WO2018151114A1 - Antenna for generating plasma, and plasma treatment device and antenna structure provided with antenna for generating plasma - Google Patents
Antenna for generating plasma, and plasma treatment device and antenna structure provided with antenna for generating plasma Download PDFInfo
- Publication number
- WO2018151114A1 WO2018151114A1 PCT/JP2018/004939 JP2018004939W WO2018151114A1 WO 2018151114 A1 WO2018151114 A1 WO 2018151114A1 JP 2018004939 W JP2018004939 W JP 2018004939W WO 2018151114 A1 WO2018151114 A1 WO 2018151114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- antenna
- conductor
- insulating
- dielectric
- Prior art date
Links
- 238000009832 plasma treatment Methods 0.000 title 1
- 239000004020 conductor Substances 0.000 claims abstract description 148
- 239000007788 liquid Substances 0.000 claims abstract description 24
- 238000009413 insulation Methods 0.000 claims abstract description 11
- 239000002826 coolant Substances 0.000 claims description 72
- 230000002093 peripheral effect Effects 0.000 claims description 58
- 238000012545 processing Methods 0.000 claims description 56
- 239000000758 substrate Substances 0.000 claims description 34
- 230000007797 corrosion Effects 0.000 claims description 14
- 238000005260 corrosion Methods 0.000 claims description 14
- 238000007747 plating Methods 0.000 claims description 6
- 238000009616 inductively coupled plasma Methods 0.000 abstract description 11
- 229910052751 metal Inorganic materials 0.000 description 162
- 239000002184 metal Substances 0.000 description 162
- 239000003990 capacitor Substances 0.000 description 57
- 239000000110 cooling liquid Substances 0.000 description 33
- 230000008859 change Effects 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 238000010891 electric arc Methods 0.000 description 9
- 238000003825 pressing Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000004696 Poly ether ether ketone Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920002530 polyetherether ketone Polymers 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 238000004380 ashing Methods 0.000 description 3
- 230000037237 body shape Effects 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920006351 engineering plastic Polymers 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000003685 thermal hair damage Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical class N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
Definitions
- the present invention relates to an antenna for generating an inductively coupled plasma by flowing a high-frequency current, a plasma processing apparatus including the antenna, and an antenna structure.
- a plasma processing apparatus has been proposed in which a high-frequency current is passed through an antenna, an inductively coupled plasma (abbreviated as ICP) is generated by an induced electric field generated by the antenna, and the substrate W is processed using the inductively coupled plasma.
- ICP inductively coupled plasma
- a plurality of metal pipes are connected with a hollow insulator interposed between adjacent metal pipes, and are connected to the outer periphery of the hollow insulator.
- a second electrode that is electrically connected to the first metal pipe and overlaps the first electrode, and a dielectric sheet disposed between the first electrode and the second electrode.
- the above capacitor has a laminated structure of the first electrode, the dielectric sheet, and the second electrode, a gap may be generated between the electrode and the dielectric. If so, there is a possibility of arc discharge occurring in this gap, which may lead to deterioration of the capacitor, so there is room for improvement in the capacitor structure.
- a capacitive element is incorporated in an antenna to reduce the impedance of the antenna, and a gap generated between an electrode constituting the capacitive element and a dielectric is eliminated. Is the main issue.
- the antenna for generating plasma is an antenna for generating plasma by flowing a high-frequency current, and is provided between at least two conductor elements and the conductor elements adjacent to each other.
- An insulating element that insulates the conductive elements; and a capacitive element electrically connected in series with the conductive elements adjacent to each other, wherein the capacitive element is electrically connected to one of the conductive elements adjacent to each other.
- a first electrode and a second electrode electrically connected to the other of the conductor elements adjacent to each other and disposed opposite to the first electrode; the first electrode and the second electrode; And a dielectric filling the space between the electrodes, wherein the dielectric is a liquid.
- the capacitive element is electrically connected in series to the conductor elements adjacent to each other via the insulating element, the combined reactance of the antenna can be simply described as inductive reactance. Since the capacitive reactance is subtracted from the antenna impedance, the antenna impedance can be reduced. As a result, even when the antenna is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna, and plasma can be generated efficiently.
- the space between the first electrode and the second electrode is filled with the liquid dielectric, it is possible to eliminate the gap generated between the electrode constituting the capacitive element and the dielectric. .
- the capacitance value can be accurately set from the distance between the first electrode and the second electrode, the facing area, and the relative dielectric constant of the liquid dielectric without considering the gap.
- the structure for pressing the electrode and the dielectric for filling the gap can be eliminated, and the structure around the antenna due to the pressing structure can be prevented from being complicated and the uniformity of plasma caused thereby can be prevented.
- the insulating element has a tubular shape, and the capacitive element is provided inside the insulating element. desirable.
- the conductor element and the insulating element are formed in a tubular shape, and a coolant is circulated inside the conductor element and the insulating element. Conceivable.
- the cooling liquid is supplied to a space between the first electrode and the second electrode so that the cooling liquid is the dielectric.
- the cooling liquid is adjusted to a constant temperature by a temperature control mechanism.
- this cooling liquid as a dielectric, it is possible to suppress a change in relative permittivity due to a temperature change and suppress a change in capacitance value. Further, when water is used as the coolant, the relative permittivity of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that a capacitive element that can withstand high voltage can be configured. it can.
- each electrode has a flange portion that is in electrical contact with an end portion of the conductor element on the insulating element side, and extends from the flange portion to the insulating element side. It is desirable to have an extension part. If it is this structure, the opposing area between electrodes can be set with an extension part, enlarging a contact area with a conductor element by a flange part.
- the extending portions of the electrodes have a tubular shape and are arranged coaxially with each other. With this configuration, it is possible to generate plasma with good uniformity by making the distribution of the high-frequency current flowing through the conductor element uniform in the circumferential direction while increasing the facing area between the electrodes.
- each electrode is fitted in a recess formed in a side peripheral wall of the insulating element. If it is this structure, the relative position of the extension part of each electrode can be determined by fitting a flange part to the recessed part of an insulation element, and the assembly can be made easy.
- An antenna for generating plasma is an antenna for generating plasma by flowing a high-frequency current, and includes at least two conductor elements, and a first conductor element and a second conductor adjacent to each other.
- An insulating element provided between the elements to insulate them; and a capacitive element electrically connected in series with the first conductive element and the second conductive element, wherein the capacitive element comprises the first conductive element
- the capacitive reactance is electrically connected in series to conductor elements adjacent to each other provided via an insulating element, so the combined reactance of the antenna can be simply described as follows: Since the capacitive reactance is subtracted from the inductive reactance, the impedance of the antenna can be reduced. As a result, even when the antenna is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna, and plasma can be generated efficiently.
- the space between the first electrode and the second electrode is filled with the liquid dielectric, it is possible to eliminate the gap generated between the electrode constituting the capacitive element and the dielectric. .
- the capacitance value can be accurately set from the distance between the first electrode and the second electrode, the facing area, and the relative dielectric constant of the liquid dielectric without considering the gap.
- the structure for pressing the electrode and the dielectric for filling the gap can be eliminated, and the structure around the antenna due to the pressing structure can be prevented from being complicated and the uniformity of plasma caused thereby can be prevented.
- the second electrode is opposed to the first electrode by extending from the second conductor element side to the first conductor element side through the inside of the insulating element, the extension dimension can be changed. Capacitance values necessary for the capacitive element can be easily obtained.
- the first electrode has a tubular shape, and the second electrode extends into the internal space of the first electrode.
- the structure which has is mentioned.
- the distance between the inner peripheral surface of the first electrode and the outer peripheral surface of the extending portion is constant along the circumferential direction.
- each conductor element has a tubular shape and a coolant is circulated inside each conductor element.
- the coolant flowing inside the first conductor element flows between the first electrode and the second electrode, functions as the dielectric, and is formed on the second electrode. It is desirable to be configured so as to be led into the second electrode from the one or more through holes thus formed and to flow out into the second conductor element.
- the cooling liquid is adjusted to a constant temperature by a temperature control mechanism.
- this cooling liquid as a dielectric, it is possible to suppress a change in relative permittivity due to a temperature change and suppress a change in capacitance value. Further, when water is used as the coolant, the relative permittivity of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that a capacitive element that can withstand high voltage can be configured. it can.
- the second electrode can be reduced in order to reduce the resistance to the flow of the coolant. It is preferable that one or a plurality of grooves that extend along the flow direction of the coolant is formed in communication with the through hole.
- each of the electrodes has a corrosion-resistant layer on at least the surfaces of the electrodes facing each other.
- the corrosion-resistant layer is a plating film or a surface oxide film of the first electrode and the second electrode.
- the plasma processing apparatus includes a vacuum container that is evacuated and into which a gas is introduced, an antenna that is disposed inside or outside the vacuum container, and a high-frequency power source that supplies a high-frequency current to the antenna. And the substrate is processed using plasma generated by the antenna, and the antenna has the above-described configuration. According to this plasma processing apparatus, plasma with good uniformity can be efficiently generated by the antenna described above, so that the uniformity and efficiency of substrate processing can be improved.
- both ends of the antenna extend out of the vacuum container, and in the adjacent antennas, the end of one antenna and the end of the other antenna are electrically connected by a connecting conductor.
- a connecting conductor it is desirable that high frequency currents in opposite directions flow through the antennas adjacent to each other.
- connection conductor has a flow path inside, and a coolant flows through the flow path.
- a coolant flows inside the conductor element and the insulating element, and in the antennas adjacent to each other, the coolant that flows through one of the antennas flows to the other antenna through the flow path of the connection conductor. It is desirable that With this configuration, both the antenna and the connection conductor can be cooled by a common coolant. In addition, since a plurality of antennas can be cooled by a single flow path, the configuration of the circulation flow path for circulating the coolant can be simplified. In addition, when the flow path of the antenna and the flow path of the connection conductor become long, the lowering of the dielectric constant on the downstream side may occur due to the rise of the coolant. For this reason, the number of antennas connected by the connection conductor is set in consideration of the temperature rise of the coolant, and for example, the number of antennas is about four.
- connection conductor includes one conductor portion connected to one of the antennas adjacent to each other, and the other conductor portion connected to the other antenna, It is desirable to have a capacitive element electrically connected in series to the one conductor part and the other conductor part.
- a configuration in which an insulating cover for covering the antenna is provided may be used for the purpose of suppressing the charged particles in the plasma from entering a conductor element constituting the antenna.
- the antenna is lengthened due to the configuration of the antenna, the antenna is bent, and the insulating element comes into contact with the insulating cover that is heated by plasma.
- the insulating element is made of resin, the problem of thermal damage becomes particularly significant.
- a convex portion protruding toward the insulating cover is formed on the outer peripheral surface of at least one of the first conductor element or the second conductor element. desirable.
- the convex portion is formed continuously or intermittently over the entire circumferential direction of the outer peripheral surface. Also, with this configuration, the contact area between the convex portion and the insulating cover can be increased, and the load on the insulating cover can be dispersed.
- the convex portion is formed at a position adjacent to the insulating element on the outer peripheral surfaces of the first conductor element and the second conductor element. It is desirable that
- the antenna structure according to the present invention includes the antenna described above and an insulating cover that covers the antenna, and the insulating cover is provided on at least one outer peripheral surface of the first conductor element or the second conductor element. A convex portion protruding toward the surface is formed.
- a plasma processing apparatus includes a processing chamber that is evacuated and into which a gas is introduced, an antenna according to any one of claims 1 to 6 disposed outside the processing chamber, and a high-frequency wave to the antenna.
- a high-frequency power source for supplying a current, and configured to perform processing on the substrate in the processing chamber using plasma generated by the antenna.
- conditions such as the pressure of the processing chamber and conditions such as the pressure of the antenna chamber in which the antenna is disposed can be individually controlled, and plasma can be generated efficiently, and the substrate Can be processed efficiently.
- a plurality of the antennas are provided, and in the antennas adjacent to each other, one end of the antenna and the other end of the antenna Are preferably electrically connected by a connecting conductor so that high-frequency currents in opposite directions flow through the adjacent antennas.
- the antenna structure according to the present invention further includes an antenna for generating a plasma when a high-frequency current is passed, and an insulating cover that covers the antenna, and the antenna is adjacent to at least two conductor elements.
- An insulating element provided between the first conductor element and the second conductor element to insulate them; and a capacitive element electrically connected in series with the first conductor element and the second conductor element
- the capacitive element is electrically connected to one of the conductor elements adjacent to each other and electrically connected to the other of the conductor elements adjacent to each other, and the first electrode
- a dielectric that fills a space between the first electrode and the second electrode, the dielectric being a liquid, and the first conductor element Or the second At least one outer circumferential surface of the conductor elements, characterized in that the protrusion protruding toward the insulating cover is formed.
- the impedance of the antenna can be reduced by incorporating the capacitive element into the antenna, and the gap generated between the electrode and the dielectric constituting the capacitive element can be eliminated. Can be generated efficiently.
- the plasma processing apparatus 100 of this embodiment performs processing on the substrate W using inductively coupled plasma P.
- substrate W is a board
- the processing applied to the substrate W is, for example, film formation by plasma CVD, etching, ashing, sputtering, or the like.
- the plasma processing apparatus 100 is a plasma CVD apparatus when a film is formed by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed. be called.
- the plasma processing apparatus 100 includes a vacuum vessel 2 that is evacuated and into which a gas 7 is introduced, a linear antenna 3 that is disposed in the vacuum vessel 2, and a vacuum vessel 2. And a high frequency power source 4 for applying a high frequency for generating the inductively coupled plasma P to the antenna 3.
- a high frequency is applied to the antenna 3 from the high frequency power source 4
- a high frequency current IR flows through the antenna 3
- an induction electric field is generated in the vacuum chamber 2, and inductively coupled plasma P is generated.
- the vacuum vessel 2 is a metal vessel, for example, and the inside thereof is evacuated by the evacuation device 6.
- the vacuum vessel 2 is electrically grounded in this example.
- the gas 7 is introduced into the vacuum vessel 2 through, for example, a flow rate regulator (not shown) and a plurality of gas inlets 21 arranged in a direction along the antenna 3.
- the gas 7 may be made in accordance with the processing content applied to the substrate W.
- the gas 7 is a source gas or a gas obtained by diluting it with a diluent gas (for example, H 2 ). More specifically, when the source gas is SiH 4 , the Si film is formed, when SiH 4 + NH 3 is used, the SiN film is formed, when SiH 4 + O 2 is used, the SiO 2 film is formed, and when SiF 4 + N 2 is used, the SiN film is formed.
- F films fluorinated silicon nitride films
- a substrate holder 8 for holding the substrate W is provided in the vacuum vessel 2.
- a bias voltage may be applied to the substrate holder 8 from the bias power supply 9.
- the bias voltage is, for example, a negative DC voltage, a negative bias voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W.
- a heater 81 for heating the substrate W may be provided in the substrate holder 8.
- the antenna 3 is arranged above the substrate W in the vacuum container 2 so as to be along the surface of the substrate W (for example, substantially parallel to the surface of the substrate W).
- the number of antennas 3 arranged in the vacuum vessel 2 may be one or plural.
- the vicinity of both end portions of the antenna 3 passes through opposite side walls of the vacuum vessel 2.
- Insulating members 11 are respectively provided at portions where both ends of the antenna 3 penetrate outside the vacuum vessel 2. Both end portions of the antenna 3 pass through the insulating members 11, and the through portions are vacuum-sealed by, for example, packing 12. Each insulating member 11 and the vacuum vessel 2 are also vacuum-sealed by, for example, packing 13.
- the insulating member 11 is made of, for example, ceramics such as alumina, quartz, engineering plastics such as polyphenine sulfide (PPS), polyether ether ketone (PEEK), or the like.
- a portion of the antenna 3 located in the vacuum vessel 2 is covered with a straight tubular insulating cover 10. Both ends of the insulating cover 10 are supported by insulating members 11. In addition, it is not necessary to seal between the both ends of the insulating cover 10 and the insulating member 11. This is because even if the gas 7 enters the space in the insulating cover 10, the space P is small and the electron moving distance is short, so that plasma P is not normally generated in the space.
- the material of the insulating cover 10 is, for example, quartz, alumina, fluororesin, silicon nitride, silicon carbide, silicon or the like.
- the insulating cover 10 By providing the insulating cover 10, it is possible to prevent charged particles in the plasma P from entering the metal pipe 31 constituting the antenna 3, so that charged particles (mainly electrons) enter the metal pipe 31. An increase in plasma potential can be suppressed, and metal contamination (metal contamination) on the plasma P and the substrate W caused by sputtering of the metal pipe 31 by charged particles (mainly ions) can be suppressed. .
- a high-frequency power source 4 is connected to a feeding end 3a that is one end of the antenna 3 via a matching circuit 41, and a termination 3b that is the other end is directly grounded.
- the terminal end 3b may be grounded via a capacitor or a coil.
- the high-frequency current IR can flow from the high-frequency power source 4 to the antenna 3 through the matching circuit 41.
- the high frequency is, for example, a general 13.56 MHz, but is not limited thereto.
- the antenna 3 has a hollow structure having a flow path through which the coolant CL flows. Specifically, as shown in FIG. 2, the antenna 3 is provided between at least two tubular metal conductor elements 31 (hereinafter referred to as “metal pipes 31”) and metal pipes 31 adjacent to each other. In addition, a tubular insulating element 32 (hereinafter referred to as “insulating pipe 32”) that insulates the metal pipes 31 and a capacitor 33 that is a capacitive element electrically connected in series with the adjacent metal pipes 31 are provided. ing.
- the number of metal pipes 31 is two, and the number of insulating pipes 32 and capacitors 33 is one each.
- one metal pipe 31 is also referred to as “first metal pipe 31A”, and the other metal pipe is also referred to as “second metal pipe 31B”.
- the antenna 3 may have a configuration including three or more metal pipes 31. In this case, the number of the insulating pipes 32 and the capacitors 33 is one less than the number of the metal pipes 31. Become.
- the coolant CL circulates through the antenna 3 through a circulation channel 14 provided outside the vacuum vessel 2, and the circulation channel 14 has heat for adjusting the coolant CL to a constant temperature.
- a temperature control mechanism 141 such as an exchanger and a circulation mechanism 142 such as a pump for circulating the coolant CL in the circulation flow path 14 are provided.
- the cooling liquid CL high resistance water is preferable from the viewpoint of electrical insulation, for example, pure water or water close thereto is preferable.
- a liquid refrigerant other than water such as a fluorine-based inert liquid, may be used.
- the metal pipe 31 has a straight tube shape in which a linear flow path 31x in which the cooling liquid CL flows is formed. And the external thread part 31a is formed in the outer peripheral part of the longitudinal direction at least one end part of the metal pipe 31. As shown in FIG. Although the metal pipe 31 of this embodiment forms the edge part in which the external thread part 31a was formed, and other members by separate parts, they may be joined, but you may form from a single member. In order to make the parts common with the configuration in which the plurality of metal pipes 31 are connected, it is desirable that the male pipe portions 31a be formed at both ends in the longitudinal direction of the metal pipe 31 so as to be compatible.
- the material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.
- the insulating pipe 32 has a straight tube shape in which a linear flow path 32x in which the cooling liquid CL flows is formed. Then, on the side peripheral walls at both ends in the axial direction of the insulating pipe 32, female screw portions 32 a that are screwed and connected to the male screw portion 31 a of the metal pipe 31 are formed. Moreover, the recessed part 32b for fitting each electrode 33A, 33B of the capacitor
- PE polyethylene
- PPS polyphenine
- the capacitor 33 is provided inside the insulating pipe 32. Specifically, the capacitor 33 is provided in the flow path 32x through which the coolant CL of the insulating pipe 32 flows.
- the capacitor 33 includes a first electrode 33A electrically connected to one of the adjacent metal pipes 31 (first metal pipe 31A) and the other of the adjacent metal pipes 31 (second metal).
- each of the electrodes 33A and 33B has a substantially rotating body shape, and a main flow path 33x is formed at the center along the central axis.
- each of the electrodes 33A and 33B includes a flange portion 331 that electrically contacts an end portion of the metal pipe 31 on the insulating pipe 32 side, and an extending portion 332 that extends from the flange portion 331 to the insulating pipe 32 side. have.
- the flange portion 331 and the extension portion 332 may be formed from a single member, or may be formed by separate parts and joined together.
- the material of the electrodes 33A and 33B is, for example, aluminum, copper, or an alloy thereof.
- the flange portion 331 is in contact with the end portion of the metal pipe 31 on the insulating pipe 32 side over the entire circumferential direction. Specifically, the axial end surface of the flange portion 331 contacts the tip end surface of a cylindrical contact portion 311 formed at the end portion of the metal pipe 31 over the entire circumferential direction, and the contact portion of the metal pipe 31. Electrical contact is made with the end surface of the metal pipe 31 via a ring-shaped multi-face contact 15 provided on the outer periphery of 311. The flange portion 331 may be in electrical contact with the metal pipe 31 by any one of them.
- a plurality of through holes 331h are formed in the flange portion 331 in the thickness direction.
- the extending portion 332 has a cylindrical shape, and a main flow path 33x is formed therein.
- the extension part 332 of the first electrode 33A and the extension part 332 of the second electrode 33B are arranged coaxially with each other. That is, the extension part 332 of the second electrode 33B is provided in a state of being inserted into the extension part 332 of the first electrode 33A. Thereby, a cylindrical space along the flow path direction is formed between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B.
- the electrodes 33A and 33B configured in this way are fitted in a recess 32b formed on the side peripheral wall of the insulating pipe 32.
- the first electrode 33A is fitted in the recess 32b formed on one end side in the axial direction of the insulating pipe 32
- the second electrode is inserted in the recess 32b formed on the other end side in the axial direction of the insulating pipe 32.
- 33B is fitted.
- each electrode 33A, 33B when the end face of the flange portion 331 of each electrode 33A, 33B is in contact with the surface facing the axially outer side of each recess 32b, the extension portion of the second electrode 33B with respect to the extension portion 332 of the first electrode 33A An insertion dimension of 332 is defined.
- the electrodes 33A and 33B are fitted into the recesses 32b of the insulating pipe 32, and the male threaded portion 31a of the metal pipe 31 is screwed into the female threaded portion 32a of the insulating pipe 32, whereby the contact portion of the metal pipe 31 is contacted.
- the tip surface of 311 comes into contact with the flange portion 331 of the electrodes 33A and 33B, and the electrodes 33A and 33B are sandwiched and fixed between the insulating pipe 32 and the metal pipe 31.
- the antenna 3 according to this embodiment has a structure in which the metal pipe 31, the insulating pipe 32, the first electrode 33A, and the second electrode 33B are coaxially arranged.
- connection part of the metal pipe 31 and the insulation pipe 32 has a seal structure with respect to the vacuum and the coolant CL.
- the seal structure of the present embodiment is realized by a seal member 16 such as packing provided at the proximal end portion of the male screw portion 31a.
- the coolant CL flows from the first metal pipe 31A
- the coolant CL flows to the second electrode 33B side through the main channel 33x and the through hole 331h of the first electrode 33A.
- the coolant CL that has flowed to the second electrode 33B side flows to the second metal pipe 31B through the main flow path 33x and the through hole 331h of the second electrode 33B.
- the cylindrical space between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B is filled with the cooling liquid CL, and the cooling liquid CL becomes a dielectric and becomes a capacitor. 33 is configured.
- the electrodes 33A and 33B constituting the capacitor 33 and the dielectric It is possible to eliminate gaps between the bodies. As a result, arc discharge that can occur in the gap between the electrodes 33A and 33B and the dielectric can be eliminated, and damage to the capacitor 33 due to arc discharge can be eliminated. Further, the distance between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B, the facing area, and the relative dielectric of the liquid dielectric (cooling liquid CL) without considering the gap. The capacitance value can be accurately set from the rate.
- the structure for pressing the electrodes 33A and 33B and the dielectric for filling the gaps can be eliminated, and the structure around the antenna due to the pressing structure and the deterioration of the uniformity of the plasma P caused thereby can be prevented. be able to.
- the cooling liquid CL is normally adjusted to a constant temperature by the temperature adjustment mechanism 141.
- the change in the dielectric constant due to the temperature change is suppressed, and the change in the capacitance value is suppressed. Can be suppressed.
- the relative dielectric constant of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that the capacitor 33 that can withstand high voltage is formed. Can do.
- the capacitor 33 can obtain a sufficient capacitance value even if the capacitor 33 has a two-cylinder structure including two extending portions 332. Therefore, each electrode 33A, 33B can be manufactured while the perpendicularity of the extending part 332 with respect to the flange part 331 of each electrode 33A, 33B is improved, and the capacitance value can be set with high accuracy.
- impurities may be mixed in by electrolysis of water, but it can be removed by providing a filter such as an ion exchange membrane filter on the circulation channel 14, and the capacitance value of the capacitor 33 changes. Can be suppressed.
- the capacitor 33 has a two-cylinder structure including two cylindrical extending portions.
- three or more cylindrical extending portions 332 are coaxially arranged. It may be arranged.
- the extending part 332 of the first electrode 33A and the extending part 332 of the second electrode 33B are arranged alternately.
- the inner and outer two are the extending portions 332 of the first electrode 33A, and the middle one is the extending portion 332 of the second electrode 33B.
- a part of the tip corner portion 332a of the extension portion 332 is cut into a taper shape so as to alleviate electric field concentration at the tip corner portion of the extension portion 332 serving as the counter electrode of the capacitor 33. May be missing.
- the inner peripheral surface of the tip corner portion 332a of the extension portion 332 of the first electrode 33A is cut out in a tapered shape
- the outer peripheral surface of the tip corner portion 332a of the extension portion 332 of the second electrode 33B Cut out into a tapered shape.
- the contact between the electrodes 33A and 33B and the metal pipe 31 is not limited to the contact between the end faces, but the contact terminals 333 are provided on the electrodes 33A and 33B as shown in FIG. You may comprise so that it may contact.
- a contact terminal 333 protruding outward in the axial direction from the flange portion 331 of the electrodes 33 ⁇ / b> A and 33 ⁇ / b> B is provided, and the contact terminal 333 is in press contact with the outer peripheral surface of the contact portion 311 of the metal pipe 31. is there.
- the relative positions of the electrodes 33A and 33B are defined by the surface of the insulating pipe 32 facing the outside in the axial direction of the recess 32b.
- the capacitor is housed in the insulating pipe.
- the capacitor may be provided outside the insulating pipe.
- the first electrode and the second electrode constituting the capacitor are provided on the outer periphery of the insulating pipe, and a liquid dielectric is filled between the electrodes.
- the first electrode and the second electrode may be electrically connected to the metal pipe while the electrodes are separated from the insulating pipe.
- the liquid dielectric may be a coolant supplied by a branch flow path branched from the internal flow path of the antenna, or may be a liquid dielectric supplied by a separate path from the coolant. There may be.
- a liquid dielectric may be sealed between the first electrode and the second electrode. In the case of sealing, it is necessary to provide a temperature adjustment mechanism for adjusting the temperature of the dielectric material of the liquid to be constant.
- the plasma processing apparatus 100 of the second embodiment differs from the first embodiment in the configuration of the antenna 3, particularly the configuration of the capacitor 33.
- the antenna 3 has a hollow structure having a flow path through which the coolant CL flows. Specifically, as shown in FIG. 6, the antenna 3 is provided between at least two tubular metal conductor elements 31 (hereinafter referred to as “metal pipes 31”) and metal pipes 31 adjacent to each other. In addition, a tubular insulating element 32 (hereinafter referred to as “insulating pipe 32”) that insulates the metal pipes 31 and a capacitor 33 that is a capacitive element electrically connected in series with the adjacent metal pipes 31 are provided. ing.
- the number of metal pipes 31 is two, and the number of insulating pipes 32 and capacitors 33 is one each.
- one metal pipe 31 is also referred to as “first metal pipe 31A”, and the other metal pipe 31 is also referred to as “second metal pipe 31B”.
