[go: up one dir, main page]

WO2018155635A1 - タービン動翼及びガスタービン - Google Patents

タービン動翼及びガスタービン Download PDF

Info

Publication number
WO2018155635A1
WO2018155635A1 PCT/JP2018/006730 JP2018006730W WO2018155635A1 WO 2018155635 A1 WO2018155635 A1 WO 2018155635A1 JP 2018006730 W JP2018006730 W JP 2018006730W WO 2018155635 A1 WO2018155635 A1 WO 2018155635A1
Authority
WO
WIPO (PCT)
Prior art keywords
end surface
shroud
circumferential direction
blade
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/006730
Other languages
English (en)
French (fr)
Inventor
檜山 貴志
西村 和也
啓太 ▲高▼村
進 若園
藤村 大悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to CN201880012646.8A priority Critical patent/CN110312846B/zh
Priority to US16/486,603 priority patent/US11215116B2/en
Priority to KR1020197024204A priority patent/KR102284235B1/ko
Priority to JP2019501838A priority patent/JP6830999B2/ja
Priority to DE112018000960.2T priority patent/DE112018000960B4/de
Publication of WO2018155635A1 publication Critical patent/WO2018155635A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/045Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor having compressor and turbine passages in a single rotor-module
    • F02C3/05Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor having compressor and turbine passages in a single rotor-module the compressor and the turbine being of the radial flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]

