[go: up one dir, main page]

WO2017038363A1 - エネルギーマネジメントシステム - Google Patents

エネルギーマネジメントシステム Download PDF

Info

Publication number
WO2017038363A1
WO2017038363A1 PCT/JP2016/072888 JP2016072888W WO2017038363A1 WO 2017038363 A1 WO2017038363 A1 WO 2017038363A1 JP 2016072888 W JP2016072888 W JP 2016072888W WO 2017038363 A1 WO2017038363 A1 WO 2017038363A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
chopper
bidirectional
llc resonant
Prior art date
Application number
PCT/JP2016/072888
Other languages
English (en)
French (fr)
Inventor
石倉祐樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017537683A priority Critical patent/JP6327403B2/ja
Publication of WO2017038363A1 publication Critical patent/WO2017038363A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an energy management system that uses electric power generated in a house or a factory.
  • An energy management system for example, a photovoltaic power generation system, charges a secondary battery with generated power from a power generation device or power from a power system (commercial power supply), and generates generated power or secondary battery discharge power in a house.
  • a bidirectional DC-DC converter is generally used to convert a DC voltage charged or discharged from the secondary battery into a predetermined constant voltage.
  • Patent Document 1 discloses a DC-DC converter that converts voltage with high efficiency at a predetermined ratio while insulating.
  • the DC-DC converter described in Patent Document 1 has a configuration in which a first converter of a bidirectional chopper and a second converter of an insulated bidirectional DC-DC converter are connected. And when charging a secondary battery, a DC voltage is insulated with a 2nd converter, a voltage is adjusted with a 1st converter, and a secondary battery is charged. When discharging the secondary battery, the voltage is converted into a predetermined voltage by the first converter and insulated by the second converter.
  • a bidirectional DC-DC converter in an energy management system is connected to a DC voltage bus (HVDC bus).
  • a power generation device, an inverter, and the like are connected to the HVDC bus.
  • the bi-directional DC-DC converter in order to stabilize the output from the inverter, the bi-directional DC-DC converter is controlled to charge and discharge the secondary battery, so that the voltage of the HVDC bus always maintains a predetermined voltage value. You are in control.
  • the second converter (on the side opposite to the connection with the first converter) is connected to the HVDC bus. For this reason, when the voltage of the HVDC bus decreases and the secondary battery is discharged and applied to the HVDC bus, the second converter needs to be driven so that the output voltage approaches the voltage of the HVDC bus. Since the second converter is a current resonance type converter, the voltage conversion ratio is determined by the turns ratio of the transformer under the resonance condition. Therefore, when adjusting the output voltage, the second converter needs to perform PFM control. In this case, the second converter is driven out of the resonance condition, and high-efficiency voltage conversion obtained by driving at the optimum driving frequency cannot always be realized.
  • an object of the present invention is to provide an energy management system capable of simultaneously realizing highly efficient voltage conversion and insulation.
  • the energy management system includes a DC voltage bus, a power generator connected to the DC voltage bus and outputting generated power to the DC voltage bus, and a bidirectional DC- connected to the DC voltage bus.
  • DC converter unit and bi-directional DC-DC converter unit connected to convert input AC voltage into DC voltage, output to DC-DC converter unit, and bi-directional DC-DC converter
  • An inverter that converts a DC voltage input from the unit into an AC voltage, and the bidirectional DC-DC converter unit includes a non-insulated chopper converter having a secondary battery connection unit, the chopper converter, and the inverter.
  • a connection point between the chopper converter and the resonant converter is a front end.
  • the chopper converter transforms a DC voltage input from the connection point and outputs it to the secondary battery connection unit, and also outputs a DC voltage input from the secondary battery connection unit.
  • the resonant converter transforms the DC voltage input from the connection point and outputs to the inverter, and transforms the DC voltage input from the inverter to the connection It outputs to the point.
  • the voltage can be transformed to a predetermined value by the chopper converter, and the inverter side and the DC voltage bus side can be insulated by the resonance converter.
  • the input voltage to the resonant converter can be kept constant even if the power output from the power generator varies. It can be driven with high efficiency. As a result, the energy management system can realize high-efficiency voltage conversion and insulation at the same time.
  • Each of the chopper converter and the resonant converter includes a switching element
  • the energy management system further includes a control unit that performs switching control of the chopper converter and the resonant converter, and the control unit includes both
  • a configuration may be employed in which the chopper converter is soft-started when starting the DC-DC converter unit.
  • the input voltage to the resonant converter (the output voltage of the chopper converter) is lower than the steady state when starting the resonant converter. Can be suppressed. For this reason, it is not necessary to configure a resonant converter with an element having a high breakdown voltage. In addition, the resonant converter does not need to be driven in a region where the drive frequency is greatly deviated from the resonance frequency for the purpose of reducing the voltage conversion ratio in order to suppress the inrush current. High-efficiency driving is possible immediately after startup.
  • the control unit may perform switching control of the resonant converter at a fixed frequency after the bidirectional DC-DC converter unit is activated.
  • This configuration eliminates the need for PFM control of the resonant converter and allows constant control at a highly efficient frequency.
  • the control unit may activate the chopper converter and the resonant converter at the same time.
  • FIG. 1 is a diagram illustrating a configuration of an energy management system according to an embodiment.
  • FIG. 2 is a circuit diagram of the power generator and the bidirectional DC-DC converter.
  • FIG. 3 is a circuit diagram of the inverter.
  • FIG. 4 is a diagram illustrating a time chart of gate signals applied to the chopper converter and the LLC resonant converter.
  • FIG. 5 shows the frequency characteristics of the LLC resonant converter.
  • FIG. 1 is a diagram showing a configuration of an energy management system 1 according to the present embodiment.
  • the energy management system 1 includes an HVDC bus 10, a power generator 20, a bidirectional DC-DC converter 30, and an inverter 40.
  • a power generator 20 and a bidirectional DC-DC converter 30 are connected to the HVDC bus 10.
  • the HVDC bus 10 corresponds to a “DC voltage bus” according to the present invention.
  • the bidirectional DC-DC converter 30 corresponds to a “bidirectional DC-DC converter unit” according to the present invention.
  • the power generation device 20 includes a photovoltaic panel 21 and a PV converter 22.
  • the PV converter 22 outputs the electric power generated by the photovoltaic panel 21 to the HVDC bus 10.
  • the power generation device 20 may be a wind power generation device or a gas power generation device.
  • the bidirectional DC-DC converter 30 includes a chopper converter 31, an LLC resonance converter 32, and a control unit 33. As will be described in detail later, the chopper converter 31 and the LLC resonant converter 32 each have switching elements, and the control unit 33 performs switching control of these switching elements.
