WO2018146771A1 - 通信システム、基地局装置、通信端末装置および管理装置 - Google Patents
通信システム、基地局装置、通信端末装置および管理装置 Download PDFInfo
- Publication number
- WO2018146771A1 WO2018146771A1 PCT/JP2017/004738 JP2017004738W WO2018146771A1 WO 2018146771 A1 WO2018146771 A1 WO 2018146771A1 JP 2017004738 W JP2017004738 W JP 2017004738W WO 2018146771 A1 WO2018146771 A1 WO 2018146771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- communication terminal
- mac
- terminal device
- setting information
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 174
- 238000012545 processing Methods 0.000 claims description 24
- 230000005540 biological transmission Effects 0.000 description 53
- 238000000034 method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 4
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
Definitions
- the present invention relates to a communication system, a base station device, a communication terminal device, and a management device.
- the communication system will be described.
- the transmission path between the PDN-GW (Packet Data Network Gateway) (also referred to as P-GW) and the UE is called EPS-Bearer (Evolved Packet System-Bearer).
- the quality of this transmission path is notified from the MME to the eNB.
- the radio transmission path between the eNB and the UE that constitutes a part of this transmission path is called RB (Radio Bearer) and is managed by the eNB side RRC.
- the RRC of the eNB receives the QoS setting notification from the MME and notifies the UE side RRC of the parameter setting of the radio protocol stack.
- the IP packet is divided into data sizes based on the modulation method and bit rate selected according to the communication quality of the wireless transmission path and the assigned radio resource, and subtracting the protocol information in the middle. Sent.
- the quality measurement result of the radio transmission path is obtained from the mobile terminal (UE) by the CQI (Channel Quality Indicator), the MAC (Medium Access Control) of the base station apparatus (hereinafter referred to as “E-UTRAN Node B: eNB”). ).
- the MAC-PDU size is determined by selecting a radio channel modulation scheme and coding rate by selecting MCS (Modulation and Coding Set) and allocating resource blocks (Radio Resource).
- MCS Modulation and Coding Set
- the MAC-PDU may be accompanied by information that terminates in the MAC layer, and the remaining payload is used for transmission of the RLC-PDU.
- the RLC-PDU (Radio Link Control-Protocol Data Unit) size is determined by the IP packet size and the RLC layer transmission method.
- RLC-AM Acknowledged Mode
- RLC-UM Unacknowledged Mode
- Hybrid Hybrid Automatic Repeat Request
- FEC Forward Error Collection
- the size is not determined until immediately before the wireless signal is actually transmitted.
- at least one of combining and dividing is performed on the RLC-PDU in accordance with the MAC-PDU size.
- the receiving side cannot reconstruct the RLC-PDUs. Therefore, the reception side waits for a MAC-PDU arrival due to retransmission or a reception error due to timeout.
- At least one of combining and dividing is performed on the RLC-PDU so as to fit in the MAC-PDU size.
- the RLC-PDU cannot be reconstructed on the reception side of the divided RLC-PDUs. Therefore, the reception side waits for a MAC-PDU arrival due to retransmission or a reception error due to timeout.
- An object of the present invention is to provide a technique capable of preventing a transmission delay between a communication terminal device and a base station device.
- the communication system of the present invention is a communication system including a communication terminal device and a base station device connected to the communication terminal device so as to be capable of wireless communication, and the base station device is a MAC (Medium Access Control) layer.
- the MAC retransmission count which is the number of retransmissions of a PDU (Protocol Data Unit), is set to 0, the MAC retransmission count setting information is transmitted to the communication terminal device, and the communication terminal device and the base station device At least one of them does not perform retransmission processing in the MAC layer according to the setting information of the number of times of MAC retransmission.
- the base station apparatus of the present invention is a base station apparatus connected to a communication terminal apparatus so as to be capable of wireless communication, and the base station apparatus performs PDU (Protocol Data Unit) retransmissions in a MAC (Medium Access Control) layer.
- PDU Protocol Data Unit
- the MAC retransmission count is set to 0, and the MAC retransmission count setting information is transmitted to the communication terminal apparatus.
- a communication terminal apparatus is a communication terminal apparatus connected to a base station apparatus so as to be able to perform wireless communication, and the communication terminal apparatus performs retransmission of PDU (Protocol Data Unit) in a MAC (Medium Access Control) layer
- PDU Protocol Data Unit
- MAC Medium Access Control
- Another communication system of the present invention includes a communication terminal device, a base station device connected to the communication terminal device so as to be capable of wireless communication, and management for managing wireless communication between the communication terminal device and the base station device.
- the management device sets at least one parameter of an upper limit size of an IP (Internet Protocol) packet and an upper limit size of a payload in one or more protocol layers,
- IP Internet Protocol
- the parameter setting information is transmitted to the base station apparatus, and the base station apparatus transmits the parameter setting information received from the management apparatus to the communication terminal apparatus, and the base station apparatus and the communication terminal The apparatus performs wireless communication according to the setting information of the parameter.
- the management apparatus of the present invention is a management apparatus that manages wireless communication between a communication terminal apparatus and a base station apparatus, and the management apparatus includes an upper limit size of an IP (Internet Protocol) packet and one or more protocols. At least one parameter of the upper limit size of the payload in the layer is set, and the parameter setting information is transmitted to the base station apparatus.
- IP Internet Protocol
- Another base station apparatus of the present invention is a base station apparatus connected to a communication terminal apparatus so as to be capable of wireless communication, wherein the base station apparatus performs wireless communication between the communication terminal apparatus and the base station apparatus.
- the base station apparatus receives setting information of at least one parameter of an upper limit size of an IP (Internet Protocol) packet and an upper limit size of a payload in one or more protocol layers from a management apparatus that manages the base station apparatus.
- the received setting information of the parameter is transmitted to the communication terminal apparatus, and the base station apparatus performs wireless communication with the communication terminal apparatus according to the setting information of the parameter.
- IP Internet Protocol
- Another communication terminal apparatus of the present invention is a communication terminal apparatus connected to a base station apparatus so as to be able to perform wireless communication, and the communication terminal apparatus receives setting information of parameters related to wireless communication from the base station apparatus.
- the parameters relating to wireless communication include at least one of an upper limit size of an IP (Internet Protocol) packet and an upper limit size of a payload in one or more protocol layers. Radio communication is performed with the base station apparatus according to the setting information.
- IP Internet Protocol
- transmission delay between the communication terminal device and the base station device can be prevented.
- FIG. 1 is a block diagram showing an overall configuration of a communication system 200 according to Embodiment 1.
- FIG. 3 is a block diagram showing a configuration of a mobile terminal 202 shown in FIG.
- FIG. 3 is a block diagram showing a configuration of a base station 203 shown in FIG.
- It is a block diagram which shows the structure of MME contained in the MME part 204 shown in FIG.
- It is a figure explaining MAC resending and resending delay.
- FIG. 10 is a sequence diagram for explaining an EPS-Bearer setting procedure in the first embodiment.
- FIG. 10 is a diagram illustrating QoS information to which information related to IP packet size restriction is added according to the second embodiment.
- FIG. 10 is a diagram for explaining an example of a QoS parameter according to Embodiment 2, which is notified from the MME to the PDN-GW. It is a figure explaining the QoS parameter of a prior art example notified to eNB from MME. It is a figure explaining an example of the QoS parameter based on Embodiment 2 notified to eNB from MME.
- Embodiment 1 FIG.
- the communication system of the present invention is a system equivalent to or similar to the LTE system in the protocol layer, and the data transmission path required by the communication terminal apparatus can be set for each communication terminal apparatus.
- FIG. 2 is a block diagram showing an overall configuration of the communication system 200 according to the first embodiment.
- the radio access network is referred to as E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 201.
- a mobile terminal device (hereinafter referred to as “mobile terminal (User Equipment: UE)”) 202 that is a communication terminal device is capable of wireless communication with a base station device (hereinafter referred to as “base station (E-UTRAN NodeB: eNB)”) 203. Yes, signals are transmitted and received by wireless communication.
- UE Mobile terminal
- base station E-UTRAN NodeB: eNB
- the “communication terminal device” includes not only a mobile terminal device such as a movable mobile phone terminal device but also a non-moving device such as a sensor.