- the first metal pipe 31A is the metal pipe 31 disposed on the upstream side in the flow direction of the coolant CL
- the second metal pipe 31B is the metal disposed on the downstream side in the flow direction of the coolant CL.
- the first metal pipe 31A and the second metal pipe 31B have the same outer diameter and inner diameter, and are arranged coaxially.
- the outer diameter and inner diameter of the metal pipe 31 may be appropriately changed, and the arrangement is not necessarily coaxial.
- the antenna 3 may have a configuration including three or more metal pipes 31, and in this case, the number of the insulation pipes 32 and the capacitors 33 is one less than the number of the metal pipes 31.
- the metal pipe 31 has a straight tube shape in which a linear flow path 31x in which the cooling liquid CL flows is formed.
- the material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.
- the insulating pipe 32 has a straight tube shape in which a linear flow path 32x in which the cooling liquid CL flows is formed.
- the insulating pipe 32 of the present embodiment has the same outer diameter as the metal pipe 31 and is arranged coaxially with the metal pipe 31.
- the insulating pipe 32 is formed of a single member.
- the material of the insulating pipe 32 is, for example, alumina, fluorine resin, polyethylene (PE), engineering plastic (for example, polyphenine sulfide (PPS), polyether ether ketone (PEEK). ) Etc.).
- the dimensions, arrangement, and members of the insulating pipe 32 are not limited to the above.
- the capacitor 33 is interposed between the first metal pipe 31A and the second metal pipe 32B, and the flow path 31x of the first metal pipe 31A and the flow path 31x of the second metal pipe 31B are disposed therein.
- the main flow path 33x which connects is formed.
- the capacitor 33 is electrically connected to the first metal pipe 31A, the first electrode 33A disposed on the first metal pipe 31A side from the insulating pipe 32, and the second metal pipe 31B.
- a second electrode that is electrically connected extends from the second metal pipe 31B side through the inside of the insulating pipe 32 to the first metal pipe 31A side, and is disposed to face the first electrode 33A. 33B, and the cooling liquid CL fills the space S between the first electrode 33A and the second electrode 33B. That is, the coolant CL flowing through the space S between the first electrode 33A and the second electrode 33B becomes a dielectric that constitutes the capacitor 33.
- the first electrode 33 ⁇ / b> A and the first metal pipe 31 ⁇ / b> A are formed by screwing a male screw portion formed at one axial end portion and a female screw portion formed at the other axial end portion. Are connected to each other.
- the male screw portion 31a is formed on the inner peripheral portion at the axial end portion of the first metal pipe 31A
- the female screw portion 33a is formed on the outer peripheral portion at the axial end portion of the first electrode 33A.
- the second electrode 33B and the second metal pipe 31B are formed by screwing a male screw portion formed at one axial end portion and a female screw portion formed at the other axial end portion. It is comprised so that it may mutually connect.
- the external thread portion 31a is formed at the outer peripheral portion at the axial end portion of the second metal pipe 31B
- the internal thread portion 33a is formed at the inner peripheral portion at the axial end portion of the second electrode 33B.
- Each of the electrodes 33A and 33B has a substantially rotating body shape, and a main flow path 33x is formed at the center along the central axis.
- Each of the electrodes 33A and 33B here has a tubular shape and is provided without protruding outward from the metal pipe 31 when viewed from the axial direction.
- the materials of the electrodes 33A and 33B are, for example, aluminum, copper, and alloys thereof.
- each of the electrodes 33A and 33B is screwed into the metal pipe 31 to come into contact with and electrically connect to the end of the metal pipe 31 on the insulating pipe 32 side, and from the contact portion 331 And an extending portion 332 extending to the insulating pipe 32 side.
- the contact part 331 and the extension part 332 may be formed from a single member, or may be formed by separate members and joined to each other.
- the contact portion 331 is in contact with the end portion of the metal pipe 31 on the insulating pipe 32 side over the entire circumferential direction.
- the contact portion 331 has a cylindrical shape, and its axial end surface is in contact with the tip end surface of the cylindrical contacted portion 311 formed at the end portion of the metal pipe 31 over the entire circumferential direction.
- the outer diameter of the contact portion 331 is equal to or smaller than the outer diameter of the metal pipe 31 and is the same as the outer diameter of the metal pipe 31 here.
- the contact portion 331 is in electrical contact with the end surface of the metal pipe 31 through the ring-shaped multi-face contact 15 provided between the contact portion 311.
- a seal structure for vacuum and the coolant CL is interposed between the contact portion 331 and the contacted portion 311.
- the seal structure of the present embodiment is realized by a seal member 16 such as an O-ring provided between the contact portion 331 and the contacted portion 311.
- the extending portion 332 has a cylindrical shape, and a main flow path 33x is formed therein.
- the extension part 332 of the first electrode 33A (hereinafter referred to as “first extension part 332A”) and the extension part 332 of the second electrode 33B (hereinafter referred to as “second extension part 332B”) As shown in FIG. 6, a double cylinder structure is formed in which the first extending portion 332A is disposed on the outside and the second extending portion 332B is disposed on the inside. .
- the first extending portion 332A is provided between the contact portion 331 of the first electrode 33A and the insulating pipe 32, and its proximal end is joined to the contact portion 331, and the distal end The part is fixed to the insulating pipe 32. More specifically, the axial end portion of the contact portion 331 on the insulating pipe 32 side is formed with a notch portion 331a in which the outer peripheral portion is notched in the circumferential direction, and the outer diameter is smaller than other portions. The base end portion of the first extending portion 332A is configured to fit into the cutout portion 331a.
- the axial end of the insulating pipe 32 on the first metal pipe 31A side is formed with an outer peripheral cutout portion 32a in which the outer peripheral portion is cut out in the circumferential direction, and the outer diameter is smaller than other portions.
- the distal end portion of the first extending portion 332A is configured to fit into the outer circumferential cutout portion 32a. That is, the inner diameter of the first extending portion 332A is the same as or slightly larger than the outer diameter of the axial end portion of the contact portion 331 on the insulating pipe 32 side, and the shaft of the insulating pipe 32 on the first metal pipe 31A side. Same or slightly larger than the outer diameter of the direction end.
- the outer diameter of the first extending portion 332A is designed to be equal to or smaller than the outer diameter of the metal pipe 31, and is the same as the outer diameter of the metal pipe 31 here.
- the base end portion of the first extension portion 332A and the contact portion 331 are joined by, for example, welding M, and the tip portion of the first extension portion 332A and the insulating pipe 32 are fixed by, for example, brazing B or the like.
- the joining method and the fixing method are not limited to this.
- the second extension portion 332B extends from the second metal pipe 31B side to the first metal pipe 31A side through the inside of the insulating pipe 32, and doubles together with the first extension portion 332A.
- a straight pipe element 334 extending from the tip of the reduced diameter element 333 to the first metal pipe 31A side through the inside of the insulating pipe 32.
- the reduced diameter element 333 and the straight pipe element 334 may be formed of a single member, or may be formed of separate parts and joined by welding or the like.
- the diameter-reducing element 333 is configured such that at least the outer diameter decreases stepwise or gradually decreases from the proximal end portion toward the distal end portion, and here, the outer diameter and the inner diameter decrease in a stepwise manner.
- the diameter reducing element 333 has a proximal end joined to the contact portion 331 and a distal end fixed to the insulating pipe 32. More specifically, as described above, the axial end portion of the contact portion 331 on the insulating pipe 32 side is formed with a notch portion 331a in which the outer peripheral portion is notched in the circumferential direction, and has an outer diameter larger than that of the other portions.
- the base portion of the reduced diameter element 333 is fitted to the notch 331a.
- the axial end of the insulating pipe 32 on the second metal pipe 31B side is formed with an inner peripheral cutout portion 32b in which the inner peripheral portion is cut out in the circumferential direction, and the inner diameter is smaller than other portions.
- the distal end portion of the diameter-reducing element 333 is configured to fit into the inner peripheral cutout portion 32b. That is, the inner diameter of the proximal end portion of the reduced diameter element 333 is the same as or slightly larger than the outer diameter of the axial end portion of the contact portion 331 on the insulating pipe 32 side, and the outer diameter of the distal end portion of the reduced diameter element 333 is the insulating pipe. 32 is the same as or slightly smaller than the inner diameter of the axial end on the first metal pipe side.
- the outer diameter of the proximal end portion of the reduced diameter element 333 is designed to be equal to or smaller than the outer diameter of the metal pipe 31, and is the same as the outer diameter of the metal pipe 31 here.
- the proximal end portion and the contact portion 331 of the reduced diameter element 333 are joined by, for example, welding M, and the distal end portion of the reduced diameter element 333 and the insulating pipe 32 are fixed by, for example, brazing B.
- the method and the fixing method are not limited to this.
- the straight pipe element 334 is provided in a state of extending from the distal end portion of the diameter-reducing element 333 to the first metal pipe 31A side and passing through the inside of the insulating pipe 32 and inserted into the first extension portion 332A. Yes. Thereby, a cylindrical space S along the flow path direction is formed between the straight pipe element 334 and the first extending portion 332A.
- the straight pipe element 334 has an outer diameter smaller than the inner diameter of the insulating pipe 32 and the inner diameter of the first extension portion 332A, and is arranged coaxially with the first extension portion 332A. Thereby, the distance between the inner peripheral surface of the first extending portion 332A and the outer peripheral surface of the straight pipe element 334 is constant along the circumferential direction.
- tube element 334 is made into the same dimension as the internal diameter of the front-end
- the straight pipe element 334 is formed with a plurality of through holes 332h penetrating the peripheral wall in the thickness direction. Specifically, these through holes 332 h are formed along the flow direction of the cooling liquid CL so as to face at least a part of the inner peripheral surface of the insulating pipe 32, and between the straight pipe element 334 and the insulating pipe 32. The space communicates with the main flow path 33x of the second electrode 33B. These through holes 332h are provided at equal intervals in the circumferential direction, and are provided between the proximal end of the straight pipe element 334 and the distal end of the first extending portion 332A along the axial direction.
- the front end surface of the contacted portion 311 of the metal pipe 31 is formed by screwing the male screw portion 31a of the metal pipe 31 with the female screw portion 33a of each of the electrodes 33A and 33B. Is in contact with the contact portion 331 of the electrodes 33A and 33B, and the space between the electrodes 33A and 33B is sealed by the seal member 16, and the electrodes 33A and 33B are arranged coaxially with each other, and the first electrode 33A extends.
- the insertion dimension of the extended portion 332B of the second electrode 33B with respect to the extended portion 332A is defined.
- the seal between the metal pipe 31 and the insulating pipe 32, the electrical contact between the metal pipe 31 and each electrode 33A, 33B, and the arrangement of each electrode 33A, 33B are the same as those of the male screw portion 31a and the female screw portion 33a. Since it is performed together with the fastening, the assembling work becomes very simple.
- the capacitor 33 is configured. ⁇ Effects of Second Embodiment> According to the plasma processing apparatus 100 of the second embodiment configured as described above, the capacitor 33 is electrically connected in series to the metal pipes 31 adjacent to each other via the insulating pipe 32, so that the combined reactance of the antenna 3 is In short, since the capacitive reactance is subtracted from the inductive reactance, the impedance of the antenna 3 can be reduced. As a result, even when the antenna 3 is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna 3, and inductively coupled plasma P can be generated efficiently.
- the electrodes 33A, 33B constituting the capacitor 33 and A gap generated between the dielectrics can be eliminated.
- arc discharge that can occur in the gap between the electrodes 33A and 33B and the dielectric can be eliminated, and damage to the capacitor 33 due to arc discharge can be eliminated.
- the distance between the extending portion 332A of the first electrode 33A and the extending portion 332B of the second electrode 33B, the facing area, and the relative dielectric of the liquid dielectric (cooling liquid CL) can be considered without considering the gap.
- the capacitance value can be accurately set from the rate.
- the structure for pressing the electrodes 33A and 33B and the dielectric for filling the gaps can be eliminated, and the structure around the antenna due to the pressing structure and the deterioration of the uniformity of the plasma P caused thereby can be prevented. be able to.
- the second electrode 33B extends from the second metal pipe 31B side to the first metal pipe 31A side through the inside of the insulating pipe 32, the second electrode 33B is opposed to the first electrode 33A. A capacitance value necessary for the capacitor 33 can be easily obtained by changing the dimensions.
- the cooling liquid CL is normally adjusted to a constant temperature by the temperature adjustment mechanism 141.
- the change in the dielectric constant due to the temperature change is suppressed, and the change in the capacitance value is suppressed. Can be suppressed.
- the relative dielectric constant of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that the capacitor 33 that can withstand high voltage is formed. Can do.
- the capacitor 33 can obtain a sufficient capacitance value even if the capacitor 33 has a double cylinder structure including the two extending portions 332A and 332B. Furthermore, the capacitance value can be set with high accuracy by manufacturing each of the electrodes 33A and 33B while improving the verticality of the extending portion 332 with respect to the contact portion 331 of each of the electrodes 33A and 33B. In addition, there is a possibility that impurities may be mixed in by electrolysis of water, but it can be removed by providing a filter such as an ion exchange membrane filter on the circulation channel 14, and the capacitance value of the capacitor 33 changes. Can be suppressed.
- the distance between the inner peripheral surface of the first extending portion 332A and the outer peripheral surface of the second extending portion 332B (more specifically, the outer peripheral surface of the straight pipe element 334) is constant along the circumferential direction. Therefore, the distribution of the high-frequency current flowing through the metal pipe 31 can be made uniform in the circumferential direction, and plasma with good uniformity can be generated.
- the second electrode 33B has a tubular shape, and the main flow path 33x is formed from the first metal pipe 31A side to the second metal pipe 31B side.
- the second electrode 33B may be one in which the main flow path 33x is formed on the second metal pipe 31B side and the first metal pipe 31A side is solid.
- the second electrode 33B communicates with the through hole 332h and extends along the flow direction of the coolant CL.
- a groove 332g is preferably formed.
- the groove 332 g is a bottomed groove provided in each through hole 332 h and extending in the axial direction, and is formed so that the opening faces the inner peripheral surface of the insulating pipe 32.
- the tip end corner portion 332c of the second extending portion 332B is tapered (conical) so as to alleviate the electric field concentration at the tip end corner portion 332c of the second electrode 33B. good.
- the flow path resistance of the coolant CL is increased compared to the case where the second electrode 33B is tubular.
- the second electrode 33B thinner.
- the distance between the inner peripheral surface of the first electrode 33A and the outer peripheral surface of the second electrode 33B becomes longer.
- the capacitance value of the capacitor 33 becomes small, and there is a possibility that the capacitor 33 cannot withstand a high voltage. Therefore, in order to secure the capacitance value necessary for the capacitor 33 while reducing the flow path resistance of the coolant CL by the second electrode 33B, the first electrode 33A has the second electrode as shown in FIG.
- a throttle portion 335 formed at a position facing the electrode 33B and having a smaller inner diameter.
- the throttle portion 335 is formed in the first electrode 33A. The distance between the outer peripheral surface of the first electrode 33A and the inner peripheral surface of the second electrode 33B can be shortened, and the capacitance value necessary for the capacitor 33 can be ensured.
- the communication hole 332h is provided along the axial direction from the proximal end of the straight pipe element 334 to the distal end of the first extending portion 332A, but as shown in FIG. Further, the through hole 332h may be provided beyond the tip of the first extending portion 332A along the axial direction, and although not shown, the through hole 332h does not extend to the base end of the straight pipe element 334. You may stay in front.
- the first electrode 33A is a separate member from the metal pipe 31
- the first electrode 33A is formed from a part of the metal pipe 31 as shown in FIG. It may be.
- the end of the first metal pipe 31A in the axial direction extends to the insulating pipe 32 side, and the second electrode 33B passes through the inside of the insulating pipe 32 from the second metal pipe 31B side.
- the structure extended to the inside of this metal pipe 31A is mentioned.
- the axial end of the first metal pipe 32 is fixed to the insulating pipe 32.
- the first metal pipe 31A side of the insulating pipe 32 is the same as in the above embodiment.
- An outer peripheral notch 32a having an outer peripheral portion cut out in the circumferential direction is formed at the axial end, and the axial end of the first metal pipe 31A is fitted into the outer peripheral notch 32a, for example, brazing B.
- the method of fixing by etc. is mentioned. With such a configuration, the portion of the first metal pipe 31A facing the second electrode can be made to function as the first electrode 33A, and the same effect as the above embodiment while reducing the number of parts. Can be obtained.
- the metal pipe 31 disposed on the upstream side in the flow direction of the cooling liquid CL is defined as the first metal pipe 31A, and the metal pipe 31 disposed on the downstream side in the flow direction of the cooling liquid CL is used.
- the second metal pipe 31B is arranged.
- the metal pipe 31 disposed on the downstream side in the flow direction of the coolant CL is defined as the first metal pipe 31A, and is disposed on the upstream side in the flow direction of the coolant CL.
- the formed metal pipe 31 may be used as the second metal pipe 31B.
- the flow direction of the coolant CL may be opposite to that of the above embodiment.
- FIG. 11 shows a convex portion 3 ⁇ / b> T that protrudes toward the insulating cover 10 on the outer peripheral surface of the metal pipe 32 or the electrode positioned on at least one side of both sides in the axial direction of the insulating pipe 32 in the antenna 3. May be.
- FIG. 12 shows a state in which the antenna 3 is bent, and a state in which the lower portion of the convex portion 3T is in contact with the inner surface of the insulating cover 10.
- first electrode 33A electrically connected to the first metal pipe 31A on one side of the insulating pipe 32, and a second metal pipe 31B on the other side of the insulating pipe 32.
- a second electrode 33B disposed so as to face the first electrode 33A, and the space between the first electrode 33A and the second electrode 33B is used as a coolant. It is comprised so that CL may satisfy
- Each of the electrodes 33A and 33B has a substantially rotating body shape, and a flow path 33x is formed at the center along the central axis.
- each of the electrodes 33A and 33B includes a flange portion 331 that electrically contacts the end portion of the metal pipe 31 on the insulating pipe 32 side, and a cylindrical extension that extends from the flange portion 331 to the insulating pipe 32 side. And an exit 332.
- the flange portion 331 is sandwiched between the metal pipe 31 and the insulating pipe 32.
- a through hole 331h through which cooling water flows is also formed in the flange portion.
- the convex portions 3T provided on the antenna 3 are desirably provided adjacent to both sides of the insulating pipe 32 in the axial direction.
- the convex portions 3T are provided continuously or intermittently over the entire circumferential direction of members (metal pipes 31A and 31B in FIG. 11) located on both sides of the insulating pipe 32 in the axial direction. If the bending due to the weight of the antenna 3 is taken into consideration, it may be formed only on the lower part of the metal pipes 31A and 31B.
- the protruding dimension of the convex portion from the outer peripheral surface of the metal pipe is such that the insulating pipe 32 does not contact the insulating cover 10 due to the bending of the antenna 3.
- the cross-sectional shape of the convex portion 3T may be a rectangular shape, at least the tip portion may be an arc shape, or at least the tip portion may be a triangle shape. Good.
- protrusions 3T are desirably provided adjacent to both sides in the axial direction of each insulating pipe 32 when the antenna 3 is provided with a plurality of insulating pipes 32. Moreover, the structure provided adjacent to the axial direction one side of each insulation pipe 32 may be sufficient. With this configuration, when the amount of bending of the antenna 3 increases, the plurality of axially arranged convex portions 3T come into contact with the insulating cover 10, and the load applied to the insulating cover 10 is dispersed. Can do.
- the position where the protrusion 3T is provided on the insulating pipe 32 is not limited to the position adjacent to the insulating cover 32, and may be a position where the insulating pipe 32 does not contact the insulating cover 10 due to bending of the antenna 3.
- the concave portion 3M is formed on the outer peripheral surface of the metal pipes 31A and 31B. You may comprise by fitting the ring-shaped member 3R used as the convex part 3T.
- the insulating pipe 32 can be prevented from contacting the insulating cover 10 by the convex portion 3T contacting the insulating cover 10. . Thereby, the thermal damage of insulating pipes 32 made of resin can be prevented. Further, by preventing the insulating pipe 32 and the insulating cover 10 from coming into contact with each other, it is possible to prevent the temperature of the coolant serving as the dielectric of the capacitor 33 from increasing due to the insulating pipe 32 coming into contact with the insulating cover 10. As a result, a change in the dielectric constant of the coolant can be suppressed.
- the protrusion 3T can also be provided in the antenna 3 exemplified in the embodiment.
- members for example, the first metal pipe 31A, the first electrode 33A, the second metal pipe 31B, and the second electrode 33B located on at least one side of both sides in the axial direction of the insulating pipe 32 of the embodiment.
- the contact portion 331 or the reduced diameter element 333 is provided with a convex portion 3T.
- the first electrode 33A and the second electrode 33B have a corrosion-resistant layer 33L on at least the surfaces of the electrodes facing each other.
- FIG. 14 shows an example in which a corrosion-resistant layer 33L is formed on the surfaces facing each other in the first electrode 33A and the second electrode 33B
- FIG. 15 shows the first electrode 33A and the second electrode 33B. Shows an example in which a corrosion-resistant layer 33L is formed on the entire surface of the electrode.
- a corrosion-resistant layer may be formed on the surface in contact with the coolant in each of the electrodes 33A and 33B.
- a corrosion-resistant layer 33L is also formed on the contact surface of each electrode 33A, 33B with the metal pipe 31.
- the corrosion-resistant layer 33L is, for example, a plating film such as nickel plating, or a surface oxide film of the first electrode 33A and the second electrode 33B.
- nickel plating electroless nickel plating that does not affect the metal grain boundaries, has no pinholes, and can be uniformly plated on the fine and thin tube internal structure is desirable.
- an oxide film may be formed on the aluminum alloy, and the oxide film may be used as the corrosion-resistant layer 33L.
- the corrosion-resistant layer 33L By forming the corrosion-resistant layer 33L in this manner, it is possible to prevent the capacitance value from changing with time by suppressing oxidation of each electrode. As a result, a change in impedance of the antenna 3 can be suppressed and the plasma state can be maintained, and as a result, the quality and uniformity of the film formed can be maintained. Further, since the corrosion-resistant layer 33L is also formed on the contact surfaces of the electrodes 33A and 33B with the metal pipe 31, it is possible to suppress a change in resistance due to oxidation of the contact surfaces and suppress a change in impedance of the antenna 3. .
- both end portions of each antenna 3 are extended out of the vacuum vessel 2, and the antennas 3 adjacent to each other have one antenna 3.
- the end and the end of the other antenna 3 may be electrically connected by the connection conductor 17.
- the end portions of the two antennas connected by the connection conductor 17 are end portions located on the same side wall side. Accordingly, the plurality of antennas 3 are configured such that high-frequency currents in opposite directions flow through the antennas 4 adjacent to each other.
- connection conductor 17 has a flow path inside, and is configured so that the coolant flows through the flow path. Specifically, one end of the connection conductor 17 communicates with the flow path of one antenna 3, and the other end of the connection conductor 17 communicates with the flow path of the other antenna 3. Thereby, in the antennas 3 adjacent to each other, the coolant flowing through one antenna 3 flows to the other antenna 3 through the flow path of the connection conductor 17. Thereby, both the antenna 3 and the connection conductor 17 can be cooled by the common coolant. In addition, since the plurality of antennas 3 can be cooled by one flow path, the configuration of the circulation flow path 14 can be simplified.
- connection conductor 17 includes one conductor portion 17a connected to one antenna 3 in the antennas 3 adjacent to each other, the other conductor portion 17c connected to the other antenna 3, the one conductor portion 17a and the other conductor portion 17a.
- a capacitor 17c which is a capacitive element electrically connected in series to the conductor portion 17b.
- the configuration of the conductor portions 17a and 17b may be the same as that of the conductor element 31 of the embodiment, for example, and the configuration of the capacitor 17c may be the same as that of the capacitor 33 of the embodiment, for example.
- connection conductor 17 is not limited to that shown in FIG. 16.
- the connection conductor 17 may have a configuration without a capacitive element as shown in FIG. 17.
- an inductance obtained by combining the feeding-side end 3a of one antenna 3, the ground-side end 3b of the other antenna 3, and the connection conductor 17 is set as another conductor element 31.
- the same inductive reactance and capacitive reactance are continuously repeated over the plurality of antennas 3 in the same manner as the above-described inductance.
- uniform plasma P can be generated along the antenna 3 in the length direction and the arrangement direction.
- the antenna 3 is disposed in the processing chamber of the substrate W.
- the antenna 3 may be disposed outside the processing chamber 18 as shown in FIG. .
- the plurality of antennas 3 are arranged in an antenna chamber 20 that is partitioned from the processing chamber 18 by a dielectric window 19 in the vacuum vessel 2.
- the antenna chamber 20 is evacuated by the evacuation device 21.
- the plurality of antennas 3 may be connected to each other by the connection conductor 17 as shown in FIG. 16 and FIG. 17 described above, or arranged individually without being connected by the connection conductor 17. It may be a thing.
- conditions such as the pressure in the processing chamber 18 and conditions such as the pressure in the antenna chamber 20 can be individually controlled, and the generation of plasma P can be efficiently performed, and the substrate W Can be processed efficiently.
- the antenna is linear, but it may be curved or bent.
- the metal pipe may be curved or bent, or the insulating pipe may be curved or bent.
- the conductor element and the insulating element have a tubular shape having one internal flow path, but may have two or more internal flow paths or have a branched internal flow path. good. Further, the conductive element and / or the insulating element may be solid.
- the extending portion has a cylindrical shape, but may have another rectangular tube shape, or a flat plate shape, a curved plate shape, or a bent plate shape.
- the present invention it is possible to reduce the impedance of the antenna by incorporating a capacitive element into the antenna, and to eliminate a gap generated between the electrode constituting the capacitive element and the dielectric.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
Abstract
The purpose of the present invention is to reduce the impedance of an antenna and eliminate the gaps between a dielectric body and electrodes constituting a capacitance element. An antenna (3) for generating inductively coupled plasma (P), wherein: the antenna (3) comprises at least two conductor elements (31), an insulation element (32) that is provided between the mutually adjacent conductor elements (31) and that insulates the conductor elements (31), and a capacitance element (33) directly and electrically connected to the mutually adjacent conductor elements (31); and the capacitance element (33) is configured from a first electrode (33A) electrically connected to one of the mutually adjacent conductor elements (21), a second electrode (33B) electrically connected to the other of the mutually adjacent conductor elements (31), and a liquid dielectric body filling the space between the first electrode (33A) and the second electrode (33B).
Description
本発明は、高周波電流が流されて誘導結合型のプラズマを発生させるためのアンテナ、当該アンテナを備えたプラズマ処理装置及びアンテナ構造に関するものである。
The present invention relates to an antenna for generating an inductively coupled plasma by flowing a high-frequency current, a plasma processing apparatus including the antenna, and an antenna structure.
アンテナに高周波電流を流し、それによって生じる誘導電界によって誘導結合型のプラズマ(略称ICP)を発生させ、この誘導結合型のプラズマを用いて基板Wに処理を施すプラズマ処理装置が従来から提案されている。
2. Description of the Related Art Conventionally, a plasma processing apparatus has been proposed in which a high-frequency current is passed through an antenna, an inductively coupled plasma (abbreviated as ICP) is generated by an induced electric field generated by the antenna, and the substrate W is processed using the inductively coupled plasma. Yes.
この種のプラズマ処理装置においては、大型の基板に対応する等のためにアンテナを長くすると、当該アンテナのインピーダンスが大きくなり、それによってアンテナの両端間に大きな電位差が発生する。その結果、この大きな電位差の影響を受けてプラズマの密度分布、電位分布、電子温度分布等のプラズマの均一性が悪くなり、ひいては基板処理の均一性が悪くなるという問題がある。また、アンテナのインピーダンスが大きくなると、アンテナに高周波電流を流しにくくなるという問題もある。
In this type of plasma processing apparatus, when the antenna is lengthened to cope with a large substrate, the impedance of the antenna increases, thereby generating a large potential difference between both ends of the antenna. As a result, there is a problem that plasma uniformity such as plasma density distribution, potential distribution, and electron temperature distribution is deteriorated due to the influence of the large potential difference, and the uniformity of substrate processing is also deteriorated. In addition, when the impedance of the antenna increases, there is a problem that it is difficult for a high-frequency current to flow through the antenna.