Definitions

  • the present invention relates to a turbine blade and a gas turbine.
  • the blades in the final stage of the turbine are particularly becoming longer.
  • it is effective to increase the blade length of the moving blade in the final stage and increase the contact area.
  • the centrifugal force acting on the shroud also increases, so that the stress at the root portion of the shroud body particularly increases.
  • a technique is known in which the rigidity is increased by increasing the fillet when welding the blade body and the shroud.
  • the fillet protrudes from the main flow path of the combustion gas, the work by the combustion gas is hindered and the efficiency is reduced.
  • reinforcing ribs are provided in a region from the contact surface to the front edge of the blade body in the shroud and a region from the contact surface to the rear edge of the blade body to reduce stress.
  • the structure to perform is disclosed.
  • the existence area of the reinforcing ribs is not sufficient, and it is not possible to appropriately cope with the generated stress.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a turbine blade and a gas turbine capable of resisting stress generated in a shroud while suppressing a decrease in efficiency.
  • a negative pressure surface facing one side in the circumferential direction and a pressure surface facing the other side in the circumferential direction are connected by a leading edge and a trailing edge, and the blade body extends in the radial direction.
  • the reinforcing portion is formed across the front end surface and the rear end surface of the shroud body. Therefore, a reinforcement part exists in the whole region between the front edge and the rear edge of the wing body. For this reason, rigidity can be ensured in the entire region of the root portion of the shroud with respect to the wing body. Moreover, since the reinforcement part is provided in the outer peripheral surface of the shroud, it does not affect the main flow path of combustion gas.
  • the front end surface intersects the first front end surface extending from the base point on the front edge side to one side in the circumferential direction and the first front end surface from the base point on the front edge side toward the other side in the circumferential direction.
  • a first front end surface extending from the rear edge side base point to one circumferential direction, and the rear edge side base point toward the other circumferential side.
  • a second rear end surface extending across the rear end surface, and the reinforcing portion may include a first reinforcing rib extending across the first front end surface and the first rear end surface.
  • the first reinforcing rib is formed on one side in the circumferential direction, that is, on the suction surface side of the blade body, particularly when the stress on the suction surface side of the blade body in the shroud increases, This can be accommodated by an increase in rigidity due to one reinforcing rib.
  • the shroud is formed at a portion where the suction surface of the blade body and the inner peripheral surface of the shroud body are connected, and is curved from the suction surface of the blade body to the inner peripheral surface of the shroud body.
  • the first reinforcing rib may be arranged to overlap with the first fillet portion in the circumferential direction with the shroud body interposed therebetween.
  • Centrifugal force acts radially outward on the shroud body as the turbine blades rotate, but as the turbine blades become longer for the purpose of improving the operating efficiency of the gas turbine, the centrifugal force acting on the shroud body
  • measures such as increasing the fillet part formed at the connection part between the blade body and the shroud body to increase the strength have been taken, but if the fillet part is enlarged, the cross-sectional area of the combustion gas main flow path inside the shroud is increased. This is not preferable because the purpose of extending the length of the turbine rotor blade is impaired.
  • the turbine rotor blade is connected to a portion where the suction surface of the blade body and the inner peripheral surface of the shroud body are connected to form a curved surface from the suction surface of the blade body to the inner peripheral surface of the shroud body. Since one fillet portion is formed and the first reinforcing rib overlaps the first fillet portion in the circumferential direction with the shroud body interposed therebetween, the centrifugal force acting on the shroud body as the turbine blades become longer However, the influence of centrifugal force on the shroud body can be reduced without reducing the cross-sectional area of the gas main flow path. That is, since the rigidity of the shroud on the suction surface side of the wing body increases, even if the stress on the suction surface side of the wing body in the shroud increases, deformation of the shroud body can be suppressed.
  • the reinforcing portion may further include a second reinforcing rib extending over the second front end surface and the second rear end surface.
  • the second reinforcing rib is formed on the other side in the circumferential direction, that is, on the pressure surface side of the blade body, particularly when the stress on the pressure surface side of the blade body in the shroud increases. That is, since the first reinforcing rib exists on the suction surface side of the blade body and the second reinforcing rib exists on the pressure surface side, the height from the front edge to the rear edge of the blade body is increased on both sides of the blade body. A rigid region can be formed.
  • the front end surface intersects the first front end surface extending from the base point on the front edge side to one side in the circumferential direction and the first front end surface from the base point on the front edge side toward the other side in the circumferential direction.
  • a first front end surface extending from the rear edge side base point to one circumferential direction, and the rear edge side base point toward the other circumferential side.
  • a second rear end surface extending across the rear end surface, and the reinforcing portion may include a second reinforcing rib extending over the second front end surface and the second rear end surface.
  • the shroud is formed at a portion where the pressure surface of the blade body and the inner peripheral surface of the shroud body are connected, and is curved from the pressure surface of the blade body to the inner peripheral surface of the shroud body.
  • the second reinforcing rib may be arranged to overlap with the second fillet portion in the circumferential direction with the shroud body interposed therebetween.
  • the turbine rotor blade is connected to a portion where the pressure surface of the blade body and the inner peripheral surface of the shroud body are connected to form a curved surface from the pressure surface of the blade body to the inner peripheral surface of the shroud body.
  • Two fillet portions are formed, and the second reinforcing rib overlaps the second fillet portion in the circumferential direction with the shroud body interposed therebetween, so that the centrifugal force acting on the shroud body is increased with the increase in the length of the turbine blade. Even if it increases, the influence of the centrifugal force on the shroud body can be reduced without reducing the cross-sectional area of the gas main flow path. That is, since the rigidity of the shroud on the pressure surface side of the blade body is increased, deformation of the shroud body can be suppressed even if the stress on the pressure surface side of the blade body in the shroud increases.
  • a gas turbine includes a compressor that compresses air to generate high-pressure air, a combustor that burns the high-pressure air to generate combustion gas, and a plurality of rotor blades in the circumferential direction.
  • a plurality of moving blade stages arranged in a row, and a turbine driven by the combustion gas, and the moving blades of at least the last moving blade stage among the plurality of moving blade stages are any of the above Turbine blades. This can increase the rigidity of the shroud at the final stage of the turbine.
  • FIG. 3 is a cross-sectional view taken along the line II-II in FIG. It is the figure which looked at the turbine bucket which concerns on the modification of 1st embodiment from the radial direction outer side. It is the figure which looked at the turbine bucket which concerns on 2nd embodiment from the radial direction outer side. It is the figure which looked at the turbine rotor blade concerning the modification of 2nd embodiment from the radial direction outer side. It is the figure which looked at the turbine bucket which concerns on 3rd embodiment from the radial direction outer side. It is the figure which looked at the turbine bucket which concerns on the modification of 3rd embodiment from the radial direction outer side.
  • a gas turbine 1 includes a compressor 10 that generates high-pressure air, a combustor 20 that generates combustion gas by mixing fuel with high-pressure air, and combustion. And a turbine 30 driven by gas.
  • the compressor 10 includes a compressor rotor 11 that rotates about the axis O, and a compressor casing 12 that covers the compressor rotor 11 from the outer peripheral side.
  • the compressor rotor 11 has a columnar shape extending along the axis O.
  • Each compressor blade stage 13 has a plurality of compressor blades 14 arranged on the outer peripheral surface of the compressor rotor 11 at intervals in the circumferential direction of the axis O.
  • the compressor casing 12 has a cylindrical shape centered on the axis O.
  • a plurality of compressor vane stages 15 arranged at intervals in the axis O direction are provided on the inner peripheral surface of the compressor casing 12. These compressor stationary blade stages 15 are alternately arranged with respect to the compressor blade stage 13 as viewed from the direction of the axis O.
  • Each compressor stationary blade stage 15 has a plurality of compressor stationary blades 16 arranged on the inner peripheral surface of the compressor casing 12 at intervals in the circumferential direction of the axis O.
  • the combustor 20 is provided between the compressor casing 12 and a turbine casing 32 described later.
  • the high-pressure air generated by the compressor 10 is mixed with fuel inside the combustor 20 to become a premixed gas.
  • the premixed gas burns in the combustor 20 to generate high-temperature and high-pressure combustion gas.
  • the combustion gas is guided into the turbine casing 32 to drive the turbine 30.
  • the turbine 30 includes a turbine rotor 31 that rotates about the axis O, and a turbine casing 32 that covers the turbine rotor 31 from the outer peripheral side.
  • the turbine rotor 31 has a columnar shape extending along the axis O.
  • Each turbine blade stage 33 has a plurality of turbine blades 40, 40 ⁇ / b> A arranged on the outer peripheral surface of the turbine rotor 31 at intervals in the circumferential direction of the axis O.
  • the turbine rotor 31 is integrally connected to the compressor rotor 11 in the direction of the axis O, thereby forming a gas turbine rotor.
  • the turbine casing 32 has a cylindrical shape centered on the axis O.
  • a plurality of turbine vane stages 35 arranged at intervals in the direction of the axis O are provided on the inner peripheral surface of the turbine casing 32.
  • These turbine stationary blade stages 35 are alternately arranged with respect to the turbine rotor blade stages 33 as viewed from the direction of the axis O.
  • Each turbine stationary blade stage 35 has a plurality of turbine stationary blades 36 arranged on the inner peripheral surface of the turbine casing 32 at intervals in the circumferential direction of the axis O.
  • the turbine casing 32 forms the gas turbine 1 casing by being connected to the compressor casing 12 in the direction of the axis O. That is, the above-described gas turbine 1 rotor is integrally rotatable around the axis O in the gas turbine 1 casing.