- the “communication terminal device” may be simply referred to as “communication terminal”.
- Control protocols for the mobile terminal 202 such as RRC (Radio Resource Control) and user planes such as PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control), PHY (Physical Layer)
- RRC Radio Resource Control
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- PHY Physical Layer
- a control protocol RRC (Radio Resource Control) between the mobile terminal 202 and the base station 203 performs broadcast, paging, RRC connection management (RRC connection management), and the like. As states of the base station 203 and the mobile terminal 202 in RRC, there are RRC_IDLE and RRC_CONNECTED.
- RRC_IDLE PLMN (Public Land Mobile Mobile Network) selection, system information (System Information: SI) notification, paging, cell re-selection, mobility, and the like are performed.
- RRC_CONNECTED the mobile terminal has an RRC connection and can send and receive data to and from the network.
- handover Handover: HO
- measurement of neighbor cells neighborhbor cells
- the base station 203 includes one or more eNBs 207.
- a system composed of EPC (Evolved Packet Core) as a core network and E-UTRAN 201 as a radio access network is referred to as EPS (Evolved Packet System).
- the EPC that is the core network and the E-UTRAN 201 that is the radio access network may be collectively referred to as “network”.
- the eNB 207 includes a mobility management entity (Mobility Management Entity: MME), an S-GW (Serving Management Gateway), or an MME / S-GW unit including the MME and S-GW (hereinafter also referred to as “MME unit”) 204.
- MME mobility management entity
- S-GW Serving Management Gateway
- MME unit MME / S-GW unit including the MME and S-GW
- the control information is communicated between the eNB 207 and the MME unit 204 through the S1 interface.
- a plurality of MME units 204 may be connected to one eNB 207.
- the eNBs 207 are connected by the X2 interface, and control information is communicated between the eNBs 207.
- the MME unit 204 is an upper device, specifically, an upper node, and controls connection between the eNB 207 serving as a base station and a mobile terminal (UE) 202.
- the MME unit 204 constitutes an EPC that is a core network.
- FIG. 3 is a block diagram showing a configuration of the mobile terminal 202 shown in FIG. 2, which is a communication terminal according to the present invention.
- the transmission process of the mobile terminal 202 shown in FIG. 3 will be described.
- control data from the protocol processing unit 301 and user data from the application unit 302 are stored in the transmission data buffer unit 303.
- the data stored in the transmission data buffer unit 303 is transferred to the encoder unit 304 and subjected to encoding processing such as error correction.
- the data encoded by the encoder unit 304 is modulated by the modulation unit 305.
- the modulated data is converted into a baseband signal, and then output to the frequency conversion unit 306, where it is converted into a radio transmission frequency.
- a transmission signal is transmitted from the antenna 307 to the base station 203.
- the reception process of the mobile terminal 202 is executed as follows.
- a radio signal from the base station 203 is received by the antenna 307.
- the received signal is converted from a radio reception frequency to a baseband signal by the frequency converter 306, and demodulated by the demodulator 308.
- the demodulated data is transferred to the decoder unit 309 and subjected to decoding processing such as error correction.
- control data is passed to the protocol processing unit 301, and user data is passed to the application unit 302.
- a series of processing of the mobile terminal 202 is controlled by the control unit 310. Therefore, although not shown in FIG. 3, the control unit 310 is connected to the units 301 to 309.
- FIG. 4 is a block diagram showing a configuration of the base station 203 shown in FIG. 2, which is a base station according to the present invention.
- the transmission process of the base station 203 shown in FIG. 4 will be described.
- the EPC communication unit 401 transmits and receives data between the base station 203 and an EPC (such as the MME unit 204).
- the other base station communication unit 402 transmits / receives data to / from other base stations.
- the EPC communication unit 401 and the other base station communication unit 402 exchange information with the protocol processing unit 403, respectively. Control data from the protocol processing unit 403 and user data and control data from the EPC communication unit 401 and the other base station communication unit 402 are stored in the transmission data buffer unit 404.
- the data stored in the transmission data buffer unit 404 is passed to the encoder unit 405 and subjected to encoding processing such as error correction. There may exist data directly output from the transmission data buffer unit 404 to the modulation unit 406 without performing the encoding process.
- the encoded data is subjected to modulation processing by the modulation unit 406.
- the modulated data is converted into a baseband signal and then output to the frequency conversion unit 407 where it is converted into a radio transmission frequency. Thereafter, a transmission signal is transmitted from the antenna 408 to one or a plurality of mobile terminals 202.
- the reception processing of the base station 203 is executed as follows. Radio signals from one or more mobile terminals 202 are received by the antenna 408. The received signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 407, and demodulated by the demodulation unit 409. The demodulated data is transferred to the decoder unit 410 and subjected to decoding processing such as error correction. Among the decoded data, control data is passed to the protocol processing unit 403, EPC communication unit 401, or other base station communication unit 402, and user data is passed to the EPC communication unit 401 and other base station communication unit 402. A series of processing of the base station 203 is controlled by the control unit 411. Therefore, although not shown in FIG. 4, the control unit 411 is connected to the units 401 to 410.
- FIG. 5 is a block diagram showing the configuration of the MME according to the present invention.
- FIG. 5 shows the configuration of the MME 204a included in the MME unit 204 shown in FIG.
- the PDN-GW communication unit 501 transmits and receives data between the MME 204a and the PDN-GW 213.
- the base station communication unit 502 performs data transmission / reception between the MME 204a and the base station 203 using the S1 interface.
- the data received from the PDN-GW 213 is user data
- the user data is passed from the PDN-GW communication unit 501 to the base station communication unit 502 via the user plane communication unit 503, and one or more base stations 203.
- the user data received from the base station 203 is user data
- the user data is passed from the base station communication unit 502 to the PDN-GW communication unit 501 via the user plane communication unit 503 and transmitted to the PDN-GW 213. .
- control data is transferred from the PDN-GW communication unit 501 to the control plane control unit 505.
- control data is transferred from the base station communication unit 502 to the control plane control unit 505.
- the control plane control unit 505 includes a NAS security unit 505-1, an SAE bearer control unit 505-2, an idle state mobility management unit 505-3, and the like, and performs overall processing for the control plane.
- the NAS security unit 505-1 performs security of a NAS (Non-Access Stratum) message.
- the SAE bearer control unit 505-2 performs management of SAE (System Architecture) Evolution bearers and the like.
- the idle state mobility management unit 505-3 performs mobility management in a standby state (idle state; also referred to as LTE-IDLE state or simply idle), generation and control of a paging signal in the standby state,
- the tracking area of one or more mobile terminals 202 is added, deleted, updated and searched, and the tracking area list is managed.
- the MME 204a distributes the paging signal to one or a plurality of base stations 203. Further, the MME 204a performs mobility control (Mobility control) in a standby state (Idle State). The MME 204a manages a tracking area list when the mobile terminal is in a standby state and in an active state (Active State). The MME 204a starts a paging protocol by transmitting a paging message to a cell belonging to a tracking area (tracking area: TrackingTrackArea) where the UE is registered.
- tracking area TrackingTrackArea
- the MAC retransmission will be described with reference to FIG.
- the reception of the PDU indicated by (2) in FIG. 6 fails.
- a channel for notifying the success or failure of reception of the MAC-PDU from the UE to the eNB is provided, and when the eNB determines that it is NACK, the eNB retransmits the corresponding MAC-PDU.
- the MAC-PDU is provided with a sequence number for HARQ and a flag for identifying whether it is new transmission or retransmission, and the receiving side can easily manage the MAC-PDU.
- a system in which a transmission delay due to retransmission control occurs cannot be used for a service that cannot tolerate the delay associated with retransmission control. If the service is such that information is periodically overwritten with data that becomes worthless when a transmission delay occurs, it is desirable to discard the data instead of resending it.
- transmission delay in EPC measures to shorten the delay time by performing priority control or physical arrangement according to the application can be considered.
- Embodiment 1 discloses a method for solving such a problem.
- a Bearer update request (Modify Bearer Command) is sent from the MME to the PDN-GW, and at least one of addition and change is performed on the Bearer setting of the user plane.