このような問題を解決する等のために、特許文献1に示すように、複数の金属パイプを、隣り合う金属パイプ間に中空絶縁体を介在させて接続するとともに、中空絶縁体の外周部に容量素子であるコンデンサを配置したものが考えられている。このコンデンサは、中空絶縁体の両側の金属パイプに電気的に直列接続されており、中空絶縁体の一方側の金属パイプに電気的に接続された第1の電極と、中空絶縁体の他方側の金属パイプに電気的に接続されるとともに第1の電極と重なる第2の電極と、第1の電極及び第2の電極間に配置された誘電体シートとを有している。
In order to solve such a problem, as shown in Patent Document 1, a plurality of metal pipes are connected with a hollow insulator interposed between adjacent metal pipes, and are connected to the outer periphery of the hollow insulator. A device in which a capacitor, which is a capacitive element, is arranged. The capacitor is electrically connected in series to the metal pipes on both sides of the hollow insulator, the first electrode electrically connected to the metal pipe on one side of the hollow insulator, and the other side of the hollow insulator A second electrode that is electrically connected to the first metal pipe and overlaps the first electrode, and a dielectric sheet disposed between the first electrode and the second electrode.
しかしながら、上記のコンデンサは、第1の電極、誘電体シート及び第2の電極の積層構造であるため、電極及び誘電体の間に隙間が生じる可能性がある。そうすると、この隙間においてアーク放電が発生し、コンデンサの劣化に繋がる可能性が考えられるため、コンデンサの構造に改善の余地がある。
However, since the above capacitor has a laminated structure of the first electrode, the dielectric sheet, and the second electrode, a gap may be generated between the electrode and the dielectric. If so, there is a possibility of arc discharge occurring in this gap, which may lead to deterioration of the capacitor, so there is room for improvement in the capacitor structure.
ここで、電極及び誘電体の間に隙間が生じないようにするために、誘電体シートの両面に接着剤を塗布して電極を接着させることが考えられる。ところが、この接着剤の電気的な性能が誘電体シートの性能を変化させてしまい、必要なキャパシタンス値等の製作が困難となってしまう。
Here, in order to prevent a gap from being generated between the electrode and the dielectric, it is conceivable to apply an adhesive on both surfaces of the dielectric sheet to adhere the electrode. However, the electrical performance of the adhesive changes the performance of the dielectric sheet, making it difficult to produce a necessary capacitance value.
なお、電極及び誘電体の間に生じる隙間を埋めるに、それらを周囲から押圧する構造を設けることも考えられる。ところが、押圧構造を設けることによってアンテナ周辺の構造が複雑になってしまい、周囲に発生するプラズマの均一性を悪くする可能性がある。
It is also conceivable to provide a structure that presses the gap between the electrode and the dielectric from the periphery. However, the provision of the pressing structure complicates the structure around the antenna and may deteriorate the uniformity of plasma generated around the antenna.
そこで本発明は、上記問題点を解決すべくなされたものであり、アンテナに容量素子を組み込んでアンテナのインピーダンスを低減させるとともに、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことをその主たる課題とするものである。
Accordingly, the present invention has been made to solve the above-described problems. A capacitive element is incorporated in an antenna to reduce the impedance of the antenna, and a gap generated between an electrode constituting the capacitive element and a dielectric is eliminated. Is the main issue.
すなわち本発明に係るプラズマ発生用のアンテナは、高周波電流が流されて、プラズマを発生させるためのアンテナであって、少なくとも2つの導体要素と、互いに隣り合う前記導体要素の間に設けられて、それら導体要素を絶縁する絶縁要素と、互いに隣り合う前記導体要素と電気的に直列接続された容量素子とを備え、前記容量素子は、互いに隣り合う前記導体要素の一方と電気的に接続された第1の電極と、互いに隣り合う前記導体要素の他方と電気的に接続されるとともに、前記第1の電極に対向して配置された第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記誘電体は液体であることを特徴とする。
That is, the antenna for generating plasma according to the present invention is an antenna for generating plasma by flowing a high-frequency current, and is provided between at least two conductor elements and the conductor elements adjacent to each other. An insulating element that insulates the conductive elements; and a capacitive element electrically connected in series with the conductive elements adjacent to each other, wherein the capacitive element is electrically connected to one of the conductive elements adjacent to each other. A first electrode and a second electrode electrically connected to the other of the conductor elements adjacent to each other and disposed opposite to the first electrode; the first electrode and the second electrode; And a dielectric filling the space between the electrodes, wherein the dielectric is a liquid.
このようなプラズマ発生用のアンテナであれば、絶縁要素を介して互いに隣り合う導体要素に容量素子を電気的に直列接続しているので、アンテナの合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを引いた形になるので、アンテナのインピーダンスを低減させることができる。その結果、アンテナを長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナに高周波電流が流れやすくなり、プラズマを効率良く発生させることができる。
特に本発明によれば、第1の電極及び第2の電極の間の空間を液体の誘電体で満たしているので、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができる。その結果、電極及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因する容量素子の破損を無くすことができる。また、隙間を考慮することなく、第1の電極及び第2の電極の距離、対向面積及び液体の誘電体の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマの均一性の悪化を防ぐことができる。 In such a plasma generating antenna, since the capacitive element is electrically connected in series to the conductor elements adjacent to each other via the insulating element, the combined reactance of the antenna can be simply described as inductive reactance. Since the capacitive reactance is subtracted from the antenna impedance, the antenna impedance can be reduced. As a result, even when the antenna is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna, and plasma can be generated efficiently.
In particular, according to the present invention, since the space between the first electrode and the second electrode is filled with the liquid dielectric, it is possible to eliminate the gap generated between the electrode constituting the capacitive element and the dielectric. . As a result, arc discharge that can occur in the gap between the electrode and the dielectric can be eliminated, and damage to the capacitive element due to arc discharge can be eliminated. In addition, the capacitance value can be accurately set from the distance between the first electrode and the second electrode, the facing area, and the relative dielectric constant of the liquid dielectric without considering the gap. Furthermore, the structure for pressing the electrode and the dielectric for filling the gap can be eliminated, and the structure around the antenna due to the pressing structure can be prevented from being complicated and the uniformity of plasma caused thereby can be prevented.
特に本発明によれば、第1の電極及び第2の電極の間の空間を液体の誘電体で満たしているので、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができる。その結果、電極及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因する容量素子の破損を無くすことができる。また、隙間を考慮することなく、第1の電極及び第2の電極の距離、対向面積及び液体の誘電体の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマの均一性の悪化を防ぐことができる。 In such a plasma generating antenna, since the capacitive element is electrically connected in series to the conductor elements adjacent to each other via the insulating element, the combined reactance of the antenna can be simply described as inductive reactance. Since the capacitive reactance is subtracted from the antenna impedance, the antenna impedance can be reduced. As a result, even when the antenna is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna, and plasma can be generated efficiently.
In particular, according to the present invention, since the space between the first electrode and the second electrode is filled with the liquid dielectric, it is possible to eliminate the gap generated between the electrode constituting the capacitive element and the dielectric. . As a result, arc discharge that can occur in the gap between the electrode and the dielectric can be eliminated, and damage to the capacitive element due to arc discharge can be eliminated. In addition, the capacitance value can be accurately set from the distance between the first electrode and the second electrode, the facing area, and the relative dielectric constant of the liquid dielectric without considering the gap. Furthermore, the structure for pressing the electrode and the dielectric for filling the gap can be eliminated, and the structure around the antenna due to the pressing structure can be prevented from being complicated and the uniformity of plasma caused thereby can be prevented.
アンテナの周辺構造をより簡略化して、プラズマの均一性を向上させるためには、前記絶縁要素は、管状をなすものであり、前記容量素子は、前記絶縁要素の内部に設けられていることが望ましい。
In order to further simplify the peripheral structure of the antenna and improve the uniformity of the plasma, the insulating element has a tubular shape, and the capacitive element is provided inside the insulating element. desirable.
アンテナを冷却してプラズマを安定して発生させるためには、前記導体要素及び前記絶縁要素を管状をなすものとして、前記導体要素及び前記絶縁要素の内部に冷却液を流通させる構成とすることが考えられる。この構成において、前記冷却液を第1の電極及び第2の電極の間の空間に供給して、前記冷却液を前記誘電体とすることが望ましい。
冷却液を誘電体とすることで、冷却液とは別に誘電体を準備する必要が無く、また、第1の電極及び第2の電極を冷却することができる。通常、冷却液は温調機構により一定温度に調整されており、この冷却液を誘電体として用いることによって、温度変化による比誘電率の変化を抑えて、キャパシタンス値の変化を抑えることができる。さらに、冷却液として水を用いた場合には、水の比誘電率は約80(20℃)であり樹脂製の誘電体シートよりも大きいため、高電圧に耐えうる容量素子を構成することができる。 In order to cool the antenna and stably generate plasma, the conductor element and the insulating element are formed in a tubular shape, and a coolant is circulated inside the conductor element and the insulating element. Conceivable. In this configuration, it is preferable that the cooling liquid is supplied to a space between the first electrode and the second electrode so that the cooling liquid is the dielectric.
By using the coolant as a dielectric, it is not necessary to prepare a dielectric separately from the coolant, and the first electrode and the second electrode can be cooled. Usually, the cooling liquid is adjusted to a constant temperature by a temperature control mechanism. By using this cooling liquid as a dielectric, it is possible to suppress a change in relative permittivity due to a temperature change and suppress a change in capacitance value. Further, when water is used as the coolant, the relative permittivity of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that a capacitive element that can withstand high voltage can be configured. it can.
冷却液を誘電体とすることで、冷却液とは別に誘電体を準備する必要が無く、また、第1の電極及び第2の電極を冷却することができる。通常、冷却液は温調機構により一定温度に調整されており、この冷却液を誘電体として用いることによって、温度変化による比誘電率の変化を抑えて、キャパシタンス値の変化を抑えることができる。さらに、冷却液として水を用いた場合には、水の比誘電率は約80(20℃)であり樹脂製の誘電体シートよりも大きいため、高電圧に耐えうる容量素子を構成することができる。 In order to cool the antenna and stably generate plasma, the conductor element and the insulating element are formed in a tubular shape, and a coolant is circulated inside the conductor element and the insulating element. Conceivable. In this configuration, it is preferable that the cooling liquid is supplied to a space between the first electrode and the second electrode so that the cooling liquid is the dielectric.
By using the coolant as a dielectric, it is not necessary to prepare a dielectric separately from the coolant, and the first electrode and the second electrode can be cooled. Usually, the cooling liquid is adjusted to a constant temperature by a temperature control mechanism. By using this cooling liquid as a dielectric, it is possible to suppress a change in relative permittivity due to a temperature change and suppress a change in capacitance value. Further, when water is used as the coolant, the relative permittivity of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that a capacitive element that can withstand high voltage can be configured. it can.
各電極の具体的な実施の態様としては、前記各電極は、前記導体要素における前記絶縁要素側の端部に電気的に接触するフランジ部と、当該フランジ部から前記絶縁要素側に延出した延出部とを有することが望ましい。
この構成であれば、フランジ部により導体要素との接触面積を大きくしつつ、延出部により電極間の対向面積を設定することができる。 As a specific embodiment of each electrode, each electrode has a flange portion that is in electrical contact with an end portion of the conductor element on the insulating element side, and extends from the flange portion to the insulating element side. It is desirable to have an extension part.
If it is this structure, the opposing area between electrodes can be set with an extension part, enlarging a contact area with a conductor element by a flange part.
この構成であれば、フランジ部により導体要素との接触面積を大きくしつつ、延出部により電極間の対向面積を設定することができる。 As a specific embodiment of each electrode, each electrode has a flange portion that is in electrical contact with an end portion of the conductor element on the insulating element side, and extends from the flange portion to the insulating element side. It is desirable to have an extension part.
If it is this structure, the opposing area between electrodes can be set with an extension part, enlarging a contact area with a conductor element by a flange part.
前記各電極の延出部は、管状をなすものであり、互いに同軸上に配置されていることが望ましい。
この構成であれば、電極間の対向面積を大きくしつつ、導体要素に流れる高周波電流の分布を周方向において均一にして、均一性の良いプラズマを発生させることができる。 It is desirable that the extending portions of the electrodes have a tubular shape and are arranged coaxially with each other.
With this configuration, it is possible to generate plasma with good uniformity by making the distribution of the high-frequency current flowing through the conductor element uniform in the circumferential direction while increasing the facing area between the electrodes.
この構成であれば、電極間の対向面積を大きくしつつ、導体要素に流れる高周波電流の分布を周方向において均一にして、均一性の良いプラズマを発生させることができる。 It is desirable that the extending portions of the electrodes have a tubular shape and are arranged coaxially with each other.
With this configuration, it is possible to generate plasma with good uniformity by making the distribution of the high-frequency current flowing through the conductor element uniform in the circumferential direction while increasing the facing area between the electrodes.
前記各電極のフランジ部は、前記絶縁要素の側周壁に形成された凹部に嵌合されていることが望ましい。
この構成であれば、絶縁要素の凹部にフランジ部を嵌合させることによって、各電極の延出部の相対位置を決めることができ、その組み立てを容易にすることができる。 It is desirable that the flange portion of each electrode is fitted in a recess formed in a side peripheral wall of the insulating element.
If it is this structure, the relative position of the extension part of each electrode can be determined by fitting a flange part to the recessed part of an insulation element, and the assembly can be made easy.
この構成であれば、絶縁要素の凹部にフランジ部を嵌合させることによって、各電極の延出部の相対位置を決めることができ、その組み立てを容易にすることができる。 It is desirable that the flange portion of each electrode is fitted in a recess formed in a side peripheral wall of the insulating element.
If it is this structure, the relative position of the extension part of each electrode can be determined by fitting a flange part to the recessed part of an insulation element, and the assembly can be made easy.
また本発明に係るプラズマ発生用のアンテナは、高周波電流が流されて、プラズマを発生させるためのアンテナであって、少なくとも2つの導体要素と、互いに隣り合う第1の導体要素及び第2の導体要素の間に設けられてそれらを絶縁する絶縁要素と、前記第1の導体要素及び前記第2の導体要素と電気的に直列接続された容量素子とを備え、前記容量素子は、前記第1の導体要素の一部からなる電極又は前記第1の導体要素と電気的に接続された電極であって、前記絶縁要素より前記第1の導体要素側に配置された第1の電極と、前記第2の導体要素と電気的に接続されるとともに、前記第2の導体要素側から前記絶縁要素の内部を通って前記第1の導体要素側に延び、前記第1の電極に対向して配置された第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記誘電体が液体であることを特徴とする。
An antenna for generating plasma according to the present invention is an antenna for generating plasma by flowing a high-frequency current, and includes at least two conductor elements, and a first conductor element and a second conductor adjacent to each other. An insulating element provided between the elements to insulate them; and a capacitive element electrically connected in series with the first conductive element and the second conductive element, wherein the capacitive element comprises the first conductive element An electrode formed of a part of the conductor element or an electrode electrically connected to the first conductor element, the first electrode disposed on the first conductor element side from the insulating element, It is electrically connected to the second conductor element, extends from the second conductor element side through the inside of the insulating element to the first conductor element side, and is arranged to face the first electrode A second electrode, and the first electrode It consists of a dielectric material filling the space between the electrode and the second electrode, wherein the dielectric is a liquid.
このようなプラズマ発生用のアンテナであれば、絶縁要素を介して設けられた互いに隣り合う導体要素に容量素子を電気的に直列接続しているので、アンテナの合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを引いた形になるので、アンテナのインピーダンスを低減させることができる。その結果、アンテナを長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナに高周波電流が流れやすくなり、プラズマを効率良く発生させることができる。
特に本発明によれば、第1の電極及び第2の電極の間の空間を液体の誘電体で満たしているので、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができる。その結果、電極及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因する容量素子の破損を無くすことができる。また、隙間を考慮することなく、第1の電極及び第2の電極の距離、対向面積及び液体の誘電体の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマの均一性の悪化を防ぐことができる。加えて、第2の電極を、第2の導体要素側から絶縁要素の内部を通して第1の導体要素側に延ばすことで第1の電極と対向させているので、その延出寸法を変えることで容量素子として必要なキャパシタンス値を容易に得ることができる。 In such a plasma generating antenna, the capacitive reactance is electrically connected in series to conductor elements adjacent to each other provided via an insulating element, so the combined reactance of the antenna can be simply described as follows: Since the capacitive reactance is subtracted from the inductive reactance, the impedance of the antenna can be reduced. As a result, even when the antenna is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna, and plasma can be generated efficiently.
In particular, according to the present invention, since the space between the first electrode and the second electrode is filled with the liquid dielectric, it is possible to eliminate the gap generated between the electrode constituting the capacitive element and the dielectric. . As a result, arc discharge that can occur in the gap between the electrode and the dielectric can be eliminated, and damage to the capacitive element due to arc discharge can be eliminated. In addition, the capacitance value can be accurately set from the distance between the first electrode and the second electrode, the facing area, and the relative dielectric constant of the liquid dielectric without considering the gap. Furthermore, the structure for pressing the electrode and the dielectric for filling the gap can be eliminated, and the structure around the antenna due to the pressing structure can be prevented from being complicated and the uniformity of plasma caused thereby can be prevented. In addition, since the second electrode is opposed to the first electrode by extending from the second conductor element side to the first conductor element side through the inside of the insulating element, the extension dimension can be changed. Capacitance values necessary for the capacitive element can be easily obtained.
特に本発明によれば、第1の電極及び第2の電極の間の空間を液体の誘電体で満たしているので、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができる。その結果、電極及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因する容量素子の破損を無くすことができる。また、隙間を考慮することなく、第1の電極及び第2の電極の距離、対向面積及び液体の誘電体の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマの均一性の悪化を防ぐことができる。加えて、第2の電極を、第2の導体要素側から絶縁要素の内部を通して第1の導体要素側に延ばすことで第1の電極と対向させているので、その延出寸法を変えることで容量素子として必要なキャパシタンス値を容易に得ることができる。 In such a plasma generating antenna, the capacitive reactance is electrically connected in series to conductor elements adjacent to each other provided via an insulating element, so the combined reactance of the antenna can be simply described as follows: Since the capacitive reactance is subtracted from the inductive reactance, the impedance of the antenna can be reduced. As a result, even when the antenna is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna, and plasma can be generated efficiently.
In particular, according to the present invention, since the space between the first electrode and the second electrode is filled with the liquid dielectric, it is possible to eliminate the gap generated between the electrode constituting the capacitive element and the dielectric. . As a result, arc discharge that can occur in the gap between the electrode and the dielectric can be eliminated, and damage to the capacitive element due to arc discharge can be eliminated. In addition, the capacitance value can be accurately set from the distance between the first electrode and the second electrode, the facing area, and the relative dielectric constant of the liquid dielectric without considering the gap. Furthermore, the structure for pressing the electrode and the dielectric for filling the gap can be eliminated, and the structure around the antenna due to the pressing structure can be prevented from being complicated and the uniformity of plasma caused thereby can be prevented. In addition, since the second electrode is opposed to the first electrode by extending from the second conductor element side to the first conductor element side through the inside of the insulating element, the extension dimension can be changed. Capacitance values necessary for the capacitive element can be easily obtained.
容量素子の構造を簡素化するための実施態様としては、前記第1の電極は、管状をなすものであり、前記第2の電極は、前記第1の電極の内部空間に差し込まれる延出部を有している構成が挙げられる。
As an embodiment for simplifying the structure of the capacitive element, the first electrode has a tubular shape, and the second electrode extends into the internal space of the first electrode. The structure which has is mentioned.
前記第1の電極の内周面と前記延出部の外周面との距離は、周方向に沿って一定であることが望ましい。
この構成であれば、導体要素に流れる高周波電流の分布を周方向において均一にして、均一性の良いプラズマを発生させることができる。 It is desirable that the distance between the inner peripheral surface of the first electrode and the outer peripheral surface of the extending portion is constant along the circumferential direction.
With this configuration, the distribution of the high-frequency current flowing through the conductor element can be made uniform in the circumferential direction, and plasma with good uniformity can be generated.
この構成であれば、導体要素に流れる高周波電流の分布を周方向において均一にして、均一性の良いプラズマを発生させることができる。 It is desirable that the distance between the inner peripheral surface of the first electrode and the outer peripheral surface of the extending portion is constant along the circumferential direction.
With this configuration, the distribution of the high-frequency current flowing through the conductor element can be made uniform in the circumferential direction, and plasma with good uniformity can be generated.
アンテナを冷却してプラズマを安定して発生させるためには、前記各導体要素を管状をなすものとして、前記各導体要素の内部に冷却液を流通させる構成とすることが考えられる。この構成において、前記第1の導体要素の内部を流れる冷却液が、前記第1の電極と前記第2の電極との間に流入して前記誘電体として機能し、前記第2の電極に形成された1又は複数の貫通孔から当該第2の電極内に導かれて前記第2の導体要素の内部に流出するように構成されていることが望ましい。
このような構成であれば、冷却液を誘電体とすることで、冷却液とは別に誘電体を準備する必要が無く、また、第1の電極及び第2の電極を冷却することができる。通常、冷却液は温調機構により一定温度に調整されており、この冷却液を誘電体として用いることによって、温度変化による比誘電率の変化を抑えて、キャパシタンス値の変化を抑えることができる。さらに、冷却液として水を用いた場合には、水の比誘電率は約80(20℃)であり樹脂製の誘電体シートよりも大きいため、高電圧に耐えうる容量素子を構成することができる。 In order to cool the antenna and stably generate plasma, it is conceivable that each conductor element has a tubular shape and a coolant is circulated inside each conductor element. In this configuration, the coolant flowing inside the first conductor element flows between the first electrode and the second electrode, functions as the dielectric, and is formed on the second electrode. It is desirable to be configured so as to be led into the second electrode from the one or more through holes thus formed and to flow out into the second conductor element.
With such a configuration, by using a coolant as a dielectric, it is not necessary to prepare a dielectric separately from the coolant, and the first electrode and the second electrode can be cooled. Usually, the cooling liquid is adjusted to a constant temperature by a temperature control mechanism. By using this cooling liquid as a dielectric, it is possible to suppress a change in relative permittivity due to a temperature change and suppress a change in capacitance value. Further, when water is used as the coolant, the relative permittivity of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that a capacitive element that can withstand high voltage can be configured. it can.
このような構成であれば、冷却液を誘電体とすることで、冷却液とは別に誘電体を準備する必要が無く、また、第1の電極及び第2の電極を冷却することができる。通常、冷却液は温調機構により一定温度に調整されており、この冷却液を誘電体として用いることによって、温度変化による比誘電率の変化を抑えて、キャパシタンス値の変化を抑えることができる。さらに、冷却液として水を用いた場合には、水の比誘電率は約80(20℃)であり樹脂製の誘電体シートよりも大きいため、高電圧に耐えうる容量素子を構成することができる。 In order to cool the antenna and stably generate plasma, it is conceivable that each conductor element has a tubular shape and a coolant is circulated inside each conductor element. In this configuration, the coolant flowing inside the first conductor element flows between the first electrode and the second electrode, functions as the dielectric, and is formed on the second electrode. It is desirable to be configured so as to be led into the second electrode from the one or more through holes thus formed and to flow out into the second conductor element.
With such a configuration, by using a coolant as a dielectric, it is not necessary to prepare a dielectric separately from the coolant, and the first electrode and the second electrode can be cooled. Usually, the cooling liquid is adjusted to a constant temperature by a temperature control mechanism. By using this cooling liquid as a dielectric, it is possible to suppress a change in relative permittivity due to a temperature change and suppress a change in capacitance value. Further, when water is used as the coolant, the relative permittivity of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that a capacitive element that can withstand high voltage can be configured. it can.
上述した構成、すなわち第2の電極に貫通孔を設けてこの貫通孔から冷却液を第2の電極内に導く構成において、冷却液の流れに対する抵抗を低減させるためには、前記第2の電極は、前記貫通孔に連通するとともに、前記冷却液の流れ方向に沿って延びる1又は複数の溝が形成されていることが望ましい。
In the above-described configuration, that is, in the configuration in which the through hole is provided in the second electrode and the coolant is guided from the through hole into the second electrode, the second electrode can be reduced in order to reduce the resistance to the flow of the coolant. It is preferable that one or a plurality of grooves that extend along the flow direction of the coolant is formed in communication with the through hole.
容量素子を構成する金属製の各電極は酸化によってキャパシタンス値が経時変化する恐れがある。その結果、アンテナのインピーダンスが変化して生成されるプラズマの状態も変化し、ひいては成膜される膜質や均一性が経時変化してしまう。
この問題を好適に解決するためには、前記各電極は、少なくとも前記各電極同士の互いに対向する表面に耐食層を有することが望ましい。 There is a possibility that the capacitance value of each metal electrode constituting the capacitive element changes with time due to oxidation. As a result, the impedance of the antenna changes and the state of the plasma generated also changes. As a result, the film quality and uniformity of the film formed change with time.
In order to suitably solve this problem, it is desirable that each of the electrodes has a corrosion-resistant layer on at least the surfaces of the electrodes facing each other.
この問題を好適に解決するためには、前記各電極は、少なくとも前記各電極同士の互いに対向する表面に耐食層を有することが望ましい。 There is a possibility that the capacitance value of each metal electrode constituting the capacitive element changes with time due to oxidation. As a result, the impedance of the antenna changes and the state of the plasma generated also changes. As a result, the film quality and uniformity of the film formed change with time.
In order to suitably solve this problem, it is desirable that each of the electrodes has a corrosion-resistant layer on at least the surfaces of the electrodes facing each other.
ここで、耐食層としては、メッキ被膜、又は前記第1の電極及び前記第2の電極の表面酸化膜であることが考えられる。
Here, it is conceivable that the corrosion-resistant layer is a plating film or a surface oxide film of the first electrode and the second electrode.
また本発明に係るプラズマ処理装置は、真空排気されかつガスが導入される真空容器と、前記真空容器内又は前記真空容器外に配置されたアンテナと、前記アンテナに高周波電流を流す高周波電源とを備え、前記アンテナによって発生させたプラズマを用いて基板に処理を施すように構成されており、前記アンテナが上述した構成であることを特徴とする。
このプラズマ処理装置によれば、上述したアンテナにより均一性の良いプラズマを効率良く発生させることができるので、基板処理の均一性及び効率を高めることができる。 The plasma processing apparatus according to the present invention includes a vacuum container that is evacuated and into which a gas is introduced, an antenna that is disposed inside or outside the vacuum container, and a high-frequency power source that supplies a high-frequency current to the antenna. And the substrate is processed using plasma generated by the antenna, and the antenna has the above-described configuration.
According to this plasma processing apparatus, plasma with good uniformity can be efficiently generated by the antenna described above, so that the uniformity and efficiency of substrate processing can be improved.
このプラズマ処理装置によれば、上述したアンテナにより均一性の良いプラズマを効率良く発生させることができるので、基板処理の均一性及び効率を高めることができる。 The plasma processing apparatus according to the present invention includes a vacuum container that is evacuated and into which a gas is introduced, an antenna that is disposed inside or outside the vacuum container, and a high-frequency power source that supplies a high-frequency current to the antenna. And the substrate is processed using plasma generated by the antenna, and the antenna has the above-described configuration.
According to this plasma processing apparatus, plasma with good uniformity can be efficiently generated by the antenna described above, so that the uniformity and efficiency of substrate processing can be improved.
