていてもよい。
(Ring channel shape)
The shape of the annular channel is typically a direction in which the liquid flows through the annular channel 14 (a circle presented by the annular channel 14 as illustrated in the first embodiment of FIGS. 1 and 1A). When the annular flow path 14 is viewed in a plane (when viewed as a plane) in a direction orthogonal to the plane that coincides with the plane, it is preferably a perfect circular belt shape. By making the circular channel 14 into a perfect circle, the channel length can be minimized, and convection PCR can be performed efficiently in a short time. However, if thermal convection occurs, the shape of the annular flow path is not limited to a perfect circle, but other shapes that allow the liquid in the flow path to circulate in the above-described plan view, for example, an oval shape or an elliptical shape It may be formed in a polygonal shape (eg, triangular shape, quadrangular shape, or more polygonal shape).
 なお、環状流路により呈される円とは、例えば、環状流路14のエッジ部分(環状流路14の横断面形状に表れる多角形が有する頂点部分(図2(B)参照)により呈される円、または、環状流路14の断面が多角形でない場合には、上記エッジ部分に相当する部分をさす(例えば、環状流路14の断面が円形の場合は円の頂点などを指す)。 In addition, the circle | round | yen exhibited by the annular flow path is, for example, presented by the edge portion of the annular flow path 14 (the apex portion of the polygon appearing in the cross-sectional shape of the annular flow path 14 (see FIG. 2B)). When the cross section of the circular flow path 14 is not polygonal, it indicates a portion corresponding to the edge portion (for example, when the cross section of the circular flow path 14 is circular, it indicates the top of the circle).
 第1実施形態では、図1および図2に示すように、基板11の下面周縁部には複数の環状流路14が設けられている。これらの環状流路14は、ディスク状の基板11の軸線周りに所定の等角度間隔をおいて設けられ、軸線AXに対して対称的に配置されている。なお、上記基板11の軸線は、熱対流生成装置1を組み立てて熱対流生成用チップ10を取り付けた状態でシャフト41の回転軸AXと一致する。また、環状流路14は、等角度間隔に設けることが好ましいが、等角度間隔に設けなくともよい。 In the first embodiment, as shown in FIGS. 1 and 2, a plurality of annular flow paths 14 are provided on the peripheral edge of the lower surface of the substrate 11. These annular flow paths 14 are provided around the axis of the disk-shaped substrate 11 at predetermined equal angular intervals, and are arranged symmetrically with respect to the axis AX. The axis of the substrate 11 coincides with the rotational axis AX of the shaft 41 in a state where the thermal convection generating device 1 is assembled and the thermal convection generating chip 10 is attached. Moreover, although it is preferable to provide the annular flow path 14 at equiangular intervals, it does not need to be provided at equiangular intervals.
 環状流路14の数、加工方法、各部寸法等は特に限定されず、例えば、外径(D)は30~70mm、環状流路の深さ(S)を300~500μm、環状流路の幅(W)を400~600μmの範囲に設定して形成する例が挙げられる(図2(B)参照)。典型例としては第1実施形態(図1)のように、直径(D)40mmの基板に微細加工技術により4つの同じ形状、同じ大きさの環状流路を形成、すなわち、基板に対して直径(D)5mmの真円状の溝(深さ:300μm,幅:500μm)を形成する例が挙げられる。 The number, processing method, dimensions of each part, etc. of the annular channel 14 are not particularly limited. For example, the outer diameter (D) is 30 to 70 mm, the depth (S) of the annular channel is 300 to 500 μm, and the width of the annular channel. An example is shown in which (W) is set in the range of 400 to 600 μm (see FIG. 2B). As a typical example, as in the first embodiment (FIG. 1), four channels having the same shape and size are formed on a substrate having a diameter (D) of 40 mm by microfabrication technology. (D) An example in which a 5 mm perfect circular groove (depth: 300 μm, width: 500 μm) is formed.
 《液体供給路》
 熱対流生成用チップには、任意に、環状流路に液体を供給するための、環状流路に連通した液体供給路を設けてもよい。第1実施形態の熱対流生成システム100(図2(A)参照)では、前記液体が前記環状流路を流通する方向(環状流路14により呈される円と一致する平面)と直交する方向で前記環状流路14を平面視したとき(平面として見たとき)、回転中心AXと重心(環状流路の中心)Qとをつなげた径方向の線Zと交わる環状流路14の部位に連通するように液体供給路15が設けられている。なお、「流路エリア」とは、環状流路14を上記平面視したときの環状流路14の領域を意味する。
《Liquid supply path》
The thermal convection generating chip may optionally be provided with a liquid supply path communicating with the annular flow path for supplying liquid to the annular flow path. In the thermal convection generation system 100 according to the first embodiment (see FIG. 2A), the direction perpendicular to the direction in which the liquid flows through the annular channel (a plane that coincides with the circle presented by the annular channel 14). When the annular flow path 14 is viewed in plan (when viewed as a plane), at a portion of the annular flow path 14 that intersects the radial line Z connecting the rotation center AX and the center of gravity (center of the annular flow path) Q. A liquid supply path 15 is provided so as to communicate with each other. The “flow channel area” means an area of the annular flow channel 14 when the annular flow channel 14 is viewed in plan view.
 この液体供給路15は、図2(A)の上側から順に、基板11に形成された液体供給孔15dに連通した細長い伸延部15aと、その一端に連通接続された涙滴状の液溜り部15bと、その先端部と環状流路14とを連通接続する幅狭の連通部15cとを有している。なお、液溜り部15bの容量は、環状流路14の容量よりも大きく設定されている。 The liquid supply path 15 includes, in order from the upper side of FIG. 2A, an elongated extending portion 15a that communicates with a liquid supply hole 15d formed in the substrate 11, and a teardrop-shaped liquid reservoir that communicates with one end thereof. 15b, and a communication portion 15c having a narrow width for connecting the tip portion thereof and the annular flow path 14 in communication. The capacity of the liquid reservoir 15b is set larger than the capacity of the annular channel 14.
 液体供給路15は、熱対流生成用チップ10を回転駆動させた際に熱対流生成用チップに加わる遠心力により液体供給路15中の液体が環状流路14に供給されるように構成されている。第1実施形態の熱対流生成システムでは、マイクロピペット等により液体供給路15の伸延部15aを介して液溜り部15b内に液体を導入および貯留させた状態で、上述したように熱対流生成用チップ10を回転軸AX周りに回転駆動すると、熱対流生成用チップ10に加わる遠心力によって液体供給路14(伸延部15a,液溜り部15b)中の液体が連通部15cを介して環状流路14内に供給されるように構成されている(図2(A)参照)。 The liquid supply path 15 is configured so that the liquid in the liquid supply path 15 is supplied to the annular flow path 14 by centrifugal force applied to the thermal convection generation chip when the thermal convection generation chip 10 is rotationally driven. Yes. In the thermal convection generating system according to the first embodiment, as described above, the liquid is introduced and stored in the liquid reservoir 15b via the extending portion 15a of the liquid supply path 15 by a micropipette or the like. When the chip 10 is driven to rotate about the rotation axis AX, the liquid in the liquid supply path 14 (extension part 15a, liquid reservoir part 15b) is caused to flow through the communication part 15c by the centrifugal force applied to the thermal convection generation chip 10 through the communication part 15c. 14 (see FIG. 2A).
 《ガス排出路》
 熱対流生成用チップには、任意に、環状流路の液体に含まれるガスを抜くための、環状流路に連通したガス排出路を設けてもよい。第1実施形態の熱対流生成システムでは、ガス排出路16は、環状流路14から図2(A)の上側から順に、ガスを外部へ排出するための孔16dと、該孔16dに連通したディスク状の基板11の径方向の線Zに沿って延びる細長い伸延部16aと、その一端に連通接続された涙滴状のガス溜り部16bと、その先端部と環状流路14とを連通接続する幅狭の連通部16cとを有している(図2(A)参照)。
《Gas discharge passage》
The heat convection generating chip may optionally be provided with a gas discharge path communicating with the annular flow path for extracting gas contained in the liquid in the annular flow path. In the thermal convection generating system of the first embodiment, the gas discharge path 16 communicates with the hole 16d and the hole 16d for discharging the gas from the annular flow path 14 to the outside in order from the upper side of FIG. The elongated elongated portion 16a extending along the radial line Z of the disk-shaped substrate 11, the teardrop-shaped gas reservoir portion 16b connected to one end thereof, and the tip portion thereof and the annular channel 14 are connected to each other. Narrow communication portion 16c (see FIG. 2A).
 ガス排出路16を設けたことで、環状流路14内の液体が熱対流する際に生じるガスや液体供給路15液体を注入する際に生じるガス(気泡など)が遠心力によりガス排出路16に侵入し、伸延部16aおよび孔16dを介して排出され、液体からガスを除去できるので、液体の熱対流をスムーズに行うことができる。 By providing the gas discharge path 16, the gas generated when the liquid in the annular flow path 14 is in thermal convection and the gas (such as bubbles) generated when the liquid is injected into the liquid flow path 15 are caused by centrifugal force to the gas discharge path 16. Since the gas can be removed from the liquid by being discharged through the extending portion 16a and the hole 16d, thermal convection of the liquid can be performed smoothly.
 《ステージ》
 ステージ20は、熱源30(第1ヒータ31および第2ヒータ32)を支持するとともに、ステージ20の上に配置される熱対流生成用チップ10にモータ40の回転力を伝達するためのものである。ステージ20の材質としては、シクロオレフィンポリマー、ポリカーボネート等の合成樹脂または金属を使用することができる。ステージ20は、回転しやすさを考慮して、図2の第1実施形態で例示したように円盤状に形成されることが好ましいが、回転可能であれば特に限定されない。
"stage"
The stage 20 supports the heat source 30 (the first heater 31 and the second heater 32) and transmits the rotational force of the motor 40 to the thermal convection generating chip 10 disposed on the stage 20. . As the material of the stage 20, a synthetic resin such as cycloolefin polymer or polycarbonate, or a metal can be used. The stage 20 is preferably formed in a disk shape as illustrated in the first embodiment of FIG. 2 in consideration of ease of rotation, but is not particularly limited as long as it is rotatable.
 (ステージと熱対流生成用チップとの連結)
 第1実施形態で用いられるステージ20は、図1Aに示すように、熱対流生成用チップ10をステージ20に対して同心状に位置決めするとともに、ステージ20と熱対流生成用チップ10とを相対回転不能に連結手段により連結されている。この連結手段の構造は特に限定されないが、例えば、熱対流生成用チップ10の中心軸に対して偏心した熱対流生成用チップの下面の位置に凹部または凸部を形成し、ステージの中心軸に対して偏心したステージの上面の位置に凸部又は凹部と形成し、ステージの凹部または凸部と熱対流生成用チップの凸部または凹部とを嵌合させる構造でもよい。なお、熱対流生成用チップ10の中心軸は、中心孔17の中心を通る軸で熱対流生成装置を組み立てた状態で軸線AXと一致する。
(Connection between stage and chip for generating thermal convection)
As shown in FIG. 1A, the stage 20 used in the first embodiment positions the thermal convection generating chip 10 concentrically with respect to the stage 20 and relatively rotates the stage 20 and the thermal convection generating chip 10 relative to each other. It is impossible to connect by connecting means. The structure of the connecting means is not particularly limited. For example, a concave portion or a convex portion is formed at the position of the lower surface of the thermal convection generating chip that is eccentric with respect to the central axis of the thermal convection generating chip 10, and is formed on the central axis of the stage. Alternatively, a structure may be employed in which a convex portion or a concave portion is formed at a position on the upper surface of the stage that is eccentric, and the concave portion or convex portion of the stage and the convex portion or concave portion of the thermal convection generating chip are fitted. The central axis of the thermal convection generating chip 10 coincides with the axis AX in a state where the thermal convection generating device is assembled with an axis passing through the center of the central hole 17.
 (ヒータ装着孔)
 ステージ20には、図1Aに示すように、第1ヒータ31と第2ヒータ32とを挿入装着するためのヒータ装着孔21が設けられている。ヒータ装着孔21は、第1ヒータ31と第2ヒータ32とのセット数に応じて複数設けてもよく、軸線AX周りに等角度間隔に配置されていることが好ましい。図1Aに示すように、円弧状のヒータ装着孔21がシャフト41の軸線AX周りに90°の角度間隔をおいて4箇所設けられており、軸線AXに対して対象に配置されている。
(Heater mounting hole)
As shown in FIG. 1A, the stage 20 is provided with a heater mounting hole 21 for inserting and mounting the first heater 31 and the second heater 32. A plurality of heater mounting holes 21 may be provided according to the number of sets of the first heater 31 and the second heater 32, and it is preferable that the heater mounting holes 21 are arranged at equiangular intervals around the axis AX. As shown in FIG. 1A, four arc-shaped heater mounting holes 21 are provided around the axis AX of the shaft 41 at an angular interval of 90 °, and are arranged on the target with respect to the axis AX.
 《熱源》
 第1実施形態の熱対流生成システム100の例では、熱源30は、図1Aに示したように、リング状の第2ヒータ32と、その内側に同心状に配置される別のリング状の第1ヒータ31とからなる。なお、第1ヒータ31と第2ヒータ32とは個別に温度制御・維持される。
《Heat source》
In the example of the heat convection generating system 100 of the first embodiment, the heat source 30 includes a ring-shaped second heater 32 and another ring-shaped second concentrically arranged inside the second heater 32, as shown in FIG. 1A. 1 heater 31. The first heater 31 and the second heater 32 are individually temperature controlled and maintained.
 (第1ヒータ)
 第1ヒータは、環状流路の所定の流路エリアにある液体を加熱または冷却するものである。ここでの「加熱」とは、第1ヒータ31の熱源部31bにより、その上方に位置する環状流路14内の液体の温度を上昇させることを意味し、ここでの「冷却」とは、第1ヒータ31の熱源部31bにより、その上方に位置する環状流路14内の液体の温度を低下させることを意味する。
(First heater)
The first heater heats or cools the liquid in a predetermined flow path area of the annular flow path. Here, “heating” means that the temperature of the liquid in the annular flow path 14 located above is raised by the heat source portion 31b of the first heater 31. “Cooling” here means It means that the temperature of the liquid in the annular flow path 14 located above the heat source part 31b of the first heater 31 is lowered.
 第1実施形態の熱対流生成システム100の例(図1及び図1A参照)では、第1ヒータ31は、リング状の連結部31aと、その周方向に等間隔をおいて設けられた横断面コ字状の柱状の熱源部31bを有している。第1ヒータ31の連結部31aには、貫通孔である一対のネジ穴31c,31cが軸線AX周りに180°の角度間隔をおいて設けられている。一対のネジ穴31c,31cにはステージ20の第2ねじ挿通孔22,22を貫通したネジの軸部が羅合し、該羅合により第1ヒータ31がステージ20に固定・支持されるように構成されている。 In the example of the thermal convection generation system 100 of the first embodiment (see FIGS. 1 and 1A), the first heater 31 has a ring-shaped connecting portion 31a and a transverse cross section provided at equal intervals in the circumferential direction. It has a U-shaped columnar heat source 31b. The connecting portion 31a of the first heater 31 is provided with a pair of screw holes 31c, 31c, which are through holes, at an angular interval of 180 ° around the axis AX. A pair of screw holes 31c, 31c is joined with shaft portions of screws passing through the second screw insertion holes 22, 22 of the stage 20, so that the first heater 31 is fixed and supported on the stage 20 by the engagement. It is configured.
 第1ヒータ31がステージ20に固定・支持された状態で、第1ヒータ31の各熱源部31bの上端部がステージ20の上面から突出して、環状流路14を平面視(後述)したときに該環状流路14の一部と重なる熱対流生成用チップ10の下面の位置に当接する(図1参照)。このように当接した状態で、第1ヒータ31が給電されて温熱または冷熱を生成することにより、第1ヒータ31の熱源部の上端部が当接している環状流路14の流路エリア部分の液体が所定温度に調節されるようになっている。固定・支持は上記の態様に限定されず、他の固定・支持の態様であってもよい。 When the first heater 31 is fixed and supported on the stage 20, the upper end portions of the heat source portions 31 b of the first heater 31 protrude from the upper surface of the stage 20, and the annular flow path 14 is viewed in plan (described later). It contacts the position of the lower surface of the chip 10 for generating heat convection that overlaps a part of the annular channel 14 (see FIG. 1). In the state of contact, the first heater 31 is supplied with power and generates heat or cold, so that the upper end portion of the heat source of the first heater 31 is in contact with the flow path area portion of the annular flow path 14. The liquid is adjusted to a predetermined temperature. Fixing / supporting is not limited to the above-described mode, and other fixing / supporting modes may be used.
 (第2ヒータ)
 第2ヒータは、環状流路の所定の流路エリアにある液体を加熱または冷却するものである。ここでの「加熱」とは、第2ヒータ32の熱源部32bにより、その上方に位置する環状流路14内の液体の温度を上昇させることを意味し、ここでの「冷却」とは、第1ヒータ32の熱源部32bにより、その上方に位置する環状流路14内の液体の温度を低下させることを意味する。第1実施形態の熱対流生成装置の例(図1及び図1A参照)では、第2ヒータ32は、リング状の連結部32aと、その周方向に等間隔を置いて設けられた(4つの)L字状の柱状の熱源部32bとを有している。
(Second heater)
The second heater heats or cools the liquid in a predetermined flow path area of the annular flow path. Here, “heating” means that the temperature of the liquid in the annular flow path 14 located above is raised by the heat source portion 32b of the second heater 32, and “cooling” here means It means that the temperature of the liquid in the annular flow path 14 located above the heat source portion 32b of the first heater 32 is lowered. In the example of the heat convection generating device according to the first embodiment (see FIGS. 1 and 1A), the second heater 32 is provided with a ring-shaped connecting portion 32a at equal intervals in the circumferential direction (four ) L-shaped columnar heat source 32b.
 第2ヒータ32の連結部32aには、一対のネジ穴32c,32cが軸線AX周りに190°の角度間隔をおいて設けられている。一対のネジ穴32c,32cにはステージ20の第1ねじ挿通孔23を貫通したネジの軸部が羅合し、該羅合により第2ヒータ32がステージ20に固定および支持されるように構成されている。 A pair of screw holes 32c and 32c are provided in the connecting portion 32a of the second heater 32 at an angular interval of 190 ° around the axis AX. The pair of screw holes 32c, 32c are configured so that shaft portions of screws that penetrate the first screw insertion holes 23 of the stage 20 are combined, and the second heater 32 is fixed and supported by the stage 20 by the combination. Has been.
 第2ヒータ32がステージ20に固定・支持された状態で、第2ヒータ32の各熱源部32bの上端部がステージの上面から突出して、環状流路14を平面視(後述)したときに該環状流路14の一部と重なる熱対流生成用チップの下面の位置に当接する(図1参照)。このように当接した状態で、第2ヒータ32が給電されて温熱または冷熱を生成することにより、第2ヒータ32の熱源部32bの上端部が当接している環状流路14の流路エリア部分の液体が所定温度に調節されるようになっている。 When the second heater 32 is fixed and supported on the stage 20, the upper ends of the heat source portions 32b of the second heater 32 protrude from the upper surface of the stage, and the annular flow path 14 is viewed in plan (described later). It contacts the position of the lower surface of the thermal convection generating chip that overlaps a part of the annular channel 14 (see FIG. 1). The flow area of the annular flow path 14 in which the upper end portion of the heat source portion 32b of the second heater 32 is in contact with the second heater 32 when the second heater 32 is supplied with power and generates heat or cold in this state of contact. The liquid in the part is adjusted to a predetermined temperature.
 (第1,第2ヒータと環状流路との位置関係)
 図2(A)及び図3を参照しながら、環状流路14と第1ヒータ31および第2ヒータ32との位置関係について説明する。
(Positional relationship between the first and second heaters and the annular flow path)
With reference to FIGS. 2A and 3, the positional relationship between the annular flow path 14, the first heater 31, and the second heater 32 will be described.
 第1ヒータ31および第2ヒータ32は、図2(A)に示したように、液体が環状流路14を流通する方向(環状流路14により呈される円と一致する平面)と直交する方向で環状流路14を平面視したとき、該平面上にある前記環状流路14の重心(環状流路の中心)Qと、軸線AXと前記平面との交点である前記回転軸の回転中心とが一致せず、回転中心AXと重心(環状流路の中心)Qとをつなげた直線(図2(A),図3において上下方向の一点鎖線Z(一部不図示))に対して、環状流路14の重心(環状流路の中心)Qを中心として、角度(θ)=30°以上~150°以下または210°以上~330°以下となる範囲のうち、いずれか一方の範囲のみに、第2熱源部32bが少なくとも1つ位置して該範囲内で環状流路14の流路エリアを加熱又は冷却し、第1熱源部31bは、第2熱源部32bによって加熱又は冷却される環状流路14の流路エリア以外の流路エリアを加熱または冷却する(図2(A)または図3参照、以下「ヒータの設置条件」という)。ここで、第1熱源部31bと第2熱源部32bとの間に隙間(以下、「クリアランス」という)を設けてもよい。 As shown in FIG. 2A, the first heater 31 and the second heater 32 are orthogonal to the direction in which the liquid flows through the annular flow path 14 (a plane coinciding with the circle presented by the annular flow path 14). When the annular channel 14 is viewed in plan in a direction, the center of rotation (center of the annular channel) Q of the annular channel 14 on the plane and the center of rotation of the rotating shaft that is the intersection of the axis AX and the plane And a straight line connecting the rotation center AX and the center of gravity (center of the annular flow path) Q (FIG. 2 (A), one-dot chain line Z (partially not shown) in FIG. 3). , Centered on the center of gravity Q of the annular flow path 14 (center of the annular flow path) Q, any one of the ranges in which the angle (θ) is 30 ° to 150 ° or 210 ° to 330 ° In addition, at least one second heat source part 32b is located and the flow of the annular flow path 14 is within the range. The area is heated or cooled, and the first heat source unit 31b heats or cools the flow channel area other than the flow channel area of the annular flow channel 14 heated or cooled by the second heat source unit 32b (FIG. 2A) or Refer to FIG. 3, hereinafter referred to as “heater installation conditions”). Here, you may provide a clearance gap (henceforth "clearance") between the 1st heat source part 31b and the 2nd heat source part 32b.