- Step ST2 after updating the higher Bearer, a Bearer Setup Request message is sent to the eNB, and at least one of addition and change is performed on the Bearer setting between the MME and the UE.
- step ST3 the eNB updates the RB setting between the eNB and the UE according to the request.
- the conventional technique has a problem that the number of uplink MAC retransmissions can be set to only one or more for the UE, and a packet transmission delay occurs when retransmission occurs on the wireless transmission path.
- the number of retransmissions can be reduced to 0, and transmission delay due to MAC retransmission can be prevented.
- step ST4 a Session Management Response is transmitted from the UE to the MME to notify the completion of setting.
- the eNB determines the number of MAC retransmissions by a Bearer Setup Request message.
- the MAC layer does not retransmit the MAC-PDU and discards the MAC-PDU regardless of the success or failure of the transmission.
- the eNB instructs the number of MAC retransmissions using maxHARQ-Tx included in RRC Connection Reconfiguration that the eNB issues to the UE in Step ST3 of FIG.
- the eNB notifies the UE of the number of MAC retransmissions, but setting the number of retransmissions in the MAC layer to 0 in order to reduce the delay time is not defined in the conventional IE (Information Element). Specifically, in the IE of the prior art, 1 to 8, 10, 12, 16, 20, 24, and 28 are defined as the value of the number of retransmissions in the MAC layer, but the number of retransmissions 0 is not defined. .
- the number of retransmissions 0 in the MAC layer is additionally defined. If there are zero retransmissions at the MAC layer, the UE may return a transmission completion notification (ACK / NACK) to the eNB, or omit such transmission completion notification to save radio resources. Also good.
- ACK / NACK transmission completion notification
- the MAC retransmission count is instructed using maxHARQ-Tx included in the RRC Connection Reconfiguration issued by the eNB to the UE.
- the eNB notifies the UE of the number of MAC retransmissions, but setting the number of retransmissions at the MAC layer to 0 in order to reduce the delay time is not defined in the IE (Information Element) of the prior art.
- IE Information Element
- 1 to 8, 10, 12, 16, 20, 24, and 28 are defined as the value of the number of retransmissions in the MAC layer, but the number of retransmissions 0 is not defined.
- the number of retransmissions 0 in the MAC layer is additionally defined.
- the UE sets the retransmission processing in the MAC layer not to be performed.
- the first embodiment has the following effects.
- IP packet loss is reduced by performing MAC retransmission in response to a radio transmission error, so there is a concern about an increase in PELR (Packet Error Loss Rate) associated with changing the number of retransmissions.
- PELR Packet Error Loss Rate
- the radio resource management unit included in the control unit of the eNB compared with the normal time (in other words, compared to the case where the MAC retransmission is set once or more).
- the selection MCS is performed so as to select a modulation scheme that can obtain higher quality.
- Embodiment 1 for example, the following configuration is provided.
- a communication system including a communication terminal device and a base station device connected to the communication terminal device so as to be capable of wireless communication is provided. More specifically, the base station apparatus sets the MAC retransmission count, which is the number of retransmissions of the PDU (Protocol Data Unit) in the MAC (Medium Access Control) layer, to 0, and sets the MAC retransmission count setting information as a communication terminal. Send to device. At least one of the communication terminal device and the base station device does not perform retransmission processing at the MAC layer according to the setting information of the MAC retransmission count.
- PDU Protocol Data Unit
- MAC Medium Access Control
- a base station device connected to a communication terminal device so as to be capable of wireless communication. More specifically, the base station apparatus sets the number of MAC retransmissions, which is the number of PDU retransmissions in the MAC layer, to 0, and transmits the MAC retransmission number setting information to the communication terminal apparatus.
- the base station apparatus may not perform the retransmission process in the MAC layer according to the setting information of the MAC retransmission count.
- a communication terminal device connected to the base station device so as to be able to perform wireless communication is provided. More specifically, the communication terminal apparatus receives information from the base station apparatus that the number of MAC retransmissions, which is the number of retransmissions of PDUs in the MAC layer, is set to 0, and the MAC according to the received setting information. Do not perform retransmission at the layer.
- the communication terminal apparatus corresponds to the mobile terminal 202
- the base station apparatus corresponds to the base station 203 or the eNB 207
- the communication system corresponds to the communication system 200.
- Embodiment 2 FIG. Consider the first embodiment described above. As described above, an IP packet may be divided into a plurality of MAC-PDUs and transmitted. In this case, the IP packet cannot be reconstructed unless all the MAC-PDUs can be normally transmitted. Therefore, the time from the completion of reception of the first MAC-PDU to the completion of reception of the second MAC-PDU is a transmission delay. In the second embodiment, a method for solving such a problem is disclosed.
- the limit value (upper limit value) of the IP packet size to be transmitted is defined in the QoS information described above. Specifically, as shown in FIG. 8, an IP packet size limit value “IP packet maximum” size ”is added to the QoS information.
- IP packet can be given and deleted protocol overhead in each of the PDN-GW, S-GW, eNB, and UE. For this reason, it is necessary to derive the PDU size in each protocol according to the upper limit of the IP packet size.
- the MAC-PDU is generated from the RLC-PDU in the eNB, a plurality of RLC-PDUs are combined, and the combined RLC-PDU is divided so as to embed all the payloads of the MAC-PDU, thereby mapping. I was going. However, since this process also causes transmission delay as described above, the PDU combining / dividing process in the RLC layer is also invalidated.
- the notification of the IP packet size from the eNB to the UE is performed in RRC Connection Reconfiguration IE used in step ST3 in FIG. 7, and the UE control unit (see the control unit 310 in FIG. 3) performs the protocol processing unit (protocol in FIG. 3). This is realized by controlling the processing unit 301).
- FIG. 9 shows a conventional QoS parameter notified from the MME to the PDN-GW.
- an upper limit of the IP packet payload size is added, and “Maximum bytes of IP packet payload” is defined as illustrated in FIG.
- the QoS parameters in FIG. 10 are used in step ST1 in FIG.
- a value for notifying the size of the payload data portion flowing to RadioRadBearer is set.
- FIG. 11 shows conventional QoS parameters notified from the MME to the eNB.
- FIG. 12 shows QoS parameters according to the second embodiment notified from the MME to the eNB. As can be seen from FIG. 12, the parameters required in the second embodiment are added to the parameters of FIG. The QoS parameters in FIG. 12 are used in step ST4 in FIG.
- the eNB it is necessary to steadily secure radio resources so that an IP packet in which the upper limit of the payload size is regulated with the UE can always be transmitted by one MAC-PDU.
- the existing technology requires a large overhead because the UE needs to obtain a grant from the eNB for data transmission.
- information for allocating an uplink radio resource called Semi-Persistant in an existing RRC Configuration information element at a constant interval is used.
- a communication system including a communication terminal device, a base station device connected to the communication terminal device so as to be capable of wireless communication, and a management device that manages wireless communication between the communication terminal device and the base station device. More specifically, the management device sets at least one parameter of an upper limit size of an IP (Internet Protocol) packet and an upper limit size of a payload in one or more protocol layers, and sets parameter setting information. Transmit to the base station device.
- the base station apparatus transmits the parameter setting information received from the management apparatus to the communication terminal apparatus.
- the base station apparatus and the communication terminal apparatus perform wireless communication according to parameter setting information.
- a management device for managing wireless communication between a communication terminal device and a base station device is provided. More specifically, the management apparatus sets at least one parameter of the upper limit size of the IP packet and the upper limit size of the payload in one or more protocol layers, and sets the parameter setting information to the base station apparatus. Send.
- a base station device connected to a communication terminal device so as to be capable of wireless communication. More specifically, the base station device receives an upper limit size of the IP packet and an upper limit size of the payload in one or more protocol layers from the management device that manages wireless communication between the communication terminal device and the base station device. , Setting information of at least one of the parameters is received. The base station apparatus transmits the received parameter setting information to the communication terminal apparatus. The base station apparatus performs wireless communication with the communication terminal apparatus according to the parameter setting information.
- a communication terminal device connected to the base station device so as to be able to perform wireless communication is provided. More specifically, the communication terminal apparatus receives parameter setting information related to wireless communication from the base station apparatus.