このプラズマ処理装置において大面積の基板に対して処理を施すためには、複数の前記アンテナを備えることが考えられる。この場合、前記アンテナの両端部は、前記真空容器外に延び出ており、互いに隣接する前記アンテナにおいて一方の前記アンテナの端部と他方の前記アンテナの端部とを接続導体により電気的に接続して、前記互いに隣接する前記アンテナに互いに逆向きの高周波電流が流れるように構成することが望ましい。
In order to perform processing on a large-area substrate in this plasma processing apparatus, it is conceivable to include a plurality of the antennas. In this case, both ends of the antenna extend out of the vacuum container, and in the adjacent antennas, the end of one antenna and the end of the other antenna are electrically connected by a connecting conductor. Thus, it is desirable that high frequency currents in opposite directions flow through the antennas adjacent to each other.
前記接続導体は内部に流路を有しており、その流路に冷却液が流れるものであることが望ましい。
It is desirable that the connection conductor has a flow path inside, and a coolant flows through the flow path.
前記導体要素及び前記絶縁要素の内部に冷却液が流れるものであり、互いに隣接する前記アンテナにおいて一方の前記アンテナを流れた冷却液が前記接続導体の流路を介して他方の前記アンテナに流れるものであることが望ましい。
この構成であれば、共通の冷却液によりアンテナ及び接続導体の両方を冷却することができる。また、1本の流路によって複数のアンテナを冷却することができるので、冷却液を循環させる循環流路の構成を簡略化することができる。なお、アンテナの流路及び接続導体の流路が長くなると冷却液の上昇により、下流側での誘電率の低下が生じる可能性がある。このため、接続導体によって接続されるアンテナの本数は冷却液の温度上昇分を考慮して設定され、例えばアンテナの本数は4本程度である。 A coolant flows inside the conductor element and the insulating element, and in the antennas adjacent to each other, the coolant that flows through one of the antennas flows to the other antenna through the flow path of the connection conductor. It is desirable that
With this configuration, both the antenna and the connection conductor can be cooled by a common coolant. In addition, since a plurality of antennas can be cooled by a single flow path, the configuration of the circulation flow path for circulating the coolant can be simplified. In addition, when the flow path of the antenna and the flow path of the connection conductor become long, the lowering of the dielectric constant on the downstream side may occur due to the rise of the coolant. For this reason, the number of antennas connected by the connection conductor is set in consideration of the temperature rise of the coolant, and for example, the number of antennas is about four.
この構成であれば、共通の冷却液によりアンテナ及び接続導体の両方を冷却することができる。また、1本の流路によって複数のアンテナを冷却することができるので、冷却液を循環させる循環流路の構成を簡略化することができる。なお、アンテナの流路及び接続導体の流路が長くなると冷却液の上昇により、下流側での誘電率の低下が生じる可能性がある。このため、接続導体によって接続されるアンテナの本数は冷却液の温度上昇分を考慮して設定され、例えばアンテナの本数は4本程度である。 A coolant flows inside the conductor element and the insulating element, and in the antennas adjacent to each other, the coolant that flows through one of the antennas flows to the other antenna through the flow path of the connection conductor. It is desirable that
With this configuration, both the antenna and the connection conductor can be cooled by a common coolant. In addition, since a plurality of antennas can be cooled by a single flow path, the configuration of the circulation flow path for circulating the coolant can be simplified. In addition, when the flow path of the antenna and the flow path of the connection conductor become long, the lowering of the dielectric constant on the downstream side may occur due to the rise of the coolant. For this reason, the number of antennas connected by the connection conductor is set in consideration of the temperature rise of the coolant, and for example, the number of antennas is about four.
2本のアンテナの給電側端部と接地側端部とを接続導体で接続した場合には、当該接続導体によるインピーダンスの増加が生じる。その結果、高周波電流の通電により最も接地側の端部に対して最も給電側の端部の電位が上昇することがある、又は、接続導体のインピーダンスによっては電圧の上昇・下降を生じる可能性がある。これは、発生するプラズマの不均一の原因となる。
この問題を好適に解決するためには、前記接続導体は、互いに隣接する前記アンテナにおいて一方の前記アンテナに接続される一方の導体部と、他方の前記アンテナに接続される他方の導体部と、前記一方の導体部及び前記他方の導体部に電気的に直列接続された容量素子とを有することが望ましい。このように接続導体に容量素子を設けることによって接続導体のインピーダンスを零相当にすることができ、接続導体によるインピーダンスの増加を無くすことができる。 When the power feeding side end and the ground side end of the two antennas are connected by a connection conductor, an increase in impedance occurs due to the connection conductor. As a result, there is a possibility that the potential at the end on the power supply side will rise relative to the end on the most ground side due to energization of the high-frequency current, or the voltage may rise or fall depending on the impedance of the connecting conductor. is there. This causes non-uniformity of the generated plasma.
In order to preferably solve this problem, the connection conductor includes one conductor portion connected to one of the antennas adjacent to each other, and the other conductor portion connected to the other antenna, It is desirable to have a capacitive element electrically connected in series to the one conductor part and the other conductor part. Thus, by providing a capacitive element in a connection conductor, the impedance of a connection conductor can be made into zero equivalent, and the increase in the impedance by a connection conductor can be eliminated.
この問題を好適に解決するためには、前記接続導体は、互いに隣接する前記アンテナにおいて一方の前記アンテナに接続される一方の導体部と、他方の前記アンテナに接続される他方の導体部と、前記一方の導体部及び前記他方の導体部に電気的に直列接続された容量素子とを有することが望ましい。このように接続導体に容量素子を設けることによって接続導体のインピーダンスを零相当にすることができ、接続導体によるインピーダンスの増加を無くすことができる。 When the power feeding side end and the ground side end of the two antennas are connected by a connection conductor, an increase in impedance occurs due to the connection conductor. As a result, there is a possibility that the potential at the end on the power supply side will rise relative to the end on the most ground side due to energization of the high-frequency current, or the voltage may rise or fall depending on the impedance of the connecting conductor. is there. This causes non-uniformity of the generated plasma.
In order to preferably solve this problem, the connection conductor includes one conductor portion connected to one of the antennas adjacent to each other, and the other conductor portion connected to the other antenna, It is desirable to have a capacitive element electrically connected in series to the one conductor part and the other conductor part. Thus, by providing a capacitive element in a connection conductor, the impedance of a connection conductor can be made into zero equivalent, and the increase in the impedance by a connection conductor can be eliminated.
プラズマ処理装置においては、プラズマ中の荷電粒子がアンテナを構成する導体要素に入射するのを抑制する目的などにより、アンテナを覆う絶縁カバーを設ける構成が考えられる。このとき、上記のアンテナの構成によりアンテナを長くした場合には、アンテナが撓んでしまい、絶縁要素が、プラズマにより高温となっている絶縁カバーに接触してしまう。絶縁要素が樹脂製の場合には特に熱損傷の問題が顕著となる。
この問題を好適に解決するためには、前記第1の導体要素又は前記第2の導体要素の少なくとも一方の外側周面に、前記絶縁カバーに向かって突出する凸部が形成されていることが望ましい。
この構成であれば、アンテナが撓んだとしても凸部が絶縁カバーに接触することによって絶縁要素が絶縁カバーに接触しないようにすることができる。これにより、絶縁要素の熱損傷を防止することができる。また、絶縁要素と絶縁カバーの接触を防ぐことにより、絶縁要素が絶縁カバーに接触することによる容量素子の誘電体となる冷却液の温度上昇を防止できる。その結果、冷却液の誘電率の変化を抑制することができる。 In the plasma processing apparatus, a configuration in which an insulating cover for covering the antenna is provided may be used for the purpose of suppressing the charged particles in the plasma from entering a conductor element constituting the antenna. At this time, if the antenna is lengthened due to the configuration of the antenna, the antenna is bent, and the insulating element comes into contact with the insulating cover that is heated by plasma. When the insulating element is made of resin, the problem of thermal damage becomes particularly significant.
In order to suitably solve this problem, a convex portion protruding toward the insulating cover is formed on the outer peripheral surface of at least one of the first conductor element or the second conductor element. desirable.
If it is this structure, even if an antenna bends, it can prevent an insulating element from contacting an insulating cover by a convex part contacting an insulating cover. Thereby, the thermal damage of an insulation element can be prevented. Further, by preventing contact between the insulating element and the insulating cover, it is possible to prevent an increase in the temperature of the coolant that becomes the dielectric of the capacitive element due to the insulating element contacting the insulating cover. As a result, a change in the dielectric constant of the coolant can be suppressed.
この問題を好適に解決するためには、前記第1の導体要素又は前記第2の導体要素の少なくとも一方の外側周面に、前記絶縁カバーに向かって突出する凸部が形成されていることが望ましい。
この構成であれば、アンテナが撓んだとしても凸部が絶縁カバーに接触することによって絶縁要素が絶縁カバーに接触しないようにすることができる。これにより、絶縁要素の熱損傷を防止することができる。また、絶縁要素と絶縁カバーの接触を防ぐことにより、絶縁要素が絶縁カバーに接触することによる容量素子の誘電体となる冷却液の温度上昇を防止できる。その結果、冷却液の誘電率の変化を抑制することができる。 In the plasma processing apparatus, a configuration in which an insulating cover for covering the antenna is provided may be used for the purpose of suppressing the charged particles in the plasma from entering a conductor element constituting the antenna. At this time, if the antenna is lengthened due to the configuration of the antenna, the antenna is bent, and the insulating element comes into contact with the insulating cover that is heated by plasma. When the insulating element is made of resin, the problem of thermal damage becomes particularly significant.
In order to suitably solve this problem, a convex portion protruding toward the insulating cover is formed on the outer peripheral surface of at least one of the first conductor element or the second conductor element. desirable.
If it is this structure, even if an antenna bends, it can prevent an insulating element from contacting an insulating cover by a convex part contacting an insulating cover. Thereby, the thermal damage of an insulation element can be prevented. Further, by preventing contact between the insulating element and the insulating cover, it is possible to prevent an increase in the temperature of the coolant that becomes the dielectric of the capacitive element due to the insulating element contacting the insulating cover. As a result, a change in the dielectric constant of the coolant can be suppressed.
絶縁要素と絶縁カバーとの接触を確実に防止するためには、前記凸部は、前記外側周面の周方向全体に亘って連続的又は間欠的に形成されていることが望ましい。また、この構成により凸部と絶縁カバーとの接触面積を大きくすることができ、絶縁カバーに対する荷重を分散させることができる。
In order to reliably prevent contact between the insulating element and the insulating cover, it is desirable that the convex portion is formed continuously or intermittently over the entire circumferential direction of the outer peripheral surface. Also, with this configuration, the contact area between the convex portion and the insulating cover can be increased, and the load on the insulating cover can be dispersed.
絶縁要素と絶縁カバーとの接触を確実に防止するためには、前記凸部は、第1の導体要素及び前記第2の導体要素の外側周面において前記絶縁要素に隣接した位置に形成されていることが望ましい。
In order to reliably prevent contact between the insulating element and the insulating cover, the convex portion is formed at a position adjacent to the insulating element on the outer peripheral surfaces of the first conductor element and the second conductor element. It is desirable that
また、本発明に係るアンテナ構造は、上述したアンテナと、前記アンテナを覆う絶縁カバーとを備え、前記第1の導体要素又は前記第2の導体要素の少なくとも一方の外側周面に、前記絶縁カバーに向かって突出する凸部が形成されていることを特徴とする。
The antenna structure according to the present invention includes the antenna described above and an insulating cover that covers the antenna, and the insulating cover is provided on at least one outer peripheral surface of the first conductor element or the second conductor element. A convex portion protruding toward the surface is formed.
さらに本発明に係るプラズマ処理装置は、真空排気されかつガスが導入される処理室と、前記処理室外に配置された請求項1乃至6の何れか一項に記載のアンテナと、前記アンテナに高周波電流を流す高周波電源とを備え、前記アンテナによって発生させたプラズマを用いて前記処理室内の基板に処理を施すように構成されていることを特徴とする。
このプラズマ処理装置によれば、処理室の圧力などの条件と、アンテナが配置されるアンテナ室の圧力などの条件とを個別に制御することができ、プラズマの発生を効率的にできるとともに、基板の処理を効率的にできる。 Furthermore, a plasma processing apparatus according to the present invention includes a processing chamber that is evacuated and into which a gas is introduced, an antenna according to any one of claims 1 to 6 disposed outside the processing chamber, and a high-frequency wave to the antenna. A high-frequency power source for supplying a current, and configured to perform processing on the substrate in the processing chamber using plasma generated by the antenna.
According to this plasma processing apparatus, conditions such as the pressure of the processing chamber and conditions such as the pressure of the antenna chamber in which the antenna is disposed can be individually controlled, and plasma can be generated efficiently, and the substrate Can be processed efficiently.
このプラズマ処理装置によれば、処理室の圧力などの条件と、アンテナが配置されるアンテナ室の圧力などの条件とを個別に制御することができ、プラズマの発生を効率的にできるとともに、基板の処理を効率的にできる。 Furthermore, a plasma processing apparatus according to the present invention includes a processing chamber that is evacuated and into which a gas is introduced, an antenna according to any one of claims 1 to 6 disposed outside the processing chamber, and a high-frequency wave to the antenna. A high-frequency power source for supplying a current, and configured to perform processing on the substrate in the processing chamber using plasma generated by the antenna.
According to this plasma processing apparatus, conditions such as the pressure of the processing chamber and conditions such as the pressure of the antenna chamber in which the antenna is disposed can be individually controlled, and plasma can be generated efficiently, and the substrate Can be processed efficiently.
このプラズマ処理装置において大面積の基板に対して処理を施すためには、複数の前記アンテナを備えており、互いに隣接する前記アンテナにおいて一方の前記アンテナの端部と他方の前記アンテナの端部とを接続導体により電気的に接続して、前記互いに隣接する前記アンテナに互いに逆向きの高周波電流が流れるように構成されていることが望ましい。
In order to perform processing on a substrate having a large area in this plasma processing apparatus, a plurality of the antennas are provided, and in the antennas adjacent to each other, one end of the antenna and the other end of the antenna Are preferably electrically connected by a connecting conductor so that high-frequency currents in opposite directions flow through the adjacent antennas.
さらに、本発明に係るアンテナ構造は、高周波電流が流されて、プラズマを発生させるためのアンテナと、前記アンテナを覆う絶縁カバーとを備え、前記アンテナは、少なくとも2つの導体要素と、互いに隣り合う第1の導体要素及び第2の導体要素の間に設けられてそれらを絶縁する絶縁要素と、前記第1の導体要素及び前記第2の導体要素と電気的に直列接続された容量素子とを備え、前記容量素子は、互いに隣り合う前記導体要素の一方と電気的に接続された第1の電極と、互いに隣り合う前記導体要素の他方と電気的に接続されるとともに、前記第1の電極に対向して配置された第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記誘電体が液体であり、前記第1の導体要素又は前記第2の導体要素の少なくとも一方の外側周面に、前記絶縁カバーに向かって突出する凸部が形成されていることを特徴とする。
The antenna structure according to the present invention further includes an antenna for generating a plasma when a high-frequency current is passed, and an insulating cover that covers the antenna, and the antenna is adjacent to at least two conductor elements. An insulating element provided between the first conductor element and the second conductor element to insulate them; and a capacitive element electrically connected in series with the first conductor element and the second conductor element The capacitive element is electrically connected to one of the conductor elements adjacent to each other and electrically connected to the other of the conductor elements adjacent to each other, and the first electrode And a dielectric that fills a space between the first electrode and the second electrode, the dielectric being a liquid, and the first conductor element Or the second At least one outer circumferential surface of the conductor elements, characterized in that the protrusion protruding toward the insulating cover is formed.
このように構成した本発明によれば、アンテナに容量素子を組み込むことによってアンテナのインピーダンスを低減させるとともに、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができるので、均一性の良いプラズマを効率良く発生させることができる。
According to the present invention configured as described above, the impedance of the antenna can be reduced by incorporating the capacitive element into the antenna, and the gap generated between the electrode and the dielectric constituting the capacitive element can be eliminated. Can be generated efficiently.
100・・・プラズマ処理装置
W ・・・基板
P ・・・誘導結合プラズマ
2 ・・・真空容器
3 ・・・アンテナ
31 ・・・金属パイプ(導体要素)
32 ・・・絶縁パイプ(絶縁要素)
32b・・・凹部
33 ・・・コンデンサ
33A・・・第1の電極
33B・・・第2の電極
331・・・フランジ部
332・・・延出部
CL ・・・冷却液(液体の誘電体)
4 ・・・高周波電源
17 ・・・接続導体
17a・・・一方の導体部
17b・・・他方の導体部
17c・・・容量素子
18 ・・・処理室 DESCRIPTION OFSYMBOLS 100 ... Plasma processing apparatus W ... Board | substrate P ... Inductively coupled plasma 2 ... Vacuum container 3 ... Antenna 31 ... Metal pipe (conductor element)
32 ... Insulating pipe (insulating element)
32b ... concave 33 ...capacitor 33A ... first electrode 33B ... second electrode 331 ... flange 332 ... extension part CL ... coolant (liquid dielectric) )
4... High-frequency power source 17... Connection conductor 17 a... One conductor portion 17 b... The other conductor portion 17 c.
W ・・・基板
P ・・・誘導結合プラズマ
2 ・・・真空容器
3 ・・・アンテナ
31 ・・・金属パイプ(導体要素)
32 ・・・絶縁パイプ(絶縁要素)
32b・・・凹部
33 ・・・コンデンサ
33A・・・第1の電極
33B・・・第2の電極
331・・・フランジ部
332・・・延出部
CL ・・・冷却液(液体の誘電体)
4 ・・・高周波電源
17 ・・・接続導体
17a・・・一方の導体部
17b・・・他方の導体部
17c・・・容量素子
18 ・・・処理室 DESCRIPTION OF
32 ... Insulating pipe (insulating element)
32b ... concave 33 ...
4... High-
<1.第1実施形態>
以下に、本発明に係るプラズマ処理装置の第1実施形態について、図面を参照して説明する。 <1. First Embodiment>
A plasma processing apparatus according to a first embodiment of the present invention will be described below with reference to the drawings.
以下に、本発明に係るプラズマ処理装置の第1実施形態について、図面を参照して説明する。 <1. First Embodiment>
A plasma processing apparatus according to a first embodiment of the present invention will be described below with reference to the drawings.
<装置構成>
本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Wに処理を施すものである。ここで、基板Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Wに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。 <Device configuration>
Theplasma processing apparatus 100 of this embodiment performs processing on the substrate W using inductively coupled plasma P. Here, the board | substrate W is a board | substrate for flat panel displays (FPD), such as a liquid crystal display and an organic electroluminescent display, a flexible board | substrate for flexible displays, etc., for example. The processing applied to the substrate W is, for example, film formation by plasma CVD, etching, ashing, sputtering, or the like.
本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Wに処理を施すものである。ここで、基板Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Wに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。 <Device configuration>
The
なお、このプラズマ処理装置100は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はプラズマスパッタリング装置とも呼ばれる。
The plasma processing apparatus 100 is a plasma CVD apparatus when a film is formed by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed. be called.
具体的にプラズマ処理装置100は、図1に示すように、真空排気され且つガス7が導入される真空容器2と、真空容器2内に配置された直線状のアンテナ3と、真空容器2内に誘導結合型のプラズマPを生成するための高周波をアンテナ3に印加する高周波電源4とを備えている。なお、アンテナ3に高周波電源4から高周波を印加することによりアンテナ3には高周波電流IRが流れて、真空容器2内に誘導電界が発生して誘導結合型のプラズマPが生成される。
Specifically, as shown in FIG. 1, the plasma processing apparatus 100 includes a vacuum vessel 2 that is evacuated and into which a gas 7 is introduced, a linear antenna 3 that is disposed in the vacuum vessel 2, and a vacuum vessel 2. And a high frequency power source 4 for applying a high frequency for generating the inductively coupled plasma P to the antenna 3. When a high frequency is applied to the antenna 3 from the high frequency power source 4, a high frequency current IR flows through the antenna 3, an induction electric field is generated in the vacuum chamber 2, and inductively coupled plasma P is generated.
真空容器2は、例えば金属製の容器であり、その内部は真空排気装置6によって真空排気される。真空容器2はこの例では電気的に接地されている。
The vacuum vessel 2 is a metal vessel, for example, and the inside thereof is evacuated by the evacuation device 6. The vacuum vessel 2 is electrically grounded in this example.
真空容器2内に、例えば流量調整器(図示省略)及びアンテナ3に沿う方向に配置された複数のガス導入口21を経由して、ガス7が導入される。ガス7は、基板Wに施す処理内容に応じたものにすれば良い。例えば、プラズマCVD法によって基板Wに膜形成を行う場合には、ガス7は、原料ガス又はそれを希釈ガス(例えばH2)で希釈したガスである。より具体例を挙げると、原料ガスがSiH4の場合はSi膜を、SiH4+NH3の場合はSiN膜を、SiH4+O2の場合はSiO2膜を、SiF4+N2の場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ基板W上に形成することができる。
The gas 7 is introduced into the vacuum vessel 2 through, for example, a flow rate regulator (not shown) and a plurality of gas inlets 21 arranged in a direction along the antenna 3. The gas 7 may be made in accordance with the processing content applied to the substrate W. For example, when film formation is performed on the substrate W by the plasma CVD method, the gas 7 is a source gas or a gas obtained by diluting it with a diluent gas (for example, H 2 ). More specifically, when the source gas is SiH 4 , the Si film is formed, when SiH 4 + NH 3 is used, the SiN film is formed, when SiH 4 + O 2 is used, the SiO 2 film is formed, and when SiF 4 + N 2 is used, the SiN film is formed. : F films (fluorinated silicon nitride films) can be formed on the substrate W, respectively.
また、真空容器2内には、基板Wを保持する基板ホルダ8が設けられている。この例のように、基板ホルダ8にバイアス電源9からバイアス電圧を印加するようにしても良い。バイアス電圧は、例えば負の直流電圧、負のバイアス電圧等であるが、これに限られるものではない。このようなバイアス電圧によって、例えば、プラズマP中の正イオンが基板Wに入射する時のエネルギーを制御して、基板Wの表面に形成される膜の結晶化度の制御等を行うことができる。基板ホルダ8内に、基板Wを加熱するヒータ81を設けておいても良い。
Further, a substrate holder 8 for holding the substrate W is provided in the vacuum vessel 2. As in this example, a bias voltage may be applied to the substrate holder 8 from the bias power supply 9. The bias voltage is, for example, a negative DC voltage, a negative bias voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. . A heater 81 for heating the substrate W may be provided in the substrate holder 8.
アンテナ3は、真空容器2内における基板Wの上方に、基板Wの表面に沿うように(例えば、基板Wの表面と実質的に平行に)配置されている。真空容器2内に配置するアンテナ3は、1つでも良いし、複数でも良い。
The antenna 3 is arranged above the substrate W in the vacuum container 2 so as to be along the surface of the substrate W (for example, substantially parallel to the surface of the substrate W). The number of antennas 3 arranged in the vacuum vessel 2 may be one or plural.
アンテナ3の両端部付近は、真空容器2の相対向する側壁をそれぞれ貫通している。アンテナ3の両端部を真空容器2外へ貫通させる部分には、絶縁部材11がそれぞれ設けられている。この各絶縁部材11を、アンテナ3の両端部が貫通しており、その貫通部は例えばパッキン12によって真空シールされている。各絶縁部材11と真空容器2との間も、例えばパッキン13によって真空シールされている。なお、絶縁部材11の材質は、例えば、アルミナ等のセラミックス、石英、又はポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等のエンジニアリングプラスチック等である。
The vicinity of both end portions of the antenna 3 passes through opposite side walls of the vacuum vessel 2. Insulating members 11 are respectively provided at portions where both ends of the antenna 3 penetrate outside the vacuum vessel 2. Both end portions of the antenna 3 pass through the insulating members 11, and the through portions are vacuum-sealed by, for example, packing 12. Each insulating member 11 and the vacuum vessel 2 are also vacuum-sealed by, for example, packing 13. The insulating member 11 is made of, for example, ceramics such as alumina, quartz, engineering plastics such as polyphenine sulfide (PPS), polyether ether ketone (PEEK), or the like.
さらに、アンテナ3において、真空容器2内に位置する部分は、直管状の絶縁カバー10により覆われている。この絶縁カバー10の両端部は絶縁部材11によって支持されている。なお、絶縁カバー10の両端部と絶縁部材11間はシールしなくても良い。絶縁カバー10内の空間にガス7が入っても、当該空間は小さくて電子の移動距離が短いので、通常は空間にプラズマPは発生しないからである。なお、絶縁カバー10の材質は、例えば、石英、アルミナ、フッ素樹脂、窒化シリコン、炭化シリコン、シリコン等である。
Further, a portion of the antenna 3 located in the vacuum vessel 2 is covered with a straight tubular insulating cover 10. Both ends of the insulating cover 10 are supported by insulating members 11. In addition, it is not necessary to seal between the both ends of the insulating cover 10 and the insulating member 11. This is because even if the gas 7 enters the space in the insulating cover 10, the space P is small and the electron moving distance is short, so that plasma P is not normally generated in the space. The material of the insulating cover 10 is, for example, quartz, alumina, fluororesin, silicon nitride, silicon carbide, silicon or the like.
絶縁カバー10を設けることによって、プラズマP中の荷電粒子がアンテナ3を構成する金属パイプ31に入射するのを抑制することができるので、金属パイプ31に荷電粒子(主として電子)が入射することによるプラズマ電位の上昇を抑制することができると共に、金属パイプ31が荷電粒子(主としてイオン)によってスパッタされてプラズマPおよび基板Wに対して金属汚染(メタルコンタミネーション)が生じるのを抑制することができる。
By providing the insulating cover 10, it is possible to prevent charged particles in the plasma P from entering the metal pipe 31 constituting the antenna 3, so that charged particles (mainly electrons) enter the metal pipe 31. An increase in plasma potential can be suppressed, and metal contamination (metal contamination) on the plasma P and the substrate W caused by sputtering of the metal pipe 31 by charged particles (mainly ions) can be suppressed. .
アンテナ3の一端部である給電端部3aには、整合回路41を介して高周波電源4が接続されており、他端部である終端部3bは直接接地されている。なお、終端部3bは、コンデンサ又はコイル等を介して接地しても良い。
A high-frequency power source 4 is connected to a feeding end 3a that is one end of the antenna 3 via a matching circuit 41, and a termination 3b that is the other end is directly grounded. The terminal end 3b may be grounded via a capacitor or a coil.
上記構成によって、高周波電源4から、整合回路41を介して、アンテナ3に高周波電流IRを流すことができる。高周波の周波数は、例えば、一般的な13.56MHzであるが、これに限られるものではない。
With the above configuration, the high-frequency current IR can flow from the high-frequency power source 4 to the antenna 3 through the matching circuit 41. The high frequency is, for example, a general 13.56 MHz, but is not limited thereto.
アンテナ3は、内部に冷却液CLが流通する流路を有する中空構造のものである。具体的にアンテナ3は、図2に示すように、少なくとも2つの管状をなす金属製の導体要素31(以下、「金属パイプ31」という。)と、互いに隣り合う金属パイプ31の間に設けられて、それら金属パイプ31を絶縁する管状の絶縁要素32(以下、「絶縁パイプ32」という。)と、互いに隣り合う金属パイプ31と電気的に直列接続された容量素子であるコンデンサ33とを備えている。
The antenna 3 has a hollow structure having a flow path through which the coolant CL flows. Specifically, as shown in FIG. 2, the antenna 3 is provided between at least two tubular metal conductor elements 31 (hereinafter referred to as “metal pipes 31”) and metal pipes 31 adjacent to each other. In addition, a tubular insulating element 32 (hereinafter referred to as “insulating pipe 32”) that insulates the metal pipes 31 and a capacitor 33 that is a capacitive element electrically connected in series with the adjacent metal pipes 31 are provided. ing.