  • the turbine rotor blade 40 ⁇ / b> A includes a blade body 50, a shroud 60, and a reinforcing portion 90.
  • the blade body 50 has a blade shape extending in the radial direction of the axis O.
  • the blade body 50 has a suction surface 51 and a pressure surface 52.
  • the negative pressure surface 51 is a surface that faces one side in the circumferential direction of the axis O (the front side in the rotational direction R of the turbine rotor 31, the left side in FIGS. 2 and 3), and has a convex curved surface that is convex toward one side in the circumferential direction.
  • the pressure surface 52 is a surface facing the other side in the circumferential direction of the axis O (the rear side in the rotation direction R of the turbine rotor 31, the right side in FIGS. 2 and 3), and has a concave curved surface that is concave on one side in the circumferential direction. There is no.
  • the negative pressure surface 51 and the pressure surface 52 are connected to each other on the one side in the axis O direction (upstream side in the flow direction of the combustion gas), and the ridgeline formed by the connection extends the leading edge 53 of the blade body 50 extending in the radial direction. It is said that.
  • the negative pressure surface 51 and the pressure surface 52 are connected to each other on the other side in the axis O direction (downstream side in the flow direction of the combustion gas), and the ridge line formed by the connection extends the trailing edge 54 of the blade body 50 extending in the radial direction. It is said that.
  • the front edge 53 of the wing body 50 is located on one side in the circumferential direction from the rear edge 54.
  • the distance (cord length) between the leading edge 53 and the trailing edge 54 decreases as it goes radially outward, and the distance (blade thickness) between the suction surface 51 and the pressure surface decreases. It is configured as follows.
  • a cooling flow path for circulating cooling air is formed inside the blade body 50.
  • the shroud 60 includes a shroud main body 61 and fins 80.
  • the shroud main body 61 is integrally attached to the tip end that is the radially outer side of the blade main body 50 by, for example, welding.
  • the shroud body 61 has a plate shape extending in the direction of the axis O and in the circumferential direction, and is provided so as to protrude from the tip of the blade body 50 in the circumferential direction.
  • a first fillet portion F1 is formed at a portion where the suction surface 51 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61 are connected, and the pressure surface 52 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61 are formed.
  • a second fillet portion F2 is formed at the connecting portion.
  • the first fillet portion F1 has a curved surface in a cross-sectional shape parallel to the radial direction of the turbine rotor 31 so as to draw an arc that smoothly connects the suction surface 51 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61.
  • the blade body 50 is connected in the chord direction of the blade body 50 along the suction surface 51 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61.
  • the second fillet portion F2 has a curved surface shape so as to draw an arc smoothly connecting the pressure surface 52 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61 in a cross-sectional shape parallel to the radial direction of the turbine rotor 31. (See FIG.
  • the blade body 50 is continued in the chord direction along the pressure surface 52 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61.
  • the first and second fillet portions F1 and F2 are formed by, for example, welds (beads) when welding the blade body 50 and the shroud body 61.
  • the outer peripheral surface 63 facing the radially outer side of the shroud main body 61 is shaped to protrude toward the negative pressure surface 51 side and the pressure surface 52 side of the blade main body 50. That is, the outer peripheral surface 63 of the shroud main body 61 has the same shape as the inner peripheral surface 62 of the shroud main body 61 when viewed from the radial direction.
  • the inner peripheral surface 62 and the outer peripheral surface 63 of the shroud main body 61 are connected in the radial direction by the front end surface 64, the rear end surface 67, the first side end surface 70, and the second side end surface 74.
  • the front end face 64 is an end face that forms one side of the shroud main body 61 in the axis O direction (upstream side in the axis O direction).
  • the front end face 64 faces the upstream side of the combustion gas and extends in the circumferential direction.
  • the front end face 64 is formed on the front edge 53 side of the wing body 50, and a part thereof is located further upstream than the front edge 53.
  • the front end face 64 has a first front end face 65 and a second front end face 66.
  • the first front end face 65 extends toward one side in the circumferential direction with the position P1 as the upstream side of the front edge 53 of the blade body 50 as a base point P1.
  • the first front end surface 65 gradually extends toward the downstream side of the combustion gas from the base point P1 toward the one side in the circumferential direction.
  • An end of the first front end face 65 in the circumferential direction and on the downstream side is located downstream of the front edge 53 of the blade body 50 and upstream of the rear edge 54 of the blade body 50.
  • the second front end face 66 extends toward the other side in the circumferential direction with a position similar to the base point P1 of the first front end face 65 as a base point.
  • the second front end face 66 gradually extends toward the downstream side of the combustion gas from the base point P1 toward the other circumferential side.
  • the end portion on the other circumferential side and downstream side of the second front end face 66 is located downstream of the front edge 53 of the blade body 50 and upstream of the rear edge 54 of the blade body 50.
  • the first front end face 65 and the second front end face 66 intersect at a base point P1 to form a ridgeline.
  • the second front end surface 66 is formed to have a larger circumferential dimension than the first front end surface 65. In other words, the second front end surface 66 is longer than the first front end surface 65 when viewed from the radial direction.
  • the rear end face 67 is an end face that forms the other side of the shroud main body 61 in the axis O direction (downstream side in the axis O direction).
  • the rear end surface 67 faces the downstream side of the combustion gas and extends in the circumferential direction.
  • the rear end surface 67 is formed on the rear edge 54 side of the blade body 50, and a part thereof is located further downstream than the rear edge 54.
  • the rear end surface 67 has a first rear end surface 68 and a second rear end surface 69.
  • the first rear end face 68 extends toward one side in the circumferential direction with a position further downstream from the rear edge 54 of the blade body 50 as a base point P2.
  • the first rear end face 68 gradually extends toward the upstream side of the combustion gas from the base point P2 toward the one side in the circumferential direction.
  • One end in the circumferential direction and the upstream side of the first rear end face is located upstream from the rear edge 54 of the blade body 50 and downstream from the front edge 53 of the blade body 50.
  • the second rear end surface 69 extends toward the other side in the circumferential direction with the same position as the base point P2 of the first rear end surface 68 as a base point P2.
  • the second rear end surface 69 gradually extends toward the upstream side of the combustion gas from the base point P2 toward the other circumferential side.
  • the end on the other circumferential side and the upstream side of the second rear end surface 69 is located upstream of the rear edge 54 of the blade body 50 and downstream of the front edge 53 of the blade body 50.
  • the first rear end surface 68 and the second rear end surface 69 intersect at a base point P2 to form a ridgeline.
  • the first rear end surface 68 is formed to have a larger circumferential dimension than the second rear end surface 69. That is, the first rear end surface 68 is longer than the second rear end surface 69 when viewed from the radial direction.
  • the first side end surface 70 is an end surface that forms one side of the shroud body 61 in the circumferential direction (the front side in the rotational direction R).
  • the first side end face 70 connects the inner peripheral face 62 and the outer peripheral face 63 of the shroud main body 61 and connects the first front end face 65 and the first rear end face 68 in the axis O direction.
  • the first side end surface 70 has a first front side surface 71, a first rear side surface 72, and a first contact surface 73.
  • the first front side surface 71 has an upstream end connected to the first front end surface 65 and extends toward the downstream side and the other circumferential side.
  • the first rear side surface 72 has a downstream end connected to the first rear end surface 68 and extends toward the upstream side and one side in the circumferential direction.
  • the first contact surface 73 connects the first front side surface 71 and the first rear side surface 72.
  • the first contact surface 73 extends downstream from the connecting portion with the first front side surface 71 toward one side in the circumferential direction, and is connected to the first rear side surface 72.
  • the first contact surface 73 may be inclined so as to face the radially inner side or the outer side.
  • the second side end surface 74 is an end surface that forms the other side in the circumferential direction of the shroud main body 61 (the rear side in the rotation direction R).
  • the second side end surface 74 connects the inner peripheral surface 62 and the outer peripheral surface 63 of the shroud main body 61 and connects the second front end surface 66 and the second rear end surface 69 in the direction of the axis O.
  • the second side end surface 74 has a second front side surface 75, a second rear side surface 76, and a second contact surface 77.
  • the second front side surface 75 has an upstream end connected to the second front end surface 66 and extends toward the downstream side and the other circumferential side.
  • the second rear side surface 76 has a downstream end connected to the second rear end surface 69 and extends toward the upstream side and one side in the circumferential direction.
  • the second contact surface 77 connects the second front side surface 75 and the second rear side surface 76.
  • the second contact surface 77 extends from the connection portion with the second front side surface 75 toward the downstream side and one side in the circumferential direction, and is connected to the second rear side surface 76.
  • the second contact surface 77 may be inclined so as to face the radially outer side or the inner side.
  • the turbine rotor blade stage 33 is constituted by the plurality of turbine rotor blades 40A, the first contact surface 73 and the second contact surface 77 of the turbine rotor blades 40A adjacent to each other come into contact with each other. As a result, the rigidity of the entire rotor blade stage is ensured.
  • the fin 80 protrudes from the outer peripheral surface 63 of the shroud main body 61 and extends in the circumferential direction.
  • the fin 80 extends over the first side end surface 70 and the second side end surface 74 of the shroud main body 61.
  • the fin 80 extends in the circumferential direction from the boundary between the first front side surface 71 and the first contact surface 73 of the shroud body 61 to the boundary between the second front side surface 75 and the second contact surface 77.
  • the reinforcing portion 90 is provided so as to protrude from the outer peripheral surface 63 of the shroud 60, and extends over the front end surface 64 and the rear end surface 67.