- the parameter relating to wireless communication includes at least one of an upper limit size of an IP packet and an upper limit size of a payload in one or more protocol layers.
- the communication terminal apparatus performs wireless communication with the base station apparatus according to the parameter setting information.
- the communication terminal apparatus corresponds to the mobile terminal 202
- the base station apparatus corresponds to the base station 203 or the eNB 207
- the management apparatus corresponds to the MME unit ( MME / S-GW unit) 204 or MME 204a (see FIG. 5)
- the communication system corresponds to communication system 200.
- the radio communication protocol applied to the logical transmission path configured with the base station is controlled according to the service used by the communication terminal. Specifically, at least one of adjustment including presence / absence of retransmission control and capacity limitation for each packet on the network side are performed. As a result, radio resources can be easily arranged. In addition, the transmission quality of the radio section can be arbitrarily adjusted. Furthermore, by eliminating retransmission, it is possible to provide a transmission path that does not increase transmission delay. Also, by improving the transmission quality, it is possible to prevent transmission failure.
- resources such as a storage device of a terminal device, such as a memory, can be reduced. Thereby, reduction of terminal cost and power consumption can be expected.
- the present invention can be applied not only to the LTE system as described above but also to the next generation 5G system.
- the LTE system includes setting the number of retransmissions in the RLC layer to zero.
- the RLC layer retransmission control count 0 in the LTE system is defined as RLC-UM (Unacknowredge Mode), and the configuration in which there is no retransmission in RLC-AM (Acknowredge Mode) has no operational merit, so it is not considered.
- the above-mentioned wireless protocol stack is (a) independent of the name / number of layers such as PDCP, RLC, MAC in the LTE system, (b) giving control information to data to be transmitted, and (c) between layers And (d) a mechanism for transmitting payload data in a wireless section.
- a system having means for notifying at least one of the number of retransmissions, a maximum payload size, and an allowable delay time (Delay Budget) to a protocol stack in a radio section.
- the technical idea of the present invention is realized by setting the number of retransmissions at the MAC layer to 0 or including a limit value (upper limit value) of the IP packet size to be transmitted in the notification means described above. be able to.
- 202 communication terminal device 203, 207 base station device, 200 communication system, 204, 204a management device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
通信システム(200)は、通信端末装置(202)と、通信端末装置(202)と無線通信可能に接続される基地局装置(203,207)とを含んでいる。基地局装置(203,207)は、MAC(Medium Access Control)レイヤでのPDU(Protocol Data Unit)の再送回数であるMAC再送回数を0回に設定し、MAC再送回数の設定情報を通信端末装置(202)に送信する。通信端末装置(202)と基地局装置(203,207)とのうちの少なくとも一方は、MAC再送回数の当該設定情報に従って、MACレイヤでの再送処理を行わない。これによれば、通信端末装置(202)と基地局装置(203,207)との間の伝送遅延を防止することができる。
Description
本発明は、通信システム、基地局装置、通信端末装置および管理装置に関する。
通信システムについて説明する。
PDN-GW(Packet DataNetwork-Gateway:P-GWとも称する)とUEとの間の伝送路を、EPS-Bearer(Evolved Packet System-Bearer)と呼ぶ。この伝送路の品質は、MMEからeNBへ通知される。この伝送路の一部を構成する、eNBとUEとの間の無線伝送路は、RB(Radio Bearer)と呼ばれ、eNB側RRCによって管理されている。eNBのRRCが、MMEからのQoS設定通知を受け、UE側RRCへ無線プロトコルスタックのパラメータ設定を通知する。
次に、IPパケットの物理チャネルへのマッピングについて説明する。
LTEシステムでは、IPパケットは、無線伝送路の通信品質に応じて選択された変調方式およびビットレートと、割り当てる無線リソースとに基づいて、且つ、途中のプロトコル情報を差し引いたデータサイズに分割されて、送信される。
図1を参照して、具体的な例を挙げる。無線伝送路の品質測定結果は、移動端末(UE)から、CQI(Channel Quality Indicator)によって、基地局装置(以下「基地局(E-UTRAN NodeB:eNB)」と称する)のMAC(Medium Access Control)へ通知される。選択MCS(Modulation and Coding Set)により無線チャネルの変調方式および符号化率を選択し、リソースブロック(Radio Resource)を割り当てることで、MAC-PDUサイズを決定する。MAC-PDUには、MACレイヤで終端する情報が付随することがあり、残りのペイロードをRLC-PDUの伝送に用いる。RLC―PDU(Radio Link Control-Protocol Data Unit)サイズは、IPパケットサイズおよびRLCレイヤの伝送方式によって、決定する。
RLCレイヤで再送が有効な場合には、RLC-AM(Acknowledged Mode)が適用され、RLC-PDU単位で再送が行われる。RLCレイヤで再送が無効な場合は、RLC-UM(Unacknowledged Mode)が適用される。
また、MACレイヤでの再送には、HARQ(Hybrid Automatic Repeat Request)が適用される。MAC-PDUを符号化するときFEC(Forward Error Collection)を適用することによって、部分的な符号の受信を複数重ね合わせることで復号化できることを期待する。そのため、Hybridと称される。
従来技術では、MAC-PDUサイズが無線通信環境に応じて決定されるので、実際に無線信号を送信する直前までサイズが決定しない。伝送可能なサイズを目一杯使うために、MAC-PDUサイズに合わせて、RLC-PDUに対して結合と分割とのうちの少なくとも一方が行われる。
分割したRLC-PDUを受信し、RLC-PDUを抽出するケースを考える。分割されたRLC-PDUを含んだ複数のMAC-PDUのいずれか1つ以上が伝送エラーとなった場合、受信側でRLC-PDUの再構築が行えない。そのため、受信側は、MAC-PDUの再送による到達、または、タイムアウトによる受信エラーを待つこととなる。
3GPP TS36.331 v12.4
3GPP TS36.413 v12.4
3GPP R2―165006
前述した背景技術には、以下の課題がある。
従来技術では、MAC-PDUサイズに収まるように、RLC-PDUに対して結合と分割とのうちの少なくとも一方が行われる。分割されたRLC-PDUを含んだ複数のMAC-PDUのいずれか1つ以上が伝送エラーとなった場合、分割したRLC-PDUの受信側でRLC-PDUの再構築が行えない。そのため、受信側は、MAC-PDUの再送による到達、または、タイムアウトによる受信エラーを待つこととなる。
本発明の目的は、通信端末装置と基地局装置との間の伝送遅延を防止しうる技術を提供することである。
本発明の通信システムは、通信端末装置と、前記通信端末装置と無線通信可能に接続される基地局装置とを備える通信システムであって、前記基地局装置は、MAC(Medium Access Control)レイヤでのPDU(Protocol Data Unit)の再送回数であるMAC再送回数を0回に設定し、前記MAC再送回数の設定情報を前記通信端末装置に送信し、前記通信端末装置と前記基地局装置とのうちの少なくとも一方は、前記MAC再送回数の前記設定情報に従って、前記MACレイヤでの再送処理を行わない。
本発明の基地局装置は、通信端末装置と無線通信可能に接続される基地局装置であって、前記基地局装置は、MAC(Medium Access Control)レイヤでのPDU(Protocol Data Unit)の再送回数であるMAC再送回数を0回に設定し、前記MAC再送回数の設定情報を前記通信端末装置に送信する。
本発明の通信端末装置は、基地局装置と無線通信可能に接続される通信端末装置であって、前記通信端末装置は、MAC(Medium Access Control)レイヤでのPDU(Protocol Data Unit)の再送回数であるMAC再送回数が0回に設定されたことの情報を、前記基地局装置から受信し、受信した設定情報に従って、前記MACレイヤでの再送処理を行わない。
本発明の他の通信システムは、通信端末装置と、前記通信端末装置と無線通信可能に接続される基地局装置と、前記通信端末装置と前記基地局装置との間の無線通信を管理する管理装置とを備える通信システムであって、前記管理装置は、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータを設定し、前記パラメータの設定情報を前記基地局装置に送信し、前記基地局装置は、前記管理装置から受信した前記パラメータの前記設定情報を、前記通信端末装置に送信し、前記基地局装置と前記通信端末装置とは、前記パラメータの前記設定情報に従って、無線通信を行う。
本発明の管理装置は、通信端末装置と基地局装置との間の無線通信を管理する管理装置であって、前記管理装置は、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータを設定し、前記パラメータの設定情報を前記基地局装置に送信する。
本発明の他の基地局装置は、通信端末装置と無線通信可能に接続される基地局装置であって、前記基地局装置は、前記通信端末装置と前記基地局装置との間の無線通信を管理する管理装置から、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータの設定情報を受信し、前記基地局装置は、受信した前記パラメータの前記設定情報を、前記通信端末装置に送信し、前記基地局装置は、前記パラメータの前記設定情報に従って、前記通信端末装置と無線通信を行う。
本発明の他の通信端末装置は、基地局装置と無線通信可能に接続される通信端末装置であって、前記通信端末装置は、前記基地局装置から、無線通信に関するパラメータの設定情報を受信し、前記無線通信に関するパラメータは、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方を含み、前記通信端末装置は、前記パラメータの前記設定情報に従って、前記基地局装置と無線通信を行う。
本発明によれば、通信端末装置と基地局装置との間の伝送遅延を防止することができる。
本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1.