本実施形態では金属パイプ31の数は2つであり、絶縁パイプ32及びコンデンサ33の数は各1つである。以下の説明において、一方の金属パイプ31を「第1の金属パイプ31A」、他方の金属パイプを「第2の金属パイプ31B」ともいう。なお、アンテナ3は、3つ以上の金属パイプ31を有する構成であってもしても良く、この場合、絶縁パイプ32及びコンデンサ33の数はいずれも金属パイプ31の数よりも1つ少ないものになる。
In this embodiment, the number of metal pipes 31 is two, and the number of insulating pipes 32 and capacitors 33 is one each. In the following description, one metal pipe 31 is also referred to as “first metal pipe 31A”, and the other metal pipe is also referred to as “second metal pipe 31B”. The antenna 3 may have a configuration including three or more metal pipes 31. In this case, the number of the insulating pipes 32 and the capacitors 33 is one less than the number of the metal pipes 31. Become.
なお、冷却液CLは、真空容器2の外部に設けられた循環流路14によりアンテナ3を流通するものであり、前記循環流路14には、冷却液CLを一定温度に調整するための熱交換器などの温調機構141と、循環流路14において冷却液CLを循環させるためのポンプなどの循環機構142とが設けられている。冷却液CLとしては、電気絶縁の観点から、高抵抗の水が好ましく、例えば純水またはそれに近い水が好ましい。その他、例えばフッ素系不活性液体などの水以外の液冷媒を用いても良い。
The coolant CL circulates through the antenna 3 through a circulation channel 14 provided outside the vacuum vessel 2, and the circulation channel 14 has heat for adjusting the coolant CL to a constant temperature. A temperature control mechanism 141 such as an exchanger and a circulation mechanism 142 such as a pump for circulating the coolant CL in the circulation flow path 14 are provided. As the cooling liquid CL, high resistance water is preferable from the viewpoint of electrical insulation, for example, pure water or water close thereto is preferable. In addition, a liquid refrigerant other than water, such as a fluorine-based inert liquid, may be used.
金属パイプ31は、内部に冷却液CLが流れる直線状の流路31xが形成された直管状をなすものである。そして、金属パイプ31の少なくとも長手方向一端部の外周部には、雄ねじ部31aが形成されている。本実施形態の金属パイプ31は、雄ねじ部31aが形成された端部とそれ以外の部材とを別部品により形成してそれらを接合しているが、単一の部材から形成しても良い。なお、複数の金属パイプ31を接続する構成との部品の共通化を図るべく、金属パイプ31の長手方向両端部に雄ねじ部31aを形成して互換性を持たせておくことが望ましい。金属パイプ31の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等である。
The metal pipe 31 has a straight tube shape in which a linear flow path 31x in which the cooling liquid CL flows is formed. And the external thread part 31a is formed in the outer peripheral part of the longitudinal direction at least one end part of the metal pipe 31. As shown in FIG. Although the metal pipe 31 of this embodiment forms the edge part in which the external thread part 31a was formed, and other members by separate parts, they may be joined, but you may form from a single member. In order to make the parts common with the configuration in which the plurality of metal pipes 31 are connected, it is desirable that the male pipe portions 31a be formed at both ends in the longitudinal direction of the metal pipe 31 so as to be compatible. The material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.
絶縁パイプ32は、内部に冷却液CLが流れる直線状の流路32xが形成された直管状をなすものである。そして、絶縁パイプ32の軸方向両端部の側周壁には、金属パイプ31の雄ねじ部31aと螺合して接続される雌ねじ部32aが形成されている。また、絶縁パイプ32の軸方向両端部の側周壁には、雌ねじ部32aよりも軸方向中央側に、コンデンサ33の各電極33A、33Bを嵌合させるための凹部32bが周方向全体に亘って形成されている。本実施形態の絶縁パイプ32は、単一の部材から形成しているが、これに限られない。なお、絶縁パイプ32の材質は、例えば、アルミナ、フッ素樹脂、ポリエチレン(PE)、エンジニアリングプラスチック(例えばポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)など)等である。
The insulating pipe 32 has a straight tube shape in which a linear flow path 32x in which the cooling liquid CL flows is formed. Then, on the side peripheral walls at both ends in the axial direction of the insulating pipe 32, female screw portions 32 a that are screwed and connected to the male screw portion 31 a of the metal pipe 31 are formed. Moreover, the recessed part 32b for fitting each electrode 33A, 33B of the capacitor | condenser 33 to the axial direction center side rather than the internal thread part 32a is formed in the side peripheral wall of the axial direction both ends of the insulation pipe 32 over the whole circumferential direction. Is formed. Although the insulation pipe 32 of this embodiment is formed from a single member, it is not restricted to this. The material of the insulating pipe 32 is, for example, alumina, fluororesin, polyethylene (PE), engineering plastic (for example, polyphenine sulfide (PPS), polyether ether ketone (PEEK), etc.).
コンデンサ33は、絶縁パイプ32の内部に設けられており、具体的には、絶縁パイプ32の冷却液CLが流れる流路32xに設けられている。
The capacitor 33 is provided inside the insulating pipe 32. Specifically, the capacitor 33 is provided in the flow path 32x through which the coolant CL of the insulating pipe 32 flows.
具体的にコンデンサ33は、互いに隣り合う金属パイプ31の一方(第1の金属パイプ31A)と電気的に接続された第1の電極33Aと、互いに隣り合う金属パイプ31の他方(第2の金属パイプ31B)と電気的に接続されるとともに、第1の電極33Aに対向して配置された第2の電極33Bとを備えており、第1の電極33A及び第2の電極33Bの間の空間を冷却液CLが満たすように構成されている。つまり、この第1の電極33A及び第2の電極33Bの間の空間を流れる冷却液CLが、コンデンサ33を構成する誘電体となる。
Specifically, the capacitor 33 includes a first electrode 33A electrically connected to one of the adjacent metal pipes 31 (first metal pipe 31A) and the other of the adjacent metal pipes 31 (second metal). A space between the first electrode 33A and the second electrode 33B, the second electrode 33B being electrically connected to the pipe 31B) and disposed opposite to the first electrode 33A. Is configured to be filled with the coolant CL. That is, the coolant CL that flows in the space between the first electrode 33 </ b> A and the second electrode 33 </ b> B becomes a dielectric that constitutes the capacitor 33.
各電極33A、33Bは、概略回転体形状をなすとともに、その中心軸に沿って中央部に主流路33xが形成されている。具体的に各電極33A、33Bは、金属パイプ31における絶縁パイプ32側の端部に電気的に接触するフランジ部331と、当該フランジ部331から絶縁パイプ32側に延出した延出部332とを有している。本実施形態の各電極33A、33Bは、フランジ部331及び延出部332を単一の部材から形成しても良いし、別部品により形成してそれらを接合しても良い。電極33A、33Bの材質は、例えば、アルミニウム、銅、これらの合金等である。
Each of the electrodes 33A and 33B has a substantially rotating body shape, and a main flow path 33x is formed at the center along the central axis. Specifically, each of the electrodes 33A and 33B includes a flange portion 331 that electrically contacts an end portion of the metal pipe 31 on the insulating pipe 32 side, and an extending portion 332 that extends from the flange portion 331 to the insulating pipe 32 side. have. In each of the electrodes 33A and 33B of the present embodiment, the flange portion 331 and the extension portion 332 may be formed from a single member, or may be formed by separate parts and joined together. The material of the electrodes 33A and 33B is, for example, aluminum, copper, or an alloy thereof.
フランジ部331は、金属パイプ31における絶縁パイプ32側の端部に周方向全体に亘って接触している。具体的には、フランジ部331の軸方向端面は、金属パイプ31の端部に形成された円筒状の接触部311の先端面に周方向全体に亘って接触するとともに、金属パイプ31の接触部311の外周に設けられたリング状多面接触子15を介して金属パイプ31の端面に電気的に接触する。なお、フランジ部331は、それらの何れか一方により、金属パイプ31に電気的に接触するものであっても良い。
The flange portion 331 is in contact with the end portion of the metal pipe 31 on the insulating pipe 32 side over the entire circumferential direction. Specifically, the axial end surface of the flange portion 331 contacts the tip end surface of a cylindrical contact portion 311 formed at the end portion of the metal pipe 31 over the entire circumferential direction, and the contact portion of the metal pipe 31. Electrical contact is made with the end surface of the metal pipe 31 via a ring-shaped multi-face contact 15 provided on the outer periphery of 311. The flange portion 331 may be in electrical contact with the metal pipe 31 by any one of them.
また、フランジ部331には、厚み方向に複数の貫通孔331hが形成されている。このフランジ部331に貫通孔331hを設けることによって、フランジ部331による冷却液CLの流路抵抗を小さくするとともに、絶縁パイプ32内での冷却液CLの滞留、及び、絶縁パイプ32内に気泡が溜まることを防ぐことができる。
Further, a plurality of through holes 331h are formed in the flange portion 331 in the thickness direction. By providing the through hole 331 h in the flange portion 331, the flow resistance of the coolant CL by the flange portion 331 is reduced, and the retention of the coolant CL in the insulating pipe 32 and bubbles in the insulating pipe 32 are generated. It can be prevented from accumulating.
延出部332は、円筒形状をなすものであり、その内部に主流路33xが形成されている。第1の電極33Aの延出部332及び第2の電極33Bの延出部332は、互いに同軸上に配置されている。つまり、第1の電極33Aの延出部332の内部に第2の電極33Bの延出部332が挿し込まれた状態で設けられている。これにより、第1の電極33Aの延出部332と第2の電極33Bの延出部332との間に、流路方向に沿った円筒状の空間が形成される。
The extending portion 332 has a cylindrical shape, and a main flow path 33x is formed therein. The extension part 332 of the first electrode 33A and the extension part 332 of the second electrode 33B are arranged coaxially with each other. That is, the extension part 332 of the second electrode 33B is provided in a state of being inserted into the extension part 332 of the first electrode 33A. Thereby, a cylindrical space along the flow path direction is formed between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B.
このように構成された各電極33A、33Bは、絶縁パイプ32の側周壁に形成された凹部32bに嵌合されている。具体的には、絶縁パイプ32の軸方向一端側に形成された凹部32bに第1の電極33Aが嵌合され、絶縁パイプ32の軸方向他端側に形成された凹部32bに第2の電極33Bが嵌合されている。このように各凹部32bに各電極33A、33Bを嵌合させることによって、第1の電極33Aの延出部332及び第2の電極33Bの延出部332は、互いに同軸上に配置される。また、各凹部32bの軸方向外側を向く面に各電極33A、33Bのフランジ部331の端面が接触することによって、第1の電極33Aの延出部332に対する第2の電極33Bの延出部332の挿入寸法が規定される。
The electrodes 33A and 33B configured in this way are fitted in a recess 32b formed on the side peripheral wall of the insulating pipe 32. Specifically, the first electrode 33A is fitted in the recess 32b formed on one end side in the axial direction of the insulating pipe 32, and the second electrode is inserted in the recess 32b formed on the other end side in the axial direction of the insulating pipe 32. 33B is fitted. Thus, by fitting each electrode 33A, 33B to each recessed part 32b, the extension part 332 of the 1st electrode 33A and the extension part 332 of the 2nd electrode 33B are mutually arrange | positioned coaxially. Further, when the end face of the flange portion 331 of each electrode 33A, 33B is in contact with the surface facing the axially outer side of each recess 32b, the extension portion of the second electrode 33B with respect to the extension portion 332 of the first electrode 33A An insertion dimension of 332 is defined.
また、絶縁パイプ32の各凹部32bに各電極33A、33Bを嵌合させるとともに、当該絶縁パイプ32の雌ねじ部32aに金属パイプ31の雄ねじ部31aを螺合させることによって、金属パイプ31の接触部311の先端面が電極33A、33Bのフランジ部331に接触して各電極33A、33Bが、絶縁パイプ32と金属パイプ31との間に挟まれて固定される。このように本実施形態のアンテナ3は、金属パイプ31、絶縁パイプ32、第1の電極33A及び第2の電極33Bが同軸上に配置された構造となる。なお、金属パイプ31及び絶縁パイプ32の接続部は、真空及び冷却液CLに対するシール構造を有している。本実施形態のシール構造は、雄ねじ部31aの基端部に設けられたパッキン等のシール部材16により実現されている。なお、管用テーパねじ構造を用いても良い。
このように、金属パイプ31及び絶縁パイプ32の間のシール構造、金属パイプ31と各電極33A、33Bとの電気的接触が、雄ねじ部31a及び雌ねじ部32aの締結と共に行われるので、組み立て作業が非常に簡便となる。 Further, the electrodes 33A and 33B are fitted into the recesses 32b of the insulating pipe 32, and the male threaded portion 31a of the metal pipe 31 is screwed into the female threaded portion 32a of the insulating pipe 32, whereby the contact portion of the metal pipe 31 is contacted. The tip surface of 311 comes into contact with the flange portion 331 of the electrodes 33A and 33B, and the electrodes 33A and 33B are sandwiched and fixed between the insulating pipe 32 and the metal pipe 31. As described above, the antenna 3 according to this embodiment has a structure in which the metal pipe 31, the insulating pipe 32, the first electrode 33A, and the second electrode 33B are coaxially arranged. In addition, the connection part of the metal pipe 31 and the insulation pipe 32 has a seal structure with respect to the vacuum and the coolant CL. The seal structure of the present embodiment is realized by a seal member 16 such as packing provided at the proximal end portion of the male screw portion 31a. In addition, you may use the taper screw structure for pipes.
As described above, since the seal structure between themetal pipe 31 and the insulating pipe 32 and the electrical contact between the metal pipe 31 and each of the electrodes 33A and 33B are performed together with the fastening of the male screw portion 31a and the female screw portion 32a, the assembly work is performed. It becomes very simple.
このように、金属パイプ31及び絶縁パイプ32の間のシール構造、金属パイプ31と各電極33A、33Bとの電気的接触が、雄ねじ部31a及び雌ねじ部32aの締結と共に行われるので、組み立て作業が非常に簡便となる。 Further, the
As described above, since the seal structure between the
この構成において、第1の金属パイプ31Aから冷却液CLが流れてくると、冷却液CLは、第1の電極33Aの主流路33x及び貫通孔331hを通じて、第2の電極33B側に流れる。第2の電極33B側に流れた冷却液CLは、第2の電極33Bの主流路33x及び貫通孔331hを通じて第2の金属パイプ31Bに流れる。このとき、第1の電極33Aの延出部332と第2の電極33Bの延出部332との間の円筒状の空間が冷却液CLに満たされて、当該冷却液CLが誘電体となりコンデンサ33が構成される。
In this configuration, when the coolant CL flows from the first metal pipe 31A, the coolant CL flows to the second electrode 33B side through the main channel 33x and the through hole 331h of the first electrode 33A. The coolant CL that has flowed to the second electrode 33B side flows to the second metal pipe 31B through the main flow path 33x and the through hole 331h of the second electrode 33B. At this time, the cylindrical space between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B is filled with the cooling liquid CL, and the cooling liquid CL becomes a dielectric and becomes a capacitor. 33 is configured.
<第1実施形態の効果>
このように構成した第1実施形態のプラズマ処理装置100によれば、絶縁パイプ32を介して互いに隣り合う金属パイプ31にコンデンサ33を電気的に直列接続しているので、アンテナ3の合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを引いた形になるので、アンテナ3のインピーダンスを低減させることができる。その結果、アンテナ3を長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナ3に高周波電流が流れやすくなり、誘導結合型のプラズマPを効率良く発生させることができる。 <Effects of First Embodiment>
According to theplasma processing apparatus 100 of the first embodiment configured as described above, since the capacitor 33 is electrically connected in series to the metal pipes 31 adjacent to each other via the insulating pipe 32, the combined reactance of the antenna 3 is In short, since the capacitive reactance is subtracted from the inductive reactance, the impedance of the antenna 3 can be reduced. As a result, even when the antenna 3 is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna 3, and inductively coupled plasma P can be generated efficiently.
このように構成した第1実施形態のプラズマ処理装置100によれば、絶縁パイプ32を介して互いに隣り合う金属パイプ31にコンデンサ33を電気的に直列接続しているので、アンテナ3の合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを引いた形になるので、アンテナ3のインピーダンスを低減させることができる。その結果、アンテナ3を長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナ3に高周波電流が流れやすくなり、誘導結合型のプラズマPを効率良く発生させることができる。 <Effects of First Embodiment>
According to the
特に本実施形態によれば、第1の電極33A及び第2の電極33Bの間の空間を液体の誘電体(冷却液CL)で満たしているので、コンデンサ33を構成する電極33A、33B及び誘電体の間に生じる隙間を無くすことができる。その結果、電極33A、33B及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因するコンデンサ33の破損を無くすことができる。また、隙間を考慮することなく、第1の電極33Aの延出部332と第2の電極33Bの延出部332との離間距離、対向面積及び液体の誘電体(冷却液CL)の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極33A、33B及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマPの均一性の悪化を防ぐことができる。
In particular, according to the present embodiment, since the space between the first electrode 33A and the second electrode 33B is filled with the liquid dielectric (cooling liquid CL), the electrodes 33A and 33B constituting the capacitor 33 and the dielectric It is possible to eliminate gaps between the bodies. As a result, arc discharge that can occur in the gap between the electrodes 33A and 33B and the dielectric can be eliminated, and damage to the capacitor 33 due to arc discharge can be eliminated. Further, the distance between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B, the facing area, and the relative dielectric of the liquid dielectric (cooling liquid CL) without considering the gap. The capacitance value can be accurately set from the rate. Further, the structure for pressing the electrodes 33A and 33B and the dielectric for filling the gaps can be eliminated, and the structure around the antenna due to the pressing structure and the deterioration of the uniformity of the plasma P caused thereby can be prevented. be able to.
アンテナ3を冷却する冷却液CLを誘電体としているので、冷却液CLとは別に誘電体を準備する必要が無く、電極33A、33Bを冷却することができる。また、通常、冷却液CLは温調機構141により一定温度に調整されており、この冷却液CLを誘電体として用いることによって、温度変化による比誘電率の変化を抑えて、キャパシタンス値の変化を抑えることができる。さらに、冷却液CLとして水を用いた場合には、水の比誘電率は約80(20℃)であり樹脂製の誘電体シートよりも大きいため、高電圧に耐えうるコンデンサ33を構成することができる。ここで、大きな比誘電率であるので、コンデンサ33は2つの延出部332からなる2筒構造であっても充分なキャパシタンス値を得ることができる。そのため、各電極33A、33Bのフランジ部331に対する延出部332の垂直度を精度良くしつつ各電極33A、33Bを製作することができ、キャパシタンス値を精度良く設定することができる。その他、水の電気分解により不純物が混入する可能性があるが、循環流路14上にイオン交換膜フィルタ等のフィルタを設けることによって除去することができ、コンデンサ33のキャパシタンス値が変化することを抑えることができる。
Since the coolant CL for cooling the antenna 3 is a dielectric, it is not necessary to prepare a dielectric separately from the coolant CL, and the electrodes 33A and 33B can be cooled. In addition, the cooling liquid CL is normally adjusted to a constant temperature by the temperature adjustment mechanism 141. By using this cooling liquid CL as a dielectric, the change in the dielectric constant due to the temperature change is suppressed, and the change in the capacitance value is suppressed. Can be suppressed. Further, when water is used as the cooling liquid CL, the relative dielectric constant of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that the capacitor 33 that can withstand high voltage is formed. Can do. Here, since the dielectric constant is large, the capacitor 33 can obtain a sufficient capacitance value even if the capacitor 33 has a two-cylinder structure including two extending portions 332. Therefore, each electrode 33A, 33B can be manufactured while the perpendicularity of the extending part 332 with respect to the flange part 331 of each electrode 33A, 33B is improved, and the capacitance value can be set with high accuracy. In addition, there is a possibility that impurities may be mixed in by electrolysis of water, but it can be removed by providing a filter such as an ion exchange membrane filter on the circulation channel 14, and the capacitance value of the capacitor 33 changes. Can be suppressed.
<第1実施形態の変形例>
例えば、前記実施形態では、コンデンサ33が2つの円筒状の延出部からなる2筒構造であったが、図3に示すように、3つ以上の円筒状の延出部332を同軸上に配置しても良い。この場合、第1の電極33Aの延出部332と第2の電極33Bの延出部332が交互に配置されるように構成する。図3では、3つの延出部332のうち、内側及び外側の2つが第1の電極33Aの延出部332であり、中間の1つが第2の電極33Bの延出部332となる。この構成であれば、コンデンサ33の軸方向寸法を大きくすることなく対向面積を増やすことができる。 <Modification of First Embodiment>
For example, in the above-described embodiment, thecapacitor 33 has a two-cylinder structure including two cylindrical extending portions. However, as shown in FIG. 3, three or more cylindrical extending portions 332 are coaxially arranged. It may be arranged. In this case, the extending part 332 of the first electrode 33A and the extending part 332 of the second electrode 33B are arranged alternately. In FIG. 3, of the three extending portions 332, the inner and outer two are the extending portions 332 of the first electrode 33A, and the middle one is the extending portion 332 of the second electrode 33B. With this configuration, the facing area can be increased without increasing the axial dimension of the capacitor 33.
例えば、前記実施形態では、コンデンサ33が2つの円筒状の延出部からなる2筒構造であったが、図3に示すように、3つ以上の円筒状の延出部332を同軸上に配置しても良い。この場合、第1の電極33Aの延出部332と第2の電極33Bの延出部332が交互に配置されるように構成する。図3では、3つの延出部332のうち、内側及び外側の2つが第1の電極33Aの延出部332であり、中間の1つが第2の電極33Bの延出部332となる。この構成であれば、コンデンサ33の軸方向寸法を大きくすることなく対向面積を増やすことができる。 <Modification of First Embodiment>
For example, in the above-described embodiment, the
また、コンデンサ33の対向電極となる延出部332の先端角部での電界集中を緩和すべく、図4に示すように、延出部332の先端角部332aの一部をテーパ状に切り欠いても良い。具体的には、第1の電極33Aの延出部332の先端角部332aの内側周面をテーパ状に切り欠き、第2の電極33Bの延出部332の先端角部332aの外側周面をテーパ状に切り欠く。
Further, as shown in FIG. 4, a part of the tip corner portion 332a of the extension portion 332 is cut into a taper shape so as to alleviate electric field concentration at the tip corner portion of the extension portion 332 serving as the counter electrode of the capacitor 33. May be missing. Specifically, the inner peripheral surface of the tip corner portion 332a of the extension portion 332 of the first electrode 33A is cut out in a tapered shape, and the outer peripheral surface of the tip corner portion 332a of the extension portion 332 of the second electrode 33B. Cut out into a tapered shape.
さらに、電極33A、33Bと金属パイプ31との接触はそれら端面同士の接触の他に、図5に示すように、電極33A、33Bに接触端子333を設けて、当該接触端子333が金属パイプ31に接触するように構成しても良い。図5の構成は、電極33A、33Bのフランジ部331から軸方向外側に突出した接触端子333を設けて、当該接触端子333が金属パイプ31の接触部311の外側周面に押圧接触するものである。この構成において、各電極33A、33Bの相対位置は、絶縁パイプ32の凹部32bの軸方向外側を向く面により規定される。
Further, the contact between the electrodes 33A and 33B and the metal pipe 31 is not limited to the contact between the end faces, but the contact terminals 333 are provided on the electrodes 33A and 33B as shown in FIG. You may comprise so that it may contact. In the configuration of FIG. 5, a contact terminal 333 protruding outward in the axial direction from the flange portion 331 of the electrodes 33 </ b> A and 33 </ b> B is provided, and the contact terminal 333 is in press contact with the outer peripheral surface of the contact portion 311 of the metal pipe 31. is there. In this configuration, the relative positions of the electrodes 33A and 33B are defined by the surface of the insulating pipe 32 facing the outside in the axial direction of the recess 32b.
前記実施形態では、コンデンサを絶縁パイプ内に収容した構成であったが、絶縁パイプの外部に設けた構成としても良い。例えば、コンデンサを構成する第1の電極及び第2の電極を絶縁パイプの外周部に設けるとともに、それら電極の間に液体の誘電体を充満させる構成とする。また、第1の電極及び第2の電極を金属パイプと電気的に接続しつつ、それら電極を絶縁パイプから離間した構成としても良い。これらの構成において、液体の誘電体は、アンテナの内部流路から分岐した分岐流路により供給される冷却液であっても良いし、冷却液とは別経路で供給される液体の誘電体であっても良い。また、第1の電極及び第2の電極の間に液体の誘電体を封止されたものであっても良い。なお、封止する場合には、当該液体の誘電体の温度を一定に調整するための温調機構を設ける必要がある。
In the above-described embodiment, the capacitor is housed in the insulating pipe. However, the capacitor may be provided outside the insulating pipe. For example, the first electrode and the second electrode constituting the capacitor are provided on the outer periphery of the insulating pipe, and a liquid dielectric is filled between the electrodes. Alternatively, the first electrode and the second electrode may be electrically connected to the metal pipe while the electrodes are separated from the insulating pipe. In these configurations, the liquid dielectric may be a coolant supplied by a branch flow path branched from the internal flow path of the antenna, or may be a liquid dielectric supplied by a separate path from the coolant. There may be. Further, a liquid dielectric may be sealed between the first electrode and the second electrode. In the case of sealing, it is necessary to provide a temperature adjustment mechanism for adjusting the temperature of the dielectric material of the liquid to be constant.
<2.第2実施形態>
次に、本発明の第2実施形態について説明する。なお、前記第1実施形態と同一又は対応する部材には同一の符号を付している。 <2. Second Embodiment>
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the member which is the same as that of the said 1st Embodiment, or respond | corresponds.
次に、本発明の第2実施形態について説明する。なお、前記第1実施形態と同一又は対応する部材には同一の符号を付している。 <2. Second Embodiment>
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the member which is the same as that of the said 1st Embodiment, or respond | corresponds.
第2実施形態のプラズマ処理装置100は、前記第1実施形態とはアンテナ3の構成、特にコンデンサ33の構成が異なる。
The plasma processing apparatus 100 of the second embodiment differs from the first embodiment in the configuration of the antenna 3, particularly the configuration of the capacitor 33.
アンテナ3は、内部に冷却液CLが流通する流路を有する中空構造のものである。具体的にアンテナ3は、図6に示すように、少なくとも2つの管状をなす金属製の導体要素31(以下、「金属パイプ31」という。)と、互いに隣り合う金属パイプ31の間に設けられて、それら金属パイプ31を絶縁する管状の絶縁要素32(以下、「絶縁パイプ32」という。)と、互いに隣り合う金属パイプ31と電気的に直列接続された容量素子であるコンデンサ33とを備えている。
The antenna 3 has a hollow structure having a flow path through which the coolant CL flows. Specifically, as shown in FIG. 6, the antenna 3 is provided between at least two tubular metal conductor elements 31 (hereinafter referred to as “metal pipes 31”) and metal pipes 31 adjacent to each other. In addition, a tubular insulating element 32 (hereinafter referred to as “insulating pipe 32”) that insulates the metal pipes 31 and a capacitor 33 that is a capacitive element electrically connected in series with the adjacent metal pipes 31 are provided. ing.
本実施形態では金属パイプ31の数は2つであり、絶縁パイプ32及びコンデンサ33の数は各1つである。以下の説明において、一方の金属パイプ31を「第1の金属パイプ31A」、他方の金属パイプ31を「第2の金属パイプ31B」ともいう。ここでは、第1の金属パイプ31Aは、冷却液CLの流れ方向上流側に配置された金属パイプ31であり、第2の金属パイプ31Bは、冷却液CLの流れ方向下流側に配置された金属パイプ31である。また、第1の金属パイプ31A及び第2の金属パイプ31Bは、ここでは外径及び内径が互いに同じであり、且つ、同軸上に配置されている。ただし、金属パイプ31の外径及び内径は適宜変更して構わないし、配置に関しても必ずしも同軸上にする必要はない。さらに、アンテナ3は、3つ以上の金属パイプ31を有する構成であっても良く、この場合、絶縁パイプ32及びコンデンサ33の数はいずれも金属パイプ31の数よりも1つ少ないものになる。
In this embodiment, the number of metal pipes 31 is two, and the number of insulating pipes 32 and capacitors 33 is one each. In the following description, one metal pipe 31 is also referred to as “first metal pipe 31A”, and the other metal pipe 31 is also referred to as “second metal pipe 31B”. Here, the first metal pipe 31A is the metal pipe 31 disposed on the upstream side in the flow direction of the coolant CL, and the second metal pipe 31B is the metal disposed on the downstream side in the flow direction of the coolant CL. This is a pipe 31. In addition, the first metal pipe 31A and the second metal pipe 31B have the same outer diameter and inner diameter, and are arranged coaxially. However, the outer diameter and inner diameter of the metal pipe 31 may be appropriately changed, and the arrangement is not necessarily coaxial. Further, the antenna 3 may have a configuration including three or more metal pipes 31, and in this case, the number of the insulation pipes 32 and the capacitors 33 is one less than the number of the metal pipes 31.