 第1ヒータ31と第2ヒータ32との隙間であるクリアランスCLが第2ヒータ32の熱源部32bを囲うように各ヒータの熱源部が形成および配置されていること(第1ヒータおよび第2ヒータの各熱源部が形成および配置されていること)が好ましい(図2(A)および図3参照)。例えば、上記平面視した状態で、第1ヒータがコの字型、Cの字型を呈して、クリアランスCLを隔てて第2ヒータの周りを囲う例が挙げられる。 The heat source portions of the heaters are formed and arranged so that the clearance CL, which is the gap between the first heater 31 and the second heater 32, surrounds the heat source portion 32b of the second heater 32 (the first heater and the second heater). Are preferably formed and arranged) (see FIGS. 2A and 3). For example, there is an example in which the first heater has a U-shape or a C-shape in a plan view and surrounds the second heater with a clearance CL.
 (第1ヒータの面積割合)
 環状流路14を上述したように平面視したとき(図2(A)または図3に示すように平面視したとき)に、第1ヒータ31の熱源部31bの上面と重なる流路エリアの面積が流路エリア全体に対して占める割合は、前述の条件(ヒータの設置条件)を満たせば特に限定されず、PCRの反応条件(特にアニーリング時間、アニーリング温度および環状流路内での液体の流速)を考慮して適宜変更することができる。詳細は、後述の「第1ヒータと第2ヒータとの面積比」で説明する。具体例としては、図2(A)及び図3に示した第1実施形態のように、環状流路14の流路エリアと一致する第1ヒータ31の面積を流路エリア全体に対して70~75%程度に設定する例が挙げられる。
(Area ratio of the first heater)
The area of the channel area that overlaps the upper surface of the heat source portion 31b of the first heater 31 when the annular channel 14 is viewed in plan as described above (when viewed in plan as shown in FIG. 2A or FIG. 3). The ratio of the total flow area to the entire flow path area is not particularly limited as long as the above-mentioned conditions (heater installation conditions) are satisfied. PCR reaction conditions (especially annealing time, annealing temperature, and liquid flow rate in the circular flow path) ) Can be changed as appropriate. Details will be described in “Area ratio between first heater and second heater” described later. As a specific example, as in the first embodiment shown in FIGS. 2A and 3, the area of the first heater 31 that matches the flow area of the annular flow path 14 is set to 70 with respect to the entire flow path area. An example of setting to about 75% is given.
 (第2ヒータの流路エリア面積)
 環状流路14を平面視したとき(図2(A)または図3に示すように平面視したとき)に、第2ヒータ32の熱源部32bの上面と重なる流路エリアの面積が流路エリア全体の面積に対して占める割合は、前述の条件(ヒータの設置条件)を満たせば特に限定されず、PCRの反応条件(特にPCRにおける変性時間、変性温度および環状流路内での液体の流速)を考慮して適宜変更することができる。詳細は、後述の「第1ヒータと第2ヒータとの面積比」で説明する。具体例としては、図2(A)及び図3に示した第1実施形態のように、環状流路14の流路エリアと一致する第2ヒータ32の面積を流路エリア全体の面積に対して15~20%程度とする例が挙られる。
(Flow area area of the second heater)
When the annular flow path 14 is viewed in plan (when viewed in plan as shown in FIG. 2A or FIG. 3), the area of the flow path area that overlaps the upper surface of the heat source portion 32b of the second heater 32 is the flow path area. The proportion of the total area is not particularly limited as long as the above conditions (heater installation conditions) are satisfied. PCR reaction conditions (particularly, denaturation time, denaturation temperature in PCR, and flow rate of liquid in the circular channel) ) Can be changed as appropriate. Details will be described in “Area ratio between first heater and second heater” described later. As a specific example, as in the first embodiment shown in FIGS. 2A and 3, the area of the second heater 32 that matches the flow area of the annular flow path 14 is set to the area of the entire flow path area. An example of about 15 to 20% is given.
 (第1ヒータと第2ヒータとの面積比)
 第2ヒータ32の熱源部が環状流路14の流路エリアと重なる面積と、第1ヒータ31が環状流路の流路エリアと重なる面積との比は、1:11~1:2であることが好ましい。クリアランスCLが環状流路14と平面視で重なる流路エリアを除いた流路エリア内で上記の比率の面積比となるように第1ヒータ31と第2ヒータ32が設けられることが好ましい。
(Area ratio between the first heater and the second heater)
The ratio of the area where the heat source part of the second heater 32 overlaps with the channel area of the annular channel 14 to the area where the first heater 31 overlaps with the channel area of the annular channel is 1:11 to 1: 2. It is preferable. It is preferable that the first heater 31 and the second heater 32 are provided so that the clearance CL has an area ratio of the above ratio in the flow path area excluding the flow path area overlapping the annular flow path 14 in plan view.
 (クリアランスの面積割合)
 クリアランスCLは、熱対流生成システム100の環状流路14を上記平面視したときに、クリアランスCLと重なる環状流路14の流路エリアの面積が流路エリア全体の面積に対して0.1~15%の範囲を占めるように設定することが好ましい。
(Area ratio of clearance)
The clearance CL is such that when the annular flow path 14 of the thermal convection generating system 100 is viewed in plan view, the area of the flow path area of the annular flow path 14 that overlaps the clearance CL is 0.1 to It is preferable to set so as to occupy a range of 15%.
 第1ヒータ31と第2ヒータ32との間の隙間と重なる環状流路14の流路エリアを通過する液体は、その下方に熱源30等が存在しない代わりに空気が存在するため空冷されることとなる。この空冷による上記液体の冷却は、当該空気より高温であり且つ前記液体より低温の熱媒体(第1ヒータ等)による冷却と比べると一見して冷却効率が高いとも考えられるが、空気の熱伝導率は低いため、実際は空気よりも熱伝導率の高い素材で形成されている上記熱媒体による冷却の方が高い冷却効率が得られる。 The liquid that passes through the flow passage area of the annular flow passage 14 that overlaps the gap between the first heater 31 and the second heater 32 is air-cooled because air is present instead of the heat source 30 and the like below. It becomes. The cooling of the liquid by this air cooling is considered to have higher cooling efficiency at first glance than cooling by a heat medium (such as the first heater) that is higher than the air and lower than the liquid. Since the rate is low, cooling with the above-described heat medium that is actually formed of a material having a higher thermal conductivity than air can provide higher cooling efficiency.
 したがって、熱対流生成システム100の環状流路14を上記平面視したときにクリアランスCLと重なる環状流路の流路エリア14の面積が流路エリア全体の面積に対して占める割合は、第1ヒータ31と第2ヒータ32の空気(クリアランス部分の空気)を介した相互の熱伝導が防止または抑制される程度の小さなもので十分であり、且つ、クリアランスCL部分の空冷による冷却効率の低下があっても許容される範囲に設定すればよいので、上記割合が0.1~15%の範囲内で極力小さくなるように設定することが好ましい。第1実施形態の熱対流生成システム100では、図2(A)及び図3に示すクリアランスCLが流路エリア全体に対して10~15%程度に設定されている。 Therefore, when the annular flow path 14 of the thermal convection generation system 100 is viewed in plan view, the ratio of the area of the annular flow path area 14 that overlaps the clearance CL to the total area of the flow path area is the first heater. 31 is sufficient to prevent or suppress mutual heat conduction through the air between the first heater 32 and the second heater 32 (air in the clearance portion), and cooling efficiency is reduced due to air cooling in the clearance CL portion. However, it may be set within an allowable range, so it is preferable to set the ratio as small as possible within the range of 0.1 to 15%. In the thermal convection generation system 100 of the first embodiment, the clearance CL shown in FIGS. 2A and 3 is set to about 10 to 15% with respect to the entire flow path area.
 (第1ヒータの温度)
 熱対流生成システム100によりコンベクションPCRを行う場合、第1ヒータ31の温度は、PCR法におけるアニーリング温度に設定される。アニーリング温度はプライマーの変性温度(Tm値)に基づいて決定される温度であり、一般的には(Tm値-5℃)が適切とされる。ここで、Tm値は設計したPCR用のプライマーの塩基配列に基づいて、例えば下式(1)から算出することができる。
Tm値(℃)=2(nA+nT)+4(nC+nG)+35-2(nA+nT+nC+nG)・・・(1)
(計算式において、nA、nT、nCおよびnGはそれぞれ、プライマーに含まれるアデニン、チミン、シトシンおよびグアニンの塩基数を表す。)
 フォワードとリバースのプライマーのTm値はなるべく近くなるように設計されているが、離れている場合は低い方のTm値に基づいてアニーリング温度を設定すればよい。RT-PCRの場合、Tm値は逆転写反応温度より低くならないよう、例えば50℃以上に設定される。典型的には、アニーリング温度としてよく使用されている55℃~65℃の温度に第1ヒータ31の温度が設定される。
(Temperature of the first heater)
When convection PCR is performed by the thermal convection generation system 100, the temperature of the first heater 31 is set to the annealing temperature in the PCR method. The annealing temperature is a temperature determined based on the denaturation temperature (Tm value) of the primer, and generally (Tm value −5 ° C.) is appropriate. Here, the Tm value can be calculated from, for example, the following formula (1) based on the designed base sequence of the primer for PCR.
Tm value (° C) = 2 (nA + nT) +4 (nC + nG) + 35-2 (nA + nT + nC + nG) (1)
(In the calculation formula, nA, nT, nC and nG represent the number of bases of adenine, thymine, cytosine and guanine contained in the primer, respectively.)
The Tm values of the forward and reverse primers are designed to be as close as possible, but if they are separated, the annealing temperature may be set based on the lower Tm value. In the case of RT-PCR, the Tm value is set to, for example, 50 ° C. or higher so as not to be lower than the reverse transcription reaction temperature. Typically, the temperature of the first heater 31 is set to a temperature of 55 ° C. to 65 ° C. that is often used as the annealing temperature.
 (第2ヒータの温度)
 熱対流生成システム100によりコンベクションPCRを行う場合、熱対流生成システム100の第2ヒータ32の温度は、2本鎖の核酸部分に熱を加えて1本鎖の核酸を形成するために必要な温度、一般的には約95℃に設定される。第2ヒータ32は、少なくともコンベクションPCRを行っている間は上記温度で維持される。
(Temperature of the second heater)
When convection PCR is performed by the thermal convection generation system 100, the temperature of the second heater 32 of the thermal convection generation system 100 is a temperature necessary for applying heat to the double-stranded nucleic acid portion to form a single-stranded nucleic acid. Generally, it is set to about 95 ° C. The second heater 32 is maintained at the above temperature at least during the convection PCR.
 熱源30の第1ヒータ,第2ヒータの設置温度として、次の条件(1)~(3)を満たすように温度制御することが望ましい。(1)の条件は、熱対流を効率よく促進するためである。
(1)第2ヒータの温度-第1ヒータの温度≧10℃、
(2)第1ヒータの温度-クリアランス部分の気温)≧10℃、
(3)第2ヒータの温度-クリアランス部分の気温)≧10℃。
It is desirable to control the temperature of the first heater and the second heater of the heat source 30 so as to satisfy the following conditions (1) to (3). The condition (1) is for efficiently promoting thermal convection.
(1) Temperature of the second heater−temperature of the first heater ≧ 10 ° C.
(2) The temperature of the first heater minus the temperature of the clearance portion) ≧ 10 ° C.
(3) The temperature of the second heater—the temperature of the clearance portion) ≧ 10 ° C.
 《回転駆動手段》
 回転駆動手段は、回転軸を回転させて該回転軸に固定した熱対流生成用チップを所定の態様で回転させる手段である。第1実施形態では、前述したように、回転軸としてのシャフト41を有し、制御手段により動作制御されて所望の態様で回転軸を回転するモータ40等が回転駆動手段に該当する。モータに限らず、所望の態様で回転駆動ができる手段であればよい。
<< Rotation drive means >>
The rotation driving means is means for rotating the rotating shaft and rotating the heat convection generating chip fixed to the rotating shaft in a predetermined manner. In the first embodiment, as described above, the motor 40 or the like that has the shaft 41 as the rotation shaft and whose operation is controlled by the control means and rotates the rotation shaft in a desired manner corresponds to the rotation drive means. Any means can be used as long as it is not limited to a motor and can be driven in a desired manner.
 《ヒートシンク》
 図1Aに示すように、第1ヒータ31で発生する熱を放熱して、第1ヒータ31を冷却するヒートシンク60を設けてもよい。ヒートシンク60により、安価な製造コストで余分な熱を除去することができ、熱対流PCRの精度を向上することができる。
"heatsink"
As shown in FIG. 1A, a heat sink 60 that radiates heat generated in the first heater 31 and cools the first heater 31 may be provided. The heat sink 60 can remove excess heat at a low manufacturing cost, and can improve the accuracy of thermal convection PCR.
 [組み立て]
 図1及び図1Aを参照しながら組み立てについて説明する。ステージ20に対して前述したように第1ヒータ31および第2ヒータ32を固定・支持させた状態で、熱対流生成用チップ10と、ステージ20とを前述した連結手段により相互に固定する。そして、熱対流生成用チップ10、ステージ20、第1ヒータ31及び第2ヒータ32を積層させた状態で、図1および図1Aに示すように、モータ40のシャフト41をステージ20の中心孔24および熱対流生成用チップ10の中心孔17へそれぞれ挿通する。この状態でモータ40のシャフト41とステージ20とは適宜の手段(嵌合等)により固定され、組み立てが完了する。なお、このような組み立ては、液導入工程(詳細は後述)の前に行ってもよいし、後に行ってもよい。
[assembly]
Assembly will be described with reference to FIGS. 1 and 1A. As described above, with the first heater 31 and the second heater 32 fixed and supported with respect to the stage 20, the thermal convection generating chip 10 and the stage 20 are fixed to each other by the connecting means described above. Then, in the state in which the chip 10 for heat convection generation, the stage 20, the first heater 31 and the second heater 32 are laminated, the shaft 41 of the motor 40 is connected to the center hole 24 of the stage 20 as shown in FIGS. And the center hole 17 of the chip 10 for generating heat convection. In this state, the shaft 41 of the motor 40 and the stage 20 are fixed by appropriate means (such as fitting), and the assembly is completed. Such assembly may be performed before or after the liquid introduction step (details will be described later).
 ≪制御手段≫
 熱対流生成システム100の制御手段50は、図4に示すように、演算制御部51、表示部52、入力部53を有し、第1ヒータ31、第2ヒータ32、モータ40、(場合により、励起光光源91、蛍光検出器92、検知光光源93、検知光検出器94)等とそれぞれ電気的に接続されている。演算制御部51は、CPU、ROM及びRAM等を含むマイクロコンピュータにより構成されている。CPUは、入力部から入力される情報とROMに格納されたプログラムに従って、第1ヒータ31、第2ヒータ32及びモータ40に給電したり、その動作を制御する。なお、前記プログラムにはPCR用の動作プログラムが含まれる。表示部52は液晶表示装置を有し、入力部53はキーボードやマウス等の入力デバイスを有する。第1ヒータ31および第2ヒータ32の温度及びモータ40による熱対流生成用チップ10の回転駆動速度は、制御手段50の入力部53を介して調節可能となっている。
≪Control means≫
As shown in FIG. 4, the control means 50 of the thermal convection generation system 100 includes an arithmetic control unit 51, a display unit 52, and an input unit 53, and includes a first heater 31, a second heater 32, a motor 40, depending on circumstances. , The excitation light source 91, the fluorescence detector 92, the detection light source 93, the detection light detector 94) and the like are electrically connected to each other. The arithmetic control unit 51 is configured by a microcomputer including a CPU, a ROM, a RAM, and the like. The CPU supplies power to the first heater 31, the second heater 32, and the motor 40 according to information input from the input unit and a program stored in the ROM, and controls its operation. The program includes an operation program for PCR. The display unit 52 includes a liquid crystal display device, and the input unit 53 includes input devices such as a keyboard and a mouse. The temperature of the first heater 31 and the second heater 32 and the rotational driving speed of the heat convection generating chip 10 by the motor 40 can be adjusted via the input unit 53 of the control means 50.
 ≪光学検出系≫
 熱対流生成システム100は、図5に例示するように、任意に、環状流路14内から発した蛍光を受光して定量する光学検出系90を有する。上記光学検出系90は、励起光光源91と、蛍光検出器92と、検知光光源93と、検知光検出器94とを有する。光学検出系90は、制御手段50に動作制御されて各種動作を行い、各種データを制御手段50の演算制御部へ伝送する。環状流路14の近傍には、検知光光源93が射出する検知光を反射または散乱させる被検知部P1が設けられている。
≪Optical detection system≫
As illustrated in FIG. 5, the thermal convection generation system 100 optionally includes an optical detection system 90 that receives and quantifies fluorescence emitted from the annular channel 14. The optical detection system 90 includes an excitation light source 91, a fluorescence detector 92, a detection light source 93, and a detection light detector 94. The optical detection system 90 is controlled by the control unit 50 to perform various operations, and transmits various data to the arithmetic control unit of the control unit 50. In the vicinity of the annular channel 14, a detected part P <b> 1 that reflects or scatters the detection light emitted from the detection light source 93 is provided.
 励起光光源91は、熱対流生成用チップ10の環状流路14内の液体に含まれる蛍光色素を励起する光を発する光源であり、LED、所望の波長光のみを取り出す蛍光フィルタが設けられた白色光源などが励起光光源として用いられる。 The excitation light source 91 is a light source that emits light that excites the fluorescent dye contained in the liquid in the annular flow path 14 of the thermal convection generating chip 10, and is provided with an LED and a fluorescent filter that extracts only light of a desired wavelength. A white light source or the like is used as an excitation light source.
 蛍光検出器92は、環状流路から発する蛍光L1'を検出するものであり、例えば、フォトマル検出器、集光レンズ及び蛍光フィルタ等を含んで構成される。 The fluorescence detector 92 detects fluorescence L1 ′ emitted from the annular flow path, and includes, for example, a photomultiplier detector, a condensing lens, a fluorescence filter, and the like.
 検知光光源93は、熱対流生成用チップ10上の検知部P1に向けて、検知光L2を照射するものであり、例えばレーザー光を発する光源(LED等)が検出光光源として用いられる。検知部P1とは、熱対流生成用チップ10が回転することにより被検知部によって形成される回転軌跡上に設定された固定点である。被検知部は、検知光光源93からの検知光L2が照射されると、その検知光L2を反射または散乱させるように構成されている。検知光検出器93は、例えば、フォトマル検出器、集光レンズ及びバンドパスフィルター等を含んで構成され、反射または散乱させられた検知光L2'を検出する。 The detection light source 93 irradiates the detection light L2 toward the detection unit P1 on the thermal convection generation chip 10, and for example, a light source (LED or the like) that emits laser light is used as the detection light source. The detection part P1 is a fixed point set on a rotation locus formed by the detected part as the thermal convection generation chip 10 rotates. When the detection light L2 from the detection light source 93 is irradiated, the detected portion is configured to reflect or scatter the detection light L2. The detection light detector 93 includes, for example, a photomultiplier detector, a condensing lens, a band pass filter, and the like, and detects the detection light L2 ′ reflected or scattered.
 ≪PCR≫
 以下、上記第1実施形態の熱対流生成システムを用いたコンベクション(熱対流)PCR法について説明する。本発明に係るコンベクションPCR法は、液導入工程、PCR反応工程、検出工程をこの順に含む。なお、上記「PCR」には、逆転写PCR(RT-PCR)や、定量的PCRであるリアルタイムPCR等の各種PCRが含まれる。
≪PCR≫
Hereinafter, a convection (thermal convection) PCR method using the thermal convection generation system of the first embodiment will be described. The convection PCR method according to the present invention includes a liquid introduction step, a PCR reaction step, and a detection step in this order. The “PCR” includes various PCRs such as reverse transcription PCR (RT-PCR) and real-time PCR which is quantitative PCR.
 (PCR反応溶液)
 本発明で使用されるPCR反応溶液は、検体液および反応試薬溶液から構成される。なお、PCRを行う前の時点で検体液と反応試薬溶液とを混合しておく必要はない。
(PCR reaction solution)
The PCR reaction solution used in the present invention is composed of a sample solution and a reaction reagent solution. Note that it is not necessary to mix the sample solution and the reaction reagent solution at the time before performing PCR.
 (検体液)
 検体液とは、PCRで増幅すべき核酸を含む液を意味する。検体液には、対象のDNA,RNA,疑似核酸等を含む溶液、検体を含む液体が含まれる。例えば、RT-PCRを行う場合には、インフルエンザウィルスやノロウィルス、その他の感染症ウィルス全般、細胞からの発現RNAの抽出液等が検体液として用いられる。ワンステップで検体から増幅対象の核酸を溶出させてPCRを行う場合には、インフルエンザウィルスやノロウィルス、その他の感染症ウィルス全般、細胞を緩衝液や水等の適切な溶液に懸濁したものを検体液として用いることができる。
(Sample liquid)
The sample liquid means a liquid containing a nucleic acid to be amplified by PCR. The sample liquid includes a solution containing the target DNA, RNA, pseudo nucleic acid, and the like, and a liquid containing the sample. For example, when RT-PCR is performed, influenza virus, norovirus, other infectious disease viruses in general, extracts of expressed RNA from cells, and the like are used as sample liquids. When performing PCR by eluting the nucleic acid to be amplified from the sample in one step, influenza virus, norovirus, and other infectious disease viruses in general, cells suspended in an appropriate solution such as buffer or water It can be used as a sample liquid.
 (反応試薬溶液)
 反応試薬溶液とは、検体液に含まれる増幅対象の核酸をPCR法により増幅するのに必要な試薬、酵素を含む溶液を意味する。検体液が核酸を含む溶液である場合には、反応試薬溶液は、dNTP,MgCl2、各種ポリメラーゼ等を含む溶液を意味する。
(Reaction reagent solution)
The reaction reagent solution means a solution containing a reagent and an enzyme necessary for amplifying the nucleic acid to be amplified contained in the sample solution by the PCR method. When the sample solution is a solution containing nucleic acid, the reaction reagent solution means a solution containing dNTP, MgCl 2 , various polymerases and the like.