  • the reinforcing portion 90 includes a first reinforcing rib 91 and a second reinforcing rib 92.
  • the first reinforcing rib 91 extends continuously over the first front end face 65 and the first rear end face 68.
  • the first reinforcing rib 91 is further formed on the outer circumferential surface 63 of the shroud main body 61 on one side in the circumferential direction than the negative pressure surface 51 of the blade main body 50. That is, the first reinforcing rib 91 is disposed so as to be separated from the negative pressure surface 51 on the front side in the rotation direction R facing the negative pressure surface 51 when viewed from the radial direction.
  • the first reinforcing rib 91 extends from the first front end face 65 toward the first rear end face 68 so as to go to the other side in the circumferential direction. That is, the first reinforcing rib 91 extends along the suction surface 51 of the blade body 50.
  • the second reinforcing rib 92 extends continuously across the second front end surface 66 and the second rear end surface 69.
  • the second reinforcing rib 92 is formed on the other circumferential side of the outer peripheral surface 63 of the shroud main body 61 with respect to the pressure surface 52 of the blade main body 50. That is, the second reinforcing rib 92 is disposed on the rear side in the rotation direction R facing the pressure surface 52 so as to be separated from the pressure surface 52 when viewed from the radial direction.
  • the second reinforcing rib 92 extends so as to go to the other side in the circumferential direction from the second front end face 66 toward the second rear end face 69.
  • the second reinforcing rib 92 extends along the pressure surface 52 of the blade body 50.
  • the blade body 50 is sandwiched from the circumferential direction by the first reinforcing rib 91 and the second reinforcing rib 92.
  • the dimension in the width direction perpendicular to the extending direction of the first reinforcing rib 91 and the second reinforcing rib 92 is larger than the width dimension orthogonal to the extending direction of the fin 80.
  • the height (diameter dimension) of the first reinforcing rib 91 and the second reinforcing rib 92 is smaller than the height of the fin 80.
  • the compressor rotor 11 gas turbine rotor
  • the compressor rotor 11 As the compressor rotor 11 rotates, external air is sequentially compressed to generate high-pressure air. This high-pressure air is supplied into the combustor 20 through the space inside the compressor casing 12.
  • the fuel supplied from the fuel nozzle is mixed with the high-pressure air and burned to generate high-temperature and high-pressure combustion gas.
  • the combustion gas is supplied into the turbine 30 through the space inside the turbine casing 32.
  • the combustion gas sequentially collides with the turbine rotor blade stage 33 and the turbine stationary blade stage 35, whereby a rotational driving force is applied to the turbine rotor 31 (gas turbine 1 rotor). This rotational energy is used to drive a generator G or the like connected to the shaft end.
  • the combustion gas is finally discharged to the outside through the exhaust diffuser via the final stage turbine blade 40A.
  • the turbine blade 40A in the final stage generally has a larger blade length than the turbine blades 40 in the other stages. Therefore, during operation of the gas turbine 1, the final stage turbine rotor blade 40 ⁇ / b> A is affected by centrifugal force, and in particular, stress at the base portion of the shroud body 61 with respect to the blade body 50 is increased.
  • the reinforcing portion 90 is formed across the front end face 64 and the rear end face 67 of the shroud main body 61. Therefore, the reinforcing portion 90 exists over the entire region between the front edge 53 and the rear edge 54 of the wing body 50. For this reason, rigidity can be ensured in the entire region of the root portion of the shroud 60 with respect to the blade body 50.
  • the rigidity at the base portion of the shroud main body 61 for example, it is conceivable to reinforce the inner peripheral surface 62 of the shroud main body 61.
  • the rigidity is ensured by increasing the fillet portions F1 and F2. It is also possible to do.
  • increasing the fillet narrows the flow path of the combustion gas, thus reducing the efficiency of the turbine 30.
  • the reinforcement part 90 is formed in the outer peripheral surface 63 of the shroud main body 61, enlargement of a fillet can be kept to the minimum. Thereby, the rigidity of the shroud body 61 can be increased while avoiding the decrease in efficiency of the turbine 30.
  • the reinforcing portion 90 exists only in a part of the front end surface 64 and the rear end surface 67, a portion having high rigidity and a portion having low rigidity exist between the front end surface 64 and the rear end surface 67. become. In such a case, if the centrifugal force acting on the shroud 60 is very large, it is still insufficient to ensure the rigidity of the root portion of the shroud 60.
  • the root portion exists over the entire area of the negative pressure surface 51 and the pressure surface 52 of the blade body 50 in the direction of the axis O. Therefore, by providing the reinforcing portion 90 across the front end surface 64 and the rear end surface 67, sufficient rigidity is ensured for the first time. be able to.
  • the first reinforcing rib 91 is formed across the first front end face 65 and the first rear end face 68, that is, formed on the negative pressure face 51 side of the blade body 50.
  • the second reinforcing rib 92 is formed over the second front end surface 66 and the second rear end surface 69, that is, formed on the pressure surface 52 side of the blade body 50.
  • the rigidity of both the root portion of the shroud body 61 on the suction surface 51 side and the pressure surface 52 side of the wing body 50 can be secured in a balanced manner. It can suppress effectively that it deform
  • a turbine blade 40Aa shown in FIG. 4 is the last-stage blade as with the turbine blade 40A of the first embodiment.
  • the first reinforcing rib 91 has a circumferential direction (rotation) of the turbine rotor 13 with the first fillet portion F1 and the shroud body 61 interposed therebetween. It is formed at a position overlapping in the direction R) (overlapping portion L1).
  • the second reinforcing rib 92 is formed at a position overlapping the second fillet portion F2 and the shroud main body 61 in the circumferential direction (rotation direction R) of the turbine rotor 13 (overlapping portion L2).
  • the first reinforcing rib 91 includes a first fillet portion F1 formed at a portion where the suction surface 51 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61 are connected, and the shroud body 62. Since they overlap with each other in the circumferential direction, the shroud body 61 between the portion where the first reinforcing rib 91 is formed and the suction surface 51 of the blade body 50 is given higher rigidity than the other portions. ing.
  • the second reinforcing rib 92 also has a second fillet portion F2 formed at a portion where the pressure surface 52 of the blade main body 50 and the inner peripheral surface 62 of the shroud main body 61 are connected, and the shroud main body 61 so as to surround the second reinforcing rib 92. Since they overlap in the direction, the shroud body 61 between the portion where the second reinforcing rib 92 is formed and the pressure surface 52 of the blade body 50 is also given higher rigidity than the other portions.
  • the turbine rotor blade 40B shown in FIG. 5 is the last stage rotor blade similar to the turbine rotor blade 40A of the first embodiment, but includes only the first reinforcing rib 91 as the reinforcing portion 90.
  • the second reinforcing rib (92) is not provided. According to the structure of the turbine rotor blade 40 ⁇ / b> B, stress may increase at the root portion of the shroud body 61, particularly only on the suction surface 51 side of the blade body 50.
  • the turbine rotor blade 40Ba shown in FIG. 6 is also the final stage rotor blade similar to the turbine rotor blade 40B of the second embodiment.
  • the turbine blade 40Ba is provided with a first fillet portion F1 having the same structure as that of the modification of the first embodiment at a portion where the suction surface 51 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61 are connected. It has been.
  • the first fillet portion F1 overlaps the first reinforcing rib 91 with the shroud main body 61 interposed therebetween (overlapping portion L1).
  • the turbine rotor blade 40Ba is not provided with the second reinforcing rib (92).
  • the first reinforcing rib 91 overlaps the first fillet portion F1 in the circumferential direction with the shroud main body 62 interposed therebetween, the portion where the first reinforcing rib 91 is formed and the blade body
  • the shroud body 61 between the 50 suction surfaces 51 is given higher rigidity than the other parts.
  • the turbine rotor blade 40C shown in FIG. 7 is the last stage rotor blade similar to the turbine rotor blade 40A of the first embodiment, but includes only the second reinforcing rib 92 as the reinforcing portion 90.
  • the first reinforcing rib 91 is not provided.
  • stress may increase at the root portion of the shroud body 61, particularly only on the pressure surface 52 side of the blade body 50. In such a case, only the second reinforcing rib 92 may be provided. Thereby, deformation of the shroud body 61 can be suppressed.
  • a turbine rotor blade 40Ca shown in FIG. 8 is also a final stage rotor blade similar to the turbine rotor blade 40C of the third embodiment.
  • a second fillet portion F2 having the same structure as that of the modification of the first embodiment is provided at a portion where the pressure surface 52 of the blade body 50 and the inner peripheral surface 62 of the shroud body 61 are connected. It has been.
  • the second reinforcing rib 92 overlaps the second fillet portion F2 with the shroud body 61 interposed therebetween (overlapping portion L2).
  • the turbine rotor blade 40Ca is not provided with the first reinforcing rib (91).
  • the second fillet portion F2 overlaps the second reinforcing rib 92 in the circumferential direction with the shroud main body 62 interposed therebetween, the portion where the second reinforcing rib 92 is formed and the blade body
  • the shroud body 61 between the 50 pressure surfaces 52 is given higher rigidity than the other portions.
  • the first reinforcing rib 91 may have a curved shape along the suction surface 51 of the blade body 50 when viewed from the radial direction.
  • the second reinforcing rib 92 may have a curved shape along the pressure surface 52 of the blade body 50 when viewed from the radial direction.
  • the width dimension (the dimension in the circumferential direction orthogonal to the extending direction) of the first reinforcing rib 91 and the second reinforcing rib 92 may change from the front end face 64 toward the rear end face 67.
  • the width dimension may gradually increase or decrease gradually toward the rear end surface 67.
  • the first reinforcing rib 91 and the second reinforcing rib 92 may be reduced after the width dimension is increased from the front end face 64 toward the rear end face 67.
  • the change in the width dimension may change corresponding to the thickness dimension of the blade body 50 (distance in the circumferential direction between the suction surface 51 and the pressure surface 52).
  • the height (diameter dimension) of the first reinforcing rib 91 and the second reinforcing rib 92 may change.
  • the present invention is applied only to the turbine blade at the final stage, but the present invention may be applied to other turbine blades other than the final stage.
  • the present invention relates to a turbine rotor blade and a gas turbine. ADVANTAGE OF THE INVENTION According to this invention, it can resist the stress which arises in a shroud, suppressing a efficiency fall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