金属パイプ31は、内部に冷却液CLが流れる直線状の流路31xが形成された直管状をなすものである。金属パイプ31の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等である。
The metal pipe 31 has a straight tube shape in which a linear flow path 31x in which the cooling liquid CL flows is formed. The material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.
絶縁パイプ32は、内部に冷却液CLが流れる直線状の流路32xが形成された直管状をなすものである。本実施形態の絶縁パイプ32は、金属パイプ31と外径が同じものであり、金属パイプ31と同軸上に配置されている。また、絶縁パイプ32は、単一の部材から形成されており、その材質は、例えば、アルミナ、フッ素樹脂、ポリエチレン(PE)、エンジニアリングプラスチック(例えばポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)など)等である。なお、絶縁パイプ32の寸法や配置や部材については上記に限られない。
The insulating pipe 32 has a straight tube shape in which a linear flow path 32x in which the cooling liquid CL flows is formed. The insulating pipe 32 of the present embodiment has the same outer diameter as the metal pipe 31 and is arranged coaxially with the metal pipe 31. The insulating pipe 32 is formed of a single member. The material of the insulating pipe 32 is, for example, alumina, fluorine resin, polyethylene (PE), engineering plastic (for example, polyphenine sulfide (PPS), polyether ether ketone (PEEK). ) Etc.). The dimensions, arrangement, and members of the insulating pipe 32 are not limited to the above.
コンデンサ33は、第1の金属パイプ31Aと第2の金属パイプ32Bとの間に介在しており、その内部に第1の金属パイプ31Aの流路31xと第2の金属パイプ31Bの流路31xとを連通する主流路33xが形成されたものである。
The capacitor 33 is interposed between the first metal pipe 31A and the second metal pipe 32B, and the flow path 31x of the first metal pipe 31A and the flow path 31x of the second metal pipe 31B are disposed therein. The main flow path 33x which connects is formed.
具体的にコンデンサ33は、第1の金属パイプ31Aと電気的に接続されて、絶縁パイプ32より第1の金属パイプ31A側に配置された第1の電極33Aと、第2の金属パイプ31Bと電気的に接続されるとともに、第2の金属パイプ31B側から絶縁パイプ32の内部を通って第1の金属パイプ31A側に延び、第1の電極33Aに対向して配置された第2の電極33Bとを備えており、第1の電極33A及び第2の電極33Bの間の空間Sを冷却液CLが満たすように構成されている。つまり、この第1の電極33A及び第2の電極33Bの間の空間Sを流れる冷却液CLが、コンデンサ33を構成する誘電体となる。
Specifically, the capacitor 33 is electrically connected to the first metal pipe 31A, the first electrode 33A disposed on the first metal pipe 31A side from the insulating pipe 32, and the second metal pipe 31B. A second electrode that is electrically connected, extends from the second metal pipe 31B side through the inside of the insulating pipe 32 to the first metal pipe 31A side, and is disposed to face the first electrode 33A. 33B, and the cooling liquid CL fills the space S between the first electrode 33A and the second electrode 33B. That is, the coolant CL flowing through the space S between the first electrode 33A and the second electrode 33B becomes a dielectric that constitutes the capacitor 33.
ここで、第1の電極33Aと第1の金属パイプ31Aとは、一方の軸方向端部に形成された雄ねじ部と、他方の軸方向端部に形成された雌ねじ部とを螺合させることによって互いに連結されるように構成されている。
本実施形態では、第1の金属パイプ31Aの軸方向端部における内周部に雄ねじ部31aを形成するとともに、第1の電極33Aの軸方向端部における外周部に雌ねじ部33aを形成しており、これらを螺合することで第1の電極33Aの軸方向端部が第1の金属パイプ31A内に差し込まれた状態で連結されるようにしてある。 Here, thefirst electrode 33 </ b> A and the first metal pipe 31 </ b> A are formed by screwing a male screw portion formed at one axial end portion and a female screw portion formed at the other axial end portion. Are connected to each other.
In the present embodiment, themale screw portion 31a is formed on the inner peripheral portion at the axial end portion of the first metal pipe 31A, and the female screw portion 33a is formed on the outer peripheral portion at the axial end portion of the first electrode 33A. These are screwed together so that the axial ends of the first electrode 33A are connected in a state of being inserted into the first metal pipe 31A.
本実施形態では、第1の金属パイプ31Aの軸方向端部における内周部に雄ねじ部31aを形成するとともに、第1の電極33Aの軸方向端部における外周部に雌ねじ部33aを形成しており、これらを螺合することで第1の電極33Aの軸方向端部が第1の金属パイプ31A内に差し込まれた状態で連結されるようにしてある。 Here, the
In the present embodiment, the
また、第2の電極33Bと第2の金属パイプ31Bとは、一方の軸方向端部に形成された雄ねじ部と、他方の軸方向端部に形成された雌ねじ部とを螺合させることによって互いに連結されるように構成されている。
本実施形態では、第2の金属パイプ31Bの軸方向端部における外周部に雄ねじ部31aを形成するとともに、第2の電極33Bの軸方向端部における内周部に雌ねじ部33aを形成しており、これらを螺合することで第2の金属パイプ31Bの軸方向端部が第2の電極33B内に差し込まれた状態で連結されるようにしてある。 Further, thesecond electrode 33B and the second metal pipe 31B are formed by screwing a male screw portion formed at one axial end portion and a female screw portion formed at the other axial end portion. It is comprised so that it may mutually connect.
In the present embodiment, theexternal thread portion 31a is formed at the outer peripheral portion at the axial end portion of the second metal pipe 31B, and the internal thread portion 33a is formed at the inner peripheral portion at the axial end portion of the second electrode 33B. These are screwed together so that the axial ends of the second metal pipe 31B are connected in a state of being inserted into the second electrode 33B.
本実施形態では、第2の金属パイプ31Bの軸方向端部における外周部に雄ねじ部31aを形成するとともに、第2の電極33Bの軸方向端部における内周部に雌ねじ部33aを形成しており、これらを螺合することで第2の金属パイプ31Bの軸方向端部が第2の電極33B内に差し込まれた状態で連結されるようにしてある。 Further, the
In the present embodiment, the
以下、各電極33A、33Bについて詳述する。
Hereinafter, each of the electrodes 33A and 33B will be described in detail.
各電極33A、33Bは、概略回転体形状をなすとともに、その中心軸に沿って中央部に主流路33xが形成されている。ここでの各電極33A、33Bは、管状をなすものであり、軸方向から視て金属パイプ31よりも外側に突出することなく設けられている。各電極33A、33Bの材質は、例えば、アルミニウム、銅、これらの合金等である。
Each of the electrodes 33A and 33B has a substantially rotating body shape, and a main flow path 33x is formed at the center along the central axis. Each of the electrodes 33A and 33B here has a tubular shape and is provided without protruding outward from the metal pipe 31 when viewed from the axial direction. The materials of the electrodes 33A and 33B are, for example, aluminum, copper, and alloys thereof.
具体的に各電極33A、33Bは、金属パイプ31と螺合することで金属パイプ31における絶縁パイプ32側の端部に接触して電気的に接続される接触部331と、当該接触部331から絶縁パイプ32側に延出した延出部332とを有している。接触部331及び延出部332は、単一の部材から形成されていても良いし、別部材により形成してそれらを接合したものであっても良い。
Specifically, each of the electrodes 33A and 33B is screwed into the metal pipe 31 to come into contact with and electrically connect to the end of the metal pipe 31 on the insulating pipe 32 side, and from the contact portion 331 And an extending portion 332 extending to the insulating pipe 32 side. The contact part 331 and the extension part 332 may be formed from a single member, or may be formed by separate members and joined to each other.
接触部331は、金属パイプ31における絶縁パイプ32側の端部に周方向全体に亘って接触している。具体的に接触部331は、円筒状をなすものであり、その軸方向端面が金属パイプ31の端部に形成された円筒状の被接触部311の先端面に周方向全体に亘って接触する。なお、接触部331の外径は、金属パイプ31の外径以下であり、ここでは金属パイプ31の外径と同じである。
さらにこの接触部331は、被接触部311との間に設けられたリング状多面接触子15を介して金属パイプ31の端面に電気的に接触している。ただし、必ずしも被接触部311及びリング状多面接触子15の両方を設ける必要はなく、それらの何れか一方により、接触部331と金属パイプ31とを電気的に接触しても良い。
また、接触部331と被接触部311との間には、真空及び冷却液CLに対するシール構造を介在させている。本実施形態のシール構造は、接触部331及び被接触部311の間に設けたOリング等のシール部材16により実現されている。 Thecontact portion 331 is in contact with the end portion of the metal pipe 31 on the insulating pipe 32 side over the entire circumferential direction. Specifically, the contact portion 331 has a cylindrical shape, and its axial end surface is in contact with the tip end surface of the cylindrical contacted portion 311 formed at the end portion of the metal pipe 31 over the entire circumferential direction. . The outer diameter of the contact portion 331 is equal to or smaller than the outer diameter of the metal pipe 31 and is the same as the outer diameter of the metal pipe 31 here.
Further, thecontact portion 331 is in electrical contact with the end surface of the metal pipe 31 through the ring-shaped multi-face contact 15 provided between the contact portion 311. However, it is not always necessary to provide both the contacted part 311 and the ring-shaped multifaceted contact 15, and the contact part 331 and the metal pipe 31 may be electrically contacted by any one of them.
Further, a seal structure for vacuum and the coolant CL is interposed between thecontact portion 331 and the contacted portion 311. The seal structure of the present embodiment is realized by a seal member 16 such as an O-ring provided between the contact portion 331 and the contacted portion 311.
さらにこの接触部331は、被接触部311との間に設けられたリング状多面接触子15を介して金属パイプ31の端面に電気的に接触している。ただし、必ずしも被接触部311及びリング状多面接触子15の両方を設ける必要はなく、それらの何れか一方により、接触部331と金属パイプ31とを電気的に接触しても良い。
また、接触部331と被接触部311との間には、真空及び冷却液CLに対するシール構造を介在させている。本実施形態のシール構造は、接触部331及び被接触部311の間に設けたOリング等のシール部材16により実現されている。 The
Further, the
Further, a seal structure for vacuum and the coolant CL is interposed between the
延出部332は、円筒状をなすものであり、その内部に主流路33xが形成されている。第1の電極33Aの延出部332(以下、「第1の延出部332A」という)及び第2の電極33Bの延出部332(以下、「第2の延出部332B」という)は、互いに同軸上に配置されており、図6に示すように、第1の延出部332Aを外側に、第2の延出部332Bを内側に配置させた二重筒構造を構成している。
The extending portion 332 has a cylindrical shape, and a main flow path 33x is formed therein. The extension part 332 of the first electrode 33A (hereinafter referred to as “first extension part 332A”) and the extension part 332 of the second electrode 33B (hereinafter referred to as “second extension part 332B”) As shown in FIG. 6, a double cylinder structure is formed in which the first extending portion 332A is disposed on the outside and the second extending portion 332B is disposed on the inside. .
第1の延出部332Aは、第1の電極33Aの接触部331と、絶縁パイプ32との間に介在して設けられており、その基端部が接触部331に接合されるとともに、先端部が絶縁パイプ32に固定されている。より詳細に説明すると、接触部331の絶縁パイプ32側の軸方向端部は、外周部を周方向に切り欠いた切欠部331aが形成されてその他の部分よりも外径が小さくなっており、その切欠部331aに第1の延出部332Aの基端部が嵌合するように構成されている。また、絶縁パイプ32の第1の金属パイプ31A側の軸方向端部は、外周部を周方向に切り欠いた外周切欠部32aが形成されてその他の部分よりも外径が小さくなっており、その外周切欠部32aに第1の延出部332Aの先端部が嵌合するように構成されている。
すなわち、第1の延出部332Aの内径は、接触部331の絶縁パイプ32側の軸方向端部の外径と同じ又は若干大きく、且つ、絶縁パイプ32の第1の金属パイプ31A側の軸方向端部の外径と同じ又は若干大きい。一方、第1の延出部332Aの外径は、金属パイプ31の外径以下に設計されており、ここでは金属パイプ31の外径と同じである。
なお、第1の延出部332Aの基端部及び接触部331は例えば溶接M等によって接合されており、第1の延出部332Aの先端部及び絶縁パイプ32は例えばろう付けB等によって固定されているが、接合方法や固定方法はこれに限られるものではない。 The first extendingportion 332A is provided between the contact portion 331 of the first electrode 33A and the insulating pipe 32, and its proximal end is joined to the contact portion 331, and the distal end The part is fixed to the insulating pipe 32. More specifically, the axial end portion of the contact portion 331 on the insulating pipe 32 side is formed with a notch portion 331a in which the outer peripheral portion is notched in the circumferential direction, and the outer diameter is smaller than other portions. The base end portion of the first extending portion 332A is configured to fit into the cutout portion 331a. In addition, the axial end of the insulating pipe 32 on the first metal pipe 31A side is formed with an outer peripheral cutout portion 32a in which the outer peripheral portion is cut out in the circumferential direction, and the outer diameter is smaller than other portions. The distal end portion of the first extending portion 332A is configured to fit into the outer circumferential cutout portion 32a.
That is, the inner diameter of the first extendingportion 332A is the same as or slightly larger than the outer diameter of the axial end portion of the contact portion 331 on the insulating pipe 32 side, and the shaft of the insulating pipe 32 on the first metal pipe 31A side. Same or slightly larger than the outer diameter of the direction end. On the other hand, the outer diameter of the first extending portion 332A is designed to be equal to or smaller than the outer diameter of the metal pipe 31, and is the same as the outer diameter of the metal pipe 31 here.
The base end portion of thefirst extension portion 332A and the contact portion 331 are joined by, for example, welding M, and the tip portion of the first extension portion 332A and the insulating pipe 32 are fixed by, for example, brazing B or the like. However, the joining method and the fixing method are not limited to this.
すなわち、第1の延出部332Aの内径は、接触部331の絶縁パイプ32側の軸方向端部の外径と同じ又は若干大きく、且つ、絶縁パイプ32の第1の金属パイプ31A側の軸方向端部の外径と同じ又は若干大きい。一方、第1の延出部332Aの外径は、金属パイプ31の外径以下に設計されており、ここでは金属パイプ31の外径と同じである。
なお、第1の延出部332Aの基端部及び接触部331は例えば溶接M等によって接合されており、第1の延出部332Aの先端部及び絶縁パイプ32は例えばろう付けB等によって固定されているが、接合方法や固定方法はこれに限られるものではない。 The first extending
That is, the inner diameter of the first extending
The base end portion of the
第2の延出部332Bは、上述したように、第2の金属パイプ31B側から絶縁パイプ32の内部を通って第1の金属パイプ31A側に延び、第1の延出部332Aとともに二重筒構造を構成するものである。
そこで、第2の延出部332Bは、第2の電極33Bの接触部331及び絶縁パイプ32の間に介在して設けられ、基端部の外径よりも先端部の外径が小さくなるように構成された縮径要素333と、縮径要素333の先端部から絶縁パイプ32の内部を通って第1の金属パイプ31A側に延びる直管要素334とを有している。なお、縮径要素333と直管要素334とは、単一の部材から形成されていても良いし、別部品により形成してそれらを溶接等により接合しても良い。 As described above, thesecond extension portion 332B extends from the second metal pipe 31B side to the first metal pipe 31A side through the inside of the insulating pipe 32, and doubles together with the first extension portion 332A. This constitutes a cylindrical structure.
Therefore, the second extendingportion 332B is provided between the contact portion 331 of the second electrode 33B and the insulating pipe 32 so that the outer diameter of the distal end portion is smaller than the outer diameter of the proximal end portion. And a straight pipe element 334 extending from the tip of the reduced diameter element 333 to the first metal pipe 31A side through the inside of the insulating pipe 32. The reduced diameter element 333 and the straight pipe element 334 may be formed of a single member, or may be formed of separate parts and joined by welding or the like.
そこで、第2の延出部332Bは、第2の電極33Bの接触部331及び絶縁パイプ32の間に介在して設けられ、基端部の外径よりも先端部の外径が小さくなるように構成された縮径要素333と、縮径要素333の先端部から絶縁パイプ32の内部を通って第1の金属パイプ31A側に延びる直管要素334とを有している。なお、縮径要素333と直管要素334とは、単一の部材から形成されていても良いし、別部品により形成してそれらを溶接等により接合しても良い。 As described above, the
Therefore, the second extending
縮径要素333は、少なくとも外径が基端部から先端部に向かって段階的に小さく又は漸次小さくなるように構成されており、ここでは外径及び内径が段階的に小さくなる形状である。この縮径要素333は、基端部が接触部331に接合されるとともに、先端部が絶縁パイプ32に固定されている。より詳細に説明すると、上述したように、接触部331の絶縁パイプ32側の軸方向端部は、外周部を周方向に切り欠いた切欠部331aが形成されてその他の部分よりも外径が小さくなっており、その切欠部331aに縮径要素333の基端部が嵌合するように構成されている。また、絶縁パイプ32の第2の金属パイプ31B側の軸方向端部は、内周部を周方向に切り欠いた内周切欠部32bが形成されてその他の部分よりも内径が小さくなっており、その内周切欠部32bに縮径要素333の先端部が嵌合するように構成されている。
すなわち、縮径要素333の基端部の内径は、接触部331の絶縁パイプ32側の軸方向端部の外径と同じ又は若干大きく、縮径要素333の先端部の外径は、絶縁パイプ32の第1の金属パイプ側の軸方向端部の内径と同じ又は若干小さい。また、縮径要素333の基端部の外径は、金属パイプ31の外径以下に設計されており、ここでは金属パイプ31の外径と同じである。
なお、縮径要素333の基端部及び接触部331は例えば溶接M等によって接合されており、縮径要素333の先端部及び絶縁パイプ32は例えばろう付けB等によって固定されているが、接合方法や固定方法はこれに限られるものではない。 The diameter-reducingelement 333 is configured such that at least the outer diameter decreases stepwise or gradually decreases from the proximal end portion toward the distal end portion, and here, the outer diameter and the inner diameter decrease in a stepwise manner. The diameter reducing element 333 has a proximal end joined to the contact portion 331 and a distal end fixed to the insulating pipe 32. More specifically, as described above, the axial end portion of the contact portion 331 on the insulating pipe 32 side is formed with a notch portion 331a in which the outer peripheral portion is notched in the circumferential direction, and has an outer diameter larger than that of the other portions. The base portion of the reduced diameter element 333 is fitted to the notch 331a. Further, the axial end of the insulating pipe 32 on the second metal pipe 31B side is formed with an inner peripheral cutout portion 32b in which the inner peripheral portion is cut out in the circumferential direction, and the inner diameter is smaller than other portions. The distal end portion of the diameter-reducing element 333 is configured to fit into the inner peripheral cutout portion 32b.
That is, the inner diameter of the proximal end portion of the reduceddiameter element 333 is the same as or slightly larger than the outer diameter of the axial end portion of the contact portion 331 on the insulating pipe 32 side, and the outer diameter of the distal end portion of the reduced diameter element 333 is the insulating pipe. 32 is the same as or slightly smaller than the inner diameter of the axial end on the first metal pipe side. Further, the outer diameter of the proximal end portion of the reduced diameter element 333 is designed to be equal to or smaller than the outer diameter of the metal pipe 31, and is the same as the outer diameter of the metal pipe 31 here.
The proximal end portion and thecontact portion 331 of the reduced diameter element 333 are joined by, for example, welding M, and the distal end portion of the reduced diameter element 333 and the insulating pipe 32 are fixed by, for example, brazing B. The method and the fixing method are not limited to this.
すなわち、縮径要素333の基端部の内径は、接触部331の絶縁パイプ32側の軸方向端部の外径と同じ又は若干大きく、縮径要素333の先端部の外径は、絶縁パイプ32の第1の金属パイプ側の軸方向端部の内径と同じ又は若干小さい。また、縮径要素333の基端部の外径は、金属パイプ31の外径以下に設計されており、ここでは金属パイプ31の外径と同じである。
なお、縮径要素333の基端部及び接触部331は例えば溶接M等によって接合されており、縮径要素333の先端部及び絶縁パイプ32は例えばろう付けB等によって固定されているが、接合方法や固定方法はこれに限られるものではない。 The diameter-reducing
That is, the inner diameter of the proximal end portion of the reduced
The proximal end portion and the
直管要素334は、縮径要素333の先端部から第1の金属パイプ31A側に延び、絶縁パイプ32の内部を通って第1の延出部332Aの内部に差し込まれた状態で設けられている。これにより、この直管要素334と第1の延出部332Aとの間に、流路方向に沿った円筒状の空間Sが形成される。具体的に直管要素334は、外径が絶縁パイプ32の内径及び第1の延出部332Aの内径よりも小さいものであり、第1の延出部332Aと同軸上に配置されている。これにより、第1の延出部332Aの内周面と、直管要素334の外周面との距離は、周方向に沿って一定となる。なお、直管要素334の内径は、ここでは縮径要素333の先端部の内径と同じ寸法としているが、これに限られない。
The straight pipe element 334 is provided in a state of extending from the distal end portion of the diameter-reducing element 333 to the first metal pipe 31A side and passing through the inside of the insulating pipe 32 and inserted into the first extension portion 332A. Yes. Thereby, a cylindrical space S along the flow path direction is formed between the straight pipe element 334 and the first extending portion 332A. Specifically, the straight pipe element 334 has an outer diameter smaller than the inner diameter of the insulating pipe 32 and the inner diameter of the first extension portion 332A, and is arranged coaxially with the first extension portion 332A. Thereby, the distance between the inner peripheral surface of the first extending portion 332A and the outer peripheral surface of the straight pipe element 334 is constant along the circumferential direction. In addition, although the internal diameter of the straight pipe | tube element 334 is made into the same dimension as the internal diameter of the front-end | tip part of the diameter reducing element 333 here, it is not restricted to this.
また、直管要素334には、その周壁を厚み方向に貫通する複数の貫通孔332hが形成されている。具体的にこれら貫通孔332hは、絶縁パイプ32の内周面の少なくとも一部と対向するように冷却液CLの流れ方向に沿って形成されており、直管要素334及び絶縁パイプ32の間の空間と第2の電極33Bの主流路33xとを連通している。これらの貫通孔332hは、周方向に等間隔に設けられるとともに、軸方向に沿って直管要素334の基端から第1の延出部332Aの先端までの間に設けられている。このような貫通孔332hを設けることによって、第2の電極33Bによる冷却液CLの流路抵抗を小さくするとともに、絶縁パイプ32内での冷却液CLの滞留、及び、絶縁パイプ32内に気泡が溜まることを防ぐことができる。
Further, the straight pipe element 334 is formed with a plurality of through holes 332h penetrating the peripheral wall in the thickness direction. Specifically, these through holes 332 h are formed along the flow direction of the cooling liquid CL so as to face at least a part of the inner peripheral surface of the insulating pipe 32, and between the straight pipe element 334 and the insulating pipe 32. The space communicates with the main flow path 33x of the second electrode 33B. These through holes 332h are provided at equal intervals in the circumferential direction, and are provided between the proximal end of the straight pipe element 334 and the distal end of the first extending portion 332A along the axial direction. By providing such a through-hole 332h, the flow resistance of the cooling liquid CL by the second electrode 33B is reduced, the retention of the cooling liquid CL in the insulating pipe 32, and bubbles in the insulating pipe 32 are generated. It can be prevented from accumulating.
このように構成された各電極33A、33Bによれば、各電極33A、33Bの雌ねじ部33aに金属パイプ31の雄ねじ部31aを螺合させることによって、金属パイプ31の被接触部311の先端面が電極33A、33Bの接触部331に接触するとともに、これらの間がシール部材16によってシールされ、なおかつ、各電極33A、33Bが、互いに同軸上に配置されるとともに、第1の電極33Aの延出部332Aに対する第2の電極33Bの延出部332Bの挿入寸法が規定される。
このように、金属パイプ31及び絶縁パイプ32の間のシールや、金属パイプ31と各電極33A、33Bとの電気的接触や、各電極33A、33Bの配置が、雄ねじ部31a及び雌ねじ部33aの締結と共に行われるので、組み立て作業が非常に簡便となる。 According to each of the electrodes 33A and 33B configured as described above, the front end surface of the contacted portion 311 of the metal pipe 31 is formed by screwing the male screw portion 31a of the metal pipe 31 with the female screw portion 33a of each of the electrodes 33A and 33B. Is in contact with the contact portion 331 of the electrodes 33A and 33B, and the space between the electrodes 33A and 33B is sealed by the seal member 16, and the electrodes 33A and 33B are arranged coaxially with each other, and the first electrode 33A extends. The insertion dimension of the extended portion 332B of the second electrode 33B with respect to the extended portion 332A is defined.
As described above, the seal between themetal pipe 31 and the insulating pipe 32, the electrical contact between the metal pipe 31 and each electrode 33A, 33B, and the arrangement of each electrode 33A, 33B are the same as those of the male screw portion 31a and the female screw portion 33a. Since it is performed together with the fastening, the assembling work becomes very simple.
このように、金属パイプ31及び絶縁パイプ32の間のシールや、金属パイプ31と各電極33A、33Bとの電気的接触や、各電極33A、33Bの配置が、雄ねじ部31a及び雌ねじ部33aの締結と共に行われるので、組み立て作業が非常に簡便となる。 According to each of the
As described above, the seal between the
この構成において、第1の金属パイプ31Aから冷却液CLが流れてくると、冷却液CLは、一部は第1の電極33Aの主流路33xから第2の電極33Bの主流路33xへ流れて第2の金属パイプ31Bの内部へ導かれ、その他は主流路33xから分岐して第1の延出部332Aと第2の延出部332Bとの間の空間Sに流れる。空間Sに流れ込んだ冷却液CLは、貫通孔332hを通じて、第2の電極33Bの主流路33xに合流して、第2の金属パイプ31Bの内部に導かれる。このとき、第1の電極33Aの延出部332Aと第2の電極33Bの延出部332Bとの間の円筒状の空間Sが冷却液CLに満たされて、当該冷却液CLが誘電体として機能し、コンデンサ33が構成される。
<第2実施形態の効果>
このように構成した第2実施形態のプラズマ処理装置100によれば、絶縁パイプ32を介して互いに隣り合う金属パイプ31にコンデンサ33を電気的に直列接続しているので、アンテナ3の合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを引いた形になるので、アンテナ3のインピーダンスを低減させることができる。その結果、アンテナ3を長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナ3に高周波電流が流れやすくなり、誘導結合型のプラズマPを効率良く発生させることができる。 In this configuration, when the coolant CL flows from thefirst metal pipe 31A, a part of the coolant CL flows from the main channel 33x of the first electrode 33A to the main channel 33x of the second electrode 33B. The other is guided into the second metal pipe 31B, and the other branches from the main flow path 33x and flows into the space S between the first extension part 332A and the second extension part 332B. The coolant CL that has flowed into the space S joins the main flow path 33x of the second electrode 33B through the through-hole 332h, and is guided into the second metal pipe 31B. At this time, the cylindrical space S between the extending portion 332A of the first electrode 33A and the extending portion 332B of the second electrode 33B is filled with the cooling liquid CL, and the cooling liquid CL serves as a dielectric. The capacitor 33 is configured.