 検体液がRNAウィルスの懸濁液であり、検体から増幅対象のRNAを溶出させることも含めてワンステップで逆転写PCRを行う場合には、反応試薬溶液としては、例えば、製品名「SuperScriptIII OneStep RT-PCR System」(製品番号12574-018、ライフテクノロジー社製)を使用することができる。なお、「SuperScript」は、ライフテクノロジー社の登録商標である。さらに、例えば、製品名「GeneAmp Ez rTth RNA PCR Kit」(製品番号N8080179、アプライドバイオシステム社製)、製品名「PrimeScriptII High Fidelity One Step RT-PCR kit」(製品コードR026AまたはR026B、タカラバイオ株式会社製)、製品名「Platinum(登録商標) Quantitative RT-PCR ThermoScript(出願商標)One-Step System」 (製品コード11731-015、lifetechnologies社製)、製品名「SpeedSTAR(出願商標)HS DNA Polymerase」(製品コードRR070A、タカラバイオ(株)製)、製品名「Ampdirect(登録商標) Plus(製品コード241-08800-98、(株)島津製作所製)等を用いることができる。 When the sample solution is a suspension of RNA virus and reverse transcription PCR is performed in one step including elution of RNA to be amplified from the sample, as a reaction reagent solution, for example, the product name “SuperScriptIII OneStep RT-PCR System "(Product No. 12574-018, Life Technology Co., Ltd.) can be used. “SuperScript” is a registered trademark of Life Technology Corporation. Furthermore, for example, the product name “GeneAmp Ez rTth RNA PCR Kit” (product number N8080179, manufactured by Applied Biosystems), the product name “PrimeScriptII High Fidelity One Step RT-PCR kit” (product code R026A or R026B, Takara Bio Inc. Product name "Platinum (registered trademark) Quantitative RT-PCR ThermoScript (application trademark) One-Step System" 製品 (product code 11731-015, manufactured by lifetechnologies), product name "SpeedSTAR (application trademark) HS DNA Polymerase" ( A product code RR070A, manufactured by Takara Bio Inc., a product name “Ampdirect (registered trademark) Plus (product code 241-208800-98, manufactured by Shimadzu Corporation)”, and the like can be used.
 《液導入工程》
 液導入工程は、PCR反応溶液を構成する検体液、反応試薬溶液、その他PCR反応に必要な液体を個別に又は一体に環状流路内に導入する工程である。
<< Liquid introduction process >>
The liquid introduction process is a process for introducing the sample liquid, the reaction reagent solution, and other liquids necessary for the PCR reaction, which are included in the PCR reaction solution, individually or integrally into the annular flow path.
 第1実施形態の熱対流生成システム100によりPCRを行う場合、先ず熱対流生成用チップ10の基板11における蓋体13と反対側の面に形成された液体供給孔15dに反応試薬溶液を注入させる。注入した反応試薬溶液は毛細管現象により液体供給路15の伸延部15aを通過して液溜り部15bに流入する。次に、前記液体供給孔15dに検体液を注入する。注入された検体液は毛細管現象により液体供給路15の伸延部15aを通過して液溜り部15bに流入する。液溜り部15bに流入した反応試薬溶液と検体液は、熱対流生成用チップ10を回転させていない停止状態では液溜り部15b内で混合しながら滞留する。最後に、任意に反応試薬溶液の蒸発を防止するためのオイルを上記同様に導入する。なお、反応試薬溶液、検体液、オイル等は、毛細管現象によらず、ピペッター等を使用して液溜り部15bに押し込むようにしてもよい。 When PCR is performed by the thermal convection generation system 100 of the first embodiment, first, the reaction reagent solution is injected into the liquid supply hole 15d formed on the surface of the substrate 11 of the thermal convection generation chip 10 on the side opposite to the lid 13. . The injected reagent solution passes through the extended portion 15a of the liquid supply path 15 and flows into the liquid reservoir 15b by capillary action. Next, the sample liquid is injected into the liquid supply hole 15d. The injected specimen liquid passes through the extension part 15a of the liquid supply path 15 and flows into the liquid reservoir part 15b by capillary action. The reaction reagent solution and the sample liquid that have flowed into the liquid reservoir 15b stay in the liquid reservoir 15b while being mixed in a stopped state in which the thermal convection generating chip 10 is not rotated. Finally, an oil is optionally introduced as described above to prevent evaporation of the reaction reagent solution. Note that the reaction reagent solution, the sample liquid, the oil, and the like may be pushed into the liquid reservoir 15b using a pipetter or the like regardless of the capillary phenomenon.
 ユーザが制御手段50の入力部53を操作してモータ40を駆動して、シャフト41の軸線AX周りにステージ20およびその上に載置された熱対流生成用チップ10を回転させると、遠心力により検体液および反応試薬溶液が環状流路14に導入される。一方で、比重が軽いオイルは液溜り部15bに滞留し、環状流路14内の液体が連通部15cから液溜り部15bに逆流するのを防ぐ蓋として機能するとともに、後述するPCR反応工程においては環状流路14内の液体が蒸発するのを防止する。 When the user operates the input unit 53 of the control means 50 to drive the motor 40 to rotate the stage 20 and the thermal convection generating chip 10 placed thereon around the axis AX of the shaft 41, centrifugal force Thus, the sample solution and the reaction reagent solution are introduced into the annular channel 14. On the other hand, oil having a low specific gravity stays in the liquid reservoir 15b and functions as a lid for preventing the liquid in the annular channel 14 from flowing back from the communication portion 15c to the liquid reservoir 15b. Prevents the liquid in the annular channel 14 from evaporating.
 《PCR反応工程》
 PCR反応工程は、環状流路内でPCR反応溶液を所定速度で還流させてコンベクションPCRを行う工程である。液導入工程の前に、第2ヒータ32を前述した所定のPCRの変性温度に設定しておき、第1ヒータ31を所定のPCRのアニーリング温度に設定しておくことが望ましい。
<< PCR reaction process >>
The PCR reaction step is a step for performing convection PCR by refluxing the PCR reaction solution at a predetermined rate in the circular flow path. Prior to the liquid introduction step, it is desirable to set the second heater 32 to the above-described predetermined PCR denaturation temperature and set the first heater 31 to the predetermined PCR annealing temperature.
 液導入工程に引き続き、モータ40を駆動してステージ20および熱対流生成用チップ10をシャフト41の軸線AX周りに回転させると、その回転による遠心力と第2ヒータおよび第1ヒータの温度差とによってもたらされる熱対流により、PCR反応溶液が環状流路14内を循環する。PCR反応溶液中の2本鎖の核酸は、第2ヒータ32の上方の流路エリアを通過する際に第2ヒータ32の熱源部32bと熱交換して高温(例;90~98℃)に加熱されて変性し、1本鎖の核酸を形成する。その後、該PCR反応液が第1ヒータ31の上方の流路エリアに侵入すると、今度は第1ヒータ31の熱源部31bと熱交換して、空冷より早い速度で液温が低下していき中温(例;55℃~60℃)に調節され、アニーリングおよびエクステンション(ポリメラーゼによる核酸分子の伸長)が起こる。 Subsequent to the liquid introduction process, when the motor 40 is driven to rotate the stage 20 and the thermal convection generating chip 10 around the axis AX of the shaft 41, the centrifugal force due to the rotation and the temperature difference between the second heater and the first heater The PCR reaction solution circulates in the circular channel 14 due to the thermal convection caused by. When the double-stranded nucleic acid in the PCR reaction solution passes through the flow path area above the second heater 32, it exchanges heat with the heat source portion 32b of the second heater 32 to a high temperature (eg, 90 to 98 ° C.). It is denatured by heating to form a single-stranded nucleic acid. Thereafter, when the PCR reaction solution enters the flow path area above the first heater 31, this time, heat exchange is performed with the heat source portion 31 b of the first heater 31, and the liquid temperature decreases at a faster rate than air cooling. (Eg, 55 ° C. to 60 ° C.), and annealing and extension (nucleic acid molecule extension by polymerase) occur.
 なお、環状流路14内のPCR反応溶液にガスが含まれている場合には、そのガスは前述の遠心力により移動してガス排出路16内に流入するので、PCR反応溶液中のガスを除去することができる。これによって、PCR反応溶液がスムーズに熱対流することができる。 If the PCR reaction solution in the annular channel 14 contains a gas, the gas moves by the centrifugal force described above and flows into the gas discharge path 16, so that the gas in the PCR reaction solution is removed. Can be removed. As a result, the PCR reaction solution can be smoothly convected.
 なお、本発明に係る熱対流生成装置1及び熱対流生成用チップ10を用いて逆転写PCRを行う場合、例えば、以下の(a)、(b)の2つの方法により行うことができる。以下、図1~図4を参照して(a)、(b)の2つの方法を説明する。 In addition, when performing reverse transcription PCR using the thermal convection generation apparatus 1 and the thermal convection generation chip 10 according to the present invention, for example, the following two methods (a) and (b) can be performed. Hereinafter, the two methods (a) and (b) will be described with reference to FIGS.
 (a)あらかじめ反応試薬溶液と検体液とを混合し、混合溶液を生成する。次に、熱対流生成用チップ10の液体供給路15内に混合溶液を注入し、熱対流生成用チップ10を回転させて混合溶液を環状流路14内に進入させる。その後、熱対流生成用チップ10の回転を停止させ、第1ヒータ31と第2ヒータ32とを同じ温度(例えば、40~60℃)にして、環状流路14内の混合溶液を一定時間(例えば、60秒)加熱して逆転写反応させる。 (A) The reaction reagent solution and the sample solution are mixed in advance to produce a mixed solution. Next, the mixed solution is injected into the liquid supply path 15 of the thermal convection generating chip 10, and the thermal convection generating chip 10 is rotated to allow the mixed solution to enter the annular flow path 14. Thereafter, the rotation of the thermal convection generating chip 10 is stopped, the first heater 31 and the second heater 32 are set to the same temperature (for example, 40 to 60 ° C.), and the mixed solution in the annular flow path 14 is kept for a certain time ( For example, the reverse transcription reaction is performed by heating for 60 seconds.
 (b)先ず、熱対流生成用チップ10の環状流路14内に反応試薬溶液を充填しておき、その後に液体供給路15に検体液を注入し、熱対流生成用チップ10を回転させて液体供給路15内の検体液を環状流路14に進入させる。そして、第1ヒータ31の温度と第2ヒータ32の温度とを異なる温度にして環状流路14内の液体を熱対流させて反応試薬溶液と検体液とを混合し、混合溶液を生成する。その後、熱対流生成用チップ10の回転を停止させ、第1ヒータ31と第2ヒータ32とを同じ温度(例えば、40~60℃)にして、環状流路14内の混合溶液を一定時間(例えば、60秒)加熱して逆転写反応させる。 (B) First, the reaction reagent solution is filled in the annular flow path 14 of the thermal convection generation chip 10, and then the sample liquid is injected into the liquid supply path 15, and the thermal convection generation chip 10 is rotated. The specimen liquid in the liquid supply path 15 is caused to enter the annular flow path 14. Then, the temperature of the first heater 31 and the temperature of the second heater 32 are made different from each other, and the liquid in the annular flow path 14 is convectively mixed to mix the reaction reagent solution and the sample liquid, thereby generating a mixed solution. Thereafter, the rotation of the thermal convection generating chip 10 is stopped, the first heater 31 and the second heater 32 are set to the same temperature (for example, 40 to 60 ° C.), and the mixed solution in the annular flow path 14 is kept for a certain time ( For example, the reverse transcription reaction is performed by heating for 60 seconds.
 上記の(a)および(b)のいずれかの方法により、RNAから逆転写反応により鋳型DNA(cDNA)を合成する。そして、第1ヒータ31と第2ヒータ32とをPCRに適した温度(例えば、第1ヒータ31の温度を60℃、第2ヒータ32の温度を95℃)に設定して熱対流PCR反応を生じさせる。 A template DNA (cDNA) is synthesized from RNA by reverse transcription reaction by any of the methods (a) and (b) described above. Then, the first heater 31 and the second heater 32 are set to temperatures suitable for PCR (for example, the temperature of the first heater 31 is set to 60 ° C. and the temperature of the second heater 32 is set to 95 ° C.), and the thermal convection PCR reaction is performed. Cause it to occur.
 (熱対流生成用チップの回転速度)
 熱対流生成用チップ10の回転速度は、環状流路14内のPCR反応溶液に含まれる2本鎖DNA(核酸分子)が変性して1本鎖DNAになるのに必要な時間をかけて第2ヒータ32の上方の流路エリアを通過し、且つ、プライマーのアニーリング及び核酸分子の伸長にとって必要な時間をかけて第1ヒータ31の上方の流路エリアを通過するように設定される。
(Rotational speed of chip for generating heat convection)
The rotational speed of the thermal convection generating chip 10 is such that the time required for the double-stranded DNA (nucleic acid molecule) contained in the PCR reaction solution in the circular channel 14 to denature and become single-stranded DNA is increased. 2 It is set so as to pass through the flow channel area above the first heater 31 and to pass through the flow channel area above the first heater 31 over a time required for primer annealing and nucleic acid molecule extension.
 具体的には、環状流路14内のPCR反応溶液が第2ヒータ32の上方の流路エリアを通過する時間:変性時間(A)が一般的には5~60秒、好ましくは10~20秒であり、第1ヒータ31の上方の流路エリアを通過する時間:アニーリング時間+伸長時間(B)が一般的には(5~30)秒+(核酸塩基数÷60塩基)秒であり、クリアランス部分を通過する時間:空冷時間(C)が0.001<(C)/(A)+(B)+(C)<0.15の関係式を満たすものであることが好ましい。したがって熱対流生成用チップ10の回転速度は、PCR反応液が上記時間(A)~(C)で各流路エリアを通過するように設定することが好ましい。この場合、前述した第1ヒータと第2ヒータ32の各熱源部31bと32bが環状流路14と重なる流路エリアの面積を調節することも考慮すべきである。また、ポリメラーゼ(Taq)の種類によって核酸を伸長させる速度が異なるので、上記のアニーリング時間+伸長時間(B)の計算式で用いられている伸長速度(60b/秒)を60b/秒~500b/秒の範囲で変更してもよい。なお、単位「b/秒」における「b」は、DNA等の塩基(base)の略である。 Specifically, the time for the PCR reaction solution in the annular channel 14 to pass through the channel area above the second heater 32: the denaturation time (A) is generally 5 to 60 seconds, preferably 10 to 20 Second, time to pass through the flow path area above the first heater 31: annealing time + extension time (B) is generally (5-30) seconds + (number of nucleic acid bases ÷ 60 bases) seconds Time passing through the clearance portion: It is preferable that the air cooling time (C) satisfies the relational expression of 0.001 <(C) / (A) + (B) + (C) <0.15. Therefore, the rotational speed of the thermal convection generating chip 10 is preferably set so that the PCR reaction solution passes through each flow channel area during the time (A) to (C). In this case, it should be considered that the heat source portions 31b and 32b of the first heater and the second heater 32 described above adjust the area of the flow path area where the annular flow path 14 overlaps. In addition, since the nucleic acid extension speed varies depending on the type of polymerase (Taq), the extension speed (60 b / sec) used in the above calculation formula of annealing time + extension time (B) is 60 b / sec to 500 b / sec. You may change in the range of second. Note that “b” in the unit “b / sec” is an abbreviation for a base such as DNA.
 (液体速度の測定)
 図20は第1実施形態で用いたモータの電源の電圧と該モータの回転数との関係を示すグラフであり、速度と遠心力との関係(F=mv2/r、g=(2πN)2r)より相対重力加速度と第1実施形態で用いたモータの回転数との関係を求め、さらに電圧と相対重力加速度との関係を求めることにより作成したものである。図21は相対重力加速度とモータ40の電源の電圧との関係を示すグラフである。
(Measurement of liquid velocity)
FIG. 20 is a graph showing the relationship between the voltage of the power source of the motor used in the first embodiment and the rotational speed of the motor, and the relationship between the speed and the centrifugal force (F = mv 2 / r, g = (2πN)). obtained relation between the rotational speed of the motor using from 2 r) with a relative acceleration of gravity in the first embodiment, which was developed by further determining the relationship between the voltage and the relative acceleration of gravity. FIG. 21 is a graph showing the relationship between the relative gravitational acceleration and the voltage of the power source of the motor 40.
 予め水を液体供給孔15dよりマイクロピペットで供給し、その後モータ40を回転させて環状流路14に水を充填しておいた状態で、食紅液を同じ液体供給孔15dよりマイクロピペットで供給し、第2ヒータ32と第1ヒータ31とに通電した状態で1G相当の電圧(図20より2.12V)でモータ40を回転させたところ、環状流路14内の赤く呈色した液体が30秒間でおよそ半周した。このように食紅と水とを用いた方法により、環状流路14内を液体が移動する速度を測定することができる。また、このように熱対流生成装置の試運転をすることで、熱対流生成用チップ10の回転数とモータ40の回転数との関係も決定することができる。さらに、上述したように、モータ40の電源の電圧とモータ40の回転数との関係が分かっているので、モータ40にどの程度の電源電圧を印加すれば環状流路14内の液体がどの程度の速度で移動するか分かり、また、該速度を決定することができる。熱対流生成用チップ10の回転数を制御して熱対流速度を制御することで、液体の熱源部32bおよび熱源部31bの上方を通過する時間を調節することができる。 Water is supplied in advance from the liquid supply hole 15d with a micropipette, and then the motor 40 is rotated so that the annular channel 14 is filled with water. When the motor 40 is rotated with a voltage equivalent to 1 G (2.12 V from FIG. 20) in a state where the second heater 32 and the first heater 31 are energized, the red colored liquid in the annular channel 14 is 30. About half a second in seconds. Thus, the speed at which the liquid moves in the annular channel 14 can be measured by a method using food red and water. In addition, by performing the trial operation of the thermal convection generating device in this way, the relationship between the rotational speed of the thermal convection generating chip 10 and the rotational speed of the motor 40 can also be determined. Furthermore, as described above, since the relationship between the power supply voltage of the motor 40 and the rotation speed of the motor 40 is known, what level of power supply voltage is applied to the motor 40 and how much liquid is in the annular flow path 14. Can be determined and the speed can be determined. By controlling the rotational speed of the thermal convection generating chip 10 to control the thermal convection speed, it is possible to adjust the time for passing above the liquid heat source section 32b and the heat source section 31b.
 (回転駆動時間)
 熱対流生成用チップ10を回転させるモータ40の駆動時間は、第2ヒータ32による加熱と第1ヒータ31による冷却とがそれぞれPCRのサーマルサイクル数と同数となるように設定される。
(Rotation drive time)
The drive time of the motor 40 for rotating the heat convection generating chip 10 is set so that the heating by the second heater 32 and the cooling by the first heater 31 are the same as the number of PCR thermal cycles.
 《検出工程》
 検出工程は、環状流路内の液体に含まれる物質を検出および定量する工程である。例えば、PCR法では、増殖する2本鎖の核酸分子内に蛍光物質がインターカレートされるため、この蛍光を検出することでPCR反応液中の核酸を検出および定量することができる。また、例えば、リアルタイムPCRの場合では、所定の蛍光物質を含むキメラププローブが鋳型の核酸に結合した後に、ポリメラーゼによる核酸伸長の際にRNaseHによりキメラププローブが切断され、該切断によりPCR反応液中に蛍光を発する物質が増加するため、該蛍光を検出および定量することができる。
<< Detection process >>
The detection step is a step of detecting and quantifying a substance contained in the liquid in the annular channel. For example, in the PCR method, since a fluorescent substance is intercalated in a double-stranded nucleic acid molecule that proliferates, the nucleic acid in the PCR reaction solution can be detected and quantified by detecting this fluorescence. Further, for example, in the case of real-time PCR, after a chimera probe containing a predetermined fluorescent substance is bound to a nucleic acid as a template, the chimera probe is cleaved by RNase H at the time of nucleic acid extension by a polymerase. Since the substance that emits fluorescence increases, the fluorescence can be detected and quantified.
 図5に示すように、励起光光源91は、回転する熱対流生成用チップ10の環状流路14に向けて前記蛍光を励起する光(励起光)L1を照射する。この励起光L1が環状流路14内の蛍光物質に照射され、蛍光物質が励起されると所定の波長の蛍光L1'を発し、この蛍光L1'は蛍光検出器92により検出・定量される。また、検知光光源93から検知光L2を被検知部95に対して出射し、検知光検出器93が該被検知部P1で反射・散乱された光L2'を検出することで、熱対流生成用チップ10の回転駆動中における環状流路14の位置を検知する。 As shown in FIG. 5, the excitation light source 91 irradiates light (excitation light) L <b> 1 that excites the fluorescence toward the annular flow path 14 of the rotating thermal convection generating chip 10. The excitation light L1 is applied to the fluorescent substance in the annular channel 14, and when the fluorescent substance is excited, fluorescence L1 ′ having a predetermined wavelength is emitted. The fluorescence L1 ′ is detected and quantified by the fluorescence detector 92. Further, the detection light L2 is emitted from the detection light source 93 to the detected portion 95, and the detection light detector 93 detects the light L2 ′ reflected and scattered by the detected portion P1, thereby generating heat convection. The position of the annular flow path 14 during rotation of the chip 10 is detected.
 以下、本発明に係る第1実施形態の熱対流生成装置1および熱対流生成システム100による作用・効果について説明する。 Hereinafter, functions and effects of the thermal convection generating device 1 and the thermal convection generating system 100 according to the first embodiment of the present invention will be described.
