[go: up one dir, main page]

WO2018143469A1 - Gene amplification system, flow path chip, rotary driving mechanism, and gene amplification method - Google Patents

Gene amplification system, flow path chip, rotary driving mechanism, and gene amplification method Download PDF

Info

Publication number
WO2018143469A1
WO2018143469A1 PCT/JP2018/003953 JP2018003953W WO2018143469A1 WO 2018143469 A1 WO2018143469 A1 WO 2018143469A1 JP 2018003953 W JP2018003953 W JP 2018003953W WO 2018143469 A1 WO2018143469 A1 WO 2018143469A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
flow path
meandering
heater
chip
Prior art date
Application number
PCT/JP2018/003953
Other languages
French (fr)
Japanese (ja)
Inventor
真人 齋藤
高橋 和也
民谷 栄一
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2018566166A priority Critical patent/JPWO2018143469A1/en
Publication of WO2018143469A1 publication Critical patent/WO2018143469A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a gene amplification system, a channel chip, a rotation drive mechanism, and a gene amplification method.
  • ddPCR digital droplet PCR
  • PCR polymerase chain reaction
  • Non-Patent Document 1 discloses a method of rotating a microchannel and producing a droplet in a centrifugal field.
  • the microchannel is a channel having a width and depth (height) on the order of micrometers.
  • the microchannel has a width and depth of 1 ⁇ m or more and less than 1 mm.
  • One cycle of PCR includes two steps. Specifically, one cycle of PCR includes a heating step and a cooling step. In the heating step, the PCR solution is heated. In the cooling step, the heated PCR solution is cooled.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a gene amplification system and a gene amplification method capable of performing ddPCR more rapidly. Another object of the present invention is to provide a channel chip and a rotation drive mechanism that can be used in a gene amplification system.
  • the gene amplification system of the present invention includes a flow path chip and a rotation drive mechanism.
  • the channel chip has a meandering channel.
  • the meandering channel meanders to one side and the other side.
  • the rotation drive mechanism has a rotation shaft and rotates the flow channel chip around the rotation shaft.
  • the rotation drive mechanism rotates the flow channel chip to impart buoyancy to the droplets in the meandering channel, thereby moving the droplets along the meandering channel.
  • the rotation driving mechanism includes a heater stage and a driving device.
  • the heater stage has a plurality of heater surfaces set at different temperatures.
  • the drive device rotates the heater stage around the rotation axis.
  • the rotation drive mechanism holds the flow path chip so that the meandering flow path is disposed across the plurality of heater surfaces.
  • the plurality of heater surfaces include a first heater surface and a second heater surface.
  • the first heater surface is set to a first temperature.
  • the second heater surface is set to a second temperature different from the first temperature.
  • the rotational drive mechanism has an end on the one side of the meandering channel facing the first heater surface, and an end on the other side of the meandering channel is the second heater surface.
  • the flow channel chip is held so as to face the surface.
  • the meandering channel includes a first inclined channel and a second inclined channel.
  • the first inclined channel extends to the one side.
  • the second inclined channel extends to the other side.
  • first inclined channel and the second inclined channel are inclined with respect to a radial direction orthogonal to the rotation axis.
  • the meandering channel includes a plurality of the first inclined channels and a plurality of the second inclined channels.
  • first inclined flow path and the second inclined flow path are alternately arranged along the radial direction.
  • the flow channel chip further includes a droplet supply chamber.
  • the droplet supply chamber supplies the droplet to the starting end of the meandering flow path.
  • the droplet supply chamber has a shape whose width becomes narrower toward a start end of the meandering flow path.
  • the droplet supply chamber has a triangular shape.
  • a triangular top of the droplet supply chamber is connected to a starting end of the meandering channel.
  • the flow channel chip further includes a liquid introduction chamber and an introduction flow channel.
  • a liquid is introduced into the liquid introduction chamber.
  • the introduction channel communicates with the liquid introduction chamber and the meandering channel.
  • the introduction flow path includes a meandering flow path at an intermediate portion thereof.
  • the channel chip of the present invention includes a meandering channel.
  • the meandering channel meanders to one side and the other side.
  • buoyancy is applied to the droplets in the meandering channel, and the droplets move along the serpentine channel.
  • the rotation drive mechanism of the present invention rotates the flow channel chip around the rotation axis.
  • the channel chip has a meandering channel.
  • the meandering channel meanders to one side and the other side.
  • the rotational drive mechanism includes a heater stage and a drive device.
  • the heater stage has a plurality of heater surfaces set at different temperatures.
  • the drive device rotates the heater stage around the rotation axis.
  • the rotation drive mechanism holds the flow path chip so that the meandering flow path is disposed across the plurality of heater surfaces.
  • the plurality of heater surfaces include a first heater surface and a second heater surface.
  • the first heater surface is set to a first temperature.
  • the second heater surface is set to a second temperature different from the first temperature.
  • the rotational drive mechanism has an end on the one side of the meandering channel facing the first heater surface, and an end on the other side of the meandering channel is the second heater surface.
  • the flow channel chip is held so as to face the surface.
  • the first heater surface extends along a radial direction orthogonal to the rotation axis.
  • the second heater surface is arranged side by side with the first heater surface and extends along the radial direction.
  • the gene amplification method of the present invention is a method of amplifying a gene using a channel chip.
  • the channel chip has a meandering channel and a liquid introduction chamber.
  • the meandering channel meanders on one side and the other side.
  • the liquid introduction chamber communicates with the meandering flow path.
  • the gene amplification method includes a step of holding the flow channel chip with respect to a heater stage so that the meandering flow channel is disposed across a plurality of heater surfaces, and the plurality of heater surfaces are set to different temperatures.
  • the end portion on the one side of the meandering channel faces the first heater surface, and the other side of the meandering channel is on the other side.
  • the flow path chip is held with respect to the heater stage so that the end faces the second heater surface.
  • the first heater surface is set to a first temperature
  • the second heater surface is set to a second temperature different from the first temperature. .
  • ddPCR can be performed more rapidly.
  • FIG. 14B is a sectional view taken along line XIVB-XIVB shown in FIG. It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention.
  • FIG. 6 is a graph showing the relationship between the rotation speed and the movement speed of droplets according to Examples 2 to 4 of the present invention. 6 is a graph showing the relationship between the rotation speed and the time required to complete one cycle of PCR according to Examples 2 to 4 of the present invention.
  • A is a figure which shows the detection result of the fluorescence which concerns on Example 5.
  • FIG. (B) is a figure which shows the detection result of the fluorescence which concerns on a comparative example.
  • FIG. 1 is a plan view of the flow path chip 1.
  • the flow channel chip 1 includes a substrate 11.
  • the substrate 11 includes a liquid introduction chamber 12, an introduction channel 13, a droplet supply chamber 14, a meandering channel 15, and a storage chamber 16.
  • the introduction flow path 13 and the meandering flow path 15 are typically micro flow paths. However, the introduction flow path 13 and the meandering flow path 15 are not limited to micro flow paths.
  • the introduction channel 13 and the meandering channel 15 may have a channel width of 1 mm and a depth (height) of 1 mm, for example.
  • the liquid introduction chamber 12 and the like are formed on the substrate 11 by, for example, a fine processing technique.
  • the liquid introduction chamber 12 and the like can be formed by soft lithography.
  • Soft lithography is a technique for molding a relatively soft material such as silicone rubber.
  • the liquid introduction chamber 12 or the like can be formed by photolithography and a dry process (dry etching) or a wet process (wet etching).
  • the liquid introduction chamber 12 and the like can be formed by injection molding or cutting.
  • the shape and size of the substrate 11 are not particularly limited as long as the liquid introduction chamber 12 and the like can be formed.
  • the substrate 11 has a rectangular shape.
  • the length of the substrate 11 in the longitudinal direction LD is, for example, 70 mm
  • the length of the width direction WD perpendicular to the longitudinal direction LD of the substrate 11 is, for example, 50 mm.
  • the material of the substrate 11 is not particularly limited as long as the liquid introduction chamber 12 and the like can be formed, but is preferably a material that does not inhibit PCR.
  • the material of the substrate 11 is preferably a material that does not hinder the observation (detection) of fluorescence.
  • the substrate 11 may be made of silicone rubber, glass, cycloolefin polymer (COP), or polycarbonate (PC).
  • the liquid introduction chamber 12 is formed at one end of the substrate 11 in the longitudinal direction LD.
  • one side of the substrate 11 in the longitudinal direction LD is the upper side
  • the other side of the substrate 11 in the longitudinal direction LD is the lower side.
  • the liquid introduction chamber 12 has an inlet (opening), and the liquid is introduced into the liquid introduction chamber 12 through the inlet.
  • the inlet is formed in the ceiling of the liquid introduction chamber 12.
  • the liquid is an oil such as fluorine oil and a PCR solution.
  • the PCR solution is introduced after the oil is introduced. More specifically, after the introduction channel 13, the droplet supply chamber 14, and the meandering channel 15 are filled with oil and the oil is supplied to the storage chamber 16, the PCR solution is introduced.
  • the PCR solution typically includes a sample solution, a primer, a DNA polymerase, a DNA molecule to be amplified (target sequence), deoxynucleotide triphosphate (dNTP), and a buffer solution. PCR solutions can also contain fluorescent dyes or probe DNA.
  • the sample liquid contains DNA, and the DNA has DNA molecules to be amplified.
  • the sample liquid is a turbid liquid containing, for example, influenza virus, norovirus, or other infectious disease virus.
  • the sample liquid is a turbid liquid containing drug-resistant bacteria, enterohemorrhagic E. coli, and other infectious bacteria.
  • the sample liquid is a turbid liquid containing microorganisms or animal cells.
  • the sample solution is an extract of DNA or RNA of influenza virus, norovirus, or other infectious disease virus.
  • the sample liquid is an extract of DNA or RNA of drug-resistant bacteria, enterohemorrhagic Escherichia coli, or other infectious bacteria.
  • the sample liquid is an extract of DNA or RNA of microorganisms or animal cells.
  • the PCR solution may be prepared after the reverse transcription process is performed on the sample liquid.
  • a reverse transcription process may be included in the PCR step.
  • the reverse transcription process is a process of synthesizing complementary DNA for RNA by reverse transcriptase.
  • the depth (height) of the liquid introduction chamber 12 is not particularly limited.
  • the liquid introduction chamber 12 may have a depth selected from a range of 10 ⁇ m to 1 mm.
  • the volume of the liquid introduction chamber 12 is preferably larger than the total value of the volume of the introduction channel 13, the volume of the droplet supply chamber 14, and the volume of the meandering channel 15. Under this condition, the introduction flow path 13, the droplet supply chamber 14, and the meandering flow path 15 can be filled with oil, and the oil can be supplied to the storage chamber 16.
  • the introduction channel 13 allows the liquid introduction chamber 12 and the droplet supply chamber 14 to communicate with each other.
  • the start end of the introduction flow path 13 is connected (communication) with the liquid introduction chamber 12, and the end of the introduction flow path 13 is connected (communication) with the droplet supply chamber 14.
  • the introduction channel 13 includes a first introduction channel 13a and a second introduction channel 13b.
  • the first introduction flow path 13 a includes the start end of the introduction flow path 13.
  • the first introduction flow path 13 a extends from the liquid introduction chamber 12 to the other end portion in the longitudinal direction LD of the substrate 11 and then extends in the width direction WD of the substrate 11.
  • the channel width and depth of the first introduction channel 13a are not particularly limited.
  • the first introduction channel 13a may have a channel width and depth selected from a range of 10 ⁇ m to 1 mm.
  • the second introduction channel 13 b includes the end of the introduction channel 13.
  • the second introduction channel 13 b extends from the end of the first introduction channel 13 a in the longitudinal direction LD of the substrate 11 and is connected to the droplet supply chamber 14.
  • the channel width and depth of the second introduction channel 13b may be the same as or different from the channel width and depth of the first introduction channel 13a.
  • the second introduction channel 13b may have a channel width selected from a range of 10 ⁇ m to 1 mm.
  • the second introduction channel 13b has a narrower channel width than the first introduction channel 13a.
  • the second introduction flow path 13b may have a depth selected from a range of 10 ⁇ m to 1 mm.
  • the second introduction channel 13 b has a depth shallower than that of the droplet supply chamber 14.
  • the droplet supply chamber 14 is formed at the other end of the substrate 11 in the longitudinal direction LD.
  • the droplet supply chamber 14 communicates (connects) with the starting end of the meandering channel 15.
  • the droplet supply chamber 14 supplies a PCR solution droplet generated at the terminal end of the introduction channel 13 (near the interface between the introduction channel 13 and the droplet supply chamber 14) to the meandering channel 15.
  • the droplet of the PCR solution is generated when the droplet supply chamber 14 is filled with oil.
  • the shape of the droplet supply chamber 14 is not particularly limited, but preferably includes a shape for guiding the droplet of the PCR solution to the meandering channel 15.
  • the shape of the droplet supply chamber 14 on the side of the meandering channel 15 is a triangle, and the top of the triangle is connected to the starting end of the meandering channel 15. With this shape, a droplet of the PCR solution can be guided to the meandering channel 15.
  • the depth of the droplet supply chamber 14 is not particularly limited.
  • the droplet supply chamber 14 may have a depth selected from a range of 10 ⁇ m to 1 mm.
  • the droplet supply chamber 14 has a deeper depth than the second introduction channel 13b.
  • the meandering flow path 15 extends to one side in the longitudinal direction LD of the substrate 11 while meandering in the width direction WD of the substrate 11.
  • the end of the meandering channel 15 communicates (connects) with the accommodation chamber 16.
  • the meandering flow path 15 is formed at the other end of the substrate 11 in the longitudinal direction LD.
  • the width and depth of the meandering channel 15 are not particularly limited as long as the PCR solution droplets can pass through the meandering channel 15.
  • the meandering channel 15 may have a channel width and depth selected from a range of 10 ⁇ m to 1 mm.
  • the storage chamber 16 is formed between the liquid introduction chamber 12 and the meandering channel 15. Therefore, the liquid introduction chamber 12, the storage chamber 16, and the meandering flow path 15 are arranged in this order along the longitudinal direction LD of the substrate 11.
  • the storage chamber 16 stores oil and droplets of the PCR solution.
  • the storage chamber 16 has an outlet (opening) for discharging gas.
  • the outlet is formed in the ceiling portion of the storage chamber 16.
  • the depth of the storage chamber 16 is not particularly limited.
  • the storage chamber 16 may have a depth selected from a range of 10 ⁇ m to 1 mm.
  • the volume of the storage chamber 16 is typically larger than the liquid introduction chamber 12. Since the storage chamber 16 has a larger volume than the liquid introduction chamber 12, it is possible to suppress leakage of liquid such as oil from the outlet of the storage chamber 16.
  • the flow channel chip 1 can further include at least one spacer 17 disposed in the liquid introduction chamber 12.
  • the flow channel chip 1 may further include at least one spacer 17 disposed in the storage chamber 16.
  • the ceiling of the liquid introduction chamber 12 may bend depending on the area of the liquid introduction chamber 12.
  • the spacer 17 in the liquid introduction chamber 12 it is possible to prevent the ceiling portion of the liquid introduction chamber 12 from being bent.
  • the spacer 17 in the storage chamber 16 it is possible to prevent the ceiling portion of the storage chamber 16 from being bent.
  • FIG. 2 is a front view of the flow path chip 1.
  • the flow channel chip 1 further includes a floor member 18.
  • the floor member 18 is disposed below the substrate 11 and constitutes a floor portion such as the liquid introduction chamber 12.
  • the material of the floor member 18 is not particularly limited, but is preferably a material that does not inhibit PCR.
  • the material of the floor member 18 is preferably a material that does not hinder the observation (detection) of fluorescence.
  • the rigidity of the floor member 18 is preferably higher than the rigidity of the substrate 11.
  • the floor member 18 can be a glass substrate.
  • the rigidity of the floor member 18 is higher than the rigidity of the substrate 11, the floor member 18 supports the substrate 11. Therefore, it is possible to suppress the substrate 11 (flow channel chip 1) from being bent by the floor member 18. In other words, the rigidity of the channel chip 1 can be increased. Therefore, when moving the flow path chip 1 to the fluorescence detection field after the PCR step is completed, it is possible to reduce the risk of liquid (oil etc.) leaking from the flow path chip 1.
  • the rigidity of the floor member 18 may be higher or lower than the rigidity of the substrate 11.
  • the rigidity of the floor member 18 may be the same as the rigidity of the substrate 11.
  • the floor member 18 can be glass, cycloolefin polymer, polycarbonate, or a crimp seal.
  • the flow path chip 1 may include a lid member instead of the floor member 18.
  • the flow path chip 1 includes a lid member, the top and bottom of the substrate 11 are reversed and the lid member is disposed above the substrate 11.
  • the lid member constitutes a ceiling portion of the liquid introduction chamber 12 or the like. Therefore, when the flow channel chip 1 includes the lid member, the inlet of the liquid introduction chamber 12 and the outlet of the storage chamber 16 are formed in the lid member.
  • the material of the lid member is not particularly limited, but is preferably a material that does not inhibit PCR, like the floor member 18.
  • the material of the lid member is preferably a material that does not hinder the observation of fluorescence.
  • FIG. 3 is an enlarged view showing a part of the flow path chip 1. Specifically, FIG. 3 shows an enlarged view of the meandering flow path 15 of the flow path chip 1.
  • the meandering flow path 15 meanders to one side and the other side of the width direction WD of the substrate 11.
  • one side of the width direction WD of the substrate 11 is the right side
  • the other side of the width direction WD of the substrate 11 is the left side.
  • One end of the meandering channel 15 is disposed on the first heater surface 31a
  • the other end of the meandering channel 15 is disposed on the second heater surface 32a.
  • the first heater surface 31a is set to the first temperature.
  • the second heater surface 32a is set to a second temperature different from the first temperature.
  • the first heater surface 31a (first temperature) is set to a temperature for executing the PCR heating step
  • the second heater surface 32a (second temperature) executes the PCR cooling step.
  • Set temperature for. Therefore, the second heater surface 32a is set to a temperature lower than that of the first heater surface 31a.
  • the 1st heater surface 31a (1st temperature) is set to the temperature selected from the range of 90 to 98 degreeC.
  • the temperature of the second heater surface 32a is set according to the amplification target DNA molecule.
  • the 2nd heater surface 32a (2nd temperature) is set to the temperature selected from the range of 50 to 70 degreeC.
  • the droplets of the PCR solution reciprocate between the heating field and the cooling field by moving through the meandering flow path 15.
  • One cycle of PCR is completed when the droplet of PCR solution passes through the heating field and the cooling field once.
  • the meandering flow path 15 shown in FIG. Therefore, the number of PCR cycles is 30.
  • count of folding back the meandering flow path 15 is not limited to 60 times. The number of times the meandering channel 15 is folded back can be changed as necessary.
  • the length L1 of the meandering channel 15 along the longitudinal direction LD of the substrate 11 is changed according to the number of PCR cycles. Specifically, the length L1 of the meandering channel 15 becomes longer as the number of PCR cycles is increased. For example, when the number of PCR cycles is 30, the length L1 of the meandering flow path 15 may be 20 mm.
  • the meandering flow path 15 is formed in the first heater surface 31 a and the second heater surface so that the area overlapping the second heater surface 32 a is larger than the area overlapping the first heater surface 31 a. It is made to oppose 32a (temperature control field).
  • the meandering flow path 15 is disposed such that a portion extending from the center of the width direction WD of the substrate 11 to the other end faces the second heater surface 32 a.
  • FIG. 4 is a diagram showing a configuration of the rotation drive mechanism 3.
  • the rotation drive mechanism 3 includes a heater stage 30, a disk-shaped base 40, and a drive device 50.
  • the heater stage 30 is fixed to the base 40, and the driving device 50 rotates the heater stage 30 and the base 40 about the rotation axis AX (center axis).
  • the heater stage 30 and the base 40 are made of, for example, aluminum or copper, and the driving device 50 is typically a motor.
  • the driving device 50 is preferably capable of controlling the rotation speed (number of rotations).
  • the material of the heater stage 30 and the base 40 is not limited to aluminum or copper, it is preferable that it is a material with high heat conductivity.
  • the heater stage 30 will be further described.
  • the heater stage 30 has the first heater surface 31a and the second heater surface 32a described with reference to FIG. As shown in FIG. 4, the first heater surface 31 a and the second heater surface 32 a extend along a radial direction orthogonal to the rotation axis AX. Moreover, the 1st heater surface 31a and the 2nd heater surface 32a are located in a line at intervals.
  • one end of the meandering channel 15 is disposed on the first heater surface 31a, and the other end of the meandering channel 15 is on the second heater surface 32a. Be placed. Accordingly, the flow channel chip 1 described with reference to FIGS. 1 to 3 is set with respect to the rotational drive mechanism 3 such that the longitudinal direction LD thereof is along the radial direction of the rotational drive mechanism 3. As a result, the liquid introduction chamber 12, the storage chamber 16, and the meandering channel 15 are arranged in this order along the radial direction. Specifically, among the liquid introduction chamber 12, the storage chamber 16, and the meandering channel 15, the liquid introduction chamber 12 is closest to the rotation axis AX (rotation center).
  • the heater stage 30 includes a first heater stage 31 and a second heater stage 32.
  • the first heater stage 31 has a first heater surface 31a
  • the second heater stage 32 has a second heater surface 32a.
  • the first heater stage 31 heats the first heater surface 31a to the first temperature.
  • the second heater stage 32 heats the second heater surface 32a to the second temperature.
  • the first heater stage 31 includes an annular connecting part 311 and a plurality of first heating parts 312.
  • the connecting portion 311 is disposed around the rotation axis AX.
  • the plurality of first heating units 312 extend radially from the coupling unit 311 around the rotation axis AX. Accordingly, each of the first heating units 312 is disposed along the radial direction.
  • the first heater stage 31 shown in FIG. 4 has four first heating units 312.
  • the four first heating units 312 are typically provided with an angular interval of 90 degrees.
  • Each first heating unit 312 includes a protrusion 313 that protrudes upward.
  • the protrusion 313 extends in the radial direction.
  • the ridge portion 313 has a rectangular parallelepiped shape, and the upper surface of the ridge portion 313 constitutes the first heater surface 31a.
  • the length of the protrusion 313 in the radial direction is determined according to the length L1 of the meandering channel 15 described with reference to FIG. For example, when the length L1 of the meandering channel 15 is 20 mm, the length in the radial direction of the protrusion 313 is 20 mm or more.
  • the second heater stage 32 includes a disk-shaped main body 321 and a plurality of second heating units 322.
  • the main body 321 is disposed below the first heater stage 31 and separated from the first heater stage 31.
  • Each of the second heating parts 322 protrudes upward from the main body part 321 and extends in the radial direction.
  • the second heater stage 32 shown in FIG. 4 has four second heating units 322.
  • the four second heating units 322 are typically provided with an angular interval of 90 degrees.
  • Each of the second heating sections 322 has a second heater surface 32a.
  • the 2nd heating part 322 is a rectangular parallelepiped shape, and the upper surface of the 2nd heating part 322 comprises the 2nd heater surface 32a.
  • the length of the second heating unit 322 in the radial direction is determined according to the length L1 of the meandering flow path 15 described with reference to FIG. For example, when the length L1 of the meandering flow path 15 is 20 mm, the radial length of the second heating unit 322 is 20 mm or more.
  • the width of the second heater surface 32a is preferably larger than the width of the first heater surface 31a. Since the second heater surface 32a has a larger width than the first heater surface 31a, the region of the meandering flow path 15 that overlaps the second heater surface 32a is made larger than the region that overlaps the first heater surface 31a. Becomes easier.
  • the separation member 33 is fixed to the center portion of the main body portion 321 of the second heater stage 32, and supports the first heater stage 31 so that the first heater stage 31 is separated from the main body portion 321 of the second heater stage 32.
  • the material of the separation member 33 is not particularly limited, but is preferably a material having high heat resistance.
  • the material of the spacing member 33 may be a resin such as polycarbonate or polyphenylene sulfide (PPS).
  • the separation member 33 includes a large diameter portion 331 and a small diameter portion 332.