<Effects of Second Embodiment>
According to theplasma processing apparatus 100 of the second embodiment configured as described above, the capacitor 33 is electrically connected in series to the metal pipes 31 adjacent to each other via the insulating pipe 32, so that the combined reactance of the antenna 3 is In short, since the capacitive reactance is subtracted from the inductive reactance, the impedance of the antenna 3 can be reduced. As a result, even when the antenna 3 is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna 3, and inductively coupled plasma P can be generated efficiently.
<第2実施形態の効果>
このように構成した第2実施形態のプラズマ処理装置100によれば、絶縁パイプ32を介して互いに隣り合う金属パイプ31にコンデンサ33を電気的に直列接続しているので、アンテナ3の合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを引いた形になるので、アンテナ3のインピーダンスを低減させることができる。その結果、アンテナ3を長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナ3に高周波電流が流れやすくなり、誘導結合型のプラズマPを効率良く発生させることができる。 In this configuration, when the coolant CL flows from the
<Effects of Second Embodiment>
According to the
特に本実施形態によれば、第1の電極33A及び第2の電極33Bの間の空間Sを液体の誘電体(冷却液CL)で満たしているので、コンデンサ33を構成する電極33A、33B及び誘電体の間に生じる隙間を無くすことができる。その結果、電極33A、33B及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因するコンデンサ33の破損を無くすことができる。また、隙間を考慮することなく、第1の電極33Aの延出部332Aと第2の電極33Bの延出部332Bとの離間距離、対向面積及び液体の誘電体(冷却液CL)の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極33A、33B及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマPの均一性の悪化を防ぐことができる。加えて、第2の電極33Bを、第2の金属パイプ31B側から絶縁パイプ32の内部を通して第1の金属パイプ31A側に延ばすことで第1の電極33Aと対向させているので、その延出寸法を変えることでコンデンサ33として必要なキャパシタンス値を容易に得ることができる。
In particular, according to the present embodiment, since the space S between the first electrode 33A and the second electrode 33B is filled with the liquid dielectric (cooling liquid CL), the electrodes 33A, 33B constituting the capacitor 33 and A gap generated between the dielectrics can be eliminated. As a result, arc discharge that can occur in the gap between the electrodes 33A and 33B and the dielectric can be eliminated, and damage to the capacitor 33 due to arc discharge can be eliminated. Further, the distance between the extending portion 332A of the first electrode 33A and the extending portion 332B of the second electrode 33B, the facing area, and the relative dielectric of the liquid dielectric (cooling liquid CL) can be considered without considering the gap. The capacitance value can be accurately set from the rate. Further, the structure for pressing the electrodes 33A and 33B and the dielectric for filling the gaps can be eliminated, and the structure around the antenna due to the pressing structure and the deterioration of the uniformity of the plasma P caused thereby can be prevented. be able to. In addition, since the second electrode 33B extends from the second metal pipe 31B side to the first metal pipe 31A side through the inside of the insulating pipe 32, the second electrode 33B is opposed to the first electrode 33A. A capacitance value necessary for the capacitor 33 can be easily obtained by changing the dimensions.
アンテナ3を冷却する冷却液CLを誘電体としているので、冷却液CLとは別に誘電体を準備する必要が無く、電極33A、33Bを冷却することができる。また、通常、冷却液CLは温調機構141により一定温度に調整されており、この冷却液CLを誘電体として用いることによって、温度変化による比誘電率の変化を抑えて、キャパシタンス値の変化を抑えることができる。さらに、冷却液CLとして水を用いた場合には、水の比誘電率は約80(20℃)であり樹脂製の誘電体シートよりも大きいため、高電圧に耐えうるコンデンサ33を構成することができる。このように、誘電体が大きな比誘電率であれば、コンデンサ33は2つの延出部332A、332Bからなる二重筒構造であっても充分なキャパシタンス値を得ることができる。さらに、各電極33A、33Bの接触部331に対する延出部332の垂直度を精度良くしつつ各電極33A、33Bを製作することで、キャパシタンス値を精度良く設定することができる。その他、水の電気分解により不純物が混入する可能性があるが、循環流路14上にイオン交換膜フィルタ等のフィルタを設けることによって除去することができ、コンデンサ33のキャパシタンス値が変化することを抑えることができる。
Since the coolant CL for cooling the antenna 3 is a dielectric, it is not necessary to prepare a dielectric separately from the coolant CL, and the electrodes 33A and 33B can be cooled. In addition, the cooling liquid CL is normally adjusted to a constant temperature by the temperature adjustment mechanism 141. By using this cooling liquid CL as a dielectric, the change in the dielectric constant due to the temperature change is suppressed, and the change in the capacitance value is suppressed. Can be suppressed. Further, when water is used as the cooling liquid CL, the relative dielectric constant of water is about 80 (20 ° C.), which is larger than the dielectric sheet made of resin, so that the capacitor 33 that can withstand high voltage is formed. Can do. As described above, when the dielectric is a large relative dielectric constant, the capacitor 33 can obtain a sufficient capacitance value even if the capacitor 33 has a double cylinder structure including the two extending portions 332A and 332B. Furthermore, the capacitance value can be set with high accuracy by manufacturing each of the electrodes 33A and 33B while improving the verticality of the extending portion 332 with respect to the contact portion 331 of each of the electrodes 33A and 33B. In addition, there is a possibility that impurities may be mixed in by electrolysis of water, but it can be removed by providing a filter such as an ion exchange membrane filter on the circulation channel 14, and the capacitance value of the capacitor 33 changes. Can be suppressed.
さらに、第1の延出部332Aの内周面と、第2の延出部332Bの外周面(より具体的には直管要素334の外周面)との距離を周方向に沿って一定となるように構成しているので、金属パイプ31に流れる高周波電流の分布を周方向において均一にして、均一性の良いプラズマを発生させることができる。
Further, the distance between the inner peripheral surface of the first extending portion 332A and the outer peripheral surface of the second extending portion 332B (more specifically, the outer peripheral surface of the straight pipe element 334) is constant along the circumferential direction. Therefore, the distribution of the high-frequency current flowing through the metal pipe 31 can be made uniform in the circumferential direction, and plasma with good uniformity can be generated.
<第2実施形態の変形例>
例えば、前記第2実施形態では、第2の電極33Bが管状をなし、第1の金属パイプ31A側から第2の金属パイプ31B側の全体に亘って主流路33xが形成されたものであったが、図7に示すように、第2の電極33Bは、第2の金属パイプ31B側に主流路33xを形成するとともに、第1の金属パイプ31A側を中実にしたものであっても良い。
この場合、第2の電極33Bによる冷却液CLの流路抵抗を小さくすべく、第2の電極33Bは、貫通孔332hに連通するとともに、冷却液CLの流れ方向に沿って延びる1又は複数の溝332gが形成されていることが好ましい。具体的にこの溝332gは、各貫通孔332hそれぞれに対して設けられた軸方向に延びる有底溝であり、その開口が絶縁パイプ32の内周面と対向するように形成されている。
また、第2の電極33Bの先端角部332cでの電界集中を緩和すべく、図7に示すように、第2の延出部332Bの先端角部332cをテーパ状(円錐形状)にしても良い。 <Modification of Second Embodiment>
For example, in the second embodiment, thesecond electrode 33B has a tubular shape, and the main flow path 33x is formed from the first metal pipe 31A side to the second metal pipe 31B side. However, as shown in FIG. 7, the second electrode 33B may be one in which the main flow path 33x is formed on the second metal pipe 31B side and the first metal pipe 31A side is solid.
In this case, in order to reduce the flow path resistance of the coolant CL by thesecond electrode 33B, the second electrode 33B communicates with the through hole 332h and extends along the flow direction of the coolant CL. A groove 332g is preferably formed. Specifically, the groove 332 g is a bottomed groove provided in each through hole 332 h and extending in the axial direction, and is formed so that the opening faces the inner peripheral surface of the insulating pipe 32.
Further, as shown in FIG. 7, the tipend corner portion 332c of the second extending portion 332B is tapered (conical) so as to alleviate the electric field concentration at the tip end corner portion 332c of the second electrode 33B. good.
例えば、前記第2実施形態では、第2の電極33Bが管状をなし、第1の金属パイプ31A側から第2の金属パイプ31B側の全体に亘って主流路33xが形成されたものであったが、図7に示すように、第2の電極33Bは、第2の金属パイプ31B側に主流路33xを形成するとともに、第1の金属パイプ31A側を中実にしたものであっても良い。
この場合、第2の電極33Bによる冷却液CLの流路抵抗を小さくすべく、第2の電極33Bは、貫通孔332hに連通するとともに、冷却液CLの流れ方向に沿って延びる1又は複数の溝332gが形成されていることが好ましい。具体的にこの溝332gは、各貫通孔332hそれぞれに対して設けられた軸方向に延びる有底溝であり、その開口が絶縁パイプ32の内周面と対向するように形成されている。
また、第2の電極33Bの先端角部332cでの電界集中を緩和すべく、図7に示すように、第2の延出部332Bの先端角部332cをテーパ状(円錐形状)にしても良い。 <Modification of Second Embodiment>
For example, in the second embodiment, the
In this case, in order to reduce the flow path resistance of the coolant CL by the
Further, as shown in FIG. 7, the tip
さらに、上述したように、第2の電極33Bの一部が中実である場合、第2の電極33Bが管状である場合に比べて、冷却液CLの流路抵抗が大きくなる。この流路抵抗を小さくする態様としては、第2の電極33Bを細くすることが考えられるが、そうすると第1の電極33Aの内周面と第2の電極33Bの外周面との距離が長くなり、コンデンサ33のキャパシタンス値が小さくなってしまい、高電圧に耐えられない可能性が生じ得る。
そこで、第2の電極33Bによる冷却液CLの流路抵抗を小さくしつつ、コンデンサ33に必要なキャパシタンス値を担保するためには、図8に示すように、第1の電極33Aが、第2の電極33Bに対向する位置に形成されて内径が小さくなる絞り部335を有していることが好ましい。
このような構成であれば、第2の電極33Bを細くして冷却液CLの流路抵抗を低減させつつ、第1の電極33Aに絞り部335を形成しているので、この絞り部335によって第1の電極33Aの外周面と第2の電極33Bの内周面との距離を短くすることができ、コンデンサ33に必要なキャパシタンス値を担保することができる。 Furthermore, as described above, when a part of thesecond electrode 33B is solid, the flow path resistance of the coolant CL is increased compared to the case where the second electrode 33B is tubular. As an aspect of reducing the flow path resistance, it is conceivable to make the second electrode 33B thinner. However, the distance between the inner peripheral surface of the first electrode 33A and the outer peripheral surface of the second electrode 33B becomes longer. The capacitance value of the capacitor 33 becomes small, and there is a possibility that the capacitor 33 cannot withstand a high voltage.
Therefore, in order to secure the capacitance value necessary for thecapacitor 33 while reducing the flow path resistance of the coolant CL by the second electrode 33B, the first electrode 33A has the second electrode as shown in FIG. It is preferable to have a throttle portion 335 formed at a position facing the electrode 33B and having a smaller inner diameter.
With such a configuration, since thesecond electrode 33B is thinned to reduce the flow path resistance of the coolant CL, the throttle portion 335 is formed in the first electrode 33A. The distance between the outer peripheral surface of the first electrode 33A and the inner peripheral surface of the second electrode 33B can be shortened, and the capacitance value necessary for the capacitor 33 can be ensured.
そこで、第2の電極33Bによる冷却液CLの流路抵抗を小さくしつつ、コンデンサ33に必要なキャパシタンス値を担保するためには、図8に示すように、第1の電極33Aが、第2の電極33Bに対向する位置に形成されて内径が小さくなる絞り部335を有していることが好ましい。
このような構成であれば、第2の電極33Bを細くして冷却液CLの流路抵抗を低減させつつ、第1の電極33Aに絞り部335を形成しているので、この絞り部335によって第1の電極33Aの外周面と第2の電極33Bの内周面との距離を短くすることができ、コンデンサ33に必要なキャパシタンス値を担保することができる。 Furthermore, as described above, when a part of the
Therefore, in order to secure the capacitance value necessary for the
With such a configuration, since the
また、前記第2実施形態では、連通孔332hが軸方向に沿って直管要素334の基端から第1の延出部332Aの先端までの間に設けられていたが、図9に示すように、貫通孔332hは、軸方向に沿って第1の延出部332Aの先端を越えて設けられていても良いし、図示していないが直管要素334の基端まで延ばすことなく、その手前で留まらせても良い。
In the second embodiment, the communication hole 332h is provided along the axial direction from the proximal end of the straight pipe element 334 to the distal end of the first extending portion 332A, but as shown in FIG. Further, the through hole 332h may be provided beyond the tip of the first extending portion 332A along the axial direction, and although not shown, the through hole 332h does not extend to the base end of the straight pipe element 334. You may stay in front.
さらに、前記第2実施形態では、第1の電極33Aが金属パイプ31と別部材である場合について説明したが、図10に示すように、第1の電極33Aは、金属パイプ31の一部からなるものであっても良い。
具体的な実施態様としては、第1の金属パイプ31Aの軸方向端部を絶縁パイプ32側に延ばすとともに、第2の電極33Bを第2の金属パイプ31B側から絶縁パイプ32の内部を通して第1の金属パイプ31Aの内部に延ばした構成が挙げられる。この場合、第1の金属パイプ32の軸方向端部は、絶縁パイプ32に固定されており、具体的な固定方法としては前記実施形態と同様、絶縁パイプ32の第1の金属パイプ31A側の軸方向端部に、外周部を周方向に切り欠いた外周切欠部32aを形成して、この外周切欠部32aに第1の金属パイプ31Aの軸方向端部を嵌合させて例えばろう付けB等により固定する方法が挙げられる。
このような構成であれば、第1の金属パイプ31Aにおける第2の電極と対向した部分を第1の電極33Aとして機能させることができ、部品点数を少なくしつつ前記実施形態と同様の作用効果を得ることができる。 Further, in the second embodiment, the case where thefirst electrode 33A is a separate member from the metal pipe 31 has been described, but the first electrode 33A is formed from a part of the metal pipe 31 as shown in FIG. It may be.
As a specific embodiment, the end of thefirst metal pipe 31A in the axial direction extends to the insulating pipe 32 side, and the second electrode 33B passes through the inside of the insulating pipe 32 from the second metal pipe 31B side. The structure extended to the inside of this metal pipe 31A is mentioned. In this case, the axial end of the first metal pipe 32 is fixed to the insulating pipe 32. As a specific fixing method, the first metal pipe 31A side of the insulating pipe 32 is the same as in the above embodiment. An outer peripheral notch 32a having an outer peripheral portion cut out in the circumferential direction is formed at the axial end, and the axial end of the first metal pipe 31A is fitted into the outer peripheral notch 32a, for example, brazing B. The method of fixing by etc. is mentioned.
With such a configuration, the portion of thefirst metal pipe 31A facing the second electrode can be made to function as the first electrode 33A, and the same effect as the above embodiment while reducing the number of parts. Can be obtained.
具体的な実施態様としては、第1の金属パイプ31Aの軸方向端部を絶縁パイプ32側に延ばすとともに、第2の電極33Bを第2の金属パイプ31B側から絶縁パイプ32の内部を通して第1の金属パイプ31Aの内部に延ばした構成が挙げられる。この場合、第1の金属パイプ32の軸方向端部は、絶縁パイプ32に固定されており、具体的な固定方法としては前記実施形態と同様、絶縁パイプ32の第1の金属パイプ31A側の軸方向端部に、外周部を周方向に切り欠いた外周切欠部32aを形成して、この外周切欠部32aに第1の金属パイプ31Aの軸方向端部を嵌合させて例えばろう付けB等により固定する方法が挙げられる。
このような構成であれば、第1の金属パイプ31Aにおける第2の電極と対向した部分を第1の電極33Aとして機能させることができ、部品点数を少なくしつつ前記実施形態と同様の作用効果を得ることができる。 Further, in the second embodiment, the case where the
As a specific embodiment, the end of the
With such a configuration, the portion of the
加えて、前記第2実施形態では、冷却液CLの流れ方向上流側に配置された金属パイプ31を第1の金属パイプ31Aとし、冷却液CLの流れ方向下流側に配置された金属パイプ31を第2の金属パイプ31Bとしていたが、これとは逆に、冷却液CLの流れ方向下流側に配置された金属パイプ31を第1の金属パイプ31Aとし、冷却液CLの流れ方向上流側に配置された金属パイプ31を第2の金属パイプ31Bとしても良い。言い換えれば、各部材を図6に示すように配置した状態において、冷却液CLの流れ方向を前記実施形態と逆向きにしても良い。ただし、冷却液CLを流し始めたときの空気の抜けやすさを考慮すると、前記実施形態の向きに冷却液CLを流した方が有利である。
In addition, in the second embodiment, the metal pipe 31 disposed on the upstream side in the flow direction of the cooling liquid CL is defined as the first metal pipe 31A, and the metal pipe 31 disposed on the downstream side in the flow direction of the cooling liquid CL is used. In contrast to this, the second metal pipe 31B is arranged. On the contrary, the metal pipe 31 disposed on the downstream side in the flow direction of the coolant CL is defined as the first metal pipe 31A, and is disposed on the upstream side in the flow direction of the coolant CL. The formed metal pipe 31 may be used as the second metal pipe 31B. In other words, in the state where the members are arranged as shown in FIG. 6, the flow direction of the coolant CL may be opposite to that of the above embodiment. However, considering the ease of air removal when the cooling liquid CL starts to flow, it is advantageous to flow the cooling liquid CL in the direction of the embodiment.
<3.その他の変形実施形態>
なお、本発明は、前記各実施形態に限られるものではない。 <3. Other Modified Embodiments>
The present invention is not limited to the above embodiments.
なお、本発明は、前記各実施形態に限られるものではない。 <3. Other Modified Embodiments>
The present invention is not limited to the above embodiments.
また、図11に示すように、アンテナ3において絶縁パイプ32の軸方向両側の少なくとも一方側に位置する金属パイプ32又は電極の外側周面に、絶縁カバー10に向かって突出する凸部3Tを設けてもよい。なお、図12には、アンテナ3が撓んだ状態であり、凸部3Tの下部が絶縁カバー10の内面に接触した状態を示している。
In addition, as shown in FIG. 11, a convex portion 3 </ b> T that protrudes toward the insulating cover 10 is provided on the outer peripheral surface of the metal pipe 32 or the electrode positioned on at least one side of both sides in the axial direction of the insulating pipe 32 in the antenna 3. May be. FIG. 12 shows a state in which the antenna 3 is bent, and a state in which the lower portion of the convex portion 3T is in contact with the inner surface of the insulating cover 10.
なお、図10に示すコンデンサ33は、絶縁パイプ32の一方側の第1の金属パイプ31Aと電気的に接続された第1の電極33Aと、絶縁パイプ32の他方側の第2の金属パイプ31Bと電気的に接続されるとともに、第1の電極33Aに対向して配置された第2の電極33Bとを備えており、第1の電極33A及び第2の電極33Bの間の空間を冷却液CLが満たすように構成されている。つまり、この第1の電極33A及び第2の電極33Bの間の空間を流れる冷却液CLが、コンデンサ33を構成する液体の誘電体となる。各電極33A、33Bは、概略回転体形状をなすとともに、その中心軸に沿って中央部に流路33xが形成されている。具体的に各電極33A、33Bは、金属パイプ31における絶縁パイプ32側の端部に電気的に接触するフランジ部331と、当該フランジ部331から絶縁パイプ32側に延出した例えば円筒状の延出部332とを有している。フランジ部331は、金属パイプ31及び絶縁パイプ32の間に挟持される。また、フランジ部にも冷却水が流れる貫通孔331hが形成されている。
10 includes a first electrode 33A electrically connected to the first metal pipe 31A on one side of the insulating pipe 32, and a second metal pipe 31B on the other side of the insulating pipe 32. And a second electrode 33B disposed so as to face the first electrode 33A, and the space between the first electrode 33A and the second electrode 33B is used as a coolant. It is comprised so that CL may satisfy | fill. That is, the coolant CL flowing in the space between the first electrode 33 </ b> A and the second electrode 33 </ b> B becomes a liquid dielectric constituting the capacitor 33. Each of the electrodes 33A and 33B has a substantially rotating body shape, and a flow path 33x is formed at the center along the central axis. Specifically, each of the electrodes 33A and 33B includes a flange portion 331 that electrically contacts the end portion of the metal pipe 31 on the insulating pipe 32 side, and a cylindrical extension that extends from the flange portion 331 to the insulating pipe 32 side. And an exit 332. The flange portion 331 is sandwiched between the metal pipe 31 and the insulating pipe 32. A through hole 331h through which cooling water flows is also formed in the flange portion.
アンテナ3に設けられる凸部3Tは、絶縁パイプ32の軸方向両側に隣接して設けられることが望ましい。この凸部3Tは、絶縁パイプ32の軸方向両側に位置する部材(図11では金属パイプ31A、31B)の周方向全体に亘って連続的又は間欠的に設けられている。なお、アンテナ3の自重による撓みを考慮すれば、金属パイプ31A、31Bの下側部分に形成するだけでも良い。ここで、金属パイプの外側周面からの凸部の突出寸法は、アンテナ3の撓みにより絶縁パイプ32が絶縁カバー10に接触しない程度である。凸部3Tの断面形状は、図11に示すように矩形状をなすものの他、少なくとも先端部が円弧状をなすものであってもよいし、少なくとも先端部が三角形状をなすものであってもよい。
The convex portions 3T provided on the antenna 3 are desirably provided adjacent to both sides of the insulating pipe 32 in the axial direction. The convex portions 3T are provided continuously or intermittently over the entire circumferential direction of members ( metal pipes 31A and 31B in FIG. 11) located on both sides of the insulating pipe 32 in the axial direction. If the bending due to the weight of the antenna 3 is taken into consideration, it may be formed only on the lower part of the metal pipes 31A and 31B. Here, the protruding dimension of the convex portion from the outer peripheral surface of the metal pipe is such that the insulating pipe 32 does not contact the insulating cover 10 due to the bending of the antenna 3. As shown in FIG. 11, the cross-sectional shape of the convex portion 3T may be a rectangular shape, at least the tip portion may be an arc shape, or at least the tip portion may be a triangle shape. Good.
これらの凸部3Tは、アンテナ3に複数の絶縁パイプ32が設けられている場合には、各絶縁パイプ32の軸方向両側に隣接して設けることが望ましい。また、各絶縁パイプ32の軸方向一方側に隣接して設ける構成であってもよい。この構成であれば、アンテナ3の撓み量が大きくなった場合に、軸方向の配置された複数の凸部3Tが絶縁カバー10に接触することになり、絶縁カバー10に掛かる荷重を分散することができる。
These protrusions 3T are desirably provided adjacent to both sides in the axial direction of each insulating pipe 32 when the antenna 3 is provided with a plurality of insulating pipes 32. Moreover, the structure provided adjacent to the axial direction one side of each insulation pipe 32 may be sufficient. With this configuration, when the amount of bending of the antenna 3 increases, the plurality of axially arranged convex portions 3T come into contact with the insulating cover 10, and the load applied to the insulating cover 10 is dispersed. Can do.
なお、絶縁パイプ32に対して凸部3Tを設ける位置は、絶縁カバー32に隣接した位置に限られず、アンテナ3の撓みにより絶縁パイプ32が絶縁カバー10に接触しないような位置であればよい。また、凸部3Tは、金属パイプ31A、31Bに一体に形成する構成の他に、図13に示すように、金属パイプ31A、31Bの外側周面に凹部3Mを形成して、当該凹部3Mに凸部3Tとなるリング状部材3Rを嵌めることによって構成してもよい。
Note that the position where the protrusion 3T is provided on the insulating pipe 32 is not limited to the position adjacent to the insulating cover 32, and may be a position where the insulating pipe 32 does not contact the insulating cover 10 due to bending of the antenna 3. Further, in addition to the configuration in which the convex portion 3T is formed integrally with the metal pipes 31A and 31B, as shown in FIG. 13, the concave portion 3M is formed on the outer peripheral surface of the metal pipes 31A and 31B. You may comprise by fitting the ring-shaped member 3R used as the convex part 3T.
このようにアンテナ3に凸部3Tを設けることにより、アンテナ3が撓んだとしても凸部3Tが絶縁カバー10に接触することによって絶縁パイプ32が絶縁カバー10に接触しないようにすることができる。これにより、樹脂製などの絶縁パイプ32の熱損傷を防止することができる。また、絶縁パイプ32と絶縁カバー10の接触を防ぐことにより、絶縁パイプ32が絶縁カバー10に接触することによるコンデンサ33の誘電体となる冷却液の温度上昇を防止できる。その結果、冷却液の誘電率の変化を抑制することができる。
By providing the convex portion 3T on the antenna 3 in this manner, even if the antenna 3 is bent, the insulating pipe 32 can be prevented from contacting the insulating cover 10 by the convex portion 3T contacting the insulating cover 10. . Thereby, the thermal damage of insulating pipes 32 made of resin can be prevented. Further, by preventing the insulating pipe 32 and the insulating cover 10 from coming into contact with each other, it is possible to prevent the temperature of the coolant serving as the dielectric of the capacitor 33 from increasing due to the insulating pipe 32 coming into contact with the insulating cover 10. As a result, a change in the dielectric constant of the coolant can be suppressed.
前記実施形態に例示したアンテナ3においても凸部3Tを設けることもできる。この場合、前記実施形態の絶縁パイプ32の軸方向両側の少なくとも一方側に位置する部材(例えば、第1の金属パイプ31A、第1の電極33A、第2の金属パイプ31B、第2の電極33Bの接触部331又は縮径要素333)に凸部3Tを設ける。
The protrusion 3T can also be provided in the antenna 3 exemplified in the embodiment. In this case, members (for example, the first metal pipe 31A, the first electrode 33A, the second metal pipe 31B, and the second electrode 33B) located on at least one side of both sides in the axial direction of the insulating pipe 32 of the embodiment. The contact portion 331 or the reduced diameter element 333) is provided with a convex portion 3T.
第1の電極33A及び第2の電極33Bは、少なくとも各電極同士の互いに対向する表面に耐食層33Lを有することが望ましい。図14には、第1の電極33A及び第2の電極33Bにおいて互いに対向する表面に耐食層33Lを形成した例を示しており、図15には、第1の電極33A及び第2の電極33Bにおいて電極の表面全体に耐食層33Lを形成した例を示している。その他、各電極33A、33Bにおいて冷却液に接触する表面に耐食層を形成しても良い。なお、図14においては、各電極33A、33Bにおける金属パイプ31との接触面にも耐食層33Lを形成している。
It is desirable that the first electrode 33A and the second electrode 33B have a corrosion-resistant layer 33L on at least the surfaces of the electrodes facing each other. FIG. 14 shows an example in which a corrosion-resistant layer 33L is formed on the surfaces facing each other in the first electrode 33A and the second electrode 33B, and FIG. 15 shows the first electrode 33A and the second electrode 33B. Shows an example in which a corrosion-resistant layer 33L is formed on the entire surface of the electrode. In addition, a corrosion-resistant layer may be formed on the surface in contact with the coolant in each of the electrodes 33A and 33B. In FIG. 14, a corrosion-resistant layer 33L is also formed on the contact surface of each electrode 33A, 33B with the metal pipe 31.
ここで、耐食層33Lとしては、例えばニッケルメッキ等のメッキ被膜、又は第1の電極33A及び第2の電極33Bの表面酸化膜であることが考えられる。ニッケルメッキとしては、金属粒界への影響が無く、ピンホールがなく、微細・細管内構造に均一にメッキが可能な無電解ニッケルメッキが望ましい。また、第1の電極33A及び第2の電極33Bが酸化されやすいアルミ合金である場合には、当該アルミ合金に酸化皮膜を形成して、当該酸化皮膜を耐食層33Lとしても良い。
Here, it is conceivable that the corrosion-resistant layer 33L is, for example, a plating film such as nickel plating, or a surface oxide film of the first electrode 33A and the second electrode 33B. As the nickel plating, electroless nickel plating that does not affect the metal grain boundaries, has no pinholes, and can be uniformly plated on the fine and thin tube internal structure is desirable. In addition, when the first electrode 33A and the second electrode 33B are made of an aluminum alloy that is easily oxidized, an oxide film may be formed on the aluminum alloy, and the oxide film may be used as the corrosion-resistant layer 33L.