 (1)第1実施形態の熱対流生成装置100は、
 液体を循環させるための環状流路14を有する熱対流生成用チップ10を回転可能に固定することができるシャフト41と、環状流路14内の液体を加熱又は冷却する第1熱源部31bを有する第1ヒータ31と、環状流路14内の液体を加熱又は冷却する第2熱源部32bを有する第2ヒータ32と、シャフト41を回転駆動することにより環状流路14の全体をシャフト41の軸線AX回りに回転させるモータ40(回転駆動手段)と、を備え、前記液体が環状流路14を流通する方向(環状流路により呈される円)と直交する方向で環状流路14を平面視したとき、該平面上にある環状流路14の重心(環状流路14の中心)Qと、軸線AXと前記平面との交点である前記回転軸AXの回転中心(図2(A)ではシャフト41の中心)とが一致しない熱対流装置であって、上記回転中心と重心(環状流路14の中心)Qとをつなげた直線Zに対して、重心(環状流路14の中心)Qを中心として、30°以上~150°以下または210°以上~330°以下となる範囲のうち、図2(A)または図3に示すように、いずれか一方の範囲のみに、第2熱源部32bが少なくとも1つ位置して該範囲内で前記環状流路の流路エリアを加熱または冷却し、前記第1熱源部31bは、第2熱源部32bによって加熱または冷却される環状流路14の流路エリア以外の流路エリア(平面視でクリアランスCLと環状流路14とが重なるエリアを除いた流路エリア)を加熱または冷却する熱対流生成装置であるので、熱対流生成用チップ10を回転させて環状流路14内でPCR反応液等の液体を循環させた際に、該液体が環状流路14内の2つの温度領域(第1ヒータ31上方の環状流路14の流路エリア、第2ヒータ32上方の環状流路14の流路エリア(図2(A)または図3参照))以外の温度になっている時間が殆ど無い状態で、何度も反復される安定した熱対流生成が得られる。また、熱対流生成装置を運転する環境の温度が変化しても安定して同じ熱対流が得られる。
(1) The thermal convection generating apparatus 100 of the first embodiment is
It has the shaft 41 which can fix rotatably the chip | tip 10 for thermal convection generation | occurrence | production which has the annular flow path 14 for circulating the liquid, and the 1st heat-source part 31b which heats or cools the liquid in the annular flow path 14. The first heater 31, the second heater 32 having the second heat source part 32 b that heats or cools the liquid in the annular flow path 14, and the shaft 41 is rotated to drive the entire annular flow path 14 along the axis of the shaft 41. A motor 40 (rotation drive means) that rotates around the axis AX, and the annular channel 14 is seen in a plan view in a direction orthogonal to the direction in which the liquid flows through the annular channel 14 (circle exhibited by the annular channel). The center of gravity (center of the annular flow path 14) Q of the annular flow path 14 on the plane and the rotation center of the rotation axis AX that is the intersection of the axis AX and the plane (the shaft in FIG. 2A) 41 center) In which the rotation center and the center of gravity (center of the annular channel 14) Q are connected to the straight line Z, the center of gravity (center of the annular channel 14) Q is 30 °. As shown in FIG. 2 (A) or FIG. 3, at least one second heat source part 32b is located in only one of the ranges of −150 ° or less or 210 ° or more and −330 ° or less. Then, the flow passage area of the annular flow passage is heated or cooled within the range, and the first heat source portion 31b is a flow other than the flow passage area of the annular flow passage 14 heated or cooled by the second heat source portion 32b. Since this is a thermal convection generating device that heats or cools the road area (the channel area excluding the area where the clearance CL and the annular channel 14 overlap in plan view), the thermal convection generating chip 10 is rotated to rotate the annular channel. 14 such as PCR reaction solution When the liquid is circulated, the liquid has two temperature regions in the annular channel 14 (the channel area of the annular channel 14 above the first heater 31 and the channel of the annular channel 14 above the second heater 32). Stable thermal convection generation that is repeated many times can be obtained with almost no time other than the area (see FIG. 2A or FIG. 3). Further, the same heat convection can be stably obtained even if the temperature of the environment in which the heat convection generating device is operated changes.
 なお、ここでのクリアランスCLとは、第1熱源部31bと第2熱源部32bとの間で熱伝導させないまたは熱伝導してもPCR反応に悪影響が及ばない程度の最小限のクリアランスを意味する。 Here, the clearance CL means a minimum clearance that does not cause heat conduction between the first heat source unit 31b and the second heat source unit 32b or does not adversely affect the PCR reaction even if heat conduction is performed. .
 ここで、上記クリアランスCLを有しない場合(例;第1熱源部31bと第2熱源部32bとが接触している場合)であっても、別の温度制御手段等により第1熱源部31bと第2熱源部32bとが所定の温度で(強制的にでも)維持されていればよいことから、その場合には、第1熱源部31bによって加熱または冷却される流路エリアは、上記と異なり、第2熱源部32bによって加熱または冷却される環状流路14の流路エリア以外の流路エリアの全部となる。 Here, even when the clearance CL is not provided (for example, when the first heat source unit 31b and the second heat source unit 32b are in contact with each other), the first heat source unit 31b can be separated from the first heat source unit 31b by another temperature control unit or the like. Since the second heat source unit 32b only needs to be maintained at a predetermined temperature (even forcibly), in this case, the flow path area heated or cooled by the first heat source unit 31b is different from the above. In addition, the entire flow path area other than the flow path area of the annular flow path 14 heated or cooled by the second heat source unit 32b is provided.
 また、前述したように、空冷により環状流路14内の液体の温度を調節するよりも、熱媒体により環状流路14内の液体を冷却または加温をする方が液体の温度を調節する効率が高い。例えば、第2ヒータ32の上方の流路エリアを通過して高温(例;90℃~95℃)となった液体に対しては、該液体より低温(例;50℃~60℃)の熱媒体である第1ヒータ31により前記液体を冷却した方が空冷するよりも多くの場合で温度調節の効率が高くなる。そのため、第1熱源部31bと第2熱源部32bとの間にクリアランスCLを設ける場合に、必要最小限の上記クリアランスCLを超える隙間を設けないようにすることで、上記液体を空冷してしまう流路エリアを極力減らすことができ、この結果、環状流路を循環する液体の温度調節の効率を高めることができ、迅速な温度調節が実現される。 Further, as described above, it is more efficient to adjust the temperature of the liquid by cooling or heating the liquid in the annular flow path 14 with a heat medium than adjusting the temperature of the liquid in the annular flow path 14 by air cooling. Is expensive. For example, for a liquid that has passed through the flow path area above the second heater 32 and has reached a high temperature (eg, 90 ° C. to 95 ° C.), the heat is lower than that of the liquid (eg, 50 ° C. to 60 ° C.). In many cases, the efficiency of temperature adjustment is higher when the liquid is cooled by the first heater 31 that is a medium than when the liquid is cooled by air. Therefore, when the clearance CL is provided between the first heat source part 31b and the second heat source part 32b, the liquid is air-cooled by not providing a gap exceeding the minimum clearance CL. The flow channel area can be reduced as much as possible. As a result, the efficiency of temperature adjustment of the liquid circulating in the annular flow channel can be increased, and rapid temperature control is realized.
 さらに、環状流路内の液体の温度調節は空冷によらないため、空冷する場合のように前記液体の温度調節が外気温に左右されにくく、ロバスト性・熱対流の再現性に優れる。 Furthermore, since the temperature adjustment of the liquid in the annular channel is not based on air cooling, the temperature adjustment of the liquid is not easily influenced by the outside air temperature as in the case of air cooling, and is excellent in robustness and reproducibility of heat convection.
 また、図2(A)または図3に示すように、前記線Zの左右で第1ヒータ31と第2ヒータ32とが設置され、第2ヒータ32の方が第1ヒータ31より高温であれば、上記線Zの左右で環状流路内の液体に温度差が生じ、密度も相違する。すなわち、第1ヒータ31上方の流路エリアを通過する液体の密度は、第2ヒータ32上方の流路エリアを通過する液体より高密度となり、前記液体の遠心力の受け方が左右で異なり、遠心力の合力として液体が環状流路を循環するのを促進する力が働くこととなる。第1ヒータ31と第2ヒータ32との温度設定が逆である場合も同様の理由から液体が環状流路14を循環するのを促進させることができる。 Further, as shown in FIG. 2A or 3, the first heater 31 and the second heater 32 are installed on the left and right of the line Z, and the second heater 32 is higher in temperature than the first heater 31. For example, a temperature difference occurs in the liquid in the annular channel on the left and right of the line Z, and the density is also different. That is, the density of the liquid that passes through the flow path area above the first heater 31 is higher than that of the liquid that passes through the flow path area above the second heater 32, and the way the liquid is subjected to centrifugal force differs from left to right. As a resultant force, a force that promotes the circulation of the liquid in the annular flow path is applied. Even when the temperature settings of the first heater 31 and the second heater 32 are reversed, it is possible to promote the circulation of the liquid through the annular flow path 14 for the same reason.
 (2)前記平面視をしたときのクリアランスCL部分の面積が環状流路14の流路エリア全体の面積に対して0.1~15%の範囲にあれば、前記液体がクリアランスCLの上方に位置する環状流路内の流路エリアを通過する時間が、前記液体の温度制御に悪影響を及ぼさない範囲となり、前記液体の温度を好適に調節することができる。 (2) If the area of the clearance CL portion in the plan view is in the range of 0.1 to 15% with respect to the entire area of the annular flow path 14, the liquid is above the clearance CL. The time for passing through the flow channel area in the annular flow channel is within a range that does not adversely affect the temperature control of the liquid, and the temperature of the liquid can be suitably adjusted.
 (3)第1ヒータ31の熱源部31bと第2ヒータ32の熱源部32bとが面一の平板部を有し、前記平面視をした状態で、前記クリアランス部分が、第2熱源部32を囲うように各熱源部31b,32bが形成および配置されているため、前記平面視したときに(図2(A)または図3参照)、円環流路14と重ならない熱対流生成用チップ10の部分にも第1ヒータ31,第2ヒータ32が当接する。その結果、円環流路14の周囲や内側(リングの内側)も空冷されず、液体の温度調節をより好適に行うことができる。なお、前記平面視をした状態で、前記クリアランスが、第2ヒータの熱源部32bを囲うように各熱源部が形成および配置されていればよいため、コの字型やc字型でも同様の効果が得られる。 (3) The heat source portion 31b of the first heater 31 and the heat source portion 32b of the second heater 32 have a flat plate portion that is flush with the second heat source portion 32. Since the heat source portions 31b and 32b are formed and arranged so as to surround, the heat convection generating chip 10 that does not overlap the annular flow path 14 when viewed in plan (see FIG. 2A or FIG. 3). The first heater 31 and the second heater 32 are also in contact with the portion. As a result, the periphery and the inner side (the inner side of the ring) of the annular channel 14 are not air-cooled, and the liquid temperature can be adjusted more suitably. In addition, since each heat source part should just be formed and arrange | positioned so that the said clearance may surround the heat source part 32b of a 2nd heater in the state of the said planar view, a U-shape and a c-shape are the same. An effect is obtained.
 (4)前記平面視をしたとき、第2ヒータ32の第2熱源部32bと接触する環状流路14の流路エリアが、第1ヒータ31の第1熱源部31bと接触する環状流路14の流路エリアよりも面積が小さいことにより、第2ヒータ32で加熱された液体を効率よく冷却して所定温度に調節し、該温度にて安定的に維持することができる。 (4) When viewed in plan, the channel area of the annular channel 14 in contact with the second heat source unit 32b of the second heater 32 is in contact with the first heat source unit 31b of the first heater 31. Since the area is smaller than the flow path area, the liquid heated by the second heater 32 can be efficiently cooled, adjusted to a predetermined temperature, and stably maintained at the temperature.
 例えば熱対流生成装置100を使用してPCR反応を行う場合、第2ヒータ32により変性温度に達したPCR反応溶液が第1ヒータ31により変性温度から効率よく所定のアニーリング・エクステンション温度まで冷却されて該温度にて安定的に維持されることとなり、PCR反応(アニーリング・エクステンション)が安定する。 For example, when the PCR reaction is performed using the thermal convection generating apparatus 100, the PCR reaction solution that has reached the denaturation temperature by the second heater 32 is efficiently cooled from the denaturation temperature to the predetermined annealing extension temperature by the first heater 31. It will be stably maintained at the temperature, and the PCR reaction (annealing extension) will be stable.
 (5)熱対流生成装置1と、液体を循環させるための環状流路14を有する熱対流生成用チップ10とを含み、前記熱対流生成用チップ10は、環状流路14に連通した液の液体供給路15を有し、前記回転駆動により熱対流生成用チップ10に加わる遠心力により前記液体供給路15中の液体が前記環状流路14に供給される熱対流生成システムであれば、熱対流生成用チップ10のみを交換して別のPCR反応を即座に行うことができる。また、PCR反応を行う場合には、遠心力の付加と同時に液体としてのPCR反応溶液が環状流路14内に供給され反応を開始するため、PCR反応の開始時点と熱対流の開始時点とを一致させることができる。 (5) including the thermal convection generating device 1 and the thermal convection generating chip 10 having the annular flow path 14 for circulating the liquid, and the thermal convection generating chip 10 is a liquid that communicates with the annular flow path 14. If the thermal convection generating system has a liquid supply path 15 and the liquid in the liquid supply path 15 is supplied to the annular flow path 14 by the centrifugal force applied to the thermal convection generation chip 10 by the rotation driving, It is possible to immediately perform another PCR reaction by exchanging only the convection generating chip 10. Further, when performing the PCR reaction, the PCR reaction solution as a liquid is supplied into the annular flow path 14 simultaneously with the addition of the centrifugal force to start the reaction. Therefore, the PCR reaction start time and the heat convection start time are determined. Can be matched.
 (6)第2ヒータ32上方の環状流路14の流路エリアからみて回転軸(軸線AX)側であって該流路エリアの近傍で前記環状流路14に連通したガス排出路16が形成されていることにより、回転駆動して液体が第2ヒータにより高温となった際に発生する気泡等のガスが、ガス排出路に移行しやすくなる。 (6) A gas discharge passage 16 is formed on the rotation axis (axis AX) side as viewed from the flow passage area of the annular flow passage 14 above the second heater 32 and in communication with the annular flow passage 14 in the vicinity of the flow passage area. As a result, gas such as bubbles generated when the liquid is driven to rotate and the liquid is heated to a high temperature by the second heater easily moves to the gas discharge path.
 (7)前記回転軸の軸線AXに対して前記環状流路14が対称となるように複数配置されていることにより、熱対流生成用チップ10を回転駆動した際にバランスがとれて、環状流路14内での液体の循環および熱対流が安定する。 (7) By arranging a plurality of the annular flow paths 14 so as to be symmetric with respect to the axis AX of the rotation axis, a balance is obtained when the thermal convection generating chip 10 is rotationally driven. The circulation and thermal convection of the liquid in the passage 14 are stabilized.
 (8)前記環状流路14の壁面の表面粗さRaが100nm以下であることより、環状流路内での液体のぬれ残りが軽減される。 (8) Since the surface roughness Ra of the wall surface of the annular channel 14 is 100 nm or less, the remaining wetness of the liquid in the annular channel is reduced.
 (9)前記環状流路が前記平面視をしたときに真円状であることにより、環状流路内で液体がスムーズに循環し、熱対流が好適に行われる。 (9) When the annular channel is circular when viewed in plan, the liquid circulates smoothly in the annular channel and heat convection is suitably performed.
 (10)前記環状流路の壁面の材質が、環状オレフィン、ポリプロピレン、及びポリカーボネートのうちのいずれかであることにより、樹脂であるために環状流路の壁面の表面粗さを調節しやすく、また、環状流路内の蛍光物質を光学的に検出するために必要な熱対流生成用チップ10の透明性を確保しやすい。 (10) Since the material of the wall surface of the annular channel is any one of cyclic olefin, polypropylene, and polycarbonate, since it is a resin, it is easy to adjust the surface roughness of the wall surface of the annular channel. It is easy to ensure the transparency of the thermal convection generating chip 10 necessary for optically detecting the fluorescent substance in the annular channel.
 (11)熱対流生成システム100は、前記環状流路14A内の液体に含まれる蛍光色素を励起する励起光を前記環状流路14A内の前記液体に照射する励起光光源と、前記蛍光色素に前記励起光を照射することにより前記蛍光色素によって放出される蛍光を検出する蛍光検出器と、前記蛍光検出器によって検出された蛍光に基づいて核酸の複製量を算出する演算制御部と、を含むものである。 (11) The thermal convection generation system 100 applies an excitation light source that irradiates the liquid in the annular flow path 14A with excitation light that excites the fluorescent dye contained in the liquid in the annular flow path 14A, and the fluorescent dye. A fluorescence detector that detects fluorescence emitted by the fluorescent dye by irradiating the excitation light, and an arithmetic control unit that calculates a replication amount of the nucleic acid based on the fluorescence detected by the fluorescence detector. It is a waste.
 例えば熱対流生成システム100によりPCR反応を行う場合、上記(1)で説明したように効率的な温度制御が可能となることから、PCR反応溶液がPCR反応上で意図しない温度(具体的には70℃~90℃の範囲)となる時間が短縮されるとともに、時間短縮によりPCR反応に寄与しない時間帯におけるTaqポリメラーゼ等のPCR反応用の酵素の不必要な失活を軽減することができる。この結果、本来増幅されるべき核酸が再現性よく増幅され、PCR自体の再現性が向上し、このようなPCR反応の産物(核酸)に標識された蛍光物質からの蛍光を検出するので、リアルタイムPCR等における精度が高まる。 For example, when the PCR reaction is performed by the thermal convection generation system 100, the temperature can be efficiently controlled as described in (1) above. Therefore, the PCR reaction solution has an unintended temperature in the PCR reaction (specifically, The range of 70 ° C. to 90 ° C.) is shortened, and unnecessary deactivation of an enzyme for PCR reaction such as Taq polymerase in a time zone that does not contribute to the PCR reaction can be reduced by shortening the time. As a result, the nucleic acid to be originally amplified is amplified with good reproducibility, the reproducibility of PCR itself is improved, and the fluorescence from the fluorescent substance labeled on the product (nucleic acid) of such a PCR reaction is detected. Accuracy in PCR and the like is increased.
 (17)(1)~(16)のいずれか一項に記載の熱対流生成装置または熱対流生成システムを使用したコンベクションPCR法であって、PCR反応中に、第2ヒータ32の第2熱源部32bと第1ヒータ31の第1熱源部31bとの温度差を10℃以上に維持することにより、熱対流をより一層効率よく促進させることができる。 (17) A convection PCR method using the thermal convection generating device or the thermal convection generating system according to any one of (1) to (16), wherein the second heat source of the second heater 32 is used during the PCR reaction. By maintaining the temperature difference between the part 32 b and the first heat source part 31 b of the first heater 31 at 10 ° C. or more, it is possible to promote thermal convection more efficiently.
 [第2実施形態]
 第2に実施形態の熱対流生成システム200について説明する。第2実施形態の熱対流生成システム200は、熱対流生成用チップ(図6,図7参照)10Aと、第1実施形態の熱対流生成装置1とを少なくとも有する。熱対流生成装置1は、前述したように、シャフト41と、第1ヒータ31および第2ヒータ32と、モータ40等を有する。なお、熱対流生成装置1自体の構成については、第1実施形態と同様であるのでその説明を省略する。
[Second Embodiment]
Secondly, a thermal convection generation system 200 according to the embodiment will be described. The thermal convection generation system 200 of the second embodiment includes at least a thermal convection generation chip (see FIGS. 6 and 7) 10A and the thermal convection generation device 1 of the first embodiment. As described above, the thermal convection generating device 1 includes the shaft 41, the first heater 31, the second heater 32, the motor 40, and the like. Note that the configuration of the thermal convection generating device 1 itself is the same as that of the first embodiment, and thus the description thereof is omitted.
 《熱対流生成用チップ》
 図6に示すように、熱対流生成用チップは、基板11Aと、基板11Aに積層された蓋体13Aとを有し、各部材の中心に中心孔17を有する。図8(A)に基板11Aの表面を示し、図8(B)に基板11Aの裏面を示す。図8(A)および(B)に示すように、基板11Aは、環状流路14Aと、第1~第3液体供給路15A,15B,15Cとを備える。これらの複数の液体供給路は、以下に述べるように、それぞれが異なる液体を収納し、環状流路14Aに供給するよう設けることができる。なお、基板11A等の各部材の材質については第1実施形態について説明した通りである。
《Tip for generating heat convection》
As shown in FIG. 6, the thermal convection generating chip has a substrate 11A and a lid 13A laminated on the substrate 11A, and has a center hole 17 at the center of each member. FIG. 8A shows the front surface of the substrate 11A, and FIG. 8B shows the back surface of the substrate 11A. As shown in FIGS. 8A and 8B, the substrate 11A includes an annular flow path 14A and first to third liquid supply paths 15A, 15B, and 15C. The plurality of liquid supply paths can be provided so as to store different liquids and supply them to the annular flow path 14A as described below. The material of each member such as the substrate 11A is as described in the first embodiment.
 第1液体供給路15Aは、図8に示したように、第1受入部16Aと第1吸引通路17Aとを含む。第2液体供給路15Bは、第2受入部16Bと第2吸引通路17Bとを含む。第3液体供給路15Cは、第3受入部16Cと第3吸引通路17Cとを含む。これら第1~第3受入部16A~16Cは液体を受け入れるためのものである。 As shown in FIG. 8, the first liquid supply path 15A includes a first receiving portion 16A and a first suction path 17A. The second liquid supply path 15B includes a second receiving portion 16B and a second suction path 17B. The third liquid supply path 15C includes a third receiving portion 16C and a third suction path 17C. These first to third receiving portions 16A to 16C are for receiving a liquid.
 第1~第3吸引通路17A~17Cは、それぞれ、第1~第3受入部16A~16Cと環状流路14とを連通させるとともに、第1~第3受入部16A~16Cの液体をそれぞれ毛細管現象により吸引する。 The first to third suction passages 17A to 17C respectively connect the first to third receiving portions 16A to 16C and the annular flow path 14, and the liquids of the first to third receiving portions 16A to 16C are respectively capillary tubes. Suction by phenomenon.
 各吸引通路は、第1領域Tと第2領域Sとを有する。第1領域Tは、各吸引通路17A~17Cの中間部と環状流路14Aとの間に位置する。第2領域Sは、各吸引通路17A~17Cの中間部と各受入部16A~16Cとの間に位置する。熱対流生成用チップ10を回転させることにより、第1領域T内の液体が第2領域S内の液体から分離して環状流路14Aに供給される。 Each suction passage has a first region T and a second region S. The first region T is located between the intermediate portion of each of the suction passages 17A to 17C and the annular flow path 14A. The second region S is located between the intermediate portions of the suction passages 17A to 17C and the receiving portions 16A to 16C. By rotating the thermal convection generating chip 10, the liquid in the first region T is separated from the liquid in the second region S and supplied to the annular flow path 14A.