本発明の通信システムは、プロトコルレイヤでLTEシステムと同等または同様のシステムであって、通信端末装置が要求するデータ伝送路を、それぞれの通信端末装置毎に設定可能である。
本発明の通信システムは、プロトコルレイヤでLTEシステムと同等または同様のシステムであって、通信端末装置が要求するデータ伝送路を、それぞれの通信端末装置毎に設定可能である。
図2は、実施の形態1について、通信システム200の全体的な構成を示すブロック図である。図2について説明する。無線アクセスネットワークは、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)201と称される。通信端末装置である移動端末装置(以下「移動端末(User Equipment:UE)」という)202は、基地局装置(以下「基地局(E-UTRAN NodeB:eNB)」という)203と無線通信可能であり、無線通信で信号の送受信を行う。
ここで、「通信端末装置」とは、移動可能な携帯電話端末装置などの移動端末装置だけでなく、センサなどの移動しないデバイスも含んでいる。以下の説明では、「通信端末装置」を、単に「通信端末」という場合がある。
移動端末202に対する制御プロトコル、例えばRRC(Radio Resource Control)と、ユーザプレイン、例えばPDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、PHY(Physical layer)とが基地局203で終端するならば、E-UTRANは1つまたは複数の基地局203によって構成される。
移動端末202と基地局203との間の制御プロトコルRRC(Radio Resource Control)は、報知(Broadcast)、ページング(paging)、RRC接続マネージメント(RRC connection management)などを行う。RRCにおける基地局203と移動端末202との状態として、RRC_IDLEと、RRC_CONNECTEDとがある。
RRC_IDLEでは、PLMN(Public Land Mobile Network)選択、システム情報(System Information:SI)の報知、ページング(paging)、セル再選択(cell re-selection)、モビリティなどが行われる。RRC_CONNECTEDでは、移動端末はRRC接続(connection)を有し、ネットワークとのデータの送受信を行うことができる。またRRC_CONNECTEDでは、ハンドオーバ(Handover:HO)、隣接セル(Neighbour cell)の測定(メジャメント(measurement))などが行われる。
基地局203は、1つまたは複数のeNB207で構成される。また、コアネットワークであるEPC(Evolved Packet Core)と、無線アクセスネットワークであるE-UTRAN201とで構成されるシステムは、EPS(Evolved Packet System)と称される。コアネットワークであるEPCと、無線アクセスネットワークであるE-UTRAN201とを合わせて、「ネットワーク」という場合がある。
eNB207は、移動管理エンティティ(Mobility Management Entity:MME)、またはS-GW(Serving Gateway)、またはMMEおよびS-GWを含むMME/S-GW部(以下「MME部」という場合がある)204とS1インタフェースにより接続され、eNB207とMME部204との間で制御情報が通信される。一つのeNB207に対して、複数のMME部204が接続されてもよい。eNB207間は、X2インタフェースにより接続され、eNB207間で制御情報が通信される。
MME部204は、上位装置、具体的には上位ノードであり、基地局であるeNB207と、移動端末(UE)202との接続を制御する。MME部204は、コアネットワークであるEPCを構成する。
図3は、本発明に係る通信端末である図2に示す移動端末202の構成を示すブロック図である。図3に示す移動端末202の送信処理を説明する。まず、プロトコル処理部301からの制御データ、およびアプリケーション部302からのユーザデータが、送信データバッファ部303へ保存される。送信データバッファ部303に保存されたデータは、エンコーダー部304へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、送信データバッファ部303から変調部305へ直接出力されるデータが存在してもよい。エンコーダー部304でエンコード処理されたデータは、変調部305にて変調処理が行われる。変調されたデータは、ベースバンド信号に変換された後、周波数変換部306へ出力され、無線送信周波数に変換される。その後、アンテナ307から基地局203に送信信号が送信される。
また、移動端末202の受信処理は、以下のように実行される。基地局203からの無線信号がアンテナ307により受信される。受信信号は、周波数変換部306にて無線受信周波数からベースバンド信号に変換され、復調部308において復調処理が行われる。復調後のデータは、デコーダー部309へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部301へ渡され、ユーザデータはアプリケーション部302へ渡される。移動端末202の一連の処理は、制御部310によって制御される。よって制御部310は、図3では省略しているが、各部301~309と接続している。
図4は、本発明に係る基地局である図2に示す基地局203の構成を示すブロック図である。図4に示す基地局203の送信処理を説明する。EPC通信部401は、基地局203とEPC(MME部204など)などとの間のデータの送受信を行う。他基地局通信部402は、他の基地局との間のデータの送受信を行う。EPC通信部401および他基地局通信部402は、それぞれプロトコル処理部403と情報の受け渡しを行う。プロトコル処理部403からの制御データ、ならびにEPC通信部401および他基地局通信部402からのユーザデータおよび制御データは、送信データバッファ部404へ保存される。
送信データバッファ部404に保存されたデータは、エンコーダー部405へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、送信データバッファ部404から変調部406へ直接出力されるデータが存在してもよい。エンコードされたデータは、変調部406にて変調処理が行われる。変調されたデータは、ベースバンド信号に変換された後、周波数変換部407へ出力され、無線送信周波数に変換される。その後、アンテナ408より一つまたは複数の移動端末202に対して送信信号が送信される。
また、基地局203の受信処理は以下のように実行される。一つまたは複数の移動端末202からの無線信号が、アンテナ408により受信される。受信信号は、周波数変換部407にて無線受信周波数からベースバンド信号に変換され、復調部409で復調処理が行われる。復調されたデータは、デコーダー部410へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部403、またはEPC通信部401、または他基地局通信部402へ渡され、ユーザデータはEPC通信部401および他基地局通信部402へ渡される。基地局203の一連の処理は、制御部411によって制御される。よって制御部411は、図4では省略しているが、各部401~410と接続している。
図5は、本発明に係るMMEの構成を示すブロック図である。図5では、前述の図2に示すMME部204に含まれるMME204aの構成を示す。PDN-GW通信部501は、MME204aとPDN-GW213との間のデータの送受信を行う。基地局通信部502は、MME204aと基地局203との間のS1インタフェースによるデータの送受信を行う。PDN-GW213から受信したデータがユーザデータであった場合、ユーザデータは、PDN-GW通信部501から、ユーザプレイン通信部503経由で基地局通信部502に渡され、1つまたは複数の基地局203へ送信される。基地局203から受信したデータがユーザデータであった場合、ユーザデータは、基地局通信部502から、ユーザプレイン通信部503経由でPDN-GW通信部501に渡され、PDN-GW213へ送信される。
PDN-GW213から受信したデータが制御データであった場合、制御データは、PDN-GW通信部501から制御プレイン制御部505へ渡される。基地局203から受信したデータが制御データであった場合、制御データは、基地局通信部502から制御プレイン制御部505へ渡される。
制御プレイン制御部505は、NASセキュリティ部505-1、SAEベアラコントロール部505-2、アイドルステート(Idle State)モビリティ管理部505-3などを含み、制御プレインに対する処理全般を行う。NASセキュリティ部505-1は、NAS(Non-Access Stratum)メッセージのセキュリティなどを行う。SAEベアラコントロール部505-2は、SAE(System Architecture Evolution)のベアラの管理などを行う。アイドルステートモビリティ管理部505-3は、待受け状態(アイドルステート(Idle State);LTE-IDLE状態、または、単にアイドルとも称される)のモビリティ管理、待受け状態時のページング信号の生成および制御、傘下の1つまたは複数の移動端末202のトラッキングエリアの追加、削除、更新および検索、トラッキングエリアリスト管理などを行う。