  • the small diameter portion 332 is fixed on the large diameter portion 331, and the large diameter portion 331 is fixed to the central portion of the main body portion 321 of the second heater stage 32.
  • a step shape (step) is formed by the large diameter portion 331 and the small diameter portion 332, and the connecting portion 311 of the first heater stage 31 is fixed around the small diameter portion 332 (step).
  • the first heater stage 31 is disposed at a position separated from the main body portion 321 of the second heater stage 32 by the height of the large diameter portion 331.
  • the large diameter portion 331 and the small diameter portion 332 may be formed integrally.
  • the separation member 33 supports the first heater stage 31 so that the first heater surface 31a and the second heater surface 32a are arranged with a space therebetween.
  • the separation member 33 supports the first heater stage 31 such that thermal interference between the adjacent first heater surface 31a and the second heater surface 32a is reduced.
  • the distance between adjacent first heater surface 31a and second heater surface 32a may be 1 mm.
  • FIG. 5 is a schematic diagram showing a part of the gene amplification system 100.
  • the gene amplification system 100 includes the flow path chip 1 described with reference to FIGS. 1 to 3 and the rotation drive mechanism 3 described with reference to FIG.
  • the rotation drive mechanism 3 rotates the channel chip 1 around the rotation center X (around the rotation axis AX).
  • the rotation direction RD is a clockwise direction.
  • the rotation drive mechanism 3 holds the flow channel chip 1 so that the liquid introduction chamber 12 in the liquid introduction chamber 12 and the like is closest to the rotation center X.
  • the gene amplification system 100 rotates the channel chip 1 around the rotation center X in a state where the meandering channel 15 is opposed to the first heater surface 31a and the second heater surface 32a (temperature control field), and ddPCR is performed. Execute.
  • FIG. 6 is a flowchart showing the gene amplification method according to this embodiment.
  • the gene amplification method according to this embodiment includes steps S601 to S607.
  • steps S601 to S607 will be described.
  • the flow path chip 1 is held by the rotation drive mechanism 3 in step S601. After the flow path chip 1 is held by the rotational drive mechanism 3, oil is introduced into the liquid introduction chamber 12 in step S602.
  • step S603 the rotation drive mechanism 3 rotates the flow path chip 1 around the rotation axis AX (rotation center X).
  • the introduction channel 13, the droplet supply chamber 14, and the meandering channel 15 are filled with oil, and the oil is supplied to the storage chamber 16.
  • the temperatures of the first heater surface 31a and the second heater surface 32a are set in step S604. Specifically, the first heater surface 31a is set to a temperature for executing a PCR heating step, and the second heater surface 32a is set to a temperature for executing a PCR cooling step.
  • the PCR solution is introduced into the liquid introduction chamber 12 in step S605.
  • the rotation driving mechanism 3 rotates the flow path chip 1 around the rotation axis AX (rotation center X).
  • AX rotation center X
  • a droplet of the PCR solution is generated at the end portion of the introduction channel 13, and ddPCR is performed in the meandering channel 15.
  • the droplets of the PCR solution that have passed through the meandering flow path 15 are stored in the storage chamber 16.
  • step S607 the channel chip 1 is moved to the fluorescence detection field, and the presence or absence of DNA in each droplet is determined by detecting fluorescence.
  • FIGS. 7 to 11 are schematic diagrams showing a gene amplification method using the gene amplification system 100.
  • FIG. 7 to 11 are schematic diagrams showing a gene amplification method using the gene amplification system 100.
  • the flow path chip 1 is set in the rotation drive mechanism 3 (step S601). Specifically, the flow path is such that one end of the meandering flow path 15 is disposed on the first heater surface 31a and the other end of the meandering flow path 15 is disposed on the second heater surface 32a. The chip 1 is held on the heater stage 30. Thereafter, the oil 71 is introduced into the liquid introduction chamber 12 (step S602). For introducing the oil 71, a pipetter 72 is typically used.
  • the rotation drive mechanism 3 rotates the flow channel chip 1 in the rotation direction RD about the rotation axis AX (rotation center X) (step S603).
  • the oil 71 flows from the liquid introduction chamber 12 to the storage chamber 16.
  • the rotation of the flow path chip 1 is continued until all the oil 71 is discharged from the liquid introduction chamber 12.
  • the first heater surface 31a and the second heater surface 32a are heated, the first heater surface 31a is set to the first temperature, and the second heater surface 32a is set to the second temperature.
  • the first heater surface 31a (first temperature) is set to a temperature selected from the range of 90 ° C. to 98 ° C.
  • the second heater surface 32a (second temperature) is 50 ° C. to 70 ° C. It is set to a temperature selected from the range of °C or less.
  • the PCR solution 91 is introduced into the liquid introduction chamber 12 as shown in FIG. 9 (step S605).
  • a pipetter 92 is typically used for introducing the PCR solution 91.
  • the rotation drive mechanism 3 rotates the flow path chip 1 in the rotation direction RD about the rotation axis AX (rotation center X) (step S606).
  • the PCR solution 91 flows through the introduction channel 13 and becomes a droplet 91 a at the end portion of the introduction channel 13.
  • the droplet 91 a is supplied to the meandering channel 15 via the droplet supply chamber 14 filled with the oil 71, moves in the meandering channel 15 filled with the oil 71, and is accommodated in the accommodation chamber 16.
  • the interface between the oil 71 and the PCR solution 91 is between the oil 71 (oil phase) and the PCR solution 91 (water phase).
  • a pressure difference due to the density difference occurs.
  • a droplet 91a is generated.
  • a pressure based on centrifugal force is applied to the oil 71 and the PCR solution 91. Therefore, the gene amplification system 100 and the gene amplification method according to the present embodiment generate the droplet 91a by the centrifugal field.
  • the droplet 91a moving through the meandering channel 15 is heated by the first heater surface 31a and then cooled by the second heater surface 32a.
  • ddPCR one cycle of PCR
  • the first heater surface 31a heats the droplet 91a
  • the double-stranded DNA contained in the droplet 91a is separated and single-stranded DNA is generated.
  • the second heater surface 32a cools the droplet 91a.
  • the primer binds to the amplification target DNA molecule in the single-stranded DNA.
  • dNTP binds to the primer by DNA polymerase, and a DNA strand extends from the primer to generate double-stranded DNA.
  • the rotation of the channel chip 1 is continued until a desired amount of the PCR solution 91 is discharged from the liquid introduction chamber 12.
  • the flow path chip 1 is removed from the rotation drive mechanism 3 and moved to the fluorescence detection field as shown in FIG. 11 (step S607).
  • the fluorescence detection field the presence or absence of amplified DNA molecules in each droplet 91a is determined by detecting fluorescence. By counting the number of droplets 91a containing DNA, it is possible to measure the absolute quantification of the DNA (or nucleic acid such as RNA) that is statistically likely to be detected.
  • the excitation light emitted from the excitation light source is applied to the accommodation chamber 16.
  • the excitation light excites the fluorescent dye.
  • the excited fluorescent dye emits fluorescence.
  • the emitted fluorescence is detected by a fluorescence detector. Since the droplet 91a that emits fluorescence contains DNA and the droplet 91a that does not emit fluorescence does not contain DNA, the presence or absence of DNA in each droplet 91a can be determined.
  • the excitation light source can be, for example, a laser light source or a light emitting diode (LED).
  • the fluorescence detector includes, for example, a photomultiplier detector, a condenser lens, and a fluorescence filter.
  • Fluorescence detection methods include intercalator method and hybridization method.
  • intercalator method a fluorescent dye (SYBR green I) that specifically inserts into double-stranded DNA and emits fluorescence is used.
  • the PCR solution 91 to which a fluorescent dye is added is used.
  • the TagMan probe method is the most common hybridization method, and a probe DNA in which a fluorescent dye is bound to an oligonucleotide specific to the DNA sequence is used.
  • the PCR solution 91 to which the probe DNA is added is used.
  • the fluorescent dye used in the TagMan probe method can be, for example, FAM (Carboxyfluorescein).
  • the reverse transcription process is performed before the PCR step.
  • the PCR solution may be prepared after the reverse transcription process is performed on the sample liquid.
  • a reverse transcription process may be included in the PCR step.
  • FIG. 12 is an enlarged schematic view showing a part of the meandering flow path 15.
  • the meandering flow path 15 includes a first inclined flow path 15a and a second inclined flow path 15b.
  • the first inclined channel 15a extends to one side of the substrate 11 in the width direction WD and is connected (communicated) to one end of the second inclined channel 15b.
  • the second inclined channel 15b extends to the other side in the width direction WD of the substrate 11 and is connected (communicated) to the other end of the first inclined channel 15a.
  • the first inclined channel 15 a and the second inclined channel 15 b are inclined with respect to the longitudinal direction LD of the substrate 11. In other words, the first inclined channel 15a and the second inclined channel 15b are inclined with respect to the radial direction orthogonal to the rotation axis AX.
  • the first inclined channel 15a and the second inclined channel 15b are alternately arranged along the longitudinal direction LD (radial direction).
  • the buoyancy F toward the rotation axis AX (rotation center X) with respect to the droplet 91a is caused by centrifugal force. Is granted. Since the first inclined flow path 15a and the second inclined flow path 15b are inclined with respect to the radial direction, the droplet 91a has a meandering flow path 15 (first inclined flow path 15a and It moves toward the rotation axis AX (rotation center X) along the second inclined flow path 15b).
  • the magnitude of the buoyancy F depends on the rotational speed (rotational speed) of the drive device 50 described with reference to FIG. Specifically, the greater the number of revolutions, the greater the buoyancy F and the faster the moving speed of the droplet 91a. Therefore, the moving speed of the droplet 91a can be controlled by controlling the rotation speed of the driving device 50. Therefore, by increasing the number of rotations, it is possible to speed up heat exchange with respect to the droplet 91a, that is, speed up PCR (ddPCR). However, depending on the channel lengths of the first inclined channel 15a and the second inclined channel 15b, if the moving speed of the droplet 91a becomes too fast, appropriate heat exchange may not be performed and PCR may not be performed. is there. Therefore, it is preferable to determine the rotation speed of the drive device 50 according to the flow path lengths of the first inclined flow path 15a and the second inclined flow path 15b.
  • FIG. 13 is an enlarged view showing a part of the meandering flow path 15.
  • the first inclined channel 15 a and the second inclined channel 15 b have an inclination of an angle ⁇ with respect to the longitudinal direction LD of the substrate 11.
  • the angle ⁇ is larger than 0 °
  • the droplet 91a moves in the meandering flow path 15 using the buoyancy F described with reference to FIG.
  • the angle ⁇ and the length L2 of the meandering channel 15 in the width direction WD of the substrate 11 are not particularly limited as long as the PCR heating step and the cooling step can be performed.
  • the angle ⁇ can be selected from a range of 10 ° or less.
  • the length L2 of the meandering channel 15 can be selected from a range of 1 mm or more and 20 mm or less.
  • FIG. 14A is an enlarged view showing a part of the substrate 11. Specifically, FIG. 14A shows an enlarged view of the vicinity of the second introduction flow path 13b.
  • FIG. 14B is a cross-sectional view taken along line XIVB-XIVB shown in FIG.
  • the substrate 11 further includes a terrace structure 19.
  • the introduction flow path 13 includes a terrace portion 13c.
  • the terrace portion 13 c is formed between the end of the second introduction flow path 13 b and the droplet supply chamber 14.
  • the terrace structure 19 includes a second introduction flow path 13b (straight line portion) and a terrace portion 13c.
  • the width W2 of the terrace portion 13c along the width direction WD of the substrate 11 is larger than the flow path width W1 of the second introduction flow path 13b.
  • the channel width of the terminal portion of the second introduction channel 13b is expanded by the terrace portion 13c.
  • the depth of the terrace portion 13c is equal to the depth h1 of the second introduction channel 13b, and is shallower than the depth h2 of the droplet supply chamber 14.
  • each part of the terrace structure 19 are not particularly limited as long as the droplet 91a can be generated.
  • the width W2 of the terrace portion 13c can be 100 ⁇ m.
  • the terrace length L3 of the terrace portion 13c along the longitudinal direction LD of the substrate 11 may be 30 ⁇ m.
  • the depth h2 of the droplet supply chamber 14 is 100 ⁇ m
  • the depth h1 of the second introduction flow path 13b and the terrace portion 13c may be 30 ⁇ m.
  • the diameter of the droplet 91a can be controlled by the dimensions of each part of the terrace structure 19. Typically, the diameter of the droplet 91a is not less than 10 ⁇ m and not more than 300 ⁇ m.
  • the channel width W1 of the second introduction channel 13b is 30 ⁇ m
  • the width W2 of the terrace portion 13c is 100 ⁇ m
  • the terrace length L3 is 30 ⁇ m
  • the depth h1 of the second introduction channel 13b and the terrace portion 13c Is 30 ⁇ m, a droplet 91a having a diameter of about 95 ⁇ m is generated.
  • FIGS. 15 to 20 are views showing a part of the introduction flow path 13, the droplet supply chamber 14, and a part of the meandering flow path 15. Specifically, FIGS. 15 to 20 show the state in which the droplet 91a is supplied from the droplet supply chamber 14 to the meandering flow path 15 in time series.
  • the speed at which the droplet 91a moves through the droplet supply chamber 14 is faster than the speed at which the droplet 91a moves through the meandering channel 15. This is because the droplet 91 a moves in the direction of the buoyancy F in the droplet supply chamber 14.
  • the droplet supply chamber 14 has a shape whose width becomes narrower toward the start end of the meandering flow path 15. With this shape, the droplet 91a can be supplied to the meandering channel 15 more smoothly. More preferably, the width of the droplet supply chamber 14 is narrowed along the direction of the buoyancy F. By narrowing the width of the droplet supply chamber 14 along the direction of the buoyancy F, the droplet 91a can be guided more smoothly toward the starting end of the meandering channel 15.
  • the shape for guiding the droplet 91a to the meandering channel 15 is not limited to a triangle.
  • the droplet supply chamber 14 may include an arc shape (a part of the circumferential surface) whose width becomes narrower toward the starting end of the meandering flow path 15.
  • the droplet 91a reciprocates between the heating field (first heater surface 31a) and the cooling field (second heater surface 32a) using the buoyancy F as a driving force. Therefore, ddPCR can be performed more rapidly than the configuration in which the temperature of the temperature control field is transitioned between two temperatures.
  • the moving speed of the droplet 91a can be controlled by controlling the rotation speed. Therefore, ddPCR can be performed more quickly by controlling the number of rotations and increasing the moving speed of the droplet 91a. Furthermore, by controlling the rotation speed, it is possible to control the time during which the droplet 91a moves through the heating field and the time during which the droplet 91a moves through the cooling field. Therefore, ddPCR can be performed reliably.
  • the droplet 91a moves in the meandering flow path 15 using the buoyancy F as a driving force. Therefore, it is not necessary to feed the oil phase (oil 71). As a result, the amount of oil phase (oil 71) used can be reduced. Therefore, the running cost can be reduced. Furthermore, since a solution driving unit such as a micropump is not required, the gene amplification system 100 (ddPCR system) can be downsized.
  • the droplet 91a is surrounded by the oil 71, the adsorption of the droplet 91a to the channel wall surface can be suppressed. Therefore, sample loss can be reduced and efficiency can be increased.
  • the generation of the droplet 91a in the centrifugal field and the PCR in the temperature control field can be achieved by one apparatus (rotation drive mechanism 3). Therefore, ddPCR can be performed simply by dripping the oil 71 and the PCR solution 91 onto the flow path chip 1 and the rotation drive mechanism 3 rotating the flow path chip 1. Can do.
  • the generation of the droplet 91a and the PCR can be performed within one chip. Therefore, ddPCR can be performed more simply and rapidly.
  • the PCR solution 91 is introduced into the liquid introduction chamber 12 after the temperatures of the first heater surface 31 a and the second heater surface 32 a are set, but the PCR solution 91 is introduced into the liquid introduction chamber 12. After that, the temperature of the first heater surface 31a and the second heater surface 32a may be set.
  • the channel chip 1 is rotated in the clockwise direction, but the channel chip 1 may be rotated in the counterclockwise direction.
  • the rotation drive mechanism 3 includes four sets (temperature control fields) of the first heater surface 31a and the second heater surface 32a, but the present invention is not limited to this form.
  • the rotational drive mechanism 3 may include one, two, or three pairs of the first heater surface 31a and the second heater surface 32a, or five pairs of the first heater surface 31a and the second heater surface 32a. You may have more than one.
  • the introduction channel 13 of the channel chip 1 may include a meandering channel 13d as shown in FIG.
  • FIG. 21 is a plan view of a channel chip 1 according to another embodiment of the present invention.
  • the introduction flow channel 13 includes a meandering flow channel 13d.
  • the meandering flow path 13 d is formed between the liquid introduction chamber 12 and the droplet supply chamber 14. More specifically, the meandering flow path 13d is formed in the first introduction flow path 13a.
  • the heater stage 30 has two heater surfaces (the first heater surface 31a and the second heater surface 32a), and the meandering channel 15 is disposed across the two heater surfaces.
  • the heater stage 30 may have three or more heater surfaces. Three or more heater surfaces are set to different temperatures.
  • the meandering channel 15 is disposed across three or more heater surfaces. Since the heater stage 30 has three or more heater surfaces, the temperature gradient of the temperature control field can be controlled more freely.
  • Example 1 First, the flow channel chip 1 used in Example 1 will be described.
  • the flow channel chip 1 shown in FIG. 1 was used.
  • the substrate 11 was made of silicone rubber.
  • the depths of the liquid introduction chamber 12, the droplet supply chamber 14, and the storage chamber 16 were 100 ⁇ m.
  • the channel width and depth of the first introduction channel 13a were both 100 ⁇ m.
  • the terrace structure 19 described with reference to FIGS. 14A and 14B the flow path width W1 of the second introduction flow path 13b is 30 ⁇ m, the width W2 of the terrace portion 13c is 100 ⁇ m, and the terrace length L3 is 30 ⁇ m, the depth h1 of the second introduction flow path 13b and the terrace portion 13c was 30 ⁇ m.
  • the length L1 of the meandering flow path 15 along the longitudinal direction LD of the substrate 11 was 20 mm.
  • the length L2 of the meandering channel 15 along the width direction WD of the substrate 11 was 3.5 mm.
  • the channel width and depth of the meandering channel 15 were both 100 ⁇ m.
  • the angle ⁇ at which the first inclined channel 15a and the second inclined channel 15b are inclined with respect to the radial direction (longitudinal direction LD) was 4 °.
  • Example 1 fluorine oil was used as the oil 71. Further, instead of the PCR solution 91 (aqueous phase), water colored in red was used.
  • the channel chip 1 was rotated around the rotation axis AX at a rotation speed of 440 rpm.
  • FIG. 22 is a diagram showing the results of Example 1.
  • FIG. 22 was obtained by imaging the meandering flow path 15 with a high speed camera. As shown in FIG. 22, it was confirmed that the droplet S was generated by rotating the flow channel chip 1 around the rotation axis AX. Further, it was confirmed that the droplet S moved along the meandering channel 15 toward the rotation axis AX, and the meandering channel 15 was filled with the droplet S. In Example 1, a droplet S having a diameter of about 95 ⁇ m was generated.
  • Example 2 to 4 the moving speed of the droplet S was measured using the channel chip 1 having the same configuration as that of Example 1.
  • fluorine oil was used as the oil 71.
  • PCR solution 91 aqueous phase
  • water colored in red was used instead of the PCR solution 91 (aqueous phase).
  • Example 2 the channel chip 1 was rotated around the rotation axis AX at a rotation speed of 440 rpm as in Example 1.
  • Example 3 the flow channel chip 1 was rotated around the rotation axis AX at a rotation speed of 1000 rpm.
  • Example 4 the flow channel chip 1 was rotated around the rotation axis AX at a rotation speed of 1320 rpm.
  • a droplet S having a diameter of about 95 ⁇ m was also generated.
  • FIG. 23A and FIG. 23B are diagrams illustrating the movement of the droplet S according to the second embodiment.
  • FIG. 23A and FIG. 23B were obtained by imaging the meandering flow path 15 with a high-speed camera.
  • FIG. 23B shows the meandering flow path 15 when 30 seconds have elapsed from the time when FIG. 23A was imaged.
  • the arrow indicates the distance that the droplet S has moved in 30 seconds.
  • FIGS. 24A and 24B are diagrams illustrating movement of the droplet S according to the third embodiment.
  • 24A and 24B are obtained by imaging the meandering flow path 15 with a high-speed camera.
  • FIG. 24B shows the meandering flow path 15 when 30 seconds have elapsed from the time when FIG. 24A was imaged.
  • the arrow indicates the distance that the droplet S has moved in 30 seconds.
  • FIG. 25A and FIG. 25B are diagrams illustrating the movement of the droplet S according to the fourth embodiment.
  • FIG. 25A and FIG. 25B were obtained by imaging the meandering flow path 15 with a high speed camera.
  • FIG. 25B shows the meandering flow path 15 when 30 seconds have elapsed from the time when the image of FIG. In FIG. 25B, the arrow indicates the distance that the droplet S has moved in 30 seconds.
  • the moving distance of the droplet S increases as the rotational speed rpm increases.
  • FIG. 26 is a graph showing the relationship between the rotational speed and the moving speed of the droplet S.
  • the horizontal axis indicates the rotational speed
  • the vertical axis indicates the moving speed of the droplet S.
  • the graph shown in FIG. 26 is created by plotting the moving speed of the droplet S acquired from the imaging results shown in FIGS. 23 (a) and 23 (b) to FIG. 25 (a) and FIG. 25 (b). As shown in FIG. 26, it was confirmed that the moving speed of the droplet S increased as the rotational speed rpm increased.
  • FIG. 27 is a graph showing the relationship between the rotation speed and the time required to complete one cycle of PCR.
  • the horizontal axis indicates the rotation speed.
  • the vertical axis indicates the time required to complete one cycle of PCR.
  • the time required to complete one cycle of PCR indicates the time required for the droplet S to reciprocate once through the meandering channel 15.
  • the time required for the droplet S to make one round trip through the meandering channel 15 is the liquid obtained from the imaging results shown in FIGS. 23 (a) and 23 (b) to 25 (a) and 25 (b). It calculated
  • Example 5 and Comparative Example The channel chip 1 used in Example 5 and the comparative example has the same configuration as that of Example 1 except that it includes six types of thermo seals A to F. Specifically, the thermo seals A to F are embedded in the substrate 11 so as to face the meandering flow path 15. Specifically, the thermo seals A to C are opposed to one end of the meandering flow path 15 in the width direction WD of the substrate 11. In other words, the thermo seals A to C are embedded in the substrate 11 so as to face the first heater surface 31a.
  • the color of the thermo seal A becomes green at a temperature of 100 ° C.
  • the color of the thermo seal B becomes green at a temperature of 95 ° C.
  • the color of the thermo seal C becomes green at a temperature of 90 ° C.
  • thermo seals D to F face the other end of the meandering flow path 15 in the width direction WD of the substrate 11.
  • the thermo seals D to F are embedded in the substrate 11 so as to face the second heater surface 32a.
  • the color of the thermo seal D becomes green at a temperature of 65 ° C.
  • the color of the thermo seal E becomes green at a temperature of 60 ° C.
  • the color of the thermo seal F becomes green at a temperature of 55 ° C.
  • Example 5 ddPCR was performed using PCR-6 as a target, using a PCR solution containing genomic DNA of drug-resistant bacteria (IMP-6 positive). In addition, fluorescence was detected after the ddPCR step.
  • the ddPCR step was performed using a solution to which no DNA was added. The solution used in the comparative example contains the same components as in Example 5 except that no DNA was added. Also in the comparative example, fluorescence was detected after the end of the ddPCR step.
  • Example 5 the flow path chip 1 was rotated around the rotation axis AX at a rotation speed of 800 rpm using fluorine oil.
  • the color of the thermo seal B is green
  • the color of the thermo seal E is green. Therefore, it was confirmed that the temperature (first temperature) of the first heater surface 31a can be controlled to about 95 ° C. Moreover, it has confirmed that the temperature (2nd temperature) of the 2nd heater surface 32a was controllable to about 60 degreeC.
  • FIG. 28 (a) is a diagram showing a fluorescence detection result according to Example 5.
  • FIG. 28B is a diagram showing a fluorescence detection result according to the comparative example.
  • the droplet containing the drug-resistant bacterial genomic DNA (Example 5) is associated with DNA amplification compared to the droplet not containing DNA (Comparative Example). Strong fluorescence was observed (detected). Therefore, it was confirmed that ddPCR can be performed by the gene amplification system described in the embodiment.
  • ddPCR can be performed more rapidly, which is useful for a system for measuring absolute quantification of genes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A gene amplification system (100) comprises a flow path chip (1) and a rotary driving mechanism (3). The flow path chip (1) has a meandering flow path (15) that meanders toward one side and the other side. The rotary driving mechanism (3) causes the flow path chip (1) to rotate around a rotation axis. The rotary driving mechanism (3) causes the flow path chip (1) to rotate and causes a buoyancy force to act on a liquid droplet (91a) inside the meandering flow path (15) such that the liquid droplet (91a) moves along the meandering flow path (15). The rotary driving mechanism (3) includes a heater stage (30). The heater stage (30) has a plurality of heater surfaces (31a, 32a). The plurality of heater surfaces (31, 32a) are set to different temperatures. The rotary driving mechanism (3) holds the flow path chip (1) such that the meandering flow path (15) is disposed so as to straddle the plurality of heater surfaces (31a, 32a).