 環状流路14Aは、検体液と反応試薬溶液との混合液(詳細は後述)を熱対流させるために用いられる。環状流路14Aは、前述の平面視で円環状の帯状の流路である(図8(A)および(B)参照)。環状流路14Aは、基板11Aの下面に形成された溝(図8(B)参照)および蓋体13Aの上面の一部によって構成されている(図7参照)。環状流路14Aの各部寸法は特に限定されないが、例えば、環状流路14Aの外側の直径は60mm、深さは400μm、幅は500μmであるが、第1実施形態で述べたような寸法に設定することができる。この第2実施形態では、複数の環状流路14Aが、基板11Aの中心軸の周りに所定の角度の間隔をおいて設けられている(図6および図8参照)。なお、この中心軸は、熱対流生成用チップ10Aを熱対流生成装置1に装着した状態でシャフト41の軸線AXに一致する。 The annular channel 14A is used for heat convection of a mixed solution (details will be described later) of the sample solution and the reaction reagent solution. The annular channel 14A is an annular belt-like channel in plan view (see FIGS. 8A and 8B). The annular channel 14A is configured by a groove (see FIG. 8B) formed on the lower surface of the substrate 11A and a part of the upper surface of the lid 13A (see FIG. 7). The dimensions of each part of the annular flow path 14A are not particularly limited. For example, the outer diameter of the annular flow path 14A is 60 mm, the depth is 400 μm, and the width is 500 μm, but the dimensions are set as described in the first embodiment. can do. In the second embodiment, a plurality of annular flow paths 14A are provided at predetermined angular intervals around the central axis of the substrate 11A (see FIGS. 6 and 8). The central axis coincides with the axis AX of the shaft 41 in a state where the thermal convection generating chip 10A is mounted on the thermal convection generating device 1.
 図8(A)に示すように、第1受入部16Aは孔によって構成されている。第1吸引通路17Aは、その中間部で鋭角状に屈曲しており、第1領域Tは、基板11Aの径方向に延伸し、第2領域Sは、第1領域Tとの間の角度θ"が鋭角となる方向に延伸している(図8(B)参照)。第1領域T及び第2領域Sでは第1吸引通路17Aの一部を構成する溝が形成されており、該溝は基板10の下面に形成されている(図8(B)参照)。なお、第2~第3受入部16B,16Cは第1受入部16Aと同様に構成されている。また、第2~第3吸引通路17B,17Cは第1吸引通路17Aと同様に構成されている。 As shown in FIG. 8A, the first receiving portion 16A is configured by a hole. The first suction passage 17A is bent at an acute angle at an intermediate portion thereof, the first region T extends in the radial direction of the substrate 11A, and the second region S has an angle θ between the first region T and the first region T. "Is extended in a direction that forms an acute angle (see FIG. 8B). In the first region T and the second region S, a groove that constitutes a part of the first suction passage 17A is formed. (See FIG. 8B) The second to third receiving portions 16B and 16C are configured in the same manner as the first receiving portion 16A. The third suction passages 17B and 17C are configured in the same manner as the first suction passage 17A.
 熱対流生成用チップ10Aをその中心軸周りに回転させることにより、各第1領域T内の液体は遠心力によって環状流路14Aの方向に移動し、各第2領域S内の液体は遠心力によって各受入部の方向に移動する。なお、角度θ"は、例えば、5°以上85°以下である。 By rotating the thermal convection generating chip 10A around its central axis, the liquid in each first region T is moved in the direction of the annular flow path 14A by centrifugal force, and the liquid in each second region S is centrifugal force. To move in the direction of each receiving part. The angle θ ″ is, for example, not less than 5 ° and not more than 85 °.
 各吸引通路17A~17Cは、空気孔18A~18Cをさらに有する。この空気孔は、各吸引通路17A~17Cの中間部に空気を導入する。空気孔18A~18Cは孔によって構成され、各第1領域T及び第2領域Sを基板11Aの上面側の空間と連通させる。空気孔18A~18Cは、各第1領域T内の液体と第2領域S内の液体との分離を促進する。 The suction passages 17A to 17C further have air holes 18A to 18C. This air hole introduces air into the intermediate portion of each of the suction passages 17A to 17C. The air holes 18A to 18C are constituted by holes, and each first region T and second region S are communicated with the space on the upper surface side of the substrate 11A. The air holes 18A to 18C promote separation of the liquid in each first region T and the liquid in the second region S.
 すなわち、第1領域T内の液体と第2領域S内の液体との間に形成される空隙が真空状態であると、両液体の各々が当該空隙の方向に吸引されるため、第1領域T内の液体と第2領域S内の液体とが分離しづらくなる。空気孔18A~18Cを設けることによって、当該空隙に空気が導入されるため、第1領域T内の液体と第2領域S内の液体とがスムーズに分離する。なお、各吸引通路17A~17Cの中間部に空気を導入しなくても第1領域T内の液体と第2領域S内の液体とがスムーズに分離できる場合には、空気孔18A~18Cを省略することもできる。 That is, when the gap formed between the liquid in the first region T and the liquid in the second region S is in a vacuum state, each of the two liquids is sucked in the direction of the gap. It becomes difficult for the liquid in T and the liquid in 2nd area | region S to isolate | separate. By providing the air holes 18A to 18C, air is introduced into the gap, so that the liquid in the first region T and the liquid in the second region S are smoothly separated. If the liquid in the first region T and the liquid in the second region S can be smoothly separated without introducing air into the intermediate portions of the suction passages 17A to 17C, the air holes 18A to 18C are provided. It can be omitted.
 熱対流生成用チップ10Aは、導入室19と導入通路19aとをさらに備える。導入室19と導入通路19aは、第1領域Tと環状流路14Aとの間に設けられている。各供給路15A~15Cの第1領域Tから排出される液体は導入室19に流入する。導入室19の詳細については、図9を参照して後述する。導入室19内の液体は、導入通路19aを介して環状流路14Aに流入する。なお、この導入通路19は基板11Aの下面に形成した溝と蓋体13Aの上面とによって構成されている(図8(B)および図6参照)。 The thermal convection generating chip 10A further includes an introduction chamber 19 and an introduction passage 19a. The introduction chamber 19 and the introduction passage 19a are provided between the first region T and the annular flow path 14A. The liquid discharged from the first region T of each of the supply paths 15A to 15C flows into the introduction chamber 19. Details of the introduction chamber 19 will be described later with reference to FIG. The liquid in the introduction chamber 19 flows into the annular channel 14A through the introduction passage 19a. The introduction passage 19 is constituted by a groove formed on the lower surface of the substrate 11A and the upper surface of the lid 13A (see FIGS. 8B and 6).
 第1液体供給路15Aは、検体液を環状流路14に供給する。検体液としては、第1実施形態のものと同一のものを使用することができる。 The first liquid supply path 15A supplies the sample liquid to the annular flow path 14. As the sample liquid, the same one as in the first embodiment can be used.
 第1液体供給路15Aの第1領域Tの寸法(深さ,幅,長さ)は、例えば、以下の表1の通りである。第1液体供給路15Aの第2領域Sの寸法(深さ,幅,長さ)は、例えば、以下の表1の通りである。 The dimensions (depth, width, length) of the first region T of the first liquid supply path 15A are, for example, as shown in Table 1 below. The dimensions (depth, width, length) of the second region S of the first liquid supply path 15A are, for example, as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 第1液体供給路15Aの第1領域Tに充填される検体液の量は、環状流路14Aに供給すべき検体液の量と等しい。また、第1液体供給路の第1受入部16Aの容積は、第1吸引通路17Aの容積よりも大きい。
Figure JPOXMLDOC01-appb-T000001
The amount of the sample liquid filled in the first region T of the first liquid supply path 15A is equal to the amount of the sample liquid to be supplied to the annular flow path 14A. Further, the volume of the first receiving portion 16A of the first liquid supply path is larger than the volume of the first suction passage 17A.
 第2液体供給路15Bは、PCRを行うための反応試薬溶液を環状流路14Aに供給する。反応試薬溶液については、第1実施形態の反応試薬溶液と同一のものを用いることができる。 The second liquid supply path 15B supplies a reaction reagent solution for performing PCR to the annular flow path 14A. As the reaction reagent solution, the same reaction reagent solution as that of the first embodiment can be used.
 第2液体供給路15Bの第1領域Tの寸法(深さ,幅,長さ)は、例えば、以下の表2の通りである。第2液体供給路15Bの第2領域Sの寸法(深さ,幅,長さ)は、例えば、以下の表2の通りである。 The dimensions (depth, width, length) of the first region T of the second liquid supply path 15B are, for example, as shown in Table 2 below. The dimensions (depth, width, length) of the second region S of the second liquid supply path 15B are, for example, as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 第2液体供給路15Bの第1領域Tに充填される反応試薬溶液の量は、環状流路14Aに供給すべき反応試薬溶液の量と等しい。また、第2液体供給路の第2受入部16Bの容積は、第2液体供給路の吸引通路17Bの容積よりも大きい。なお、第1液体供給路15Aの第1領域Tの容積と、第2液体供給路15Bの第1領域Tの容積とを併せた容積は環状流路14Aの容積と等しい。
Figure JPOXMLDOC01-appb-T000002
The amount of the reaction reagent solution filled in the first region T of the second liquid supply path 15B is equal to the amount of the reaction reagent solution to be supplied to the annular flow path 14A. Further, the volume of the second receiving portion 16B of the second liquid supply path is larger than the volume of the suction passage 17B of the second liquid supply path. Note that the total volume of the first region T of the first liquid supply path 15A and the volume of the first region T of the second liquid supply path 15B is equal to the volume of the annular flow path 14A.
 第3液体供給路15Cは、蒸発抑制用液体(例;PCR用のミネラルオイル等)を熱対流用流路11に供給するためのものである。蒸発抑制用液体は、環状流路14A内の液体(例;検体液と反応試薬溶液)の蒸発を抑制する液体であり、環状流路14内に導入する熱源30(第2ヒータ)の最高温度より高い沸点を有するものが用いられる。ミネラルオイルの沸点が、環状流路14A内の液体(例;検体液と反応試薬溶液)を加熱する第2ヒータ32の最高温度よりも高いことから、環状流路14A内の液体の蒸発を抑制する。また、ミネラルオイルの比重は、環状流路14A内の液体の比重よりも小さいため、導入通路19aを塞ぐ蓋として機能する。なお、ミネラルオイル以外の液体であっても、比重が環状流路14A内の液体(例;検体液及び反応試薬溶液)の比重よりも小さい、及び/又は沸点が第2ヒータ32の最高温度よりも高ければ、蒸発抑制用液体として用いることができる。 The third liquid supply path 15C is for supplying an evaporation suppression liquid (eg, mineral oil for PCR) to the heat convection flow path 11. The evaporation suppression liquid is a liquid that suppresses the evaporation of the liquid (for example, the sample liquid and the reaction reagent solution) in the annular channel 14A, and the maximum temperature of the heat source 30 (second heater) introduced into the annular channel 14. Those having a higher boiling point are used. Since the boiling point of the mineral oil is higher than the maximum temperature of the second heater 32 that heats the liquid in the annular channel 14A (eg, the sample liquid and the reaction reagent solution), the evaporation of the liquid in the annular channel 14A is suppressed. To do. Moreover, since the specific gravity of mineral oil is smaller than the specific gravity of the liquid in the annular flow path 14A, it functions as a lid that closes the introduction passage 19a. In addition, even if it is liquids other than mineral oil, specific gravity is smaller than the specific gravity of the liquid (for example; sample liquid and reaction reagent solution) in annular flow path 14A, and / or a boiling point is higher than the maximum temperature of the 2nd heater 32. If it is too high, it can be used as a liquid for suppressing evaporation.
 熱対流生成用チップ10Aがその中心軸周りに回転すると、環状流路14A内は、ミネラルオイルよりも比重が大きい検体液と反応試薬溶液とで満たされ、ミネラルオイルは導入通路19aに滞留して導入通路19aを塞ぐ。その結果、環状流路14A内の検体液及び反応試薬溶液の蒸発と導入室19への逆流とを抑制することができる。 When the thermal convection generating chip 10A rotates around its central axis, the annular channel 14A is filled with the sample liquid and the reaction reagent solution having a specific gravity greater than that of the mineral oil, and the mineral oil stays in the introduction passage 19a. The introduction passage 19a is blocked. As a result, evaporation of the sample solution and reaction reagent solution in the annular channel 14A and backflow into the introduction chamber 19 can be suppressed.
 第3液体供給路15Cの第1領域Tの寸法(深さ,幅,長さ)は、例えば、以下の表3の通りである。第3液体供給路15Bの第2領域Sの寸法(深さ,幅,長さ)は、例えば、以下の表3の通りである。なお、第1液体供給路15A、第2液体供給路15B、及び第3液体供給路15Cの各々の位置及び各部寸法(表1~3参照)は、第1~第3液体供給路15A~15Cが互いに干渉しないように設定される。 The dimensions (depth, width, length) of the first region T of the third liquid supply path 15C are, for example, as shown in Table 3 below. The dimensions (depth, width, length) of the second region S of the third liquid supply path 15B are, for example, as shown in Table 3 below. It should be noted that the positions and the dimensions of each of the first liquid supply path 15A, the second liquid supply path 15B, and the third liquid supply path 15C (see Tables 1 to 3) are the first to third liquid supply paths 15A to 15C. Are set so as not to interfere with each other.
Figure JPOXMLDOC01-appb-T000003
 第3液体供給路15Cの第1領域Tに充填されるミネラルオイルの量は、導入通路19aを防ぐことができる量である。また、第3液体供給路の第3受入部16Cの容積は、第3液体供給路の第3吸引通路17Cの容積よりも大きい。
Figure JPOXMLDOC01-appb-T000003
The amount of mineral oil filled in the first region T of the third liquid supply passage 15C is an amount that can prevent the introduction passage 19a. The volume of the third receiving portion 16C of the third liquid supply path is larger than the volume of the third suction passage 17C of the third liquid supply path.
 熱対流生成用チップ10Aは、カバー部25(図6,図7,図9および図10参照)をさらに備える。熱対流生成用チップ10Aの上面に導入室19の開口が形成されている。カバー部25は、熱対流生成用チップ10Aの基板11Aに設けられており、前記開口を覆う(図6および図7参照)。導入室19及びカバー部25の詳細は、図9及び図10を参照して後述する。 The thermal convection generating chip 10A further includes a cover portion 25 (see FIGS. 6, 7, 9, and 10). An opening of the introduction chamber 19 is formed on the upper surface of the thermal convection generating chip 10A. The cover portion 25 is provided on the substrate 11A of the thermal convection generating chip 10A and covers the opening (see FIGS. 6 and 7). Details of the introduction chamber 19 and the cover portion 25 will be described later with reference to FIGS. 9 and 10.
 各液体供給路15A~15Cは、案内通路26をさらに含む(図8(A)参照)。すなわち、図11に示したように、各受入部16A~16C内に半月板状の案内通路形成部26Aが設けられており、案内通路26が形成されている。案内通路26は、各受入部16A~16C内の液体を各々の第2領域Sに案内する。 Each liquid supply passage 15A to 15C further includes a guide passage 26 (see FIG. 8A). That is, as shown in FIG. 11, a meniscus guide passage forming portion 26A is provided in each of the receiving portions 16A to 16C, and the guide passage 26 is formed. The guide passage 26 guides the liquid in each of the receiving portions 16A to 16C to each second region S.
 図9及び図10を参照して、導入室19とカバー部25の構成を詳細に説明する。図9は図6のB-B線断面図であり、図10はカバー部25の斜視図である。図9に示すように、基板11Aには溝27及び孔28が形成されている。 9 and 10, the configuration of the introduction chamber 19 and the cover portion 25 will be described in detail. 9 is a cross-sectional view taken along line BB in FIG. 6, and FIG. 10 is a perspective view of the cover portion 25. As shown in FIG. As shown in FIG. 9, a groove 27 and a hole 28 are formed in the substrate 11A.
 導入室19は、溝27及び孔28によって形成されている。溝27は平面視半長円状で、基板11Aの下面に形成されている。孔28は縦断面台形状で、溝27の上方に設けられている。孔28と溝27は連通している。 The introduction chamber 19 is formed by a groove 27 and a hole 28. The groove 27 has a semi-oval shape in plan view and is formed on the lower surface of the substrate 11A. The hole 28 has a trapezoidal shape in vertical section and is provided above the groove 27. The hole 28 and the groove 27 communicate with each other.
 導入室19は、各供給路15A~15Cの第1領域Tの一方の端部(図8(A)において第1領域Tの右下の端部)と連通するとともに、開口19Bを介して熱対流生成用チップ10Aの外側の空間と連通している。また、導入室19は、導入通路19a(図8参照)を介して環状流路14Aと連通している。 The introduction chamber 19 communicates with one end of the first region T of each of the supply passages 15A to 15C (the lower right end of the first region T in FIG. 8A) and heats through the opening 19B. It communicates with the space outside the convection generating chip 10A. The introduction chamber 19 communicates with the annular flow path 14A via an introduction passage 19a (see FIG. 8).
 図10に示すように、カバー部25は略直方体状の部材であって、合成樹脂等により形成される。カバー部25は凹部25aを有しており、凹部25aは熱対流生成用チップ10Aの外側の空間と導入室19とを連通している。 As shown in FIG. 10, the cover portion 25 is a substantially rectangular parallelepiped member, and is formed of a synthetic resin or the like. The cover portion 25 has a concave portion 25a, and the concave portion 25a communicates the space outside the thermal convection generating chip 10A with the introduction chamber 19.
 凹部25aは、第1内壁面25bと第2内壁面25cと境界部25dとを含む。第1内壁面25bは導入室19の開口と対向している。第2内壁面25cは第1内壁面25bと交差し、第1内壁面25bに対して傾斜している。第1内壁面25bと第2内壁面25cとが成す角度は鈍角である(図9参照).境界部25dは、第1内壁面25bと第2内壁面25cとの間に位置する。 The recess 25a includes a first inner wall surface 25b, a second inner wall surface 25c, and a boundary portion 25d. The first inner wall surface 25 b faces the opening of the introduction chamber 19. The second inner wall surface 25c intersects the first inner wall surface 25b and is inclined with respect to the first inner wall surface 25b. The angle formed by the first inner wall surface 25b and the second inner wall surface 25c is an obtuse angle (see FIG. 9). The boundary portion 25d is located between the first inner wall surface 25b and the second inner wall surface 25c.
 カバー部25は、導入室19内の液体が開口から外部へ飛び出すことを抑制する。第1内壁面25bと第2内壁面25cとが成す角度は鈍角であるため、境界部25dに付着する液体が滞留しにくい。したがって、環状流路14Aに流入させる液体の量が減ることを抑制できるという効果を得ることができる。なお、境界部25dが断面円弧状の曲面である場合にも、ほぼ同様の効果を得ることができる。 The cover part 25 suppresses the liquid in the introduction chamber 19 from jumping out from the opening. Since the angle formed by the first inner wall surface 25b and the second inner wall surface 25c is an obtuse angle, the liquid adhering to the boundary portion 25d is difficult to stay. Therefore, the effect that it can suppress that the quantity of the liquid which flows in into 14 A of annular flow paths can be acquired can be acquired. Note that substantially the same effect can be obtained also when the boundary portion 25d is a curved surface having an arc cross section.
 図11を参照して、案内通路26の構成を詳細に説明する。図11は案内通路26を模式的に示した図である。案内通路26は、第2領域Sの入口Saを取り囲む。すなわち、各受入部16A~16Cの円弧状の内周壁面、案内通路形成部25Aの略半月状の底壁面、及び底板13A(図6参照)の頂壁面によって案内通路26が形成されている。案内通路26は矩形の開口29を有する。開口29は第2領域の入口Saと対向し、開口29の面積は入口Saの開口面積より大きい。 Referring to FIG. 11, the configuration of the guide passage 26 will be described in detail. FIG. 11 is a diagram schematically showing the guide passage 26. The guide passage 26 surrounds the entrance Sa of the second region S. That is, the guide passage 26 is formed by the arc-shaped inner peripheral wall surface of each of the receiving portions 16A to 16C, the substantially half-moon shaped bottom wall surface of the guide passage forming portion 25A, and the top wall surface of the bottom plate 13A (see FIG. 6). The guide passage 26 has a rectangular opening 29. The opening 29 faces the inlet Sa of the second region, and the area of the opening 29 is larger than the opening area of the inlet Sa.
 各受入部16A~16C内の液体は、各第2領域Sの入口Saの周辺の壁面を濡らしながら入口Saに流入する。各入口Saは3つの壁面で取り囲まれているため、液体が入口Saに流入しやすい。 The liquid in each of the receiving portions 16A to 16C flows into the inlet Sa while wetting the wall surface around the inlet Sa of each second region S. Since each inlet Sa is surrounded by three wall surfaces, the liquid easily flows into the inlet Sa.
 また、案内通路26の開口29の面積は入口Saの開口面積よりも大きいため、開口29の面積が入口Saの開口面積以下の場合と比べて、毛細管現象による入口122baへの液体の流入が促進されるため、液体が入口Saに流入しやすくなる。 Further, since the area of the opening 29 of the guide passage 26 is larger than the opening area of the inlet Sa, the inflow of liquid to the inlet 122ba due to capillary action is promoted compared to the case where the area of the opening 29 is equal to or smaller than the opening area of the inlet Sa. Therefore, the liquid easily flows into the inlet Sa.
 特に、各入口Saの周縁部にバリが形成されている場合において、各受入部16A~16Cが案内通路26を備えていると液体が入口Saへと導入させる観点から有効である。すなわち、各受入部16A~16Cに案内通路26が設けられていることにより、バリがある場合でも入口Saへの液体の流入が阻害されにくくなる。 Particularly, in the case where burrs are formed at the peripheral edge of each inlet Sa, it is effective from the viewpoint of introducing liquid into the inlet Sa if each of the receiving portions 16A to 16C is provided with a guide passage 26. That is, by providing the guide passage 26 in each of the receiving portions 16A to 16C, it is difficult for the liquid to flow into the inlet Sa even when there is a burr.