周方向一方側を向く負圧面(51)と周方向他方側を向く圧力面(52)とが前縁(53)及び後縁(54)で接続されており、径方向に延びる翼本体(50)と、翼本体(50)の径方向外側の端部となる先端に設けられたシュラウド(60)とを備え、シュラウド(60)は、径方向外側を向く外周面(63)、翼本体(50)の前縁(53)側を基点(P1)として周方向両側に延びる前端面(64)、翼本体(50)の後縁(54)側を基点(P2)として周方向両側に延びる後端面(67)、及び周方向両側に設けられたコンタクト面を有するシュラウド本体(61)と、外周面(63)から突出し、前端面(64)と後端面(67)とにわたって延びる補強部(90)とを備える。

Description

タービン動翼及びガスタービン
 本発明は、タービン動翼及びガスタービンに関する。
 本願は、2017年2月23日に出願された特願2017-031767号に対して優先権を主張し、その内容をここに援用する。
 例えばガスタービンのタービン動翼として、翼端部にシュラウドを備えたものが知られている(例えば特許文献1参照)。特にタービンの最終段の長尺の動翼では、隣接する各タービン動翼のシュラウドのコンタクト面同士が接触し合うことで、高速回転時に発生する振動を抑制している。また、シュラウドの外周面上には、周方向に延びるフィンが設けられている。これにより、タービンを駆動させる燃焼ガスがケーシングの内周面とシュラウドの外周面との間に形成される隙間から流出してしまうことを抑制している。
特開2005-207294号公報
 ところで、近年のガスタービンの高出力化・高性能化に伴い、特にタービンの最終段の動翼の長翼化が図られている。タービンから排出される排気ガスの流速を出来る限り減少させ、タービン効率を上げるためには、最終段の動翼の翼長を伸ばし、接触面積を増大させることが有効である。
 一方でこのような長翼化が進めば、シュラウドに作用する遠心力も大きくなるため、特にシュラウドの翼本体に対する付け根部分の応力が非常に大きくなる。これに対して、例えば翼本体とシュラウドとを溶接する際のフィレットを大きくすることで剛性を高める手法が知られている。しかしながら、フィレットは燃焼ガスの主流路に張り出しているため、燃焼ガスによる仕事を妨げ、効率低下を招いてしまう。
 ここで特許文献1に記載のタービン動翼では、シュラウドにおけるコンタクト面から翼本体の前縁まで至る領域、及び、コンタクト面から翼本体の後縁まで至る領域に補強用リブを設けて応力を低減する構成が開示されている。しかしながら当該タービン動翼では、補強用リブの存在領域が十分ではなく、発生する応力に適切に対応することができない。
 本発明はこのような事情に鑑みてなされたものであって、効率低下を抑制しながら、シュラウドに生じる応力に抗することのできるタービン動翼及びガスタービンを提供することを目的とする。
 本発明の第一の態様に係るタービン動翼は、周方向一方側を向く負圧面と周方向他方側を向く圧力面とが前縁及び後縁で接続されており、径方向に延びる翼本体と、該翼本体の径方向外側の端部となる先端に設けられたシュラウドとを備え、前記シュラウドは、径方向外側を向く外周面、前記翼本体の前縁側を基点として周方向両側に延びる前端面、前記翼本体の後縁側を基点として周方向両側に延びる後端面、及び、周方向両側に設けられたコンタクト面を有するシュラウド本体と、前記外周面から突出し、前記前端面と前記後端面とにわたって延びる補強部とを備える。
 上記構成のタービン動翼によれば、補強部がシュラウド本体の前端面と後端面とにわたって形成されている。したがって、翼本体の前縁と後縁との間の全域にわたって補強部が存在することになる。このため、シュラウドの翼本体に対する付け根部分の全域で剛性を確保することができる。また、補強部はシュラウドの外周面に設けられているため、燃焼ガスの主流路に影響を与えることはない。
 上記タービン動翼では、前記前端面は、前記前縁側の基点から周方向一方側に延びる第一前端面と、前記前縁側の基点から周方向他方側に向かって前記第一前端面と交差して延びる第二前端面とを有し、前記後端面は、前記後縁側の基点から周方向一方側に延びる第一後端面と、前記後縁側の基点から周方向他方側に向かって前記第一後端面と交差して延びる第二後端面とを有し、前記補強部は、前記第一前端面と前記第一後端面とにわたって延びる第一補強用リブを有していてもよい。
 第一補強用リブが周方向一方側、即ち、翼本体の負圧面側に形成されているため、特にシュラウドにおける翼本体の負圧面側の応力が大きくなる場合は、当該応力に対して、第一補強用リブによる剛性の増加により対応することができる。
 上記タービン動翼では、前記シュラウドは、前記翼本体の負圧面と前記シュラウド本体の内周面とが接続される部分に形成され、前記翼本体の負圧面から前記シュラウド本体の内周面に曲面状をなして連なる第一フィレット部を備え、前記第一補強用リブは、前記シュラウド本体を挟んで前記第一フィレット部と周方向に重複して配置されてもよい。
 シュラウド本体には、タービン動翼の回転に伴い径方向外側に遠心力が作用するが、ガスタービンの作動効率向上を目的としてタービン動翼の長翼化が図られるに従い、シュラウド本体に作用する遠心力も増大するため、その対策を施す必要がある。従来は、翼本体とシュラウド本体との接続部分に形成されるフィレット部を大きくして強度を増すなどの対策も講じられたが、フィレット部を大きくするとシュラウド内部の燃焼ガス主流路の断面積を減少させることになり、タービン動翼の長翼化の目的を損ねることになるので好ましくない。
 上記タービン動翼には、翼本体の負圧面と前記シュラウド本体の内周面とが接続される部分に、前記翼本体の負圧面から前記シュラウド本体の内周面に曲面状をなして連なる第一フィレット部が形成され、前記第一補強用リブがシュラウド本体を挟んで前記第一フィレット部と周方向に重複しているので、タービン動翼の長翼化に伴いシュラウド本体に作用する遠心力が増大しても、ガス主流路の断面積を減じることなく、シュラウド本体に対する遠心力の影響を小さくすることができる。つまり、翼本体の負圧面側のシュラウドの剛性が増すので、シュラウドにおける翼本体の負圧面側の応力が大きくなったとしても、シュラウド本体の変形を抑制することができる。
 上記タービン動翼では、前記補強部は、前記第二前端面と前記第二後端面とにわたって延びる第二補強用リブをさらに有していてもよい。
 第二補強用リブが周方向他方側、即ち、翼本体の圧力面側に形成されているため、特にシュラウドにおける翼本体の圧力面側の応力が大きくなる場合は、当該応力に対して、第二補強用リブによる剛性の増加により対応することができる。つまり、翼本体の負圧面側に第一補強用リブが存在し、圧力面側に第二補強用リブが存在するため、翼本体の両側に該翼本体の前縁から後縁までにわたっての高剛性領域を形成することができる。
 上記タービン動翼では、前記前端面は、前記前縁側の基点から周方向一方側に延びる第一前端面と、前記前縁側の基点から周方向他方側に向かって前記第一前端面と交差して延びる第二前端面とを有し、前記後端面は、前記後縁側の基点から周方向一方側に延びる第一後端面と、前記後縁側の基点から周方向他方側に向かって前記第一後端面と交差して延びる第二後端面とを有し、前記補強部は、前記第二前端面と前記第二後端面とにわたって延びる第二補強用リブを有していてもよい。
 上記タービン動翼では、前記シュラウドは、前記翼本体の圧力面と前記シュラウド本体の内周面とが接続される部分に形成され、前記翼本体の圧力面から前記シュラウド本体の内周面に曲面状をなして連なる第二フィレット部を備え、前記第二補強用リブは、前記シュラウド本体を挟んで前記第二フィレット部と周方向に重複して配置されてもよい。
 上記タービン動翼には、翼本体の圧力面と前記シュラウド本体の内周面とが接続される部分に、前記翼本体の圧力面から前記シュラウド本体の内周面に曲面状をなして連なる第二フィレット部が形成され、前記第二補強用リブがシュラウド本体を挟んで第二フィレット部と周方向に重複しているので、タービン動翼の長翼化に伴いシュラウド本体に作用する遠心力が増大しても、ガス主流路の断面積を減じることなく、シュラウド本体に対する遠心力の影響を小さくすることができる。つまり、翼本体の圧力面側のシュラウドの剛性が増すので、シュラウドにおける翼本体の圧力面側の応力が大きくなったとしても、シュラウド本体の変形を抑制することができる。
 本発明の第二態様に係るガスタービンは、空気を圧縮して高圧空気を生成する圧縮機と、前記高圧空気を燃焼させて燃焼ガスを生成する燃焼器と、複数の動翼が周方向に配列されてなる動翼段を複数段有し、前記燃焼ガスによって駆動されるタービンとを備え、複数の前記動翼段のうち少なくとも最終段の前記動翼段の前記動翼が、上記いずれかのタービン動翼である。
 これによって、タービンの最終段でのシュラウドの剛性を高めることができる。
 本発明のタービン動翼及びガスタービンによれば、効率低下を抑制しながら、シュラウドに生じる応力に抗することができる。
第一実施形態に係るガスタービンの模式的な縦断面図である。 第一実施形態に係るタービン動翼を径方向外側から見た図である。 図2のII-II断面図である。 第一実施形態の変形例に係るタービン動翼を径方向外側から見た図である。 第二実施形態に係るタービン動翼を径方向外側から見た図である。 第二実施形態の変形例に係るタービン動翼を径方向外側から見た図である。 第三実施形態に係るタービン動翼を、径方向外側から見た図である。 第三実施形態の変形例に係るタービン動翼を径方向外側から見た図である。
 以下、本発明に係る第一実施形態について図1から図3を参照して説明する。
 図1に示すように、本実施形態に係るガスタービン1は、高圧空気を生成する圧縮機10と、高圧空気に燃料を混合して燃焼させることで燃焼ガスを生成する燃焼器20と、燃焼ガスによって駆動されるタービン30とを備えている。
 圧縮機10は、軸線O回りに回転する圧縮機ロータ11と、圧縮機ロータ11を外周側から覆う圧縮機ケーシング12とを有している。圧縮機ロータ11は、軸線Oに沿って延びる柱状をなしている。圧縮機ロータ11の外周面上には、軸線O方向に間隔をあけて配列された複数の圧縮機動翼段13が設けられている。各圧縮機動翼段13は、圧縮機ロータ11の外周面上で軸線Oの周方向に間隔をあけて配列された複数の圧縮機動翼14を有している。
 圧縮機ケーシング12は、軸線Oを中心とする筒状をなしている。圧縮機ケーシング12の内周面には、軸線O方向に間隔をあけて配列された複数の圧縮機静翼段15が設けられている。これらの圧縮機静翼段15は、上記の圧縮機動翼段13に対して、軸線O方向から見て交互に配列されている。各圧縮機静翼段15は、圧縮機ケーシング12の内周面上で、軸線Oの周方向に間隔をあけて配列された複数の圧縮機静翼16を有している。
 燃焼器20は、上記の圧縮機ケーシング12と、後述するタービンケーシング32との間に設けられている。圧縮機10で生成された高圧空気は、燃焼器20内部で燃料と混合されて予混合ガスとなる。燃焼器20内で、この予混合ガスが燃焼することで高温高圧の燃焼ガスが生成される。燃焼ガスは、タービンケーシング32内に導かれてタービン30を駆動する。
 タービン30は、軸線O回りに回転するタービンロータ31と、タービンロータ31を外周側から覆うタービンケーシング32とを有している。タービンロータ31は、軸線Oに沿って延びる柱状をなしている。タービンロータ31の外周面上には、軸線O方向に間隔をあけて配列された複数のタービン動翼段33が設けられている。各タービン動翼段33は、タービンロータ31の外周面上で、軸線Oの周方向に間隔をあけて配列された複数のタービン動翼40,40Aを有している。このタービンロータ31は、上記の圧縮機ロータ11に対して軸線O方向に一体に連結されることで、ガスタービンロータを形成する。
 タービンケーシング32は、軸線Oを中心とする筒状をなしている。タービンケーシング32の内周面には、軸線O方向に間隔をあけて配列された複数のタービン静翼段35が設けられている。これらのタービン静翼段35は、上記のタービン動翼段33に対して、軸線O方向から見て交互に配列されている。各タービン静翼段35は、タービンケーシング32の内周面上で、軸線Oの周方向に間隔をあけて配列された複数のタービン静翼36を有している。タービンケーシング32は、上記の圧縮機ケーシング12に対して軸線O方向に連結されることで、ガスタービン1ケーシングを形成する。すなわち、上記のガスタービン1ロータは、このガスタービン1ケーシング内で、軸線O回りに一体に回転可能とされている。
 次に、複数のタービン動翼段33のうちの最終段のタービン動翼段33におけるタービン動翼40Aの詳細構成について、図2及び図3を参照して説明する。本実施形態では、最終段のタービン動翼40Aのみに本発明を適用している。
 タービン動翼40Aは、翼本体50、シュラウド60及び補強部90を有している。
 翼本体50は、軸線Oの径方向に延びるブレード状をなしている。翼本体50は、負圧面51と圧力面52とを有している。負圧面51は、軸線Oの周方向一方側(タービンロータ31の回転方向R前方側、図2及び図3の左側)を向く面であって、周方向一方側に凸となる凸曲面状をなしている。圧力面52は、軸線Oの周方向他方側(タービンロータ31の回転方向R後方側、図2及び図3の右側)を向く面であって、周方向一方側に凹となる凹曲面状をなしている。
 負圧面51と圧力面52とは、軸線O方向一方側(燃焼ガスの流通方向上流側)で互いに接続されており、接続により形成される稜線が、径方向にわたって延びる翼本体50の前縁53とされている。負圧面51と圧力面52とは、軸線O方向他方側(燃焼ガスの流通方向下流側)で互いに接続されており、接続により形成される稜線が、径方向にわたって延びる翼本体50の後縁54とされている。
 翼本体50の前縁53は後縁54よりも周方向一方側に位置している。
 翼本体50は、径方向外側に向かうにしたがって、前縁53と後縁54との距離(コード長)が小さくなり、かつ、負圧面51と正圧面との距離(翼厚さ)が小さくなるように構成されている。なお、翼本体50の内部には、冷却空気が流通するための冷却流路が形成されている。
 シュラウド60は、シュラウド本体61とフィン80とを有している。
 シュラウド本体61は、翼本体50の径方向外側となる先端部に、例えば溶接等によって一体に取り付けられている。シュラウド本体61は、軸線O方向及び周方向に延びる板状をなしており、翼本体50の先端部から周方向に張り出すように設けられている。
 翼本体50における径方向内側を向く内周面62は、周方向の中央部で翼本体50の先端部に固定されている。翼本体50の負圧面51とシュラウド本体61の内周面62とが接続する部分には第一フィレット部F1が形成され、翼本体50の圧力面52とシュラウド本体61の内周面62とが接続する部分には第二フィレット部F2が形成されている。
 第一フィレット部F1は、タービンロータ31の径方向に平行な断面形状においては翼本体50の負圧面51とシュラウド本体61の内周面62との間を滑らかに繋ぐ弧を描くように曲面状をなし、翼本体50の負圧面51及びシュラウド本体61の内周面62に沿って翼本体50の翼弦方向に連なっている。第二フィレット部F2は、タービンロータ31の径方向に平行な断面形状においては翼本体50の圧力面52とシュラウド本体61の内周面62との間を滑らかに繋ぐ弧を描くように曲面状をなし(図3参照)、翼本体50の圧力面52及びシュラウド本体61の内周面62に沿って翼本体50の翼弦方向に連なっている。
 第一、第二フィレット部F1、F2は、例えば翼本体50とシュラウド本体61とを溶接する際の溶接部(ビード)によって形成されている。
 シュラウド本体61の径方向外側を向く外周面63は、翼本体50の負圧面51側及び圧力面52側に張り出すような形状をなしている。即ち、シュラウド本体61の外周面63は、径方向から見てシュラウド本体61の内周面62と同様の形状をなしている。
 このようなシュラウド本体61の内周面62と外周面63とは、前端面64、後端面67、第一側端面70及び第二側端面74とによって径方向に接続されている。
 前端面64は、シュラウド本体61の軸線O方向一方側(軸線O方向の上流側)を形成する端面である。前端面64は、燃焼ガスの上流側を向き、周方向に延びている。前端面64は、翼本体50の前縁53側に形成されており、一部が前縁53よりもさらに上流側に位置している。
 前端面64は、第一前端面65と第二前端面66とを有している。
 第一前端面65は、翼本体50の前縁53よりもさらに上流側の位置を基点P1として、周方向一方側に向かって延びている。第一前端面65は、上記基点P1から周方向一方側に向かうにしたがって燃焼ガスの下流側に向かって漸次延びている。第一前端面65の周方向一方側かつ下流側の端部は、翼本体50の前縁53よりも下流側、かつ、翼本体50の後縁54よりも上流側に位置している。
 第二前端面66は、第一前端面65の基点P1と同様の位置を基点として、周方向他方側に向かって延びている。第二前端面66は、上記基点P1から周方向他方側に向かうにしたがって漸次燃焼ガスの下流側に向かって延びている。第二前端面66の周方向他方側かつ下流側の端部は、翼本体50の前縁53よりも下流側、かつ、翼本体50の後縁54よりも上流側に位置している。第一前端面65と第二前端面66とは基点P1で交差して稜線を形成している。
 本実施形態では、第一前端面65よりも第二前端面66の方が周方向の寸法が大きく形成されている。即ち、径方向から見たときの長さは、第一前端面65よりも第二前端面66の方が長い。
 後端面67は、シュラウド本体61の軸線O方向他方側(軸線O方向の下流側)を形成する端面である。後端面67は、燃焼ガスの下流側を向き、周方向に延びている。後端面67は、翼本体50の後縁54側に形成されており、一部が後縁54よりもさらに下流側に位置している。
 後端面67は、第一後端面68と第二後端面69とを有している。
 第一後端面68は、翼本体50の後縁54よりもさらに下流側の位置を基点P2として、周方向一方側に向かって延びている。第一後端面68は、上記基点P2から周方向一方側に向かうにしたがって漸次燃焼ガスの上流側に向かって延びている。第一後端端面の周方向一方側かつ上流側の端部は、翼本体50の後縁54よりも上流側、かつ、翼本体50の前縁53よりも下流側に位置している。
 第二後端面69は、第一後端面68の基点P2と同様の位置を基点P2として、周方向他方側に向かって延びている。第二後端面69は、上記基点P2から周方向他方側に向かうにしたがって漸次燃焼ガスの上流側に向かって延びている。第二後端面69の周方向他方側かつ上流側の端部は、翼本体50の後縁54よりも上流側、かつ、翼本体50の前縁53より下流側に位置している。第一後端面68と第二後端面69とは基点P2で交差して稜線を形成している。
 本実施形態では、第二後端面69よりも第一後端面68の方が周方向の寸法が大きく形成されている。即ち、径方向から見たときの長さは、第二後端面69よりも第一後端面68の方が長い。
 第一側端面70は、シュラウド本体61の周方向一方側(回転方向R前方側)を形成する端面である。第一側端面70は、シュラウド本体61の内周面62と外周面63とを接続するとともに、第一前端面65と第一後端面68とを軸線O方向に接続している。第一側端面70は、第一前側面71、第一後側面72及び第一コンタクト面73を有している。
 第一前側面71は、上流側の端部が第一前端面65に接続されており、下流側かつ周方向他方側に向かって延びている。
 第一後側面72は、下流側の端部が第一後端面68に接続されており、上流側かつ周方向一方側に向かって延びている。
 第一コンタクト面73は、第一前側面71と第一後側面72とを接続している。第一コンタクト面73は、第一前側面71との接続箇所から下流側かつ周方向一方側に向かって延びて、第一後側面72に接続されている。第一コンタクト面73は、径方向内側又は外側を向くように傾斜していてもよい。
 第二側端面74は、シュラウド本体61の周方向他方側(回転方向R後方側)を形成する端面である。第二側端面74は、シュラウド本体61の内周面62と外周面63とを接続するとともに、第二前端面66と第二後端面69とを軸線O方向に接続している。第二側端面74は、第二前側面75、第二後側面76及び第二コンタクト面77を有している。
 第二前側面75は、上流側の端部が第二前端面66に接続されており、下流側かつ周方向他方側に向かって延びている。
 第二後側面76は、下流側の端部が第二後端面69に接続されており、上流側かつ周方向一方側に向かって延びている。
 第二コンタクト面77は、第二前側面75と第二後側面76とを接続している。第二コンタクト面77は、第二前側面75との接続箇所から下流側かつ周方向一方側に向かって延びて、第二後側面76に接続されている。第二コンタクト面77は、径方向外側又は内側を向くように傾斜していてもよい。
 複数のタービン動翼40Aによってタービン動翼段33が構成された際には、互いに隣り合うタービン動翼40Aの第一コンタクト面73、第二コンタクト面77同士が接触する。これによって、動翼段全体としての剛性が確保されている。
 フィン80は、シュラウド本体61の外周面63から突出し、周方向に延びている。フィン80は、シュラウド本体61の第一側端面70と第二側端面74とにわたって延びている。フィン80は、シュラウド本体61の第一前側面71と第一コンタクト面73との境界から、第二前側面75と第二コンタクト面77との境界とにわたって周方向に延びている。
 補強部90は、シュラウド60の外周面63から突出するように設けられており、前端面64と後端面67とにわたって延びている。補強部90は、第一補強用リブ91と第二補強用リブ92とを有する。
 第一補強用リブ91は、第一前端面65と第一後端面68とにわたって連続的に延びている。第一補強用リブ91は、シュラウド本体61の外周面63における翼本体50の負圧面51よりもさらに周方向一方側に形成されている。即ち、第一補強用リブ91は、径方向から見たときに、負圧面51の向く回転方向R前方側に、該負圧面51と離間するように配置されている。第一補強用リブ91は第一前端面65から第一後端面68に向かうにしたがって周方向他方側に向かうように延在している。即ち、第一補強用リブ91は、翼本体50の負圧面51に沿うように延在している。
 第二補強用リブ92は、第二前端面66と第二後端面69とにわたって連続的に延びている。第二補強用リブ92は、シュラウド本体61の外周面63における翼本体50の圧力面52よりもさらに周方向他方側に形成されている。即ち、第二補強用リブ92は、径方向から見たときに、圧力面52の向く回転方向R後方側に、該圧力面52と離間するように配置されている。第二補強用リブ92は第二前端面66から第二後端面69に向かうにしたがって周方向他方側に向かうように延在している。即ち、第二補強用リブ92は、翼本体50の圧力面52に沿うように延在している。
 径方向から見たときに、第一補強用リブ91と第二補強用リブ92とによって、翼本体50が周方向から挟まれている。
 第一補強用リブ91及び第二補強用リブ92の延在方向に直交する幅方向の寸法は、フィン80の延在方向に直交する幅寸法よりも大きい。
 第一補強用リブ91及び第二補強用リブ92の高さ(径方向の寸法)は、フィン80の高さよりも小さい。
 次に上記構成のガスタービン1及びタービン動翼40Aの作用効果について説明する。
 ガスタービン1を運転するに当たっては、まず外部の駆動源によって圧縮機ロータ11(ガスタービンロータ)を回転駆動する。圧縮機ロータ11の回転に伴って外部の空気が順次圧縮され、高圧空気が生成される。この高圧空気は、圧縮機ケーシング12内部の空間を通じて燃焼器20内に供給される。
 燃焼器20内では、燃料ノズルから供給された燃料がこの高圧空気に混合されて燃焼し、高温高圧の燃焼ガスが生成される。燃焼ガスはタービンケーシング32内部の空間を通じてタービン30内に供給される。タービン30内では、タービン動翼段33、及びタービン静翼段35に燃焼ガスが順次衝突することで、タービンロータ31(ガスタービン1ロータ)に対して回転駆動力が与えられる。この回転エネルギーは、軸端に連結された発電機G等の駆動に利用される。そして、燃焼ガスは、最終的に最終段のタービン動翼40Aを経て、排気ディフューザを介して外部に排出される。
 ここで、最終段のタービン動翼40Aは、他の段のタービン動翼40に比べて一般に翼長が大きい。そのため、ガスタービン1の運転時には、最終段のタービン動翼40Aは遠心力の影響を受け、特にシュラウド本体61の翼本体50に対する付け根部分での応力が大きくなる。
 これに対して、本実施形態では、補強部90がシュラウド本体61の前端面64と後端面67とにわたって形成されている。したがって、翼本体50の前縁53と後縁54との間の全域にわたって補強部90が存在することになる。このため、シュラウド60の翼本体50に対する付け根部分の全域で剛性を確保することができる。
 ここで、シュラウド本体61の付け根部分での剛性を高めるためには、例えば、シュラウド本体61の内周面62を補強することが考えられ、例えばフィレット部F1、F2を大きくすることにより剛性を確保することも考えられる。しかしながらこの場合、フィレットを大きくすることが燃焼ガスの流路を狭めることになるため、タービン30効率を低下させてしまう。本実施形態では、シュラウド本体61の外周面63に補強部90が形成されているため、フィレットを大きくするのを最小に留めることができる。これにより、タービン30効率の低下を回避しながら、シュラウド本体61の剛性を高めることができる。
 また、仮に補強部90が前端面64と後端面67とにわたらず一部のみに存在している場合、前端面64と後端面67との間で剛性が高い部分と低い部分が存在することになる。このような場合には、シュラウド60に作用する遠心力が非常に大きな場合には、やはりシュラウド60の付け根部分の剛性確保には不十分である。当該付け根部分は、翼本体50の負圧面51及び圧力面52の軸線O方向全域にわたって存在するため、前端面64と後端面67とにわたって補強部90を設けることで、始めて十分な剛性を確保することができる。
 さらに、本実施形態では、第一補強用リブ91が、第一前端面65と第一後端面68とにわたって形成されており、即ち、翼本体50の負圧面51側に形成されている。これによって、負圧面51側におけるシュラウド本体61の翼本体50に対する付け根部分の剛性を適切に確保することができる。
 さらに、第二補強用リブ92が、第二前端面66と第二後端面69とにわたって形成されており、即ち、翼本体50の圧力面52側に形成されている。これによって、圧力面52側におけるシュラウド本体61の翼本体50に対する付け根部分の剛性を適切に確保することができる。
 したがって、本実施形態によれば、翼本体50の負圧面51側及び圧力面52側でのシュラウド本体61の付け根部分の双方について、剛性をバランスよく確保することができるため、シュラウド本体61が翼本体50に対してめくり上がるように変形してしまうことを効果的に抑制することができる。
 さらに、第一実施形態の変形例について図4を参照して説明する。図4に示すタービン動翼40Aaは、第一実施形態のタービン動翼40Aと同じく最終段の動翼である。このタービン動翼40Aaを、タービンロータの径方向に対して平行に断面視すると、第一補強用リブ91は、第一フィレット部F1と、シュラウド本体61を挟んでタービンロータ13の周方向(回転方向R)に重複する位置に形成されている(重複部分L1)。第二補強用リブ92は、第二フィレット部F2と、シュラウド本体61を挟んでタービンロータ13の周方向(回転方向R)に重複する位置に形成されている(重複部分L2)。
 シュラウド本体61には、タービン動翼40の回転に伴い径方向外側に遠心力が作用するが、ガスタービン1の作動効率向上を目的としてタービン動翼40の長翼化が図られるに伴い、シュラウド本体61に作用する遠心力も増大するため、その対策を施す必要がある。本変形例では、第一補強用リブ91が、翼本体50の負圧面51とシュラウド本体61の内周面62とが接続される部分に形成された第一フィレット部F1と、シュラウド本体62を挟んで周方向に重複しているので、第一補強用リブ91が形成された部分と翼本体50の負圧面51との間のシュラウド本体61には、他の部分よりも高い剛性が付与されている。
 さらに、第二補強用リブ92も、翼本体50の圧力面52とシュラウド本体61の内周面62とが接続される部分に形成された第二フィレット部F2と、シュラウド本体61を挟んで周方向に重複しているので、第二補強用リブ92が形成された部分と翼本体50の圧力面52との間のシュラウド本体61にも、他の部分よりも高い剛性が付与されている。
 したがって、本変形例によれば、第一補強用リブ91及び第二補強用リブ92が形成された部分のシュラウド本体61にタービンロータ31の回転によって作用する遠心力が増大しても、その遠心力によりシュラウド本体61に反りなどの変形が生じるのを抑制することができる。
 次に、本発明の第二実施形態について図5を参照して説明する。第二実施形態では、第一実施形態と同様の構成要素には同様の符号を付して詳細な説明を省略する。
 図5に示すタービン動翼40Bは、第一実施形態のタービン動翼40Aと同じく最終段の動翼であるが、補強部90として第一補強用リブ91のみを備えており、第一実施形態の第二補強用リブ(92)を備えてはいない。
 タービン動翼40Bの構造によれば、特に翼本体50の負圧面51側でのみ、シュラウド本体61の付け根部分に応力が大きくなる場合がある。このような場合には、第一補強用リブ91のみを設けることで、当該応力に適切に対応することができる。また、第二補強用リブ92を設ける場合に比べて、シュラウド60自体の重量が小さくなるため、遠心力の影響を抑えることができる。
 さらに、第二実施形態の変形例について図6を参照して説明する。
 図6に示すタービン動翼40Baも、第二実施形態のタービン動翼40Bと同じく最終段の動翼である。このタービン動翼40Baには、翼本体50の負圧面51とシュラウド本体61の内周面62とが接続される部分に、第一実施形態の変形例と同じ構造の第一フィレット部F1が設けられている。第一フィレット部F1は、シュラウド本体61を挟んで第一補強用リブ91と重複している(重複部分L1)。なお、タービン動翼40Baには、第二補強用リブ(92)は設けられていない。
 本変形例によれば、第一補強用リブ91が、シュラウド本体62を挟んで第一フィレット部F1と周方向に重複しているので、第一補強用リブ91が形成された部分と翼本体50の負圧面51との間のシュラウド本体61には、他の部分よりも高い剛性が付与されている。これにより、動翼の長翼化に伴い第一補強用リブ91が形成された部分のシュラウド本体61にタービンロータ31の回転によって作用する遠心力が増大しても、その遠心力によりシュラウド本体61に反りなどの変形が生じるのを抑制することができる。
 次に、本発明の第三実施形態について図7を参照して説明する。第三実施形態では、第一実施形態と同様の構成要素には同様の符号を付して詳細な説明を省略する。
 図7に示すタービン動翼40Cは、第一実施形態のタービン動翼40Aと同じく最終段の動翼であるが、補強部90として第二補強用リブ92のみを備えており、第一実施形態の第一補強用リブ91を備えてはいない。
 タービン動翼40Cの構造によれば、特に翼本体50の圧力面52側でのみ、シュラウド本体61の付け根部分に応力が大きくなる場合がある。このような場合には、第二補強用リブ92のみを設ければよい。これによって、シュラウド本体61の変形を抑制することができる。
 さらに、第三実施形態の変形例について図8を参照して説明する。
 図8に示すタービン動翼40Caも、第三実施形態のタービン動翼40Cと同じく最終段の動翼である。このタービン動翼40Caには、翼本体50の圧力面52とシュラウド本体61の内周面62とが接続される部分に、第一実施形態の変形例と同じ構造の第二フィレット部F2が設けられている。第二補強用リブ92は、シュラウド本体61を挟んで第二フィレット部F2と重複している(重複部分L2)。なお、タービン動翼40Caには、第一補強用リブ(91)は設けられていない。
 本変形例によれば、第二フィレット部F2が、シュラウド本体62を挟んで第二補強用リブ92と周方向に重複しているので、第二補強用リブ92が形成された部分と翼本体50の圧力面52との間のシュラウド本体61には、他の部分よりも高い剛性が付与されている。これにより、動翼の長翼化に伴い第二補強用リブ92が形成された部分のシュラウド本体61にタービンロータ31の回転によって作用する遠心力が増大しても、その遠心力によりシュラウド本体61に反りなどの変形が生じるのを抑制することができる。
 以上、本発明の実施形態及びその変形例について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば上記の各実施形態では、単一のフィン80を設けた場合について説明したが、当該フィン80が複数設けられていてもよい。
 第一補強用リブ91は、径方向から見たときに、翼本体50の負圧面51に沿って湾曲した形状をなしていてもよい。第二補強用リブ92は径方向から見たときに、翼本体50の圧力面52に沿って湾曲した形状をなしていてもよい。
 第一補強用リブ91、第二補強用リブ92は、前端面64から後端面67に向かうに従って、幅寸法(延在方向に直交する周方向の寸法)が変化してもよい。例えば、後端面67に向かうに従って幅寸法が漸次大きくなってもよいし、漸次小さくなってもよい。
 第一補強用リブ91、第二補強用リブ92は、前端面64から後端面67に向かうに従って、幅寸法が大きくなった後に小さくなってもよい。当該幅寸法の変化は、翼本体50の厚さの寸法(負圧面51と圧力面52との周方向の距離)に対応して変化してもよい。
 また、幅寸法と同様に、第一補強用リブ91及び第二補強用リブ92の高さ(径方向の寸法)が変化してもよい。
 上記の各実施形態及びその変形例では、最終段のタービン動翼にのみ本発明を適用したが、最終段以外の他のタービン動翼に本発明を適用してもよい。
 本発明は、タービン動翼及びガスタービンに関する。本発明によれば、効率低下を抑制しながら、シュラウドに生じる応力に抗することができる。
1  ガスタービン
10 圧縮機
11 圧縮機ロータ
12 圧縮機ケーシング
13 圧縮機動翼段
14 圧縮機動翼
15 圧縮機静翼段
16 圧縮機静翼
20 燃焼器
30 タービン
31 タービンロータ
32 タービンケーシング
33 タービン動翼段
35 タービン静翼段
36 タービン静翼
40 タービン動翼
40A、40Aa、40B、40Ba、40C、40Ca  タービン動翼
50 翼本体
51 負圧面
52 圧力面
53 前縁
54 後縁
60 シュラウド
61 シュラウド本体
62 内周面
63 外周面
64 前端面
65 第一前端面
66 第二前端面
67 後端面
68 第一後端面
69 第二後端面
70 第一側端面
71 第一前側面
72 第一後側面
73 第一コンタクト面
74 第二側端面
75 第二前側面
76 第二後側面
77 第二コンタクト面
80 フィン
90 補強部
91 第一補強用リブ
92 第二補強用リブ
G  発電機
F1  第一フィレット部
F2  第二フィレット部
O  軸線
R  回転方向
P1、P2 基点

Claims (8)

  1.  周方向一方側を向く負圧面と周方向他方側を向く圧力面とが前縁及び後縁で接続されており、径方向に延びる翼本体と、
     該翼本体の径方向外側の端部となる先端に設けられたシュラウドとを備え、
     前記シュラウドは、
     径方向外側を向く外周面、前記翼本体の前縁側を基点として周方向両側に延びる前端面、前記翼本体の後縁側を基点として周方向両側に延びる後端面、及び、周方向両側に設けられたコンタクト面を有するシュラウド本体と、
     前記外周面から突出し、前記前端面と前記後端面とにわたって延びる補強部とを備えるタービン動翼。
  2.  前記前端面は、前記前縁側の基点から周方向一方側に延びる第一前端面と、前記前縁側の基点から周方向他方側に向かって前記第一前端面と交差して延びる第二前端面とを有し、
     前記後端面は、前記後縁側の基点から周方向一方側に延びる第一後端面と、前記後縁側の基点から周方向他方側に向かって前記第一後端面と交差して延びる第二後端面とを有し、
     前記補強部は、前記第一前端面と前記第一後端面とにわたって延びる第一補強用リブを有する請求項1に記載のタービン動翼。
  3.  前記シュラウドは、前記翼本体の負圧面と前記シュラウド本体の内周面とが接続される部分に形成され、前記翼本体の負圧面から前記シュラウド本体の内周面に曲面状をなして連なる第一フィレット部を備え、
     前記第一補強用リブは、前記シュラウド本体を挟んで前記第一フィレット部と周方向に重複して配置されている請求項2に記載のタービン動翼。
  4.  前記補強部は、前記第二前端面と前記第二後端面とにわたって延びる第二補強用リブを有する請求項2又は3に記載のタービン動翼。
  5.  前記シュラウドは、前記翼本体の圧力面と前記シュラウド本体の内周面とが接続される部分に形成され、前記翼本体の圧力面から前記シュラウド本体の内周面に曲面状をなして連なる第二フィレット部を備え、
     前記第二補強用リブは、前記シュラウド本体を挟んで前記第二フィレット部と周方向に重複して配置されている請求項4に記載のタービン動翼。
  6.  前記前端面は、前記前縁側の基点から周方向一方側に延びる第一前端面と、前記前縁側の基点から周方向他方側に向かって前記第一前端面と交差して延びる第二前端面とを有し、
     前記後端面は、前記後縁側の基点から周方向一方側に延びる第一後端面と、前記後縁側の基点から周方向他方側に向かって前記第一後端面と交差して延びる第二後端面とを有し、
     前記補強部は、前記第二前端面と前記第二後端面とにわたって延びる第二補強用リブを有する請求項1に記載のタービン動翼。
  7.  前記シュラウドは、前記翼本体の圧力面と前記シュラウド本体の内周面とが接続される部分に形成され、前記翼本体の圧力面から前記シュラウド本体の内周面に曲面状をなして連なる第二フィレット部を備え、
     前記第二補強用リブは、前記シュラウド本体を挟んで前記第二フィレット部と周方向に重複して配置されている請求項6に記載のタービン動翼。
  8.  空気を圧縮して高圧空気を生成する圧縮機と、
     前記高圧空気を燃焼させて燃焼ガスを生成する燃焼器と、
     複数の動翼が周方向に配列されてなる動翼段を複数段有し、前記燃焼ガスによって駆動されるタービンとを備え、
     複数の前記動翼段のうち少なくとも最終段の前記動翼段の前記動翼が、請求項1から7のいずれか一項に記載のタービン動翼であるガスタービン。
PCT/JP2018/006730 2017-02-23 2018-02-23 タービン動翼及びガスタービン Ceased WO2018155635A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880012646.8A CN110312846B (zh) 2017-02-23 2018-02-23 涡轮动叶以及燃气轮机
US16/486,603 US11215116B2 (en) 2017-02-23 2018-02-23 Turbine moving blade and gas turbine
KR1020197024204A KR102284235B1 (ko) 2017-02-23 2018-02-23 터빈 동익 및 가스 터빈
JP2019501838A JP6830999B2 (ja) 2017-02-23 2018-02-23 タービン動翼及びガスタービン
DE112018000960.2T DE112018000960B4 (de) 2017-02-23 2018-02-23 Turbinenlaufschaufel und gasturbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-031767 2017-02-23
JP2017031767 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155635A1 true WO2018155635A1 (ja) 2018-08-30

Family

ID=63252778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006730 Ceased WO2018155635A1 (ja) 2017-02-23 2018-02-23 タービン動翼及びガスタービン

Country Status (6)

Country Link
US (1) US11215116B2 (ja)
JP (1) JP6830999B2 (ja)
KR (1) KR102284235B1 (ja)
CN (1) CN110312846B (ja)
DE (1) DE112018000960B4 (ja)
WO (1) WO2018155635A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085993B1 (fr) * 2018-09-17 2020-12-25 Safran Aircraft Engines Aube mobile pour une roue d'une turbomachine
JP7477284B2 (ja) * 2019-11-14 2024-05-01 三菱重工業株式会社 タービン翼及びガスタービン
JP6776465B1 (ja) * 2020-01-27 2020-10-28 三菱パワー株式会社 タービン動翼

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306702A (ja) * 1997-05-08 1998-11-17 Mitsubishi Heavy Ind Ltd ガスタービン翼
JP2005207294A (ja) * 2004-01-22 2005-08-04 Mitsubishi Heavy Ind Ltd タービン動翼
US20120003078A1 (en) * 2010-07-01 2012-01-05 Mtu Aero Engines Gmbh Turbine shroud
US20130149165A1 (en) * 2011-12-13 2013-06-13 Mtu Aero Engines Gmbh Rotating blade having a rib arrangement with a coating
US20150017003A1 (en) * 2013-03-07 2015-01-15 Rolls-Royce Corporation Gas turbine engine shrouded blade
US20150226070A1 (en) * 2014-02-13 2015-08-13 Pratt & Whitney Canada Corp. Shrouded blade for a gas turbine engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246840A (ja) 1992-03-04 1993-09-24 Kao Corp 薬効剤含有粒子およびその製造方法
GB2290833B (en) 1994-07-02 1998-08-05 Rolls Royce Plc Turbine blade
EP1391581B1 (en) 1998-02-04 2013-04-17 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade
US7527477B2 (en) 2006-07-31 2009-05-05 General Electric Company Rotor blade and method of fabricating same
US8371816B2 (en) 2009-07-31 2013-02-12 General Electric Company Rotor blades for turbine engines
JP2015090134A (ja) 2013-11-07 2015-05-11 三菱日立パワーシステムズ株式会社 ガスタービン翼
US10605099B2 (en) 2015-07-31 2020-03-31 General Electric Company Cooling arrangements in turbine blades
JP6754177B2 (ja) 2015-08-06 2020-09-09 理研軽金属工業株式会社 吸音構造材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306702A (ja) * 1997-05-08 1998-11-17 Mitsubishi Heavy Ind Ltd ガスタービン翼
JP2005207294A (ja) * 2004-01-22 2005-08-04 Mitsubishi Heavy Ind Ltd タービン動翼
US20120003078A1 (en) * 2010-07-01 2012-01-05 Mtu Aero Engines Gmbh Turbine shroud
US20130149165A1 (en) * 2011-12-13 2013-06-13 Mtu Aero Engines Gmbh Rotating blade having a rib arrangement with a coating
US20150017003A1 (en) * 2013-03-07 2015-01-15 Rolls-Royce Corporation Gas turbine engine shrouded blade
US20150226070A1 (en) * 2014-02-13 2015-08-13 Pratt & Whitney Canada Corp. Shrouded blade for a gas turbine engine

Also Published As

Publication number Publication date
US11215116B2 (en) 2022-01-04
KR20190103429A (ko) 2019-09-04
KR102284235B1 (ko) 2021-07-30
US20200056540A1 (en) 2020-02-20
CN110312846B (zh) 2022-05-10
JPWO2018155635A1 (ja) 2019-12-19
DE112018000960T5 (de) 2019-12-12
DE112018000960B4 (de) 2024-07-18
JP6830999B2 (ja) 2021-02-17
CN110312846A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
JP6514511B2 (ja) 2つの部分スパンシュラウドおよび湾曲したダブテールを有する高翼弦動翼
JP5518597B2 (ja) タービンエンジンに関するシステム及び装置並びにタービンエンジン用シール
JP5297540B2 (ja) タービン動翼及びターボ機械
JP6109197B2 (ja) ラジアルタービン動翼
JP5297228B2 (ja) タービン翼及びガスタービン
US9745859B2 (en) Radial-inflow type axial flow turbine and turbocharger
JP6830999B2 (ja) タービン動翼及びガスタービン
JP2010285878A (ja) ガスタービン翼及びガスタービン
TW202132682A (zh) 具有在具有與加強構件對準之峰之弧處連接之掃掠表面之(多個)切面之噴嘴
WO2018124068A1 (ja) タービン及びガスタービン
WO2015137393A1 (ja) シュラウド、動翼体、及び回転機械
JP7213103B2 (ja) 翼及びこれを備えた機械
JP2006052910A (ja) 燃焼器尾筒とタービン入口との連通構造
WO2019187435A1 (ja) 航空機用ガスタービン
CN112943383B (zh) 带有具有曲线形后缘的翼片的涡轮机喷嘴
JP2015121221A (ja) 非対称なパートスパンシュラウドを有する回転機械の翼およびその製造方法
JP6086583B2 (ja) タービン動翼
JP5479624B2 (ja) タービン翼及びガスタービン
WO2023242949A1 (ja) 圧縮機の動翼及び圧縮機
JP6820735B2 (ja) タービン及びガスタービン
WO2022201932A1 (ja) タービン、及びガスタービン
WO2024181260A1 (ja) タービン静翼及びガスタービン
JP2021110291A (ja) 動翼、及び軸流回転機械
JP2021008820A (ja) 航空機用ガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024204

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019501838

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18757462

Country of ref document: EP

Kind code of ref document: A1