MME204aは、1つまたは複数の基地局203に対して、ページング信号の分配を行う。また、MME204aは、待受け状態(Idle State)のモビリティ制御(Mobility control)を行う。MME204aは、移動端末が待ち受け状態のとき、および、アクティブ状態(Active State)のときに、トラッキングエリア(Tracking Area)リストの管理を行う。MME204aは、UEが登録されている(registered)追跡領域(トラッキングエリア:Tracking Area)に属するセルへ、ページングメッセージを送信することで、ページングプロトコルに着手する。
図6を参照して、MAC再送について説明する。ここでは、図6中に(2)で示すPDUの受信が失敗するケースを考える。UEとeNBとの間には、MAC-PDUの受信成否をUEからeNBへ通知するチャネルを設けられており、eNBがNACKと判断した場合、eNBは、対応するMAC-PDUを再送する。MAC-PDUには、HARQ用のシーケンス番号と、新規送信か再送かを識別するためのフラグとが付与されており、それらによって受信側はMAC-PDUを容易に管理できる。
MAC-PDUの再送には、NACKの通知に要する時間と、MAC-PDUの再送準備のための時間と、MAC-PDUの伝送時間とが必要になるので、少なくとも数フレームの遅延が発生する。TDD方式の場合、ACK/NACKを通知するためにはUplinkFrameを待つ必要があり、この待ち時間も遅延時間に加算されるので、遅延が顕著になる。
再送制御による伝送遅延が生じるシステムは、再送制御に伴う遅延を許容できないようなサービスに対して利用できない、という問題がある。伝送遅延が生じると無価値になるデータで以て定期的に情報を上書きするようなサービスであれば、再送する代わりに、データを破棄することが望まれる。EPCにおける伝送遅延に関しては、アプリケーションに応じて優先制御または物理的な配置を行うことによって、遅延時間を短縮する対策が考えられる。
実施の形態1では、このような問題を解決する方法を開示する。
図7を参照して、EPS-Bearerの設定手順の一例を説明する。
ステップST1では、MMEからPDN-GWへBearer更新要求(Modify Bearer Command)を送り、ユーザプレインのBearer設定に対して追加と変更とのうちの少なくとも一方を行う。
ステップST2では、上位のBearerを更新した後、eNBへBearer Setup Requestメッセージを送り、MMEとUEとの間のBearer設定に対して追加と変更とのうちの少なくとも一方を行う。
ステップST3では、eNBは要求に従って、eNBとUEとの間のRBの設定を更新する。ここで、従来技術では、UEに対して上りのMAC再送回数を1回以上にしか設定できず、無線伝送路での再送発生時にパケット伝送遅延が生じる、という問題があった。これに対し、実施の形態1では、再送回数を0回にすることができ、MAC再送による伝送遅延の発生を防止することができる。
ステップST4では、UEからMMEへSession Management Responseを送信し、設定完了を通知する。
ここで、低遅延を必要とするサービスを利用するUEについて、詳細な動作を説明する。
<下りの場合>
下り送信要求を契機に、図7のステップST2において、Bearer Setup Requestメッセージによって、eNBは、MAC再送回数を決定する。MACレイヤでの再送を0回にする必要があるほどの低遅延が要求された場合、MACレイヤではMAC-PDUの再送を行わず、伝送の成否に依らずMAC-PDUを破棄する。
下り送信要求を契機に、図7のステップST2において、Bearer Setup Requestメッセージによって、eNBは、MAC再送回数を決定する。MACレイヤでの再送を0回にする必要があるほどの低遅延が要求された場合、MACレイヤではMAC-PDUの再送を行わず、伝送の成否に依らずMAC-PDUを破棄する。
eNBは、図7のステップST3において、eNBがUEに対して発行するRRC Connection Reconfigurationに含まれる、maxHARQ-Txを用いて、MAC再送回数を指示する。eNBはMAC再送回数をUEに通知するのであるが、遅延時間を短縮するためにMACレイヤでの再送回数を0とすることは、従来技術のIE(Information Element)に定義されていない。具体的には、従来技術のIEでは、MACレイヤでの再送回数の値として1~8、10、12、16、20、24、28が定義されているが、再送回数0は定義されていない。これに対し、実施の形態1では、MACレイヤでの再送回数0回を追加で定義する。MACレイヤでの再送が0回の場合、UEがeNBに対して伝送完了通知(ACK/NACK)を返してもよいし、または、無線リソース節約のためにそのような伝送完了通知を省略してもよい。
<上りの場合>
UEからの上り送信要求を契機に、図7のステップST3において、eNBがUEに対して発行するRRC Connection Reconfigurationに含まれる、maxHARQ-Txを用いて、MAC再送回数を指示する。eNBはMAC再送回数をUEに通知するのであるが、遅延時間を短縮するためにMACレイヤでの再送回数を0とすることは、従来技術のIE(Information Element)に定義されていない。具体的には、従来技術のIEでは、MACレイヤでの再送回数の値として1~8、10、12、16、20、24、28が定義されているが、再送回数0は定義されていない。これに対し、実施の形態1では、MACレイヤでの再送回数0回を追加で定義する。UEは、この指示をうけて、MACレイヤでの再送処理を行わないように設定する。
UEからの上り送信要求を契機に、図7のステップST3において、eNBがUEに対して発行するRRC Connection Reconfigurationに含まれる、maxHARQ-Txを用いて、MAC再送回数を指示する。eNBはMAC再送回数をUEに通知するのであるが、遅延時間を短縮するためにMACレイヤでの再送回数を0とすることは、従来技術のIE(Information Element)に定義されていない。具体的には、従来技術のIEでは、MACレイヤでの再送回数の値として1~8、10、12、16、20、24、28が定義されているが、再送回数0は定義されていない。これに対し、実施の形態1では、MACレイヤでの再送回数0回を追加で定義する。UEは、この指示をうけて、MACレイヤでの再送処理を行わないように設定する。
これによって、実施の形態1は以下の効果を奏する。
伝送遅延が生じることで有用性がなくなるようなデータを伝送するIPパケットについて、MAC再送を0回と設定することにより、再送による伝送遅延の増加を確実に低減することができる。
従来技術では、無線伝送誤りに対してMAC再送を行うことによって、IPパケットロスを低減していたので、再送回数を変更することに伴うPELR(Packet Error Loss Rate)の増加が懸念される。これを解決するために、eNBの制御部(図4の制御部411を参照)に含まれる無線リソース管理部では、通常時に比べて(換言すると、MAC再送を1回以上行う設定の場合に比べて)より高い品質が得られる変調方式を選択するように、選択MCSを行う。
実施の形態1によれば、例えば次のような構成が提供される。
通信端末装置と、通信端末装置と無線通信可能に接続される基地局装置とを含む通信システムが提供される。より具体的には、基地局装置は、MAC(Medium Access Control)レイヤでのPDU(Protocol Data Unit)の再送回数であるMAC再送回数を0回に設定し、MAC再送回数の設定情報を通信端末装置に送信する。通信端末装置と基地局装置とのうちの少なくとも一方は、MAC再送回数の設定情報に従って、MACレイヤでの再送処理を行わない。
通信端末装置と無線通信可能に接続される基地局装置が提供される。より具体的には、基地局装置は、MACレイヤでのPDUの再送回数であるMAC再送回数を0回に設定し、MAC再送回数の設定情報を通信端末装置に送信する。ここで、基地局装置は、MAC再送回数の設定情報に従って、MACレイヤでの再送処理を行わないようにしてもよい。
基地局装置と無線通信可能に接続される通信端末装置が提供される。より具体的には、通信端末装置は、MACレイヤでのPDUの再送回数であるMAC再送回数が0回に設定されたことの情報を、基地局装置から受信し、受信した設定情報に従って、MACレイヤでの再送処理を行わない。
なお、これらの構成における各種要素を例えば図2で説明した要素に対応付けると、通信端末装置は移動端末202に対応し、基地局装置は基地局203またはeNB207に対応し、通信システムは通信システム200に対応する。
これらの構成によれば、前述のおよび後述の各種効果を得ることができる。
実施の形態2.