 なお、熱対流生成用チップ10Aは、複数の環状流路14Aと、複数の第1~第3液体供給路15A~15Cとを備えているが、第1~第3液体供給路15A~15Cは、1つの環状流路14Aにのみ液体を供給する。各環状流路14Aは、他の環状流路14Aと連通していないため、複数の環状流路14Aの各々に個別に液体を供給することで、別箇のサンプルを含む液体を導入して個別に反応(例;PCR反応等)を行うことができる、
 次に図6~図11を参照して熱対流生成用チップ10Aの使用方法を説明する。まず、第1液体供給路の第1受入部16Aに検体液を注入する(図8参照)。第1液体供給路の第1受入部16Aに注入する検体液の量は、第1液体供給路の第1吸引通路17Aに充填される検体液の量よりも多いが、後述する理由から検体液の量を正確に秤量する必要はない。
The thermal convection generating chip 10A includes a plurality of annular flow paths 14A and a plurality of first to third liquid supply paths 15A to 15C. The first to third liquid supply paths 15A to 15C include Liquid is supplied only to one annular channel 14A. Since each annular channel 14A is not in communication with the other annular channels 14A, by supplying the liquid individually to each of the plurality of annular channels 14A, a liquid containing a separate sample is individually introduced. (E.g. PCR reaction etc.)
Next, a method of using the thermal convection generating chip 10A will be described with reference to FIGS. First, the sample liquid is injected into the first receiving portion 16A of the first liquid supply path (see FIG. 8). The amount of the sample liquid injected into the first receiving portion 16A of the first liquid supply path is larger than the amount of the sample liquid filled in the first suction passage 17A of the first liquid supply path. It is not necessary to accurately weigh the amount.
 注入された検体液は、毛細管現象によって第1吸引通路17Aの第2領域Sに流入し、さらに第1領域Tに流入する。そして、検体液が第1吸引通路17Aの最も奥に位置する第1領域Tの一方の端部(図8(A)の第1領域Tの右下端部)に達すると、毛細管現象による液体の流動が停止する。その結果、第1吸引通路17Aの全長に亘って検体液が充填される。 The injected specimen fluid flows into the second region S of the first suction passage 17A and further into the first region T by capillary action. When the sample liquid reaches one end portion of the first region T located at the innermost position of the first suction passage 17A (the right lower end portion of the first region T in FIG. 8A), the liquid due to capillary action Flow stops. As a result, the sample liquid is filled over the entire length of the first suction passage 17A.
 同様に、第2受入部16Bに反応試薬溶液を注入して第2吸引通路17Bに反応試薬溶液を充填する。さらに、第3受入部16Cにミネラルオイルを注入して第3吸引通路17Cにミネラルオイルを充填する。 Similarly, the reaction reagent solution is injected into the second receiving portion 16B, and the second suction passage 17B is filled with the reaction reagent solution. Further, mineral oil is injected into the third receiving portion 16C, and the third suction passage 17C is filled with mineral oil.
 次に、熱対流生成装置1(図1および図2参照)のモータ40のシャフト41に熱対流生成用チップ10Aを装着し、熱対流生成用チップ10Aをシャフト41の軸線AX周りに回転させると、吸引通路17A~17C内の液体に遠心力が付与される。その結果、各供給路15A~15Cにおいて、第1領域T内の液体と第2領域S内の液体とが互いに離反する方向へ移動して、第1領域T内の液体は導入室19に流入し、第2領域S内の液体は各受入部16A~16Cに戻る。なお、受入部16A~16Cに戻った液体が飛散しないような構造(例えば、吸液部材)を設けておくことが好ましい。 Next, when the thermal convection generating chip 10A is mounted on the shaft 41 of the motor 40 of the thermal convection generating device 1 (see FIGS. 1 and 2) and the thermal convection generating chip 10A is rotated around the axis AX of the shaft 41. The centrifugal force is applied to the liquid in the suction passages 17A to 17C. As a result, in each of the supply paths 15A to 15C, the liquid in the first region T and the liquid in the second region S move away from each other, and the liquid in the first region T flows into the introduction chamber 19 Then, the liquid in the second region S returns to the receiving parts 16A to 16C. It is preferable to provide a structure (for example, a liquid absorbing member) so that the liquid returned to the receiving portions 16A to 16C does not scatter.
 導入室19に流入した液体(検体液、反応試薬溶液、及びミネラルオイル)のうち、検体液及び反応試薬溶液は導入通路19aを介して環状流路14Aに流入し、ミネラルオイルは導入通路19aの位置に滞留する。環状流路14A内の検体液及び反応試薬溶液が第2ヒータ32や第1ヒータ31によって加熱されることで、熱対流が生じて検体液と反応試薬溶液とが混合する。その際、ミネラルオイルが導入通路19Bを塞ぐため、環状流路14A内の液体の蒸発と導入室19への逆流とが抑制される。 Of the liquid (sample liquid, reaction reagent solution, and mineral oil) that has flowed into the introduction chamber 19, the sample liquid and the reaction reagent solution flow into the annular flow path 14A via the introduction passage 19a, and the mineral oil passes through the introduction passage 19a. Stay in position. The sample liquid and the reaction reagent solution in the annular flow path 14A are heated by the second heater 32 and the first heater 31, thereby causing thermal convection and mixing the sample liquid and the reaction reagent solution. At that time, since the mineral oil blocks the introduction passage 19B, the evaporation of the liquid in the annular flow path 14A and the backflow to the introduction chamber 19 are suppressed.
 <熱対流生成用チップと熱源との位置関係>
 前述の熱対流生成用チップ10Aの使用方法で説明した通り、熱対流生成装置1に熱対流生成用チップ10Aを取り付けて組み立てを完了した状態において、第1ヒータ31および第2ヒータ32が熱対流生成用チップ10Aの下面に当接し、図8(A)に示したように、第1実施形態の環状流路14と第1ヒータ31および第2ヒータ32と同様の配置関係となる。なお、この配置関係は、図3に示したように変更してもよい。第2実施形態においても上記構成により第1実施形態で説明した作用および効果が得られる。
<Positional relationship between thermal convection generating chip and heat source>
As described in the above method of using the thermal convection generating chip 10A, the first heater 31 and the second heater 32 are in thermal convection in the state where the assembly is completed by attaching the thermal convection generating chip 10A to the thermal convection generating device 1. Abutting on the lower surface of the generation chip 10 </ b> A, as shown in FIG. 8A, the arrangement relationship is the same as that of the annular flow path 14, the first heater 31, and the second heater 32 of the first embodiment. This arrangement relationship may be changed as shown in FIG. Also in the second embodiment, the operation and effect described in the first embodiment can be obtained by the above configuration.
 以下、第2実施形態の熱対流生成システム200の作用、効果について説明する。 Hereinafter, the operation and effect of the thermal convection generation system 200 of the second embodiment will be described.
 (12)液体供給路14Aは、液体を受け入れる各受入部16A~16Cを有し、また、各受入部16A~16Cと環状流路14Aとを連通させるとともに受入部16A~16C内の液体を毛細管現象により吸引する各吸引通路17A~17Cとを有し、各吸引通路17A~17Cは、該吸引通路17A~17Cの中間部と環状流路14Aとの間に位置する第1領域Tと、各吸引通路17A~17Cと各受入部16A~16Cとの間に位置する第2領域Sとを有し、
 熱対流生成用チップ10Aをその中心軸周りに回転をさせることにより、前記第1領域T内の液体が前記第2領域S内の液体から分離して前記環状流路14へ供給されるので、ユーザは環状流路14内へ導入する液体を秤量しなくとも、所定量の液体を環状流路14Aに供給することができる。したがって、ユーザが液体を秤量する手間を省くことができる。このように手間を省いて精度よく液体の秤量ができること、および、第2実施形態の熱対流生成装置200が第1実施形態の熱対流生成装置100と同様の熱源構成を有するために第1実施形態と同様に環状流路14Aを流れる液体の温度制御を効率良く行うことができることとから、作業者の手技に依らず、極めて再現性、安定性の高い熱対流、これを利用した熱対流PCRを実現することできる。
(12) The liquid supply path 14A includes the receiving portions 16A to 16C that receive the liquid, communicates the receiving portions 16A to 16C with the annular flow path 14A, and supplies the liquid in the receiving portions 16A to 16C to the capillary tube. Each of the suction passages 17A to 17C for sucking according to a phenomenon, and each of the suction passages 17A to 17C includes a first region T positioned between the intermediate portion of the suction passages 17A to 17C and the annular flow path 14A, and A second region S located between the suction passages 17A to 17C and the receiving portions 16A to 16C;
By rotating the thermal convection generating chip 10A around its central axis, the liquid in the first region T is separated from the liquid in the second region S and supplied to the annular flow path 14. The user can supply a predetermined amount of liquid to the annular channel 14A without weighing the liquid introduced into the annular channel 14. Accordingly, it is possible to save the user from weighing the liquid. In this way, the liquid can be accurately weighed without labor and the heat convection generating device 200 of the second embodiment has the same heat source configuration as the heat convection generating device 100 of the first embodiment. Since the temperature control of the liquid flowing through the annular channel 14A can be performed efficiently as in the case, the heat convection with extremely high reproducibility and stability regardless of the operator's technique, and the heat convection PCR using this. Can be realized.
 (13)各吸引通路17A~17Cは、前記中間部で鋭角状に屈曲していることから、第1領域Tにおける液体の分離がしやすくなり、秤量する観点から好ましい。 (13) Since each of the suction passages 17A to 17C is bent at an acute angle at the intermediate portion, it is easy to separate the liquid in the first region T, which is preferable from the viewpoint of weighing.
 (14)前記吸引通路17A~17Cは、各中間部に空気を導入する空気孔18A~18Cをさらに有するので、熱対流生成用チップ10Aの前記回転による遠心力により、各中間部付近の液体が各受入部16A~16Cと環状流路14Aの2方向へ移動しようとすると、中間部付近に引圧が生じて空気孔18A~18Cから前記中間部に空気が導入され、各第1領域T内の液体と第2領域S内の液体との分離が促進される。 (14) Since the suction passages 17A to 17C further include air holes 18A to 18C for introducing air into the intermediate portions, the liquid near the intermediate portions is caused by the centrifugal force due to the rotation of the thermal convection generating chip 10A. When the two receiving portions 16A to 16C and the annular flow path 14A are moved in two directions, a suction pressure is generated in the vicinity of the intermediate portion, and air is introduced into the intermediate portion from the air holes 18A to 18C. Is separated from the liquid in the second region S.
 (15)複数の液体供給路15A~15Cを設け、該複数の液体供給路15A~15Cは、液体供給路ごとに異なる液体(例;反応試薬溶液,検体液)を前記環状流路に供給するものであれば、成分が異なる複数種類の液体の熱対流PCRを同時に行うことができる。 (15) A plurality of liquid supply paths 15A to 15C are provided, and the plurality of liquid supply paths 15A to 15C supply different liquids (eg, reaction reagent solution, sample liquid) to the annular flow path for each liquid supply path. If it is a thing, thermal convection PCR of several types of liquid from which a component differs can be performed simultaneously.
 [第3実施形態]
 次に、本発明の第3実施形態の熱対流生成システム300について説明する。第2実施形態の熱対流生成システム300は、熱対流生成用チップ(図8)10Bと、第1実施形態の熱対流生成装置1とを少なくとも有する。熱対流生成装置1は、シャフト41と、第1ヒータ31および第2ヒータ32と、モータ40等を有する。なお、熱対流生成装置1自体の構成については、第1実施形態と同様であるのでその説明を省略する。
[Third Embodiment]
Next, a thermal convection generation system 300 according to the third embodiment of the present invention will be described. The thermal convection generation system 300 according to the second embodiment includes at least the thermal convection generation chip (FIG. 8) 10 </ b> B and the thermal convection generation apparatus 1 according to the first embodiment. The thermal convection generating device 1 includes a shaft 41, a first heater 31, a second heater 32, a motor 40, and the like. Note that the configuration of the thermal convection generating device 1 itself is the same as that of the first embodiment, and thus the description thereof is omitted.
 《熱対流生成用チップ》
 図12は、本発明の第2実施形態の熱対流生成用チップ10Bの斜視図であり、図13は、熱対流生成用チップ10Bの分解斜視図である。なお、本実施形態において、第2実施形態と対応する部分には同一の符号を使用し、第1実施形態と重複する説明を省略する。
《Tip for generating heat convection》
FIG. 12 is a perspective view of a thermal convection generating chip 10B according to the second embodiment of the present invention, and FIG. 13 is an exploded perspective view of the thermal convection generating chip 10B. In the present embodiment, the same reference numerals are used for portions corresponding to those in the second embodiment, and the description overlapping with that in the first embodiment is omitted.
 図12に示すように、熱対流生成用チップ10Bは多層構造となっている。すなわち、図13に示すように、熱対流生成用チップ10Bは、第1基板10Baと、第2基板10Bbと、第3基板10Bcと、蓋体13Bとを含む。第1基板10Ba、第2基板10Bb、第3基板10Bc、及び底板13Bは積層されている。 As shown in FIG. 12, the thermal convection generating chip 10B has a multilayer structure. That is, as shown in FIG. 13, the thermal convection generating chip 10B includes a first substrate 10Ba, a second substrate 10Bb, a third substrate 10Bc, and a lid 13B. The first substrate 10Ba, the second substrate 10Bb, the third substrate 10Bc, and the bottom plate 13B are stacked.
 図14を参照して、熱対流生成用チップ10Bの供給路15Aa~15Caの構造を説明する。図14は、熱対流生成用チップ10Bの供給路15Aa~15Caの構造を模式的に示す図である。 The structure of the supply paths 15Aa to 15Ca of the thermal convection generating chip 10B will be described with reference to FIG. FIG. 14 is a diagram schematically showing the structure of the supply paths 15Aa to 15Ca of the thermal convection generating chip 10B.
 図14において、薄いグレー色の部分が第1基板10Baに形成されており、濃いグレー色の部分が第2基板10Bbに形成されており、無色の部分が第3基板10Bcに形成されている。 In FIG. 14, a light gray portion is formed on the first substrate 10Ba, a dark gray portion is formed on the second substrate 10Bb, and a colorless portion is formed on the third substrate 10Bc.
 熱対流生成用チップ10Bは、複数の環状流路14Bと、複数の供給路15Aa~15Caとを有する。第1液体供給路15Aaは、第1受入部101Aと、複数の第1吸引通路102Aを含む。第2液体供給路15Baは、第2受入部101Bと、複数の第2吸引通路102Bを含む。第3液体供給路15Caは、第3受入部101Cと、複数の第3吸引通路102Cを含む。複数の環状流路14Bの各々と供給路15Aa~15Caの受入部101A~101Cとの間に、それぞれ吸引通路102A~102Cが設けられている。供給路15Aa~15Caは立体的に交差しており、ラビリンス状の流体通路を形成している。 The thermal convection generating chip 10B has a plurality of annular channels 14B and a plurality of supply channels 15Aa to 15Ca. The first liquid supply path 15Aa includes a first receiving part 101A and a plurality of first suction paths 102A. The second liquid supply path 15Ba includes a second receiving part 101B and a plurality of second suction paths 102B. The third liquid supply path 15Ca includes a third receiving part 101C and a plurality of third suction paths 102C. Suction passages 102A to 102C are provided between each of the plurality of annular passages 14B and the receiving portions 101A to 101C of the supply passages 15Aa to 15Ca. The supply passages 15Aa to 15Ca intersect three-dimensionally and form a labyrinth-like fluid passage.
 図13および図14に示されるように、第1液体供給路15Aaは、第1基板10Baに形成されている。第1液体供給路15Baは、第1基板10Baと第2基板10Bbにわたって形成されている。第3液体供給路15Caは、第1基板10Baと第2基板10Bbと第3基板10Bcにわたって形成されている。第1~第3吸引通路102A~102Cの各々は、それぞれ第1領域T'と、第2領域S'とを有する(図14参照)。 As shown in FIGS. 13 and 14, the first liquid supply path 15Aa is formed in the first substrate 10Ba. The first liquid supply path 15Ba is formed across the first substrate 10Ba and the second substrate 10Bb. The third liquid supply path 15Ca is formed across the first substrate 10Ba, the second substrate 10Bb, and the third substrate 10Bc. Each of the first to third suction passages 102A to 102C has a first region T ′ and a second region S ′ (see FIG. 14).
 (第1基板)
 図15に第1基板の斜視図を示す。図15に示すように、第1基板10Baは、第1受入部101Aと、第1吸引通路102Aと、空気孔103Aと、孔104U,105Uと、導気用孔103Bu,103Cuと、矩形孔106Uとを有する。
(First substrate)
FIG. 15 is a perspective view of the first substrate. As shown in FIG. 15, the first substrate 10Ba includes a first receiving portion 101A, a first suction passage 102A, air holes 103A, holes 104U and 105U, air introduction holes 103Bu and 103Cu, and a rectangular hole 106U. And have.
 図18に示すように、第1基板10Baの下面には第1吸引通路102Aの一部をなす溝109Uが形成されており、該溝109Uと第2基板10Bbの上面とによって第1吸引通路102Aが構成される(図13および図14参照)。 As shown in FIG. 18, a groove 109U forming a part of the first suction passage 102A is formed on the lower surface of the first substrate 10Ba, and the first suction passage 102A is formed by the groove 109U and the upper surface of the second substrate 10Bb. (See FIGS. 13 and 14).
 (第2基板)
 図16に第2基板の斜視図を示す。第2基板10Bbは、1つの穴104Mと、該穴104Mから延びる第2吸引通路102Bと、1つの孔105Mと、導気用孔103Bmと、導気用穴103Cmと、矩形孔106Mとを有する。穴104Mと第1基板の孔104Uとによって第2液体供給路15Baの第2受入部101Bが形成される(図14参照)。導気用孔103Bmと、第1基板の導気用孔103Buとによって第2液体供給路15Caの空気孔103Bが形成される(図14参照)。
(Second board)
FIG. 16 is a perspective view of the second substrate. The second substrate 10Bb has one hole 104M, a second suction passage 102B extending from the hole 104M, one hole 105M, an air hole 103Bm, an air hole 103Cm, and a rectangular hole 106M. . A second receiving portion 101B of the second liquid supply path 15Ba is formed by the hole 104M and the hole 104U of the first substrate (see FIG. 14). The air hole 103B of the second liquid supply path 15Ca is formed by the air introduction hole 103Bm and the air introduction hole 103Bu of the first substrate (see FIG. 14).
 図18に示すように、第2基板10Bbの下面には第2吸引通路102Bの一部をなす溝109Mが形成されており、該溝109Mと第3基板15Bcの上面とによって第2吸引通路102C(図14参照)が構成される。 As shown in FIG. 18, a groove 109M forming a part of the second suction passage 102B is formed on the lower surface of the second substrate 10Bb, and the second suction passage 102C is formed by the groove 109M and the upper surface of the third substrate 15Bc. (See FIG. 14).
 (第3基板)
 図17に第3基板の斜視図を示す。第3基板10Bcは、1つの孔105Bと、第3吸引通路102Cと、導気用孔103Cbと、矩形孔106Bと、溝107と、導入通路18とを有する。
(Third substrate)
FIG. 17 is a perspective view of the third substrate. The third substrate 10Bc has one hole 105B, a third suction passage 102C, an air introduction hole 103Cb, a rectangular hole 106B, a groove 107, and an introduction passage 18.
 孔105Bと、第2基板の孔105Mと、第1基板の孔105Uとによって第3液体供給路15Caの第3受入部101Cが形成される。導気用孔103Cbと、第2基板の導気用孔103Cmと、第1基板の導気用孔103Cuとによって第3液体供給路15Caの空気孔103C(図14参照)が形成される。矩形孔106B及び溝107によって導入室19Aの一部が形成される。 The third receiving portion 101C of the third liquid supply path 15Ca is formed by the hole 105B, the hole 105M of the second substrate, and the hole 105U of the first substrate. An air hole 103C (see FIG. 14) of the third liquid supply path 15Ca is formed by the air introduction hole 103Cb, the air introduction hole 103Cm of the second substrate, and the air introduction hole 103Cu of the first substrate. A part of the introduction chamber 19 </ b> A is formed by the rectangular hole 106 </ b> B and the groove 107.
 図18に示すように、第3基板10Bcの下面には第3吸引通路102Cの一部をなす溝109Bが形成されており、該溝109Bと蓋体13Bの上面とによって第3吸引通路102C(図14参照)が構成される。また、第3基板10Bcの下面には溝107が形成されており、該溝107と蓋体13Bの上面とによって導入通路が構成される(図18参照)。 As shown in FIG. 18, a groove 109B forming a part of the third suction passage 102C is formed on the lower surface of the third substrate 10Bc, and the third suction passage 102C ( (See FIG. 14). Further, a groove 107 is formed on the lower surface of the third substrate 10Bc, and an introduction passage is constituted by the groove 107 and the upper surface of the lid body 13B (see FIG. 18).
 また、第3基板10Bcには、第3基板10Bcの中心孔17Bの中心の周りに所定の角度間隔をおいて環状流路14Bが複数設けられている(図17参照)。なお、第3基板の中心孔17Bの中心は、熱対流生成用チップ10Bを熱対流生成装置1に装着した状態でモータ40のシャフト41の軸線AXに一致する。 The third substrate 10Bc is provided with a plurality of annular flow paths 14B at a predetermined angular interval around the center of the center hole 17B of the third substrate 10Bc (see FIG. 17). The center of the center hole 17B of the third substrate coincides with the axis AX of the shaft 41 of the motor 40 in a state where the thermal convection generating chip 10B is mounted on the thermal convection generating device 1.
 図18を参照して、導入室19Bの詳細な構成を説明する。図18は図12のC-C線に沿った熱対流生成用チップ10Bの断面を矢視方向にみた図である。矩形孔106Bは縦断面台形状で、溝107の上方に位置する。第3基板の矩形孔106Bは溝107及び第2基板の矩形孔106Mと連通し、該矩形孔106Mは第1基板の矩形孔106Uと連通している。矩形孔106Uはカバー部25Aの開口を介して外側の空間と連通している。 Referring to FIG. 18, the detailed configuration of the introduction chamber 19B will be described. 18 is a view of the cross section of the thermal convection generating chip 10B taken along the line CC of FIG. The rectangular hole 106 </ b> B is trapezoidal in vertical section and is located above the groove 107. The rectangular hole 106B of the third substrate communicates with the groove 107 and the rectangular hole 106M of the second substrate, and the rectangular hole 106M communicates with the rectangular hole 106U of the first substrate. The rectangular hole 106U communicates with the outer space through the opening of the cover portion 25A.