  • the chopper converter 31 and the LLC resonant converter 32 are connected in series.
  • the HVDC bus 10 is connected to a connection point between the chopper converter 31 and the LLC resonant converter 32. That is, the chopper converter 31 and the LLC resonant converter 32 are each connected to the HVDC bus 10. Further, the secondary battery B ⁇ b> 1 is connected to the chopper converter 31.
  • An inverter 40 is connected to the LLC resonant converter 32.
  • the chopper converter 31 is a non-insulated bidirectional chopper circuit.
  • the chopper converter 31 transforms (steps up or steps down) the DC voltage input from one side and outputs it from the other side. That is, the chopper converter 31 transforms the voltage input from the secondary battery B ⁇ b> 1 and outputs it to the HVDC bus 10. Thereby, the secondary battery B1 is discharged. Further, the chopper converter 31 transforms the voltage input from the HVDC bus 10 and outputs it to the secondary battery B1. Thereby, the secondary battery B1 is charged.
  • the LLC resonant converter 32 is an insulating bidirectional DC-DC converter.
  • the LLC resonant converter 32 insulates and transforms the DC voltage input from the HVDC bus 10 at a predetermined ratio, and outputs it to the inverter 40.
  • the inverter 40 converts the alternating voltage input from the electric power grid
  • the direct current voltage converted by the inverter 40 is input to the LLC resonant converter 32.
  • the LLC resonant converter 32 insulates and transforms the input DC voltage at a predetermined ratio and outputs it to the HVDC bus 10.
  • the inverter 40 is connected to the power system 101 and the distribution board 102 through the switches S1 and S2.
  • An AC output terminal (AC outlet or the like) (not shown) is connected to the distribution board 102.
  • a load such as a microwave oven, a washing machine, and an air conditioner is connected to the AC output terminal.
  • the inverter 40 converts the DC voltage input from the bidirectional DC-DC converter 30 into an AC voltage and outputs the AC voltage to the power system 101 side. Further, the inverter 40 converts an AC voltage input from the power system 101 side into a DC voltage and outputs the DC voltage to the bidirectional DC-DC converter 30.
  • the energy management system 1 controls the power generator 20 and the bidirectional DC-DC converter 30 so that the voltage of the HVDC bus 10 maintains a predetermined value (for example, 380 V). By stabilizing the voltage of the HVDC bus 10, constant power can be stably output from the inverter 40 to the power system 101 or the distribution board 102 side.
  • a predetermined value for example, 380 V.
  • FIG. 2 is a circuit diagram of the power generator 20 and the bidirectional DC-DC converter 30.
  • FIG. 3 is a circuit diagram of the inverter 40.
  • PV converter 22 as shown in FIG. 2, includes an input terminal 22I 1, 22I 2, and an output terminal 22O 1, 22O 2.
  • the input terminals 22I 1 and 22I 2 are connected to the photovoltaic panel 21.
  • Output 22O 1, 22O 2 is connected to the HVDC bus 10.
  • An input terminal 22I 1, 22I 2, between the output terminal 22O 1, 22O 2, inductor 22L, a diode 22D, a chopper circuit comprising a switching element 22S and the capacitor 22C is connected.
  • the PV converter 22 performs switching control of the switching element 22S so that the output voltages from the output terminals 22O 1 and 22O 2 approach the target value.
  • the output voltage from the output terminals 22O 1 and 22O 2 is also the voltage of the HVDC bus 10. Therefore, this control maintains the voltage of the HVDC bus 10 at a predetermined value.
  • the inverter 40 includes input / output terminals 40IO 1 and 40IO 2 and AC connection terminals U, V, and W.
  • the input / output terminals 40IO 1 and 40IO 2 are connected to the LLC resonant converter 32.
  • the AC connection ends U, V, and W are connected to the power system 101 and the distribution board 102 via the switches S1 and S2.
  • Switch circuits by switching elements 40S 1 , 40S 2 , 40S 3 , 40S 4 , 40S 5 , 40S 6 are connected to the input / output terminals 40IO 1 , 40IO 2 .
  • the connection point of the switching elements 40S 1 and 40S 2 is connected to the AC connection end U via the inductor Lu.
  • the connection point of the switching elements 40S 3 and 40S 4 is connected to the AC connection terminal V via the inductor Lv.
  • the connection point of the switching elements 40S 5 and 40S 6 is connected to the AC connection end W via the inductor Lw.
  • Capacitors Cu, Cv, and Cw are connected between the AC connection terminals U, V, and W and the neutral point, respectively.
  • the chopper converter 31 of the bidirectional DC-DC converter 30 includes input / output terminals 31IO 1 , 31IO 2 , 31IO 3 and 31IO 4 .
  • a secondary battery B1 is connected to the input / output terminals 31IO 1 and 31IO 2 .
  • the input / output terminals 31IO 1 and 31IO 2 correspond to the “secondary battery connection unit” according to the present invention.
  • the input / output terminals 31IO 3 and 31IO 4 are connected to the LLC resonant converter 32 and the HVDC bus 10.
  • a non-insulated bidirectional chopper circuit is connected between the input / output terminals 31IO 1 and 31IO 2 and the input / output terminals 31IO 3 and 31IO 4 .
  • This bidirectional chopper circuit includes an inductor 31L, switching elements 31S 1 and 31S 2 and a capacitor 31C.
  • the switching elements 31S 1 and 31S 2 are, for example, n-type MOS-FETs, and their gates are connected to the control unit 33. And a gate signal is applied by the control part 33, and it turns on and off.
  • the LLC resonant converter 32 of the bidirectional DC-DC converter 30 includes input / output terminals 32IO 1 , 32IO 2 , 32IO 3 , 32IO 4 .
  • the input / output terminals 32IO 1 and 32IO 2 are connected to the input / output terminals 31IO 3 and 31IO 4 of the chopper converter 31 and the HVDC bus 10.
  • the input / output terminals 32IO 3 and 32IO 4 are connected to the input / output terminals 40IO 1 and 40IO 2 of the inverter 40.
  • a first switch circuit is connected to the input / output terminals 32IO 1 and 32IO 2 .
  • the first switch circuit includes switching elements 32S 1 , 32S 2 , 32S 3 , 32S 4 .
  • the input and output ends 32IO 3, 32IO 4 is a smoothing capacitor 32C 2 and the second switch circuit is connected.
  • the second switch circuit includes switching elements 32S 5 , 32S 6 , 32S 7 , 32S 8 .
  • the switching elements 32S 1 to 32S 8 are, for example, n-type MOS-FETs, and their gates are connected to the control unit 33. And a gate signal is applied by the control part 33, and it turns on and off.
  • the resonance inductor 32L, a resonance capacitor 32C 1 and the transformer T1 is connected.
  • the transformer T1 is shown as an ideal transformer.
  • Resonant inductor 32L and a resonance capacitor 32C 1 constitute the exciting inductance Lm and LLC resonant circuit of the transformer T1.
  • high voltage conversion efficiency can be obtained by bringing the switching frequency of the first switch circuit or the second switch circuit close to the resonance frequency of the LLC resonant circuit. For example, when a DC voltage input from the input / output terminals 32IO 1 and 32IO 2 is output from the input / output terminals 32IO 3 and 32IO 4 , the switching elements 32S 1 and 32S 4 and the switching elements 32S 2 and 32S 3 are set to 50%. High voltage conversion efficiency can be obtained by turning on and off with a duty and setting the switching frequency to the resonance frequency. The conversion ratio at the time of voltage conversion is determined by the turn ratio between the primary winding and the secondary winding of the transformer T1.
  • the energy management system 1 has a configuration in which the HVDC bus 10 is connected to a connection point between the chopper converter 31 and the LLC resonant converter 32 included in the bidirectional DC-DC converter 30. With this configuration, when the charging voltage of the secondary battery B1 is output from the inverter 40, the energy management system 1 can perform voltage conversion with high efficiency while ensuring insulation between the secondary battery B1 and the inverter 40. This will be specifically described below.