Description

遺伝子増幅システム、流路チップ、回転駆動機構、及び遺伝子増幅方法Gene amplification system, flow channel chip, rotation drive mechanism, and gene amplification method
 本発明は、遺伝子増幅システム、流路チップ、回転駆動機構、及び遺伝子増幅方法に関する。 The present invention relates to a gene amplification system, a channel chip, a rotation drive mechanism, and a gene amplification method.
 遺伝子(又は核酸)を増幅させるシステムとして、デジタルドロップレットPCR(以下、「ddPCR」と記載する)システムが知られている。ddPCRシステムは、オイルに囲まれた液滴(微小区画)内でポリメラーゼ連鎖反応(PCR)によるDNA分子の増幅を行うシステムである。ddPCRによれば、PCRステップ終了後に、各液滴内の増幅されたDNA分子の有無を判定し、DNAを含む液滴の数をカウントすることによって、統計的に確からしい検出対象のDNA(又はRNAなどの核酸)の絶対定量を測定することが可能となる。なお、増幅されたDNA分子の有無の判定は、蛍光の検出によって行われる。 As a system for amplifying a gene (or nucleic acid), a digital droplet PCR (hereinafter referred to as “ddPCR”) system is known. The ddPCR system is a system that amplifies DNA molecules by a polymerase chain reaction (PCR) in a droplet (micro compartment) surrounded by oil. According to ddPCR, after completion of the PCR step, the presence or absence of amplified DNA molecules in each droplet is determined, and the number of droplets containing DNA is counted, so that the DNA to be detected is statistically likely (or It is possible to measure absolute quantification of nucleic acids such as RNA. The presence / absence of amplified DNA molecules is determined by detecting fluorescence.
 オイルに囲まれた液滴は、マイクロ流路を用いて作製される。例えば、非特許文献1には、マイクロ流路を回転させ、遠心場で液滴を作製する手法が開示されている。なお、マイクロ流路は、マイクロメートルオーダーの幅及び深さ(高さ)を有する流路である。具体的には、マイクロ流路は、1μm以上1mm未満の幅及び深さを有する。 The droplet surrounded by oil is produced using a microchannel. For example, Non-Patent Document 1 discloses a method of rotating a microchannel and producing a droplet in a centrifugal field. The microchannel is a channel having a width and depth (height) on the order of micrometers. Specifically, the microchannel has a width and depth of 1 μm or more and less than 1 mm.
 しかしながら、一般的なddPCRシステムは、反応系全体の温度を制御する。このため、PCRの1サイクルを完了するために75秒以上の時間が必要となる。更に、一般的なddPCRシステムは、液滴の作製を完了した後にPCRステップを実行する。この結果、PCRの全サイクルを終了するために、2時間から3時間かかる。なお、PCRの1サイクルは、2つのステップを含む。具体的には、PCRの1サイクルは、加熱ステップと、冷却ステップとを含む。加熱ステップでは、PCR溶液が加熱される。冷却ステップでは、加熱後のPCR溶液が冷却される。 However, a general ddPCR system controls the temperature of the entire reaction system. For this reason, it takes 75 seconds or more to complete one cycle of PCR. Furthermore, a typical ddPCR system performs a PCR step after completing the creation of a droplet. As a result, it takes 2 to 3 hours to complete the entire PCR cycle. One cycle of PCR includes two steps. Specifically, one cycle of PCR includes a heating step and a cooling step. In the heating step, the PCR solution is heated. In the cooling step, the heated PCR solution is cooled.
 本発明は上記課題に鑑みてなされたものであり、その目的は、より迅速にddPCRを行うことができる遺伝子増幅システム、及び遺伝子増幅方法を提供することにある。また、本発明の他の目的は、遺伝子増幅システムに用いることが可能な流路チップ、及び回転駆動機構を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a gene amplification system and a gene amplification method capable of performing ddPCR more rapidly. Another object of the present invention is to provide a channel chip and a rotation drive mechanism that can be used in a gene amplification system.
 本発明の遺伝子増幅システムは、流路チップと、回転駆動機構とを備える。前記流路チップは、蛇行流路を有する。前記蛇行流路は、一方側及び他方側へ蛇行する。前記回転駆動機構は、回転軸を有し、前記回転軸まわりに前記流路チップを回転させる。前記回転駆動機構は、前記流路チップを回転させて、前記蛇行流路内の液滴に浮力を付与することにより、前記液滴を前記蛇行流路に沿って移動させる。前記回転駆動機構は、ヒーターステージと、駆動装置とを含む。前記ヒーターステージは、互いに異なる温度に設定される複数のヒーター面を有する。前記駆動装置は、前記回転軸まわりに前記ヒーターステージを回転させる。前記回転駆動機構は、前記蛇行流路が前記複数のヒーター面に跨って配置されるように、前記流路チップを保持する。 The gene amplification system of the present invention includes a flow path chip and a rotation drive mechanism. The channel chip has a meandering channel. The meandering channel meanders to one side and the other side. The rotation drive mechanism has a rotation shaft and rotates the flow channel chip around the rotation shaft. The rotation drive mechanism rotates the flow channel chip to impart buoyancy to the droplets in the meandering channel, thereby moving the droplets along the meandering channel. The rotation driving mechanism includes a heater stage and a driving device. The heater stage has a plurality of heater surfaces set at different temperatures. The drive device rotates the heater stage around the rotation axis. The rotation drive mechanism holds the flow path chip so that the meandering flow path is disposed across the plurality of heater surfaces.
 ある実施形態において、前記複数のヒーター面は、第1ヒーター面と、第2ヒーター面とを有する。前記第1ヒーター面は、第1温度に設定される。前記第2ヒーター面は、前記第1温度とは異なる第2温度に設定される。 In one embodiment, the plurality of heater surfaces include a first heater surface and a second heater surface. The first heater surface is set to a first temperature. The second heater surface is set to a second temperature different from the first temperature.
 ある実施形態において、前記回転駆動機構は、前記蛇行流路の前記一方側の端部が前記第1ヒーター面に対向するとともに、前記蛇行流路の前記他方側の端部が前記第2ヒーター面に対向するように、前記流路チップを保持する。 In one embodiment, the rotational drive mechanism has an end on the one side of the meandering channel facing the first heater surface, and an end on the other side of the meandering channel is the second heater surface. The flow channel chip is held so as to face the surface.
 ある実施形態において、前記蛇行流路は、第1傾斜流路と、第2傾斜流路とを含む。前記第1傾斜流路は、前記一方側へ延びる。前記第2傾斜流路は、前記他方側へ延びる。 In one embodiment, the meandering channel includes a first inclined channel and a second inclined channel. The first inclined channel extends to the one side. The second inclined channel extends to the other side.
 ある実施形態において、前記第1傾斜流路及び前記第2傾斜流路は、前記回転軸に直交する径方向に対して傾斜する。 In one embodiment, the first inclined channel and the second inclined channel are inclined with respect to a radial direction orthogonal to the rotation axis.
 ある実施形態において、前記蛇行流路は、複数の前記第1傾斜流路と、複数の前記第2傾斜流路とを含む。 In one embodiment, the meandering channel includes a plurality of the first inclined channels and a plurality of the second inclined channels.
 ある実施形態において、前記第1傾斜流路と前記第2傾斜流路とは、前記径方向に沿って交互に配置される。 In one embodiment, the first inclined flow path and the second inclined flow path are alternately arranged along the radial direction.
 ある実施形態において、前記流路チップは、液滴供給室を更に有する。前記液滴供給室は、前記蛇行流路の始端に前記液滴を供給する。 In one embodiment, the flow channel chip further includes a droplet supply chamber. The droplet supply chamber supplies the droplet to the starting end of the meandering flow path.
 ある実施形態において、前記液滴供給室は、前記蛇行流路の始端に向かって幅が狭くなる形状を有する。 In one embodiment, the droplet supply chamber has a shape whose width becomes narrower toward a start end of the meandering flow path.
 ある実施形態において、前記液滴供給室は三角形状を有する。 In one embodiment, the droplet supply chamber has a triangular shape.
 ある実施形態において、前記液滴供給室の三角形状の頂部が、前記蛇行流路の始端に接続する。 In one embodiment, a triangular top of the droplet supply chamber is connected to a starting end of the meandering channel.
 ある実施形態において、前記流路チップは、液体導入室と、導入流路とを更に有する。前記液体導入室には、液体が導入される。前記導入流路は、前記液体導入室と前記蛇行流路とに連通する。 In one embodiment, the flow channel chip further includes a liquid introduction chamber and an introduction flow channel. A liquid is introduced into the liquid introduction chamber. The introduction channel communicates with the liquid introduction chamber and the meandering channel.
 ある実施形態において、前記導入流路はその中間部に蛇行流路を含む。 In one embodiment, the introduction flow path includes a meandering flow path at an intermediate portion thereof.
 本発明の流路チップは、蛇行流路を備える。前記蛇行流路は、一方側及び他方側へ蛇行する。回転軸まわりに前記流路チップを回転させた場合に、前記蛇行流路内の液滴に浮力が付与されて、前記液滴が前記蛇行流路に沿って移動する。 The channel chip of the present invention includes a meandering channel. The meandering channel meanders to one side and the other side. When the channel chip is rotated around the rotation axis, buoyancy is applied to the droplets in the meandering channel, and the droplets move along the serpentine channel.
 本発明の回転駆動機構は、流路チップを回転軸まわりに回転させる。前記流路チップは、蛇行流路を有する。前記蛇行流路は、一方側及び他方側へ蛇行する。前記回転駆動機構は、ヒーターステージと、駆動装置とを備える。前記ヒーターステージは、互いに異なる温度に設定される複数のヒーター面を有する。前記駆動装置は、前記回転軸まわりに前記ヒーターステージを回転させる。前記回転駆動機構は、前記蛇行流路が前記複数のヒーター面に跨って配置されるように、前記流路チップを保持する。 The rotation drive mechanism of the present invention rotates the flow channel chip around the rotation axis. The channel chip has a meandering channel. The meandering channel meanders to one side and the other side. The rotational drive mechanism includes a heater stage and a drive device. The heater stage has a plurality of heater surfaces set at different temperatures. The drive device rotates the heater stage around the rotation axis. The rotation drive mechanism holds the flow path chip so that the meandering flow path is disposed across the plurality of heater surfaces.
 ある実施形態において、前記複数のヒーター面は、第1ヒーター面と、第2ヒーター面とを有する。前記第1ヒーター面は、第1温度に設定される。前記第2ヒーター面は、前記第1温度とは異なる第2温度に設定される。 In one embodiment, the plurality of heater surfaces include a first heater surface and a second heater surface. The first heater surface is set to a first temperature. The second heater surface is set to a second temperature different from the first temperature.
 ある実施形態において、前記回転駆動機構は、前記蛇行流路の前記一方側の端部が前記第1ヒーター面に対向するとともに、前記蛇行流路の前記他方側の端部が前記第2ヒーター面に対向するように、前記流路チップを保持する。 In one embodiment, the rotational drive mechanism has an end on the one side of the meandering channel facing the first heater surface, and an end on the other side of the meandering channel is the second heater surface. The flow channel chip is held so as to face the surface.
 ある実施形態において、前記第1ヒーター面は、前記回転軸に直交する径方向に沿って延びる。 In one embodiment, the first heater surface extends along a radial direction orthogonal to the rotation axis.
 ある実施形態において、前記第2ヒーター面は、前記第1ヒーター面に並んで配置されて、前記径方向に沿って延びる。 In one embodiment, the second heater surface is arranged side by side with the first heater surface and extends along the radial direction.
 本発明の遺伝子増幅方法は、流路チップを用いて遺伝子を増幅する方法である。前記流路チップは、蛇行流路と、液体導入室とを有する。前記蛇行流路は、一方側及び他方側に蛇行する。前記液体導入室は、前記蛇行流路に連通する。前記遺伝子増幅方法は、前記蛇行流路が複数のヒーター面に跨って配置されるように、前記流路チップをヒーターステージに対して保持する工程と、前記複数のヒーター面を互いに異なる温度に設定する工程と、前記液体導入室に、ポリメラーゼ連鎖反応溶液を導入する工程と、回転軸まわりに前記ヒーターステージを回転させて、前記蛇行流路内の液滴に浮力を付与することにより、前記液滴を前記蛇行流路に沿って移動させる工程とを包含する。 The gene amplification method of the present invention is a method of amplifying a gene using a channel chip. The channel chip has a meandering channel and a liquid introduction chamber. The meandering channel meanders on one side and the other side. The liquid introduction chamber communicates with the meandering flow path. The gene amplification method includes a step of holding the flow channel chip with respect to a heater stage so that the meandering flow channel is disposed across a plurality of heater surfaces, and the plurality of heater surfaces are set to different temperatures. A step of introducing a polymerase chain reaction solution into the liquid introduction chamber, and rotating the heater stage around a rotation axis to impart buoyancy to the droplets in the meandering flow path. Moving the droplet along the meandering flow path.
 ある実施形態では、前記流路チップをヒーターステージに対して保持する工程において、前記蛇行流路の前記一方側の端部が第1ヒーター面に対向するとともに、前記蛇行流路の前記他方側の端部が第2ヒーター面に対向するように、前記流路チップをヒーターステージに対して保持する。また、前記複数のヒーター面を互いに異なる温度に設定する工程において、前記1ヒーター面を第1温度に設定し、かつ前記第2ヒーター面を、前記第1温度とは異なる第2温度に設定する。 In one embodiment, in the step of holding the flow channel chip with respect to the heater stage, the end portion on the one side of the meandering channel faces the first heater surface, and the other side of the meandering channel is on the other side. The flow path chip is held with respect to the heater stage so that the end faces the second heater surface. In the step of setting the plurality of heater surfaces to different temperatures, the first heater surface is set to a first temperature, and the second heater surface is set to a second temperature different from the first temperature. .
 本発明によれば、より迅速にddPCRを行うことが可能となる。 According to the present invention, ddPCR can be performed more rapidly.
本発明の実施形態に係る流路チップの平面図である。It is a top view of a channel chip concerning an embodiment of the present invention. 本発明の実施形態に係る流路チップの正面図である。It is a front view of a channel chip concerning an embodiment of the present invention. 本発明の実施形態に係る流路チップの一部を拡大して示す図である。It is a figure which expands and shows a part of flow-path chip | tip which concerns on embodiment of this invention. 本発明の実施形態に係る回転駆動機構の構成を示す図である。It is a figure which shows the structure of the rotational drive mechanism which concerns on embodiment of this invention. 本発明の実施形態に係る遺伝子増幅システムの一部を示す模式図である。It is a schematic diagram which shows a part of gene amplification system which concerns on embodiment of this invention. 本発明の実施形態に係る遺伝子増幅方法を示すフローチャートである。It is a flowchart which shows the gene amplification method which concerns on embodiment of this invention. 本発明の実施形態に係る遺伝子増幅システムを用いた遺伝子増幅方法を示す模式図である。It is a schematic diagram which shows the gene amplification method using the gene amplification system which concerns on embodiment of this invention. 本発明の実施形態に係る遺伝子増幅システムを用いた遺伝子増幅方法を示す模式図である。It is a schematic diagram which shows the gene amplification method using the gene amplification system which concerns on embodiment of this invention. 本発明の実施形態に係る遺伝子増幅システムを用いた遺伝子増幅方法を示す模式図である。It is a schematic diagram which shows the gene amplification method using the gene amplification system which concerns on embodiment of this invention. 本発明の実施形態に係る遺伝子増幅システムを用いた遺伝子増幅方法を示す模式図である。It is a schematic diagram which shows the gene amplification method using the gene amplification system which concerns on embodiment of this invention. 本発明の実施形態に係る遺伝子増幅システムを用いた遺伝子増幅方法を示す模式図である。It is a schematic diagram which shows the gene amplification method using the gene amplification system which concerns on embodiment of this invention. 本発明の実施形態に係る蛇行流路の一部を拡大して示す模式図である。It is a schematic diagram which expands and shows a part of meandering flow path which concerns on embodiment of this invention. 本発明の実施形態に係る蛇行流路の一部を拡大して示す図である。It is a figure which expands and shows a part of meandering flow path which concerns on embodiment of this invention. (a)は、本発明の実施形態に係る基板の一部を拡大して示す図である。(b)は、図14(a)に示すXIVB-XIVB線に沿った断面図である。(A) is a figure which expands and shows a part of board | substrate which concerns on embodiment of this invention. FIG. 14B is a sectional view taken along line XIVB-XIVB shown in FIG. 本発明の実施形態に係る導入流路の一部、液滴供給室、及び蛇行流路の一部を示す図である。It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. 本発明の実施形態に係る導入流路の一部、液滴供給室、及び蛇行流路の一部を示す図である。It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. 本発明の実施形態に係る導入流路の一部、液滴供給室、及び蛇行流路の一部を示す図である。It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. 本発明の実施形態に係る導入流路の一部、液滴供給室、及び蛇行流路の一部を示す図である。It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. 本発明の実施形態に係る導入流路の一部、液滴供給室、及び蛇行流路の一部を示す図である。It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. 本発明の実施形態に係る導入流路の一部、液滴供給室、及び蛇行流路の一部を示す図である。It is a figure which shows a part of introduction channel, droplet supply chamber, and a meandering channel which concern on embodiment of this invention. 本発明の他の実施形態に係る流路チップの平面図である。It is a top view of the channel chip concerning other embodiments of the present invention. 本発明の実施例1の結果を示す図である。It is a figure which shows the result of Example 1 of this invention. (a)及び(b)は、本発明の実施例2に係る液滴の移動を示す図である。(A) And (b) is a figure which shows the movement of the droplet which concerns on Example 2 of this invention. (a)及び(b)は、本発明の実施例3に係る液滴の移動を示す図である。(A) And (b) is a figure which shows the movement of the droplet which concerns on Example 3 of this invention. (a)及び(b)は、本発明の実施例4に係る液滴の移動を示す図である。(A) And (b) is a figure which shows the movement of the droplet which concerns on Example 4 of this invention. 本発明の実施例2~4に係る回転速度と液滴の移動速度との関係を示すグラフである。6 is a graph showing the relationship between the rotation speed and the movement speed of droplets according to Examples 2 to 4 of the present invention. 本発明の実施例2~4に係る回転速度とPCRの1サイクルを完了するために必要な時間との関係を示すグラフである。6 is a graph showing the relationship between the rotation speed and the time required to complete one cycle of PCR according to Examples 2 to 4 of the present invention. (a)は、実施例5に係る蛍光の検出結果を示す図である。(b)は、比較例に係る蛍光の検出結果を示す図である。(A) is a figure which shows the detection result of the fluorescence which concerns on Example 5. FIG. (B) is a figure which shows the detection result of the fluorescence which concerns on a comparative example.
 以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は以下の実施形態に限定されない。図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 まず図1を参照して、本実施形態に係る流路チップ1について説明する。図1は、流路チップ1の平面図である。流路チップ1は、基板11を備える。基板11は、液体導入室12と、導入流路13と、液滴供給室14と、蛇行流路15と、収容室16とを含む。 First, the flow channel chip 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a plan view of the flow path chip 1. The flow channel chip 1 includes a substrate 11. The substrate 11 includes a liquid introduction chamber 12, an introduction channel 13, a droplet supply chamber 14, a meandering channel 15, and a storage chamber 16.
 導入流路13及び蛇行流路15は、典型的にはマイクロ流路である。但し、導入流路13及び蛇行流路15は、マイクロ流路に限定されない。導入流路13及び蛇行流路15は、例えば、1mmの流路幅と1mmの深さ(高さ)とを有し得る。 The introduction flow path 13 and the meandering flow path 15 are typically micro flow paths. However, the introduction flow path 13 and the meandering flow path 15 are not limited to micro flow paths. The introduction channel 13 and the meandering channel 15 may have a channel width of 1 mm and a depth (height) of 1 mm, for example.
 液体導入室12等(液体導入室12、導入流路13、液滴供給室14、蛇行流路15、及び収容室16)は、例えば微細加工技術によって基板11に形成される。例えば、液体導入室12等は、ソフトリソグラフィーによって形成され得る。ソフトリソグラフィーは、シリコーンゴムのような比較的柔らかい素材を成型する技術である。あるいは、液体導入室12等は、フォトリソグラフィーとドライプロセス(ドライエッチング)又はウェットプロセス(ウェットエッチング)とによって形成され得る。あるいは、液体導入室12等は、射出成型、又は切削加工によって形成され得る。 The liquid introduction chamber 12 and the like (the liquid introduction chamber 12, the introduction flow path 13, the droplet supply chamber 14, the meandering flow path 15, and the storage chamber 16) are formed on the substrate 11 by, for example, a fine processing technique. For example, the liquid introduction chamber 12 and the like can be formed by soft lithography. Soft lithography is a technique for molding a relatively soft material such as silicone rubber. Alternatively, the liquid introduction chamber 12 or the like can be formed by photolithography and a dry process (dry etching) or a wet process (wet etching). Alternatively, the liquid introduction chamber 12 and the like can be formed by injection molding or cutting.
 基板11の形状及びサイズは、液体導入室12等を形成することが可能である限り、特に限定されない。本実施形態において、基板11は、長方形の形状を有する。また、基板11の長手方向LDの長さは、例えば70mmであり、基板11の長手方向LDに直交する幅方向WDの長さは、例えば50mmである。 The shape and size of the substrate 11 are not particularly limited as long as the liquid introduction chamber 12 and the like can be formed. In the present embodiment, the substrate 11 has a rectangular shape. Further, the length of the substrate 11 in the longitudinal direction LD is, for example, 70 mm, and the length of the width direction WD perpendicular to the longitudinal direction LD of the substrate 11 is, for example, 50 mm.
 基板11の材料は、液体導入室12等を形成することが可能である限り、特に限定されないが、PCRを阻害しない材料であることが好ましい。また、基板11の材料は、蛍光の観察(検出)を阻害しない材料であることが好ましい。例えば、基板11は、シリコーンゴム、ガラス、シクロオレフィンポリマー(Cyclo-olefin Polymer;COP)、又はポリカーボネート(polycarbonate;PC)によって構成され得る。 The material of the substrate 11 is not particularly limited as long as the liquid introduction chamber 12 and the like can be formed, but is preferably a material that does not inhibit PCR. The material of the substrate 11 is preferably a material that does not hinder the observation (detection) of fluorescence. For example, the substrate 11 may be made of silicone rubber, glass, cycloolefin polymer (COP), or polycarbonate (PC).
 液体導入室12は、基板11の長手方向LDの一方側の端部に形成される。なお、図1において、基板11の長手方向LDの一方側は上側であり、基板11の長手方向LDの他方側は下側である。 The liquid introduction chamber 12 is formed at one end of the substrate 11 in the longitudinal direction LD. In FIG. 1, one side of the substrate 11 in the longitudinal direction LD is the upper side, and the other side of the substrate 11 in the longitudinal direction LD is the lower side.
 液体導入室12には、液体が導入される。具体的には、液体導入室12は入口(開口)を有し、入口を介して液体導入室12内に液体が導入される。入口は、液体導入室12の天井部に形成される。本実施形態において、液体は、フッ素オイルのようなオイル、及びPCR溶液である。具体的には、オイルが導入された後に、PCR溶液が導入される。より詳しくは、導入流路13、液滴供給室14、及び蛇行流路15がオイルによって充填され、収容室16にオイルが供給された後に、PCR溶液が導入される。 Liquid is introduced into the liquid introduction chamber 12. Specifically, the liquid introduction chamber 12 has an inlet (opening), and the liquid is introduced into the liquid introduction chamber 12 through the inlet. The inlet is formed in the ceiling of the liquid introduction chamber 12. In this embodiment, the liquid is an oil such as fluorine oil and a PCR solution. Specifically, the PCR solution is introduced after the oil is introduced. More specifically, after the introduction channel 13, the droplet supply chamber 14, and the meandering channel 15 are filled with oil and the oil is supplied to the storage chamber 16, the PCR solution is introduced.
 PCR溶液は、典型的には、検体液と、プライマーと、DNAポリメラーゼと、増幅対象DNA分子(ターゲットシーケンス)と、デオキシヌクレオチド三リン酸(dNTP)と、バッファー溶液とを含む。また、PCR溶液は、蛍光色素又はプローブDNAを含み得る。検体液は、DNAを含み、DNAは増幅対象DNA分子を有する。検体液は、例えば、インフルエンザウィルス、ノロウィルス、その他の感染症ウィルスを含む混濁液である。あるいは、検体液は、薬剤耐性菌、腸管出血性大腸菌、その他の感染症細菌を含む混濁液である。あるいは、検体液は、微生物又は動物細胞を含む混濁液である。あるいは、検体液は、インフルエンザウィルス、ノロウィルス、その他の感染症ウィルスのDNA又はRNAの抽出液である。あるいは、検体液は、薬剤耐性菌、腸管出血性大腸菌、その他の感染症細菌のDNA又はRNAの抽出液である。あるいは、検体液は、微生物、又は動物細胞のDNA又はRNAの抽出液である。なお、検出対象がRNAである場合、検体液に対して逆転写プロセスを実行した後にPCR溶液を調製してもよい。あるいは、逆転写プロセスをPCRステップに含めてもよい。逆転写プロセスは、逆転写酵素によってRNAに対する相補DNAを合成する処理である。 The PCR solution typically includes a sample solution, a primer, a DNA polymerase, a DNA molecule to be amplified (target sequence), deoxynucleotide triphosphate (dNTP), and a buffer solution. PCR solutions can also contain fluorescent dyes or probe DNA. The sample liquid contains DNA, and the DNA has DNA molecules to be amplified. The sample liquid is a turbid liquid containing, for example, influenza virus, norovirus, or other infectious disease virus. Alternatively, the sample liquid is a turbid liquid containing drug-resistant bacteria, enterohemorrhagic E. coli, and other infectious bacteria. Alternatively, the sample liquid is a turbid liquid containing microorganisms or animal cells. Alternatively, the sample solution is an extract of DNA or RNA of influenza virus, norovirus, or other infectious disease virus. Alternatively, the sample liquid is an extract of DNA or RNA of drug-resistant bacteria, enterohemorrhagic Escherichia coli, or other infectious bacteria. Alternatively, the sample liquid is an extract of DNA or RNA of microorganisms or animal cells. When the detection target is RNA, the PCR solution may be prepared after the reverse transcription process is performed on the sample liquid. Alternatively, a reverse transcription process may be included in the PCR step. The reverse transcription process is a process of synthesizing complementary DNA for RNA by reverse transcriptase.
 液体導入室12の深さ(高さ)は特に限定されない。例えば、液体導入室12は、10μm以上1mm以下の範囲から選択された深さを有し得る。液体導入室12の容積は、導入流路13の容積と、液滴供給室14の容積と、蛇行流路15の容積との合計値よりも大きいことが好ましい。この条件によって、導入流路13、液滴供給室14、及び蛇行流路15をオイルによって充填し、収容室16にオイルを供給することが可能となる。 The depth (height) of the liquid introduction chamber 12 is not particularly limited. For example, the liquid introduction chamber 12 may have a depth selected from a range of 10 μm to 1 mm. The volume of the liquid introduction chamber 12 is preferably larger than the total value of the volume of the introduction channel 13, the volume of the droplet supply chamber 14, and the volume of the meandering channel 15. Under this condition, the introduction flow path 13, the droplet supply chamber 14, and the meandering flow path 15 can be filled with oil, and the oil can be supplied to the storage chamber 16.
 導入流路13は、液体導入室12と液滴供給室14とを連通させる。換言すると、導入流路13の始端が液体導入室12と接続(連通)し、導入流路13の終端が液滴供給室14と接続(連通)する。導入流路13は、第1導入流路13aと、第2導入流路13bとを含む。 The introduction channel 13 allows the liquid introduction chamber 12 and the droplet supply chamber 14 to communicate with each other. In other words, the start end of the introduction flow path 13 is connected (communication) with the liquid introduction chamber 12, and the end of the introduction flow path 13 is connected (communication) with the droplet supply chamber 14. The introduction channel 13 includes a first introduction channel 13a and a second introduction channel 13b.
 第1導入流路13aは、導入流路13の始端を含む。第1導入流路13aは、液体導入室12から、基板11の長手方向LDの他方側の端部まで延びた後、基板11の幅方向WDへ延びる。第1導入流路13aの流路幅及び深さは特に限定されない。例えば、第1導入流路13aは、10μm以上1mm以下の範囲から選択された流路幅及び深さを有し得る。 The first introduction flow path 13 a includes the start end of the introduction flow path 13. The first introduction flow path 13 a extends from the liquid introduction chamber 12 to the other end portion in the longitudinal direction LD of the substrate 11 and then extends in the width direction WD of the substrate 11. The channel width and depth of the first introduction channel 13a are not particularly limited. For example, the first introduction channel 13a may have a channel width and depth selected from a range of 10 μm to 1 mm.
 第2導入流路13bは、導入流路13の終端を含む。第2導入流路13bは、第1導入流路13aの終端から、基板11の長手方向LDへ延びて、液滴供給室14に接続する。第2導入流路13bの流路幅及び深さは、第1導入流路13aの流路幅及び深さと同じであってもよく、異なっていてもよい。例えば、第2導入流路13bは、10μm以上1mm以下の範囲から選択された流路幅を有し得る。典型的には、第2導入流路13bは、第1導入流路13aよりも狭い流路幅を有する。また、第2導入流路13bは、10μm以上1mm以下の範囲から選択された深さを有し得る。典型的には、第2導入流路13bは、液滴供給室14よりも浅い深さを有する。 The second introduction channel 13 b includes the end of the introduction channel 13. The second introduction channel 13 b extends from the end of the first introduction channel 13 a in the longitudinal direction LD of the substrate 11 and is connected to the droplet supply chamber 14. The channel width and depth of the second introduction channel 13b may be the same as or different from the channel width and depth of the first introduction channel 13a. For example, the second introduction channel 13b may have a channel width selected from a range of 10 μm to 1 mm. Typically, the second introduction channel 13b has a narrower channel width than the first introduction channel 13a. Further, the second introduction flow path 13b may have a depth selected from a range of 10 μm to 1 mm. Typically, the second introduction channel 13 b has a depth shallower than that of the droplet supply chamber 14.
 液滴供給室14は、基板11の長手方向LDの他方側の端部に形成される。液滴供給室14は、蛇行流路15の始端に連通(接続)する。液滴供給室14は、導入流路13の終端部(導入流路13と液滴供給室14との界面付近)において発生するPCR溶液の液滴を、蛇行流路15に供給する。PCR溶液の液滴は、液滴供給室14がオイルで充填されている状態において発生する。 The droplet supply chamber 14 is formed at the other end of the substrate 11 in the longitudinal direction LD. The droplet supply chamber 14 communicates (connects) with the starting end of the meandering channel 15. The droplet supply chamber 14 supplies a PCR solution droplet generated at the terminal end of the introduction channel 13 (near the interface between the introduction channel 13 and the droplet supply chamber 14) to the meandering channel 15. The droplet of the PCR solution is generated when the droplet supply chamber 14 is filled with oil.
 液滴供給室14の形状は特に限定されないが、PCR溶液の液滴を蛇行流路15に誘導する形状を含むことが好ましい。本実施形態において、液滴供給室14の蛇行流路15側の形状は三角形であり、三角形の頂部が蛇行流路15の始端に接続する。この形状により、PCR溶液の液滴を蛇行流路15に誘導することができる。液滴供給室14の深さは特に限定されない。例えば、液滴供給室14は、10μm以上1mm以下の範囲から選択された深さを有し得る。典型的には、液滴供給室14は、第2導入流路13bよりも深い深さを有する。 The shape of the droplet supply chamber 14 is not particularly limited, but preferably includes a shape for guiding the droplet of the PCR solution to the meandering channel 15. In the present embodiment, the shape of the droplet supply chamber 14 on the side of the meandering channel 15 is a triangle, and the top of the triangle is connected to the starting end of the meandering channel 15. With this shape, a droplet of the PCR solution can be guided to the meandering channel 15. The depth of the droplet supply chamber 14 is not particularly limited. For example, the droplet supply chamber 14 may have a depth selected from a range of 10 μm to 1 mm. Typically, the droplet supply chamber 14 has a deeper depth than the second introduction channel 13b.
 蛇行流路15は、基板11の幅方向WDに蛇行しながら、基板11の長手方向LDの一方側へ延びる。蛇行流路15の終端は、収容室16に連通(接続)する。本実施形態において、蛇行流路15は、基板11の長手方向LDの他方側の端部に形成される。蛇行流路15の流路幅及び深さは、PCR溶液の液滴が蛇行流路15を通過できる限り、特に限定されない。例えば、蛇行流路15は、10μm以上1mm以下の範囲から選択された流路幅及び深さを有し得る。 The meandering flow path 15 extends to one side in the longitudinal direction LD of the substrate 11 while meandering in the width direction WD of the substrate 11. The end of the meandering channel 15 communicates (connects) with the accommodation chamber 16. In the present embodiment, the meandering flow path 15 is formed at the other end of the substrate 11 in the longitudinal direction LD. The width and depth of the meandering channel 15 are not particularly limited as long as the PCR solution droplets can pass through the meandering channel 15. For example, the meandering channel 15 may have a channel width and depth selected from a range of 10 μm to 1 mm.
 収容室16は、液体導入室12と蛇行流路15との間に形成される。したがって、液体導入室12、収容室16、及び蛇行流路15は、この順序で、基板11の長手方向LDに沿って配置される。 The storage chamber 16 is formed between the liquid introduction chamber 12 and the meandering channel 15. Therefore, the liquid introduction chamber 12, the storage chamber 16, and the meandering flow path 15 are arranged in this order along the longitudinal direction LD of the substrate 11.
 収容室16は、オイル、及びPCR溶液の液滴を収容する。また、収容室16は、気体を排出するための出口(開口)を有する。出口は、収容室16の天井部に形成される。収容室16の深さは特に限定されない。例えば、収容室16は、10μm以上1mm以下の範囲から選択された深さを有し得る。収容室16の容積は、典型的には、液体導入室12よりも大きい。収容室16が液体導入室12よりも大きい容積を有することにより、収容室16の出口からオイル等の液体が漏れることを抑制できる。 The storage chamber 16 stores oil and droplets of the PCR solution. The storage chamber 16 has an outlet (opening) for discharging gas. The outlet is formed in the ceiling portion of the storage chamber 16. The depth of the storage chamber 16 is not particularly limited. For example, the storage chamber 16 may have a depth selected from a range of 10 μm to 1 mm. The volume of the storage chamber 16 is typically larger than the liquid introduction chamber 12. Since the storage chamber 16 has a larger volume than the liquid introduction chamber 12, it is possible to suppress leakage of liquid such as oil from the outlet of the storage chamber 16.
 なお、図1に示すように、流路チップ1は、液体導入室12内に配置された少なくとも1つのスペーサー17を更に備え得る。また流路チップ1は、収容室16内に配置された少なくとも1つのスペーサー17を更に備え得る。基板11の材質が柔らかい材質である場合、液体導入室12の面積によっては、液体導入室12の天井部がたわむ可能性がある。液体導入室12内にスペーサー17を配置することにより、液体導入室12の天井部がたわむことを抑制できる。同様に、収容室16内にスペーサー17を配置することにより、収容室16の天井部がたわむことを抑制できる。 As shown in FIG. 1, the flow channel chip 1 can further include at least one spacer 17 disposed in the liquid introduction chamber 12. The flow channel chip 1 may further include at least one spacer 17 disposed in the storage chamber 16. When the material of the substrate 11 is a soft material, the ceiling of the liquid introduction chamber 12 may bend depending on the area of the liquid introduction chamber 12. By arranging the spacer 17 in the liquid introduction chamber 12, it is possible to prevent the ceiling portion of the liquid introduction chamber 12 from being bent. Similarly, by arranging the spacer 17 in the storage chamber 16, it is possible to prevent the ceiling portion of the storage chamber 16 from being bent.
 続いて図2を参照して、本実施形態に係る流路チップ1について更に説明する。図2は、流路チップ1の正面図である。流路チップ1は、床部材18を更に備える。 Subsequently, the flow channel chip 1 according to the present embodiment will be further described with reference to FIG. FIG. 2 is a front view of the flow path chip 1. The flow channel chip 1 further includes a floor member 18.
 床部材18は、基板11の下方に配置されて、液体導入室12等の床部を構成する。床部材18の材料は特に限定されないが、PCRを阻害しない材料であることが好ましい。また、床部材18の材料は、蛍光の観察(検出)を阻害しない材料であることが好ましい。 The floor member 18 is disposed below the substrate 11 and constitutes a floor portion such as the liquid introduction chamber 12. The material of the floor member 18 is not particularly limited, but is preferably a material that does not inhibit PCR. The material of the floor member 18 is preferably a material that does not hinder the observation (detection) of fluorescence.
 基板11の材料がシリコーンゴムのような比較的柔らかい材料である場合、床部材18の剛性は、基板11の剛性よりも高いことが好ましい。例えば、床部材18はガラス基板であり得る。床部材18の剛性が基板11の剛性よりも高い場合、床部材18は基板11を支持する。したがって、床部材18により、基板11(流路チップ1)がたわむことを抑制できる。換言すると、流路チップ1の剛性を高めることができる。したがって、PCRステップ終了後に流路チップ1を蛍光検出場へ移動させる際に、流路チップ1から液体(オイルなど)が漏れるおそれを低減できる。 When the material of the substrate 11 is a relatively soft material such as silicone rubber, the rigidity of the floor member 18 is preferably higher than the rigidity of the substrate 11. For example, the floor member 18 can be a glass substrate. When the rigidity of the floor member 18 is higher than the rigidity of the substrate 11, the floor member 18 supports the substrate 11. Therefore, it is possible to suppress the substrate 11 (flow channel chip 1) from being bent by the floor member 18. In other words, the rigidity of the channel chip 1 can be increased. Therefore, when moving the flow path chip 1 to the fluorescence detection field after the PCR step is completed, it is possible to reduce the risk of liquid (oil etc.) leaking from the flow path chip 1.
 基板11の材料が、ガラス、シクロオレフィンポリマー、又はポリカーボネートのような比較的剛性が高い材料である場合、床部材18の剛性は、基板11の剛性より高くても、低くてもよい。あるいは、床部材18の剛性は、基板11の剛性と同じであってもよい。例えば、床部材18は、ガラス、シクロオレフィンポリマー、ポリカーボネート、又は圧着シールであり得る。 When the material of the substrate 11 is a material having relatively high rigidity such as glass, cycloolefin polymer, or polycarbonate, the rigidity of the floor member 18 may be higher or lower than the rigidity of the substrate 11. Alternatively, the rigidity of the floor member 18 may be the same as the rigidity of the substrate 11. For example, the floor member 18 can be glass, cycloolefin polymer, polycarbonate, or a crimp seal.
 なお、基板11の剛性が比較的高い場合、流路チップ1は、床部材18に替えて、蓋部材を備えてもよい。流路チップ1が蓋部材を備える場合、基板11の上下を反転させて、基板11の上方に蓋部材を配置する。換言すると、蓋部材は、液体導入室12等の天井部を構成する。したがって、流路チップ1が蓋部材を備える場合、液体導入室12の入口、及び収容室16の出口は、蓋部材に形成される。蓋部材の材料は特に限定されないが、床部材18と同様に、PCRを阻害しない材料であることが好ましい。また、蓋部材の材料は、蛍光の観察を阻害しない材料であることが好ましい。 In addition, when the rigidity of the substrate 11 is relatively high, the flow path chip 1 may include a lid member instead of the floor member 18. When the flow path chip 1 includes a lid member, the top and bottom of the substrate 11 are reversed and the lid member is disposed above the substrate 11. In other words, the lid member constitutes a ceiling portion of the liquid introduction chamber 12 or the like. Therefore, when the flow channel chip 1 includes the lid member, the inlet of the liquid introduction chamber 12 and the outlet of the storage chamber 16 are formed in the lid member. The material of the lid member is not particularly limited, but is preferably a material that does not inhibit PCR, like the floor member 18. The material of the lid member is preferably a material that does not hinder the observation of fluorescence.
 続いて図3を参照して、本実施形態に係る流路チップ1について更に説明する。図3は、流路チップ1の一部を拡大して示す図である。詳しくは、図3は、流路チップ1の蛇行流路15を拡大して示す。 Subsequently, the flow path chip 1 according to the present embodiment will be further described with reference to FIG. FIG. 3 is an enlarged view showing a part of the flow path chip 1. Specifically, FIG. 3 shows an enlarged view of the meandering flow path 15 of the flow path chip 1.
 図3に示すように、蛇行流路15は、基板11の幅方向WDの一方側及び他方側へ蛇行する。図3において、基板11の幅方向WDの一方側は右側であり、基板11の幅方向WDの他方側は左側である。蛇行流路15の一方側の端部は、第1ヒーター面31a上に配置され、蛇行流路15の他方側の端部は、第2ヒーター面32a上に配置される。 As shown in FIG. 3, the meandering flow path 15 meanders to one side and the other side of the width direction WD of the substrate 11. In FIG. 3, one side of the width direction WD of the substrate 11 is the right side, and the other side of the width direction WD of the substrate 11 is the left side. One end of the meandering channel 15 is disposed on the first heater surface 31a, and the other end of the meandering channel 15 is disposed on the second heater surface 32a.
 第1ヒーター面31aは、第1温度に設定される。第2ヒーター面32aは、第1温度とは異なる第2温度に設定される。本実施形態において、第1ヒーター面31a(第1温度)は、PCRの加熱ステップを実行するための温度に設定され、第2ヒーター面32a(第2温度)は、PCRの冷却ステップを実行するための温度に設定される。したがって、第2ヒーター面32aは、第1ヒーター面31aよりも低い温度に設定される。典型的には、第1ヒーター面31a(第1温度)は、90℃以上98℃以下の範囲から選択された温度に設定される。第2ヒーター面32aの温度は、増幅対象DNA分子に応じて設定される。典型的には、第2ヒーター面32a(第2温度)は、50℃以上70℃以下の範囲から選択された温度に設定される。 The first heater surface 31a is set to the first temperature. The second heater surface 32a is set to a second temperature different from the first temperature. In the present embodiment, the first heater surface 31a (first temperature) is set to a temperature for executing the PCR heating step, and the second heater surface 32a (second temperature) executes the PCR cooling step. Set temperature for. Therefore, the second heater surface 32a is set to a temperature lower than that of the first heater surface 31a. Typically, the 1st heater surface 31a (1st temperature) is set to the temperature selected from the range of 90 to 98 degreeC. The temperature of the second heater surface 32a is set according to the amplification target DNA molecule. Typically, the 2nd heater surface 32a (2nd temperature) is set to the temperature selected from the range of 50 to 70 degreeC.
 本実施形態によれば、PCR溶液の液滴は、蛇行流路15を移動することにより、加熱場と冷却場とを往復する。PCR溶液の液滴が加熱場と冷却場とを1回ずつ通過することにより、PCRの1サイクルが完了する。図3に示す蛇行流路15は60回折り返されている。したがって、PCRのサイクル数は30サイクルとなる。なお、蛇行流路15を折り返す回数は60回に限定されない。蛇行流路15を折り返す回数は必要に応じて変更され得る。 According to the present embodiment, the droplets of the PCR solution reciprocate between the heating field and the cooling field by moving through the meandering flow path 15. One cycle of PCR is completed when the droplet of PCR solution passes through the heating field and the cooling field once. The meandering flow path 15 shown in FIG. Therefore, the number of PCR cycles is 30. In addition, the frequency | count of folding back the meandering flow path 15 is not limited to 60 times. The number of times the meandering channel 15 is folded back can be changed as necessary.
 基板11の長手方向LDに沿った蛇行流路15の長さL1は、PCRのサイクル数に応じて変更される。具体的には、PCRのサイクル数を増加させるほど、蛇行流路15の長さL1は長くなる。例えば、PCRのサイクル数が30サイクルである場合、蛇行流路15の長さL1は20mmであり得る。 The length L1 of the meandering channel 15 along the longitudinal direction LD of the substrate 11 is changed according to the number of PCR cycles. Specifically, the length L1 of the meandering channel 15 becomes longer as the number of PCR cycles is increased. For example, when the number of PCR cycles is 30, the length L1 of the meandering flow path 15 may be 20 mm.
 なお、一般的に、PCRの冷却ステップは、PCRの加熱ステップよりも長い時間を必要とする。したがって、蛇行流路15のうち、第2ヒーター面32aと重なる領域が、第1ヒーター面31aと重なる領域と比べて大きくなるように、蛇行流路15を第1ヒーター面31a及び第2ヒーター面32a(温度制御場)に対向させる。例えば、図3に示すように、蛇行流路15は、基板11の幅方向WDの中心から他方側の端にわたる部分が第2ヒーター面32aと対向するように配置される。 In general, the PCR cooling step requires a longer time than the PCR heating step. Therefore, in the meandering flow path 15, the meandering flow path 15 is formed in the first heater surface 31 a and the second heater surface so that the area overlapping the second heater surface 32 a is larger than the area overlapping the first heater surface 31 a. It is made to oppose 32a (temperature control field). For example, as shown in FIG. 3, the meandering flow path 15 is disposed such that a portion extending from the center of the width direction WD of the substrate 11 to the other end faces the second heater surface 32 a.
 続いて図4を参照して、本実施形態に係る回転駆動機構3について説明する。図4は、回転駆動機構3の構成を示す図である。回転駆動機構3は、ヒーターステージ30と、ディスク状の基台40と、駆動装置50とを備える。ヒーターステージ30は基台40に固定され、駆動装置50は、ヒーターステージ30及び基台40を回転軸AX(中心軸)まわりに回転させる。ヒーターステージ30及び基台40は、例えばアルミニウム製又は銅製であり、駆動装置50は、典型的にはモーターである。駆動装置50は、回転速度(回転数)の制御が可能であることが好ましい。なお、ヒーターステージ30及び基台40の材料は、アルミニウム又は銅に限定されないが、熱伝導性の高い材料であることが好ましい。以下、ヒーターステージ30について更に説明する。 Next, the rotation drive mechanism 3 according to the present embodiment will be described with reference to FIG. FIG. 4 is a diagram showing a configuration of the rotation drive mechanism 3. The rotation drive mechanism 3 includes a heater stage 30, a disk-shaped base 40, and a drive device 50. The heater stage 30 is fixed to the base 40, and the driving device 50 rotates the heater stage 30 and the base 40 about the rotation axis AX (center axis). The heater stage 30 and the base 40 are made of, for example, aluminum or copper, and the driving device 50 is typically a motor. The driving device 50 is preferably capable of controlling the rotation speed (number of rotations). In addition, although the material of the heater stage 30 and the base 40 is not limited to aluminum or copper, it is preferable that it is a material with high heat conductivity. Hereinafter, the heater stage 30 will be further described.
 ヒーターステージ30は、図3を参照して説明した第1ヒーター面31a及び第2ヒーター面32aを有する。図4に示すように、第1ヒーター面31a及び第2ヒーター面32aは、回転軸AXに直交する径方向に沿って延びる。また、第1ヒーター面31a及び第2ヒーター面32aは、間隔をあけて並んでいる。 The heater stage 30 has the first heater surface 31a and the second heater surface 32a described with reference to FIG. As shown in FIG. 4, the first heater surface 31 a and the second heater surface 32 a extend along a radial direction orthogonal to the rotation axis AX. Moreover, the 1st heater surface 31a and the 2nd heater surface 32a are located in a line at intervals.
 図3を参照して説明したように、蛇行流路15の一方側の端部は第1ヒーター面31a上に配置され、蛇行流路15の他方側の端部は第2ヒーター面32a上に配置される。したがって、図1~図3を参照して説明した流路チップ1は、その長手方向LDが回転駆動機構3の径方向に沿うように、回転駆動機構3に対してセットされる。この結果、液体導入室12、収容室16、及び蛇行流路15は、この順序で、径方向に沿って配置される。具体的には、液体導入室12、収容室16、及び蛇行流路15のうち、液体導入室12が最も回転軸AX(回転中心)に近くなる。 As described with reference to FIG. 3, one end of the meandering channel 15 is disposed on the first heater surface 31a, and the other end of the meandering channel 15 is on the second heater surface 32a. Be placed. Accordingly, the flow channel chip 1 described with reference to FIGS. 1 to 3 is set with respect to the rotational drive mechanism 3 such that the longitudinal direction LD thereof is along the radial direction of the rotational drive mechanism 3. As a result, the liquid introduction chamber 12, the storage chamber 16, and the meandering channel 15 are arranged in this order along the radial direction. Specifically, among the liquid introduction chamber 12, the storage chamber 16, and the meandering channel 15, the liquid introduction chamber 12 is closest to the rotation axis AX (rotation center).
 本実施形態において、ヒーターステージ30は、第1ヒーターステージ31と、第2ヒーターステージ32とを含む。第1ヒーターステージ31は第1ヒーター面31aを有し、第2ヒーターステージ32は第2ヒーター面32aを有する。第1ヒーターステージ31は、第1ヒーター面31aを第1温度に加熱する。第2ヒーターステージ32は第2ヒーター面32aを第2温度に加熱する。 In the present embodiment, the heater stage 30 includes a first heater stage 31 and a second heater stage 32. The first heater stage 31 has a first heater surface 31a, and the second heater stage 32 has a second heater surface 32a. The first heater stage 31 heats the first heater surface 31a to the first temperature. The second heater stage 32 heats the second heater surface 32a to the second temperature.
 第1ヒーターステージ31は、環状の連結部311と、複数の第1加熱部312とを含む。連結部311は、回転軸AXの周りに配置される。複数の第1加熱部312は、回転軸AXを中心として、連結部311から放射状に延在する。したがって、第1加熱部312はそれぞれ、径方向に沿って配置される。図4に示す第1ヒーターステージ31は、4つの第1加熱部312を有する。4つの第1加熱部312は、典型的には、90度の角度間隔をあけて設けられる。 The first heater stage 31 includes an annular connecting part 311 and a plurality of first heating parts 312. The connecting portion 311 is disposed around the rotation axis AX. The plurality of first heating units 312 extend radially from the coupling unit 311 around the rotation axis AX. Accordingly, each of the first heating units 312 is disposed along the radial direction. The first heater stage 31 shown in FIG. 4 has four first heating units 312. The four first heating units 312 are typically provided with an angular interval of 90 degrees.
 第1加熱部312はそれぞれ、上方に突出する突条部313を含む。突条部313は、径方向に延びる。本実施形態において、突条部313は直方体状であり、突条部313の上面が第1ヒーター面31aを構成する。 Each first heating unit 312 includes a protrusion 313 that protrudes upward. The protrusion 313 extends in the radial direction. In the present embodiment, the ridge portion 313 has a rectangular parallelepiped shape, and the upper surface of the ridge portion 313 constitutes the first heater surface 31a.
 突条部313の径方向の長さは、図3を参照して説明した蛇行流路15の長さL1に応じて決定する。例えば、蛇行流路15の長さL1が20mmである場合、突条部313の径方向の長さは20mm以上である。 The length of the protrusion 313 in the radial direction is determined according to the length L1 of the meandering channel 15 described with reference to FIG. For example, when the length L1 of the meandering channel 15 is 20 mm, the length in the radial direction of the protrusion 313 is 20 mm or more.
 第2ヒーターステージ32は、ディスク状の本体部321と、複数の第2加熱部322とを含む。本体部321は、第1ヒーターステージ31の下方に、第1ヒーターステージ31から離されて配置される。 The second heater stage 32 includes a disk-shaped main body 321 and a plurality of second heating units 322. The main body 321 is disposed below the first heater stage 31 and separated from the first heater stage 31.
 第2加熱部322はそれぞれ、本体部321から上方に突出し、径方向に延在する。図4に示す第2ヒーターステージ32は、4つの第2加熱部322を有する。4つの第2加熱部322は、典型的には、90度の角度間隔をあけて設けられる。 Each of the second heating parts 322 protrudes upward from the main body part 321 and extends in the radial direction. The second heater stage 32 shown in FIG. 4 has four second heating units 322. The four second heating units 322 are typically provided with an angular interval of 90 degrees.
 第2加熱部322はそれぞれ、第2ヒーター面32aを有する。本実施形態において、第2加熱部322は直方体状であり、第2加熱部322の上面が第2ヒーター面32aを構成する。 Each of the second heating sections 322 has a second heater surface 32a. In this embodiment, the 2nd heating part 322 is a rectangular parallelepiped shape, and the upper surface of the 2nd heating part 322 comprises the 2nd heater surface 32a.
 第2加熱部322の径方向の長さは、図3を参照して説明した蛇行流路15の長さL1に応じて決定する。例えば、蛇行流路15の長さL1が20mmである場合、第2加熱部322の径方向の長さは20mm以上である。 The length of the second heating unit 322 in the radial direction is determined according to the length L1 of the meandering flow path 15 described with reference to FIG. For example, when the length L1 of the meandering flow path 15 is 20 mm, the radial length of the second heating unit 322 is 20 mm or more.
 なお、既に説明したように、PCRの冷却ステップは、一般的に、PCRの加熱ステップよりも長い時間を必要とする。したがって、第2ヒーター面32aの幅は、第1ヒーター面31aの幅よりも大きいことが好ましい。第2ヒーター面32aが第1ヒーター面31aよりも大きい幅を有することにより、蛇行流路15のうち、第2ヒーター面32aと重なる領域を、第1ヒーター面31aと重なる領域よりも大きくすることが容易になる。 As already described, the PCR cooling step generally requires a longer time than the PCR heating step. Therefore, the width of the second heater surface 32a is preferably larger than the width of the first heater surface 31a. Since the second heater surface 32a has a larger width than the first heater surface 31a, the region of the meandering flow path 15 that overlaps the second heater surface 32a is made larger than the region that overlaps the first heater surface 31a. Becomes easier.