 次に、図19を参照してカバー部25Aについて説明する。図19はカバー部25Aの斜視図である。カバー部25Aは平面図C字形の帯状の部材であって、複数の凹部25aを有する。複数の凹部25aは、カバー部25Aの周方向に所定の間隔をおいて設けられている。 Next, the cover portion 25A will be described with reference to FIG. FIG. 19 is a perspective view of the cover portion 25A. The cover portion 25A is a C-shaped band-like member in plan view, and has a plurality of concave portions 25a. The plurality of concave portions 25a are provided at predetermined intervals in the circumferential direction of the cover portion 25A.
 《熱対流生成用チップと熱源との位置関係》
 熱対流生成装置1に熱対流生成用チップ10Bを取り付けて組み立てを完了した状態において、第1ヒータ31および第2ヒータ32が熱対流生成用チップ10Bの下面に当接し、図14に示したように、第1実施形態の環状流路14と第1ヒータ31および第2ヒータ32と同様の配置関係となる。なお、この配置関係は、図3に示したように変更してもよい。第3実施形態においても上記構成により第1実施形態で説明した作用および効果が得られる。
《Positional relationship between heat convection chip and heat source》
In a state where the assembly is completed by attaching the thermal convection generation chip 10B to the thermal convection generation apparatus 1, the first heater 31 and the second heater 32 abut against the lower surface of the thermal convection generation chip 10B, as shown in FIG. In addition, the arrangement relationship is the same as that of the annular flow path 14 of the first embodiment and the first heater 31 and the second heater 32. This arrangement relationship may be changed as shown in FIG. Also in the third embodiment, the operation and effect described in the first embodiment can be obtained by the above configuration.
 次に、図14を参照して熱対流生成用チップ10Bの使用方法を説明する。 Next, a method of using the thermal convection generating chip 10B will be described with reference to FIG.
 まず、第1液体供給路15Aaの第1受入部101Aに検体液を注入する。第1受入部101Aに注入する検体液の量は、第1液体供給路の第1吸引通路102Aの全体に充填される検体液の量よりも多いが、検体液の量を正確に秤量する必要はない。第1受入部101Aに注入された検体液は、毛細管現象によって第1吸引通路102Aの全てに充填される。 First, the sample liquid is injected into the first receiving portion 101A of the first liquid supply path 15Aa. The amount of the sample liquid injected into the first receiving portion 101A is larger than the amount of the sample liquid filled in the entire first suction passage 102A of the first liquid supply path, but the amount of the sample liquid needs to be accurately measured. There is no. The sample liquid injected into the first receiving portion 101A is filled into the entire first suction passage 102A by capillary action.
 同様にして、第2液体供給路15Baの第2受入部101Bに反応試薬溶液を注入して、吸引通路102Bの全てに反応試薬溶液を充填する。さらに、第3液体供給路15Caの第3受入部101Cにミネラルオイルを注入して、毛細管現象によって、吸引通路102Cの全てに充填する。 Similarly, the reaction reagent solution is injected into the second receiving portion 101B of the second liquid supply path 15Ba, and the reaction reagent solution is filled in the entire suction passage 102B. Further, mineral oil is injected into the third receiving part 101C of the third liquid supply path 15Ca to fill all of the suction path 102C by capillary action.
 次に、熱対流生成装置1(図1,図2参照)のモータ40のシャフト41に熱対流生成用チップ10Bを装着し、モータを駆動して熱対流生成用チップ10Bをシャフト41の軸線AX周りに回転させると、吸引通路102A~102C内の液体に遠心力が付与される。その結果、吸引通路102A~102C内において、第1領域T'内の液体と第2領域S'の液体とが互いに離反する方向に移動して、第1領域T'の液体は導入室19Bへ流入し、第2領域S'内の液体は各受入部101A~101Cに戻る。 Next, the thermal convection generating chip 10B is mounted on the shaft 41 of the motor 40 of the thermal convection generating device 1 (see FIGS. 1 and 2), and the motor is driven to connect the thermal convection generating chip 10B to the axis AX of the shaft 41. When rotated around, centrifugal force is applied to the liquid in the suction passages 102A to 102C. As a result, in the suction passages 102A to 102C, the liquid in the first region T ′ and the liquid in the second region S ′ move away from each other, and the liquid in the first region T ′ moves to the introduction chamber 19B. The liquid flows in and the liquid in the second region S ′ returns to the receiving parts 101A to 101C.
 導入室19Bに流入した液体(検体液、反応試薬溶液、及びミネラルオイル)のうち、検体液及び反応試薬溶液は導入通路108(図17参照)を介して環状流路14Bに流入し、ミネラルオイルは導入通路108の位置に滞留する。環状流路14B内の検体液及び反応試薬溶液が第2ヒータ32または第1ヒータ31によって加熱されることで、熱対流が生じて検体液と反応試薬溶液とが混合する。その際、ミネラルオイルが導入通路108を塞ぐため、環状流路14B内の液体の蒸発と導入室19Bへの逆流とが抑制される。 Of the liquid (sample liquid, reaction reagent solution, and mineral oil) that has flowed into the introduction chamber 19B, the sample liquid and reaction reagent solution flow into the annular flow path 14B via the introduction passage 108 (see FIG. 17), and mineral oil. Stays at the position of the introduction passage 108. The sample liquid and the reaction reagent solution in the annular channel 14B are heated by the second heater 32 or the first heater 31 to cause thermal convection to mix the sample liquid and the reaction reagent solution. At that time, since the mineral oil blocks the introduction passage 108, the evaporation of the liquid in the annular flow path 14B and the backflow to the introduction chamber 19B are suppressed.
 以下、第3実施形態の熱対流生成システム300の作用、効果について説明する。 Hereinafter, the operation and effect of the thermal convection generation system 300 of the third embodiment will be described.
 (16)液体供給路として、検体液を前記環状流路に供給する第1液体供給路15Aaと、PCRを行うための反応試薬溶液を前記環状流路に供給する第2液体供給路15Baを含み、
 前記検体液を環状流路14Bに供給する第1液体供給路15Aaの第1領域T'の容積と、前記反応試薬溶液を環状流路14Bに供給する第2液体供給路15Baの前記第1領域T'の溶液とを合わせた容積が、環状流路14Bの容積に等しいものであるので、環状流路14Bの各々に対してPCR反応溶液の各液体を同時に供給することができ、また前述のように遠心により液体供給路の中間部で液体が分離して、所定量の液体だけが環状流路へと流入するのでユーザが各液体を秤量する手間を省くことができる。
(16) The liquid supply path includes a first liquid supply path 15Aa for supplying the sample liquid to the annular flow path and a second liquid supply path 15Ba for supplying a reaction reagent solution for performing PCR to the annular flow path. ,
The volume of the first region T ′ of the first liquid supply channel 15Aa that supplies the sample liquid to the annular channel 14B and the first region of the second liquid supply channel 15Ba that supplies the reaction reagent solution to the annular channel 14B. Since the total volume of the solution of T ′ is equal to the volume of the annular channel 14B, each liquid of the PCR reaction solution can be simultaneously supplied to each of the annular channels 14B. As described above, the liquid is separated at the intermediate portion of the liquid supply path by centrifugation, and only a predetermined amount of liquid flows into the annular flow path, so that the user can save time for weighing each liquid.
 以上のように、熱対流生成用チップ51によれば、複数の熱対流用流路11の各々に対して同時に液体を供給できる。したがって、同じ成分の複数の液体の熱対流PCRを同時に行う場合において、ユーザが液体を秤量する手間を削減することができる。 As described above, according to the thermal convection generating chip 51, it is possible to simultaneously supply liquid to each of the plurality of thermal convection flow paths 11. Therefore, when performing the thermal convection PCR of a plurality of liquids of the same component at the same time, it is possible to reduce the time and effort for the user to weigh the liquids.
 以上、本発明の具体的な実施形態を説明したが、本発明は本実施形態に限定されるものではない。なお、本実施形態の図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素は、図面作成の都合上から実際とは異なる場合もある。また、本実施形態で示した具体的な材質や形状、及びその他の構成は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The specific embodiment of the present invention has been described above, but the present invention is not limited to this embodiment. Note that the drawings of the present embodiment schematically show each component mainly for easy understanding, and each illustrated component may be different from the actual for convenience of drawing. is there. The specific materials, shapes, and other configurations shown in the present embodiment are merely examples, and are not particularly limited, and various modifications are possible without departing from the effects of the present invention. It is.
 例えば、第1~3実施形態の熱対流生成用チップの環状流路の個数は限定されず、1つでもよい。また、第2,3実施形態の熱対流生成用チップの供給路,基板の数は限定されず、1つまたは4つ以上であってもよい。反応試薬溶液を供給する供給路を複数設けることで試薬成分を分けて導入することができる。 For example, the number of annular channels of the thermal convection generating chip of the first to third embodiments is not limited and may be one. Further, the number of supply paths and substrates of the heat convection generating chips of the second and third embodiments is not limited, and may be one or four or more. By providing a plurality of supply paths for supplying the reaction reagent solution, the reagent components can be introduced separately.
 第3実施形態では、第1液体供給路の第1領域と第2領域Sとの合計容量が環状流路14Bと等しいが、全ての供給路の第1領域の容積を併せた容積と、熱対流用流路の容積とが等しくてもよいし、又は、熱対流用流路に連通する1つの第1領域の容積と、熱対流用流路の容積とが等しくてもよい。 In the third embodiment, the total capacity of the first region and the second region S of the first liquid supply path is equal to the annular flow path 14B. The volume of the convection flow path may be equal, or the volume of one first region communicating with the heat convection flow path may be equal to the volume of the heat convection flow path.
 また、本発明によれば、熱対流させる液体だけでなく、その他の液体を秤量する液体秤量具も提供される。当該液体秤量具は、図6~図8に示す構成のうち、受入部16Aと、該受入部16Aに連通するとともに、受入部16A内の液体を毛細管現象により吸引する吸引通路17Aとを有するものとして構成することができる。前述したように熱対流生成用チップ10Aを回転させることにより、第1領域T内の液体が第2領域S内の液体から分離して吸引通路17Aの先端部から排出され、所定容量の液体が環状流路14A内へ秤量される。その他にも、本発明の効果から実質的に逸脱しない範囲で本実施形態に種々の変更を行うことができる。 Further, according to the present invention, there is also provided a liquid weighing tool for weighing not only the liquid to be convected but also other liquids. 6 to 8, the liquid weighing instrument has a receiving portion 16A and a suction passage 17A that communicates with the receiving portion 16A and sucks the liquid in the receiving portion 16A by capillary action. Can be configured. As described above, by rotating the thermal convection generating chip 10A, the liquid in the first region T is separated from the liquid in the second region S and is discharged from the distal end portion of the suction passage 17A. Weighed into the annular channel 14A. In addition, various modifications can be made to the present embodiment without departing from the effects of the present invention.
 以下、第1実施形態の熱対流生成システム100を用いた実施例について説明する。 Hereinafter, examples using the thermal convection generation system 100 of the first embodiment will be described.
 [実施例1]
 以下の内容で熱対流生成システム100により液体温度の変化について温度シミュレーションを行った。
[Example 1]
A temperature simulation was performed on the change of the liquid temperature by the thermal convection generation system 100 with the following contents.
 《熱対流生成用チップの寸法》
 熱対流生成用チップ10を構成する基板11と蓋体13のうち、基板11については厚さ2.0mm、直径40mm、蓋体13については、厚さ0.19mm、直径40mmに設定した。
<Dimensions of chip for generating heat convection>
Of the substrate 11 and the lid 13 constituting the thermal convection generating chip 10, the substrate 11 was set to a thickness of 2.0 mm and a diameter of 40 mm, and the lid 13 was set to a thickness of 0.19 mm and a diameter of 40 mm.
 《環状流路の寸法》
 環状流路14は、流路高さ(S):0.3mm、流路の幅(W):0.5mm、環状流路の直径(外径)(D):6mmに設定した(図2(B)参照)。
<Dimensions of annular channel>
The annular channel 14 was set to have a channel height (S): 0.3 mm, a channel width (W): 0.5 mm, and an annular channel diameter (outer diameter) (D): 6 mm (FIG. 2). (See (B)).
 《装置周辺の環境温度》
 熱対流生成装置1の周囲の環境温度を10℃に設定し、後述の熱対流を行っている間、この温度を維持することとした。
<Environmental temperature around the device>
The ambient temperature around the thermal convection generating device 1 was set to 10 ° C., and this temperature was maintained during thermal convection described later.
 《クリアランスの占める割合》
 第1ヒータ31と第2ヒータ32との間にあるクリアランスCLは0.5mmに設定した。このクリアランスCLの面積(平面視した場合:図2(A)参照)は環状流路14全体の流路エリアの約7%である。
《Ratio of clearance》
The clearance CL between the first heater 31 and the second heater 32 was set to 0.5 mm. The area of the clearance CL (when viewed in plan: see FIG. 2A) is about 7% of the entire channel area of the annular channel 14.
 《モータ回転速度の決定》
 図20,図21を参考にしてモータ40のシャフト41の回転速度(熱対流生成用チップ10の回転速度)を5G相当の電圧、すなわち、4.0Vをモータに印加した際に得られるシャフトの回転数(約520rpm)に決定した。すなわち、熱対流生成用チップ10を520rpmで回転させることを意味する。
<Determination of motor rotation speed>
20 and 21, the rotation speed of the shaft 41 of the motor 40 (the rotation speed of the thermal convection generating chip 10) is set to a voltage equivalent to 5G, that is, the shaft obtained when 4.0V is applied to the motor. The number of revolutions was determined (about 520 rpm). That is, it means that the thermal convection generating chip 10 is rotated at 520 rpm.
 《熱対流処理》
 第2ヒータ32の温度を102℃に設定し、第1ヒータ31の温度を60℃に設定した。そして、モータ40を駆動して速度520rpmで熱対流生成用チップ10を回転させて上記液体を遠心力かけた場合について調べたところ、環状流路14内で前記液体が約8秒間で1周する結果となった。環状流14路内において液体が環状流路を1周する際に変化する温度のプロファイルを図22(A)に示す。
《Thermal convection treatment》
The temperature of the second heater 32 was set to 102 ° C., and the temperature of the first heater 31 was set to 60 ° C. When the motor 40 is driven to rotate the thermal convection generating chip 10 at a speed of 520 rpm and the liquid is subjected to centrifugal force, the liquid makes one round in the annular flow path 14 in about 8 seconds. As a result. FIG. 22A shows a temperature profile that changes when the liquid makes one round of the annular flow path in the annular flow path 14.
 [比較例1]
 比較例1では、特開2014-39498号公報(特許文献3)の図4に示すような熱源(図2(A)のように平面視したときの、2つのヒータ間のクリアランスの合計面積が環状流路14全体の流路エリアの約38%)を使用して実施例1と同様に環状流路内を移動する液体の温度シミュレーションを行った。この結果を図22(B)に示す。
[Comparative Example 1]
In Comparative Example 1, a heat source as shown in FIG. 4 of Japanese Patent Laid-Open No. 2014-39498 (Patent Document 3) (the total area of the clearance between two heaters when viewed in plan as in FIG. 2A) The temperature simulation of the liquid moving in the annular channel was performed in the same manner as in Example 1 using about 38% of the channel area of the entire annular channel 14). The result is shown in FIG.
 [実施例2]
 実施例2では、熱対流生成装置の周囲の環境温度を25℃に変更したこと以外は実施例1と同様に環状流路内を移動する液体の温度シミュレーションを行った。この結果を図22(C)に示す。
[Example 2]
In Example 2, the temperature simulation of the liquid moving in the annular flow path was performed in the same manner as in Example 1 except that the ambient temperature around the thermal convection generating device was changed to 25 ° C. The result is shown in FIG.
 [比較例2]
 比較例2では、特開2014-39498号公報(特許文献3)の図4に示すような熱源(図2(A)のように平面視したときの、2つのヒータ間のクリアランスの合計面積が環状流路14全体の流路エリアの約38%)を使用して実施例2と同様に環状流路内を移動する液体の温度シミュレーションを行った。この結果を図22(D)に示す。
[Comparative Example 2]
In Comparative Example 2, the total area of the clearance between the two heaters when viewed in plan as shown in FIG. 2 (A) in FIG. 4 of JP 2014-39498 A (Patent Document 3) The temperature simulation of the liquid moving in the annular channel was performed in the same manner as in Example 2 using about 38% of the channel area of the entire annular channel 14). The result is shown in FIG.
 [実施例3]
 実施例3では、熱対流生成装置の周囲の環境温度を40℃に変更したこと以外は実施例2と同様に環状流路内を移動する液体の温度シミュレーションを行った。この結果を図22(E)に示す。
[Example 3]
In Example 3, the temperature simulation of the liquid moving in the annular flow path was performed in the same manner as in Example 2 except that the ambient temperature around the thermal convection generating device was changed to 40 ° C. The result is shown in FIG.
 [比較例3]
 比較例3では、特開2014-39498号公報(特許文献3)の図4に示すような熱源(図2(A)のように平面視したときの、2つのヒータ間のクリアランスの合計面積が環状流路14全体の流路エリアの約38%)を使用して実施例3と同様に環状流路内を移動する液体の温度シミュレーションを行った。この結果を図22(F)に示す。
[Comparative Example 3]
In Comparative Example 3, the heat source as shown in FIG. 4 of Japanese Patent Application Laid-Open No. 2014-39498 (Patent Document 3) (the total area of the clearance between the two heaters when viewed in plan as shown in FIG. 2A) The temperature simulation of the liquid moving in the annular channel was performed in the same manner as in Example 3 using about 38% of the channel area of the entire annular channel 14). The result is shown in FIG.
 (結果・考察)
 比較例1~3の結果を図22(B),(D),(F)に示す。ここで、明るいグレー色の帯は環状流路14内の液体が第1ヒータ31の上方の環状流路の流路エリアを通過していることを表す。また、暗いグレーの帯の部分は、環状流路14内の液体が第2ヒータ32の上方の環状流路14の流路エリアを通過していることを意味する。さらに白色の帯の部分は、環状流路14内の液体がヒータ等が存在しない空気の上方の環状流路14の流路エリアを通過していることを意味する。
(Results and discussion)
The results of Comparative Examples 1 to 3 are shown in FIGS. 22 (B), (D), and (F). Here, the light gray band indicates that the liquid in the annular channel 14 passes through the channel area of the annular channel above the first heater 31. Further, the dark gray band portion means that the liquid in the annular flow path 14 passes through the flow path area of the annular flow path 14 above the second heater 32. Further, the white band means that the liquid in the annular channel 14 passes through the channel area of the annular channel 14 above the air where no heater or the like exists.
 比較例1~3(図22(B),(D)および(F)参照)では、第1ヒータ31と第2ヒータ32とが特開2014-39498号公報(特許文献3)の図4に示したように配置され、第1,第2ヒータ間の隙間の割合を環状流路15%超に設定されている。すなわち、図22(B),(D)および(E)から白帯部分の横軸の長さから分かるように、少なくとも2ラジアンに相当する流路エリアで空冷している。環状流路14は真円であることから、環状流路14で液体が空冷される部分の割合を算出すると、環状流路14の流路エリア全体に対して31.8%以上になる。この空冷されている液体温度のプロットから流路エリアでは液体の温度がなだらかに低下していることが示されている(山状の黒線参照)。 In Comparative Examples 1 to 3 (see FIGS. 22B, 22D and 22F), the first heater 31 and the second heater 32 are shown in FIG. 4 of Japanese Patent Laid-Open No. 2014-39498 (Patent Document 3). It arrange | positions as shown and the ratio of the clearance gap between 1st, 2nd heaters is set to 15% or more of annular flow paths. That is, as can be seen from the length of the horizontal axis of the white belt portion from FIGS. 22B, 22D and 22E, air cooling is performed in a flow path area corresponding to at least 2 radians. Since the annular flow path 14 is a perfect circle, the ratio of the portion where the liquid is air-cooled in the annular flow path 14 is calculated to be 31.8% or more with respect to the entire flow path area of the annular flow path 14. From the plot of the air-cooled liquid temperature, it is shown that the temperature of the liquid gradually decreases in the flow path area (see the mountain-shaped black line).
 また、図22(B)(比較例1)と(F)(比較例3)とを比較すれば分かるように、外気温度が10℃の場合と40℃の場合では、当然に外気温度が10℃の方が液体の温度が下がる速度が速く、すなわち、比較例では外的要因による影響を受けやすく熱対流の再現性、ロバスト性に問題があるといえる。 Further, as can be seen from a comparison between FIG. 22B (Comparative Example 1) and (F) (Comparative Example 3), when the outside air temperature is 10 ° C. and 40 ° C., the outside air temperature is naturally 10. The rate at which the temperature of the liquid is lowered is higher at 0 ° C., that is, the comparative example is easily affected by external factors, and it can be said that there is a problem in the reproducibility and robustness of thermal convection.
 一方、実施例1~3(図22(A),(C),(E))では、第1ヒータ31と第2ヒータ32とが図2(A)に示した通りに配置され、これら第1ヒータと第2ヒータと間には、環状流路を空冷するための隙間は設けていない(第1ヒータと第2ヒータとの温度が維持できるように相互に最小限必要なクリアランスを設けているだけである。該クリアランスの環状流路全体の流路エリアに対して約7%に設定されている(図2(A)参照))。 On the other hand, in Examples 1 to 3 (FIGS. 22A, 22C, and 22E), the first heater 31 and the second heater 32 are arranged as shown in FIG. There is no gap between the first heater and the second heater for air-cooling the annular flow path (a minimum necessary clearance is provided so that the temperature of the first heater and the second heater can be maintained). The clearance is set to about 7% with respect to the entire channel area of the annular channel (see FIG. 2A)).
 そのため、第1ヒータの上方の流路エリアで空冷よりも早い速度で冷却され、急峻な勾配を形成し、比較例1~3と比較すると短時間で第1ヒータの温度(60℃)付近に到達していることが分かる。すなわち、実施例では比較例と比べて効率よく迅速に液体の温度を調節していることが分かる。また、外気温度が40℃(図22(E))と10℃(図22(A))の場合とで、環状流路内の液体の冷却プロファイルに差がなく比較例よりも熱対流の再現性、ロバスト性に優れているといえる。 Therefore, it is cooled at a speed faster than air cooling in the flow path area above the first heater, forms a steep gradient, and near the temperature (60 ° C.) of the first heater in a short time compared with Comparative Examples 1 to 3. You can see that it has reached. That is, it can be seen that the temperature of the liquid is adjusted efficiently and quickly in the example as compared with the comparative example. In addition, there is no difference in the cooling profile of the liquid in the annular channel between the case where the outside air temperature is 40 ° C. (FIG. 22E) and 10 ° C. (FIG. 22A), and the thermal convection is reproduced more than in the comparative example. It can be said that it is excellent in performance and robustness.
 以上、本発明について第1~第3実施形態、実施例を通じて説明してきたが、本発明はこれらに限定されず、請求の範囲に記載された発明の要旨を逸脱しないかぎり、設計変更は許容される。 The present invention has been described through the first to third embodiments and examples. However, the present invention is not limited to these, and design changes are allowed without departing from the spirit of the invention described in the claims. The
1・・・熱対流生成装置
10,10A,10B・・・熱対流生成用チップ
10Ba・・・第1基板
10Bb・・・第2基板
10Bc・・・第3基板
11,11A・・・基板
13,13A,13B・・・蓋体
14,14A,14B・・・環状流路
15・・・液体供給路
15a・・・伸延部
15b・・・液溜り部
15c・・・連通部
15A,15Aa・・・第1液体供給路
15B,15Ba・・・第2液体供給路
15C,15Ca・・・第3液体供給路
15D・・・液体供給孔
16・・・ガス排出路
16a・・・伸延部
16b・・・ガス溜り部
16c・・・連通部
16A,101A・・・第1受入部
16B,101B・・・第2受入部
16C,101C・・・第3受入部
17・・・中心孔
17A,102A・・・第1吸引通路
17B,102B・・・第2吸引通路
17C,102C・・・第3吸引通路
18A,18B,18C,103A・・・空気孔
19・・・導入室
19a・・・導入通路
19A・・・導入室
20・・・ステージ
21・・・ヒータ装着孔
22・・・第1ねじ挿通孔
23・・・第2ねじ挿通孔
24・・・中心孔
25a・・・凹部
25b・・・第1内壁面
25c・・・第2内壁面
25d・・・境界部
25,25A・・・カバー部
26・・・案内通路
26A・・・案内通路形成部
27・・・溝
28・・・孔
29・・・開口
30・・・熱源
31・・・第1ヒータ
31a・・・連結部
31b・・・熱源部
31c・・・孔
32・・・第2ヒータ
32a・・・連結部
32b・・・熱源部
32c・・・貫通孔
32a・・・リング状の連結部
40・・・モータ
41・・・シャフト
50・・・制御手段
51・・・演算制御部
52・・・表示部
53・・・入力部
60・・・ヒートシンク
81・・・熱対流生成装置
90・・・光学検出系
91・・・励起光光源
92・・・蛍光検出器
93・・・検知光光源
94・・・検知光検出器
95・・・被検知部
96・・・演算制御部
97・・・制御手段
103Bu,103Bm,103Cu,103Cm,103Cb・・・導気用孔
104U,104M・・・穴
105U,105M,105B・・・孔
106U,106B,106M・・・矩形孔
107・・・溝
108・・・導入通路
109U,109M,109B・・・溝
110・・・孔
100,200,300・・・熱対流生成システム
AX・・・軸線
L1・・・光
L2・・・検知光
P1・・・検知ポイント
Sa・・・入口
S,S'・・・第2領域
T,T'・・・第1領域
DESCRIPTION OF SYMBOLS 1 ... Thermal convection production | generation apparatus 10, 10A, 10B ... Chip 10Ba for thermal convection production | generation ... 1st board | substrate 10Bb ... 2nd board | substrate 10Bc ... 3rd board | substrate 11, 11A ... board | substrate 13 , 13A, 13B ... lids 14, 14A, 14B ... annular channel 15 ... liquid supply channel 15a ... extension 15b ... liquid reservoir 15c ... communication unit 15A, 15Aa First liquid supply path 15B, 15Ba ... Second liquid supply path 15C, 15Ca ... Third liquid supply path 15D ... Liquid supply hole 16 ... Gas discharge path 16a ... Extender 16b ... Gas reservoir 16c ... Communication parts 16A, 101A ... First receiving part 16B, 101B ... Second receiving part 16C, 101C ... Third receiving part 17 ... Center hole 17A, 102A: first suction passages 17B, 102B, Second suction passages 17C, 102C ... third suction passages 18A, 18B, 18C, 103A ... air holes 19 ... introduction chamber 19a ... introduction passage 19A ... introduction chamber 20 ... stage 21 ... Heater mounting hole 22 ... first screw insertion hole 23 ... second screw insertion hole 24 ... center hole 25a ... concave portion 25b ... first inner wall surface 25c ... second Inner wall surface 25d ... boundary portions 25, 25A ... cover portion 26 ... guide passage 26A ... guide passage forming portion 27 ... groove 28 ... hole 29 ... opening 30 ... heat source 31 ... 1st heater 31a ... Connection part 31b ... Heat source part 31c ... Hole 32 ... 2nd heater 32a ... Connection part 32b ... Heat source part 32c ... Through-hole 32a ... Ring-shaped connecting part 40 ... Motor 41 ... Shaft 50 ... Control means 51... Arithmetic control unit 52 .. display unit 53 .. input unit 60 .. heat sink 81 .. heat convection generator 90 .. optical detection system 91. ..Fluorescence detector 93... Detection light source 94... Detection light detector 95 .. detected portion 96 .. arithmetic control unit 97 .. control means 103 Bu, 103 Bm, 103 Cu, 103 Cm, 103 Cb .. Air conduction holes 104U, 104M ... holes 105U, 105M, 105B ... holes 106U, 106B, 106M ... rectangular holes 107 ... grooves 108 ... introduction passages 109U, 109M, 109B ... · Groove 110 ··· Hole 100, 200, 300 · · · Thermal convection generation system AX · · · axis L1 · · · light L2 · · · detection light P1 · · · detection point Sa · · · entrance S, S ' ... Second area T, T '··· first region

Claims (17)

  1.  液体を循環させるための環状流路を有する熱対流生成用チップを回転可能に固定することができる回転軸と、
     前記環状流路内の液体を加熱又は冷却する第1熱源部を有する第1温度調節部と、
     前記環状流路内の液体を加熱又は冷却する第2熱源部を有する第2温度調節部と、
     前記回転軸を回転駆動することにより前記環状流路全体を前記回転軸の軸線回りに回転させる回転駆動手段と、を備え、前記液体が前記環状流路を流通する方向と直交する方向(環状流路より呈される円と一致する平面)で前記環状流路を平面視したとき、該平面上にある前記環状流路の重心(環状流路の中心)と、前記軸線と前記平面との交点である前記回転軸の回転中心とが一致しない熱対流生成装置であって、
     前記回転中心と前記重心(環状流路の中心)とをつなげた直線に対して、前記重心(環状流路の中心)を中心として、30°以上~150°以下または210°以上~330°以下となる範囲のうち、いずれか一方の範囲のみに、前記第2熱源部が少なくとも1つ位置して該範囲内で前記環状流路の流路エリアを加熱又は冷却し、
     前記第1熱源部は、第2熱源部によって加熱又は冷却される前記環状流路の流路エリア以外の流路エリアを加熱または冷却する、熱対流生成装置。
    A rotating shaft capable of rotatably fixing a chip for generating heat convection having an annular flow path for circulating a liquid;
    A first temperature adjustment unit having a first heat source unit for heating or cooling the liquid in the annular channel;
    A second temperature adjustment unit having a second heat source unit for heating or cooling the liquid in the annular channel;
    Rotation driving means for rotating the entire rotary channel around the axis of the rotary shaft by rotating the rotary shaft, and a direction (annular flow) perpendicular to the direction in which the liquid flows through the annular channel. When the annular flow path is viewed in plan on a plane that coincides with a circle presented by the road), the center of gravity of the annular flow path (center of the circular flow path) on the plane and the intersection of the axis and the plane A thermal convection generating device that does not coincide with the rotational center of the rotating shaft,
    With respect to a straight line connecting the rotation center and the center of gravity (center of the annular channel), the center of gravity (center of the annular channel) is 30 ° to 150 ° or 210 ° to 330 °. In any one of the ranges, the at least one second heat source part is positioned and the flow passage area of the annular flow passage is heated or cooled in the range,
    The first heat source unit heats or cools a channel area other than the channel area of the annular channel heated or cooled by the second heat source unit.
  2.  第1熱源部と第2熱源部との間にクリアランスを有し、
     前記平面視をしたときの該クリアランスの面積が流路エリア全体の面積に対して0.1~15%の範囲にある、請求項1に記載の熱対流生成装置。
    Having a clearance between the first heat source part and the second heat source part,
    The thermal convection generating device according to claim 1, wherein an area of the clearance in the plan view is in a range of 0.1 to 15% with respect to an area of the entire flow path area.
  3.  第1温度調節部の第1熱源部と第2温度調節部の第2熱源部とが面一の平板部を有し、
     前記平面視をした状態で、前記クリアランス部分が、第2熱源部を囲うように各熱源部が形成および配置されている、請求項2に記載の熱対流生成装置。
    The first heat source part of the first temperature control part and the second heat source part of the second temperature control part have a flat plate part,
    3. The thermal convection generating device according to claim 2, wherein each heat source part is formed and arranged so that the clearance part surrounds the second heat source part in the state in plan view.
  4.  前記平面視をしたときに、第2温度調節部の第2熱源部と重なる前記環状流路の流路エリアが、第1温度調節部の第1熱源部と重なる前記環状流路の流路エリアよりも面積が小さい、請求項1~3のいずれか一項に記載の熱対流生成装置。 The flow path area of the annular flow path that overlaps the first heat source section of the first temperature control section is overlapped with the flow area of the annular flow path that overlaps the second heat source section of the second temperature control section when viewed in plan. The thermal convection generating device according to any one of claims 1 to 3, wherein the area is smaller than the area.
  5.  請求項1~4のいずれか一項に記載の熱対流生成装置と、
     液体を循環させるための環状流路を有する熱対流生成用チップと、を含み、
     前記熱対流生成用チップは、前記環状流路に連通した液体供給路を有し、前記回転駆動により熱対流生成用チップに加わる遠心力により前記液体供給路中の液体が前記環状流路に供給される、熱対流生成システム。
    The thermal convection generating device according to any one of claims 1 to 4,
    A chip for generating heat convection having an annular flow path for circulating a liquid,
    The thermal convection generating chip has a liquid supply path communicating with the annular flow path, and the liquid in the liquid supply path is supplied to the annular flow path by centrifugal force applied to the thermal convection generating chip by the rotational drive. A thermal convection generation system.
  6.  前記環状流路に連通したガス排出路が形成されている、請求項5に記載の熱対流生成システム。 The thermal convection generation system according to claim 5, wherein a gas discharge path communicating with the annular flow path is formed.
  7.  前記回転軸の軸線に対して前記環状流路が対称となるように複数配置されている、請求項5または6に記載の熱対流生成システム。 The thermal convection generation system according to claim 5 or 6, wherein a plurality of the annular flow paths are arranged so as to be symmetric with respect to the axis of the rotation axis.
  8.  前記環状流路の壁面の表面粗さRaが100nm以下である、請求項5~7のいずれか一項に記載の熱対流生成システム。 The thermal convection generation system according to any one of claims 5 to 7, wherein a surface roughness Ra of the wall surface of the annular channel is 100 nm or less.
  9.  前記環状流路が前記平面視をしたときに真円状である、請求項5~8のいずれか一項に記載の熱対流生成システム。 The thermal convection generation system according to any one of claims 5 to 8, wherein the annular flow path has a perfect circle shape when seen in a plan view.
  10.  前記環状流路の壁面の材質が、環状オレフィン、ポリプロピレン、及びポリカーボネートのうちのいずれかである、請求項5~9のいずれか一項に記載の熱対流生成システム。 The thermal convection generation system according to any one of claims 5 to 9, wherein a material of a wall surface of the annular flow path is any one of cyclic olefin, polypropylene, and polycarbonate.
  11.  前記環状流路内の液体に含まれる蛍光色素を励起する励起光を前記環状流路内の前記液体に照射する励起光光源と、
     前記蛍光色素に前記励起光を照射することにより前記蛍光色素によって放出される蛍光を検出する蛍光検出器と、
     前記蛍光検出器によって検出された蛍光に基づいて核酸の複製量を算出する演算制御部と、
    を含む請求項5~10のいずれか一項に記載の熱対流生成システム。
    An excitation light source that irradiates the liquid in the annular channel with excitation light that excites the fluorescent dye contained in the liquid in the annular channel;
    A fluorescence detector that detects fluorescence emitted by the fluorescent dye by irradiating the fluorescent dye with the excitation light;
    An arithmetic control unit that calculates the replication amount of the nucleic acid based on the fluorescence detected by the fluorescence detector;
    The thermal convection generating system according to any one of claims 5 to 10, comprising:
  12.  前記液体供給路は、
     前記液体を受け入れる受入部と、
     前記受入部と前記環状流路とを連通させるとともに、前記受入部内の液体を毛細管現象により吸引する吸引通路と、
    を有し、
     前記吸引通路は、前記吸引通路の中間部と前記環状流路との間に位置する第1領域と、前記吸引通路と前記受入部との間に位置する第2領域とを有し、
     前記回転をさせることにより、前記第1領域内の液体が前記第2領域内の液体から分離して前記環状流路へ供給される、請求項5~11のいずれか一項に記載の熱対流生成システム。
    The liquid supply path is
    A receiving part for receiving the liquid;
    A suction passage for communicating the receiving part and the annular flow path, and sucking the liquid in the receiving part by capillary action;
    Have
    The suction passage has a first region located between an intermediate portion of the suction passage and the annular flow path, and a second region located between the suction passage and the receiving portion,
    The thermal convection according to any one of claims 5 to 11, wherein the liquid in the first region is separated from the liquid in the second region and supplied to the annular flow path by the rotation. Generation system.
  13.  前記吸引通路は、前記中間部で鋭角状に屈曲している、請求項12に記載の熱対流生成システム。 The heat convection generating system according to claim 12, wherein the suction passage is bent at an acute angle at the intermediate portion.
  14.  前記吸引通路は、前記中間部に空気を導入する空気孔をさらに有する、請求項11又は請求項13に記載の熱対流生成システム。 The heat convection generating system according to claim 11 or 13, wherein the suction passage further has an air hole for introducing air into the intermediate portion.
  15.  前記液体供給路を複数設け、
     該複数の液体供給路は、液体供給路ごとに異なる液体を前記環状流路に供給する請求項5~14のいずれか一項に記載の熱対流生成システム。
    A plurality of the liquid supply paths are provided,
    The thermal convection generating system according to any one of claims 5 to 14, wherein the plurality of liquid supply paths supply different liquids to the annular flow path for each liquid supply path.
  16.  前記複数の液体供給路は、検体液を前記環状流路に供給する液体供給路と、PCRを行うための反応試薬溶液を前記環状流路に供給する液体供給路を含み、
     前記検体液を前記環状流路に供給する液体供給路の前記第1領域の容積と、前記反応試薬溶液を前記環状流路に供給する液体供給路の前記第1領域の溶液とを合わせた容積は、前記環状流路の容積に等しい、請求項15に記載の熱対流生成システム。
    The plurality of liquid supply paths include a liquid supply path for supplying a sample liquid to the annular flow path, and a liquid supply path for supplying a reaction reagent solution for performing PCR to the annular flow path,
    The volume of the first region of the liquid supply path for supplying the sample liquid to the annular channel and the volume of the first region of the liquid supply channel for supplying the reaction reagent solution to the annular channel. The thermal convection generation system of claim 15, wherein is equal to the volume of the annular flow path.
  17.  請求項1~16のいずれか一項に記載の熱対流生成装置または熱対流生成システムを使用したコンベクションPCR法であって、
     PCR反応溶液を構成する検体液、反応試薬溶液、その他PCR反応に必要な液体を個別に又は一体に環状流路内に導入する液導入工程、
     環状流路内で前記PCR反応溶液を所定速度で還流させてコンベクションPCRを行うPCR反応工程、を含み、
     PCR反応中に、第1温度調節手段の熱源部と第2温度調節手段の熱源部との温度差を10℃以上に維持する、コンベクションPCR法。
    A convection PCR method using the thermal convection generating device or the thermal convection generating system according to any one of claims 1 to 16,
    A liquid introduction step for introducing a sample solution, a reaction reagent solution, and other liquids necessary for a PCR reaction into a circular channel individually or integrally into a PCR reaction solution;
    A PCR reaction step of performing convection PCR by refluxing the PCR reaction solution at a predetermined speed in a circular channel,
    A convection PCR method in which the temperature difference between the heat source part of the first temperature control means and the heat source part of the second temperature control means is maintained at 10 ° C. or higher during the PCR reaction.
PCT/JP2016/059847 2015-03-30 2016-03-28 Heat-convection-generating device and heat-convection-generating system WO2016158831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509958A JP6596800B2 (en) 2015-03-30 2016-03-28 Thermal convection generation system and convection PCR method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-069144 2015-03-30
JP2015069144 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158831A1 true WO2016158831A1 (en) 2016-10-06

Family

ID=57005049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059847 WO2016158831A1 (en) 2015-03-30 2016-03-28 Heat-convection-generating device and heat-convection-generating system

Country Status (2)

Country Link
JP (1) JP6596800B2 (en)
WO (1) WO2016158831A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143469A1 (en) * 2017-02-06 2018-08-09 国立大学法人大阪大学 Gene amplification system, flow path chip, rotary driving mechanism, and gene amplification method
CN111474151A (en) * 2020-04-18 2020-07-31 杭州准芯生物技术有限公司 Liquid detection method
JPWO2021015145A1 (en) * 2019-07-25 2021-01-28
WO2021039664A1 (en) * 2019-08-23 2021-03-04 国立大学法人大阪大学 Heat convection generation system, flow path chip, and heat convection generation device
CN113755316A (en) * 2021-10-09 2021-12-07 苏州国科均豪生物科技有限公司 Switchable incubation module and PCR amplification detector
JP2023543064A (en) * 2020-09-29 2023-10-12 スピンディアグ ゲーエムベーハー Sample carrier and rotation device
WO2025192655A1 (en) * 2024-03-13 2025-09-18 株式会社堀場製作所 Specimen measurement chip, method for manufacturing specimen measurement chip, specimen measurement device, specimen measurement method, and specimen measurement program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039498A (en) * 2012-08-22 2014-03-06 Osaka Univ Heat convection generation chip and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039498A (en) * 2012-08-22 2014-03-06 Osaka Univ Heat convection generation chip and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143469A1 (en) * 2017-02-06 2018-08-09 国立大学法人大阪大学 Gene amplification system, flow path chip, rotary driving mechanism, and gene amplification method
JPWO2021015145A1 (en) * 2019-07-25 2021-01-28
WO2021015145A1 (en) * 2019-07-25 2021-01-28 コニカミノルタ株式会社 Chip for generating thermal convection and reaction method
JP7549358B2 (en) 2019-07-25 2024-09-11 国立大学法人大阪大学 Chip for generating thermal convection and reaction method
WO2021039664A1 (en) * 2019-08-23 2021-03-04 国立大学法人大阪大学 Heat convection generation system, flow path chip, and heat convection generation device
CN111474151A (en) * 2020-04-18 2020-07-31 杭州准芯生物技术有限公司 Liquid detection method
JP2023543064A (en) * 2020-09-29 2023-10-12 スピンディアグ ゲーエムベーハー Sample carrier and rotation device
CN113755316A (en) * 2021-10-09 2021-12-07 苏州国科均豪生物科技有限公司 Switchable incubation module and PCR amplification detector
WO2025192655A1 (en) * 2024-03-13 2025-09-18 株式会社堀場製作所 Specimen measurement chip, method for manufacturing specimen measurement chip, specimen measurement device, specimen measurement method, and specimen measurement program

Also Published As

Publication number Publication date
JP6596800B2 (en) 2019-10-30
JPWO2016158831A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6596800B2 (en) Thermal convection generation system and convection PCR method
JP6427753B2 (en) Thermal convection generating chip, thermal convection generating device, and thermal convection generating method
JP5967611B2 (en) Thermal convection generating chip and thermal convection generating device
US10427162B2 (en) Systems and methods for molecular diagnostics
US20200400703A1 (en) Systems, methods, and devices for self-digitization of samples
CN102369443B (en) The manufacture method of sample analysis chip, the sample analyzer adopting this sample analysis chip and sample analyzing method and sample analysis chip
EP2612708B1 (en) Assays
JP2019536434A (en) Fluid systems and related methods
CN103988082A (en) Sample analysis chip, sample analysis method, and gene analysis method
JP6323274B2 (en) Sample analysis chip
JP2004504828A (en) Apparatus for heat-dependent linkage amplification of target nucleic acid sequences
US12269040B2 (en) Devices and methods for rapid sample processing and analysis
CN104245915A (en) High-speed gene amplification detection device
EP3942281A1 (en) Multi-function analytic devices
Sundberg et al. Microfluidic genotyping by rapid serial PCR and high-speed melting analysis
JPWO2007099736A1 (en) Micro inspection chip, optical detection device, and micro total analysis system
JP2012185000A (en) Sample analysis chip and sample analysis method using the same
JP6714277B2 (en) Chip for heat convection
JPWO2018143469A1 (en) Gene amplification system, flow channel chip, rotation drive mechanism, and gene amplification method
JP2018014966A (en) Thermal convection generation chip, thermal convection generation unit
JP2022504857A (en) Methods and systems for local heating by illumination of patterned thin films
JP7416134B1 (en) detection device
JP2011214945A (en) Chip for biochemical reaction, and method of manufacturing the same
WO2021039664A1 (en) Heat convection generation system, flow path chip, and heat convection generation device
JP2015206715A (en) Sample analysis chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772712

Country of ref document: EP

Kind code of ref document: A1