  • the chopper converter 31 transforms the charging voltage of the secondary battery B1 to a predetermined voltage. As described above, the chopper converter 31 is connected to the HVDC bus 10. The voltage of the HVDC bus 10 needs to be maintained at a predetermined value. Therefore, the chopper converter 31 performs switching control of the switching elements 31S 1 and 31S 2 so that the output voltage approaches the target value.
  • the LLC resonant converter 32 transforms the voltage transformed by the chopper converter 31 at a predetermined ratio while ensuring insulation. At this time, the LLC resonant converter 32 performs switching control of the switching elements 32S 1 to 32S 4 at the most efficient switching frequency, that is, the resonant frequency of the LLC resonant circuit.
  • the LLC resonant converter 32 is connected to the HVDC bus 10. In this case, it is necessary to bring the output voltage of the LLC resonant converter 32 close to the target value.
  • the transformation ratio in the LLC resonant converter 32 is determined by the turn ratio of the transformer T1. For this reason, when the output voltage of the LLC resonant converter 32 is brought close to the target value, the LLC resonant converter 32 needs to adjust the output voltage by PFM control. In this case, the LLC resonant converter 32 cannot always be driven with high efficiency.
  • the HVDC bus 10 is configured to be connected to a connection point between the chopper converter 31 and the LLC resonant converter 32.
  • the chopper converter 31 only has to adjust the output voltage, and the LLC resonant converter 32 does not need to adjust the output voltage.
  • the LLC resonant converter 32 can be driven with high efficiency by performing switching control of the switching elements 32S 1 to 32S 4 using the resonant frequency as a switching frequency.
  • the LLC resonant converter 32 can be driven with high efficiency even when the energy management system 1 is activated.
  • FIG. 4 is a diagram showing a time chart of the gate signal applied to the chopper converter 31 and the LLC resonant converter 32.
  • (1) in FIG. 4 is a time chart of the gate signal applied to the switching element 31S 1 of the chopper converter 31.
  • (2) of FIG. 4 is a time chart of the gate signal applied to the switching elements 32S 1 and 32S 4 (or 32S 2 and 32S 3 ) of the LLC resonant converter 32.
  • 4 is a voltage V1 of the HVDC bus 10
  • (4) is an output voltage V2 applied to the inverter 40 from the bidirectional DC-DC converter 30 (output voltages of the input / output terminals 32IO 3 and 32IO 4 ). .
  • the control unit 33 activates the chopper converter 31 and the LLC resonant converter 32 simultaneously. Immediately after startup, the control unit 33 soft-starts the chopper converter 31. As a result, as shown in FIG. 4 (3), the output voltage from the chopper converter 31, that is, the voltage V1 of the HVDC bus 10 rises gently. As a result, the inrush current can be prevented from flowing into the LLC resonant converter 32.
  • the control unit 33 can drive the LLC resonant converter 32 with high efficiency immediately after startup. That is, the control unit 33 sets the resonance frequency to the switching frequency, except for the minimum dead time for preventing the through current from flowing through the switching elements 32S 1 and 32S 4 and the switching elements 32S 2 and 32S 3. ON / OFF at about 50% duty.
  • the control unit 33 soft-starts the chopper converter 31, and when the output voltage of the chopper converter 31 reaches the target value, the control unit 33 ends the soft start and performs PWM control so that the output voltage maintains the target value. Further, the controller 33 continues to drive the LLC resonant converter 32 at the same frequency even after the soft start of the chopper converter 31 is completed.
  • the LLC resonant converter 32 can always be driven with high efficiency immediately after startup. Further, by suppressing the inrush current to the LLC resonance converter 32, each element of the LLC resonance converter 32 does not need to be an element having a high withstand voltage.
  • the rush current to the LLC resonant converter 32 is suppressed by soft-starting the chopper converter 31, but the rush current to the LLC resonant converter 32 by simultaneously starting the chopper converter 31 and the LLC resonant converter 32. Can be further suppressed.
  • the chopper converter 31 is driven first, the LLC resonant converter 32 is driven while the capacitor 31C of the chopper converter 31 is charged. In this case, an inrush current may flow into the LLC resonant converter 32 due to the charging voltage of the capacitor 31C. For this reason, the inrush current can be suppressed by simultaneously starting the chopper converter 31 and the LLC resonant converter 32.
  • the chopper converter 31 and the LLC resonant converter 32 are activated simultaneously. However, after the chopper converter 31 is activated first, the LLC resonant converter 32 is activated during the soft start period of the chopper converter 31. You may do it. Even in this case, since the capacitor 31C is not fully charged, the inrush current can be suppressed.
  • control unit 33 continues to drive the LLC resonant converter 32 at the same frequency both at the start and after the soft start of the chopper converter 31.
  • the LLC resonant converter 32 does not necessarily have to be continuously driven at a fixed frequency.
  • FIG. 5 shows the frequency characteristics of the LLC resonant converter.
  • the horizontal axis is “drive frequency / resonance frequency”, and the vertical axis is “voltage gain (voltage gain)”. Further, in FIG. 5, four types of loads from light loads to heavy loads are graphed as separate curves.
  • Voltage gain means the ratio of the input voltage to the output voltage (output voltage / input voltage).
  • K in FIG. 5 means the minimum value of “voltage gain” at the time of steady operation of the LLC resonant converter (during normal operation after the end of soft start). That is, in this modification, the LLC resonant converter is driven in a predetermined frequency range including the frequency with the highest efficiency during normal operation, and “K” is “voltage gain” in the predetermined frequency range. "Means the minimum value.
  • the LLC resonant converter in order to further suppress the inrush current in the LLC resonant converter, the LLC resonant converter is started to be driven from a frequency at which the voltage gain K is reached during the soft start period of the chopper converter.
  • the drive since the drive is started from the frequency at which the voltage gain K is obtained instead of the frequency at which the efficiency is highest, the inrush current is suppressed while the LLC resonant converter is started to be driven at a relatively high efficiency frequency. can do.
  • the control unit may perform switching control of the LLC resonant converter at a frequency (in the vicinity of the resonant frequency) with higher efficiency.
  • the LLC resonant converter according to the present modification is driven at a frequency that provides a voltage gain of “K” or more at both the soft start period and the normal operation, so that a relatively high-efficiency frequency is achieved.
  • the inrush current is also suppressed while maintaining the drive.
  • B1 Secondary batteries Cu, Cv, Cw ... Capacitor Lm ... Excitation inductances Lu, Lv, Lw ... Inductors S1, S2 ... Switch T1 ... Transformer U, V, W ... AC connection end 1 ... Energy management system 10 ... HVDC bus 20 ... power generator 21 ... photovoltaic panels 22 ... PV converter 22C ... capacitor 22D ... diodes 22I 1, 22I 2 ... inputs 22L ... inductor 22O 1, 22O 2 ... output terminal 22S ... switching device 30 ... DC-DC converter 31 ... chopper converter 31C ... capacitor 31IO 1, 31IO 2, 31IO 3 , 31IO 4 ... output terminal 31L ... inductor 31S 1, 31S 2 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

エネルギーマネジメントシステム(1)は、HVDCバス(10)に接続された発電装置(20)と、HVDCバス(10)に接続された双方向DC-DCコンバータ(30)と、双方向DC-DCコンバータ(30)に接続されたインバータ(40)とを備える。双方向DC-DCコンバータ(30)は、非絶縁型のチョッパコンバータ(31)と、絶縁型のLLC共振コンバータ(32)とが直列に接続されて構成され、その接続点にはHVDCバス(10)が接続される。チョッパコンバータ(31)は、二次電池(B1)の充電電圧を所定値に変圧してHVDCバス(10)へ出力する。LLC共振コンバータ(32)は、HVDCバス(10)から入力される直流電圧を変圧してインバータ(40)へ出力する。これにより、高効率な電圧変換と、絶縁とを同時に実現できるエネルギーマネジメントシステムを提供する。

Description

エネルギーマネジメントシステム
 本発明は、住宅又は工場等において発電された電力を使用するエネルギーマネジメントシステムに関する。
 エネルギーマネジメントシステム、例えば太陽光発電システムは、発電装置からの発電電力、又は電力系統(商用電源)からの電力で二次電池を充電し、また、発電電力又は二次電池の放電電力を住宅内の分電盤へ供給する。この太陽光発電システムでは、二次電池に対して充電又は二次電池から放電される直流電圧を所定の定電圧に変換するために、双方向DC-DCコンバータが一般的に用いられる。
 特許文献1には、絶縁しつつ、所定の比率で電圧を高効率に変換するDC-DCコンバータが開示されている。特許文献1に記載のDC-DCコンバータは、双方向チョッパの第1コンバータと、絶縁型双方向DC-DCコンバータの第2コンバータとが接続された構成である。そして、二次電池を充電する場合は、直流電圧を第2コンバータで絶縁し、第1コンバータで電圧を調整して二次電池を充電する。二次電池を放電する場合は、第1コンバータで電圧を所定の電圧に変換し、第2コンバータで絶縁する。
特開2015-12645号公報
 一般的に、エネルギーマネジメントシステムにおける双方向DC-DCコンバータは、直流電圧バス(HVDCバス)に接続されている。このHVDCバスには、発電装置及びインバータ等が接続されている。そして、エネルギーマネジメントシステムでは、インバータからの出力を安定させるために、双方向DC-DCコンバータを制御して二次電池を充放電させるなどして、HVDCバスの電圧が常に所定の電圧値を維持するように制御している。
 特許文献1に記載のDC-DCコンバータを用いた場合、第2コンバータ(第1のコンバータとの接続部との反対側)がHVDCバスに接続される構成となる。このため、HVDCバスの電圧が低下し、二次電池を放電してHVDCバスへ電圧を印加する場合、第2コンバータは、出力電圧がHVDCバスの電圧に近づくよう駆動する必要がある。第2コンバータは、電流共振型コンバータであるため、共振条件下においてはトランスの巻数比によって電圧変換比率が決まる。このため、出力電圧を調整する際には、第2コンバータはPFM制御を行う必要がある。この場合、第2コンバータは、共振条件を外れて駆動することとなり、最適な駆動周波数で駆動することで得られる高効率電圧変換を常時実現できない。
 そこで、本発明の目的は、高効率な電圧変換と、絶縁とを同時に実現できるエネルギーマネジメントシステムを提供することにある。
 本発明に係るエネルギーマネジメントシステムは、直流電圧バスと、前記直流電圧バスに接続され、発電された電力を前記直流電圧バスへ出力する発電装置と、前記直流電圧バスに接続された双方向DC-DCコンバータ部と、前記双方向DC-DCコンバータ部に接続され、入力される交流電圧を直流電圧に変換し、前記双方向DC-DCコンバータ部へ出力し、また、前記双方向DC-DCコンバータ部から入力される直流電圧を交流電圧に変換するインバータと、を備え、前記双方向DC-DCコンバータ部は、二次電池接続部を有する非絶縁型のチョッパコンバータと、前記チョッパコンバータと前記インバータとに接続された絶縁型の共振コンバータと、を含み、前記チョッパコンバータと前記共振コンバータとの接続点は、前記直流電圧バスに接続され、前記チョッパコンバータは、前記接続点から入力される直流電圧を変圧して前記二次電池接続部へ出力し、また、前記二次電池接続部から入力される直流電圧を変圧して前記接続点へ出力し、前記共振コンバータは、前記接続点から入力される直流電圧を変圧して前記インバータへ出力し、また、前記インバータから入力される直流電圧を変圧して前記接続点へ出力することを特徴とする。
 この構成では、チョッパコンバータで電圧を所定値に変圧でき、共振コンバータでインバータ側と直流電圧バス側とを絶縁できる。また、チョッパコンバータで所定値に変圧することで、発電装置から出力される電力に変動があっても、共振コンバータへの入力電圧を一定にできるため、共振コンバータは、変圧比を考慮することなく高効率に駆動することができる。その結果、エネルギーマネジメントシステムは、高効率な電圧変換と、絶縁とを同時に実現できる。
 前記チョッパコンバータ、及び前記共振コンバータはそれぞれ、スイッチング素子を有し、前記エネルギーマネジメントシステムは、前記チョッパコンバータ、及び前記共振コンバータを、スイッチング制御する制御部、をさらに備え、前記制御部は、前記双方向DC-DCコンバータ部の起動時に、前記チョッパコンバータをソフトスタート起動させる構成でもよい。
 この構成では、チョッパコンバータをソフトスタート起動させることで、共振コンバータの起動時において、共振コンバータへの入力電圧(チョッパコンバータの出力電圧)が定常状態に比べて低いため、共振コンバータへの突入電流を抑制できる。このため、耐圧の高い素子で共振コンバータを構成する必要がない。また、共振コンバータは、突入電流抑制のために電圧変換比を下げる目的で、駆動周波数を共振周波数から大きく外れた領域で駆動する必要がなくなり、共振周波数又は共振周波数に近接した周波数を駆動周波数とする高効率駆動が、起動直後から可能となる。
 前記制御部は、前記双方向DC-DCコンバータ部を起動して以降、固定周波数で前記共振コンバータをスイッチング制御してもよい。
 この構成では、共振コンバータをPFM制御する必要がなく、高効率な周波数で常時制御することができる。
 前記制御部は、前記チョッパコンバータ、及び前記共振コンバータを同時に起動してもよい。
 この構成では、チョッパコンバータから共振コンバータへ突入電流が流れ込むおそれを抑制できる。例えば、チョッパコンバータがキャパシタを有し、チョッパコンバータの起動後に共振コンバータを起動させた場合、キャパシタが充電された状態で共振コンバータを駆動することになる。この場合、キャパシタの充電電圧によって、共振コンバータに突入電流が流れ込むおそれがある。これに対し、上記構成では、チョッパコンバータ及び共振コンバータを同時に起動されることで、突入電流の流れ込みを防止できる。
 本発明によれば、高効率な電圧変換と、絶縁とを同時に実現できるエネルギーマネジメントシステムを提供できる。
図1は、実施形態に係るエネルギーマネジメントシステムの構成を示す図である。 図2は、発電装置及び双方向DC-DCコンバータの回路図である。 図3は、インバータの回路図である。 図4は、チョッパコンバータとLLC共振コンバータとに印加するゲート信号のタイムチャートを示す図である。 図5は、LLC共振コンバータの周波数特性を示す。
 図1は、本実施形態に係るエネルギーマネジメントシステム1の構成を示す図である。
 エネルギーマネジメントシステム1は、HVDCバス10、発電装置20、双方向DC-DCコンバータ30及びインバータ40を備えている。HVDCバス10には、発電装置20及び双方向DC-DCコンバータ30が接続されている。HVDCバス10は、本発明に係る「直流電圧バス」に相当する。また、双方向DC-DCコンバータ30は、本発明に係る「双方向DC-DCコンバータ部」に相当する。
 発電装置20は、光発電パネル21とPVコンバータ22とを備えている。PVコンバータ22は、光発電パネル21で発生した電力をHVDCバス10へ出力する。なお、発電装置20は、風力発電装置又はガス発電装置等であってもよい。
 双方向DC-DCコンバータ30は、チョッパコンバータ31と、LLC共振コンバータ32と、制御部33とを有している。後に詳述するが、チョッパコンバータ31及びLLC共振コンバータ32はそれぞれスイッチング素子を有し、制御部33は、それらのスイッチング素子をスイッチング制御する。
 チョッパコンバータ31とLLC共振コンバータ32とは直列に接続されている。また、チョッパコンバータ31とLLC共振コンバータ32との接続点には、HVDCバス10が接続されている。すなわち、チョッパコンバータ31及びLLC共振コンバータ32はそれぞれ、HVDCバス10に接続されている。また、チョッパコンバータ31には二次電池B1が接続されている。LLC共振コンバータ32にはインバータ40が接続されている。
 チョッパコンバータ31は、非絶縁型の双方向チョッパ回路である。チョッパコンバータ31は、一方から入力される直流電圧を変圧(昇圧又は降圧)し、他方から出力する。すなわち、チョッパコンバータ31は、二次電池B1から入力される電圧を変圧し、HVDCバス10へ出力する。これにより、二次電池B1は放電される。また、チョッパコンバータ31は、HVDCバス10から入力される電圧を変圧し、二次電池B1へ出力する。これにより、二次電池B1は充電される。
 LLC共振コンバータ32は、絶縁型の双方向DC-DCコンバータである。LLC共振コンバータ32は、HVDCバス10から入力される直流電圧を絶縁及び所定の比率で変圧し、インバータ40へ出力する。また、後述するが、インバータ40は、電力系統101側から入力される交流電圧を直流電圧に変換する。LLC共振コンバータ32には、そのインバータ40で変換された直流電圧が入力される。LLC共振コンバータ32は、入力される直流電圧を絶縁及び所定の比率で変圧し、HVDCバス10へ出力する。
 インバータ40は、開閉器S1,S2を介して、電力系統101と、分電盤102とに接続されている。分電盤102には、不図示のAC出力端子(ACコンセント等)が接続されている。そのAC出力端子には、電子レンジ、洗濯機、エアコン等の負荷が接続される。インバータ40は、双方向DC-DCコンバータ30から入力される直流電圧を交流電圧に変換し、電力系統101側へ出力する。また、インバータ40は、電力系統101側から入力される交流電圧を直流電圧に変換し、双方向DC-DCコンバータ30へ出力する。
 このエネルギーマネジメントシステム1は、HVDCバス10の電圧が所定値(例えば、380V)を維持するよう、発電装置20及び双方向DC-DCコンバータ30を制御する。HVDCバス10の電圧を安定させることで、インバータ40から電力系統101又は分電盤102側へ、一定の電力を安定して出力させることができる。
 以下、発電装置20のPVコンバータ22、双方向DC-DCコンバータ30及びインバータ40の回路構成について説明する。
 図2は、発電装置20及び双方向DC-DCコンバータ30の回路図である。図3は、インバータ40の回路図である。
 PVコンバータ22は、図2に示すように、入力端22I,22Iと、出力端22O,22Oとを備えている。入力端22I,22Iは、光発電パネル21に接続されている。出力端22O,22Oは、HVDCバス10に接続されている。入力端22I,22Iと、出力端22O,22Oとの間には、インダクタ22L、ダイオード22D、スイッチング素子22S及びコンデンサ22Cからなるチョッパ回路が接続されている。
 PVコンバータ22は、出力端22O,22Oからの出力電圧が目標値に近づくように、スイッチング素子22Sをスイッチング制御する。出力端22O,22Oからの出力電圧は、HVDCバス10の電圧でもある。したがって、この制御により、HVDCバス10の電圧を所定値に維持する。
 インバータ40は、図3に示すように、入出力端40IO,40IOと、交流接続端U,V,Wとを備えている。入出力端40IO,40IOは、LLC共振コンバータ32に接続されている。交流接続端U,V,Wは、開閉器S1,S2を介して、電力系統101及び分電盤102に接続されている。
 入出力端40IO,40IOには、スイッチング素子40S,40S,40S,40S,40S,40Sによるスイッチ回路が接続されている。スイッチング素子40S,40Sの接続点は、インダクタLuを介して交流接続端Uに接続されている。スイッチング素子40S,40Sの接続点は、インダクタLvを介して交流接続端Vに接続されている。スイッチング素子40S,40Sの接続点は、インダクタLwを介して交流接続端Wに接続されている。交流接続端U,V,Wと中性点との間には、コンデンサCu,Cv,Cwがそれぞれ接続されている。
 図2に示すように、双方向DC-DCコンバータ30のチョッパコンバータ31は、入出力端31IO,31IO,31IO,31IOを備えている。入出力端31IO,31IOには二次電池B1が接続されている。入出力端31IO,31IOは、本発明に係る「二次電池接続部」に相当する。入出力端31IO,31IOは、LLC共振コンバータ32、及びHVDCバス10に接続されている。
 入出力端31IO,31IOと入出力端31IO,31IOとの間には、非絶縁型の双方向チョッパ回路が接続されている。この双方向チョッパ回路は、インダクタ31L、スイッチング素子31S,31S及びキャパシタ31Cからなる。スイッチング素子31S,31Sは、例えばn型MOS-FETであり、これらのゲートが制御部33に接続されている。そして、制御部33によりゲート信号が印加されて、オンオフする。
 双方向DC-DCコンバータ30のLLC共振コンバータ32は、入出力端32IO,32IO,32IO,32IOを備えている。入出力端32IO,32IOは、チョッパコンバータ31の入出力端31IO,31IO、及びHVDCバス10に接続されている。入出力端32IO,32IOはインバータ40の入出力端40IO,40IOに接続されている。
 入出力端32IO,32IOには、第1スイッチ回路が接続されている。第1スイッチ回路は、スイッチング素子32S,32S,32S,32Sからなる。入出力端32IO,32IOには、平滑コンデンサ32C及び第2スイッチ回路が接続されている。第2スイッチ回路は、スイッチング素子32S,32S,32S,32Sからなる。スイッチング素子32S~32Sは、例えばn型MOS-FETであり、これらのゲートが制御部33に接続されている。そして、制御部33によりゲート信号が印加されて、オンオフする。
 第1スイッチ回路と第2スイッチ回路との間には、共振用インダクタ32L、共振用コンデンサ32C及びトランスT1が接続されている。図2では、トランスT1は、理想トランスで示している。共振用インダクタ32L及び共振用コンデンサ32Cは、トランスT1の励磁インダクタンスLmとLLC共振回路を構成している。
 このLLC共振コンバータ32では、第1スイッチ回路又は第2スイッチ回路のスイッチング周波数を、LLC共振回路の共振周波数に近づけることで、高い電圧変換効率が得られる。例えば、入出力端32IO,32IOから入力する直流電圧を入出力端32IO,32IOから出力する場合、スイッチング素子32S,32Sと、スイッチング素子32S,32Sとを、50%デューティでオンオフし、そのスイッチング周波数を共振周波数とすることで、高い電圧変換効率が得られる。なお、電圧変換時の変換比率は、トランスT1の一次巻線と二次巻線との巻数比により定まる。
 前記のように、エネルギーマネジメントシステム1は、双方向DC-DCコンバータ30が有するチョッパコンバータ31とLLC共振コンバータ32との接続点に、HVDCバス10が接続されている構成である。この構成により、エネルギーマネジメントシステム1は、二次電池B1の充電電圧をインバータ40から出力する場合、二次電池B1とインバータ40との絶縁を確保しつつ、高効率に電圧変換できる。以下、具体的に説明する。
 チョッパコンバータ31は、二次電池B1の充電電圧を所定の電圧に変圧する。前記のように、チョッパコンバータ31はHVDCバス10に接続されている。そして、HVDCバス10の電圧は所定値に維持する必要がある。したがって、チョッパコンバータ31は、出力電圧が目標値に近づくように、スイッチング素子31S,31Sをスイッチング制御する。
 LLC共振コンバータ32は、絶縁を確保しつつ、チョッパコンバータ31により変圧された電圧を、所定の比率で変圧する。このとき、LLC共振コンバータ32は、最も効率の良いスイッチング周波数、すなわち、LLC共振回路の共振周波数で、スイッチング素子32S~32Sをスイッチング制御する。
 仮に、図1において、HVDCバス10が双方向DC-DCコンバータ30とインバータ40との接続点に接続されている場合、LLC共振コンバータ32がHVDCバス10に接続される構成となる。この場合、LLC共振コンバータ32の出力電圧を目標値に近づける必要がある。LLC共振コンバータ32での変圧比は、トランスT1の巻数比により定まる。このため、LLC共振コンバータ32の出力電圧を目標値に近づける場合には、LLC共振コンバータ32はPFM制御により、出力電圧を調整する必要がある。この場合、LLC共振コンバータ32は、常に高効率に駆動ができない。
 これに対し、本実施形態に係るエネルギーマネジメントシステム1では、HVDCバス10は、チョッパコンバータ31とLLC共振コンバータ32との接続点に接続された構成である。このため、チョッパコンバータ31が出力電圧を調整すればよく、LLC共振コンバータ32は、出力電圧を調整する必要がない。その結果、LLC共振コンバータ32は、共振周波数をスイッチング周波数としてスイッチング素子32S~32Sをスイッチング制御する高効率駆動が可能となる。
 また、LLC共振コンバータ32は、エネルギーマネジメントシステム1の起動時であっても、高効率駆動が可能である。
 図4は、チョッパコンバータ31とLLC共振コンバータ32とに印加するゲート信号のタイムチャートを示す図である。
 図4の(1)は、チョッパコンバータ31のスイッチング素子31Sに印加するゲート信号のタイムチャートである。図4の(2)は、LLC共振コンバータ32のスイッチング素子32S,32S(又は32S,32S)に印加するゲート信号のタイムチャートである。また、図4の(3)は、HVDCバス10の電圧V1、(4)は双方向DC-DCコンバータ30からインバータ40に印加される出力電圧V2(入出力端32IO、32IOの出力電圧。)を示す。
 制御部33は、チョッパコンバータ31とLLC共振コンバータ32とを同時に起動する。起動直後、制御部33は、チョッパコンバータ31をソフトスタート起動させる。これにより、図4(3)に示すように、チョッパコンバータ31からの出力電圧、すなわち、HVDCバス10の電圧V1は緩やかに上昇する。この結果、LLC共振コンバータ32へ突入電流が流れ込むことを抑制できる。
 突入電流を抑制することで、LLC共振コンバータ32を共振周波数近辺で高効率駆動させても、図4(4)に示すように、突入電流による高電圧は発生せず、HVDCバス10の電圧と同様に緩やかに上昇する。このため、制御部33は、LLC共振コンバータ32を、起動直後から高効率に駆動させることができる。すなわち、制御部33は、共振周波数をスイッチング周波数に設定して、スイッチング素子32S,32Sと、スイッチング素子32S,32Sとを、貫通電流が流れるのを防ぐための最小デッドタイムを除き、ほぼ50%デューティでオンオフする。
 制御部33は、チョッパコンバータ31をソフトスタートさせて、チョッパコンバータ31の出力電圧が目標値となると、ソフトスタートを終了し、出力電圧が目標値を維持するようPWM制御を行う。また、制御部33は、チョッパコンバータ31のソフトスタート終了後も、同じ周波数でLLC共振コンバータ32を駆動し続ける。
 このように、本実施形態では、LLC共振コンバータ32は、起動直後から常時高効率駆動が可能となる。また、LLC共振コンバータ32への突入電流を抑制することで、LLC共振コンバータ32の各素子を、耐圧の高い素子にする必要がない。
 また、チョッパコンバータ31をソフトスタートさせることで、LLC共振コンバータ32への突入電流を抑制しているが、チョッパコンバータ31とLLC共振コンバータ32とを同時起動させることで、LLC共振コンバータ32へ突入電流の流れ込みをより抑制できる。例えば、チョッパコンバータ31を先に駆動させた場合、チョッパコンバータ31のキャパシタ31Cが充電された状態で、LLC共振コンバータ32が駆動することになる。この場合、キャパシタ31Cの充電電圧によって、LLC共振コンバータ32に突入電流が流れ込むおそれがある。このため、チョッパコンバータ31及びLLC共振コンバータ32を同時に起動することで、突入電流の流れ込みを抑制できる。
 なお、本実施形態では、チョッパコンバータ31とLLC共振コンバータ32とを同時起動させているが、チョッパコンバータ31を先に起動し後、チョッパコンバータ31のソフトスタート期間中にLLC共振コンバータ32を起動させるようにしてもよい。この場合であっても、キャパシタ31Cは満充電はされていないため、突入電流を抑制できる。
 また、本実施形態では、制御部33は、チョッパコンバータ31のソフトスタート開始時及び終了後のいずれも、同じ周波数でLLC共振コンバータ32を駆動し続けているが、例えば、以下変形例のように、必ずしも、固定周波数でLLC共振コンバータ32を駆動させ続けなくてもよい。
(変形例)
 図5は、LLC共振コンバータの周波数特性を示す。横軸を「駆動周波数/共振周波数」とし、縦軸を「電圧利得(電圧ゲイン)」とする。また、図5では、軽負荷から重負荷までの4種類の負荷をそれぞれ別の曲線としてグラフ化している。
 なお、「電圧利得」とは、入力電圧と出力電圧との比(出力電圧/入力電圧)を意味する。また、図5中の「K」は、LLC共振コンバータの定常動作時(ソフトスタート終了後の通常動作時)における「電圧利得」の最小値を意味する。すなわち、この変形例において、LLC共振コンバータは、通常動作時において、最も高効率となる周波数を含む所定の周波数範囲で駆動しており、「K」は、当該所定の周波数範囲において、「電圧利得」が最小値となる値を意味する。
 一般に定格負荷で駆動する場合、LLC共振コンバータにおいては、駆動周波数を共振周波数近辺(理論上は「駆動周波数/共振周波数」=1が最適となるが、実際には励磁インダクタンス等の影響があり、共振周波数より若干低い周波数が最適)とすることが効率面でも、最大電力を出力できる面においても適している。
 しかしながら、本変形例においては、LLC共振コンバータにおける突入電流をさらに抑制するために、チョッパコンバータのソフトスタート期間中に、LLC共振コンバータを電圧利得Kとなる周波数から駆動開始するようにしている。このように、最も高効率となる周波数ではなく、電圧利得Kとなる周波数から駆動開始するようにしているため、比較的高効率な周波数でLLC共振コンバータを駆動開始しつつも、突入電流も抑制することができる。
 そして、ソフトスタート終了後に、制御部は、より高効率となる周波数(共振周波数近辺)でLLC共振コンバータをスイッチング制御すればよい。このように、本変形例におけるLLC共振コンバータは、ソフトスタート期間、通常動作時双方において、常に、「K」以上の電圧利得となる周波数で駆動させるようにすることで、比較的高効率な周波数での駆動を維持しつつ、突入電流の抑制も図っている。
 なお、「K」はたとえば「駆動周波数/共振周波数」=1となるときの電圧利得としてもよい。また、LLC共振コンバータは「K」を超える電圧利得となる周波数から駆動開始するようにしてもよい。
 なお、上記した実施例はあくまで例であって、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。また、各実施例の特徴部分、各要素を適宜組み合わせたり置き換えたりすることもできる。
B1…二次電池
Cu,Cv,Cw…キャパシタ
Lm…励磁インダクタンス
Lu,Lv,Lw…インダクタ
S1,S2…開閉器
T1…トランス
U,V,W…交流接続端
1…エネルギーマネジメントシステム
10…HVDCバス
20…発電装置
21…光発電パネル
22…PVコンバータ
22C…コンデンサ
22D…ダイオード
22I,22I…入力端
22L…インダクタ
22O,22O…出力端
22S…スイッチング素子
30…DC-DCコンバータ
31…チョッパコンバータ
31C…キャパシタ
31IO,31IO,31IO,31IO…入出力端
31L…インダクタ
31S,31S…スイッチング素子
32…LLC共振コンバータ
32C,…共振用コンデンサ
32C…平滑コンデンサ
32IO,32IO,32IO,32IO…入出力端
32L…共振用インダクタ
32S,32S,32S,32S…スイッチング素子
32S,32S,32S,32S…スイッチング素子
33…制御部
40…インバータ
40IO,40IO…入出力端
40S,40S,40S,40S,40S,40S…スイッチング素子
101…電力系統
102…分電盤

Claims (4)

  1.  直流電圧バスと、
     前記直流電圧バスに接続され、発電された電力を前記直流電圧バスへ出力する発電装置と、
     前記直流電圧バスに接続された双方向DC-DCコンバータ部と、
     前記双方向DC-DCコンバータ部に接続され、入力される交流電圧を直流電圧に変換し、前記双方向DC-DCコンバータ部へ出力し、また、前記双方向DC-DCコンバータ部から入力される直流電圧を交流電圧に変換するインバータと、
     を備え、
     前記双方向DC-DCコンバータ部は、
     二次電池接続部を有する非絶縁型のチョッパコンバータと、
     前記チョッパコンバータと前記インバータとに接続された絶縁型の共振コンバータと、
     を含み、
     前記チョッパコンバータと前記共振コンバータとの接続点は、前記直流電圧バスに接続され、
     前記チョッパコンバータは、
     前記接続点から入力される直流電圧を変圧して前記二次電池接続部へ出力し、また、前記二次電池接続部から入力される直流電圧を変圧して前記接続点へ出力し、
     前記共振コンバータは、
     前記接続点から入力される直流電圧を変圧して前記インバータへ出力し、また、前記インバータから入力される直流電圧を変圧して前記接続点へ出力する、
     エネルギーマネジメントシステム。
  2.  前記チョッパコンバータ、及び前記共振コンバータはそれぞれ、スイッチング素子を有し、
     前記チョッパコンバータ、及び前記共振コンバータを、スイッチング制御する制御部、をさらに備え、
     前記制御部は、
     前記双方向DC-DCコンバータ部の起動時に、前記チョッパコンバータをソフトスタート起動させる、
     請求項1に記載のエネルギーマネジメントシステム。
  3.  前記制御部は、
     前記双方向DC-DCコンバータ部を起動して以降、固定周波数で前記共振コンバータをスイッチング制御する、
     請求項2に記載のエネルギーマネジメントシステム。
  4.  前記制御部は、
     前記チョッパコンバータ、及び前記共振コンバータを同時に起動する、
     請求項2又は3に記載のエネルギーマネジメントシステム。
PCT/JP2016/072888 2015-09-01 2016-08-04 エネルギーマネジメントシステム WO2017038363A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537683A JP6327403B2 (ja) 2015-09-01 2016-08-04 エネルギーマネジメントシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-171645 2015-09-01
JP2015171645 2015-09-01

Publications (1)

Publication Number Publication Date
WO2017038363A1 true WO2017038363A1 (ja) 2017-03-09

Family

ID=58188396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072888 WO2017038363A1 (ja) 2015-09-01 2016-08-04 エネルギーマネジメントシステム

Country Status (2)

Country Link
JP (1) JP6327403B2 (ja)
WO (1) WO2017038363A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097465A (ja) * 2019-12-16 2021-06-24 ニチコン株式会社 双方向dc/dcコンバータ回路および蓄電システム
WO2021149707A1 (ja) * 2020-01-20 2021-07-29 株式会社 東芝 電力変換装置および変電所用電源装置
CN113965064A (zh) * 2020-07-20 2022-01-21 国家能源投资集团有限责任公司 一种隔离型光伏逆变器、方法及光伏并网系统
JP2023123010A (ja) * 2022-02-24 2023-09-05 パナソニックIpマネジメント株式会社 充電システム
JPWO2024028947A1 (ja) * 2022-08-01 2024-02-08
EP4358360A1 (en) * 2022-10-20 2024-04-24 Huawei Digital Power Technologies Co., Ltd. Power distribution circuit of uninterruptible power supply and power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079480A (ja) * 2006-09-25 2008-04-03 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
US20110090717A1 (en) * 2009-10-21 2011-04-21 Myongji University Industry And Academia Cooperation Foundation Two-stage insulated bidirectional DC/DC power converter using a constant duty ratio LLC resonant converter
JP2011239637A (ja) * 2010-05-13 2011-11-24 Harison Toshiba Lighting Corp スイッチング電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079480A (ja) * 2006-09-25 2008-04-03 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
US20110090717A1 (en) * 2009-10-21 2011-04-21 Myongji University Industry And Academia Cooperation Foundation Two-stage insulated bidirectional DC/DC power converter using a constant duty ratio LLC resonant converter
JP2011239637A (ja) * 2010-05-13 2011-11-24 Harison Toshiba Lighting Corp スイッチング電源装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368218B2 (ja) 2019-12-16 2023-10-24 ニチコン株式会社 双方向dc/dcコンバータ回路および蓄電システム
JP2021097465A (ja) * 2019-12-16 2021-06-24 ニチコン株式会社 双方向dc/dcコンバータ回路および蓄電システム
JP7433924B2 (ja) 2020-01-20 2024-02-20 株式会社東芝 電力変換装置および変電所用電源装置
CN114982117A (zh) * 2020-01-20 2022-08-30 株式会社东芝 电力转换装置以及变电站用电源装置
JP2021114854A (ja) * 2020-01-20 2021-08-05 株式会社東芝 電力変換装置および変電所用電源装置
WO2021149707A1 (ja) * 2020-01-20 2021-07-29 株式会社 東芝 電力変換装置および変電所用電源装置
CN113965064A (zh) * 2020-07-20 2022-01-21 国家能源投资集团有限责任公司 一种隔离型光伏逆变器、方法及光伏并网系统
JP2023123010A (ja) * 2022-02-24 2023-09-05 パナソニックIpマネジメント株式会社 充電システム
JP7737195B2 (ja) 2022-02-24 2025-09-10 パナソニックオートモーティブシステムズ株式会社 充電システム
JPWO2024028947A1 (ja) * 2022-08-01 2024-02-08
WO2024028947A1 (ja) * 2022-08-01 2024-02-08 三菱電機株式会社 鉄道車両用の電源装置
JP7651072B2 (ja) 2022-08-01 2025-03-25 三菱電機株式会社 鉄道車両用の電源装置
EP4358360A1 (en) * 2022-10-20 2024-04-24 Huawei Digital Power Technologies Co., Ltd. Power distribution circuit of uninterruptible power supply and power supply system

Also Published As

Publication number Publication date
JP6327403B2 (ja) 2018-05-23
JPWO2017038363A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6327403B2 (ja) エネルギーマネジメントシステム
US11870357B2 (en) Dc-dc converter, on-board charger, and electric vehicle
CN110139775B (zh) 用于控制电动或混合车辆上车载的充电设备的方法
US8432709B2 (en) DC-to-AC power inverting apparatus for photovoltaic modules
Chen et al. A cascaded high step-up DC–DC converter with single switch for microsource applications
EP1727265B1 (en) Dc-dc converter
US10541549B2 (en) Power supply apparatus
US20160181925A1 (en) Bidirectional dc-dc converter
US10840814B2 (en) Power conversion system
JP2017070047A (ja) 電源装置
US20190334430A1 (en) Snubber circuit and power conversion system including same
KR102730545B1 (ko) 차량용 전력 변환 시스템 및 그 제어 방법
EP2975753A1 (en) A three-level converter
WO2010107060A1 (ja) Dc-dcコンバータ
US20110261597A1 (en) Inverter type engine generator
CA2853556C (en) Double-rectifier for a multi-phase contactless energy transmission system
CN110635693A (zh) 一种直流升压变换电路及装置
KR20190115364A (ko) 단상 및 3상 겸용 충전기
JP6551340B2 (ja) 電圧変換装置
JP2018125985A (ja) 電力変換システム
KR20200062835A (ko) 전기 자동차용 절연형 양방향 직류-직류 컨버터 충전기
WO2018123552A1 (ja) スナバ回路、及びそれを用いた電力変換システム
Ansari et al. A new control method for an interleaved flyback inverter to achieve high efficiency and low output current THD
US11689112B2 (en) DC-DC converter and vehicle
KR20210003539A (ko) 양방향 직류변환장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841395

Country of ref document: EP

Kind code of ref document: A1