前述の実施の形態1について考察する。前述したように、IPパケットは複数のMAC-PDUに分割されて伝送される場合がある。この場合、全てのMAC-PDUを正常に伝送できなければ、IPパケットを再構築することができない。このため、1つ目のMAC-PDUの受信完了から2つ目のMAC-PDUの受信完了までの時間は伝送遅延となる。実施の形態2では、このような問題を解決する方法を開示する。
前述の実施の形態1について考察する。前述したように、IPパケットは複数のMAC-PDUに分割されて伝送される場合がある。この場合、全てのMAC-PDUを正常に伝送できなければ、IPパケットを再構築することができない。このため、1つ目のMAC-PDUの受信完了から2つ目のMAC-PDUの受信完了までの時間は伝送遅延となる。実施の形態2では、このような問題を解決する方法を開示する。
IPパケットが複数のMAC-PDUに分割されないように、前述のQoS情報において、伝送するIPパケットサイズの制限値(上限値)を定義する。具体的には、図8に示すように、IPパケットサイズの制限値”IP packet maximum size”の項目をQoS情報に追加する。IPパケットは、PDN-GW、S-GW、eNB、UEのそれぞれにおいてプロトコルオーバヘッドが付与および削除されうる。このため、各プロトコルにおけるPDUサイズは、IPパケットサイズ上限に合わせて導出する必要がある。
ここで、eNBではRLC-PDUからMAC-PDUを生成する際に、複数のRLC-PDUを結合し、結合したRLC-PDUをMAC-PDUのペイロードを全て埋めるように分割することによって、マッピングを行っていた。しかし、この処理も前述のように伝送遅延の要因となるので、RLCレイヤでのPDU結合/分割処理も無効化する。
eNBからUEへのIPパケットサイズの通知は、図7のステップST3で用いるRRC Connection Reconfiguration IEにて行い、UEの制御部(図3の制御部310を参照)がプロトコル処理部(図3のプロトコル処理部301を参照)を制御することによって実現する。
各装置または各レイヤにおいて、ペイロードサイズの上限を超えるデータを受信した場合には、直ちに破棄する。これにより、下流のトラフィックを下げ、不要な処理に伴う遅延時間および消費電力の増加を防ぐ効果が期待できる。
MMEからPDN-GWに通知する従来例のQoSパラメータを図9に示す。これに対し、実施の形態2では、IPパケットペイロードサイズ上限を追加し、図10に例示するように”Maximum bytes of IP packet payload”を定義する。図10のQoSパラメータは、図7のステップST1で用いる。IPパケットペイロードサイズには、Radio Bearerに流れるペイロードデータ部分のサイズを通知するための値を設定する。
MMEからeNBに通知する従来例のQoSパラメータを図11に示す。これに対し、MMEからeNBに通知する、実施の形態2に係るQoSパラメータを図12に示す。図12から分かるように、実施の形態2で必要となるパラメータが図11のパラメータに対して追加されている。図12のQoSパラメータは、図7のステップST4で用いる。
一方、eNBにおいては、UEとの間でペイロードサイズの上限が規制されたIPパケットを必ず1つのMAC-PDUで伝送できるように、無線リソースを定常的に確保する必要がある。UEからeNBへのデータ伝送において、既存技術ではUEがデータ送信のためにeNBからGrantを得る必要があるので、オーバヘッドが大きい。実現手段の一例としては、既存のRRC Configuration情報要素にある、Semi-Persistantという上り無線リソースを一定間隔で割り当てるための情報を利用する。
実施の形態2によれば、例えば次のような構成が提供される。
通信端末装置と、通信端末装置と無線通信可能に接続される基地局装置と、通信端末装置と基地局装置との間の無線通信を管理する管理装置とを含む通信システムが提供される。より具体的には、管理装置は、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータを設定し、パラメータの設定情報を基地局装置に送信する。基地局装置は、管理装置から受信したパラメータの設定情報を、通信端末装置に送信する。基地局装置と通信端末装置とは、パラメータの設定情報に従って、無線通信を行う。
通信端末装置と基地局装置との間の無線通信を管理する管理装置が提供される。より具体的には、管理装置は、IPパケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータを設定し、パラメータの設定情報を基地局装置に送信する。
通信端末装置と無線通信可能に接続される基地局装置が提供される。より具体的には、基地局装置は、通信端末装置と基地局装置との間の無線通信を管理する管理装置から、IPパケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータの設定情報を受信する。基地局装置は、受信したパラメータの設定情報を、通信端末装置に送信する。基地局装置は、パラメータの設定情報に従って、通信端末装置と無線通信を行う。
基地局装置と無線通信可能に接続される通信端末装置が提供される。より具体的には、通信端末装置は、基地局装置から、無線通信に関するパラメータの設定情報を受信する。ここで、無線通信に関する当該パラメータは、IPパケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方を含む。通信端末装置は、パラメータの設定情報に従って、基地局装置と無線通信を行う。
なお、これらの構成における各種要素を例えば図2で説明した要素に対応付けると、通信端末装置は移動端末202に対応し、基地局装置は基地局203またはeNB207に対応し、管理装置はMME部(MME/S-GW部)204またはMME204a(図5参照)に対応し、通信システムは通信システム200に対応する。
これらの構成によれば、前述のおよび後述の各種効果を得ることができる。
実施の形態1,2によれば、通信端末が利用するサービスに応じて基地局との間で構成される論理的な伝送路に対して適用される無線通信プロトコルを制御する。具体的には、再送制御の有無を含む調整と、ネットワーク側に対する1パケット毎の容量の制限と、のうちの少なくとも一方を行う。これにより、無線リソースを配置し易くすることができる。また、無線区間の伝送品質を任意に調整することができる。さらに、再送を無くすことで、伝送遅延が増加しない伝送路を提供することができる。また、伝送品質を良くすることで、伝送の失敗を未然に防ぐことができる。
また、再送制御の無効化と、パケットサイズの制限とのうちの少なくとも一方によれば、端末装置の記憶装置、例えばメモリなどのリソースを削減することができる。それにより、端末コストの削減、消費電力の削減が期待できる。
本発明は、前述のようなLTEシステムに限らず、次世代の5Gシステムにおいても適用できる。
前述のMAC再送回数0回は、無線伝送路のプロトコルスタックにおけるHARQのみならず、ARQ(Automatic Repeat reQuest)についても対象にすることができる。また、MACレイヤでの再送に言及せず、LTEシステムではRLCレイヤにおける再送回数を0回にすることも含む。ただしLTEシステムにおけるRLCレイヤの再送制御回数0は、RLC-UM(Unacknowredge Mode)として定義されており、RLC-AM(Acknowredge Mode)で再送なしという構成は、運用上メリットがないので、考えない。
前述の無線プロトコルスタックとは、(a)LTEシステムにおけるPDCP、RLC、MACといった名称/レイヤ数に依存せず、且つ(b)伝送すべきデータに制御情報を付与し、且つ(c)レイヤ間で終端または連携し、且つ(d)無線区間においてペイロードデータを伝送する、仕組みをいう。
本発明の技術的思想は例えば次のようなシステムに用いることができる。無線区間のプロトコルスタックに対して、再送回数と、最大ペイロードサイズと、許容遅延時間(Delay Budget)とのうちの少なくとも1つを通知する手段を有するシステム。再送回数を0回とすることによって、再送機能を無効とすることができるシステム。最大ペイロードサイズを設定することによって、フラグメントの発生を抑制することができるシステム。
前述の通知する手段に、MACレイヤでの再送回数を0にすること、または、伝送するIPパケットサイズの制限値(上限値)、などを含ませることによって、本発明の技術的思想を実現することができる。
前述の各実施の形態およびその変形例は、本発明の例示に過ぎず、本発明の範囲内において、各実施の形態およびその変形例を自由に組合せることができる。また各実施の形態およびその変形例の任意の構成要素を適宜変更または省略することができる。
本発明は詳細に説明されたが、前述した説明は、すべての局面において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。
202 通信端末装置、203,207 基地局装置、200 通信システム、204,204a 管理装置。
Claims (8)
- 通信端末装置と、前記通信端末装置と無線通信可能に接続される基地局装置とを備える通信システムであって、
前記基地局装置は、MAC(Medium Access Control)レイヤでのPDU(Protocol Data Unit)の再送回数であるMAC再送回数を0回に設定し、前記MAC再送回数の設定情報を前記通信端末装置に送信し、
前記通信端末装置と前記基地局装置とのうちの少なくとも一方は、前記MAC再送回数の前記設定情報に従って、前記MACレイヤでの再送処理を行わない、
通信システム。 - 通信端末装置と無線通信可能に接続される基地局装置であって、
前記基地局装置は、MAC(Medium Access Control)レイヤでのPDU(Protocol Data Unit)の再送回数であるMAC再送回数を0回に設定し、前記MAC再送回数の設定情報を前記通信端末装置に送信する、