このように耐食層33Lを形成する事によって、各電極の酸化を抑えてキャパシタンス値が経時変化することを防ぐことができる。その結果、アンテナ3のインピーダンスの変化を抑えてプラズマの状態を維持することができ、ひいては成膜される膜質や均一性を維持することができる。また、各電極33A、33Bにおける金属パイプ31との接触面にも耐食層33Lを形成しているので、接触面の酸化による抵抗変化を抑制して、アンテナ3のインピーダンスの変化を抑えることができる。
By forming the corrosion-resistant layer 33L in this manner, it is possible to prevent the capacitance value from changing with time by suppressing oxidation of each electrode. As a result, a change in impedance of the antenna 3 can be suppressed and the plasma state can be maintained, and as a result, the quality and uniformity of the film formed can be maintained. Further, since the corrosion-resistant layer 33L is also formed on the contact surfaces of the electrodes 33A and 33B with the metal pipe 31, it is possible to suppress a change in resistance due to oxidation of the contact surfaces and suppress a change in impedance of the antenna 3. .
さらに、図16に示すように、複数のアンテナ3を有するプラズマ処理装置100において、各アンテナ3の両端部を、真空容器2外に延出させて、互いに隣接するアンテナ3において一方のアンテナ3の端部と他方のアンテナ3の端部とを接続導体17により電気的に接続してもよい。ここで、接続導体17により接続される2つのアンテナの端部は同じ側壁側に位置する端部である。これにより、複数のアンテナ3は、互いに隣接するアンテナ4に互いに逆向きの高周波電流が流れるように構成される。このように複数のアンテナを接続導体17により1本のアンテナ構造にすることで、処理する基板の大型化を容易に展開することができる。
Further, as shown in FIG. 16, in the plasma processing apparatus 100 having a plurality of antennas 3, both end portions of each antenna 3 are extended out of the vacuum vessel 2, and the antennas 3 adjacent to each other have one antenna 3. The end and the end of the other antenna 3 may be electrically connected by the connection conductor 17. Here, the end portions of the two antennas connected by the connection conductor 17 are end portions located on the same side wall side. Accordingly, the plurality of antennas 3 are configured such that high-frequency currents in opposite directions flow through the antennas 4 adjacent to each other. Thus, by making a plurality of antennas into a single antenna structure by the connection conductor 17, it is possible to easily increase the size of the substrate to be processed.
そして、接続導体17は内部に流路を有しており、その流路に冷却液が流れように構成されている。具体的には、接続導体17の一端部は、一方のアンテナ3の流路と連通しており、接続導体17の他端部は、他方のアンテナ3の流路と連通している。これにより、互いに隣接するアンテナ3において一方のアンテナ3を流れた冷却液が接続導体17の流路を介して他方のアンテナ3に流れる。これにより、共通の冷却液によりアンテナ3及び接続導体17の両方を冷却することができる。また、1本の流路によって複数のアンテナ3を冷却することができるので、循環流路14の構成を簡略化することができる。
The connection conductor 17 has a flow path inside, and is configured so that the coolant flows through the flow path. Specifically, one end of the connection conductor 17 communicates with the flow path of one antenna 3, and the other end of the connection conductor 17 communicates with the flow path of the other antenna 3. Thereby, in the antennas 3 adjacent to each other, the coolant flowing through one antenna 3 flows to the other antenna 3 through the flow path of the connection conductor 17. Thereby, both the antenna 3 and the connection conductor 17 can be cooled by the common coolant. In addition, since the plurality of antennas 3 can be cooled by one flow path, the configuration of the circulation flow path 14 can be simplified.
さらに、接続導体17は、互いに隣接するアンテナ3において一方のアンテナ3に接続される一方の導体部17aと、他方のアンテナ3に接続される他方の導体部17cと、一方の導体部17a及び他方の導体部17bに電気的に直列接続された容量素子であるコンデンサ17cとを有する。なお、導体部17a、17bの構成は例えば前記実施形態の導体要素31と同様にすることが考えられ、コンデンサ17cの構成は例えば前記実施形態のコンデンサ33と同様にすることが考えられる。このように接続導体17にコンデンサ17cを設けることによって接続導体17のインピーダンスを零相当にすることができ、接続導体17によるインピーダンスの増加を無くすことができる。また、コンデンサ17cを可変コンデンサとして静電容量を調整できるものとしてもよい。
Further, the connection conductor 17 includes one conductor portion 17a connected to one antenna 3 in the antennas 3 adjacent to each other, the other conductor portion 17c connected to the other antenna 3, the one conductor portion 17a and the other conductor portion 17a. And a capacitor 17c which is a capacitive element electrically connected in series to the conductor portion 17b. The configuration of the conductor portions 17a and 17b may be the same as that of the conductor element 31 of the embodiment, for example, and the configuration of the capacitor 17c may be the same as that of the capacitor 33 of the embodiment, for example. By providing the capacitor 17c in the connection conductor 17 in this way, the impedance of the connection conductor 17 can be made equal to zero, and an increase in impedance due to the connection conductor 17 can be eliminated. The capacitance may be adjusted by using the capacitor 17c as a variable capacitor.
接続導体17の構成は図16に限られず、例えば図17に示すように接続導体17が容量素子を有さない構成としてもよい。この構成の場合には、互いに隣接するアンテナ3において、一方のアンテナ3の給電側端部3a及び他方のアンテナ3の接地側端部3b及び接続導体17を合わせたインダクタンスを、その他の導体要素31のインダクタンスと同じにして、複数のアンテナ3全体に亘って連続的に同じ誘導性リアクタンスと容量性リアクタンスとが繰り返される構成となる。その結果、複数のアンテナ3全体として接続導体によるインピーダンスの見かけ上の増加を無くすことができる。その結果、アンテナ3に沿って長さ方向及び配列方向において均一なプラズマPを発生させることができる。
The configuration of the connection conductor 17 is not limited to that shown in FIG. 16. For example, the connection conductor 17 may have a configuration without a capacitive element as shown in FIG. 17. In the case of this configuration, in the antennas 3 adjacent to each other, an inductance obtained by combining the feeding-side end 3a of one antenna 3, the ground-side end 3b of the other antenna 3, and the connection conductor 17 is set as another conductor element 31. The same inductive reactance and capacitive reactance are continuously repeated over the plurality of antennas 3 in the same manner as the above-described inductance. As a result, it is possible to eliminate an apparent increase in impedance due to the connection conductor as a whole of the plurality of antennas 3. As a result, uniform plasma P can be generated along the antenna 3 in the length direction and the arrangement direction.
前記実施形態のプラズマ処理装置100ではアンテナ3が基板Wの処理室内に配置されたものであったが、図18に示すように、アンテナ3を処理室18外に配置したものであってもよい。この場合、複数のアンテナ3は、真空容器2内において誘電体窓19によって処理室18とは区画されたアンテナ室20に配置されている。なお、アンテナ室20は真空排気装置21によって真空排気される。ここで、複数のアンテナ3は、上述した図16及び図17のように接続導体17により互いに接続されたものであってもよいし、接続導体17により接続されることなく、個別に配置されたものであってもよい。このプラズマ処理装置100であれば、処理室18の圧力などの条件と、アンテナ室20の圧力などの条件とを個別に制御することができ、プラズマPの発生を効率的にできるとともに、基板Wの処理を効率的にできる。
In the plasma processing apparatus 100 of the above embodiment, the antenna 3 is disposed in the processing chamber of the substrate W. However, the antenna 3 may be disposed outside the processing chamber 18 as shown in FIG. . In this case, the plurality of antennas 3 are arranged in an antenna chamber 20 that is partitioned from the processing chamber 18 by a dielectric window 19 in the vacuum vessel 2. The antenna chamber 20 is evacuated by the evacuation device 21. Here, the plurality of antennas 3 may be connected to each other by the connection conductor 17 as shown in FIG. 16 and FIG. 17 described above, or arranged individually without being connected by the connection conductor 17. It may be a thing. With this plasma processing apparatus 100, conditions such as the pressure in the processing chamber 18 and conditions such as the pressure in the antenna chamber 20 can be individually controlled, and the generation of plasma P can be efficiently performed, and the substrate W Can be processed efficiently.
その上、前記実施形態では、アンテナは直線状をなすものであったが、湾曲又は屈曲した形状であっても良い。この場合、金属パイプが湾曲又は屈曲した形状であっても良いし、絶縁パイプが湾曲又は屈曲した形状であっても良い。
In addition, in the above embodiment, the antenna is linear, but it may be curved or bent. In this case, the metal pipe may be curved or bent, or the insulating pipe may be curved or bent.
加えて、導体要素及び絶縁要素は、1つの内部流路を有する管状をなすものであったが、2以上の内部流路を有するもの、或いは、分岐した内部流路を有するものであっても良い。また、導体要素及び/又は絶縁要素が中実のものであっても良い。
In addition, the conductor element and the insulating element have a tubular shape having one internal flow path, but may have two or more internal flow paths or have a branched internal flow path. good. Further, the conductive element and / or the insulating element may be solid.
前記実施形態の電極において延出部は、円筒状であったが、その他の角筒状であっても良いし、平板状又は湾曲又は屈曲した板状であっても良い。
In the electrode of the above-described embodiment, the extending portion has a cylindrical shape, but may have another rectangular tube shape, or a flat plate shape, a curved plate shape, or a bent plate shape.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
本発明によれば、アンテナに容量素子を組み込んでアンテナのインピーダンスを低減させるとともに、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができる。
According to the present invention, it is possible to reduce the impedance of the antenna by incorporating a capacitive element into the antenna, and to eliminate a gap generated between the electrode constituting the capacitive element and the dielectric.
Claims (26)
- 高周波電流が流されて、プラズマを発生させるためのアンテナであって、
少なくとも2つの導体要素と、互いに隣り合う前記導体要素の間に設けられて、それら導体要素を絶縁する絶縁要素と、互いに隣り合う前記導体要素と電気的に直列接続された容量素子とを備え、
前記容量素子は、互いに隣り合う前記導体要素の一方と電気的に接続された第1の電極と、互いに隣り合う前記導体要素の他方と電気的に接続されるとともに、前記第1の電極に対向して配置された第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記誘電体が液体であるアンテナ。 An antenna for generating plasma by flowing high-frequency current,
Comprising at least two conductor elements, an insulating element provided between the conductor elements adjacent to each other to insulate the conductor elements, and a capacitive element electrically connected in series with the conductor elements adjacent to each other;
The capacitive element is electrically connected to one of the conductor elements adjacent to each other and electrically connected to the other of the conductor elements adjacent to each other and is opposed to the first electrode. The antenna is composed of a second electrode arranged in the manner described above and a dielectric that fills a space between the first electrode and the second electrode, and the dielectric is a liquid. - 前記絶縁要素は、管状をなすものであり、
前記容量素子は、前記絶縁要素の内部に設けられている、請求項1記載のアンテナ。 The insulating element has a tubular shape,
The antenna according to claim 1, wherein the capacitive element is provided inside the insulating element. - 前記導体要素は、管状をなすものであり、
前記導体要素及び前記絶縁要素の内部に冷却液が流れるものであり、
前記冷却液が前記誘電体となる、請求項2記載のアンテナ。 The conductor element has a tubular shape,
A coolant flows inside the conductor element and the insulating element;
The antenna according to claim 2, wherein the coolant is the dielectric. - 前記各電極は、前記導体要素における前記絶縁要素側の端部に電気的に接触するフランジ部と、当該フランジ部から前記絶縁要素側に延出した延出部とを有する、請求項2又は3記載のアンテナ。 Each said electrode has the flange part which contacts the edge part by the side of the said insulation element in the said conductor element, and the extension part extended to the said insulation element side from the said flange part, The said Claim 2 or 3 The described antenna.
- 前記各電極の延出部は、管状をなすものであり、互いに同軸上に配置されている、請求項4記載のアンテナ。 The antenna according to claim 4, wherein the extending portion of each electrode has a tubular shape and is arranged coaxially with each other.
- 前記各電極のフランジ部は、前記絶縁要素の側周壁に形成された凹部に嵌合されている、請求項4又は5記載のアンテナ。 The antenna according to claim 4 or 5, wherein the flange portion of each electrode is fitted in a recess formed in a side peripheral wall of the insulating element.
- 高周波電流が流されて、プラズマを発生させるためのアンテナであって、
少なくとも2つの導体要素と、互いに隣り合う第1の導体要素及び第2の導体要素の間に設けられてそれらを絶縁する絶縁要素と、前記第1の導体要素及び前記第2の導体要素と電気的に直列接続された容量素子とを備え、
前記容量素子は、
前記第1の導体要素の一部からなる電極又は前記第1の導体要素と電気的に接続された電極であって、前記絶縁要素より前記第1の導体要素側に配置された第1の電極と、
前記第2の導体要素と電気的に接続されるとともに、前記第2の導体要素側から前記絶縁要素の内部を通って前記第1の導体要素側に延び、前記第1の電極に対向して配置された第2の電極と、
前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、
前記誘電体が液体であるアンテナ。 An antenna for generating plasma by flowing high-frequency current,
At least two conductor elements, an insulating element that is provided between and insulates between the first conductor element and the second conductor element adjacent to each other, and the first conductor element and the second conductor element are electrically connected to each other. And capacitive elements connected in series,
The capacitive element is
An electrode comprising a part of the first conductor element or an electrode electrically connected to the first conductor element, the first electrode being disposed closer to the first conductor element than the insulating element When,
It is electrically connected to the second conductor element, extends from the second conductor element side to the first conductor element side through the inside of the insulating element, and faces the first electrode. A second electrode disposed;
A dielectric that fills a space between the first electrode and the second electrode;
An antenna in which the dielectric is a liquid. - 前記第1の電極は、管状をなすものであり、
前記第2の電極は、前記第1の電極の内部空間に差し込まれる延出部を有している、請求項7記載のアンテナ。 The first electrode has a tubular shape,
The antenna according to claim 7, wherein the second electrode has an extending portion that is inserted into an internal space of the first electrode. - 前記第1の電極の内周面と前記延出部の外周面との距離は、周方向に沿って一定である、請求項8記載のアンテナ。 The antenna according to claim 8, wherein a distance between an inner peripheral surface of the first electrode and an outer peripheral surface of the extending portion is constant along a circumferential direction.
- 前記各導体要素は、管状をなすものであり、
前記第1の導体要素の内部を流れる冷却液が、前記第1の電極と前記第2の電極との間に流入して前記誘電体として機能し、前記第2の電極に形成された1又は複数の貫通孔から当該第2の電極内に導かれて前記第2の導体要素の内部に流出するように構成されている、請求項7乃至9の何れか一項に記載のアンテナ。 Each of the conductor elements has a tubular shape,
The coolant flowing inside the first conductor element flows between the first electrode and the second electrode, functions as the dielectric, and is formed on the second electrode. The antenna according to any one of claims 7 to 9, wherein the antenna is configured to be led into the second electrode from a plurality of through holes and to flow into the second conductor element. - 前記第2の電極は、前記貫通孔に連通するとともに、前記冷却液の流れ方向に沿って延びる1又は複数の溝が形成されている、請求項10記載のアンテナ。 11. The antenna according to claim 10, wherein the second electrode communicates with the through hole and is formed with one or a plurality of grooves extending along a flow direction of the coolant.
- 前記各電極は、少なくとも前記各電極同士の互いに対向する表面に耐食層を有する、請求項1乃至11の何れか一項に記載のアンテナ。 The antenna according to any one of claims 1 to 11, wherein each of the electrodes has a corrosion-resistant layer on at least the surfaces of the electrodes facing each other.
- 前記耐食層は、メッキ被膜である請求項12記載のアンテナ。 The antenna according to claim 12, wherein the corrosion-resistant layer is a plating film.
- 前記耐食層は、前記第1の電極及び前記第2の電極の表面酸化膜である請求項12記載のアンテナ。 13. The antenna according to claim 12, wherein the corrosion-resistant layer is a surface oxide film of the first electrode and the second electrode.
- 真空排気されかつガスが導入される真空容器と、
前記真空容器内又は前記真空容器外に配置された請求項1乃至14の何れか一項に記載のアンテナと、
前記アンテナに高周波電流を流す高周波電源とを備え、
前記アンテナによって発生させたプラズマを用いて基板に処理を施すように構成されているプラズマ処理装置。 A vacuum vessel that is evacuated and into which gas is introduced;
The antenna according to any one of claims 1 to 14 disposed in the vacuum container or outside the vacuum container;
A high-frequency power source for supplying a high-frequency current to the antenna;
A plasma processing apparatus configured to perform processing on a substrate using plasma generated by the antenna. - 複数の前記アンテナを備えており、
前記アンテナの両端部は、前記真空容器外に延び出ており、
互いに隣接する前記アンテナにおいて一方の前記アンテナの端部と他方の前記アンテナの端部とを接続導体により電気的に接続して、前記互いに隣接する前記アンテナに互いに逆向きの高周波電流が流れるように構成されている、請求項15記載のプラズマ処理装置。 A plurality of the antennas,
Both end portions of the antenna extend out of the vacuum container,
In the adjacent antennas, the end of one antenna and the end of the other antenna are electrically connected by a connecting conductor so that high-frequency currents in opposite directions flow through the adjacent antennas. The plasma processing apparatus according to claim 15, which is configured. - 前記接続導体は内部に流路を有しており、その流路に冷却液が流れるものである、請求項16記載のプラズマ処理装置。 The plasma processing apparatus according to claim 16, wherein the connection conductor has a flow path inside, and a coolant flows through the flow path.
- 前記導体要素及び前記絶縁要素の内部に冷却液が流れるものであり、
互いに隣接する前記アンテナにおいて一方の前記アンテナを流れた冷却液が前記接続導体の流路を介して他方の前記アンテナに流れるものである、請求項17記載のプラズマ処理装置。 A coolant flows inside the conductor element and the insulating element;
The plasma processing apparatus according to claim 17, wherein in the antennas adjacent to each other, the coolant that has flowed through one of the antennas flows to the other antenna through the flow path of the connection conductor. - 前記接続導体は、互いに隣接する前記アンテナにおいて一方の前記アンテナに接続される一方の導体部と、他方の前記アンテナに接続される他方の導体部と、前記一方の導体部及び前記他方の導体部に電気的に直列接続された容量素子とを有する、請求項16乃至18の何れか一項に記載のプラズマ処理装置。 The connection conductor includes one conductor portion connected to one of the antennas adjacent to each other, the other conductor portion connected to the other antenna, the one conductor portion, and the other conductor portion. The plasma processing apparatus according to claim 16, further comprising: a capacitive element electrically connected in series to each other.
- 前記アンテナを覆う絶縁カバーをさらに備え、
前記第1の導体要素又は前記第2の導体要素の少なくとも一方の外側周面に、前記絶縁カバーに向かって突出する凸部が形成されている、請求項15乃至19の何れか一項に記載のプラズマ処理装置。 An insulation cover for covering the antenna;
The convex part which protrudes toward the said insulating cover is formed in the outer peripheral surface of at least one of the said 1st conductor element or the said 2nd conductor element. Plasma processing equipment. - 前記凸部は、前記外側周面の周方向全体に亘って連続的又は間欠的に形成されている、請求項20記載のプラズマ処理装置。 The plasma processing apparatus according to claim 20, wherein the convex portion is formed continuously or intermittently over the entire circumferential direction of the outer peripheral surface.
- 前記凸部は、第1の導体要素及び前記第2の導体要素の外側周面において前記絶縁要素に隣接した位置に形成されている、請求項20又は21記載のプラズマ処理装置。 The plasma processing apparatus according to claim 20 or 21, wherein the convex portion is formed at a position adjacent to the insulating element on an outer peripheral surface of the first conductor element and the second conductor element.
- 請求項1乃至14の何れか一項に記載のアンテナと、
前記アンテナを覆う絶縁カバーとを備え、
前記第1の導体要素又は前記第2の導体要素の少なくとも一方の外側周面に、前記絶縁カバーに向かって突出する凸部が形成されている、アンテナ構造。 An antenna according to any one of claims 1 to 14,
An insulating cover that covers the antenna;
An antenna structure, wherein a convex portion protruding toward the insulating cover is formed on at least one outer peripheral surface of the first conductor element or the second conductor element. - 真空排気されかつガスが導入される処理室と、
前記処理室外に配置された請求項1乃至14の何れか一項に記載のアンテナと、
前記アンテナに高周波電流を流す高周波電源とを備え、
前記アンテナによって発生させたプラズマを用いて前記処理室内の基板に処理を施すように構成されているプラズマ処理装置。 A processing chamber that is evacuated and gas is introduced;
The antenna according to any one of claims 1 to 14, which is disposed outside the processing chamber,
A high-frequency power source for supplying a high-frequency current to the antenna;
A plasma processing apparatus configured to perform processing on a substrate in the processing chamber using plasma generated by the antenna. - 複数の前記アンテナを備えており、
互いに隣接する前記アンテナにおいて一方の前記アンテナの端部と他方の前記アンテナの端部とを接続導体により電気的に接続して、前記互いに隣接する前記アンテナに互いに逆向きの高周波電流が流れるように構成されている、請求項24記載のプラズマ処理装置。 A plurality of the antennas,
In the adjacent antennas, the end of one antenna and the end of the other antenna are electrically connected by a connecting conductor so that high-frequency currents in opposite directions flow through the adjacent antennas. The plasma processing apparatus according to claim 24, wherein the apparatus is configured. - 高周波電流が流されて、プラズマを発生させるためのアンテナと、
前記アンテナを覆う絶縁カバーとを備え、
前記アンテナは、少なくとも2つの導体要素と、互いに隣り合う第1の導体要素及び第2の導体要素の間に設けられてそれらを絶縁する絶縁要素と、前記第1の導体要素及び前記第2の導体要素と電気的に直列接続された容量素子とを備え、
前記容量素子は、互いに隣り合う前記導体要素の一方と電気的に接続された第1の電極と、互いに隣り合う前記導体要素の他方と電気的に接続されるとともに、前記第1の電極に対向して配置された第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記誘電体が液体であり、
前記第1の導体要素又は前記第2の導体要素の少なくとも一方の外側周面に、前記絶縁カバーに向かって突出する凸部が形成されている、アンテナ構造。
An antenna for generating a plasma by flowing a high-frequency current;
An insulating cover that covers the antenna;
The antenna includes at least two conductor elements, an insulating element that is provided between and insulates the first conductor element and the second conductor element that are adjacent to each other, and the first conductor element and the second conductor element. A conductive element and a capacitive element electrically connected in series;
The capacitive element is electrically connected to one of the conductor elements adjacent to each other and electrically connected to the other of the conductor elements adjacent to each other and is opposed to the first electrode. A second electrode disposed in a row and a dielectric filling the space between the first electrode and the second electrode, the dielectric being a liquid,
An antenna structure, wherein a convex portion protruding toward the insulating cover is formed on at least one outer peripheral surface of the first conductor element or the second conductor element.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197023197A KR102235221B1 (en) | 2017-02-16 | 2018-02-13 | Plasma generating antenna, plasma processing apparatus and antenna structure including the same |
CN201880011433.3A CN110291847A (en) | 2017-02-16 | 2018-02-13 | The antenna of plasma generation, plasma processing apparatus and antenna configuration with the antenna |
US16/485,166 US10932353B2 (en) | 2017-02-16 | 2018-02-13 | Antenna for generating plasma, and plasma treatment device and antenna structure provided with antenna for generating plasma |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017026663 | 2017-02-16 | ||
JP2017-026663 | 2017-02-16 | ||
JP2017050566 | 2017-03-15 | ||
JP2017-050566 | 2017-03-15 | ||
JP2017204961A JP6341329B1 (en) | 2017-02-16 | 2017-10-24 | Antenna for generating plasma and plasma processing apparatus including the same |
JP2017-204961 | 2017-10-24 | ||
JP2017204967A JP6931461B2 (en) | 2017-03-15 | 2017-10-24 | Antenna for plasma generation, plasma processing device and antenna structure equipped with it |
JP2017-204967 | 2017-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018151114A1 true WO2018151114A1 (en) | 2018-08-23 |
Family
ID=63170658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004939 WO2018151114A1 (en) | 2017-02-16 | 2018-02-13 | Antenna for generating plasma, and plasma treatment device and antenna structure provided with antenna for generating plasma |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018151114A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11251020B2 (en) * | 2017-06-07 | 2022-02-15 | Nissin Electric Co., Ltd. | Sputtering apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002510841A (en) * | 1998-03-31 | 2002-04-09 | ラム リサーチ コーポレーション | Parallel antenna transformer coupled plasma generation system |
US20050067934A1 (en) * | 2003-09-26 | 2005-03-31 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Discharge apparatus, plasma processing method and solar cell |
WO2009142016A1 (en) * | 2008-05-22 | 2009-11-26 | 株式会社イー・エム・ディー | Plasma generating apparatus and plasma processing apparatus |
US20110018443A1 (en) * | 2009-07-21 | 2011-01-27 | Chwung-Shan Kou | Plasma generating apparatus |
JP2013206652A (en) * | 2012-03-28 | 2013-10-07 | Nissin Electric Co Ltd | Antenna device, and plasma processing apparatus and sputtering apparatus having the same |
JP2016072168A (en) * | 2014-10-01 | 2016-05-09 | 日新電機株式会社 | Antenna for plasma generation, and plasma processing apparatus with the same |
-
2018
- 2018-02-13 WO PCT/JP2018/004939 patent/WO2018151114A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002510841A (en) * | 1998-03-31 | 2002-04-09 | ラム リサーチ コーポレーション | Parallel antenna transformer coupled plasma generation system |
US20050067934A1 (en) * | 2003-09-26 | 2005-03-31 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Discharge apparatus, plasma processing method and solar cell |
WO2009142016A1 (en) * | 2008-05-22 | 2009-11-26 | 株式会社イー・エム・ディー | Plasma generating apparatus and plasma processing apparatus |
US20110018443A1 (en) * | 2009-07-21 | 2011-01-27 | Chwung-Shan Kou | Plasma generating apparatus |
JP2013206652A (en) * | 2012-03-28 | 2013-10-07 | Nissin Electric Co Ltd | Antenna device, and plasma processing apparatus and sputtering apparatus having the same |
JP2016072168A (en) * | 2014-10-01 | 2016-05-09 | 日新電機株式会社 | Antenna for plasma generation, and plasma processing apparatus with the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11251020B2 (en) * | 2017-06-07 | 2022-02-15 | Nissin Electric Co., Ltd. | Sputtering apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6341329B1 (en) | Antenna for generating plasma and plasma processing apparatus including the same | |
KR102235221B1 (en) | Plasma generating antenna, plasma processing apparatus and antenna structure including the same | |
KR101763277B1 (en) | Antenna for generating a plasma and Plasma processing apparatus having the same | |
CN110709533B (en) | Sputtering device | |
JP6931461B2 (en) | Antenna for plasma generation, plasma processing device and antenna structure equipped with it | |
US11217429B2 (en) | Plasma processing device | |
WO2019177037A1 (en) | Antenna, and plasma processing device | |
WO2018151114A1 (en) | Antenna for generating plasma, and plasma treatment device and antenna structure provided with antenna for generating plasma | |
JP2017004602A (en) | Antenna for plasma generation and plasma processing apparatus comprising the same | |
JP2018156864A (en) | Plasma processing apparatus | |
WO2019181776A1 (en) | Antenna and plasma processing device | |
JP7715998B2 (en) | Antenna and plasma processing apparatus | |
JP2018156763A (en) | Antenna for plasma generation and plasma processing apparatus including the same | |
WO2024150701A1 (en) | Antenna device and plasma processing device | |
JP2025109074A (en) | Antenna for generating plasma and plasma processing apparatus equipped with same | |
JP2019165177A (en) | Film deposition method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18755017 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197023197 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18755017 Country of ref document: EP Kind code of ref document: A1 |