 図4に示すヒーターステージ30は、離間部材33を更に含む。離間部材33は、第2ヒーターステージ32の本体部321の中心部に固定され、第1ヒーターステージ31が第2ヒーターステージ32の本体部321から離れるように、第1ヒーターステージ31を支持する。離間部材33の材料は特に限定されないが、耐熱性が高い材料であることが好ましい。例えば、離間部材33の材料は、ポリカーボネート又はポリフェニレンサルファイド(Polyphenylenesulfide;PPS)のような樹脂であり得る。 The heater stage 30 shown in FIG. The separation member 33 is fixed to the center portion of the main body portion 321 of the second heater stage 32, and supports the first heater stage 31 so that the first heater stage 31 is separated from the main body portion 321 of the second heater stage 32. The material of the separation member 33 is not particularly limited, but is preferably a material having high heat resistance. For example, the material of the spacing member 33 may be a resin such as polycarbonate or polyphenylene sulfide (PPS).
 本実施形態において、離間部材33は、大径部331と、小径部332とを含む。小径部332は大径部331上に固定され、大径部331は、第2ヒーターステージ32の本体部321の中心部に固定される。大径部331と小径部332とによって段形状(ステップ)が形成され、第1ヒーターステージ31の連結部311が、小径部332の周り(ステップ)に固定される。この結果、第1ヒーターステージ31は、第2ヒーターステージ32の本体部321から大径部331の高さの分だけ離れた位置に配置される。なお、大径部331と小径部332とは一体に形成されてもよい。 In the present embodiment, the separation member 33 includes a large diameter portion 331 and a small diameter portion 332. The small diameter portion 332 is fixed on the large diameter portion 331, and the large diameter portion 331 is fixed to the central portion of the main body portion 321 of the second heater stage 32. A step shape (step) is formed by the large diameter portion 331 and the small diameter portion 332, and the connecting portion 311 of the first heater stage 31 is fixed around the small diameter portion 332 (step). As a result, the first heater stage 31 is disposed at a position separated from the main body portion 321 of the second heater stage 32 by the height of the large diameter portion 331. The large diameter portion 331 and the small diameter portion 332 may be formed integrally.
 また、離間部材33は、第1ヒーター面31aと第2ヒーター面32aとが間隔をあけて並ぶように、第1ヒーターステージ31を支持する。好ましくは、離間部材33は、隣接する第1ヒーター面31aと第2ヒーター面32aとの間の熱干渉が互いに小さくなるように第1ヒーターステージ31を支持する。例えば、隣接する第1ヒーター面31aと第2ヒーター面32aとの間の間隔は、1mmであり得る。 Further, the separation member 33 supports the first heater stage 31 so that the first heater surface 31a and the second heater surface 32a are arranged with a space therebetween. Preferably, the separation member 33 supports the first heater stage 31 such that thermal interference between the adjacent first heater surface 31a and the second heater surface 32a is reduced. For example, the distance between adjacent first heater surface 31a and second heater surface 32a may be 1 mm.
 続いて図5を参照して、本実施形態に係る遺伝子増幅システム100について説明する。図5は、遺伝子増幅システム100の一部を示す模式図である。遺伝子増幅システム100は、図1~3を参照して説明した流路チップ1と、図4を参照して説明した回転駆動機構3とを備える。回転駆動機構3は、回転中心Xまわり(回転軸AXまわり)に流路チップ1を回転させる。本実施形態において、回転方向RDは、時計回りの方向である。図5に示すように、回転駆動機構3は、液体導入室12等のうち液体導入室12が回転中心Xに最も近くなるように流路チップ1を保持する。遺伝子増幅システム100は、蛇行流路15が第1ヒーター面31a及び第2ヒーター面32a(温度制御場)に対向している状態で、流路チップ1を回転中心Xまわりに回転させて、ddPCRを実行する。 Subsequently, the gene amplification system 100 according to the present embodiment will be described with reference to FIG. FIG. 5 is a schematic diagram showing a part of the gene amplification system 100. The gene amplification system 100 includes the flow path chip 1 described with reference to FIGS. 1 to 3 and the rotation drive mechanism 3 described with reference to FIG. The rotation drive mechanism 3 rotates the channel chip 1 around the rotation center X (around the rotation axis AX). In the present embodiment, the rotation direction RD is a clockwise direction. As shown in FIG. 5, the rotation drive mechanism 3 holds the flow channel chip 1 so that the liquid introduction chamber 12 in the liquid introduction chamber 12 and the like is closest to the rotation center X. The gene amplification system 100 rotates the channel chip 1 around the rotation center X in a state where the meandering channel 15 is opposed to the first heater surface 31a and the second heater surface 32a (temperature control field), and ddPCR is performed. Execute.
 続いて図1~図11を参照して、遺伝子増幅システム100を用いた遺伝子増幅方法について説明する。図6は、本実施形態に係る遺伝子増幅方法を示すフローチャートである。図6に示すように、本実施形態に係る遺伝子増幅方法は、ステップS601~ステップS607を包含する。以下、ステップS601~ステップS607について説明する。 Subsequently, a gene amplification method using the gene amplification system 100 will be described with reference to FIGS. FIG. 6 is a flowchart showing the gene amplification method according to this embodiment. As shown in FIG. 6, the gene amplification method according to this embodiment includes steps S601 to S607. Hereinafter, steps S601 to S607 will be described.
 本実施形態に係る遺伝子増幅方法では、まず、ステップS601において、回転駆動機構3に流路チップ1を保持させる。回転駆動機構3に流路チップ1を保持させた後、ステップS602において、液体導入室12にオイルを導入する。 In the gene amplification method according to the present embodiment, first, the flow path chip 1 is held by the rotation drive mechanism 3 in step S601. After the flow path chip 1 is held by the rotational drive mechanism 3, oil is introduced into the liquid introduction chamber 12 in step S602.
 オイルの導入後、ステップS603において、回転駆動機構3が流路チップ1を回転軸AX(回転中心X)まわりに回転させる。この結果、導入流路13、液滴供給室14、及び蛇行流路15にオイルが充填されるとともに、収容室16にオイルが供給される。 After the oil is introduced, in step S603, the rotation drive mechanism 3 rotates the flow path chip 1 around the rotation axis AX (rotation center X). As a result, the introduction channel 13, the droplet supply chamber 14, and the meandering channel 15 are filled with oil, and the oil is supplied to the storage chamber 16.
 流路チップ1の回転終了後、ステップS604において、第1ヒーター面31a及び第2ヒーター面32aの温度が設定される。具体的には、第1ヒーター面31aは、PCRの加熱ステップを実行するための温度に設定され、第2ヒーター面32aは、PCRの冷却ステップを実行するための温度に設定される。 After the rotation of the flow path chip 1, the temperatures of the first heater surface 31a and the second heater surface 32a are set in step S604. Specifically, the first heater surface 31a is set to a temperature for executing a PCR heating step, and the second heater surface 32a is set to a temperature for executing a PCR cooling step.
 第1ヒーター面31a及び第2ヒーター面32aの温度設定後、ステップS605において、液体導入室12にPCR溶液を導入する。PCR溶液の導入後、ステップS606において、回転駆動機構3が流路チップ1を回転軸AX(回転中心X)まわりに回転させる。この結果、導入流路13の終端部でPCR溶液の液滴が発生し、蛇行流路15においてddPCRが行われる。蛇行流路15を通過したPCR溶液の液滴は、収容室16に収容される。 After setting the temperatures of the first heater surface 31a and the second heater surface 32a, the PCR solution is introduced into the liquid introduction chamber 12 in step S605. After introducing the PCR solution, in step S606, the rotation driving mechanism 3 rotates the flow path chip 1 around the rotation axis AX (rotation center X). As a result, a droplet of the PCR solution is generated at the end portion of the introduction channel 13, and ddPCR is performed in the meandering channel 15. The droplets of the PCR solution that have passed through the meandering flow path 15 are stored in the storage chamber 16.
 流路チップ1の回転終了後、ステップS607において、流路チップ1を蛍光検出場に移動させて、各液滴内のDNAの有無を、蛍光の検出によって判定する。 After completion of the rotation of the channel chip 1, in step S607, the channel chip 1 is moved to the fluorescence detection field, and the presence or absence of DNA in each droplet is determined by detecting fluorescence.
 続いて図7~図11を参照して、図6を参照して説明した遺伝子増幅方法を詳しく説明する。図7~図11は、遺伝子増幅システム100を用いた遺伝子増幅方法を示す模式図である。 Subsequently, the gene amplification method described with reference to FIG. 6 will be described in detail with reference to FIGS. 7 to 11 are schematic diagrams showing a gene amplification method using the gene amplification system 100. FIG.
 まず、図7に示すように、流路チップ1が回転駆動機構3にセットされる(ステップS601)。詳しくは、蛇行流路15の一方側の端部が第1ヒーター面31a上に配置され、蛇行流路15の他方側の端部が第2ヒーター面32a上に配置されるように、流路チップ1をヒーターステージ30上に保持させる。その後、液体導入室12に、オイル71を導入する(ステップS602)。オイル71の導入には、典型的には、ピペッター72が使用される。 First, as shown in FIG. 7, the flow path chip 1 is set in the rotation drive mechanism 3 (step S601). Specifically, the flow path is such that one end of the meandering flow path 15 is disposed on the first heater surface 31a and the other end of the meandering flow path 15 is disposed on the second heater surface 32a. The chip 1 is held on the heater stage 30. Thereafter, the oil 71 is introduced into the liquid introduction chamber 12 (step S602). For introducing the oil 71, a pipetter 72 is typically used.
 液体導入室12にオイル71を導入した後、回転駆動機構3が、回転軸AXを中心(回転中心X)として、流路チップ1を回転方向RDに回転させる(ステップS603)。この結果、オイル71が液体導入室12から収容室16まで流れる。図8に示すように、流路チップ1の回転は、液体導入室12からオイル71が全て排出されるまで続ける。流路チップ1の回転により、導入流路13、液滴供給室14、及び蛇行流路15にオイル71が充填されるとともに、収容室16にオイル71が供給される。 After introducing the oil 71 into the liquid introduction chamber 12, the rotation drive mechanism 3 rotates the flow channel chip 1 in the rotation direction RD about the rotation axis AX (rotation center X) (step S603). As a result, the oil 71 flows from the liquid introduction chamber 12 to the storage chamber 16. As shown in FIG. 8, the rotation of the flow path chip 1 is continued until all the oil 71 is discharged from the liquid introduction chamber 12. By the rotation of the flow channel chip 1, the introduction flow channel 13, the droplet supply chamber 14, and the meandering flow channel 15 are filled with the oil 71 and the oil 71 is supplied to the storage chamber 16.
 流路チップ1の回転終了後、第1ヒーター面31a及び第2ヒーター面32aを加熱して、第1ヒーター面31aを第1温度に設定し、第2ヒーター面32aを第2温度に設定する(ステップS604)。典型的には、第1ヒーター面31a(第1温度)は、90℃以上98℃以下の範囲から選択された温度に設定され、第2ヒーター面32a(第2温度)は、50℃以上70℃以下の範囲から選択された温度に設定される。 After the rotation of the flow path chip 1, the first heater surface 31a and the second heater surface 32a are heated, the first heater surface 31a is set to the first temperature, and the second heater surface 32a is set to the second temperature. (Step S604). Typically, the first heater surface 31a (first temperature) is set to a temperature selected from the range of 90 ° C. to 98 ° C., and the second heater surface 32a (second temperature) is 50 ° C. to 70 ° C. It is set to a temperature selected from the range of ℃ or less.
 第1ヒーター面31a及び第2ヒーター面32aの温度設定後、図9に示すように、液体導入室12に、PCR溶液91を導入する(ステップS605)。PCR溶液91の導入には、典型的には、ピペッター92が使用される。 After setting the temperatures of the first heater surface 31a and the second heater surface 32a, the PCR solution 91 is introduced into the liquid introduction chamber 12 as shown in FIG. 9 (step S605). For introducing the PCR solution 91, a pipetter 92 is typically used.
 液体導入室12にPCR溶液91を導入した後、回転駆動機構3が、回転軸AXを中心(回転中心X)として、流路チップ1を回転方向RDに回転させる(ステップS606)。この結果、図10に示すように、PCR溶液91は導入流路13を流れ、導入流路13の終端部において液滴91aとなる。液滴91aは、オイル71によって充填された液滴供給室14を介して蛇行流路15に供給され、オイル71によって充填された蛇行流路15を移動して収容室16に収容される。 After introducing the PCR solution 91 into the liquid introduction chamber 12, the rotation drive mechanism 3 rotates the flow path chip 1 in the rotation direction RD about the rotation axis AX (rotation center X) (step S606). As a result, as shown in FIG. 10, the PCR solution 91 flows through the introduction channel 13 and becomes a droplet 91 a at the end portion of the introduction channel 13. The droplet 91 a is supplied to the meandering channel 15 via the droplet supply chamber 14 filled with the oil 71, moves in the meandering channel 15 filled with the oil 71, and is accommodated in the accommodation chamber 16.
 詳しくは、オイル71によって充填された液滴供給室14にPCR溶液91が到達すると、オイル71とPCR溶液91との界面に、オイル71(油相)とPCR溶液91(水相)との間の密度差に起因する圧力差が発生する。この圧力差を駆動力として、液滴91aが生成される。なお、オイル71及びPCR溶液91には、遠心力に基づく圧力が付与される。したがって、本実施形態に係る遺伝子増幅システム100及び遺伝子増幅方法は、遠心場によって液滴91aを発生させる。 Specifically, when the PCR solution 91 reaches the droplet supply chamber 14 filled with the oil 71, the interface between the oil 71 and the PCR solution 91 is between the oil 71 (oil phase) and the PCR solution 91 (water phase). A pressure difference due to the density difference occurs. Using this pressure difference as a driving force, a droplet 91a is generated. Note that a pressure based on centrifugal force is applied to the oil 71 and the PCR solution 91. Therefore, the gene amplification system 100 and the gene amplification method according to the present embodiment generate the droplet 91a by the centrifugal field.
 蛇行流路15を移動する液滴91aは、第1ヒーター面31aによって加熱された後、第2ヒーター面32aによって冷却される。この加熱及び冷却により、液滴91a内でPCR(ddPCR)の1サイクルが完了する。詳しくは、第1ヒーター面31aが液滴91aを加熱することにより、液滴91aに含まれる2本鎖DNAが分離して、1本鎖DNAが生成される。その後、第2ヒーター面32aが液滴91aを冷却する。この結果、まず、1本鎖DNA中の増幅対象DNA分子にプライマーが結合する。その後、DNAポリメラーゼによってdNTPがプライマーに結合し、プライマーからDNA鎖が延びて2本鎖DNAが生成される。 The droplet 91a moving through the meandering channel 15 is heated by the first heater surface 31a and then cooled by the second heater surface 32a. By this heating and cooling, one cycle of PCR (ddPCR) is completed in the droplet 91a. Specifically, when the first heater surface 31a heats the droplet 91a, the double-stranded DNA contained in the droplet 91a is separated and single-stranded DNA is generated. Thereafter, the second heater surface 32a cools the droplet 91a. As a result, first, the primer binds to the amplification target DNA molecule in the single-stranded DNA. Thereafter, dNTP binds to the primer by DNA polymerase, and a DNA strand extends from the primer to generate double-stranded DNA.
 流路チップ1の回転は、液体導入室12から所望の量のPCR溶液91が排出されるまで続ける。流路チップ1の回転終了後、図11に示すように、流路チップ1は回転駆動機構3から取り外されて、蛍光検出場まで移動される(ステップS607)。蛍光検出場では、各液滴91a内の増幅されたDNA分子の有無が、蛍光の検出によって判定される。DNAを含む液滴91aの数をカウントすることによって、統計的に確からしい検出対象のDNA(又はRNAなどの核酸)の絶対定量を測定することが可能となる。 The rotation of the channel chip 1 is continued until a desired amount of the PCR solution 91 is discharged from the liquid introduction chamber 12. After completion of the rotation of the flow path chip 1, the flow path chip 1 is removed from the rotation drive mechanism 3 and moved to the fluorescence detection field as shown in FIG. 11 (step S607). In the fluorescence detection field, the presence or absence of amplified DNA molecules in each droplet 91a is determined by detecting fluorescence. By counting the number of droplets 91a containing DNA, it is possible to measure the absolute quantification of the DNA (or nucleic acid such as RNA) that is statistically likely to be detected.
 具体的には、蛍光検出場において、励起光光源から出射された励起光が、収容室16に照射される。励起光は、蛍光色素を励起する。励起された蛍光色素は蛍光を放出する。放出された蛍光を蛍光検出器によって検出する。蛍光を放出する液滴91aはDNAを含み、蛍光を放出しない液滴91aはDNAを含まないため、各液滴91a内のDNAの有無を判定することができる。励起光光源は、例えば、レーザー光源、又は発光ダイオード(LED)であり得る。蛍光検出器は、例えば、フォトマル検出器、集光レンズ及び蛍光フィルタ等を含んで構成される。 Specifically, in the fluorescence detection field, the excitation light emitted from the excitation light source is applied to the accommodation chamber 16. The excitation light excites the fluorescent dye. The excited fluorescent dye emits fluorescence. The emitted fluorescence is detected by a fluorescence detector. Since the droplet 91a that emits fluorescence contains DNA and the droplet 91a that does not emit fluorescence does not contain DNA, the presence or absence of DNA in each droplet 91a can be determined. The excitation light source can be, for example, a laser light source or a light emitting diode (LED). The fluorescence detector includes, for example, a photomultiplier detector, a condenser lens, and a fluorescence filter.
 蛍光の検出方法には、インターカレーター法とハイブリダイゼーション法とがある。インターカレーター法では、二本鎖DNAに特異的に挿入して蛍光を発する蛍光色素(SYBR green I)を用いる。換言すると、蛍光色素が添加されたPCR溶液91を用いる。一方、ハイブリダイゼーション法はTagManプローブ法が最も一般的であり、DNA配列に特異的なオリゴヌクレオチドに蛍光色素を結合させたプローブDNAを用いる。換言すると、プローブDNAが添加されたPCR溶液91を用いる。TagManプローブ法に用いる蛍光色素は、例えば、FAM(Carboxyfluorescein)であり得る。 Fluorescence detection methods include intercalator method and hybridization method. In the intercalator method, a fluorescent dye (SYBR green I) that specifically inserts into double-stranded DNA and emits fluorescence is used. In other words, the PCR solution 91 to which a fluorescent dye is added is used. On the other hand, the TagMan probe method is the most common hybridization method, and a probe DNA in which a fluorescent dye is bound to an oligonucleotide specific to the DNA sequence is used. In other words, the PCR solution 91 to which the probe DNA is added is used. The fluorescent dye used in the TagMan probe method can be, for example, FAM (Carboxyfluorescein).
 なお、検出対象がRNAである場合、PCRステップの実行前に逆転写プロセスを実行する。例えば、検体液に対して逆転写プロセスを実行した後にPCR溶液を調製してもよい。あるいは、逆転写プロセスをPCRステップに含めてもよい。 If the detection target is RNA, the reverse transcription process is performed before the PCR step. For example, the PCR solution may be prepared after the reverse transcription process is performed on the sample liquid. Alternatively, a reverse transcription process may be included in the PCR step.
 続いて図12を参照して、液滴91aが蛇行流路15を移動する原理について説明する。図12は、蛇行流路15の一部を拡大して示す模式図である。図12に示すように、蛇行流路15は、第1傾斜流路15aと第2傾斜流路15bとを含む。 Subsequently, the principle of the droplet 91a moving through the meandering channel 15 will be described with reference to FIG. FIG. 12 is an enlarged schematic view showing a part of the meandering flow path 15. As shown in FIG. 12, the meandering flow path 15 includes a first inclined flow path 15a and a second inclined flow path 15b.
 第1傾斜流路15aは、基板11の幅方向WDの一方側へ延びて、第2傾斜流路15bの一方側の端部に接続(連通)する。第2傾斜流路15bは、基板11の幅方向WDの他方側へ延びて、第1傾斜流路15aの他方側の端部に接続(連通)する。第1傾斜流路15a及び第2傾斜流路15bは、基板11の長手方向LDに対して傾斜している。換言すると、第1傾斜流路15a及び第2傾斜流路15bは、回転軸AXに直交する径方向に対して傾斜している。第1傾斜流路15a及び第2傾斜流路15bは、長手方向LD(径方向)に沿って交互に配置される。 The first inclined channel 15a extends to one side of the substrate 11 in the width direction WD and is connected (communicated) to one end of the second inclined channel 15b. The second inclined channel 15b extends to the other side in the width direction WD of the substrate 11 and is connected (communicated) to the other end of the first inclined channel 15a. The first inclined channel 15 a and the second inclined channel 15 b are inclined with respect to the longitudinal direction LD of the substrate 11. In other words, the first inclined channel 15a and the second inclined channel 15b are inclined with respect to the radial direction orthogonal to the rotation axis AX. The first inclined channel 15a and the second inclined channel 15b are alternately arranged along the longitudinal direction LD (radial direction).
 密度が異なるオイル71によって囲まれた液滴91aを、回転軸AX(回転中心X)まわりに回転させると、遠心力により、液滴91aに対して回転軸AX(回転中心X)へ向かう浮力Fが付与される。第1傾斜流路15a及び第2傾斜流路15bが径方向に対して傾斜していることにより、液滴91aは、浮力Fを駆動力として、蛇行流路15(第1傾斜流路15a及び第2傾斜流路15b)に沿って、回転軸AX(回転中心X)へ向かって移動する。 When the droplet 91a surrounded by the oil 71 having different densities is rotated around the rotation axis AX (rotation center X), the buoyancy F toward the rotation axis AX (rotation center X) with respect to the droplet 91a is caused by centrifugal force. Is granted. Since the first inclined flow path 15a and the second inclined flow path 15b are inclined with respect to the radial direction, the droplet 91a has a meandering flow path 15 (first inclined flow path 15a and It moves toward the rotation axis AX (rotation center X) along the second inclined flow path 15b).
 なお、浮力Fの大きさは、図4を参照して説明した駆動装置50の回転数(回転速度)に依存する。具体的には、回転数が大きいほど浮力Fが大きくなり、液滴91aの移動速度が速くなる。したがって、駆動装置50の回転数を制御することにより、液滴91aの移動速度を制御できる。よって、回転数を増加させることにより、液滴91aに対する熱交換の迅速化、つまりPCR(ddPCR)の迅速化を図ることができる。但し、第1傾斜流路15a及び第2傾斜流路15bの流路長さによっては、液滴91aの移動速度が速くなり過ぎると適切な熱交換が行われず、PCRが行われない可能性がある。よって、駆動装置50の回転数は、第1傾斜流路15a及び第2傾斜流路15bの流路長さに応じて決定することが好ましい。 The magnitude of the buoyancy F depends on the rotational speed (rotational speed) of the drive device 50 described with reference to FIG. Specifically, the greater the number of revolutions, the greater the buoyancy F and the faster the moving speed of the droplet 91a. Therefore, the moving speed of the droplet 91a can be controlled by controlling the rotation speed of the driving device 50. Therefore, by increasing the number of rotations, it is possible to speed up heat exchange with respect to the droplet 91a, that is, speed up PCR (ddPCR). However, depending on the channel lengths of the first inclined channel 15a and the second inclined channel 15b, if the moving speed of the droplet 91a becomes too fast, appropriate heat exchange may not be performed and PCR may not be performed. is there. Therefore, it is preferable to determine the rotation speed of the drive device 50 according to the flow path lengths of the first inclined flow path 15a and the second inclined flow path 15b.
 続いて図13を参照して、蛇行流路15について更に説明する。図13は、蛇行流路15の一部を拡大して示す図である。図13に示すように、第1傾斜流路15a及び第2傾斜流路15bは、基板11の長手方向LDに対して、角度θの傾きを有する。角度θが0°よりも大きいことにより、図12を参照して説明した浮力Fを駆動力として、液滴91aが蛇行流路15を移動する。 Subsequently, the meandering flow path 15 will be further described with reference to FIG. FIG. 13 is an enlarged view showing a part of the meandering flow path 15. As shown in FIG. 13, the first inclined channel 15 a and the second inclined channel 15 b have an inclination of an angle θ with respect to the longitudinal direction LD of the substrate 11. When the angle θ is larger than 0 °, the droplet 91a moves in the meandering flow path 15 using the buoyancy F described with reference to FIG.
 角度θ、及び、基板11の幅方向WDにおける蛇行流路15の長さL2は、PCRの加熱ステップ及び冷却ステップを実行できる限り、特に限定されない。例えば、角度θは、10°以下の範囲から選択し得る。また、蛇行流路15の長さL2は、1mm以上20mm以下の範囲から選択し得る。 The angle θ and the length L2 of the meandering channel 15 in the width direction WD of the substrate 11 are not particularly limited as long as the PCR heating step and the cooling step can be performed. For example, the angle θ can be selected from a range of 10 ° or less. Further, the length L2 of the meandering channel 15 can be selected from a range of 1 mm or more and 20 mm or less.
 続いて図14(a)及び図14(b)を参照して、基板11について更に説明する。図14(a)は、基板11の一部を拡大して示す図である。詳しくは、図14(a)は、第2導入流路13b付近を拡大して示す。図14(b)は、図14(a)に示すXIVB-XIVB線に沿った断面図である。 Subsequently, the substrate 11 will be further described with reference to FIGS. 14 (a) and 14 (b). FIG. 14A is an enlarged view showing a part of the substrate 11. Specifically, FIG. 14A shows an enlarged view of the vicinity of the second introduction flow path 13b. FIG. 14B is a cross-sectional view taken along line XIVB-XIVB shown in FIG.
 図14(a)及び図14(b)に示すように、基板11は、テラス構造19を更に含む。詳しくは、導入流路13はテラス部13cを含む。テラス部13cは、第2導入流路13bの終端と液滴供給室14との間に形成される。テラス構造19は、第2導入流路13b(直線部)とテラス部13cとによって構成される。 As shown in FIGS. 14A and 14B, the substrate 11 further includes a terrace structure 19. Specifically, the introduction flow path 13 includes a terrace portion 13c. The terrace portion 13 c is formed between the end of the second introduction flow path 13 b and the droplet supply chamber 14. The terrace structure 19 includes a second introduction flow path 13b (straight line portion) and a terrace portion 13c.
 基板11の幅方向WDに沿ったテラス部13cの幅W2は、第2導入流路13bの流路幅W1よりも大きい。換言すると、テラス部13cによって、第2導入流路13bの終端部の流路幅が拡大される。また、テラス部13cの深さは、第2導入流路13bの深さh1と等しく、液滴供給室14の深さh2よりも浅い。これらの条件を満たすテラス構造19を導入流路13の終端部に形成することにより、液滴91aをより確実に生成することができる。 The width W2 of the terrace portion 13c along the width direction WD of the substrate 11 is larger than the flow path width W1 of the second introduction flow path 13b. In other words, the channel width of the terminal portion of the second introduction channel 13b is expanded by the terrace portion 13c. Further, the depth of the terrace portion 13c is equal to the depth h1 of the second introduction channel 13b, and is shallower than the depth h2 of the droplet supply chamber 14. By forming the terrace structure 19 that satisfies these conditions at the end portion of the introduction channel 13, the droplet 91a can be generated more reliably.
 テラス構造19の各部の寸法は、液滴91aを生成できる限り特に限定されない。例えば、第2導入流路13bの流路幅W1が30μmである場合、テラス部13cの幅W2は100μmであり得る。また、及び基板11の長手方向LDに沿ったテラス部13cのテラス長さL3は、30μmであり得る。液滴供給室14の深さh2が100μmである場合、第2導入流路13b及びテラス部13cの深さh1は30μmであり得る。 The dimensions of each part of the terrace structure 19 are not particularly limited as long as the droplet 91a can be generated. For example, when the channel width W1 of the second introduction channel 13b is 30 μm, the width W2 of the terrace portion 13c can be 100 μm. Further, the terrace length L3 of the terrace portion 13c along the longitudinal direction LD of the substrate 11 may be 30 μm. When the depth h2 of the droplet supply chamber 14 is 100 μm, the depth h1 of the second introduction flow path 13b and the terrace portion 13c may be 30 μm.
 液滴91aの直径は、テラス構造19の各部の寸法によって制御可能である。典型的には、液滴91aの直径は、10μm以上300μm以下である。第2導入流路13bの流路幅W1が30μmであり、テラス部13cの幅W2が100μmであり、テラス長さL3が30μmであり、第2導入流路13b及びテラス部13cの深さh1が30μmである場合、約95μmの直径を有する液滴91aが生成される。 The diameter of the droplet 91a can be controlled by the dimensions of each part of the terrace structure 19. Typically, the diameter of the droplet 91a is not less than 10 μm and not more than 300 μm. The channel width W1 of the second introduction channel 13b is 30 μm, the width W2 of the terrace portion 13c is 100 μm, the terrace length L3 is 30 μm, and the depth h1 of the second introduction channel 13b and the terrace portion 13c. Is 30 μm, a droplet 91a having a diameter of about 95 μm is generated.
 続いて図15~図20を参照して、蛇行流路15を移動する液滴91aについて説明する。図15~図20は、導入流路13の一部、液滴供給室14、及び蛇行流路15の一部を示す図である。詳しくは、図15~図20は、液滴91aが液滴供給室14から蛇行流路15に供給される様子を時系列に示す。 Next, with reference to FIGS. 15 to 20, the droplet 91a moving in the meandering flow path 15 will be described. 15 to 20 are views showing a part of the introduction flow path 13, the droplet supply chamber 14, and a part of the meandering flow path 15. Specifically, FIGS. 15 to 20 show the state in which the droplet 91a is supplied from the droplet supply chamber 14 to the meandering flow path 15 in time series.
 図15~図20に示すように、液滴91aが液滴供給室14を移動する速度は、液滴91aが蛇行流路15を移動する速度と比べて速い。これは、液滴供給室14において液滴91aが浮力Fの方向に沿って移動するためである。 As shown in FIGS. 15 to 20, the speed at which the droplet 91a moves through the droplet supply chamber 14 is faster than the speed at which the droplet 91a moves through the meandering channel 15. This is because the droplet 91 a moves in the direction of the buoyancy F in the droplet supply chamber 14.
 また、本実施形態に係る液滴供給室14は、蛇行流路15の始端に向かって幅が狭くなる形状を有する。この形状により、蛇行流路15に液滴91aをよりスムーズに供給することが可能となる。より好ましくは、液滴供給室14の幅を浮力Fの方向に沿って狭くする。液滴供給室14の幅を浮力Fの方向に沿って狭くすることにより、液滴91aを蛇行流路15の始端へ向けてよりスムーズに誘導することが可能となる。なお、液滴91aを蛇行流路15に誘導する形状は、三角形に限定されない。例えば、液滴供給室14は、蛇行流路15の始端に向かって幅が狭くなる円弧形状(円周面の一部)を含んでもよい。 Further, the droplet supply chamber 14 according to the present embodiment has a shape whose width becomes narrower toward the start end of the meandering flow path 15. With this shape, the droplet 91a can be supplied to the meandering channel 15 more smoothly. More preferably, the width of the droplet supply chamber 14 is narrowed along the direction of the buoyancy F. By narrowing the width of the droplet supply chamber 14 along the direction of the buoyancy F, the droplet 91a can be guided more smoothly toward the starting end of the meandering channel 15. The shape for guiding the droplet 91a to the meandering channel 15 is not limited to a triangle. For example, the droplet supply chamber 14 may include an arc shape (a part of the circumferential surface) whose width becomes narrower toward the starting end of the meandering flow path 15.
 以上、本発明の実施形態について図面を参照しながら説明した。本実施形態によれば、液滴91aが、浮力Fを駆動力として、加熱場(第1ヒーター面31a)と冷却場(第2ヒーター面32a)との間を往復する。したがって、温度制御場の温度を2つの温度間で遷移させる構成と比べて、より迅速にddPCRを行うことができる。 The embodiment of the present invention has been described above with reference to the drawings. According to this embodiment, the droplet 91a reciprocates between the heating field (first heater surface 31a) and the cooling field (second heater surface 32a) using the buoyancy F as a driving force. Therefore, ddPCR can be performed more rapidly than the configuration in which the temperature of the temperature control field is transitioned between two temperatures.
 また、本実施形態によれば、回転数の制御によって液滴91aの移動速度を制御することができる。よって、回転数を制御して、液滴91aの移動速度を速くすることにより、より迅速にddPCRを行うことが可能となる。更に、回転数を制御することにより、液滴91aが加熱場を移動する時間と、液滴91aが冷却場を移動する時間とを制御することができる。よって、確実にddPCRを行うことができる。 Further, according to the present embodiment, the moving speed of the droplet 91a can be controlled by controlling the rotation speed. Therefore, ddPCR can be performed more quickly by controlling the number of rotations and increasing the moving speed of the droplet 91a. Furthermore, by controlling the rotation speed, it is possible to control the time during which the droplet 91a moves through the heating field and the time during which the droplet 91a moves through the cooling field. Therefore, ddPCR can be performed reliably.
 また、本実施形態によれば、液滴91aが浮力Fを駆動力として蛇行流路15を移動する。したがって、油相(オイル71)を送液する必要がない。この結果、油相(オイル71)の使用量を削減することができる。よって、ランニングコストを低減することができる。更に、マイクロポンプのような溶液駆動部が不要となるため、遺伝子増幅システム100(ddPCRシステム)の小型化が可能となる。 Further, according to the present embodiment, the droplet 91a moves in the meandering flow path 15 using the buoyancy F as a driving force. Therefore, it is not necessary to feed the oil phase (oil 71). As a result, the amount of oil phase (oil 71) used can be reduced. Therefore, the running cost can be reduced. Furthermore, since a solution driving unit such as a micropump is not required, the gene amplification system 100 (ddPCR system) can be downsized.
 また、本実施形態によれば、液滴91aがオイル71に囲まれるため、液滴91aの流路壁面への吸着を抑制することができる。したがって、サンプルロスを低減でき、効率を高めることができる。 Further, according to the present embodiment, since the droplet 91a is surrounded by the oil 71, the adsorption of the droplet 91a to the channel wall surface can be suppressed. Therefore, sample loss can be reduced and efficiency can be increased.
 また、本実施形態によれば、遠心場での液滴91aの生成と、温度制御場でのPCRとを1つの装置(回転駆動機構3)によって達成できる。したがって、オイル71とPCR溶液91とを流路チップ1に滴下し、回転駆動機構3が流路チップ1を回転させるだけで、ddPCRを行うことができるため、より簡便かつ迅速にddPCRを行うことができる。 Further, according to the present embodiment, the generation of the droplet 91a in the centrifugal field and the PCR in the temperature control field can be achieved by one apparatus (rotation drive mechanism 3). Therefore, ddPCR can be performed simply by dripping the oil 71 and the PCR solution 91 onto the flow path chip 1 and the rotation drive mechanism 3 rotating the flow path chip 1. Can do.
 また、本実施形態によれば、1チップ内で液滴91aの生成とPCRとを行うことができる。したがって、より簡便かつ迅速にddPCRを行うことができる。 Further, according to the present embodiment, the generation of the droplet 91a and the PCR can be performed within one chip. Therefore, ddPCR can be performed more simply and rapidly.
 なお、本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist thereof.
 例えば、本発明の実施形態では、第1ヒーター面31a及び第2ヒーター面32aの温度を設定した後に、PCR溶液91を液体導入室12に導入したが、PCR溶液91を液体導入室12に導入した後に、第1ヒーター面31a及び第2ヒーター面32aの温度を設定してもよい。 For example, in the embodiment of the present invention, the PCR solution 91 is introduced into the liquid introduction chamber 12 after the temperatures of the first heater surface 31 a and the second heater surface 32 a are set, but the PCR solution 91 is introduced into the liquid introduction chamber 12. After that, the temperature of the first heater surface 31a and the second heater surface 32a may be set.
 また、本発明の実施形態では、流路チップ1を時計回りの方向に回転させたが、流路チップ1を反時計回りの方向に回転させてもよい。 In the embodiment of the present invention, the channel chip 1 is rotated in the clockwise direction, but the channel chip 1 may be rotated in the counterclockwise direction.
 また、本発明の実施形態において、回転駆動機構3は、第1ヒーター面31a及び第2ヒーター面32aの組(温度制御場)を4つ備えたが、本発明はこの形態に限定されない。回転駆動機構3は、第1ヒーター面31a及び第2ヒーター面32aの組を1つ、2つ、又は3つ備えてもよいし、第1ヒーター面31a及び第2ヒーター面32aの組を5つ以上備えてもよい。 In the embodiment of the present invention, the rotation drive mechanism 3 includes four sets (temperature control fields) of the first heater surface 31a and the second heater surface 32a, but the present invention is not limited to this form. The rotational drive mechanism 3 may include one, two, or three pairs of the first heater surface 31a and the second heater surface 32a, or five pairs of the first heater surface 31a and the second heater surface 32a. You may have more than one.
 また、流路チップ1の導入流路13は、例えば図21に示すように蛇行流路13dを含んでもよい。図21は、本発明の他の実施形態に係る流路チップ1の平面図である。図21に示す流路チップ1において、導入流路13は、蛇行流路13dを含む。蛇行流路13dは、液体導入室12と液滴供給室14との間に形成される。より詳しくは、蛇行流路13dは、第1導入流路13aに形成される。蛇行流路13dを設けることにより、液体導入室12から液滴供給室14までのPCR溶液91の移動速度を調整して、液滴91aの発生頻度(スループット)を調整することが可能となる。 Further, the introduction channel 13 of the channel chip 1 may include a meandering channel 13d as shown in FIG. FIG. 21 is a plan view of a channel chip 1 according to another embodiment of the present invention. In the flow channel chip 1 shown in FIG. 21, the introduction flow channel 13 includes a meandering flow channel 13d. The meandering flow path 13 d is formed between the liquid introduction chamber 12 and the droplet supply chamber 14. More specifically, the meandering flow path 13d is formed in the first introduction flow path 13a. By providing the meandering channel 13d, the moving speed of the PCR solution 91 from the liquid introduction chamber 12 to the droplet supply chamber 14 can be adjusted, and the frequency (throughput) of the droplets 91a can be adjusted.
 また、本発明の実施形態では、ヒーターステージ30が2つのヒーター面(第1ヒーター面31a及び第2ヒーター面32a)を有し、蛇行流路15が、2つのヒーター面に跨って配置されたが、ヒーターステージ30は、3つ以上のヒーター面を有してもよい。3つ以上のヒーター面は、互いに異なる温度に設定される。この場合、蛇行流路15は、3つ以上のヒーター面に跨って配置される。ヒーターステージ30が3つ以上のヒーター面を有することにより、温度制御場の温度勾配をより自由に制御することが可能となる。 Further, in the embodiment of the present invention, the heater stage 30 has two heater surfaces (the first heater surface 31a and the second heater surface 32a), and the meandering channel 15 is disposed across the two heater surfaces. However, the heater stage 30 may have three or more heater surfaces. Three or more heater surfaces are set to different temperatures. In this case, the meandering channel 15 is disposed across three or more heater surfaces. Since the heater stage 30 has three or more heater surfaces, the temperature gradient of the temperature control field can be controlled more freely.
 以下、本発明の実施例について説明する。但し、本発明は、以下で説明する実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the examples described below.
[実施例1]
 まず、実施例1において使用した流路チップ1について説明する。実施例1では、図1に示す流路チップ1を用いた。基板11は、シリコーンゴム製であった。液体導入室12、液滴供給室14、及び収容室16の深さは100μmであった。第1導入流路13aの流路幅及び深さは共に100μmであった。図14(a)及び図14(b)を参照して説明したテラス構造19において、第2導入流路13bの流路幅W1は30μm、テラス部13cの幅W2は100μm、テラス長さL3は30μm、第2導入流路13b及びテラス部13cの深さh1は30μmであった。基板11の長手方向LDに沿った蛇行流路15の長さL1は20mmであった。基板11の幅方向WDに沿った蛇行流路15の長さL2は3.5mmであった。蛇行流路15(第1傾斜流路15a及び第2傾斜流路15b)の流路幅及び深さは共に100μmであった。第1傾斜流路15a及び第2傾斜流路15bが径方向(長手方向LD)に対して傾斜する角度θは4°であった。
[Example 1]
First, the flow channel chip 1 used in Example 1 will be described. In Example 1, the flow channel chip 1 shown in FIG. 1 was used. The substrate 11 was made of silicone rubber. The depths of the liquid introduction chamber 12, the droplet supply chamber 14, and the storage chamber 16 were 100 μm. The channel width and depth of the first introduction channel 13a were both 100 μm. In the terrace structure 19 described with reference to FIGS. 14A and 14B, the flow path width W1 of the second introduction flow path 13b is 30 μm, the width W2 of the terrace portion 13c is 100 μm, and the terrace length L3 is 30 μm, the depth h1 of the second introduction flow path 13b and the terrace portion 13c was 30 μm. The length L1 of the meandering flow path 15 along the longitudinal direction LD of the substrate 11 was 20 mm. The length L2 of the meandering channel 15 along the width direction WD of the substrate 11 was 3.5 mm. The channel width and depth of the meandering channel 15 (the first inclined channel 15a and the second inclined channel 15b) were both 100 μm. The angle θ at which the first inclined channel 15a and the second inclined channel 15b are inclined with respect to the radial direction (longitudinal direction LD) was 4 °.
 実施例1では、オイル71としてフッ素オイルを使用した。また、PCR溶液91(水相)の替わりに、赤色に着色した水を使用した。実施例1では、流路チップ1を回転軸AXまわりに回転速度440rpmで回転させた。図22は、実施例1の結果を示す図である。図22は、ハイスピードカメラによって蛇行流路15を撮像して取得した。図22に示すように、流路チップ1を回転軸AXまわりに回転させることで液滴Sが生成されることを確認した。また、液滴Sが回転軸AXに向かって蛇行流路15を移動していき、蛇行流路15が液滴Sによって充填されることを確認できた。実施例1では、約95μmの直径を有する液滴Sが生成された。 In Example 1, fluorine oil was used as the oil 71. Further, instead of the PCR solution 91 (aqueous phase), water colored in red was used. In Example 1, the channel chip 1 was rotated around the rotation axis AX at a rotation speed of 440 rpm. FIG. 22 is a diagram showing the results of Example 1. FIG. 22 was obtained by imaging the meandering flow path 15 with a high speed camera. As shown in FIG. 22, it was confirmed that the droplet S was generated by rotating the flow channel chip 1 around the rotation axis AX. Further, it was confirmed that the droplet S moved along the meandering channel 15 toward the rotation axis AX, and the meandering channel 15 was filled with the droplet S. In Example 1, a droplet S having a diameter of about 95 μm was generated.
[実施例2~4]
 実施例2~4では、実施例1と構成が同じ流路チップ1を使用して、液滴Sの移動速度を測定した。実施例2~4では、実施例1と同様に、オイル71としてフッ素オイルを使用した。また、PCR溶液91(水相)の替わりに、赤色に着色した水を使用した。
[Examples 2 to 4]
In Examples 2 to 4, the moving speed of the droplet S was measured using the channel chip 1 having the same configuration as that of Example 1. In Examples 2 to 4, as in Example 1, fluorine oil was used as the oil 71. Further, instead of the PCR solution 91 (aqueous phase), water colored in red was used.
 実施例2では、実施例1と同様に、流路チップ1を回転軸AXまわりに回転速度440rpmで回転させた。実施例3では、流路チップ1を回転軸AXまわりに回転速度1000rpmで回転させた。実施例4では、流路チップ1を回転軸AXまわりに回転速度1320rpmで回転させた。なお、実施例3及び4においても、約95μmの直径を有する液滴Sが生成された。 In Example 2, the channel chip 1 was rotated around the rotation axis AX at a rotation speed of 440 rpm as in Example 1. In Example 3, the flow channel chip 1 was rotated around the rotation axis AX at a rotation speed of 1000 rpm. In Example 4, the flow channel chip 1 was rotated around the rotation axis AX at a rotation speed of 1320 rpm. In Examples 3 and 4, a droplet S having a diameter of about 95 μm was also generated.
 図23(a)及び図23(b)は、実施例2に係る液滴Sの移動を示す図である。図23(a)及び図23(b)は、ハイスピードカメラによって蛇行流路15を撮像して取得した。図23(b)は、図23(a)を撮像した時点から30秒経過した時点での蛇行流路15を示す。図23(b)において、矢印は、液滴Sが30秒間で移動した距離を示す。 FIG. 23A and FIG. 23B are diagrams illustrating the movement of the droplet S according to the second embodiment. FIG. 23A and FIG. 23B were obtained by imaging the meandering flow path 15 with a high-speed camera. FIG. 23B shows the meandering flow path 15 when 30 seconds have elapsed from the time when FIG. 23A was imaged. In FIG. 23B, the arrow indicates the distance that the droplet S has moved in 30 seconds.
 図24(a)及び図24(b)は、実施例3に係る液滴Sの移動を示す図である。図24(a)及び図24(b)は、ハイスピードカメラによって蛇行流路15を撮像して取得した。図24(b)は、図24(a)を撮像した時点から30秒経過した時点での蛇行流路15を示す。図24(b)において、矢印は、液滴Sが30秒間で移動した距離を示す。 FIGS. 24A and 24B are diagrams illustrating movement of the droplet S according to the third embodiment. 24A and 24B are obtained by imaging the meandering flow path 15 with a high-speed camera. FIG. 24B shows the meandering flow path 15 when 30 seconds have elapsed from the time when FIG. 24A was imaged. In FIG. 24B, the arrow indicates the distance that the droplet S has moved in 30 seconds.
 図25(a)及び図25(b)は、実施例4に係る液滴Sの移動を示す図である。図25(a)及び図25(b)は、ハイスピードカメラによって蛇行流路15を撮像して取得した。図25(b)は、図25(a)を撮像した時点から30秒経過した時点での蛇行流路15を示す。図25(b)において、矢印は、液滴Sが30秒間で移動した距離を示す。 FIG. 25A and FIG. 25B are diagrams illustrating the movement of the droplet S according to the fourth embodiment. FIG. 25A and FIG. 25B were obtained by imaging the meandering flow path 15 with a high speed camera. FIG. 25B shows the meandering flow path 15 when 30 seconds have elapsed from the time when the image of FIG. In FIG. 25B, the arrow indicates the distance that the droplet S has moved in 30 seconds.
 図23(a)及び図23(b)~図25(a)及び図25(b)に示すように、回転速度rpmが増加するほど、液滴Sの移動距離が延びた。 As shown in FIG. 23 (a) and FIG. 23 (b) to FIG. 25 (a) and FIG. 25 (b), the moving distance of the droplet S increases as the rotational speed rpm increases.
 図26は、回転速度と、液滴Sの移動速度との関係を示すグラフである。図26において、横軸は回転速度を示し、縦軸は液滴Sの移動速度を示す。図26に示すグラフは、図23(a)及び図23(b)~図25(a)及び図25(b)に示す撮像結果から取得した液滴Sの移動速度をプロットして作成した。図26に示すように、回転速度rpmが増加するほど、液滴Sの移動速度が増加することを確認できた。 FIG. 26 is a graph showing the relationship between the rotational speed and the moving speed of the droplet S. In FIG. 26, the horizontal axis indicates the rotational speed, and the vertical axis indicates the moving speed of the droplet S. The graph shown in FIG. 26 is created by plotting the moving speed of the droplet S acquired from the imaging results shown in FIGS. 23 (a) and 23 (b) to FIG. 25 (a) and FIG. 25 (b). As shown in FIG. 26, it was confirmed that the moving speed of the droplet S increased as the rotational speed rpm increased.
 図27は、回転速度と、PCRの1サイクルを完了するために必要な時間との関係を示すグラフである。図27において、横軸は回転速度を示す。また、縦軸は、PCRの1サイクルを完了するために必要な時間を示す。 FIG. 27 is a graph showing the relationship between the rotation speed and the time required to complete one cycle of PCR. In FIG. 27, the horizontal axis indicates the rotation speed. The vertical axis indicates the time required to complete one cycle of PCR.
 PCRの1サイクルを完了するために必要な時間は、液滴Sが蛇行流路15を1往復するために必要な時間を示す。液滴Sが蛇行流路15を1往復するために必要な時間は、図23(a)及び図23(b)~図25(a)及び図25(b)に示す撮像結果から取得した液滴Sの移動速度と、蛇行流路15の長さL2(3.5mm)とに基づいて求めた。図27に示すように、回転速度rpmを増加させることにより、液滴Sが蛇行流路15を1往復するために必要な時間が短くなることを確認できた。 The time required to complete one cycle of PCR indicates the time required for the droplet S to reciprocate once through the meandering channel 15. The time required for the droplet S to make one round trip through the meandering channel 15 is the liquid obtained from the imaging results shown in FIGS. 23 (a) and 23 (b) to 25 (a) and 25 (b). It calculated | required based on the moving speed of the droplet S, and the length L2 (3.5 mm) of the meandering flow path 15. As shown in FIG. 27, it was confirmed that the time required for the droplet S to reciprocate once through the meandering flow path 15 was shortened by increasing the rotation speed rpm.
[実施例5、及び比較例]
 実施例5及び比較例において使用した流路チップ1は、6種類のサーモシールA~Fを含む点を除いて、実施例1と同じ構成を有する。具体的には、サーモシールA~Fは、蛇行流路15に対向するように基板11に埋め込まれている。詳しくは、サーモシールA~Cは、基板11の幅方向WDにおける蛇行流路15の一方側の端部に対向する。換言すると、サーモシールA~Cは、第1ヒーター面31aに対向するように基板11に埋め込まれている。サーモシールAの色は、100℃の温度によって緑色になる。サーモシールBの色は、95℃の温度によって緑色になる。サーモシールCの色は、90℃の温度によって緑色になる。一方、サーモシールD~Fは、基板11の幅方向WDにおける蛇行流路15の他方側の端部に対向する。換言すると、サーモシールD~Fは、第2ヒーター面32aに対向するように基板11に埋め込まれている。サーモシールDの色は、65℃の温度によって緑色になる。サーモシールEの色は、60℃の温度によって緑色になる。サーモシールFの色は、55℃の温度によって緑色になる。
Example 5 and Comparative Example
The channel chip 1 used in Example 5 and the comparative example has the same configuration as that of Example 1 except that it includes six types of thermo seals A to F. Specifically, the thermo seals A to F are embedded in the substrate 11 so as to face the meandering flow path 15. Specifically, the thermo seals A to C are opposed to one end of the meandering flow path 15 in the width direction WD of the substrate 11. In other words, the thermo seals A to C are embedded in the substrate 11 so as to face the first heater surface 31a. The color of the thermo seal A becomes green at a temperature of 100 ° C. The color of the thermo seal B becomes green at a temperature of 95 ° C. The color of the thermo seal C becomes green at a temperature of 90 ° C. On the other hand, the thermo seals D to F face the other end of the meandering flow path 15 in the width direction WD of the substrate 11. In other words, the thermo seals D to F are embedded in the substrate 11 so as to face the second heater surface 32a. The color of the thermo seal D becomes green at a temperature of 65 ° C. The color of the thermo seal E becomes green at a temperature of 60 ° C. The color of the thermo seal F becomes green at a temperature of 55 ° C.
 実施例5では、薬剤耐性細菌(IMP-6陽性)ゲノムDNAを含むPCR溶液を用いて、IMP-6をターゲットにしてddPCRを行った。また、ddPCRステップ終了後に蛍光の検出を行った。比較例では、DNAが添加されていない溶液を用いて、ddPCRステップを実行した。比較例で使用した溶液は、DNAが添加されていないことを除いて、実施例5と同じ成分を含む。比較例においても、ddPCRステップ終了後に蛍光の検出を行った。 In Example 5, ddPCR was performed using PCR-6 as a target, using a PCR solution containing genomic DNA of drug-resistant bacteria (IMP-6 positive). In addition, fluorescence was detected after the ddPCR step. In the comparative example, the ddPCR step was performed using a solution to which no DNA was added. The solution used in the comparative example contains the same components as in Example 5 except that no DNA was added. Also in the comparative example, fluorescence was detected after the end of the ddPCR step.
 実施例5及び比較例では、フッ素オイルを使用して、流路チップ1を回転軸AXまわりに回転速度800rpmで回転させた。サーモシールA~Cのうち、サーモシールBの色が緑色となり、サーモシールD~Fのうち、サーモシールEの色が緑色となった。したがって、第1ヒーター面31aの温度(第1温度)を95℃程度に制御できることを確認できた。また、第2ヒーター面32aの温度(第2温度)を60℃程度に制御できることを確認できた。 In Example 5 and the comparative example, the flow path chip 1 was rotated around the rotation axis AX at a rotation speed of 800 rpm using fluorine oil. Among the thermo seals A to C, the color of the thermo seal B is green, and among the thermo seals D to F, the color of the thermo seal E is green. Therefore, it was confirmed that the temperature (first temperature) of the first heater surface 31a can be controlled to about 95 ° C. Moreover, it has confirmed that the temperature (2nd temperature) of the 2nd heater surface 32a was controllable to about 60 degreeC.
 図28(a)は、実施例5に係る蛍光の検出結果を示す図である。図28(b)は、比較例に係る蛍光の検出結果を示す図である。図28(a)及び図28(b)に示すように、薬剤耐性細菌ゲノムDNAを含む液滴(実施例5)において、DNAを含まない液滴(比較例)と比べて、DNA増幅に伴う強い蛍光を観察(検出)できた。したがって、実施形態において説明した遺伝子増幅システムによってddPCRを行うことが可能なことを確認できた。 FIG. 28 (a) is a diagram showing a fluorescence detection result according to Example 5. FIG. 28B is a diagram showing a fluorescence detection result according to the comparative example. As shown in FIG. 28 (a) and FIG. 28 (b), the droplet containing the drug-resistant bacterial genomic DNA (Example 5) is associated with DNA amplification compared to the droplet not containing DNA (Comparative Example). Strong fluorescence was observed (detected). Therefore, it was confirmed that ddPCR can be performed by the gene amplification system described in the embodiment.
 本発明によれば、より迅速にddPCRを行うことが可能となり、遺伝子の絶対定量を測定するシステムに有用である。 According to the present invention, ddPCR can be performed more rapidly, which is useful for a system for measuring absolute quantification of genes.
1    流路チップ
3    回転駆動機構
11   基板
12   液体導入室
13   導入流路
13a  第1導入流路
13b  第2導入流路
13c  テラス部
13d  蛇行流路
14   液滴供給室
15   蛇行流路
15a  第1傾斜流路
15b  第2傾斜流路
16   収容室
19   テラス構造
30   ヒーターステージ
31   第1ヒーターステージ
31a  第1ヒーター面
32   第2ヒーターステージ
32a  第2ヒーター面
50   駆動装置
71   オイル
91   PCR溶液
91a  液滴
100  遺伝子増幅システム
AX   回転軸
F    浮力
DESCRIPTION OF SYMBOLS 1 Channel chip 3 Rotation drive mechanism 11 Substrate 12 Liquid introduction chamber 13 Introduction channel 13a First introduction channel 13b Second introduction channel 13c Terrace part 13d Meander channel 14 Droplet supply chamber 15 Meander channel 15a First inclination Channel 15b Second inclined channel 16 Storage chamber 19 Terrace structure 30 Heater stage 31 First heater stage 31a First heater surface 32 Second heater stage 32a Second heater surface 50 Driving device 71 Oil 91 PCR solution 91a Droplet 100 Gene Amplification system AX Rotating shaft F Buoyancy

Claims (13)

  1.  一方側及び他方側へ蛇行する蛇行流路を有する流路チップと、
     回転軸を有し、前記回転軸まわりに前記流路チップを回転させて前記蛇行流路内の液滴に浮力を付与することにより、前記液滴を前記蛇行流路に沿って移動させる回転駆動機構と
     を備え、
     前記回転駆動機構は、
     互いに異なる温度に設定される複数のヒーター面を有するヒーターステージと、
     前記回転軸まわりに前記ヒーターステージを回転させる駆動装置と
     を含み、
     前記回転駆動機構は、前記蛇行流路が前記複数のヒーター面に跨って配置されるように、前記流路チップを保持する、遺伝子増幅システム。
    A flow path chip having a meandering flow path meandering to one side and the other side;
    Rotation drive that has a rotation shaft and moves the droplet along the meandering channel by rotating the channel chip around the rotation axis to impart buoyancy to the droplet in the meandering channel With a mechanism and
    The rotational drive mechanism is
    A heater stage having a plurality of heater surfaces set at different temperatures;
    A drive device for rotating the heater stage around the rotation axis,
    The rotation drive mechanism is a gene amplification system that holds the flow path chip so that the meandering flow path is disposed across the plurality of heater surfaces.
  2.  前記複数のヒーター面は、第1温度に設定される第1ヒーター面と、前記第1温度とは異なる第2温度に設定される第2ヒーター面とを有し、
     前記回転駆動機構は、前記蛇行流路の前記一方側の端部が前記第1ヒーター面に対向するとともに、前記蛇行流路の前記他方側の端部が前記第2ヒーター面に対向するように、前記流路チップを保持する、請求項1に記載の遺伝子増幅システム。
    The plurality of heater surfaces include a first heater surface set to a first temperature and a second heater surface set to a second temperature different from the first temperature,
    The rotational drive mechanism is configured such that the one end of the meandering channel faces the first heater surface and the other end of the meandering channel faces the second heater surface. The gene amplification system according to claim 1, wherein the flow path chip is held.
  3.  前記蛇行流路は、
     前記一方側へ延びる第1傾斜流路と、
     前記他方側へ延びる第2傾斜流路と
     を含み、
     前記第1傾斜流路及び前記第2傾斜流路は、前記回転軸に直交する径方向に対して傾斜する、請求項1又は請求項2に記載の遺伝子増幅システム。
    The meandering channel is
    A first inclined channel extending to the one side;
    A second inclined channel extending to the other side,
    The gene amplification system according to claim 1 or 2, wherein the first inclined channel and the second inclined channel are inclined with respect to a radial direction orthogonal to the rotation axis.
  4.  前記蛇行流路は、複数の前記第1傾斜流路と、複数の前記第2傾斜流路とを含み、
     前記第1傾斜流路と前記第2傾斜流路とは、前記径方向に沿って交互に配置される、請求項3に記載の遺伝子増幅システム。
    The meandering channel includes a plurality of the first inclined channels and a plurality of the second inclined channels,
    The gene amplification system according to claim 3, wherein the first inclined flow path and the second inclined flow path are alternately arranged along the radial direction.
  5.  前記流路チップは、前記蛇行流路の始端に前記液滴を供給する液滴供給室を更に有し、
     前記液滴供給室は、前記蛇行流路の始端に向かって幅が狭くなる形状を有する、請求項1~4のいずれか1項に記載の遺伝子増幅システム。
    The channel chip further includes a droplet supply chamber for supplying the droplet to the start end of the meandering channel,
    The gene amplification system according to any one of claims 1 to 4, wherein the droplet supply chamber has a shape whose width becomes narrower toward a start end of the meandering flow path.
  6.  前記液滴供給室は三角形状を有し、
     前記液滴供給室の三角形状の頂部が、前記蛇行流路の始端に接続する、請求項5に記載の遺伝子増幅システム。
    The droplet supply chamber has a triangular shape;
    The gene amplification system according to claim 5, wherein a triangular top of the droplet supply chamber is connected to a start end of the meandering flow path.
  7.  前記流路チップは、
     液体が導入される液体導入室と、
     前記液体導入室と前記蛇行流路とに連通する導入流路と
     を更に有し、
     前記導入流路はその中間部に蛇行流路を含む、請求項1~請求項6のいずれか1項に記載の遺伝子増幅システム。
    The channel chip is
    A liquid introduction chamber into which liquid is introduced;
    An introduction flow path communicating with the liquid introduction chamber and the meandering flow path;
    The gene amplification system according to any one of claims 1 to 6, wherein the introduction flow path includes a meandering flow path at an intermediate portion thereof.
  8.  流路チップであって、
     一方側及び他方側へ蛇行する蛇行流路を備え、
     回転軸まわりに前記流路チップを回転させた場合に、前記蛇行流路内の液滴に浮力が付与されて、前記液滴が前記蛇行流路に沿って移動する、流路チップ。
    A channel chip,
    Comprising a meandering flow path meandering to one side and the other side;
    A flow channel chip in which, when the flow channel chip is rotated around a rotation axis, buoyancy is imparted to the droplets in the meandering channel, and the droplets move along the serpentine channel.
  9.  流路チップを回転軸まわりに回転させる回転駆動機構であって、
     前記流路チップは、一方側及び他方側へ蛇行する蛇行流路を有し、
     前記回転駆動機構は、
     互いに異なる温度に設定される複数のヒーター面を有するヒーターステージと、
     前記回転軸まわりに前記ヒーターステージを回転させる駆動装置と
     を備え、
     前記回転駆動機構は、前記蛇行流路が前記複数のヒーター面に跨って配置されるように、前記流路チップを保持する、回転駆動機構。
    A rotation drive mechanism for rotating the flow path chip around the rotation axis,
    The flow path chip has a meandering flow path that meanders to one side and the other side,
    The rotational drive mechanism is
    A heater stage having a plurality of heater surfaces set at different temperatures;
    A drive device for rotating the heater stage around the rotation axis,
    The rotation drive mechanism is a rotation drive mechanism that holds the flow path chip so that the meandering flow path is disposed across the plurality of heater surfaces.
  10.  前記複数のヒーター面は、第1温度に設定される第1ヒーター面と、前記第1温度とは異なる第2温度に設定される第2ヒーター面とを有し、
     前記回転駆動機構は、前記蛇行流路の前記一方側の端部が前記第1ヒーター面に対向するとともに、前記蛇行流路の前記他方側の端部が前記第2ヒーター面に対向するように、前記流路チップを保持する、請求項9に記載の回転駆動機構。
    The plurality of heater surfaces include a first heater surface set to a first temperature and a second heater surface set to a second temperature different from the first temperature,
    The rotational drive mechanism is configured such that the one end of the meandering channel faces the first heater surface and the other end of the meandering channel faces the second heater surface. The rotation drive mechanism according to claim 9, wherein the flow path chip is held.
  11.  前記第1ヒーター面は、前記回転軸に直交する径方向に沿って延びており、
     前記第2ヒーター面は、前記第1ヒーター面に並んで配置されて、前記径方向に沿って延びている、請求項10に記載の回転駆動機構。
    The first heater surface extends along a radial direction orthogonal to the rotation axis,
    The rotational drive mechanism according to claim 10, wherein the second heater surface is arranged side by side with the first heater surface and extends along the radial direction.
  12.  流路チップを用いて遺伝子を増幅する遺伝子増幅方法であって、
     前記流路チップは、一方側及び他方側に蛇行する蛇行流路と、前記蛇行流路に連通する液体導入室とを有し、
     前記遺伝子増幅方法は、
     前記蛇行流路が複数のヒーター面に跨って配置されるように、前記流路チップをヒーターステージに対して保持する工程と、
     前記複数のヒーター面を互いに異なる温度に設定する工程と、
     前記液体導入室に、ポリメラーゼ連鎖反応溶液を導入する工程と、
     回転軸まわりに前記ヒーターステージを回転させて、前記蛇行流路内の液滴に浮力を付与することにより、前記液滴を前記蛇行流路に沿って移動させる工程と
     を包含する遺伝子増幅方法。
    A gene amplification method for amplifying a gene using a channel chip,
    The flow channel chip has a meandering channel meandering on one side and the other side, and a liquid introduction chamber communicating with the meandering channel,
    The gene amplification method includes:
    Holding the flow path chip with respect to the heater stage such that the meandering flow path is disposed across a plurality of heater surfaces;
    Setting the plurality of heater surfaces to different temperatures;
    Introducing a polymerase chain reaction solution into the liquid introduction chamber;
    A gene amplification method comprising: rotating the heater stage around a rotation axis to impart buoyancy to the droplet in the meandering channel, thereby moving the droplet along the meandering channel.
  13.  前記流路チップをヒーターステージに対して保持する工程において、前記蛇行流路の前記一方側の端部が第1ヒーター面に対向するとともに、前記蛇行流路の前記他方側の端部が第2ヒーター面に対向するように、前記流路チップをヒーターステージに対して保持し、
     前記複数のヒーター面を互いに異なる温度に設定する工程において、前記1ヒーター面を第1温度に設定し、かつ前記第2ヒーター面を、前記第1温度とは異なる第2温度に設定する、請求項12に記載の遺伝子増幅方法。
    In the step of holding the flow channel chip with respect to the heater stage, the one end of the meandering channel faces the first heater surface, and the other end of the meandering channel is the second. Holding the flow path chip against the heater stage so as to face the heater surface,
    In the step of setting the plurality of heater surfaces to different temperatures, the first heater surface is set to a first temperature, and the second heater surface is set to a second temperature different from the first temperature. Item 13. The gene amplification method according to Item 12.
PCT/JP2018/003953 2017-02-06 2018-02-06 Gene amplification system, flow path chip, rotary driving mechanism, and gene amplification method WO2018143469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566166A JPWO2018143469A1 (en) 2017-02-06 2018-02-06 Gene amplification system, flow channel chip, rotation drive mechanism, and gene amplification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-019436 2017-02-06
JP2017019436 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018143469A1 true WO2018143469A1 (en) 2018-08-09

Family

ID=63040773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003953 WO2018143469A1 (en) 2017-02-06 2018-02-06 Gene amplification system, flow path chip, rotary driving mechanism, and gene amplification method

Country Status (2)

Country Link
JP (1) JPWO2018143469A1 (en)
WO (1) WO2018143469A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020174661A (en) * 2019-04-18 2020-10-29 奎克生技光電股▲フン▼有限公司 Thermal cycler device for improving heat transfer uniformity and thermal history consistency
CN113755316A (en) * 2021-10-09 2021-12-07 苏州国科均豪生物科技有限公司 Switchable incubation module and PCR amplification detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253466A (en) * 2004-03-12 2005-09-22 Samsung Electronics Co Ltd Nucleic acid amplification method and apparatus
JP2005295877A (en) * 2004-04-09 2005-10-27 Taiyo Yuden Co Ltd Method for analyzing nucleic acid, analyzer and disk for analysis
WO2015037255A1 (en) * 2013-09-11 2015-03-19 国立大学法人大阪大学 Thermal convection generating chip, thermal convection generating device, and thermal convection generating method
WO2016158831A1 (en) * 2015-03-30 2016-10-06 コニカミノルタ株式会社 Heat-convection-generating device and heat-convection-generating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253466A (en) * 2004-03-12 2005-09-22 Samsung Electronics Co Ltd Nucleic acid amplification method and apparatus
JP2005295877A (en) * 2004-04-09 2005-10-27 Taiyo Yuden Co Ltd Method for analyzing nucleic acid, analyzer and disk for analysis
WO2015037255A1 (en) * 2013-09-11 2015-03-19 国立大学法人大阪大学 Thermal convection generating chip, thermal convection generating device, and thermal convection generating method
WO2016158831A1 (en) * 2015-03-30 2016-10-06 コニカミノルタ株式会社 Heat-convection-generating device and heat-convection-generating system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, Z. T. ET AL.: "Centrifugal micro-channel array droplet generation for highly parallel digital PCR", LAB. CHIP, vol. 17, 17 January 2017 (2017-01-17), pages 235 - 240, XP055529776, ISSN: 1473-0197 *
SCHULER, F. ET AL.: "Digital droplet LAMP as a microfluidic app on standard laboratory devices", ANALYTICAL METHODS, vol. 8, 2016, pages 2750 - 2755, XP055529782, ISSN: 1759-9679 *
SCHULER, F. ET AL.: "Digital droplet PCR on disk .", LAB. CHIP, vol. 16, 2016, pages 208 - 216, XP055529753, ISSN: 1473-0189 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020174661A (en) * 2019-04-18 2020-10-29 奎克生技光電股▲フン▼有限公司 Thermal cycler device for improving heat transfer uniformity and thermal history consistency
CN113755316A (en) * 2021-10-09 2021-12-07 苏州国科均豪生物科技有限公司 Switchable incubation module and PCR amplification detector

Also Published As

Publication number Publication date
JPWO2018143469A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6427753B2 (en) Thermal convection generating chip, thermal convection generating device, and thermal convection generating method
US20240076737A1 (en) Honeycomb tube
US20220040701A1 (en) Microfluidic analysis system
AU2016200907B2 (en) Three-stage thermal convection apparatus and uses thereof
CN106660042B (en) Microfluidic device
AU2016206392B2 (en) Two-stage thermal convection apparatus and uses thereof
US9283563B2 (en) Systems and methods for real-time PCR
CA3141275A1 (en) Systems for sample analysis
JP5967611B2 (en) Thermal convection generating chip and thermal convection generating device
CA3210271A1 (en) Droplet-based assay system
US9540686B2 (en) Systems and methods for the amplification of DNA
WO2018143469A1 (en) Gene amplification system, flow path chip, rotary driving mechanism, and gene amplification method
Lien et al. A microfluidic-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases
KR20240033032A (en) Highly multiplexed reaction vessels, reagent droppers, and related methods
JP5178149B2 (en) Real-time PCR method and apparatus for target nucleic acid
JP2022504857A (en) Methods and systems for local heating by illumination of patterned thin films
Sayers et al. A real-time continuous flow polymerase chain reactor for DNA expression quantification
JP2009178069A (en) Thermal cycle application device
IE20070073A1 (en) A microfluidic analysis system

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748073

Country of ref document: EP

Kind code of ref document: A1