基地局装置。 - 前記基地局装置は、前記MAC再送回数の前記設定情報に従って、前記MACレイヤでの再送処理を行わない、請求項2に記載の基地局装置。
- 基地局装置と無線通信可能に接続される通信端末装置であって、
前記通信端末装置は、MAC(Medium Access Control)レイヤでのPDU(Protocol Data Unit)の再送回数であるMAC再送回数が0回に設定されたことの情報を、前記基地局装置から受信し、受信した設定情報に従って、前記MACレイヤでの再送処理を行わない、
通信端末装置。 - 通信端末装置と、前記通信端末装置と無線通信可能に接続される基地局装置と、前記通信端末装置と前記基地局装置との間の無線通信を管理する管理装置とを備える通信システムであって、
前記管理装置は、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータを設定し、前記パラメータの設定情報を前記基地局装置に送信し、
前記基地局装置は、前記管理装置から受信した前記パラメータの前記設定情報を、前記通信端末装置に送信し、
前記基地局装置と前記通信端末装置とは、前記パラメータの前記設定情報に従って、無線通信を行う、
通信システム。 - 通信端末装置と基地局装置との間の無線通信を管理する管理装置であって、
前記管理装置は、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータを設定し、前記パラメータの設定情報を前記基地局装置に送信する、
管理装置。 - 通信端末装置と無線通信可能に接続される基地局装置であって、
前記基地局装置は、前記通信端末装置と前記基地局装置との間の無線通信を管理する管理装置から、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方のパラメータの設定情報を受信し、
前記基地局装置は、受信した前記パラメータの前記設定情報を、前記通信端末装置に送信し、
前記基地局装置は、前記パラメータの前記設定情報に従って、前記通信端末装置と無線通信を行う、
基地局装置。 - 基地局装置と無線通信可能に接続される通信端末装置であって、
前記通信端末装置は、前記基地局装置から、無線通信に関するパラメータの設定情報を受信し、
前記無線通信に関するパラメータは、IP(Internet Protocol)パケットの上限サイズと、1つ以上のプロトコルレイヤにおけるペイロードの上限サイズと、のうちの少なくとも一方を含み、
前記通信端末装置は、前記パラメータの前記設定情報に従って、前記基地局装置と無線通信を行う、
通信端末装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/004738 WO2018146771A1 (ja) | 2017-02-09 | 2017-02-09 | 通信システム、基地局装置、通信端末装置および管理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/004738 WO2018146771A1 (ja) | 2017-02-09 | 2017-02-09 | 通信システム、基地局装置、通信端末装置および管理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018146771A1 true WO2018146771A1 (ja) | 2018-08-16 |
Family
ID=63107290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004738 WO2018146771A1 (ja) | 2017-02-09 | 2017-02-09 | 通信システム、基地局装置、通信端末装置および管理装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018146771A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003259014A (ja) * | 2002-02-28 | 2003-09-12 | Ntt Docomo Inc | 通信システム、端末装置及び通信方法 |
JP2004241826A (ja) * | 2003-02-03 | 2004-08-26 | Sony Corp | パケット転送装置 |
WO2006051827A1 (ja) * | 2004-11-09 | 2006-05-18 | Ntt Docomo, Inc. | 移動通信システム、移動局、無線基地局及び無線回線制御局 |
WO2009025282A1 (ja) * | 2007-08-20 | 2009-02-26 | Ntt Docomo, Inc. | 送信方法及び移動局 |
-
2017
- 2017-02-09 WO PCT/JP2017/004738 patent/WO2018146771A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003259014A (ja) * | 2002-02-28 | 2003-09-12 | Ntt Docomo Inc | 通信システム、端末装置及び通信方法 |
JP2004241826A (ja) * | 2003-02-03 | 2004-08-26 | Sony Corp | パケット転送装置 |
WO2006051827A1 (ja) * | 2004-11-09 | 2006-05-18 | Ntt Docomo, Inc. | 移動通信システム、移動局、無線基地局及び無線回線制御局 |
WO2009025282A1 (ja) * | 2007-08-20 | 2009-02-26 | Ntt Docomo, Inc. | 送信方法及び移動局 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6907444B2 (ja) | データ伝送方法、通信デバイス、端末、および基地局 | |
JP4991011B2 (ja) | 無線装置とネットワーク間のデータユニットのシーケンスの送信のための無線通信方法 | |
KR101387475B1 (ko) | 복수의 네트워크 엔터티를 포함하는 이동 통신시스템에서의 데이터 처리 방법 | |
KR101461965B1 (ko) | 무선 통신 시스템의 특정 프로토콜 계층에서의 데이터 블록전송 및 처리 방법 | |
KR101422043B1 (ko) | 무선 통신 시스템에서 릴레이 노드가 기지국과의 연결을 재설정하는 방법 및 이를 위한 장치 | |
US11438799B2 (en) | Method and apparatus for controlling data receiving rate in mobile communication system | |
US20170214459A1 (en) | Method of utilizing a relay node in wireless communication system | |
KR102026725B1 (ko) | 무선 통신 시스템에서 핸드오버 방법 및 장치 | |
US8274950B2 (en) | Method of performing status report in a mobile communication system | |
CN102265700B (zh) | 在无线通信系统中释放无线承载的方法和接收机 | |
KR20180111409A (ko) | Tcp/ip를 고려한 데이터 처리 방법 | |
WO2015018535A1 (en) | Retransmission of protocol data unit via alternate transmission path for dual connectivity wireless network | |
KR20130093774A (ko) | Pdcp 패킷 전송 방법 | |
JP6992086B2 (ja) | 通信方法、無線通信装置、及びプロセッサ | |
CN114503631A (zh) | 用于在支持高可靠性低延迟服务的系统中处理完整性验证失败的方法和装置 | |
JP7549077B2 (ja) | 通信制御方法、ユーザ装置及びプロセッサ | |
KR20210076740A (ko) | 차세대 이동통신 시스템에서 rrc 메시지의 분할 전송과 관련된 타이머 관리 방법 및 장치 | |
TW202226879A (zh) | 降低多分支傳輸中封包延遲的方法和裝置 | |
KR20190053761A (ko) | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 | |
JP7301065B2 (ja) | 無線通信方法及び装置 | |
KR102661184B1 (ko) | 무선 통신 시스템, 송수신 방법, 프로그램, 무선 통신 기지국 장치, 제어 회로 및 제어 방법 | |
KR101617044B1 (ko) | 피어 엔티티의 전송 상태 정보를 이용한 데이터 유닛 재전송 방법 | |
KR101595575B1 (ko) | 이동 통신 시스템에서 데이터 송수신 방법 및 장치 | |
US20240187139A1 (en) | Applying network coding at one or more multicast radio bearer (mrb) paths in a multicast and broadcast service (mbs) system | |
CN111955027B (zh) | 控制移动通信系统中的数据接收速率的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17896093 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17896093 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |