WO2018168927A1 - Light module - Google Patents
Light module Download PDFInfo
- Publication number
- WO2018168927A1 WO2018168927A1 PCT/JP2018/009973 JP2018009973W WO2018168927A1 WO 2018168927 A1 WO2018168927 A1 WO 2018168927A1 JP 2018009973 W JP2018009973 W JP 2018009973W WO 2018168927 A1 WO2018168927 A1 WO 2018168927A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elastic
- support
- mirror
- opening
- pair
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 547
- 230000005489 elastic deformation Effects 0.000 claims abstract description 54
- 238000006243 chemical reaction Methods 0.000 claims abstract description 45
- 230000008859 change Effects 0.000 abstract description 5
- 238000006073 displacement reaction Methods 0.000 description 74
- 239000000758 substrate Substances 0.000 description 66
- 238000005259 measurement Methods 0.000 description 65
- 230000004048 modification Effects 0.000 description 52
- 238000012986 modification Methods 0.000 description 52
- 244000126211 Hericium coralloides Species 0.000 description 43
- 238000000034 method Methods 0.000 description 40
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 32
- 229910052710 silicon Inorganic materials 0.000 description 32
- 239000010703 silicon Substances 0.000 description 32
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 27
- 239000000853 adhesive Substances 0.000 description 20
- 230000001070 adhesive effect Effects 0.000 description 20
- 230000000694 effects Effects 0.000 description 18
- 238000013459 approach Methods 0.000 description 16
- 238000007667 floating Methods 0.000 description 15
- 238000005530 etching Methods 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 230000002093 peripheral effect Effects 0.000 description 12
- 230000002411 adverse Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000000059 patterning Methods 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 230000005484 gravity Effects 0.000 description 6
- 239000013307 optical fiber Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/06—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
Definitions
- One aspect of the present disclosure relates to an optical module.
- An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, Patent Document 1).
- Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
- Patent Document 2 describes an optical system manufacturing process.
- a template substrate and an optical bench are prepared.
- An alignment slot is formed on the template substrate by etching.
- Bond pads are arranged on the main surface of the optical bench.
- the template substrate is attached to the main surface of the optical bench so that the alignment slot is disposed on the bond pad.
- the optical element is inserted into the alignment slot while being positioned using the side wall of the alignment slot, and is positioned on the bond pad. Then, the optical element is bonded to the optical bench by reflowing the bond pad.
- the optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 ⁇ m at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
- An object of one aspect of the present disclosure is to provide an optical module that can reliably mount an optical element regardless of characteristics of a mounting region.
- An optical module is an optical module including an optical element and a base on which the optical element is mounted, and the optical element is optical so as to form an optical part having an optical surface and an annular region.
- the elastic part provided around the part and the optical part are provided so as to sandwich the optical part in the first direction along the optical surface, and the elastic force is applied according to the elastic deformation of the elastic part and the mutual distance is variable.
- the base has a main surface and a mounting region provided with an opening communicating with the main surface, and the support portion is provided with the elastic force of the elastic portion.
- the optical element is inserted into the opening in the state, and the optical element is supported by the mounting region by the reaction force of the elastic force applied to the support portion from the inner surface of the opening in a state where the optical surface intersects the main surface.
- the optical element has an elastic part and a pair of support parts whose distances can be changed according to the elastic deformation of the elastic part.
- an opening communicating with the main surface is formed in the mounting region of the base on which the optical element is mounted. Therefore, as an example, the support portion is inserted into the opening in a state in which the elastic portion is elastically deformed so that the distance between the support portions is reduced, and a part of the elastic deformation of the elastic portion is released, so that the support portion is opened in the opening. The distance between each other increases, and the support portion can be brought into contact with the inner surface of the opening. Thereby, an optical element is supported by the reaction force provided to a support part from the inner surface of opening. As described above, in this optical module, the optical element is mounted on the base using the elastic force. Therefore, the optical element can be reliably mounted without considering the adverse effect of the adhesive, that is, regardless of the characteristics of the mounting area.
- the elastic portion is provided so as to form an annular region. For this reason, for example, the strength of the elastic portion is improved as compared with a case where the elastic portion is in a cantilever state (in this case, a closed region such as an annular shape is not formed by the elastic portion). Therefore, for example, damage to the elastic portion can be suppressed during manufacturing or handling of the optical element. That is, it is another object of one aspect of the present disclosure to provide an optical element that can suppress breakage of an elastic portion with respect to the optical element.
- the base includes a support layer and a device layer provided on the support layer and including a main surface and a mounting region, and the opening intersects the main surface.
- the support layer may include a locking portion that is bent so as to be in contact with a pair of edges of the opening in a direction intersecting the main surface. In this case, the locking portion is locked to the mounting region at a position where the locking portion contacts the pair of edges of the opening. Therefore, the optical element can be reliably mounted on the base, and the optical element can be positioned in the direction intersecting the main surface of the base.
- the inner surface of the opening includes a pair of inclined surfaces that are inclined so that the distance from each other increases from one end toward the other end when viewed from the direction intersecting the main surface. And a reference surface extending along a reference line connecting the other end of the inclined surface and the other end of the other inclined surface.
- the optical element may include a first connection unit that connects the optical unit and the elastic unit to each other.
- the optical part may be connected to the elastic part.
- the elastic portion may be formed in an annular shape so as to surround the optical portion when viewed from the second direction intersecting the optical surface. In this case, since the end portion does not occur in the elastic portion, the strength of the elastic portion can be reliably improved.
- the support portion includes the second connecting portion connected to the elastic portion, and the second connecting portion along the third direction along the optical surface and intersecting the first direction. And a leg that extends beyond the optical surface and is inserted into the opening.
- the optical element can be mounted on the base in a state where the entire optical surface protrudes from the main surface.
- the optical module according to one aspect of the present disclosure further includes a fixed mirror mounted on the support layer, the device layer, or the intermediate layer, and a beam splitter mounted on the support layer, the device layer, or the intermediate layer.
- the optical element is a movable mirror including an optical surface that is a mirror surface
- the device layer has a drive region connected to the mounting region
- the movable mirror, the fixed mirror, and the beam splitter constitute an interference optical system. It may be arranged as follows. In this case, an FTIR with improved sensitivity can be obtained.
- the mounting area where the movable mirror is mounted has a characteristic of being connected to the driving area and driven. Therefore, the above configuration is more effective because it is easily affected by the adverse effects of the adhesive.
- the base includes an intermediate layer provided between the support layer and the device layer, the support layer is the first silicon layer of the SOI substrate, and the device layer is The second silicon layer of the SOI substrate, and the intermediate layer may be an insulating layer of the SOI substrate.
- the SOI substrate a configuration for reliably mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
- An optical module includes a light incident unit arranged to allow measurement light to be incident on the interference optical system from the outside, and a light emission arranged to emit measurement light to the outside from the interference optical system May be provided.
- a light incident unit arranged to allow measurement light to be incident on the interference optical system from the outside
- a light emission arranged to emit measurement light to the outside from the interference optical system May be provided.
- an FTIR including a light incident part and a light emission part can be obtained.
- an optical module that can reliably mount an optical element regardless of the characteristics of the mounting region.
- FIG. 2 is a cross-sectional view taken along the line IIA-IIA shown in FIG.
- FIG. 3 is a cross-sectional view taken along line IIIA-IIIA shown in FIG.
- A) is a perspective view of the peripheral structure of the movable mirror shown in FIG. 1
- (b) is a cross-sectional view taken along line IVbA-IVbA shown in (a) of FIG.
- FIG. 2 is a cross-sectional view taken along the line VA-VA shown in FIG.
- FIG. 2 is a cross-sectional view taken along the line VIA-VIA shown in FIG. It is sectional drawing of the modification of the surrounding structure of a movable mirror.
- FIG. 15 is a cross-sectional view taken along line XVA-XVA shown in FIG. 14.
- FIG. 15 is a cross-sectional view taken along line XVIA-XVIA shown in FIG. 14.
- FIG. 30 is a cross-sectional view taken along the line IIB-IIB shown in FIG. 29.
- FIG. 30 is a cross-sectional view taken along line IIIB-IIIB shown in FIG. 29.
- FIG. 31 is a cross-sectional view taken along the line IVB-IVB shown in FIG. 30.
- FIG. 30 is a cross-sectional view taken along line VB-VB shown in FIG. 29.
- FIG. 30 is a cross-sectional view taken along line VIB-VIB shown in FIG. 29. It is a top view which shows the manufacturing process of a movable mirror.
- FIG. 1 It is a top view which shows the manufacturing process of a movable mirror. It is a top view which shows the mounting process of a movable mirror. It is a side view at the time of seeing from the arrow VAB side shown by FIG. (A)-(c) is a top view which shows the mounting process of a movable mirror.
- A) And (b) is a top view which shows the mounting process of a movable mirror.
- A) And (b) is a front view which shows the modification of a movable mirror. It is a front view which shows the modification of a movable mirror.
- A) And (b) is a front view which shows the modification of a movable mirror.
- FIG. 47 is a cross-sectional view taken along the line IIC-IIC shown in FIG. 46.
- FIG. 47 is a cross-sectional view taken along line IIIC-IIIC shown in FIG. 46.
- FIG. 47 is a partial plan view including a mounting area shown in FIG. 46.
- FIG. 47 is a cross-sectional view taken along the line VC-VC shown in FIG. 46.
- FIG. 47 is a cross-sectional view taken along line VIC-VIC shown in FIG. 46.
- the optical module 1A includes a base BA.
- the base BA has a main surface BsA.
- the base BA includes a support layer 2A, a device layer 3A provided on the support layer 2A, and an intermediate layer 4A provided between the support layer 2A and the device layer 3A.
- the main surface BsA is a surface of the device layer 3A opposite to the support layer 2A.
- the support layer 2A, the device layer 3A, and the intermediate layer 4A are configured by an SOI substrate.
- the support layer 2A is the first silicon layer of the SOI substrate.
- the device layer 3A is a second silicon layer of the SOI substrate.
- the intermediate layer 4A is an insulating layer of the SOI substrate.
- the support layer 2A, the device layer 3A, and the intermediate layer 4A have, for example, a rectangular shape with a side of about 10 mm when viewed from the ZA axis direction (a direction parallel to the ZA axis) that is the stacking direction thereof.
- Each thickness of the support layer 2A and the device layer 3A is, for example, about several hundred ⁇ m.
- the thickness of the intermediate layer 4A is, for example, about several ⁇ m.
- the device layer 3A and the intermediate layer 4A are shown with one corner of the device layer 3A and one corner of the intermediate layer 4A cut out.
- the device layer 3A has a mounting area 31A and a driving area 32A connected to the mounting area 31A.
- the drive region 32A includes a pair of actuator regions 33A and a pair of elastic support regions 34A.
- the mounting region 31A and the drive region 32A are integrally formed on a part of the device layer 3A by MEMS technology (patterning and etching). Yes.
- the pair of actuator regions 33A are arranged on both sides of the mounting region 31A in the XA axis direction (the direction parallel to the XA axis orthogonal to the ZA axis). That is, the mounting area 31A is sandwiched between the pair of actuator areas 33A in the XA axis direction.
- Each actuator region 33A is fixed to the support layer 2A via the intermediate layer 4A.
- a first comb tooth portion 33aA is provided on a side surface of each actuator region 33A on the mounting region 31A side.
- Each first comb tooth portion 33aA is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the first comb tooth portion 33aA.
- Each actuator region 33A is provided with a first electrode 35A.
- the pair of elastic support regions 34A are disposed on both sides of the mounting region 31A in the YA axis direction (a direction parallel to the YA axis orthogonal to the ZA axis and the XA axis). That is, the mounting region 31A is sandwiched between the pair of elastic support regions 34A in the YA axis direction. Both end portions 34aA of each elastic support region 34A are fixed to the support layer 2A via the intermediate layer 4A.
- Each elastic support region 34A has an elastic deformation portion 34bA (a portion between both end portions 34aA) having a structure in which a plurality of leaf springs are connected.
- each elastic support region 34A is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the elastic deformation portion 34bA.
- a second electrode 36A is provided at each of both end portions 34aA.
- each elastic support area 34A is connected to the mounting area 31A.
- the mounting region 31A is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the mounting region 31A. That is, the mounting area 31A is supported by the pair of elastic support areas 34A.
- a second comb tooth portion 31aA is provided on a side surface of each mounting region 31A on the side of each actuator region 33A.
- Each second comb tooth portion 31aA is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below it.
- the comb teeth of the first comb tooth portion 33aA are located between the comb teeth of the second comb tooth portion 31aA.
- the pair of elastic support regions 34A sandwich the mounting region 31A from both sides with respect to the direction AA parallel to the XA axis so that when the mounting region 31A moves along the direction AA, the mounting region 31A returns to the initial position.
- An elastic force is applied to the mounting region 31A. Accordingly, when a voltage is applied between the first electrode 35A and the second electrode 36A and an electrostatic attractive force acts between the first comb tooth portion 33aA and the second comb tooth portion 31aA facing each other, the electrostatic attractive force
- the mounting region 31A is moved along the direction AA to a position where the elastic force of the pair of elastic support regions 34A is balanced.
- the drive region 32A functions as an electrostatic actuator.
- the optical module 1A further includes a movable mirror 5A, a fixed mirror 6A, a beam splitter 7A, a light incident part 8A, and a light emitting part 9A.
- the movable mirror 5A, the fixed mirror 6A, and the beam splitter 7A are arranged on the device layer 3A so as to constitute an interference optical system 10A that is a Michelson interference optical system.
- the movable mirror 5A is mounted on the mounting region 31A of the device layer 3A on one side of the beam splitter 7A in the XA axis direction.
- the mirror surface 51aA of the mirror portion 51A included in the movable mirror 5A is located on the opposite side of the support layer 2A with respect to the device layer 3A.
- the mirror surface 51aA is, for example, a surface perpendicular to the XA axis direction (that is, a surface perpendicular to the direction AA) and faces the beam splitter 7A side.
- the fixed mirror 6A is mounted on the mounting region 37A of the device layer 3A on one side of the beam splitter 7A in the YA axis direction.
- the mirror surface 61aA of the mirror portion 61A of the fixed mirror 6A is located on the opposite side of the support layer 2A with respect to the device layer 3A.
- the mirror surface 61aA is, for example, a surface perpendicular to the YA axis direction and faces the beam splitter 7A side.
- the light incident portion 8A is mounted on the device layer 3A on the other side of the beam splitter 7A in the YA axis direction.
- the light incident part 8A is configured by, for example, an optical fiber and a collimating lens.
- the light incident part 8A is arranged so that measurement light is incident on the interference optical system 10A from the outside.
- the light emitting portion 9A is mounted on the device layer 3A on the other side of the beam splitter 7A in the XA axis direction.
- the light emitting unit 9A is configured by, for example, an optical fiber and a collimating lens.
- the light emitting portion 9A is arranged to emit measurement light (interference light) from the interference optical system 10A to the outside.
- the beam splitter 7A is a cube type beam splitter having an optical functional surface 7aA.
- the optical functional surface 7aA is located on the side opposite to the support layer 2A with respect to the device layer 3A.
- the beam splitter 7A is positioned by bringing one corner on the bottom side of the beam splitter 7A into contact with one corner of the rectangular opening 3aA formed in the device layer 3A.
- the beam splitter 7A is mounted on the support layer 2A by being fixed to the support layer 2A by adhesion or the like in a positioned state.
- the optical module 1A configured as described above, when the measurement light L0A is incident on the interference optical system 10A from the outside via the light incident portion 8A, a part of the measurement light L0A is transmitted to the optical functional surface 7aA of the beam splitter 7A.
- the reflected light travels toward the movable mirror 5A, and the remaining portion of the measurement light L0A passes through the optical function surface 7aA of the beam splitter 7A and travels toward the fixed mirror 6A.
- a part of the measurement light L0A is reflected by the mirror surface 51aA of the movable mirror 5A, travels on the same optical path toward the beam splitter 7A, and passes through the optical functional surface 7aA of the beam splitter 7A.
- the remaining part of the measurement light L0A is reflected by the mirror surface 61aA of the fixed mirror 6A, travels on the same optical path toward the beam splitter 7A, and is reflected by the optical function surface 7aA of the beam splitter 7A.
- a part of the measurement light L0A transmitted through the optical functional surface 7aA of the beam splitter 7A and the remaining part of the measurement light L0A reflected by the optical functional surface 7aA of the beam splitter 7A become the measurement light L1A that is interference light, and the measurement light L1A is emitted to the outside from the interference optical system 10A via the light emitting portion 9A.
- the movable mirror 5A can be reciprocated at high speed along the direction AA, so that a small and highly accurate FTIR can be provided.
- the movable mirror (optical element) 5A includes a mirror part (optical part) 51A having a mirror surface (optical surface) 51aA, an annular elastic part 52A, and a mirror. 53A of connection part (1st connection part) which mutually connects 51A and elastic part 52A, a pair of support part 56A, and a pair of connection part (2nd connection part) which mutually connect 56 A of support parts, and elastic part 52A ) 57A.
- the mirror part 51A is formed in a disc shape.
- the mirror surface 51aA is a circular plate surface of the mirror portion 51A.
- the movable mirror 5A is mounted on the base BA in a state where the mirror surface 51aA intersects (for example, is orthogonal to) the main surface BsA.
- the elastic part 52A is formed in an annular shape so as to surround the mirror part 51A while being separated from the mirror part 51A when viewed from the direction intersecting the mirror surface 51aA (second direction, XA axis direction).
- the elastic portion 52A is provided around the mirror portion 51A and forms an annular region CAA.
- the connecting portion 53A connects the mirror portion 51A and the elastic portion 52A to each other at the center of the mirror portion 51A in the direction intersecting the main surface BsA (third direction, ZA axis direction).
- a single connecting portion 53A is provided.
- the elastic portion 52A is formed in an annular plate shape by a semicircular leaf spring 52aA and a semicircular leaf spring 52bA continuous to the leaf spring 52aA.
- the leaf spring 52aA is a portion disposed on the main surface BsA side (a leg portion 54A side described later) with respect to the center line CLA passing through the center of the mirror portion 51A in the ZA axis direction.
- the center line CLA is an imaginary straight line extending along a direction (first direction, YA axis direction) along the mirror surface 51aA and the main surface BsA.
- the leaf spring 52bA is a portion disposed on the opposite side of the main surface BsA from the center line CLA (on the opposite side to a leg portion 54A described later).
- the spring constant of the leaf spring 52aA and the spring constant of the leaf spring 52bA are equal to each other. That is, the elastic part 52A has a symmetrical shape with respect to the center line CLA, and the spring constant of the elastic part 52A is equal to each other on both sides of the center line CLA.
- the support portion 56A has a bar shape with a rectangular cross section, and is provided so as to sandwich the mirror portion 51A and the elastic portion 52A in the YA axis direction.
- the support portion 56A is coupled to the elastic portion 52A by a coupling portion 57A at a position corresponding to the coupling portion 53A along the YA axis direction. Therefore, for example, at the position corresponding to the connecting portion 57A, by applying force to the support portion 56A so as to sandwich the support portion 56A from both sides in the YA axis direction, the elastic portion 52A is elastically deformed so as to be compressed in the YA axis direction. be able to.
- the mutual distance between the support portions 56A along the YA axis direction is variable according to the elastic deformation of the elastic portion 52A. Further, the elastic force of the elastic portion 52A can be applied to the support portion 56A.
- the pair of connecting portions 57A and the connecting portion 53A are arranged in a line on the center line CLA.
- the support portion 56A includes a leg portion 54A. As a whole, the leg portion 54A extends from the connecting portion 57A over the mirror surface 51aA to one side (here, the main surface BsA side) of the mirror surface 51aA along the ZA axis direction.
- the leg portion 54A includes a locking portion 55A.
- the locking portion 55A is a portion on the distal end side of the leg portion 54A.
- the locking portion 55A is bent in a V shape as a whole.
- the locking portion 55A includes an inclined surface 55aA and an inclined surface 55bA.
- the inclined surface 55aA and the inclined surface 55bA are opposite surfaces (outer surfaces) of the surfaces of the pair of locking portions 55A that face each other.
- the inclined surfaces 55aA are inclined so as to approach each other in the direction away from the connecting portion 57A (the ZA axis negative direction) between the pair of locking portions 55A.
- the inclined surfaces 55bA are inclined so as to be separated from each other in the negative direction of the ZA axis.
- the absolute value of the inclination angle ⁇ A of the inclined surface 55aA with respect to the ZA axis is less than 90 °.
- the absolute value of the inclination angle ⁇ A of the inclined surface 55bA is less than 90 °.
- the absolute value of the inclination angle ⁇ A and the absolute value of the inclination angle ⁇ A are equal to each other.
- an opening 31bA is formed in the mounting region 31A.
- the opening 31bA extends in the ZA axis direction and penetrates the device layer 3A. Accordingly, the opening 31bA communicates with (is led to) the main surface BsA and the surface of the device layer 3A opposite to the main surface BsA.
- the opening 31bA has a columnar shape with a trapezoidal shape when viewed from the ZA axis direction (see FIG. 4). Details of the opening 31bA will be described later.
- the support portion 56A is inserted into the opening 31bA in a state where the elastic force of the elastic portion 52A is applied.
- the support portion 56A that is, the movable mirror 5A
- a part of the locking portion 55A in the support portion 56A is located in the opening 31bA.
- the locking portion 55A is in contact with a pair of edges (the edge on the main surface BsA side and the edge on the opposite side of the main surface BsA) of the opening 31bA in the ZA axial direction.
- the inclined surface 55aA is in contact with the edge of the opening 31bA on the main surface BsA side, and the inclined surface 55bA is in contact with the edge of the opening 31bA on the opposite side of the main surface BsA. Accordingly, the locking portion 55A is locked to the mounting area 31A so as to sandwich the mounting area 31A in the ZA axis direction. As a result, the movable mirror 5A is prevented from coming off the base BA in the ZA axis direction.
- an opening 41A is formed in the intermediate layer 4A.
- the openings 41A are opened on both sides of the intermediate layer 4A in the ZA axis direction.
- An opening 21A is formed in the support layer 2A.
- the openings 21A are opened on both sides of the support layer 2A in the ZA axial direction.
- a continuous space S1A is constituted by a region in the opening 41A of the intermediate layer 4A and a region in the opening 21A of the support layer 2A. That is, the space S1A includes a region in the opening 41A of the intermediate layer 4A and a region in the opening 21A of the support layer 2A.
- the space S1A is formed between the support layer 2A and the device layer 3A, and corresponds to at least the mounting region 31A and the drive region 32A.
- the region in the opening 41A of the intermediate layer 4A and the region in the opening 21A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction.
- the region in the opening 41A of the intermediate layer 4A is a portion that should be separated from the support layer 2A in the mounting region 31A and the drive region 32A (that is, a portion that should be in a floating state with respect to the support layer 2A.
- a gap for separating the entire mounting region 31A, the elastic deformation portion 34bA, the first comb tooth portion 33aA, and the second comb tooth portion 31aA) of each elastic support region 34A from the support layer 2A is formed.
- each locking portion 55A of the movable mirror 5A is located in the space S1A. Specifically, a part of each locking portion 55A is located in a region in the opening 21A of the support layer 2A via a region in the opening 41A of the intermediate layer 4A. A part of each locking portion 55A protrudes from the surface on the intermediate layer 4A side in the device layer 3A into the space S1A, for example, by about 100 ⁇ m. As described above, the region in the opening 41A of the intermediate layer 4A and the region in the opening 21A of the support layer 2A include the range in which the mounting region 31A moves when viewed from the ZA axis direction. Is reciprocated along the direction AA, a part of each locking portion 55A of the movable mirror 5A located in the space S1A does not come into contact with the intermediate layer 4A and the support layer 2A.
- the inner surface of the opening 31bA includes a pair of inclined surfaces SLA and a reference surface SRA.
- the inclined surface SLA includes one end SLaA and the other end SLbA.
- One end SLaA and the other end SLbA are both ends of the inclined surface SLA when viewed from the ZA axis direction.
- the pair of inclined surfaces SLA are inclined (for example, with respect to the XA axis) such that the distance from one end SLaA toward the other end SLbA increases.
- the reference surface SRA extends along a reference line BLA that connects the other end SLbA of one inclined surface SLA and the other end SLbA of the other inclined surface SLA when viewed from the ZA axis direction.
- the reference surface SRA simply connects the other ends SLbA to each other.
- the shape of the opening 31bA when viewed from the ZA axis direction is a trapezoid. Accordingly, here, the inclined surface SLA corresponds to a trapezoidal leg, and the reference surface SRA corresponds to a lower base of the trapezoid.
- the opening 31bA is a single space.
- the minimum value of the dimension of the opening 31bA in the YA axis direction (that is, the interval between the one ends SLaA of the inclined surface SLA) is a pair of latches when the elastic portion 52A is elastically deformed to be compressed along the YA axis direction.
- the value is such that the portion 55A can be disposed in the opening 31bA in a lump.
- the maximum value of the dimension of the opening 31bA in the YA-axis direction (that is, the interval between the other ends SLbA of the inclined surface SLA) is the elasticity of the elastic part 52A when the pair of locking parts 55A is disposed in the opening 31bA. Only a part of the deformation can be released (that is, the elastic portion 52A does not reach the natural length).
- the locking portion 55A presses the inner surface of the opening 31bA by the elastic force of the elastic portion 52A, and the reaction force from the inner surface of the opening 31bA is generated by the locking portion 55A ( The support portion 56A) is applied. Accordingly, the movable mirror 5A is supported by the mounting region 31A by the reaction force of the elastic force applied to the support portion 56A from the inner surface of the opening 31bA in a state where the mirror surface 51aA intersects (for example, orthogonally) the main surface BsA. .
- the locking portion 55A is brought into contact with the inclined surface SLA of the opening 31bA. For this reason, the locking portion 55A slides on the inclined surface SLA toward the reference surface SRA by a component in the XA axis direction of the reaction force from the inclined surface SLA, and pushes against the reference surface SRA while contacting the inclined surface SLA. Hit. As a result, the locking portion 55A is inscribed in a corner defined by the inclined surface SLA and the reference surface SRA, and is positioned in both the XA axis direction and the YA axis direction (self-aligned by elastic force).
- the cross-sectional shape of the locking portion 55A is a quadrangle, when viewed from the ZA axis direction, the inclined surface SLA contacts the locking portion 55A at a point, and the reference surface SRA is fixed to the locking portion 55A. Touch with a line. That is, here, the inner surface of the opening 31bA contacts the pair of locking portions 55A at two points and two lines as seen from the ZA axis direction.
- the locking portion 55A is locked at the position, and the movable mirror 5A is positioned in the ZA axis direction (self-aligned by the elastic force). That is, in the movable mirror 5A, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52A.
- the movable mirror 5A as described above is integrally formed by, for example, MEMS technology (patterning and etching). Accordingly, the thickness of the movable mirror 5A (the dimension in the direction intersecting the mirror surface 51aA) is constant in each part, and is, for example, about 320 ⁇ m.
- the diameter of the mirror surface 51aA is, for example, about 1 mm.
- the distance between the surface (inner surface) of the elastic part 52A on the mirror part 51A side and the surface (outer surface) of the mirror part 51A on the elastic part 52A side is, for example, about 200 ⁇ m.
- the thickness of the elastic portion 52A is, for example, about 10 ⁇ m to 20 ⁇ m.
- the fixed mirror 6A and its peripheral structure are the same as the movable mirror 5A and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 5 and 6, the fixed mirror (optical element) 6A includes a mirror part (optical part) 61A having a mirror surface (optical surface) 61aA, an annular elastic part 62A, and a mirror part 61A. And the elastic portion 62A, a connecting portion (first connecting portion) 63A, a pair of supporting portions 66A, and a pair of connecting portions (second connecting portions) 67A that connect the supporting portions 66A and the elastic portion 62A to each other. And have.
- the mirror part 61A is formed in a disc shape.
- the mirror surface 61aA is a circular plate surface of the mirror part 61A.
- the fixed mirror 6A is mounted on the base BA in a state where the mirror surface 61aA intersects (for example, is orthogonal to) the main surface BsA of the base BA.
- the elastic portion 62A is formed in an annular shape so as to surround the mirror portion 61A while being separated from the mirror portion 61A when viewed from the direction intersecting the mirror surface 61aA (second direction, YA axis direction). Therefore, the elastic part 62A is provided around the mirror part 61A and forms an annular region CAA.
- the connecting portion 63A connects the mirror portion 61A and the elastic portion 62A to each other at the center of the mirror portion 61A in the direction intersecting the main surface BsA (third direction, ZA axis direction).
- a single connecting portion 63A is provided.
- the elastic portion 62A is formed in an annular plate shape by a semicircular leaf spring 62aA and a semicircular leaf spring 62bA continuous to the leaf spring 62aA.
- the leaf spring 62aA is a portion disposed on the main surface BsA side (a leg portion 64A side described later) with respect to the center line CLA passing through the center of the mirror portion 61A in the ZA axis direction.
- the center line CLA is an imaginary straight line extending along a direction (first direction, XA axis direction) along the mirror surface 61aA and the main surface BsA.
- the leaf spring 62bA is a portion disposed on the opposite side of the main surface BsA from the center line CLA (on the opposite side to the leg portion 64A described later).
- the spring constant of the leaf spring 62aA and the spring constant of the leaf spring 62bA are equal to each other. That is, the elastic part 62A has a symmetrical shape with respect to the center line CLA, and the spring constant of the elastic part 62A is equal to each other on both sides of the center line CLA.
- the support portion 66A is a rod having a rectangular cross section, and is provided so as to sandwich the mirror portion 61A and the elastic portion 62A in the XA axis direction.
- the support portion 66A is coupled to the elastic portion 62A by a coupling portion 67A at a position corresponding to the coupling portion 63A along the YA axis direction. Therefore, for example, at the position corresponding to the connecting portion 67A, by applying force to the support portion 66A so as to sandwich the support portion 66A from both sides in the XA axis direction, the elastic portion 62A is elastically deformed so as to be compressed in the XA axis direction. be able to.
- the distance between the support portions 66A along the XA axis direction is variable according to the elastic deformation of the elastic portion 62A. Further, the elastic force of the elastic portion 62A can be applied to the support portion 66A.
- the pair of connecting portions 67A and the connecting portion 63A are arranged in a line on the center line CLA.
- the support portion 66A includes a leg portion 64A.
- the leg portion 64A as a whole extends from the connecting portion 67A to the one side (here, the main surface BsA side) of the mirror surface 61aA across the mirror surface 61aA along the ZA axis direction.
- the leg portion 64A includes a locking portion 65A.
- the locking portion 65A is a tip side portion of the leg portion 64A.
- the locking portion 65A is bent as a whole.
- the locking portion 65A includes an inclined surface 65aA and an inclined surface 65bA.
- the inclined surface 65aA and the inclined surface 65bA are surfaces opposite to the surfaces facing each other in the pair of locking portions 65A (outer surfaces).
- the inclined surfaces 65aA are inclined so as to approach each other in the direction away from the connecting portion 67A (the ZA axis negative direction) between the pair of locking portions 65A.
- the inclined surfaces 65bA are inclined so as to be separated from each other in the ZA axis negative direction.
- the inclination angles of the inclined surfaces 65aA and 65bA with respect to the ZA axis are the same as those of the inclined surfaces 55aA and 55bA in the movable mirror 5A.
- an opening 37aA is formed in the mounting region 37A.
- the opening 37aA penetrates the device layer 3A in the ZA axis direction. Accordingly, the opening 37aA communicates with (is led to) the main surface BsA and the surface of the device layer 3A opposite to the main surface BsA.
- the opening 37aA like the opening 31bA in the mounting region 31A, has a columnar shape with a trapezoidal shape when viewed from the ZA axis direction.
- the support portion 66A is inserted into the opening 37aA in a state where the elastic force of the elastic portion 62A is applied.
- the support portion 66A (that is, the fixed mirror 6A) penetrates the mounting region 37A through the opening 37aA.
- a part of the locking portion 65A of the support portion 66A is located in the opening 37aA.
- the locking portion 65A is in contact with a pair of edges (the edge on the main surface BsA side and the edge on the opposite side of the main surface BsA) of the opening 37aA in the ZA axial direction.
- the inclined surface 65aA is in contact with the edge of the opening 37aA on the main surface BsA side, and the inclined surface 65bA is in contact with the edge of the opening 37aA on the opposite side of the main surface BsA. Accordingly, the locking portion 65A is locked to the mounting region 37A so as to sandwich the mounting region 37A in the ZA axis direction. As a result, the fixed mirror 6A is prevented from coming off the base BA in the ZA axis direction.
- an opening 42A is formed in the intermediate layer 4A.
- the opening 42A includes the opening 37aA of the mounting region 37A when viewed from the ZA axis direction, and opens on both sides of the intermediate layer 4A in the ZA axis direction.
- An opening 22A is formed in the support layer 2A.
- the opening 22A includes the opening 37aA of the mounting region 37A when viewed from the ZA axis direction, and is open on both sides of the support layer 2A in the ZA axis direction.
- a continuous space S2A is constituted by the region in the opening 42A of the intermediate layer 4A and the region in the opening 22A of the support layer 2A. That is, the space S2A includes a region in the opening 42A of the intermediate layer 4A and a region in the opening 22A of the support layer 2A.
- each locking portion 65A of the fixed mirror 6A is located in the space S2A. Specifically, a part of each locking portion 65A is located in a region in the opening 22A of the support layer 2A via a region in the opening 42A of the intermediate layer 4A. A part of each locking portion 65A protrudes from the surface of the device layer 3A on the intermediate layer 4A side into the space S2A, for example, by about 100 ⁇ m.
- the inner surface of the opening 37aA is configured similarly to the inner surface of the opening 31bA in the mounting region 31A. Therefore, when the pair of locking portions 65A is disposed in the opening 37aA, the locking portion 65A presses the inner surface of the opening 37aA by the elastic force of the elastic portion 62A, and the reaction force from the inner surface of the opening 37aA is increased by the locking portion 65A ( It will be applied to the support 66A). Accordingly, the fixed mirror 6A is supported by the base BA by the reaction force of the elastic force applied to the support portion 66A from the inner surface of the opening 37aA in a state where the mirror surface 61aA intersects (for example, orthogonally) the main surface BsA. In particular, also in the fixed mirror 6A, as in the case of the movable mirror 5A, three-dimensional self-alignment using the inner surface of the opening 37aA and the elastic force is performed.
- the fixed mirror 6A as described above is also integrally formed by, for example, the MEMS technique (patterning and etching) similarly to the movable mirror 5A.
- the dimensions of each part of the fixed mirror 6A are the same as the above-described dimensions of each part of the movable mirror 5A, for example.
- the movable mirror 5A includes an elastic portion 52A and a pair of support portions 56A whose distances can be changed according to the elastic deformation of the elastic portion 52A.
- an opening 31bA communicating with the main surface BsA is formed in the mounting area 31A of the base BA on which the movable mirror 5A is mounted.
- the support portion 56A by inserting the support portion 56A into the opening 31bA in a state where the elastic portion 52A is elastically deformed so that the distance between the support portions 56A is reduced, and releasing a part of the elastic deformation of the elastic portion 52A, The distance between the support portions 56A in the opening 31bA increases, and the support portion 56A can be brought into contact with the inner surface of the opening 31bA.
- the movable mirror 5A is supported by the reaction force applied to the support portion 56A from the inner surface of the opening 31bA.
- the movable mirror 5A is mounted on the base BA using the elastic force. Therefore, the optical element can be reliably mounted without considering the adverse effect of the adhesive, that is, regardless of the characteristics of the mounting region 31A.
- the operation and effect are described by taking the movable mirror 5A as an example, but the same operation and effect are also achieved with respect to the fixed mirror 6A.
- the elastic portion 52A is provided so as to form the annular area CAA. For this reason, for example, the strength of the elastic portion 52A is improved as compared with a case where the elastic portion 52A is in a cantilever state (in this case, a closed region such as an annular shape is not formed by the elastic portion 52A). Therefore, for example, breakage of the elastic portion 52A can be suppressed when the movable mirror 5A is manufactured or handled.
- the base BA has a support layer 2A and a device layer 3A provided on the support layer 2A and including the main surface BsA and the mounting region 31A. Further, the opening 31bA passes through the device layer 3A in a direction intersecting the main surface BsA (ZA axis direction).
- the support portion 56A includes a locking portion 55A that is bent so as to come into contact with a pair of edges of the opening 31bA in the ZA axial direction. Therefore, the locking portion 55A is locked to the mounting region 31A at a position where the locking portion 55A contacts the pair of edges of the opening 31bA. Therefore, the movable mirror 5A can be reliably mounted on the base BA, and the movable mirror 5A can be positioned in the direction intersecting the main surface BsA of the base BA.
- the inner surface of the opening 31bA has a pair of inclined surfaces SLA inclined so that the distance from one end SLaA to the other end SLbA increases as viewed from the ZA axis direction, and one inclined surface.
- a reference surface SRA extending along a reference line BLA connecting the other end SLbA of the SLA and the other end SLbA of the other inclined surface SLA. Therefore, when the support portion 56A is inserted into the opening 31bA and a part of the elastic deformation of the elastic portion 52A is released, the support portion 56A is slid on the inclined surface SLA by the elastic force and abuts against the reference surface SRA. Can do. Therefore, the movable mirror 5A can be positioned in the direction along the main surface BsA.
- the elastic portion 52A is formed in an annular shape so as to surround the mirror portion 51A when viewed from the XA axis direction, thereby forming an annular region CAA. For this reason, since an edge part does not arise in 52 A of elastic parts, the intensity
- the support portion 56A extends from the connecting portion 57A connected to the elastic portion 52A and the mirror surface 51aA along the ZA axis direction beyond the mirror surface 51aA, and is inserted into the opening 31bA.
- Leg portion 54A the movable mirror 5A can be mounted on the base BA in a state where the entire mirror surface 51aA protrudes on the main surface BsA of the base BA.
- the elastic part 52A has a symmetrical shape with respect to the center line CLA of the mirror surface 51aA, and the spring constant of the elastic part 52A is equal to each other on both sides of the center line CLA. For this reason, for example, when the elastic portion 52A is elastically deformed along the YA axis direction, the posture of the movable mirror 5A is less likely to be unstable (for example, twist is not easily generated). Further, when a part of the elastic deformation of the elastic portion 52A is released, the reaction force is suppressed from being input non-uniformly to the pair of support portions 56A from the inner surface of the opening 31bA.
- the movable mirror 5A passes through the mounting region 31A of the device layer 3A, and a part of each locking portion 55A of the movable mirror 5A is formed between the support layer 2A and the device layer 3A. Is located in the space S1A.
- the size and the like of each locking portion 55A is not limited, so that the movable mirror 5A can be stably and firmly fixed to the mounting region 31A of the device layer 3A. Therefore, according to the optical module 1A, reliable mounting of the movable mirror 5A to the device layer 3A is realized.
- each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the opening 41A of the intermediate layer 4A.
- the support layer 2A is the first silicon layer of the SOI substrate
- the device layer 3A is the second silicon layer of the SOI substrate
- the intermediate layer 4A is the insulating layer of the SOI substrate.
- the mirror surface 51aA of the movable mirror 5A is located on the opposite side of the support layer 2A with respect to the device layer 3A. Thereby, the configuration of the optical module 1A can be simplified.
- the movable mirror 5A, the fixed mirror 6A, and the beam splitter 7A are arranged so as to constitute the interference optical system 10A. Thereby, FTIR with improved sensitivity can be obtained.
- the light incident part 8A is arranged so that the measurement light is incident on the interference optical system 10A from the outside, and the light emitting part 9A emits the measurement light from the interference optical system 10A to the outside.
- FTIR provided with 8 A of light-incidence parts and 9 A of light-projection parts can be obtained.
- one aspect of the present disclosure is not limited to the above embodiment.
- the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed.
- space S1A is formed between the support layer 2A and the device layer 3A, and as long as it corresponds to at least the mounting region 31A and the drive region 32A, as shown in FIG. 7 and FIG. Aspects can be employed.
- a recess 23A that opens to the device layer 3A side is formed in the support layer 2A instead of the opening 21A, and the region in the opening 41A of the intermediate layer 4A and the recess 23A in the support layer 2A
- a space S1A is configured by the regions.
- the region in the recess 23A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction.
- a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A through a region in the opening 41A of the intermediate layer 4A. Also with this configuration, a configuration for reliably mounting the movable mirror 5A on the device layer 3A can be suitably realized.
- the region in the opening 21A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction.
- the region in the recess 23A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction.
- the region in the opening 41A of the intermediate layer 4A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and is separated from the support layer 2A in the mounting region 31A and the drive region 32A.
- a gap for separating the power portion from the support layer 2A is formed.
- the mounting region 31A reciprocates along the direction AA, a part of each locking portion 55A of the movable mirror 5A located in the space S1A comes into contact with the intermediate layer 4A and the support layer 2A. There is no.
- the support layer 2A and the device layer 3A may be joined to each other without interposing the intermediate layer 4A.
- the support layer 2A is formed of, for example, silicon, borosilicate glass, quartz glass, or ceramic
- the device layer 3A is formed of, for example, silicon.
- the support layer 2A and the device layer 3A are bonded to each other by, for example, room temperature bonding by surface activation, low temperature plasma bonding, direct bonding by high temperature treatment, insulating resin bonding, metal bonding, or glass frit bonding.
- the space S1A is formed between the support layer 2A and the device layer 3A, and if it corresponds to at least the mounting region 31A and the drive region 32A, FIG. 9, FIG. 10, FIG. As shown in FIG. 12, various aspects can be employed. In any of the configurations, a configuration for surely mounting the movable mirror 5A on the device layer 3A can be suitably realized.
- a space S1A is formed by the region in the opening 21A of the support layer 2A.
- the region in the opening 21A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
- a gap for separating the portion from the support layer 2A is formed.
- a part of each locking portion 55A of the movable mirror 5A is located in a region within the opening 21A of the support layer 2A.
- the space S1A is configured by the region in the recess 23A of the support layer 2A.
- the region in the recess 23A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
- a gap for separating the portion from the support layer 2A is formed.
- a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A.
- a recess (first recess) 38A that opens to the support layer 2A side is formed in the device layer 3A, and the region in the recess 38A of the device layer 3A and the support layer 2A A space S1A is configured by the region in the opening 21A.
- the region in the recess 38A of the device layer 3A and the region in the opening 21A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction.
- the region in the recess 38A of the device layer 3A forms a gap for separating the portion to be separated from the support layer 2A in the mounting region 31A and the drive region 32A from the support layer 2A.
- a part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the recess 38A of the device layer 3A.
- the recess 38A is formed in the device layer 3A, and the space is defined by the region in the recess 38A of the device layer 3A and the region in the recess (second recess) 23A of the support layer 2A.
- S1A is configured.
- the region in the recess 38A of the device layer 3A and the region in the recess 23A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction.
- the region in the recess 38A of the device layer 3A forms a gap for separating the portion to be separated from the support layer 2A in the mounting region 31A and the drive region 32A from the support layer 2A.
- a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A via a region in the recess 38A of the device layer 3A.
- the recess 38A is formed in the device layer 3A, and the space S1A is configured by the region in the recess 38A of the device layer 3A and the region in the opening 21A of the support layer 2A.
- the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
- a gap for separating the portion from the support layer 2A is formed.
- the region in the opening 21A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction.
- a part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the recess 38A of the device layer 3A.
- the recess 38A is formed in the device layer 3A, and the space is defined by the region in the recess 38A of the device layer 3A and the region in the recess (second recess) 23A of the support layer 2A.
- S1A is configured.
- the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
- a gap for separating the portion from the support layer 2A is formed.
- the region in the recess 23A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction.
- a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A via a region in the recess 38A of the device layer 3A.
- a recess 38A is formed in the device layer 3A, and a space S1A is formed by a region in the recess 38A of the device layer 3A.
- the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
- a gap for separating the portion from the support layer 2A is formed.
- a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 38A of the device layer 3A.
- each leg 54A and a part of each locking part 55A of the movable mirror 5A are located in the space S1A, and the movable mirror 5A
- the mirror surface 51aA may be located on the opposite side of the support layer 2A from the device layer 3A.
- the mirror surface 61aA of the fixed mirror 6A and the optical functional surface 7aA of the beam splitter 7A are also located on the opposite side of the support layer 2A from the device layer 3A.
- the device layer 3A is integrally provided with a spacer 39A protruding to the side opposite to the support layer 2A.
- the spacer 39A protrudes from a portion of each locking portion 55A of the movable mirror 5A that protrudes from the device layer 3A to the side opposite to the support layer 2A, and protects the portion.
- the opening 31bA communicates with the main surface BsA through a space defined by the spacer 39A.
- the opening 31bA communicates with another main surface that is a surface opposite to the main surface BsA via the space S1A.
- the movable mirror 5A has been described with respect to the case where the entire mirror surface 51aA protrudes from the main surface BsA or the surface of the base BA opposite to the main surface BsA.
- the aspect of the movable mirror 5A is not limited to this case.
- a part of the mirror surface 51aA of the movable mirror 5A may be disposed inside the base BA. This example will be described below.
- the movable mirror 5AA is movable in that it has a support portion 56AA in place of the support portion 56A, compared to the movable mirror 5A shown in FIG. This is different from the mirror 5A.
- the relationship between the support portion 56AA and the elastic portion 52A is the same as that of the support portion 56A.
- the support portion 56AA is different from the support portion 56A in that the leg portion 54A is not included.
- the entire support portion 56AA is the locking portion 55A. Accordingly, the support portion 56AA has a symmetrical shape with respect to the center line CLA of the mirror surface 51aA in the ZA axis direction, and does not have a portion that extends relatively long on one side of the center line CLA. For this reason, here, the support portion 56AA supports the movable mirror 5AA in a state where the entire movable mirror 5AA penetrates the mounting region 31A through the opening 31bA.
- the mirror surface 51aA intersects the mounting area 31A.
- a part (center portion) of the locking portion 55A overlaps the mirror portion 51A along the YA axis direction.
- the movable mirror 5AA is locked to the device layer 3A at the locking portion 55A and supported by the mounting region 31A. Therefore, compared with the case where the movable mirror 5A is supported by the support portion 56A (leg portion 54A) that extends relatively long on one side of the center line CLA, the deviation between the support point and the center of gravity is small, and stable mounting is achieved. It is feasible.
- the support portion 56AA supports the movable mirror 5AA so that the center line CLA of the mirror surface 51aA in the ZA axis direction coincides with the center in the thickness direction of the device layer 3A. Therefore, a part (here, half or more) of the mirror surface 51aA is located on the support layer 2A side with respect to the main surface BsA.
- the opening 31bA is extended and opened so as to reach the end of the mounting region 31A on the side facing the mirror surface 51aA. Therefore, even in this case, by controlling the optical path of the measurement light L0A toward the mirror surface 51aA, the measurement light L0A can be prevented from interfering with the mounting region 31A, and the entire mirror surface 51aA can be used effectively. .
- the support portion 56AA (here, the entire movable mirror 5AA) is formed symmetrically with respect to the center line CLA of the mirror surface 51aA in the ZA axis direction.
- the movable mirror 5AA is supported by the support portion 56AA at a position corresponding to the center line CLA. Therefore, the support point and the center of gravity are substantially matched in the ZA axis direction, and more stable mounting can be realized.
- the fixed mirror 6A is mounted on the device layer 3A.
- the fixed mirror 6A may be mounted on the support layer 2A or the intermediate layer 4A.
- the beam splitter 7A is mounted on the support layer 2A.
- the beam splitter 7A may be mounted on the device layer 3A or the intermediate layer 4A.
- the beam splitter 7A is not limited to a cube type beam splitter, and may be a plate type beam splitter.
- the optical module 1A may include a light emitting element that generates measurement light to be incident on the light incident portion 8A in addition to the light incident portion 8A.
- the optical module 1A may include a light emitting element that generates measurement light incident on the interference optical system 10A, instead of the light incident portion 8A.
- the optical module 1A may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9A in addition to the light emitting unit 9A.
- the optical module 1A may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10A, instead of the light emitting unit 9A.
- first through electrode electrically connected to each actuator region 33A and the second through electrode electrically connected to each of both end portions 34aA of each elastic support region 34A are the support layer 2A and the intermediate layer 4A. (Only the support layer 2A when the intermediate layer 4A does not exist) is provided, and a voltage may be applied between the first through electrode and the second through electrode.
- the actuator that moves the mounting region 31A is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like.
- the optical module 1A is not limited to the one constituting the FTIR, and may constitute another optical system.
- the movable mirror 5A may include a plurality of connecting portions (first connecting portions) 53A that connect the mirror portion 51A and the elastic portion 52A to each other.
- the movable mirror 5A has a pair of connecting portions 53A.
- the pair of connecting portions 53A are arranged at positions different from the pair of connecting portions 57A.
- the pair of connecting portions 53A are distributed and arranged on both sides of the center line CLA.
- the pair of connecting portions 53A are disposed at positions symmetrical with respect to the center line CLA. Therefore, here, the entire elastic portion 52A and the movable mirror 5A are configured symmetrically with respect to a straight line connecting the pair of connecting portions 53A.
- the movable mirror 5A has three connecting portions 53A.
- the three connecting portions 53A are arranged at positions different from the pair of connecting portions 57A.
- one connecting portion 53A and two connecting portions 53A among the three connecting portions 53A are distributed and arranged on both sides of the center line CLA.
- the movable mirror 5A has four connecting portions 53A.
- the four connecting portions are arranged at positions different from the pair of connecting portions 57A.
- the four connecting portions 53A are distributed and arranged on both sides of the center line CLA.
- the movable mirror 5A can have a plurality of elastic portions 52A.
- the movable mirror 5A has a pair of elastic portions 52A.
- the pair of elastic portions 52A are each formed in an annular plate shape and are arranged concentrically with each other.
- one elastic part 52A is provided so as to surround the mirror part 51A
- another elastic part 52A is provided so as to surround the one elastic part 52A and the mirror part 51A.
- Each of the elastic portions 52A forms an annular area CAA.
- the elastic portion 52A is not limited to an annular plate shape, and may be an elliptical ring plate shape as shown in FIG. That is, the elastic portion 52A may be elliptical when viewed from the direction intersecting the mirror surface 51aA (XA axis direction).
- the pair of connecting portions 53A are arranged at positions corresponding to the major axis of the ellipse of the elastic portion 52A.
- the pair of connecting portions 57A is disposed at a position corresponding to the short axis of the ellipse of the elastic portion 52A.
- the movable mirror 5A includes a pair of rectangular plate-like elastic portions 52A and a pair of plate-like connection portions 58A that connect the elastic portions 52A to each other.
- the elastic parts 52A are arranged on both sides of the mirror part 51A so as to sandwich the mirror part 51A in the YA axis direction.
- the elastic portion 52A extends along the ZA axis direction substantially parallel to the support portion 56A.
- 58 A of connection parts are provided in the both ends of the longitudinal direction of 52 A of elastic parts, and connect 52 A of elastic parts.
- a rectangular annular region CAA is formed by the elastic portion 52A and the connecting portion 58A.
- a single connecting portion 53A connects the elastic portion 52A and the mirror portion 51A to each other via the connecting portion 58A.
- the movable mirror 5A has a pair of elastic portions 52A.
- the elastic portions 52A are arranged on both sides of the mirror portion 51A so as to sandwich the mirror portion 51A in the ZA axis direction.
- the elastic portions 52A are each formed in a corrugated plate shape. That is, when viewed from the XA axis direction, the elastic portion 52A has a wave shape (here, a rectangular wave shape).
- Each of the elastic parts 52A is connected to the support part 56A at both ends thereof.
- a substantially rectangular annular area CAA is formed by the elastic portion 52A and the support portion 56A.
- the connecting portion 53A connects the support portion 56A and the mirror portion 51A to each other.
- the mirror part 51A may be connected to the support part 56A.
- the movable mirror 5A has a pair of elastic portions 52A.
- the elastic portions 52A are arranged on both sides of the mirror portion 51A so as to sandwich the mirror portion 51A in the ZA axis direction.
- Each of the elastic portions 52A is formed in a V-shaped plate shape. That is, the elastic part 52A is V-shaped when viewed from the XA axis direction.
- Each of the elastic parts 52A is connected to the support part 56A at both ends thereof. Thereby, here, a substantially rectangular annular area CAA is formed by the elastic portion 52A and the support portion 56A.
- the connecting portion 53A connects the support portion 56A and the mirror portion 51A to each other.
- the elastic portion 52A includes a pair of semicircular portions arranged in opposite directions as viewed from the XA axis direction, and a pair of linear portions connecting the semicircular portions. And may be formed in an annular shape.
- the elastic portion 52A includes a pair of semicircular portions arranged in the same direction as viewed from the XA axis direction and a pair of linear portions connecting the semicircular portions. And may be formed in an annular shape.
- the elastic portion 52A may be formed in a shape in which a part of the ring is notched as viewed from the XA axis direction.
- the elastic portion 52A has a shape in which a pair of notches 52cA are provided on both sides of the center line CLA with respect to the ring. That is, here, the elastic portion 52A is composed of a pair of arcuate portions 52dA that are separated from each other in the cutout portion 52cA.
- the connecting portion 53A connects the elastic portion 52A and the mirror portion 51A to each other at each end of the arc-shaped portion 52dA.
- one circular area CAA is formed by one arcuate part 52dA, a pair of connecting parts 53A connected to the one arcuate part 52dA, and the mirror part 51A.
- the elastic portion 52A is configured as a single arc-shaped portion 52dA by a single notch 52cA.
- the connecting portion 53A connects the elastic portion 52A and the mirror portion 51A to each other at the end of the elastic portion 52A.
- the annular portion CAA is formed by the elastic portion 52A, the pair of connecting portions 53A, and the mirror portion 51A.
- the connecting portion 53A connects the support portion 56A and the mirror portion 51A via the notch portion 52cA. That is, the mirror part 51A may be directly connected to the support part 56A.
- the shape of the locking portion 55A is changed compared to the configuration shown in FIG.
- the engaging portion 55A extends from the leg portion 54A in the opposite direction to the connecting portion 57A (the ZA axis negative direction) and terminates. That is, the locking portion 55A includes the end portion 55cA.
- the locking portion 55A includes a protruding portion 55dA that protrudes toward the other locking portion 55A from a position closer to the connecting portion 57A than the end portion 55cA.
- the protrusion 55dA includes an inclined surface 55bA.
- the end 55cA and the inclined surface 55bA face each other along the ZA axis direction.
- the end 55cA is in contact with the peripheral edge of the opening 31bA on the main surface BsA.
- the inclined surface 55bA is in contact with the edge of the opening 31bA opposite to the main surface BsA. Accordingly, the locking portion 55A is locked to the mounting area 31A so as to sandwich the mounting area 31A in the ZA axis direction. That is, also here, the support portion 56A includes a locking portion 55A that is bent so as to abut against a pair of edges of the opening 31bA in a direction intersecting the main surface BsA. As a result, the movable mirror 5A is prevented from coming off the base BA in the ZA axis direction.
- the locking portion 55A has an inclined surface 55aA and is bent and terminated so as to be folded back toward the connecting portion 57A on the tip side of the inclined surface 55aA. That is, the locking portion 55A includes the end portion 55cA.
- the end 55cA and the inclined surface 55aA face each other along the ZA axis direction.
- the end 55cA is in contact with the peripheral edge of the opening 31bA on the surface opposite to the main surface BsA.
- the inclined surface 55aA is in contact with the edge of the opening 31bA on the main surface BsA side. Accordingly, the locking portion 55A is locked to the mounting area 31A so as to sandwich the mounting area 31A in the ZA axis direction.
- the support portion 56A includes a locking portion 55A that is bent so as to abut against a pair of edges of the opening 31bA in a direction intersecting the main surface BsA. As a result, the movable mirror 5A is prevented from coming off the base BA in the ZA axis direction.
- the movable mirror 5AA shown in FIG. 23A further includes a pair of handle portions 59A.
- the elastic portion 52A is composed of a semicircular leaf spring 52aA and a leaf spring 52bA.
- the leaf springs 52aA and 52bA are arranged in opposite directions and are connected to each other by a support portion 56AA (locking portion 55A).
- a support portion 56AA locking portion 55A.
- an approximately elliptical annular region CAA is formed by the elastic portion 52A and the support portion 56AA.
- the handle portion 59A is disposed inside the annular area CAA.
- the handle portion 59A has a U shape, and both ends thereof are connected to the support portion 56AA.
- the pair of support portions 56AA and the pair of handle portions 59A are arranged in a line on the center line CLA.
- the connecting portion 53A is connected to one handle portion 59A. Therefore, the connecting portion 53A connects the support portion 56AA and the mirror portion 51A to each other via the handle portion 59A.
- a force is applied to the handle portion 59A so that the handle portions 59A approach each other while the pair of handle portions 59A are gripped, so that the elastic portion 52A is compressed along the YA axis direction. Can be elastically deformed.
- the handle portion 59A may be provided on the elastic portion 52A.
- the handle portion 59A protrudes outside the annular area CAA.
- the pair of handle portions 59A are distributed and arranged on both sides of the center line CLA.
- the pair of handle portions 59A are arranged at symmetrical positions with respect to the center line CLA.
- the elastic portion 52A is compressed along the YA axis direction. Can be elastically deformed.
- the pair of support portions 56AA and the pair of handle portions 59A are arranged in a line along the center line CLA, they protrude outside the annular region CAA.
- the handle portion 59A may be connected to the support portion 56AA.
- the shape of the opening 31bA when viewed from the ZA axis direction may be a triangle.
- the inner surface of the opening 31bA includes a pair of inclined surfaces SLA and a reference surface SRA.
- the one ends SLaA of the inclined surfaces SLA are connected to each other.
- the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the engagement portion 55A being inscribed at the corner defined by the inclined surface SLA and the reference surface SRA.
- the shape of the opening 31bA when viewed from the ZA axis direction is a hexagon.
- the inner surface of the opening 31bA includes a pair of inclined surfaces SLA and a pair of inclined surfaces SKA inclined to the opposite side of the inclined surface SLA.
- the pair of inclined surfaces SKA are inclined so that the distance from each other increases from one end SkaA to the other end SKbA.
- the other end SLbA of the inclined surface SLA and the other end SKbA of the inclined surface SKA are connected to each other to form one corner.
- the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
- one locking portion 55A contacts the inner surface of the opening 31bA at two points.
- the inclined surface SLA may be a curved surface.
- the pair of inclined surfaces SLA are inclined and curved so that the distance increases from one end SLaA to the other end SLbA.
- the inclined surface SLA is curved such that the inclination of the tangent to the inclined surface SLA with respect to the XA axis gradually increases from one end SLaA to the other end SLbA.
- the inclined surface SLA is curved so as to be convex toward the inside of the opening 31bA.
- the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by inscribed the engaging portion 55A in the corner defined by the inclined surface SLA and the reference surface SRA. is there.
- both the inclined surface SLA and the inclined surface SKA are curved surfaces that are convex toward the inside of the opening 31bA.
- the other end SLbA of the inclined surface SLA and the other end SKbA of the inclined surface SKA are connected to each other via a connection surface extending along the XA axis direction.
- the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
- each of the two portions 31pA has an inclined surface SLA and a reference surface SRA. That is, here, the reference surface SRA is also divided into two parts.
- the reference surface SRA when viewed from the ZA axis direction, the reference surface SRA as a whole is connected to the other end SLbA of the inclined surface SLA of the one portion 31pA and the other end SLbA of the inclined surface SLA of the other portion 31pA. It extends along.
- one locking portion 55A is inserted into one portion 31pA of the opening 31bA.
- the engaging portion 55A is inscribed in the corner defined by the inclined surface SLA and the reference surface SRA, so that the movable mirror 5A can be positioned in both the XA axis direction and the YA axis direction.
- each of the two portions 31pA has an inclined surface SLA and an inclined surface SKA.
- the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
- the shape of the opening 31bA when viewed from the ZA axis direction is a rhombus.
- the inner surface of the opening 31bA may be constituted by the inclined surface SLA and the inclined surface SKA. That is, here, in addition to the inclined surface SLA and the inclined surface SKA being connected to each other, the one ends SLaA of the inclined surfaces SLA are connected to each other, and the one ends SkaA of the inclined surfaces SKA are connected to each other.
- the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
- the other end SLbA of the inclined surface SLA and the other end SKbA of the inclined surface SKA are connected to each other via a connection surface extending along the XA axis direction.
- the one ends SLaA of the inclined surfaces SLA are connected to each other, and the one ends SkaA of the inclined surfaces SKA are connected to each other.
- the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
- the elastic portion 52A is elastically deformed so as to compress the elastic portion 52A along the direction in which the support portion 56A faces, thereby reducing the interval between the support portions 56A, and then the locking portion 55A into the opening 31bA.
- the case of inserting was illustrated.
- the support portion 56A includes a leg portion 54A and a locking portion 55A, but the bending direction of the locking portion 55A is different from the example of FIG. 55 A of latching parts are bent so that it may become convex on the opposite side of a mutual opposing direction between a pair of support parts 56A.
- the locking portion 55A includes an inclined surface 55aA and an inclined surface 55bA as surfaces (inner surfaces) facing each other between the matching support portions 56A.
- the inclined surfaces 55aA are inclined so as to be separated from each other in a direction away from the connecting portion 57A (ZA axis negative direction). Further, the inclined surfaces 55bA are inclined so as to approach each other in the negative direction of the ZA axis.
- the absolute value of the inclination angle with respect to each ZA axis is the same as in the above example.
- a handle portion 59A is provided for each of the support portions 56A.
- the handle portion 59A is arranged so as to sandwich the mirror portion 51A and the elastic portion 52A in the YA axis direction.
- the handle portion 59A and the connecting portion 57A are arranged in a line on the center line CLA.
- the handle portion 59A is formed in a U-shape, and a hole 59sA is formed between the handle portion 59A and the support portion 56A. Therefore, for example, by inserting an arm into the hole 59sA, it is possible to apply a force to the handle portion 59A so as to increase the interval between the support portions 56A.
- the handle portion 59A is formed in a straight line shape. Therefore, by gripping the handle portion 59A, a force can be applied to the handle portion 59A so as to increase the interval between the support portions 56A.
- the elastic portion 52A is elastically deformed so as to be extended in the YA axis direction.
- the opening 31bA can be deformed as shown in FIG.
- the opening 31bA is divided into two triangular portions 31pA.
- the movable mirror 5A shown in FIG. 27 when a part of the elastic deformation of the elastic portion 52A is released in a state where the locking portion 55A is inserted into the opening 31bA, the locking portions 55A are displaced so as to approach each other.
- an inclined surface SLA is formed as a surface on the center side of the mounting region 31A in the YA axis direction in each portion 31pA of the opening 31bA.
- the inclined surface SLA includes one end SLaA and the other end SLbA.
- One end SLaA and the other end SLbA are both ends of the inclined surface SLA when viewed from the ZA axis direction.
- the pair of inclined surfaces SLA are inclined so as to reduce the distance from one end SLaA toward the other end SLbA (for example, with respect to the XA axis).
- the reference surface SRA of each portion 31pA extends along a reference line BLA that connects the other end SLbA of one inclined surface SLA and the other end SLbA of the other inclined surface SLA when viewed from the ZA axis direction. Yes.
- the locking portions 55A slide on the inclined surface SLA toward the reference surface SRA by the component in the XA axis direction of the reaction force from the inclined surface SLA.
- the locking portion 55A is inscribed in a corner defined by the inclined surface SLA and the reference surface SRA, and is positioned in both the XA axis direction and the YA axis direction (self-aligned by elastic force).
- the opening 31bA is divided into two rhombus portions 31pA.
- an inclined surface SLA and an inclined surface SKA are formed as a pair of surfaces on the center side of the mounting region 31A in the YA axis direction.
- the inclined surface SLA and the inclined surface SLA are inclined to the opposite side.
- the inclined surfaces SKA are inclined so that the distance from one end SkaA to the other end SKbA decreases.
- the other end SLbA of the inclined surface SLA and the other end SKbA of the inclined surface SKA are connected to each other to form one corner.
- the engaging portion 55A is inscribed in the corner portion defined by the inclined surface SLA and the inclined surface SKA, thereby being positioned in both the XA axis direction and the YA axis direction (self-alignment is performed by elastic force). )
- the modifications of the movable mirrors 5A and 5AA and the opening 31bA are not limited to those described above.
- the movable mirrors 5A and 5AA and the opening 31bA may be another modified example configured by exchanging arbitrary portions of the above-described modified examples. The same applies to the fixed mirror 6A and the opening 37aA.
- the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BA.
- the optical surface is a mirror surface.
- the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter.
- An optical module comprising an optical element and a base on which the optical element is mounted,
- the optical element includes an optical part having an optical surface, an elastic part provided around the optical part so as to form an annular region, and the optical part sandwiched in a first direction along the optical surface.
- a pair of support portions provided with elastic force according to the elastic deformation of the elastic portion and having a mutual distance variable.
- the base has a main surface and a mounting region provided with an opening communicating with the main surface;
- the support portion is inserted into the opening in a state where the elastic force of the elastic portion is applied,
- the optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the support portion in a state where the optical surface intersects the main surface.
- Optical module. [Appendix 2]
- the base includes a support layer, and a device layer provided on the support layer and including the main surface and the mounting region, The opening passes through the device layer in a direction intersecting the main surface,
- the support portion includes a locking portion that is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
- the optical module according to Appendix 1.
- the inner surface of the opening has a pair of inclined surfaces inclined so that the distance from one end to the other end increases as viewed from the direction intersecting the main surface, and the other end and the other of the one inclined surface A reference surface extending along a reference line connecting the other end of the inclined surface,
- the optical element includes a first connecting part that connects the optical part and the elastic part to each other.
- the elastic part is formed in an annular shape so as to surround the optical part when viewed from the second direction intersecting the optical surface, thereby forming the annular region.
- the support part extends beyond the optical surface from the second connection part along a third direction that extends along the optical surface and intersects the first direction, and a second connection part connected to the elastic part. And a leg inserted into the opening,
- the optical module according to any one of appendices 1 to 5.
- a fixed mirror mounted on the support layer, the device layer, or an intermediate layer;
- a beam splitter mounted on the support layer, the device layer, or the intermediate layer, and
- the optical element is a movable mirror including the optical surface which is a mirror surface;
- the device layer has a drive region connected to the mounting region,
- the movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system,
- the base has the intermediate layer provided between the support layer and the device layer,
- the support layer is a first silicon layer of an SOI substrate;
- the device layer is a second silicon layer of the SOI substrate;
- the intermediate layer is an insulating layer of the SOI substrate.
- a light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
- a light emitting portion arranged to emit the measurement light to the outside from the interference optical system; Comprising The optical module according to appendix 7 or 8.
- An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, JP 2012-524295 A).
- MEMS Micro Electro Mechanical Systems
- Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
- US Patent Application Publication No. 2002/0186477 describes an optical system manufacturing process.
- a template substrate and an optical bench are prepared.
- An alignment slot is formed on the template substrate by etching.
- Bond pads are arranged on the main surface of the optical bench.
- the template substrate is attached to the main surface of the optical bench so that the alignment slot is disposed on the bond pad.
- the optical element is inserted into the alignment slot while being positioned using the side wall of the alignment slot, and is positioned on the bond pad. Then, the optical element is bonded to the optical bench by reflowing the bond pad.
- the optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 ⁇ m at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
- Another object of the present disclosure is to provide an optical module that can reliably mount an optical element regardless of the characteristics of the mounting region, and a mounting method thereof.
- An optical module includes an optical element and a base on which the optical element is mounted.
- the optical element opposes an optical part having an optical surface and an elastic part that can be elastically deformed.
- a pair of support portions that are provided with an elastic force according to elastic deformation of the elastic portion and whose distance is variable, and the elastic portion is configured so that the distance between the pair of support portions changes.
- a handle used for elastic deformation the base has a main surface and a mounting region provided with an opening communicating with the main surface, and the pair of support portions are elastic forces of the elastic portions.
- the optical element is supported in the mounting area by the reaction force of the elastic force applied from the inner surface of the opening, and the handle is optically mounted in the state where the optical element is mounted in the mounting area.
- Part and a pair of support parts on the main surface Located on one side in a direction difference.
- the optical element has an elastic part and a pair of support parts whose distances can be changed according to the elastic deformation of the elastic part.
- an opening communicating with the main surface is formed in the mounting region of the base on which the optical element is mounted. Therefore, as an example, the support portion is inserted into the opening in a state in which the elastic portion is elastically deformed so that the distance between the support portions is reduced, and a part of the elastic deformation of the elastic portion is released, so that the support portion is opened in the opening. The distance between each other increases, and the support portion can be brought into contact with the inner surface of the opening. Thereby, an optical element is supported by the reaction force provided to a support part from the inner surface of opening.
- the optical element is mounted on the base using the elastic force. Therefore, it is possible to reduce the amount of adhesive used or eliminate the need for an adhesive, and to reliably perform the optical element without considering the influence of the adhesive or the like, that is, regardless of the characteristics of the mounting area. Can be implemented.
- the optical element has a handle used for elastically deforming the elastic portion so that the distance between the pair of support portions changes.
- the handle is located on one side in the direction intersecting the main surface with respect to the optical part and the pair of support parts in a state where the optical element is mounted in the mounting region. For this reason, in a state where the elastic portion is elastically deformed using the handle and the distance between the pair of support portions is changed, the optical portion is unlikely to hinder the work when the pair of support portions are inserted into the openings. Therefore, the optical element can be easily mounted on the base. Therefore, according to this optical module, the mounting process of the optical module can be facilitated.
- the handle may be used to reduce the distance between the pair of support parts, or may be used to increase the distance between the pair of support parts. May be. According to this, the structure for easy mounting of an optical element is suitably realizable.
- the handle may have a pair of displacement portions that change a distance between the pair of support portions by displacing in a direction away from each other, or a direction in which the handles approach each other.
- You may have a pair of displacement part which changes the distance between a pair of support parts by displacing to. According to this, the optical element can be more easily mounted on the base.
- the pair of displacement portions is formed on the principal surface when viewed from a direction perpendicular to both the direction intersecting the principal surface and the direction in which the pair of displacement portions face each other. You may incline and arrange
- the bonder head that has entered between the pair of displacement parts from one side in the direction intersecting the main surface is pressed against the pair of displacement parts, and on the pair of displacement parts toward the other side in the direction.
- the pair of displacement portions can be displaced in directions away from each other. Therefore, the mounting process of the optical module can be further facilitated.
- the handle may be positioned on one side in the direction intersecting the main surface with respect to the elastic portion in a state where the optical element is mounted in the mounting region. According to this, in a state in which the elastic portion is elastically deformed using the handle and the distance between the pair of support portions is changed, the elastic portion obstructs the work when the pair of support portions is inserted into the opening. hard. Therefore, the optical element can be more easily mounted on the base.
- the base includes a support layer and a device layer provided on the support layer and including a main surface and a mounting region, and the opening intersects the main surface.
- the device layer may penetrate the device layer in a direction
- the support portion may include a locking portion that is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
- the locking portion is locked to the mounting region at a position where the locking portion contacts the pair of edges of the opening. For this reason, the optical element can be reliably mounted on the base, and the optical element can be positioned in the direction intersecting the main surface of the base.
- An optical module includes a fixed mirror, a support layer, and a device mounted on at least one of a support layer, a device layer, and an intermediate layer provided between the support layer and the device layer. And a beam splitter mounted on at least one of the intermediate layers, the optical element is a movable mirror including an optical surface that is a mirror surface, and the device layer is a drive region connected to the mounting region.
- the movable mirror, the fixed mirror, and the beam splitter may be arranged to constitute an interference optical system. In this case, an FTIR with improved sensitivity can be obtained.
- the mounting area where the movable mirror is mounted has a characteristic of being connected to the driving area and driven. Therefore, the above configuration is more effective because it is easily affected by the adverse effects of the adhesive.
- the base includes an intermediate layer provided between the support layer and the device layer, and the support layer is the first silicon layer of the SOI substrate.
- the layer may be a second silicon layer of the SOI substrate, and the intermediate layer may be an insulating layer of the SOI substrate.
- a configuration for reliably mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
- An optical module is disposed so that measurement light is incident on the interference optical system from the outside and the measurement light is emitted from the interference optical system to the outside.
- a light emitting portion In this case, an FTIR including a light incident part and a light emission part can be obtained.
- the optical module mounting method includes a first step of inserting the pair of support portions into the opening in a state where the distance between the pair of support portions is changed by applying a force to the handle. And a second step of fixing the optical element to the base by releasing the force applied to the handle to bring the pair of support portions into contact with the inner surface of the opening.
- the optical element is mounted based on the elastic force of the elastic part.
- the pair of support portions is inserted into the opening.
- the handle is provided so as to be positioned on one side in the direction intersecting the main surface with respect to the optical portion and the pair of support portions in a state where the optical element is mounted in the mounting region, The department is unlikely to interfere with work. Therefore, in a state where the distance between the pair of support portions is changed, the pair of support portions can be easily inserted into the opening. Therefore, according to this optical module mounting method, the optical module mounting process is facilitated.
- an optical module that can reliably mount an optical element regardless of characteristics of a mounting region.
- the optical module 1B includes a base BB.
- the base BB includes a main surface BsB.
- the base BB includes a support layer 2B, a device layer 3B provided on the support layer 2B, and an intermediate layer 4B provided between the support layer 2B and the device layer 3B.
- the main surface BsB is a surface of the device layer 3B opposite to the support layer 2B.
- the support layer 2B, the device layer 3B, and the intermediate layer 4B are configured by an SOI substrate.
- the support layer 2B is the first silicon layer of the SOI substrate.
- the device layer 3B is a second silicon layer of the SOI substrate.
- the intermediate layer 4B is an insulating layer of the SOI substrate.
- the support layer 2B, the device layer 3B, and the intermediate layer 4B have a rectangular shape with, for example, a side of about 10 mm when viewed from the ZB axis direction (a direction parallel to the ZB axis) that is the stacking direction thereof.
- Each thickness of the support layer 2B and the device layer 3B is, for example, about several hundred ⁇ m.
- the thickness of the intermediate layer 4B is, for example, about several ⁇ m.
- the device layer 3B and the intermediate layer 4B are shown with one corner of the device layer 3B and one corner of the intermediate layer 4B cut out.
- the device layer 3B has a mounting area 31B and a drive area 32B connected to the mounting area 31B.
- the drive region 32B includes a pair of actuator regions 33B and a pair of elastic support regions 34B.
- the mounting region 31B and the drive region 32B (that is, the mounting region 31B and the pair of actuator regions 33B and the pair of elastic support regions 34B) are integrally formed on a part of the device layer 3B by MEMS technology (patterning and etching). Yes.
- the pair of actuator regions 33B are disposed on both sides of the mounting region 31B in the XB axis direction (a direction parallel to the XB axis perpendicular to the ZB axis). That is, the mounting region 31B is sandwiched between the pair of actuator regions 33B in the XB axis direction.
- Each actuator region 33B is fixed to the support layer 2B via the intermediate layer 4B.
- a first comb tooth portion 33aB is provided on the side surface of each actuator region 33B on the mounting region 31B side.
- Each first comb tooth portion 33aB is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the first comb tooth portion 33aB.
- a first electrode 35B is provided in each actuator region 33B.
- the pair of elastic support regions 34B are disposed on both sides of the mounting region 31B in the YB axis direction (a direction parallel to the YB axis perpendicular to the ZB axis and the XB axis). That is, the mounting region 31B is sandwiched between the pair of elastic support regions 34B in the YB axis direction. Both end portions 34aB of each elastic support region 34B are fixed to the support layer 2B via the intermediate layer 4B.
- Each elastic support region 34B has an elastic deformation portion 34bB (a portion between both end portions 34aB) having a structure in which a plurality of leaf springs are connected.
- each elastic support region 34B is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below it.
- a second electrode 36B is provided at each of both end portions 34aB.
- each elastic support region 34B is connected to the mounting region 31B.
- the mounting region 31B is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the mounting region 31B. That is, the mounting area 31B is supported by the pair of elastic support areas 34B.
- a second comb tooth portion 31aB is provided on the side surface of each mounting region 31B on the side of each actuator region 33B.
- Each second comb tooth portion 31aB is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the second comb tooth portion 31aB.
- the comb teeth of the first comb tooth portion 33aB are located between the comb teeth of the second comb tooth portion 31aB.
- the pair of elastic support regions 34B sandwich the mounting region 31B from both sides when viewed from the direction AB parallel to the XB axis.
- the mounting region 31B moves along the direction AB, the mounting region 31B returns to the initial position.
- an elastic force is applied to the mounting region 31B. Therefore, when a voltage is applied between the first electrode 35B and the second electrode 36B and an electrostatic attractive force acts between the first comb tooth portion 33aB and the second comb tooth portion 31aB facing each other, the electrostatic attractive force
- the mounting region 31B is moved along the direction AB to a position where the elastic force of the pair of elastic support regions 34B is balanced.
- the drive region 32B functions as an electrostatic actuator.
- the optical module 1B further includes a movable mirror 5B, a fixed mirror 6B, a beam splitter 7B, a light incident part 8B, and a light emitting part 9B.
- the movable mirror 5B, the fixed mirror 6B, and the beam splitter 7B are arranged on the device layer 3B so as to constitute an interference optical system 10B that is a Michelson interference optical system.
- the movable mirror 5B is mounted on the mounting region 31B of the device layer 3B on one side of the beam splitter 7B in the XB axis direction.
- the mirror surface 51aB of the mirror part 51B of the movable mirror 5B is located on the opposite side of the support layer 2B with respect to the device layer 3B.
- the mirror surface 51aB is, for example, a surface perpendicular to the XB axis direction (that is, a surface perpendicular to the direction AB) and faces the beam splitter 7B side.
- the fixed mirror 6B is mounted on the mounting region 37B of the device layer 3B on one side of the beam splitter 7B in the YB axis direction.
- the mirror surface 61aB of the mirror part 61B of the fixed mirror 6B is located on the opposite side of the support layer 2B with respect to the device layer 3B.
- the mirror surface 61aB is, for example, a surface perpendicular to the YB axis direction and faces the beam splitter 7B side.
- the light incident part 8B is mounted on the device layer 3B on the other side of the beam splitter 7B in the YB axis direction.
- the light incident portion 8B is configured by, for example, an optical fiber and a collimator lens.
- the light incident portion 8B is arranged so that the measurement light is incident on the interference optical system 10B from the outside.
- the light emitting portion 9B is mounted on the device layer 3B on the other side of the beam splitter 7B in the XB axis direction.
- the light emitting portion 9B is configured by, for example, an optical fiber and a collimating lens.
- the light emitting unit 9B is arranged to emit measurement light (interference light) to the outside from the interference optical system 10B.
- the beam splitter 7B is a cube type beam splitter having an optical functional surface 7aB.
- the optical functional surface 7aB is located on the side opposite to the support layer 2B with respect to the device layer 3B.
- the beam splitter 7B is positioned by bringing one corner on the bottom side of the beam splitter 7B into contact with one corner of the rectangular opening 3aB formed in the device layer 3B.
- the beam splitter 7B is mounted on the support layer 2B by being fixed to the support layer 2B by bonding or the like in a positioned state.
- the optical module 1B configured as described above, when the measurement light L0B is incident on the interference optical system 10B from the outside via the light incident portion 8B, a part of the measurement light L0B is transmitted to the optical function surface 7aB of the beam splitter 7B.
- the reflected light travels toward the movable mirror 5B, and the remaining portion of the measurement light L0B passes through the optical function surface 7aB of the beam splitter 7B and travels toward the fixed mirror 6B.
- Part of the measurement light L0B is reflected by the mirror surface 51aB of the movable mirror 5B, travels on the same optical path toward the beam splitter 7B, and passes through the optical function surface 7aB of the beam splitter 7B.
- the remaining part of the measurement light L0B is reflected by the mirror surface 61aB of the fixed mirror 6B, travels on the same optical path toward the beam splitter 7B, and is reflected by the optical function surface 7aB of the beam splitter 7B.
- a part of the measurement light L0B that has passed through the optical functional surface 7aB of the beam splitter 7B and the remaining part of the measurement light L0B reflected by the optical functional surface 7aB of the beam splitter 7B become the measurement light L1B that is interference light.
- L1B is emitted to the outside from the interference optical system 10B via the light emitting portion 9B.
- the movable mirror 5B can be reciprocated at high speed along the direction AB, so that a small and highly accurate FTIR can be provided.
- the movable mirror (optical element) 5B includes a mirror part (optical part) 51B having a mirror surface (optical surface) 51aB, an elastic part 52B that can be elastically deformed, It has a connecting portion 53B that connects the mirror portion 51B and the elastic portion 52B to each other, a pair of support portions 54B, and a handle 56B.
- the movable mirror 5B has a base BB mounting region 31B in a state where the mirror surface 51aB is located on a plane intersecting (for example, orthogonal to) the main surface BsB and the mirror surface 51aB is located on the main surface BsB side of the base BB. Has been implemented.
- the mirror part 51B is formed in a plate shape (for example, a disk shape) having the mirror surface 51aB as a main surface.
- a flat portion 51bB having a flat surface on the ZB-axis positive direction side is provided at one edge (ZB-axis positive direction side) of the edge in the direction (ZB-axis direction) intersecting the main surface BsB.
- the elastic part 52B is formed so as to surround the mirror part 51B while being separated from the mirror part 51B when viewed from the direction intersecting the mirror surface 51aB (XB axis direction).
- the elastic part 52B has an annular shape in which a part from the annular shape to the ZB-axis positive direction side is missing.
- the connecting portion 53B extends along the center line CLB and connects the edge portion on the ZB-axis negative direction side in the mirror portion 51B and the elastic portion 52B to each other.
- the center line CLB is a virtual straight line that passes through the center of the mirror surface 51aB when viewed from the XB axis direction and extends in the ZB axis direction.
- the pair of support portions 54B each have a rectangular cross section, and are provided to face each other in the direction along the mirror surface 51aB and the main surface BsB (YB axis direction).
- the pair of support portions 54B is connected to the elastic portion 52B on each of one side and the other side in the YB axis direction with respect to the center line CLB.
- the pair of support portions 54B is located on the ZB-axis negative direction side with respect to the mirror portion 51B.
- Each support portion 54B includes a locking portion 55B.
- Each of the pair of locking portions 55B is formed to be bent in, for example, a V shape on the inner side (side approaching each other) when viewed from the XB axis direction.
- the entire support portion 54B is a locking portion 55B.
- Each locking portion 55B includes an inclined surface 55aB and an inclined surface 55bB.
- the inclined surface 55aB and the inclined surface 55bB are surfaces opposite to the surfaces facing each other in the pair of locking portions 55B (outer surfaces).
- the inclined surfaces 55aB are inclined so as to approach each other as they go in the negative direction of the ZB axis.
- the inclined surfaces 55bB are inclined so as to be separated from each other in the negative direction of the ZB axis.
- the handle 56B has a pair of displacement portions 56aB connected to both ends of the elastic portion 52B.
- the pair of displacement portions 56aB each have a bar shape with a rectangular cross section, and are provided so as to face each other in the YB axis direction.
- Each displacement part 56aB is extended toward the ZB-axis positive direction from the edge part of the elastic part 52B.
- the pair of displacement portions 56aB are in the ZB axis positive direction when viewed from the XB axis direction (the ZB axis direction intersecting the main surface BsB and the direction perpendicular to the YB axis direction where the pair of displacement portions 56aB face each other). It is inclined and arranged so that the distance between each other increases as it goes.
- the pair of displacement portions 56aB are located on the ZB axis positive direction side with respect to the mirror portion 51B, the elastic portion 52B, and the pair of support portions 54B in a state where the movable mirror 5B is mounted in the mounting region 31B.
- the pair of support portions 54B are connected to the elastic portion 52B, and the elastic portion 52B is connected to the pair of displacement portions 56aB. That is, the pair of displacement portions 56aB is connected to the pair of support portions 54B via the elastic portion 52B. Therefore, for example, by applying a force to the pair of displacement portions 56aB so as to be displaced away from each other, the elastic portion 52B is elastically deformed so as to extend in the YB axis direction, and the distance between the pair of support portions 54B is increased. Can be reduced. That is, the distance between the pair of support portions 54B along the YB axis direction is variable according to the elastic deformation of the elastic portion 52B. Further, the elastic force of the elastic portion 52B can be applied to the pair of support portions 54B.
- an opening 31bB is formed in the mounting region 31B of the base BB.
- the opening 31bB extends in the ZB axis direction and penetrates the device layer 3B. Therefore, the opening 31bB communicates with (is led to) the main surface BsB and the surface of the device layer 3B opposite to the main surface BsB.
- the opening 31bB has a columnar shape that is trapezoidal when viewed from the ZB-axis direction (see FIG. 32). Details of the opening 31bB will be described later.
- each support portion 54B (that is, the movable mirror 5B) penetrates the mounting region 31B through the opening 31bB. More specifically, a part of the locking portion 55B among the support portions 54B is located in the opening 31bB. In this state, each locking portion 55B is in contact with a pair of edges (the edge on the main surface BsB side and the edge on the opposite side of the main surface BsB) of the opening 31bB in the ZB axis direction.
- the inclined surface 55aB is in contact with the edge of the opening 31bB on the main surface BsB side, and the inclined surface 55bB is in contact with the edge of the opening 31bB on the opposite side of the main surface BsB.
- locking part 55B is latched by the mounting area
- the movable mirror 5B is prevented from coming off the base BB in the ZB axis direction.
- an opening 41B is formed in the intermediate layer 4B.
- the openings 41B are opened on both sides of the intermediate layer 4B in the ZB axis direction.
- An opening 21B is formed in the support layer 2B.
- the openings 21B are opened on both sides of the support layer 2B in the ZB axis direction.
- a continuous space S1B is configured by the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B. That is, the space S1B includes a region in the opening 41B of the intermediate layer 4B and a region in the opening 21B of the support layer 2B.
- the space S1B is formed between the support layer 2B and the device layer 3B, and corresponds to at least the mounting region 31B and the drive region 32B.
- the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B include a range in which the mounting region 31B moves when viewed from the ZB axis direction.
- the region in the opening 41B of the intermediate layer 4B is a portion that should be separated from the support layer 2B in the mounting region 31B and the drive region 32B (that is, a portion that should be in a floating state with respect to the support layer 2B.
- a gap for separating the entire mounting region 31B, the elastic deformation portion 34bB, the first comb tooth portion 33aB, and the second comb tooth portion 31aB) of each elastic support region 34B from the support layer 2B is formed.
- each locking portion 55B of the movable mirror 5B is located in the space S1B. Specifically, a part of each locking portion 55B is located in a region in the opening 21B of the support layer 2B via a region in the opening 41B of the intermediate layer 4B. A part of each locking portion 55B protrudes from the surface on the intermediate layer 4B side in the device layer 3B into the space S1B, for example, about 100 ⁇ m. As described above, the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B include the range in which the mounting region 31B moves when viewed from the ZB axis direction. Is reciprocated along the direction AB, a part of the locking portions 55B of the movable mirror 5B located in the space S1B does not come into contact with the intermediate layer 4B and the support layer 2B.
- the inner surface of the opening 31bB includes a pair of inclined surfaces SLB and a reference surface SRB.
- the inclined surface SLB includes one end SLaB and the other end SLbB.
- One end SLaB and the other end SLbB are both ends of the inclined surface SLB when viewed from the ZB-axis direction.
- the pair of inclined surfaces SLB is inclined (for example, with respect to the XB axis) so that the distance from each other increases from one end SLaB to the other end SLbB.
- the reference surface SRB extends along a reference line BLB that connects the other end SLbB of one inclined surface SLB and the other end SLbB of the other inclined surface SLB when viewed from the ZB axis direction.
- the reference surface SRB connects the other ends SLbB to each other.
- the shape of the opening 31bB when viewed from the ZB-axis direction is a trapezoid. Accordingly, here, the inclined surface SLB corresponds to a trapezoidal leg, and the reference surface SRB corresponds to a lower base of the trapezoid.
- the opening 31bB is a single space.
- the minimum value of the dimension of the opening 31bB in the YB axis direction (that is, the interval between the one ends SLaB of the inclined surface SLB) is a pair of latches when the elastic portion 52B is elastically deformed so as to compress along the YB axis direction. This is a value at which the portion 55B can be placed in the opening 31bB collectively.
- the maximum value of the dimension of the opening 31bB in the YB-axis direction (that is, the distance between the other ends SLbB of the inclined surface SLB) is the elasticity of the elastic part 52B when the pair of locking parts 55B are disposed in the opening 31bB. Only a part of the deformation can be released (that is, the elastic portion 52B does not reach the natural length).
- each locking portion 55B presses the inner surface of the opening 31bB by the elastic force of the elastic portion 52B, and the reaction force from the inner surface of the opening 31bB is generated by each locking portion. 55B (support portion 54B). Accordingly, the movable mirror 5B is supported on the mounting region 31B by the reaction force of the elastic force applied to each support portion 54B from the inner surface of the opening 31bB.
- each locking portion 55B comes into contact with the inclined surface SLB of the opening 31bB. Therefore, each locking portion 55B slides on the inclined surface SLB toward the reference surface SRB by the component in the XB axis direction of the reaction force from the inclined surface SLB, and contacts the inclined surface SLB while contacting the inclined surface SLB. It is hit. Accordingly, each locking portion 55B is inscribed in a corner defined by the inclined surface SLB and the reference surface SRB, and is positioned in both the XB axis direction and the YB axis direction (self-aligned by elastic force). .
- each locking portion 55B when viewed from the XB-axis direction, an elastic reaction force is applied to each locking portion 55B from the inner surface of the opening 31bB even at the edge of the opening 31bB.
- a reaction force may be applied to one of the inclined surface 55aB and the inclined surface 55bB of each locking portion 55B.
- one of the inclined surface 55aB and the inclined surface 55bB slides on the edge by the component along the inclined surface 55aB or the inclined surface 55bB of the reaction force, and both the inclined surface 55aB and the inclined surface 55bB are edges.
- locking part 55B is latched in the said position, and the movable mirror 5B is positioned about a ZB axial direction (it is self-aligned with an elastic force). That is, in the movable mirror 5B, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52B.
- the movable mirror 5B as described above is integrally formed by, for example, MEMS technology (patterning and etching). Accordingly, the thickness of the movable mirror 5B (the dimension in the direction intersecting the mirror surface 51aB) is constant in each part, and is, for example, about 320 ⁇ m.
- the diameter of the mirror surface 51aB is, for example, about 1 mm.
- the distance between the surface (inner surface) of the elastic part 52B on the mirror part 51B side and the surface (outer surface) of the mirror part 51B on the elastic part 52B side is, for example, about 200 ⁇ m.
- the thickness of the elastic portion 52B is, for example, about 10 ⁇ m to 20 ⁇ m.
- the fixed mirror 6B and its peripheral structure are the same as the movable mirror 5B and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 33 and 34, the fixed mirror (optical element) 6B includes a mirror part (optical part) 61B having a mirror surface (optical surface) 61aB, an elastically deformable elastic part 62B, and a mirror. It has a connecting part 63B that connects the part 61B and the elastic part 62B to each other, a pair of support parts 64B, and a handle 66B.
- the fixed mirror 6B is mounted on the base BB in a state where the mirror surface 61aB is located on a plane intersecting (for example, orthogonal to) the main surface BsB and the mirror surface 61aB is located on the main surface BsB side of the base BB. Yes.
- the mirror part 61B is formed in a plate shape (for example, a disk shape) having the mirror surface 61aB as a main surface.
- a flat part 61bB having a flat surface on the ZB-axis positive direction side is provided on one edge (ZB-axis positive direction side) of the edge in the direction (ZB-axis direction) intersecting the main surface BsB.
- the elastic part 62B is formed so as to surround the mirror part 61B while being separated from the mirror part 61B when viewed from the direction intersecting the mirror surface 61aB (YB axis direction).
- the elastic portion 62B has an annular shape in which a part from the annular shape to the ZB-axis positive direction side is missing.
- the connecting part 63B connects the edge part on the ZB-axis negative direction side of the mirror part 61B and the elastic part 62B to each other on the center line CLB.
- the center line CLB is a virtual straight line that passes through the center of the mirror surface 61aB when viewed from the YB axis direction and extends in the ZB axis direction.
- the pair of support portions 64B each have a bar shape with a rectangular cross section, and are provided to face each other in the direction along the mirror surface 61aB and the main surface BsB (XB axis direction).
- the pair of support parts 64B are connected to the elastic part 62B on each of one side and the other side in the XB axis direction with respect to the center line CLB.
- the pair of support portions 64B are located on the ZB-axis negative direction side with respect to the mirror portion 61B.
- Each support portion 64B includes a locking portion 65B.
- Each of the pair of locking portions 65B is formed to be bent in, for example, a V shape on the inner side (side approaching each other) when viewed from the YB axis direction.
- Each locking portion 65B includes an inclined surface 65aB and an inclined surface 65bB.
- the inclined surface 65aB and the inclined surface 65bB are surfaces opposite to the surfaces facing each other in the pair of locking portions 65B (outer surfaces).
- the inclined surfaces 65aB are inclined so as to approach each other as they go in the negative direction of the ZB axis.
- the inclined surfaces 65bB are inclined so as to be separated from each other in the negative direction of the ZB axis.
- the handle 66B has a pair of displacement portions 66aB connected to both ends of the elastic portion 62B.
- the pair of displacement portions 66aB each have a bar shape with a rectangular cross section, and are provided so as to face each other in the XB axis direction.
- Each displacement part 66aB is extended toward the ZB-axis positive direction from the edge part of the elastic part 62B.
- the pair of displacement portions 66aB is in the positive direction of the ZB axis when viewed from the YB axis direction (the ZB axis direction intersecting the main surface BsB and the direction perpendicular to the XB axis direction where the pair of displacement portions 66aB face each other).
- the pair of displacement portions 66aB are positioned on the ZB axis positive direction side with respect to the mirror portion 61B, the elastic portion 62B, and the pair of support portions 64B in a state where the movable mirror 5B is mounted in the mounting region 37B.
- the pair of support portions 64B are connected to the elastic portion 62B, and the elastic portion 62B is connected to the pair of displacement portions 66aB.
- the pair of displacement portions 66aB is connected to the pair of support portions 64B via the elastic portion 62B. Therefore, for example, by applying a force to the pair of displacement portions 66aB so as to be displaced away from each other, the elastic portion 62B is elastically deformed so as to be compressed in the XB axial direction, and the distance between the pair of support portions 64B is increased. Can be reduced. That is, the distance between the pair of support portions 64B along the XB axis direction is variable according to the elastic deformation of the elastic portion 62B. Further, the elastic force of the elastic part 62B can be applied to the support part 64B.
- an opening 37aB is formed in the mounting region 37B.
- the opening 37aB penetrates the device layer 3B in the ZB axis direction. Accordingly, the opening 37aB communicates with (is led to) the main surface BsB and the surface of the device layer 3B opposite to the main surface BsB. Similar to the opening 31bB in the mounting region 31B, the opening 37aB has a columnar shape with a trapezoidal shape when viewed from the ZB axis direction.
- the pair of support portions 64B are inserted into the opening 37aB in a state where the elastic force of the elastic portion 62B is applied.
- the support portion 64B that is, the fixed mirror 6B
- a part of the locking portion 65B of the support portion 64B is located in the opening 37aB.
- the locking portion 65B is in contact with a pair of edges of the opening 37aB in the ZB axis direction (an edge on the main surface BsB side and an edge on the opposite side of the main surface BsB).
- the inclined surface 65aB is in contact with the edge of the opening 37aB on the main surface BsB side, and the inclined surface 65bB is in contact with the edge of the opening 37aB on the opposite side of the main surface BsB. Accordingly, the locking portion 65B is locked to the mounting region 37B so as to sandwich the mounting region 37B in the ZB axial direction. As a result, the fixed mirror 6B is prevented from coming off the base BB in the ZB axis direction.
- an opening 42B is formed in the intermediate layer 4B.
- the opening 42B includes the opening 37aB of the mounting region 37B when viewed from the ZB axis direction, and opens on both sides of the intermediate layer 4B in the ZB axis direction.
- An opening 22B is formed in the support layer 2B.
- the opening 22B includes the opening 37aB of the mounting region 37B when viewed from the ZB axis direction, and opens on both sides of the support layer 2B in the ZB axis direction.
- a continuous space S2B is constituted by a region in the opening 42B of the intermediate layer 4B and a region in the opening 22B of the support layer 2B. That is, the space S2B includes a region in the opening 42B of the intermediate layer 4B and a region in the opening 22B of the support layer 2B.
- each locking portion 65B of the fixed mirror 6B is located in the space S2B. Specifically, a part of each locking portion 65B is located in a region in the opening 22B of the support layer 2B via a region in the opening 42B of the intermediate layer 4B. A part of each locking portion 65B protrudes from the surface on the intermediate layer 4B side in the device layer 3B into the space S2B, for example, about 100 ⁇ m.
- the inner surface of the opening 37aB is configured similarly to the inner surface of the opening 31bB in the mounting region 31B. Therefore, when the pair of locking portions 65B are arranged in the opening 37aB, the locking portion 65B presses the inner surface of the opening 37aB by the elastic force of the elastic portion 62B, and the reaction force from the inner surface of the opening 37aB is increased by the locking portion 65B ( It will be given to support part 64B). Accordingly, the fixed mirror 6B is supported on the base BB by the reaction force of the elastic force applied to the support portion 64B from the inner surface of the opening 37aB. In particular, the fixed mirror 6B also performs three-dimensional self-alignment using the inner surface of the opening 37aB and the elastic force, as in the case of the movable mirror 5B.
- the fixed mirror 6B as described above is also integrally formed by, for example, the MEMS technique (patterning and etching) similarly to the movable mirror 5B.
- the dimensions of each part of the fixed mirror 6B are the same as the above-described dimensions of each part of the movable mirror 5B, for example.
- a wafer WB made of silicon is prepared, and a resist layer RB is formed on the surface of the wafer WB.
- the resist layer RB is patterned by etching and has a pattern corresponding to the plurality of movable mirrors 5B.
- the resist layer RB is removed to form a plurality of movable mirrors 5B arranged in two rows.
- the wafer WB is cut along the dancing line DLB to obtain the movable mirror 5B that is separated into individual pieces.
- the movable mirror 5B is manufactured by the above process.
- one movable mirror 5B is picked up by the pickup head PHB and conveyed to the work position of the next process.
- the pickup head PHB is configured to be capable of vacuum suction, for example, and holds the movable mirror 5B by sucking the mirror portion 51B of the movable mirror 5B placed on the placement surface MFB.
- the operation of the pickup head PHB is controlled by a control device (not shown), for example.
- the bonder head BHB is caused to enter between the pair of displacement portions 56aB from the side opposite to the mirror portion 51B and pressed against the pair of displacement portions 56aB. Slide on the pair of displacement portions 56aB toward the mirror portion 51B side. Thereby, force is applied to the pair of displacement portions 56aB, and the pair of displacement portions 56aB are displaced in directions away from each other. Thereby, the elastic portion 52B is elastically deformed so as to extend in a direction in which the pair of displacement portions 56aB face each other, and the distance between the pair of support portions 54B is reduced.
- a portion of the bonder head BHB that is inserted between the pair of displacement portions 56aB has a width wider than a distance between the pair of displacement portions 56aB before being displaced in a direction away from each other.
- the operation of the bonder head BHB is controlled by the control device, for example.
- the bonder head BHB slides on the pair of displacement portions 56aB to a position where it abuts on the flat portion 51bB provided on the mirror portion 51B.
- the bonder head BHB is configured to be capable of vacuum suction, for example, and holds the movable mirror 5B in a state where force is applied to the pair of displacement portions 56aB by sucking the flat portion 51bB. After the bonder head BHB starts attracting the flat portion 51bB, the pickup head PHB releases the holding of the movable mirror 5B.
- the pair of support portions 54B is inserted into the opening 31bB of the base BB (first step).
- the first step by moving the bonder head BHB, the movable mirror 5B is conveyed to the position of the opening 31bB, and is inserted into the opening 31bB from the main surface BsB side.
- the bonder head BHB is separated from the flat portion 51bB by performing reverse injection to the bonder head BHB.
- the bonder head BHB is moved to the side away from the main surface BsB (ZB axis positive direction side), and is extracted from between the pair of displacement portions 56aB.
- the force applied to the pair of displacement portions 56aB is released, and the pair of displacement portions 56aB are displaced toward each other.
- the movable mirror 5B includes an elastic part 52B and a pair of support parts 54B whose distances can be changed according to the elastic deformation of the elastic part 52B.
- an opening 31bB communicating with the main surface BsB is formed in the mounting region 31B of the base BB on which the movable mirror 5B is mounted.
- the support portion 54B by inserting the support portion 54B into the opening 31bB in a state where the elastic portion 52B is elastically deformed so that the distance between the support portions 54B is reduced, and releasing a part of the elastic deformation of the elastic portion 52B, In the opening 31bB, the distance between the support portions 54B is increased, and the support portion 54B can be brought into contact with the inner surface of the opening 31bB.
- the movable mirror 5B is supported by the reaction force applied to the support portion 54B from the inner surface of the opening 31bB.
- the movable mirror 5B is mounted on the base BB using elastic force. Therefore, it is possible to reduce the amount of adhesive used or eliminate the need for an adhesive, and reliably move the movable mirror without considering the influence of the adhesive or the like, that is, regardless of the characteristics of the mounting region 31B. 5B can be mounted.
- the operation and effect are described by taking the movable mirror 5B as an example, but the same operation and effect are also achieved with respect to the fixed mirror 6B.
- the movable mirror 5B has a handle 56B used for elastically deforming the elastic portion 52B so that the distance between the pair of support portions 54B changes.
- the handle 56B is positioned on the ZB axis positive direction side with respect to the mirror portion 51B and the pair of support portions 54B in a state where the movable mirror 5B is mounted in the mounting region 31B. Therefore, when the pair of support portions 54B is inserted into the opening 31bB in a state where the elastic portion 52B is elastically deformed using the handle 56B and the distance between the pair of support portions 54B is changed, the mirror portion 51B is operated It is hard to interfere. Therefore, the movable mirror 5B can be easily mounted on the base BB. Therefore, according to this optical module 1B, the mounting process of the optical module 1B can be facilitated.
- the handle 56B is used to reduce the distance between the pair of support portions 54B. Thereby, the structure for easy mounting of the movable mirror 5B is suitably realizable.
- the handle 56B has a pair of displacement portions 56aB that change the distance between the pair of support portions 54B by being displaced in directions away from each other. Thereby, the movable mirror 5B can be more easily mounted on the base BB.
- the pair of displacement portions 56aB are arranged so as to be inclined so that the distance from each other increases toward the ZB-axis positive direction side when viewed from the XB-axis direction.
- the bonder head BHB entered between the pair of displacement portions 56aB from the ZB axis positive direction side is pressed against the pair of displacement portions 56aB, and slides on the pair of displacement portions 56aB toward the ZB axis negative direction side.
- the pair of displacement portions 56aB can be displaced in directions away from each other. Therefore, the mounting process of the optical module 1B can be further facilitated.
- the handle 56B is positioned on the ZB axis positive direction side with respect to the elastic portion 52B in a state where the movable mirror 5B is mounted in the mounting region 31B. Accordingly, when the pair of support portions 54B is inserted into the opening 31bB in a state in which the elastic portion 52B is elastically deformed using the handle 56B and the distance between the pair of support portions 54B is changed, It is hard to interfere. Therefore, the movable mirror 5B can be more easily mounted on the base BB.
- the base BB includes the support layer 2B and the device layer 3B provided on the support layer 2B and including the main surface BsB and the mounting region 31B. Further, the opening 31bB penetrates the device layer 3B in the ZB axis direction. And the support part 54B contains the latching
- the movable mirror 5B, the fixed mirror 6B, and the beam splitter 7B are arranged so as to constitute the interference optical system 10B. Thereby, FTIR with improved sensitivity can be obtained.
- the support layer 2B is the first silicon layer of the SOI substrate
- the device layer 3B is the second silicon layer of the SOI substrate
- the intermediate layer 4B is the insulating layer of the SOI substrate.
- the light incident part 8B is arranged so that the measurement light is incident on the interference optical system 10B from the outside, and the light emitting part 9B emits the measurement light to the outside from the interference optical system 10B.
- the light emitting part 9B emits the measurement light to the outside from the interference optical system 10B.
- the movable mirror 5B is mounted on the base BB using the elastic force of the elastic portion 52B.
- the mirror 5B can be mounted. Further, in a state where the distance between the pair of support portions 54B is changed by applying a force to the handle 56B, the pair of support portions 54B is inserted into the opening 31bB.
- the handle 56B is provided so as to be positioned on the ZB-axis positive direction side with respect to the mirror portion 51B and the pair of support portions 54B in a state where the movable mirror 5B is mounted in the mounting region 31B, the mirror The part 51B is unlikely to obstruct work. Therefore, in a state where the distance between the pair of support portions 54B is changed, the pair of support portions 54B can be easily inserted into the opening 31bB. Therefore, according to the mounting method of the optical module 1B, the mounting process of the optical module 1B is facilitated. Furthermore, as described above, mounting by an automatic machine (pickup head PHB and bonder head BHB) is possible, and the mounting process can be automated. [Modification]
- the connecting portion 53B extends along the direction (YB axis direction) in which the pair of displacement portions 56aB face each other, and one side of the mirror portion 51B in the YB axis direction.
- the edge portion and the elastic portion 52B may be connected to each other.
- the elastic portion 52B may have an annular shape in which a part on the ZB-axis negative direction side is missing from the annular shape.
- the connecting portion 53B connects the edge portion on the ZB axis positive direction side of the mirror portion 51B and the elastic portion 52B.
- a pair of support portions 54B are connected to both ends of the elastic portion 52B.
- Each displacement part 56aB is extended toward the ZB-axis positive direction from the intermediate part of the elastic part 52B. Even with such a modification, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated, as in the above embodiment.
- the reaction force from the inner surface of the opening 31bB is applied to the pair of support portions 54B toward the inner side (side closer to each other).
- a reaction force from the inner surface of the opening 31bB may be applied to the pair of support portions 54B toward the outside (sides away from each other).
- a pair of openings 31bB are formed in the mounting region 31B of the base BB.
- Each of the pair of locking portions 55AB is formed to be bent outwardly (sides away from each other) in a V shape when viewed from the XB axis direction.
- the inclined surfaces 55aB are inclined so as to be separated from each other in the ZB-axis negative direction.
- the inclined surfaces 55bB are inclined so as to approach each other in the negative direction of the ZB axis.
- the pair of locking portions 55AB are inserted into the pair of openings 31bB, respectively.
- each support portion 54B further includes a leg portion 57B extending along the ZB axis direction.
- the pair of leg portions 57B is provided so as to sandwich the mirror portion 51B in the YB axis direction, and is connected to the displacement portion 56AaB and the locking portion 55B.
- Each displacement part 56AaB extends along the ZB axis direction so as to be positioned on the same straight line as the leg part 57B.
- the elastic part 52B includes a pair of elastic parts 52aB and 52bB. Each elastic part 52aB, 52bB has a semi-annular shape, for example.
- the elastic portion 52aB connects the pair of displacement portions 56AaB to each other, and the elastic portion 52bB connects the pair of leg portions 57B to each other.
- the elastic portion 52aB is located on the ZB axis positive direction side with respect to the pair of displacement portions 56AaB.
- the elastic part 52B includes only the elastic part 52aB and does not include the elastic part 52bB.
- the connecting portion 53B extends along the YB axis direction, and connects the edge portion on one side of the mirror portion 51B in the YB axis direction and the leg portion 57B. According to these modified examples, similarly to the above embodiment, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated.
- a part of the mirror surface 51aB may be arranged inside the base BB.
- the mirror surface 51aB intersects the mounting area 31B, and the entire movable mirror 5AB penetrates the mounting area 31B through the opening 31bB.
- a pair of support portions 54B are provided so as to sandwich the mirror portion 51B and the elastic portion 52B in the YB axis direction, and are connected to the elastic portion 52B at the bent portion of the locking portion 55B.
- the portion that faces the mirror surface 51aB is cut out to allow the measurement light L0B to pass therethrough.
- the distance between the pair of support portions 54B is reduced by the pair of displacement portions 56aB being displaced in a direction approaching each other. Even with such a modification, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated, as in the above embodiment.
- the movable mirror 5EB may be configured as shown in FIG.
- the distance between the pair of support portions 54B is increased by the pair of displacement portions 56AaB of the handle 56AB being displaced in directions away from each other.
- the opening 31bB is configured in the same manner as in FIG. In a state where the movable mirror 5EB is mounted on the base BB, a reaction force from the inner surface of the opening 31bB is applied to the pair of support portions 54B toward the outside (sides away from each other).
- the movable mirror 5EB When the movable mirror 5EB is mounted, for example, in a state where the distance between the pair of support portions 54B is increased by displacing the pair of displacement portions 56AaB away from each other by the tweezers TB (a pair of tip portions of the tweezers TB).
- the pair of locking portions 55B are inserted into the pair of openings 31bB, respectively. Even with such a modification, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated, as in the above embodiment.
- the pair of displacement portions 56aB are disposed so as to be inclined so that the distance from each other increases toward the ZB axis positive direction side when viewed from the XB axis direction.
- the displacement portions 56aB may extend along the ZB axis direction in parallel with each other.
- a pair of inclined surfaces may be provided at the distal end portion of the bonder head BHB so that the distance from each other increases as the distance from the distal end portion increases.
- the distance between the inclined surfaces at the tip may be narrower than the distance between the pair of displacement portions 56aB.
- the bonder head BHB by causing the bonder head BHB to enter between the pair of displacement portions 56aB from the tip end side, press against the pair of displacement portions 56aB, and slide on the pair of displacement portions 56aB toward the mirror portion 51B side.
- the pair of displacement portions 56aB can be displaced in directions away from each other.
- the fixed mirror 6B is mounted on the device layer 3B, but the fixed mirror 6B may be mounted on the support layer 2B.
- the beam splitter 7B is mounted on the support layer 2B.
- the beam splitter 7B may be mounted on the device layer 3B.
- the beam splitter 7B is not limited to a cube type beam splitter, and may be a plate type beam splitter.
- the optical module 1B may include a light emitting element that generates measurement light incident on the light incident portion 8B in addition to the light incident portion 8B.
- the optical module 1B may include a light emitting element that generates measurement light incident on the interference optical system 10B, instead of the light incident portion 8B.
- the optical module 1B may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9B in addition to the light emitting unit 9B.
- the optical module 1B may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10B, instead of the light emitting unit 9B.
- first through electrode electrically connected to each actuator region 33B and the second through electrode electrically connected to each of both end portions 34aB of each elastic support region 34B are the support layer 2B and the intermediate layer 4B. (Only the support layer 2B when the intermediate layer 4B is not present) is provided, and a voltage may be applied between the first through electrode and the second through electrode.
- the actuator that moves the mounting region 31B is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like.
- the optical module 1B is not limited to what constitutes FTIR, and may constitute another optical system.
- the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BB.
- the optical surface is a mirror surface.
- the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter. The above second embodiment will be additionally described below.
- the optical element is An optical unit having an optical surface; An elastic part capable of elastic deformation; A pair of support portions provided so as to be opposed to each other, to which an elastic force is applied according to the elastic deformation of the elastic portion and the distance between them is variable; A handle used to elastically deform the elastic portion so that the distance between the pair of support portions changes,
- the base has a main surface and a mounting region provided with an opening communicating with the main surface; The pair of support portions are inserted into the openings in a state where the elastic force of the elastic portion is applied, The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening,
- the handle is an optical module that is positioned on one side in a direction intersecting the main surface with respect to the optical unit and the pair of support units in a state where the optical element is mounted in the mounting region.
- the pair of displacement portions are located on the one side in a direction intersecting the main surface when viewed from a direction perpendicular to both the direction intersecting the main surface and the direction in which the pair of displacement portions face each other.
- the optical module according to appendix 13 wherein the optical module is arranged so as to be inclined so that a distance from each other increases.
- the base includes a support layer, and a device layer provided on the support layer and including the main surface and the mounting region, The opening passes through the device layer in a direction intersecting the main surface,
- the optical module according to any one of appendices 10 to 16, wherein the support portion includes a locking portion that is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
- Appendix 18 A fixed mirror mounted on at least one of the support layer, the device layer, and an intermediate layer provided between the support layer and the device layer; A beam splitter mounted on at least one of the support layer, the device layer, and the intermediate layer, and The optical element is a movable mirror including the optical surface which is a mirror surface; The device layer has a drive region connected to the mounting region, The optical module according to appendix 17, wherein the movable mirror, the fixed mirror, and the beam splitter are arranged so as to constitute an interference optical system.
- the base has an intermediate layer provided between the support layer and the device layer;
- the support layer is a first silicon layer of an SOI substrate;
- the device layer is a second silicon layer of the SOI substrate;
- the optical module according to appendix 18, wherein the intermediate layer is an insulating layer of the SOI substrate.
- a light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
- An optical module mounting method according to any one of appendices 10 to 20, comprising: A first step of inserting the pair of support portions into the opening in a state where the distance between the pair of support portions is changed by applying a force to the handle; A second step of releasing the force applied to the handle to bring the pair of support portions into contact with the inner surface of the opening and fixing the optical element to the base.
- Implementation method [Third Embodiment]
- An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, JP 2012-524295 A).
- MEMS Micro Electro Mechanical Systems
- Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
- US Patent Application Publication No. 2002/0186477 describes an optical system manufacturing process.
- a template substrate and an optical bench are prepared.
- An alignment slot is formed on the template substrate by etching.
- Bond pads are arranged on the main surface of the optical bench.
- the template substrate is attached to the main surface of the optical bench so that the alignment slot is disposed on the bond pad.
- the optical element is inserted into the alignment slot while being positioned using the side wall of the alignment slot, and is positioned on the bond pad. Then, the optical element is bonded to the optical bench by reflowing the bond pad.
- the optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 ⁇ m at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
- Another object of the present disclosure is to provide an optical module capable of stably mounting an optical element regardless of the characteristics of the mounting region.
- An optical module is an optical module including an optical element and a base on which the optical element is mounted.
- the optical element includes an optical unit having an optical surface, one end, and the other end.
- An elastic part provided around the optical part, a pair of support parts extending from the one end part and the other end part to the base side of the optical part, and one of the support parts and the optical part are connected to each other
- the base has a main surface and a mounting region provided with an opening communicating with the main surface, and the support portion is given an elastic force according to elastic deformation of the elastic portion.
- the distance between each other is variable and is inserted into the opening in a state where the elastic force is applied, and the optical element is applied to the support portion from the inner surface of the opening in a state where the optical surface intersects the main surface.
- the connecting part It Supported by the mounting area by the reaction force of the elastic force, the connecting part It is provided on the base side than the center of the optical surface.
- the optical element has an elastic part and a pair of support parts whose distances can be changed according to the elastic deformation of the elastic part.
- an opening communicating with the main surface is formed in the mounting region of the base on which the optical element is mounted. Therefore, as an example, the support portion is inserted into the opening in a state in which the elastic portion is elastically deformed so that the distance between the support portions is reduced, and a part of the elastic deformation of the elastic portion is released, so that the support portion is opened in the opening. The distance between each other increases, and the support portion can be brought into contact with the inner surface of the opening. Thereby, an optical element is supported by the reaction force provided to a support part from the inner surface of opening. As described above, in this optical module, the optical element is mounted on the base using the elastic force. Therefore, it is possible to mount the optical element without considering the adverse effect of the adhesive, that is, without depending on the characteristics of the mounting region.
- a connecting portion that connects the optical portion and the support portion to each other is provided on the base side from the center of the optical surface. For this reason, for example, the center of gravity of the optical element as a whole is closer to the base than in the case where the connecting portion is provided on the opposite side of the base from the center of the optical surface. For this reason, stability improves.
- an elastic part can be provided around the optical part in the entire region opposite to the base from the center of the optical surface.
- the elastic portion can be made relatively long, and the spring constant can be easily adjusted.
- the optical element can be stably mounted regardless of the characteristics of the mounting region.
- the elastic portion can be provided around the optical portion in the entire region opposite to the base from the center of the optical surface. For this reason, even if it is a case where an elastic part is provided so that it may adjoin to an optical part, the length of an elastic part is securable enough. That is, according to this optical element, it is possible to realize a compact optical element while ensuring the length of the elastic portion.
- the elastic portion includes an arc-shaped portion formed so as to partially surround the optical portion when viewed from the direction intersecting the optical surface, and includes one end portion and the other. The end may be provided at the tip of the arcuate portion.
- the support portion includes a locking portion that extends to the base side beyond the connection position of the optical portion by the connection portion and is inserted into the opening, and is provided on the optical surface.
- the thickness of the locking portion may be larger than the thickness of the elastic portion when viewed from the intersecting direction. In this case, the optical element can be supported on the base more stably via the locking portion.
- the thickness of the support portion may be larger than the thickness of the elastic portion when viewed from the direction intersecting the optical surface. In this case, the force for elastically deforming the elastic part can be stably applied to the elastic part via the support part.
- the thickness of the connecting portion may be larger than the thickness of the elastic portion when viewed from the direction intersecting the optical surface. In this case, the support portion and the optical portion can be reliably connected.
- the inner surface of the opening is a pair of inclined surfaces that are inclined so that the distance from each other increases from one end to the other when viewed from the direction intersecting the main surface. And a reference plane extending along a reference line connecting the other end of the one inclined surface and the other end of the other inclined surface.
- An optical module further includes a fixed mirror and a beam splitter mounted on a base, the optical element is a movable mirror including an optical surface that is a mirror surface, and the base is mounted.
- the movable mirror, the fixed mirror, and the beam splitter may be arranged so as to constitute an interference optical system.
- an FTIR with improved sensitivity can be obtained.
- the mounting area where the movable mirror is mounted has a characteristic of being connected to the driving area and driven. Therefore, the above configuration is more effective because it is easily affected by the adverse effects of the adhesive.
- the base includes a support layer, a device layer provided on the support layer, and an intermediate layer provided between the support layer and the device layer.
- the support layer may be a first silicon layer of the SOI substrate
- the device layer may be a second silicon layer of the SOI substrate
- the intermediate layer may be an insulating layer of the SOI substrate.
- An optical module is disposed so that the measurement light is incident on the interference optical system from the outside and the measurement light is emitted from the interference optical system to the outside.
- a light emitting part In this case, an FTIR including a light incident part and a light emission part can be obtained.
- an optical module capable of stably mounting an optical element regardless of the characteristics of the mounting region.
- the optical module 1C includes a base BC.
- the base BC has a main surface BsC.
- the base BC includes a support layer 2C, a device layer 3C provided on the support layer 2C, and an intermediate layer 4C provided between the support layer 2C and the device layer 3C.
- the main surface BsC is a surface of the device layer 3C opposite to the support layer 2C.
- the support layer 2C, the device layer 3C, and the intermediate layer 4C are configured by an SOI substrate.
- the support layer 2C is the first silicon layer of the SOI substrate.
- the device layer 3C is a second silicon layer of the SOI substrate.
- the intermediate layer 4C is an insulating layer of the SOI substrate.
- the support layer 2C, the device layer 3C, and the intermediate layer 4C have a rectangular shape with, for example, a side of about 10 mm when viewed from the ZC axis direction (a direction parallel to the ZC axis) that is the stacking direction thereof.
- Each thickness of the support layer 2C and the device layer 3C is, for example, about several hundred ⁇ m.
- the thickness of the intermediate layer 4C is, for example, about several ⁇ m.
- FIG. 46 the device layer 3C and the intermediate layer 4C are shown with one corner of the device layer 3C and one corner of the intermediate layer 4C cut away.
- the device layer 3C has a mounting area 31C and a drive area 32C connected to the mounting area 31C.
- the drive region 32C includes a pair of actuator regions 33C and a pair of elastic support regions 34C.
- the mounting region 31C and the drive region 32C (that is, the mounting region 31C and the pair of actuator regions 33C and the pair of elastic support regions 34C) are integrally formed on a part of the device layer 3C by MEMS technology (patterning and etching). Yes.
- the pair of actuator regions 33C are disposed on both sides of the mounting region 31C in the XC axis direction (direction parallel to the XC axis orthogonal to the ZC axis). That is, the mounting region 31C is sandwiched between the pair of actuator regions 33C in the XC axis direction.
- Each actuator region 33C is fixed to the support layer 2C via the intermediate layer 4C.
- a first comb tooth portion 33aC is provided on the side surface of each actuator region 33C on the mounting region 31C side.
- Each first comb tooth portion 33aC is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the first comb tooth portion 33aC.
- Each actuator region 33C is provided with a first electrode 35C.
- the pair of elastic support regions 34C are disposed on both sides of the mounting region 31C in the YC axis direction (a direction parallel to the YC axis perpendicular to the ZC axis and the XC axis). That is, the mounting region 31C is sandwiched between the pair of elastic support regions 34C in the YC axis direction. Both end portions 34aC of each elastic support region 34C are fixed to the support layer 2C via the intermediate layer 4C.
- Each elastic support region 34C has an elastic deformation portion 34bC (a portion between both end portions 34aC) having a structure in which a plurality of leaf springs are connected.
- each elastic support region 34C is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the elastic deformation portion 34bC.
- a second electrode 36C is provided at each of both end portions 34aC.
- each elastic support region 34C is connected to the mounting region 31C.
- the mounting region 31C is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the mounting region 31C. That is, the mounting region 31C is supported by the pair of elastic support regions 34C.
- a second comb tooth portion 31aC is provided on the side surface of each mounting region 31C on the side of each actuator region 33C.
- Each second comb tooth portion 31aC is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the second comb tooth portion 31aC.
- each comb tooth of the first comb tooth portion 33aC is located between each comb tooth of the second comb tooth portion 31aC.
- the pair of elastic support regions 34C sandwich the mounting region 31C from both sides when viewed in the direction AC parallel to the XC axis, and the mounting region 31C is mounted so that the mounting region 31C returns to the initial position when the mounting region 31C moves along the direction AC.
- An elastic force is applied to the region 31C. Therefore, when a voltage is applied between the first electrode 35C and the second electrode 36C and an electrostatic attractive force acts between the first comb tooth portion 33aC and the second comb tooth portion 31aC facing each other, the electrostatic attractive force
- the mounting region 31C is moved along the direction AC to a position where the elastic force generated by the pair of elastic support regions 34C is balanced.
- the drive region 32C functions as an electrostatic actuator.
- the optical module 1C further includes a movable mirror 5C, a fixed mirror 6C, a beam splitter 7C, a light incident part 8C, and a light emitting part 9C.
- the movable mirror 5C, the fixed mirror 6C, and the beam splitter 7C are arranged on the device layer 3C so as to constitute an interference optical system 10C that is a Michelson interference optical system.
- the movable mirror 5C is mounted on the mounting region 31C of the device layer 3C on one side of the beam splitter 7C in the XC axis direction.
- the mirror surface 51aC of the mirror part 51C included in the movable mirror 5C is located on the opposite side of the support layer 2C with respect to the device layer 3C.
- the mirror surface 51aC is, for example, a surface perpendicular to the XC axis direction (that is, a surface perpendicular to the direction AC) and faces the beam splitter 7C side.
- the fixed mirror 6C is mounted on the mounting region 37C of the device layer 3C on one side of the beam splitter 7C in the YC axis direction.
- the mirror surface 61aC of the mirror portion 61C of the fixed mirror 6C is located on the opposite side of the support layer 2C with respect to the device layer 3C.
- the mirror surface 61aC is, for example, a surface perpendicular to the YC axis direction and faces the beam splitter 7C side.
- the light incident portion 8C is mounted on the device layer 3C on the other side of the beam splitter 7C in the YC axis direction.
- the light incident part 8C is configured by, for example, an optical fiber and a collimating lens.
- the light incident part 8C is arranged so that the measurement light is incident on the interference optical system 10C from the outside.
- the light emitting portion 9C is mounted on the device layer 3C on the other side of the beam splitter 7C in the XC axis direction.
- the light emitting portion 9C is configured by, for example, an optical fiber and a collimating lens.
- the light emitting unit 9C is arranged to emit measurement light (interference light) from the interference optical system 10C to the outside.
- the beam splitter 7C is a cube type beam splitter having an optical functional surface 7aC.
- the optical functional surface 7aC is located on the side opposite to the support layer 2C with respect to the device layer 3C.
- the beam splitter 7C is positioned by bringing one corner on the bottom side of the beam splitter 7C into contact with one corner of the rectangular opening 3aC formed in the device layer 3C.
- the beam splitter 7C is mounted on the support layer 2C by being fixed to the support layer 2C by bonding or the like in a positioned state.
- the optical module 1C configured as described above, when the measurement light L0C is incident on the interference optical system 10C from the outside via the light incident portion 8C, a part of the measurement light L0C is transmitted to the optical functional surface 7aC of the beam splitter 7C.
- the reflected light travels toward the movable mirror 5C, and the remaining portion of the measurement light L0C passes through the optical function surface 7aC of the beam splitter 7C and travels toward the fixed mirror 6C.
- a part of the measurement light L0C is reflected by the mirror surface 51aC of the movable mirror 5C, travels toward the beam splitter 7C on the same optical path, and passes through the optical function surface 7aC of the beam splitter 7C.
- the remaining part of the measurement light L0C is reflected by the mirror surface 61aC of the fixed mirror 6C, travels on the same optical path toward the beam splitter 7C, and is reflected by the optical function surface 7aC of the beam splitter 7C.
- a part of the measurement light L0C transmitted through the optical functional surface 7aC of the beam splitter 7C and the remaining part of the measurement light L0C reflected by the optical functional surface 7aC of the beam splitter 7C become the measurement light L1C that is interference light, and the measurement light L1C is emitted to the outside from the interference optical system 10C via the light emitting portion 9C.
- the optical module 1C since the movable mirror 5C can be reciprocated at high speed along the direction AC, a small and highly accurate FTIR can be provided. [Movable mirror and surrounding structure]
- the movable mirror (optical element) 5C includes a mirror part (optical part) 51C having a mirror surface (optical surface) 51aC, an elastic part 52C, and a pair of supports. 56C, and a single connecting portion 57C that connects the one supporting portion 56C and the mirror portion 51C to each other.
- the mirror part 51C is formed in a disk shape.
- the mirror surface 51aC is a circular plate surface of the mirror part 51C.
- the movable mirror 5C is mounted on the base BC in a state where the mirror surface 51aC intersects (for example, is orthogonal to) the main surface BsC.
- the elastic part 52C is provided around the mirror part 51C.
- the elastic part 52C is provided around the mirror part 51C so as to surround the entire mirror part 51C on the opposite side of the main surface BsC of the base BC from the center of the mirror part 51C in the ZC axis direction.
- the elastic part 52C is separated from the mirror part 51C.
- the elastic portion 52C includes an arc-shaped portion 52aC formed in an arc shape so as to partially surround the mirror portion 51C when viewed from the direction intersecting the mirror surface 51aC (XC axis direction).
- 52 C of elastic parts are comprised as a leaf
- the arc-shaped portion 52aC is disposed on the opposite side of the main surface BsC of the base BC from the center line CLC passing through the center of the mirror portion 51C in the ZC axis direction.
- the center line CLC is a virtual straight line extending along the direction (YC axis direction) along the mirror surface 51aC and the main surface BsC.
- the elastic portion 52C includes one end 52pC and the other end 52rC provided at both ends of the arc-shaped portion 52aC.
- the one end portion 52pC and the other end portion 52rC may be curved or continuous from the arcuate portion 52aC.
- the one end 52pC and the other end 52rC overlap with, for example, the center line CLC.
- the elastic part 52C is configured symmetrically with respect to another center line DLC passing through the center of the mirror part 51C in the YC axis direction.
- the center line DLC is a virtual line that intersects (orthogonally) the center line CLC and extends along the ZC axis direction.
- the support portion 56C is a rod having a rectangular cross section as an example, and is provided so as to sandwich at least a part of the mirror part 51C (a part on the main surface BsC side of the base BC) in the YC axis direction.
- the support portion 56C is connected to each of the one end portion 52pC and the other end portion 52rC of the elastic portion 52C (formed in a continuous manner).
- the support part 56C extends from the one end part 52pC and the other end part 52rC to the base BC side from the mirror part 51C. More specifically, the support portion 56C includes an inclined portion 56aC that is inclined so that the distance from each other approaches the base BC from the one end portion 52pC and the other end portion 52rC.
- the support portion 56C includes a locking portion 55C extending from the end portion on the opposite side to the one end portion 52pC and the other end portion 52rC in the inclined portion 56aC.
- the support portion 56C includes a protruding portion 56cC that protrudes from the inclined portion 56aC in a direction opposite to each other between the pair of support portions 56C.
- a corner portion 56pC is formed by the inclined portion 56aC, the locking portion 55C, and the projecting portion 56cC. Between the pair of support portions 56C, the corner portions 56pC face opposite to each other.
- the support portion 56C can be elastically deformed so as to compress the elastic portion 52C in the YC axis direction by applying a force to the support portion 56C so as to sandwich the support portion 56C from both sides in the YC axis direction. That is, the mutual distance between the support portions 56C along the YC axis direction is variable according to the elastic deformation of the elastic portion 52C. Further, the elastic force of the elastic portion 52C can be applied to the support portion 56C. In addition, when giving the force for deforming the elastic part 52C to the support part 56C, the protrusion part 56cC can be utilized, for example (namely, force can be input from the protrusion part 56cC).
- the connecting portion 57C is provided on one of the pair of support portions 56C, and connects the support portion 56C and the mirror portion 51C to each other.
- the connecting portion 57C is connected to the inclined portion 56aC of the support portion 56C.
- the connecting portion 57C is connected to the mirror portion 51C at a position opposite to the base BC with respect to the connecting position with the inclined portion 56aC. Accordingly, the connecting portion 57C is inclined (inclined) so as to approach the base BC from the one supporting portion 56C where the connecting portion 57C is not provided toward the other supporting portion 56C.
- the connecting portion 57C is provided closer to the base BC than the center of the mirror surface 51aC. Therefore, the pair of support portions 56C extend to the base BC side beyond the connection position CPC with the mirror portion 51C by the connection portion 57C.
- the locking portion 55C is inserted into an opening 31bC described later.
- the locking portion 55C is bent in a V shape as a whole.
- the locking portion 55C includes an inclined surface 55aC and an inclined surface 55bC.
- the inclined surface 55aC and the inclined surface 55bC are surfaces on the opposite side of the surfaces facing each other in the pair of locking portions 55C (outer surfaces).
- the inclined surfaces 55aC are inclined so as to approach each other in the direction away from the connecting portion 57C (ZC axis negative direction) between the pair of locking portions 55C.
- the inclined surfaces 55bC are inclined so as to be separated from each other in the negative direction of the ZC axis.
- the absolute value of the inclination angle of the inclined surface 55aC with respect to the ZC axis is less than 90 °.
- the absolute value of the inclination angle of the inclined surface 55bC is less than 90 °.
- the absolute values of the inclination angles are equal to each other.
- an opening 31bC is formed in the mounting region 31C.
- the opening 31bC extends in the ZC axis direction and penetrates the device layer 3C. Therefore, the opening 31bC communicates with (is led to) the main surface BsC and the surface of the device layer 3C opposite to the main surface BsC.
- the opening 31bC has a columnar shape that is trapezoidal when viewed from the ZC axis direction (see FIG. 49). Details of the opening 31bC will be described later.
- the support portion 56C is inserted into the opening 31bC in a state where the elastic force of the elastic portion 52C is applied.
- the support portion 56C that is, the movable mirror 5C
- a part of the locking portion 55C of the support portion 56C is located in the opening 31bC.
- the locking portion 55C is in contact with a pair of edges (the edge on the main surface BsC side and the edge on the opposite side of the main surface BsC) of the opening 31bC in the ZC axis direction.
- the inclined surface 55aC is in contact with the edge of the opening 31bC on the main surface BsC side, and the inclined surface 55bC is in contact with the edge of the opening 31bC on the opposite side of the main surface BsC. Accordingly, the locking portion 55C is locked to the mounting region 31C so as to sandwich the mounting region 31C in the ZC axial direction. As a result, the movable mirror 5C is prevented from coming off the base BC in the ZC axis direction.
- an opening 41C is formed in the intermediate layer 4C.
- the openings 41C are opened on both sides of the intermediate layer 4C in the ZC axis direction.
- An opening 21C is formed in the support layer 2C.
- the openings 21C are opened on both sides of the support layer 2C in the ZC axis direction.
- a continuous space S1C is formed by the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C. That is, the space S1C includes a region in the opening 41C of the intermediate layer 4C and a region in the opening 21C of the support layer 2C.
- the space S1C is formed between the support layer 2C and the device layer 3C, and corresponds to at least the mounting region 31C and the drive region 32C.
- the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction.
- the region in the opening 41C of the intermediate layer 4C is a portion that should be separated from the support layer 2C in the mounting region 31C and the drive region 32C (that is, a portion that should be in a floating state with respect to the support layer 2C.
- a gap for separating the entire mounting region 31C, the elastic deformation portion 34bC, the first comb tooth portion 33aC, and the second comb tooth portion 31aC) of each elastic support region 34C from the support layer 2C is formed.
- the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a reference surface SRC.
- the inclined surface SLC includes one end SLaC and the other end SLbC.
- One end SLaC and the other end SLbC are both ends of the inclined surface SLC when viewed from the ZC axis direction.
- the pair of inclined surfaces SLC are inclined (for example, with respect to the XC axis) such that the distance from one end SLaC to the other end SLbC increases.
- the reference surface SRC extends along a reference line BLC that connects the other end SLbC of one inclined surface SLC and the other end SLbC of the other inclined surface SLC, as viewed from the ZC axis direction.
- the reference surface SRC simply connects the other ends SLbC to each other.
- the shape of the opening 31bC when viewed from the ZC axis direction is a trapezoid. Therefore, here, the inclined surface SLC corresponds to a trapezoidal leg, and the reference surface SRC corresponds to the lower base of the trapezoid.
- the opening 31bC is a single space.
- the minimum value of the dimension of the opening 31bC in the YC axis direction (that is, the distance between the one ends SLaC of the inclined surface SLC) is a pair of locking when the elastic portion 52C is elastically deformed along the YC axis direction. The value is such that the portion 55C can be placed in the opening 31bC in a lump.
- the maximum value of the dimension of the opening 31bC in the YC-axis direction (that is, the interval between the other ends SLbC of the inclined surface SLC) is the elasticity of the elastic part 52C when the pair of locking parts 55C is disposed in the opening 31bC. Only a part of the deformation can be released (that is, the elastic portion 52C does not reach the natural length).
- the locking portion 55C presses the inner surface of the opening 31bC by the elastic force of the elastic portion 52C, and the reaction force from the inner surface of the opening 31bC is increased by the locking portion 55C (
- the support portion 56C) is provided. Accordingly, the movable mirror 5C is supported by the mounting region 31C by the reaction force of the elastic force applied from the inner surface of the opening 31bC to the support portion 56C in a state where the mirror surface 51aC intersects (for example, orthogonally) the main surface BsC. .
- the locking portion 55C is brought into contact with the inclined surface SLC of the opening 31bC. For this reason, the locking portion 55C slides on the inclined surface SLC toward the reference surface SRC by the component in the XC axis direction of the reaction force from the inclined surface SLC, and pushes against the reference surface SRC while contacting the inclined surface SLC. Hit. Accordingly, the locking portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, and is positioned in both the XC axis direction and the YC axis direction (self-aligned by elastic force).
- the cross-sectional shape of the locking portion 55C is a quadrangle, when viewed from the ZC axial direction, the inclined surface SLC contacts the locking portion 55C at a point, and the reference surface SRC is in contact with the locking portion 55C. Touch with a line. That is, here, the inner surface of the opening 31bC contacts the pair of locking portions 55C at two points and two lines when viewed from the ZC axial direction.
- the locking portion 55C when viewed from the XC axial direction, the locking portion 55C is applied with a reaction force of elastic force from the inner surface of the opening 31bC even at the edge of the opening 31bC.
- a reaction force may be applied to one of the inclined surface 55aC and the inclined surface 55bC of the locking portion 55C.
- one of the inclined surface 55aC and the inclined surface 55bC slides on the edge by the component of the reaction force along the inclined surface 55aC or the inclined surface 55bC, and both the inclined surface 55aC and the inclined surface 55bC are edges.
- the locking portion 55C is locked at the position, and the movable mirror 5C is positioned in the ZC axial direction (self-aligned by the elastic force). That is, in the movable mirror 5C, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52C.
- the movable mirror 5C as described above is integrally formed by, for example, MEMS technology (patterning and etching). Accordingly, the thickness of the movable mirror 5C (the dimension in the direction intersecting the mirror surface 51aC) is constant in each part, and is, for example, about 320 ⁇ m.
- the diameter of the mirror surface 51aC is, for example, about 1 mm.
- the distance between the surface (inner surface) of the elastic part 52C on the mirror part 51C side and the surface (outer surface) of the mirror part 51C on the elastic part 52C side is, for example, about 200 ⁇ m.
- the thickness of the elastic portion 52C is, for example, about 10 ⁇ m to 20 ⁇ m.
- the thickness of the locking portion 55C is larger than the thickness (plate thickness) of the elastic portion 52C when viewed from the direction intersecting the mirror surface 51aC (XC axis direction). Further, when viewed from the XC axis direction, the overall thickness of the support portion 56C is larger than the thickness of the elastic portion 52C. Furthermore, when viewed from the XC axis direction, the thickness of the connecting portion 57C is larger than the thickness of the elastic portion 52C. That is, here, the elastic portion 52C is the thinnest (thinner) among the elastic portion 52C, the support portion 56C, and the connecting portion 57C.
- the support portion 56C and the connecting portion 57C are not substantially deformed.
- the support part 56C and the connection part 57C may be slightly deformed.
- the support portion 56C and the connection portion 57C may be deformed in a range in which the deformation amount of the support portion 56C and the connection portion 57C is smaller than the deformation amount of the elastic portion 52C (note that the support portion 56C and the connection portion 57C).
- the amount of deformation may be zero).
- the fixed mirror 6C and its peripheral structure are the same as the movable mirror 5C and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 50 and 51, the fixed mirror (optical element) 6C includes a mirror part (optical part) 61C having a mirror surface (optical surface) 61aC, an elastic part 62C, and a pair of support parts 66C. And a single connecting portion 67C that connects the one supporting portion 66C and the mirror portion 61C to each other.
- the mirror part 61C is formed in a disk shape.
- the mirror surface 61aC is a circular plate surface of the mirror portion 61C.
- the fixed mirror 6C is mounted on the base BC in a state where the mirror surface 61aC intersects (for example, is orthogonal to) the main surface BsC.
- the elastic part 62C is provided around the mirror part 61C.
- the elastic portion 62C is provided around the mirror portion 61C so as to surround the entire portion of the base BC opposite to the main surface BsC from the center of the mirror portion 61C in the ZC axis direction.
- the elastic portion 62C includes an arc-shaped portion 62aC formed in an arc shape so as to partially surround the mirror portion 61C while being separated from the mirror portion 61C when viewed from the direction intersecting the mirror surface 61aC (XC axis direction).
- the elastic portion 62C is configured as a leaf spring as a whole including the arcuate portion 62aC.
- the arc-shaped portion 62aC is disposed on the opposite side of the main surface BsC of the base BC from the center line CLC passing through the center of the mirror portion 61C in the ZC axis direction.
- the center line CLC is a virtual straight line extending along the direction (XC axis direction) along the mirror surface 61aC and the main surface BsC.
- the elastic portion 62C includes one end 62pC and the other end 62rC provided at both ends of the arc-shaped portion 62aC.
- the one end portion 62pC and the other end portion 62rC may be continuously curved in an arc shape from the arc-shaped portion 62aC, or may be linear.
- the one end 62pC and the other end 62rC are located on the center line CLC, for example.
- the elastic portion 62C is configured symmetrically with respect to another center line DLC passing through the center of the mirror portion 61C in the ZC axis direction.
- the center line DLC is a virtual line that intersects (orthogonally) the center line CLC and extends along the ZC axis direction.
- the support portion 66C is a rod having a rectangular cross section, and is provided so as to sandwich at least a part of the mirror part 61C (a part on the main surface BsC side of the base BC) in the XC axis direction.
- the support portion 66C is connected to each of the one end portion 62pC and the other end portion 62rC of the elastic portion 62C (formed in a continuous manner).
- the support portion 66C extends from the one end portion 62pC and the other end portion 62rC to the base BC side from the mirror portion 61C.
- the support portion 66C includes an inclined portion 66aC that is inclined so that the distance from each other approaches the base BC from the one end portion 62pC and the other end portion 62rC. Further, the support portion 66C includes a locking portion 65C extending from the end portion on the opposite side to the one end portion 62pC and the other end portion 62rC in the inclined portion 66aC.
- the support portion 66C includes a protruding portion 66cC that protrudes from the inclined portion 66aC in the opposite direction between the pair of support portions 66C.
- a corner portion 66pC is formed by the inclined portion 66aC, the locking portion 65C, and the protruding portion 66cC. Between the pair of support portions 66C, the corner portions 66pC face opposite to each other.
- the support portion 66C can be elastically deformed so as to compress the elastic portion 62C in the XC axis direction by applying a force to the support portion 66C so as to sandwich the support portion 66C from both sides in the XC axis direction. That is, the distance between the support portions 66C along the XC axis direction is variable according to the elastic deformation of the elastic portion 62C. Further, the elastic force of the elastic portion 62C can be applied to the support portion 66C. In addition, when providing the force for deform
- the connecting portion 67C is provided on one of the pair of support portions 66C, and connects the support portion 66C and the mirror portion 61C to each other.
- the connecting portion 67C is connected to the inclined portion 66aC of the support portion 66C.
- the connecting portion 67C is connected to the mirror portion 61C at a position opposite to the base BC with respect to the connecting position with the inclined portion 66aC. Accordingly, the connecting portion 67C is inclined so as to approach the base BC as it goes from one support portion 66C where the connecting portion 67C is not provided to the other support portion 66C. Further, the connecting portion 67C is provided closer to the base BC than the center of the mirror surface 61aC. Therefore, the pair of support portions 66C extend to the base BC side beyond the connection position CPC with the mirror portion 61C by the connection portion 67C, and are inserted into an opening 37aC described later.
- the locking portion 65C is bent as a whole.
- the locking portion 65C includes an inclined surface 65aC and an inclined surface 65bC.
- the inclined surface 65aC and the inclined surface 65bC are surfaces opposite to the surfaces facing each other in the pair of locking portions 65C (outer surfaces).
- the inclined surfaces 65aC are inclined so as to approach each other in the direction away from the connecting portion 67C (ZC axis negative direction) between the pair of locking portions 65C.
- the inclined surfaces 65bC are inclined so as to be separated from each other in the ZC axis negative direction.
- the inclination angles of the inclined surfaces 65aC and 65bC with respect to the ZC axis are the same as those of the inclined surfaces 55aC and 55bC in the movable mirror 5C.
- an opening 42C is formed in the intermediate layer 4C.
- the opening 42C includes the opening 37aC of the mounting region 37C when viewed from the ZC axis direction, and opens on both sides of the intermediate layer 4C in the ZC axis direction.
- An opening 22C is formed in the support layer 2C.
- the opening 22C includes the opening 37aC of the mounting region 37C when viewed from the ZC axis direction, and opens on both sides of the support layer 2C in the ZC axis direction.
- a continuous space S2C is formed by the region in the opening 42C of the intermediate layer 4C and the region in the opening 22C of the support layer 2C. That is, the space S2C includes a region in the opening 42C of the intermediate layer 4C and a region in the opening 22C of the support layer 2C.
- the inner surface of the opening 37aC is configured in the same manner as the inner surface of the opening 31bC in the mounting region 31C. Therefore, when the pair of locking portions 65C is disposed in the opening 37aC, the locking portion 65C presses the inner surface of the opening 37aC by the elastic force of the elastic portion 62C, and the reaction force from the inner surface of the opening 37aC is increased by the locking portion 65C ( The support portion 66C) is applied. Accordingly, the fixed mirror 6C is supported by the base BC by the reaction force of the elastic force applied to the support portion 66C from the inner surface of the opening 37aC in a state where the mirror surface 61aC intersects (for example, orthogonally) with the main surface BsC. In particular, in the fixed mirror 6C, as in the case of the movable mirror 5C, self-alignment using the inner surface and edge of the opening 37aC and the elastic force is performed.
- the fixed mirror 6C as described above is also integrally formed by, for example, MEMS technology (patterning and etching) similarly to the movable mirror 5C.
- the dimension of each part of the fixed mirror 6C is the same as the above-described dimension of each part of the movable mirror 5C, for example.
- the thickness of the locking portion 65C is larger than the thickness (plate thickness) of the elastic portion 62C.
- the overall thickness of the support portion 66C is larger than the thickness of the elastic portion 62C.
- the thickness of the connecting portion 67C is larger than the thickness of the elastic portion 62C. That is, here, the elastic portion 62C is the thinnest (thinner) among the elastic portion 62C, the support portion 66C, and the connecting portion 67C.
- the support portion 66C and the connecting portion 67C are not substantially deformed.
- the support part 66C and the connection part 67C may be slightly deformed.
- the support part 66C and the connection part 67C may be deformed in a range where the deformation amount of the support part 66C and the connection part 67C is smaller than the deformation amount of the elastic part 62C (note that the support part 66C and the connection part 67C).
- the amount of deformation may be zero).
- the movable mirror 5C includes an elastic portion 52C and a pair of support portions 56C whose distances can be changed according to the elastic deformation of the elastic portion 52C.
- an opening 31bC communicating with the main surface BsC is formed in the mounting region 31C of the base BC on which the movable mirror 5C is mounted.
- the support portion 56C by inserting the support portion 56C into the opening 31bC in a state where the elastic portion 52C is elastically deformed so that the distance between the support portions 56C is reduced, and releasing a part of the elastic deformation of the elastic portion 52C, The mutual distance between the support portions 56C increases in the opening 31bC, and the support portion 56C can be brought into contact with the inner surface of the opening 31bC.
- the movable mirror 5C is supported by the reaction force applied to the support portion 56C from the inner surface of the opening 31bC.
- the movable mirror 5C is mounted on the base BC by using an elastic force. Therefore, the optical element can be reliably mounted without considering the adverse effect of the adhesive, that is, regardless of the characteristics of the mounting region 31C.
- the action and effect have been described by taking the movable mirror 5C as an example, but the same action and effect are also obtained with respect to the fixed mirror 6C (the same applies hereinafter).
- a connecting portion 57C that connects the mirror portion 51C and the support portion 56C to each other is provided on the base BC side with respect to the center of the mirror surface 51aC. Therefore, for example, the center of gravity of the movable mirror 5C as a whole is closer to the base BC than when the connecting portion 57C is provided on the opposite side of the base BC from the center of the mirror surface 51aC. For this reason, stability improves.
- the elastic portion 52C can be provided around the mirror portion 51C in the entire region opposite to the base BC from the center of the mirror surface 51aC. In this region, a member (for example, a connecting portion) that affects the elastic deformation of the elastic portion 52C is not necessary. For this reason, the elastically deformable portion of the elastic portion 52C can be made relatively long, and the spring constant can be easily adjusted. As a result, by suppressing an increase in the spring constant, it is possible to suppress damage to the elastic portion due to elastic deformation and realize stable mounting.
- the elastic portion 52C is free.
- the part which can be elastically deformed is divided by the connecting part. As a result, it is difficult to obtain the above effect.
- the movable mirror 5C can be stably mounted regardless of the characteristics of the mounting region 31C.
- the elastic portion 52C can be provided around the mirror portion 51C in the entire region opposite to the base BC from the center of the mirror surface 51aC. For this reason, even if it is a case where the elastic part 52C is provided so that it may adjoin to the mirror part 51C, the length of the elastic part 52C is securable enough. That is, according to this movable mirror 5C, it is possible to realize a compact movable mirror 5C while ensuring the length of the elastic portion 52C.
- the elastic portion 52C includes an arc-shaped portion 52aC formed so as to partially surround the mirror portion 51C when viewed from the direction intersecting the mirror surface 51aC, and includes one end portion 52pC and the other end portion. 52rC is provided at the tip of the arcuate portion 52aC. Since the elastic portion 52C has the arc-shaped portion 52aC as described above, both compactness and securing of the length of the elastic portion 52C can be reliably achieved.
- the support portion 56C includes a locking portion 55C that extends to the base BC side beyond the connection position CPC with the mirror portion 51C by the connection portion 57C and is inserted into the opening 31bC. Then, when viewed from the direction intersecting the mirror surface 51aC, the thickness of the locking portion 55C is larger than the thickness of the elastic portion 52C. For this reason, the movable mirror 5C can be more stably supported on the base BC via the locking portion 55C.
- the thickness of the support portion 56C is larger than the thickness of the elastic portion 52C when viewed from the direction intersecting the mirror surface 51aC. For this reason, the force for elastically deforming the elastic part 52C can be stably applied to the elastic part 52C via the support part 56C.
- the thickness of the connecting portion 57C may be larger than the thickness of the elastic portion 52C when viewed from the direction intersecting the mirror surface 51aC. In this case, the support part 56C and the mirror part 51C can be reliably connected.
- the inner surface of the opening 31bC has a pair of inclined surfaces SLC that are inclined so that the distance from one end SLaC to the other end SLbC increases as viewed from the ZC axis direction, and one inclined surface.
- a reference plane SRC extending along a reference line BLC connecting the other end SLbC of the SLC and the other end SLbC of the other inclined surface SLC.
- the optical module 1C further includes a fixed mirror 6C mounted on the base BC and a beam splitter 7C.
- the base BC has a drive region 32C connected to the mounting region 31C, and includes a movable mirror 5C and a fixed mirror 6C.
- the beam splitter 7C is arranged so as to constitute the interference optical system 10C. For this reason, FTIR with improved sensitivity can be obtained.
- the mounting region 31C on which the movable mirror 5C is mounted has a characteristic of being driven by being connected to the drive region 32C. Therefore, the above configuration is more effective because it is easily affected by the adverse effects of the adhesive.
- the base BC includes a support layer 2C, a device layer 3C provided on the support layer 2C, and an intermediate layer 4C provided between the support layer 2C and the device layer 3C. ing.
- the support layer 2C is a first silicon layer of the SOI substrate
- the device layer 3C is a second silicon layer of the SOI substrate
- the intermediate layer 4C is an insulating layer of the SOI substrate.
- the mirror surface 51aC of the movable mirror 5C is located on the opposite side of the support layer 2C with respect to the device layer 3C. Thereby, the configuration of the optical module 1C can be simplified.
- the light incident part 8C is arranged so that the measurement light is incident on the interference optical system 10C from the outside, and the light emitting part 9C emits the measurement light from the interference optical system 10C to the outside.
- the light emitting part 9C emits the measurement light from the interference optical system 10C to the outside.
- the space S1C is formed between the support layer 2C and the device layer 3C, and as long as it corresponds to at least the mounting region 31C and the drive region 32C, as shown in FIG. 52 and FIG. Aspects can be employed.
- a recess 23C that opens to the device layer 3C side is formed in the support layer 2C, and the region in the opening 41C of the intermediate layer 4C and the recess 23C in the support layer 2C
- the space S1C is configured by the regions.
- the region in the recess 23C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction.
- a part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C through a region in the opening 41C of the intermediate layer 4C. Also with this configuration, a configuration for reliably mounting the movable mirror 5C on the device layer 3C can be suitably realized.
- the region in the opening 21C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction.
- a part of the locking portion 55C is located in a region in the opening 21C of the support layer 2C via a region in the opening 41C of the intermediate layer 4C.
- the region in the recess 23C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axial direction.
- the region in the opening 41C of the intermediate layer 4C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and is separated from the support layer 2C in the mounting region 31C and the drive region 32C.
- a gap for separating the power portion from the support layer 2C is formed.
- a part of the locking portion 55C is located in a region in the recess 23C of the support layer 2C via a region in the opening 41C of the intermediate layer 4C.
- the support layer 2C and the device layer 3C may be joined to each other without the intermediate layer 4C.
- the support layer 2C is formed of, for example, silicon, borosilicate glass, quartz glass, or ceramic
- the device layer 3C is formed of, for example, silicon.
- the support layer 2C and the device layer 3C are bonded to each other by, for example, normal temperature bonding by surface activation, low temperature plasma bonding, direct bonding for performing high temperature treatment, insulating resin bonding, metal bonding, bonding by glass frit, or the like.
- the space S1C is formed between the support layer 2C and the device layer 3C, and if it corresponds to at least the mounting region 31C and the drive region 32C, FIG. 54, FIG. 55, FIG. As shown in 57, various aspects can be employed. In any configuration, it is possible to suitably realize a configuration for surely mounting the movable mirror 5C on the device layer 3C.
- the space S1C is constituted by the region in the opening 21C of the support layer 2C.
- the region in the opening 21C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C out of the mounting region 31C and the drive region 32C.
- a gap for separating the portion from the support layer 2C is formed.
- a part of the locking portion 55C is located in a region in the opening 21C of the support layer 2C.
- the space S1C is configured by the region in the concave portion 23C of the support layer 2C.
- the region in the recess 23C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C out of the mounting region 31C and the drive region 32C.
- a gap for separating the portion from the support layer 2C is formed.
- a part of the locking portion 55C is located in a region in the concave portion 23C of the support layer 2C.
- a recess (first recess) 38C that opens to the support layer 2C side is formed in the device layer 3C, and the region in the recess 38C of the device layer 3C and the support layer 2C A space S1C is formed by the region in the opening 21C.
- the region in the recess 38C of the device layer 3C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction.
- a region in the recess 38C of the device layer 3C forms a gap for separating a portion to be separated from the support layer 2C from the support layer 2C in the mounting region 31C and the drive region 32C.
- a part of the locking portion 55C is located in a region in the opening 21C of the support layer 2C via a region in the recess 38C of the device layer 3C.
- the recess 38C is formed in the device layer 3C, and the space is defined by the region in the recess 38C of the device layer 3C and the region in the recess (second recess) 23C of the support layer 2C.
- S1C is configured.
- the region in the recess 38C of the device layer 3C and the region in the recess 23C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction.
- a region in the recess 38C of the device layer 3C forms a gap for separating a portion to be separated from the support layer 2C from the support layer 2C in the mounting region 31C and the drive region 32C.
- a part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C of the support layer 2C via a region in the recess 38C of the device layer 3C.
- the recess 38C is formed in the device layer 3C, and the space S1C is formed by the region in the recess 38C of the device layer 3C and the region in the opening 21C of the support layer 2C.
- the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed.
- the region in the opening 21C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. A part of each locking portion 55C of the movable mirror 5C is located in a region in the opening 21C of the support layer 2C via a region in the recess 38C of the device layer 3C.
- the recess 38C is formed in the device layer 3C, and the space is defined by the region in the recess 38C of the device layer 3C and the region in the recess (second recess) 23C of the support layer 2C.
- S1C is configured.
- the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed.
- the region in the recess 23C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction.
- a part of the locking portion 55C is located in a region in the concave portion 23C of the support layer 2C via a region in the concave portion 38C of the device layer 3C.
- the recess 38C is formed in the device layer 3C, and the space S1C is configured by the region in the recess 38C of the device layer 3C.
- the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C.
- a gap for separating the portion from the support layer 2C is formed.
- a part of the locking part 55C is located in a region in the recess 38C of the device layer 3C.
- the mirror surface 51aC of the movable mirror 5C may be located on the opposite side of the device layer 3C with respect to the support layer 2C.
- the locking part 55C is extended so as to reach the opening 31bC.
- the mirror surface 61aC of the fixed mirror 6C and the optical functional surface 7aC of the beam splitter 7C are also located on the opposite side of the device layer 3C with respect to the support layer 2C.
- a spacer 39C that protrudes on the opposite side of the support layer 2C is provided integrally with the device layer 3C.
- the spacer 39C protrudes from a portion of each locking portion 55C of the movable mirror 5C that protrudes from the device layer 3C to the side opposite to the support layer 2C, and protects the portion.
- the opening 31bC communicates with the main surface BsC through a space defined by the spacer 39C.
- the opening 31bC communicates with another main surface which is a surface opposite to the main surface BsC through the space S1C.
- the fixed mirror 6C is mounted on the device layer 3C.
- the fixed mirror 6C may be mounted on the support layer 2C or the intermediate layer 4C.
- the beam splitter 7C is mounted on the support layer 2C.
- the beam splitter 7C may be mounted on the device layer 3C or the intermediate layer 4C.
- the beam splitter 7C is not limited to a cube type beam splitter, and may be a plate type beam splitter.
- the optical module 1C may include a light emitting element that generates measurement light to be incident on the light incident portion 8C in addition to the light incident portion 8C.
- the optical module 1C may include a light emitting element that generates measurement light incident on the interference optical system 10C, instead of the light incident portion 8C.
- the optical module 1C may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9C in addition to the light emitting unit 9C.
- the optical module 1C may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10C instead of the light emitting unit 9C.
- first through electrode electrically connected to each actuator region 33C and the second through electrode electrically connected to each of the both end portions 34aC of each elastic support region 34C are the support layer 2C and the intermediate layer 4C. (If the intermediate layer 4C does not exist, only the support layer 2C is provided), and a voltage may be applied between the first through electrode and the second through electrode.
- the actuator that moves the mounting region 31C is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like.
- the optical module 1C is not limited to the one constituting the FTIR, and may constitute another optical system.
- the shape of the opening 31bC when viewed from the ZC axis direction may be a triangle.
- the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a reference surface SRC.
- the one ends SLaC of the inclined surfaces SLC are connected to each other.
- the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by inscribed the locking portion 55C at the corner defined by the inclined surface SLC and the reference surface SRC.
- the shape of the opening 31bC when viewed from the ZC axis direction is a hexagon.
- the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a pair of inclined surfaces SKC inclined to the opposite side of the inclined surface SLC.
- the pair of inclined surfaces SKC are inclined so that the distance from each other increases from one end SKaC to the other end SKbC.
- the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other to form one corner.
- the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
- one locking portion 55C contacts the inner surface of the opening 31bC at two points.
- the inclined surface SLC may be a curved surface.
- the pair of inclined surfaces SLC are inclined and curved so that the distance increases from one end SLaC to the other end SLbC.
- the inclined surface SLC is curved such that the inclination of the tangent to the inclined surface SLC with respect to the XC axis gradually increases from one end SLaC to the other end SLbC.
- the inclined surface SLC is curved so as to be convex toward the inside of the opening 31bC. Even in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by inscribed in the corners defined by the inclined surface SLC and the reference surface SRC. is there.
- both the inclined surface SLC and the inclined surface SKC are curved surfaces that are convex toward the inside of the opening 31bC.
- the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other via a connection surface extending along the XC axis direction.
- the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
- each of the two portions 31pC has an inclined surface SLC and a reference surface SRC. That is, here, the reference plane SRC is also divided into two parts. However, as viewed from the ZC axis direction, the reference surface SRC as a whole is connected to the other end SLbC of the inclined surface SLC of the one portion 31pC and the other end SLbC of the inclined surface SLC of the other portion 31pC. It extends along. In this case, one locking portion 55C is inserted into one portion 31pC of the opening 31bC.
- the engaging portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, so that the movable mirror 5C can be positioned in both the XC axis direction and the YC axis direction.
- each of the two portions 31pC has an inclined surface SLC and an inclined surface SKC.
- the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
- the shape of the opening 31bC when viewed from the ZC axis direction is a rhombus.
- the inner surface of the opening 31bC may be constituted by the inclined surface SLC and the inclined surface SKC. That is, here, in addition to the inclined surface SLC and the inclined surface SKC being connected to each other, the one ends SLaC of the inclined surfaces SLC are connected to each other, and the one ends SKaC of the inclined surfaces SKC are connected to each other.
- the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
- the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other via a connection surface extending along the XC axis direction.
- the one ends SLaC of the inclined surfaces SLC are connected to each other, and the one ends SKaC of the inclined surfaces SKC are connected to each other.
- the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
- the shapes of the mirror portions 51C and 61C and the mirror surfaces 51aC and 61aC are not limited to a circle, and may be a rectangle or other shapes.
- the modifications of the movable mirror 5C and the opening 31bC are not limited to those described above.
- the movable mirror 5C and the opening 31bC may be another modified example configured by exchanging arbitrary portions of the above-described modified examples. The same applies to the fixed mirror 6C and the opening 37aC.
- the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BC.
- the optical surface is a mirror surface.
- the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter.
- the centers of the mirror surfaces (optical surfaces) 51aC and 61aC described above are the centers of the mirror surfaces 51aC and 61aC in the ZC axis direction (direction intersecting (orthogonal) with the main surface BsC).
- the shape of the mirror surfaces 51aC and 61aC is not a shape that can uniquely determine the center (for example, a circle or a quadrangle)
- the centers of the mirror surfaces 51aC and 61aC are the mirror surfaces 51aC and 61aC in the ZC axis direction. It can also be interpreted by replacing the center of gravity.
- the center of gravity can be defined according to the areas of the mirror surfaces 51aC and 61aC.
- the elastic part 52C is elastically deformed so that the distance of 56 C of support parts may reduce, for example.
- the distance between the support portions 56C is increased by opening a part of the elastic deformation of the elastic portion 52C in the opening 31bC.
- the support portion 56C is brought into contact with the inner surface of the opening 31bC to perform self-alignment.
- the elastic portion 52C may be elastically deformed so as to increase the interval between the support portions 56C. In that case, when a part of the elastic deformation of the elastic portion 52C is released in a state where the locking portion 55C is inserted into the opening 31bC, the locking portions 55C are displaced so as to approach each other.
- An optical module comprising an optical element and a base on which the optical element is mounted,
- the optical element includes an optical part having an optical surface, an elastic part including one end part and the other end part provided around the optical part, and the optical part from each of the one end part and the other end part.
- a pair of support parts extending to the base side, and a connecting part for connecting one of the support parts and the optical part to each other;
- the base has a main surface and a mounting region provided with an opening communicating with the main surface;
- the support portion is provided with an elastic force according to the elastic deformation of the elastic portion and the distance between the support portion is variable, and is inserted into the opening in a state where the elastic force is applied.
- the optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the support portion in a state where the optical surface intersects the main surface,
- the connecting portion is provided closer to the base than the center of the optical surface.
- the elastic portion includes an arc-shaped portion formed so as to partially surround the optical portion when viewed from a direction intersecting the optical surface, The one end and the other end are provided at the tip of the arcuate portion, The optical module according to appendix 22.
- the support part includes a locking part that extends to the base side beyond the connection position with the optical part by the connection part and is inserted into the opening. When viewed from the direction intersecting the optical surface, the thickness of the locking portion is larger than the thickness of the elastic portion, The optical module according to appendix 22 or 23.
- [Appendix 28] A fixed mirror and a beam splitter mounted on the base;
- the optical element is a movable mirror including the optical surface which is a mirror surface;
- the base has a drive region connected to the mounting region;
- the movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system, 28.
- the optical module according to any one of appendices 22 to 27.
- the base has a support layer, a device layer provided on the support layer, and an intermediate layer provided between the support layer and the device layer,
- the support layer is a first silicon layer of an SOI substrate;
- the device layer is a second silicon layer of the SOI substrate;
- the intermediate layer is an insulating layer of the SOI substrate. 29.
- Appendix 30 A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside; A light emitting portion arranged to emit the measurement light to the outside from the interference optical system; Comprising 30.
- optical module according to the first embodiment, the optical module according to the second embodiment, and the optical module according to the third embodiment described above are configured to add and / or replace each arbitrary element. Can be changed.
- connecting part (first connecting part), 54A, 64A ... leg part, 55A, 65A ... locking part, 55aA, 55bA, 65aA, 65bA ... inclined surface, 56A , 66A ... support part, 57A, 67A ... connecting part (second connecting part), SLA ... inclined surface, SLaA ... one end, SLbA ... other end, SRA ... reference plane, BLA ... reference line, CAA ... ring.
- 1B optical module
- 2B support layer, 3B ... device layer, 4B ... intermediate layer, 5B ... movable mirror, 7B ... beam splitter, 8B ... light incident part, 9B ... light emitting part, 10B ...
- interference optical system 31B ... Mounting area, 31bB ... Opening, 51B ... Mirror part, 51aB ... Mirror surface, 52B ... Elastic part, 54B ... Supporting part, 55B ... Locking part, 56B ... Handle, 56B ... Handle, 56aB ... Displacement part, BB ... Base, 1C ... Optical module, 2C ... Support layer, 3C ... Device layer, 4C ... Intermediate layer, 5C ... Movable mirror (optical element), 6C ... Fixed mirror (optical element), 7C ... Beam splitter, 8C ...
- Light incident part , 9C Light emitting unit, 10C: Interference optical system, 31C, 37C: Mounting area, 31bC, 37aC: Opening, 32C: Drive area, 51C, 61C: Mirror part (optical part), 5 aC, 61aC ... mirror surface (optical surface), 52C, 62C ... elastic part, 52aC, 62aC ... arc-shaped part, 52pC, 62pC ... one end part, 52rC, 62rC ... other end part, 55C, 65C ... locking part, 56C , 66C ... support part, 57C, 67C ... connecting part, SLC ... inclined surface, SLaC ... one end, SLbC ... other end, SRC ... reference plane, BLC ... reference line.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
Abstract
Provided is a light module that is equipped with an optical element and a base on which the optical element is mounted. The optical element includes: an optical part having an optical surface; an elastic part that is provided around the periphery of the optical part so as to form an annular region; and a pair of support parts which are provided so as to sandwich the optical part therebetween in a first direction along the optical surface and for which the distance therebetween can change when applied with an elastic force in response to elastic deformation of the elastic part. The base has a main surface and a mounting region in which there is provided an opening that communicates with the main surface. The support parts are inserted into the opening in a state where the elastic force of the elastic part is acting on the support parts. The optical element is supported in the mounting region by a reaction force against the elastic force acting on the support parts from an inner plane of the opening in a state where the optical surface intersects the main surface.
Description
本開示の一側面は、光モジュールに関する。
One aspect of the present disclosure relates to an optical module.
MEMS(Micro Electro Mechanical Systems)技術によってSOI(Silicon On Insulator)基板に干渉光学系が形成された光モジュールが知られている(例えば、特許文献1参照)。このような光モジュールは、高精度な光学配置が実現されたFTIR(フーリエ変換型赤外分光分析器)を提供し得るため、注目されている。
An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, Patent Document 1). Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
特許文献2には、光学システムの製造プロセスが記載されている。このプロセスにおいては、まず、テンプレート基板及び光学ベンチを用意する。テンプレート基板には、エッチングによってアライメントスロットが形成されている。光学ベンチの主面にはボンドパッドが配置されている。続いて、アライメントスロットがボンドパッド上に配置されるように、テンプレート基板を光学ベンチの主面に取り付ける。続いて、光学要素をアライメントスロットの側壁を用いて位置決めしながらアライメントスロットに挿入し、ボンドパッド上に位置させる。そして、ボンドパッドのリフローにより光学要素を光学ベンチに接着する。
Patent Document 2 describes an optical system manufacturing process. In this process, first, a template substrate and an optical bench are prepared. An alignment slot is formed on the template substrate by etching. Bond pads are arranged on the main surface of the optical bench. Subsequently, the template substrate is attached to the main surface of the optical bench so that the alignment slot is disposed on the bond pad. Subsequently, the optical element is inserted into the alignment slot while being positioned using the side wall of the alignment slot, and is positioned on the bond pad. Then, the optical element is bonded to the optical bench by reflowing the bond pad.
上述したような光モジュールには、例えば可動ミラーのサイズがSOI基板に対する深堀加工の達成度に依存する点で、次のような課題がある。すなわち、SOI基板に対する深堀加工の達成度は最大でも500μm程度であるため、可動ミラーのサイズを大きくしてFTIRにおける感度を向上させるのには限界がある。そこで、別体で形成された可動ミラーをデバイス層(例えばSOI基板において駆動領域が形成される層)に実装する技術が考えられる。
The optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 μm at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
これに対して、特許文献1に記載のMEMSデバイスの作製に際して特許文献2に記載のプロセスを用いると、アクチュエータに接続されて可動とされた実装領域に対して、可動ミラーといった光学要素をボンドパッドのリフローにより接着して実装することになる。この場合、ボンドパッドの接着が実装領域の駆動に悪影響を及ぼすおそれがある。このため、光学要素の実装領域の特性によっては、特許文献1に記載のプロセスが適用できない場合がある。
On the other hand, when the process described in Patent Document 2 is used in manufacturing the MEMS device described in Patent Document 1, an optical element such as a movable mirror is bonded to the mounting area connected to the actuator and movable. It will be mounted by bonding by reflow. In this case, the bonding of the bond pad may adversely affect the driving of the mounting area. For this reason, the process described in Patent Document 1 may not be applicable depending on the characteristics of the mounting region of the optical element.
本開示の一側面は、実装領域の特性によらず確実に光学素子を実装可能な光モジュールを提供することを目的とする。
An object of one aspect of the present disclosure is to provide an optical module that can reliably mount an optical element regardless of characteristics of a mounting region.
本開示の一側面に係る光モジュールは、光学素子と光学素子が実装されるベースとを備える光モジュールであって、光学素子は、光学面を有する光学部と、環状領域を形成するように光学部の周囲に設けられた弾性部と、光学面に沿った第1方向に光学部を挟むように設けられ、弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、を有し、ベースは、主面と、主面に連通する開口が設けられた実装領域と、を有し、支持部は、弾性部の弾性力が付与された状態において開口に挿入され、光学素子は、光学面が主面に交差した状態において、開口の内面から支持部に付与される弾性力の反力により実装領域に支持される。
An optical module according to one aspect of the present disclosure is an optical module including an optical element and a base on which the optical element is mounted, and the optical element is optical so as to form an optical part having an optical surface and an annular region. The elastic part provided around the part and the optical part are provided so as to sandwich the optical part in the first direction along the optical surface, and the elastic force is applied according to the elastic deformation of the elastic part and the mutual distance is variable. The base has a main surface and a mounting region provided with an opening communicating with the main surface, and the support portion is provided with the elastic force of the elastic portion. The optical element is inserted into the opening in the state, and the optical element is supported by the mounting region by the reaction force of the elastic force applied to the support portion from the inner surface of the opening in a state where the optical surface intersects the main surface.
この光モジュールにおいては、光学素子が、弾性部と、弾性部の弾性変形に応じて互いの距離が可変とされた一対の支持部と、を有する。一方、光学素子が実装されるベースの実装領域には、主面に連通する開口が形成されている。したがって、一例として支持部間の距離が縮小するように弾性部を弾性変形させた状態において支持部を開口に挿入し、弾性部の弾性変形の一部を解放することにより、開口内において支持部の互いの距離が拡大し、支持部を開口の内面に当接させることができる。これにより、光学素子は、開口の内面から支持部に付与される反力によって支持される。このように、この光モジュールにおいては、弾性力を利用して光学素子をベースに実装する。したがって、接着剤の悪影響等を考慮することなく、すなわち、実装領域の特性によらず、確実に光学素子を実装可能である。
In this optical module, the optical element has an elastic part and a pair of support parts whose distances can be changed according to the elastic deformation of the elastic part. On the other hand, an opening communicating with the main surface is formed in the mounting region of the base on which the optical element is mounted. Therefore, as an example, the support portion is inserted into the opening in a state in which the elastic portion is elastically deformed so that the distance between the support portions is reduced, and a part of the elastic deformation of the elastic portion is released, so that the support portion is opened in the opening. The distance between each other increases, and the support portion can be brought into contact with the inner surface of the opening. Thereby, an optical element is supported by the reaction force provided to a support part from the inner surface of opening. As described above, in this optical module, the optical element is mounted on the base using the elastic force. Therefore, the optical element can be reliably mounted without considering the adverse effect of the adhesive, that is, regardless of the characteristics of the mounting area.
なお、この光学素子においては、弾性部が環状領域を形成するように設けられている。このため、例えば弾性部が片持ち状態とされる場合(この場合には、弾性部によって環状等の閉じた領域が形成されない)と比較して、弾性部の強度が向上する。したがって、例えば光学素子の製造時やハンドリング時に、弾性部の破損を抑制可能である。すなわち、本開示の一側面は、光学素子に関し、弾性部の破損を抑制可能な光学素子を提供することを別の目的とする。
In this optical element, the elastic portion is provided so as to form an annular region. For this reason, for example, the strength of the elastic portion is improved as compared with a case where the elastic portion is in a cantilever state (in this case, a closed region such as an annular shape is not formed by the elastic portion). Therefore, for example, damage to the elastic portion can be suppressed during manufacturing or handling of the optical element. That is, it is another object of one aspect of the present disclosure to provide an optical element that can suppress breakage of an elastic portion with respect to the optical element.
本開示の一側面に係る光モジュールにおいては、ベースは、支持層と、支持層上に設けられ、主面及び実装領域を含むデバイス層と、を有し、開口は、主面に交差する方向にデバイス層を貫通しており、支持部は、主面に交差する方向における開口の一対の縁部に当接するように屈曲した係止部を含んでもよい。この場合、係止部が開口の一対の縁部に当接する位置において実装領域に係止される。このため、光学素子をベースに確実に実装可能であると共に、ベースの主面に交差する方向について光学素子の位置決めが可能である。
In the optical module according to one aspect of the present disclosure, the base includes a support layer and a device layer provided on the support layer and including a main surface and a mounting region, and the opening intersects the main surface. The support layer may include a locking portion that is bent so as to be in contact with a pair of edges of the opening in a direction intersecting the main surface. In this case, the locking portion is locked to the mounting region at a position where the locking portion contacts the pair of edges of the opening. Therefore, the optical element can be reliably mounted on the base, and the optical element can be positioned in the direction intersecting the main surface of the base.
本開示の一側面に係る光モジュールにおいては、開口の内面は、主面に交差する方向からみて、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一方の傾斜面の他端と他方の傾斜面の他端とを接続する基準線に沿って延在する基準面と、を含んでもよい。この場合、支持部を開口に挿入して弾性部の弾性変形の一部を解放したときに、弾性力によって支持部を傾斜面に摺動させて基準面に突き当てることができる。このため、主面に沿った方向における光学素子の位置決めが可能である。
In the optical module according to one aspect of the present disclosure, the inner surface of the opening includes a pair of inclined surfaces that are inclined so that the distance from each other increases from one end toward the other end when viewed from the direction intersecting the main surface. And a reference surface extending along a reference line connecting the other end of the inclined surface and the other end of the other inclined surface. In this case, when the support portion is inserted into the opening and a part of the elastic deformation of the elastic portion is released, the support portion can be slid on the inclined surface by the elastic force and abut against the reference surface. For this reason, the optical element can be positioned in the direction along the main surface.
本開示の一側面に係る光モジュールにおいては、光学素子は、光学部と弾性部とを互いに連結する第1連結部を有してもよい。このように、光学部が弾性部に連結されていてもよい。
In the optical module according to one aspect of the present disclosure, the optical element may include a first connection unit that connects the optical unit and the elastic unit to each other. Thus, the optical part may be connected to the elastic part.
本開示の一側面に係る光モジュールにおいては、弾性部は、光学面に交差する第2方向からみて光学部を囲うように環状に形成されることにより環状領域を形成していてもよい。この場合、弾性部に端部が生じないため、弾性部の強度を確実に向上可能である。
In the optical module according to one aspect of the present disclosure, the elastic portion may be formed in an annular shape so as to surround the optical portion when viewed from the second direction intersecting the optical surface. In this case, since the end portion does not occur in the elastic portion, the strength of the elastic portion can be reliably improved.
本開示の一側面に係る光モジュールにおいては、支持部は、弾性部に接続される第2連結部と、光学面に沿うと共に第1方向に交差する第3方向に沿って第2連結部から光学面を越えて延在し、開口に挿入される脚部と、を含んでもよい。この場合、光学面の全体を主面上に突出させた状態において、光学素子をベースに実装可能である。
In the optical module according to one aspect of the present disclosure, the support portion includes the second connecting portion connected to the elastic portion, and the second connecting portion along the third direction along the optical surface and intersecting the first direction. And a leg that extends beyond the optical surface and is inserted into the opening. In this case, the optical element can be mounted on the base in a state where the entire optical surface protrudes from the main surface.
本開示の一側面に係る光モジュールは、支持層、デバイス層、又は、中間層に実装された固定ミラーと、支持層、デバイス層、又は、中間層に実装されたビームスプリッタと、を更に備え、光学素子は、ミラー面である光学面を含む可動ミラーであり、デバイス層は、実装領域に接続された駆動領域を有し、可動ミラー、固定ミラー及びビームスプリッタは、干渉光学系を構成するように配置されていてもよい。この場合、感度が向上されたFTIRを得ることができる。また、ここでは、可動ミラーが実装される実装領域は、駆動領域に接続されて駆動される特性を有している。したがって、接着剤の悪影響等を受けやすいため、上記の構成がより有効となる。
The optical module according to one aspect of the present disclosure further includes a fixed mirror mounted on the support layer, the device layer, or the intermediate layer, and a beam splitter mounted on the support layer, the device layer, or the intermediate layer. The optical element is a movable mirror including an optical surface that is a mirror surface, the device layer has a drive region connected to the mounting region, and the movable mirror, the fixed mirror, and the beam splitter constitute an interference optical system. It may be arranged as follows. In this case, an FTIR with improved sensitivity can be obtained. Here, the mounting area where the movable mirror is mounted has a characteristic of being connected to the driving area and driven. Therefore, the above configuration is more effective because it is easily affected by the adverse effects of the adhesive.
本開示の一側面に係る光モジュールにおいては、ベースは、支持層とデバイス層との間に設けられた中間層を有し、支持層は、SOI基板の第1シリコン層であり、デバイス層は、SOI基板の第2シリコン層であり、中間層は、SOI基板の絶縁層であってもよい。この場合、デバイス層に対する可動ミラーの確実な実装のための構成をSOI基板によって好適に実現することができる。
In the optical module according to one aspect of the present disclosure, the base includes an intermediate layer provided between the support layer and the device layer, the support layer is the first silicon layer of the SOI substrate, and the device layer is The second silicon layer of the SOI substrate, and the intermediate layer may be an insulating layer of the SOI substrate. In this case, a configuration for reliably mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
本開示の一側面に係る光モジュールは、外部から干渉光学系に測定光を入射させるように配置された光入射部と、干渉光学系から外部に測定光を出射させるように配置された光出射部と、を備えてもよい。この場合、光入射部及び光出射部を備えるFTIRを得ることができる。
An optical module according to one aspect of the present disclosure includes a light incident unit arranged to allow measurement light to be incident on the interference optical system from the outside, and a light emission arranged to emit measurement light to the outside from the interference optical system May be provided. In this case, an FTIR including a light incident part and a light emission part can be obtained.
本開示の一側面によれば、実装領域の特性によらず確実に光学素子を実装可能な光モジュールを提供することができる。
According to one aspect of the present disclosure, it is possible to provide an optical module that can reliably mount an optical element regardless of the characteristics of the mounting region.
[第1実施形態]
以下、本開示の一側面の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光モジュールの構成] [First Embodiment]
Hereinafter, an embodiment of one aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
以下、本開示の一側面の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光モジュールの構成] [First Embodiment]
Hereinafter, an embodiment of one aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
図1に示されるように、光モジュール1Aは、ベースBAを備えている。ベースBAは、主面BsAを備えている。ベースBAは、支持層2Aと、支持層2A上に設けられたデバイス層3Aと、支持層2Aとデバイス層3Aとの間に設けられた中間層4Aと、備えている。主面BsAは、ここでは、デバイス層3Aにおける支持層2Aと反対側の表面である。支持層2A、デバイス層3A及び中間層4Aは、SOI基板によって構成されている。具体的には、支持層2Aは、SOI基板の第1シリコン層である。デバイス層3Aは、SOI基板の第2シリコン層である。中間層4Aは、SOI基板の絶縁層である。支持層2A、デバイス層3A及び中間層4Aは、それらの積層方向であるZA軸方向(ZA軸に平行な方向)から見た場合に、例えば、一辺が10mm程度の矩形状を呈している。支持層2A及びデバイス層3Aのそれぞれの厚さは、例えば数百μm程度である。中間層4Aの厚さは、例えば数μm程度である。なお、図1では、デバイス層3Aの1つの角部及び中間層4Aの1つの角部が切り欠かれた状態で、デバイス層3A及び中間層4Aが示されている。
As shown in FIG. 1, the optical module 1A includes a base BA. The base BA has a main surface BsA. The base BA includes a support layer 2A, a device layer 3A provided on the support layer 2A, and an intermediate layer 4A provided between the support layer 2A and the device layer 3A. Here, the main surface BsA is a surface of the device layer 3A opposite to the support layer 2A. The support layer 2A, the device layer 3A, and the intermediate layer 4A are configured by an SOI substrate. Specifically, the support layer 2A is the first silicon layer of the SOI substrate. The device layer 3A is a second silicon layer of the SOI substrate. The intermediate layer 4A is an insulating layer of the SOI substrate. The support layer 2A, the device layer 3A, and the intermediate layer 4A have, for example, a rectangular shape with a side of about 10 mm when viewed from the ZA axis direction (a direction parallel to the ZA axis) that is the stacking direction thereof. Each thickness of the support layer 2A and the device layer 3A is, for example, about several hundred μm. The thickness of the intermediate layer 4A is, for example, about several μm. In FIG. 1, the device layer 3A and the intermediate layer 4A are shown with one corner of the device layer 3A and one corner of the intermediate layer 4A cut out.
デバイス層3Aは、実装領域31Aと、実装領域31Aに接続された駆動領域32Aと、を有している。駆動領域32Aは、一対のアクチュエータ領域33Aと、一対の弾性支持領域34Aと、を含んでいる。実装領域31A及び駆動領域32A(すなわち、実装領域31A並びに一対のアクチュエータ領域33A及び一対の弾性支持領域34A)は、MEMS技術(パターニング及びエッチング)によってデバイス層3Aの一部に一体的に形成されている。
The device layer 3A has a mounting area 31A and a driving area 32A connected to the mounting area 31A. The drive region 32A includes a pair of actuator regions 33A and a pair of elastic support regions 34A. The mounting region 31A and the drive region 32A (that is, the mounting region 31A and the pair of actuator regions 33A and the pair of elastic support regions 34A) are integrally formed on a part of the device layer 3A by MEMS technology (patterning and etching). Yes.
一対のアクチュエータ領域33Aは、XA軸方向(ZA軸に直交するXA軸に平行な方向)において実装領域31Aの両側に配置されている。つまり、実装領域31Aは、XA軸方向において一対のアクチュエータ領域33Aに挟まれている。各アクチュエータ領域33Aは、中間層4Aを介して支持層2Aに固定されている。各アクチュエータ領域33Aにおける実装領域31A側の側面には、第1櫛歯部33aAが設けられている。各第1櫛歯部33aAは、その直下の中間層4Aが除去されることで、支持層2Aに対して浮いた状態となっている。各アクチュエータ領域33Aには、第1電極35Aが設けられている。
The pair of actuator regions 33A are arranged on both sides of the mounting region 31A in the XA axis direction (the direction parallel to the XA axis orthogonal to the ZA axis). That is, the mounting area 31A is sandwiched between the pair of actuator areas 33A in the XA axis direction. Each actuator region 33A is fixed to the support layer 2A via the intermediate layer 4A. A first comb tooth portion 33aA is provided on a side surface of each actuator region 33A on the mounting region 31A side. Each first comb tooth portion 33aA is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the first comb tooth portion 33aA. Each actuator region 33A is provided with a first electrode 35A.
一対の弾性支持領域34Aは、YA軸方向(ZA軸及びXA軸に直交するYA軸に平行な方向)において実装領域31Aの両側に配置されている。つまり、実装領域31Aは、YA軸方向において一対の弾性支持領域34Aに挟まれている。各弾性支持領域34Aの両端部34aAは、中間層4Aを介して支持層2Aに固定されている。各弾性支持領域34Aの弾性変形部34bA(両端部34aAの間の部分)は、複数の板バネが連結された構造を有している。各弾性支持領域34Aの弾性変形部34bAは、その直下の中間層4Aが除去されることで、支持層2Aに対して浮いた状態となっている。各弾性支持領域34Aにおいて両端部34aAのそれぞれには、第2電極36Aが設けられている。
The pair of elastic support regions 34A are disposed on both sides of the mounting region 31A in the YA axis direction (a direction parallel to the YA axis orthogonal to the ZA axis and the XA axis). That is, the mounting region 31A is sandwiched between the pair of elastic support regions 34A in the YA axis direction. Both end portions 34aA of each elastic support region 34A are fixed to the support layer 2A via the intermediate layer 4A. Each elastic support region 34A has an elastic deformation portion 34bA (a portion between both end portions 34aA) having a structure in which a plurality of leaf springs are connected. The elastic deformation portion 34bA of each elastic support region 34A is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the elastic deformation portion 34bA. In each elastic support region 34A, a second electrode 36A is provided at each of both end portions 34aA.
実装領域31Aには、各弾性支持領域34Aの弾性変形部34bAが接続されている。実装領域31Aは、その直下の中間層4Aが除去されることで、支持層2Aに対して浮いた状態となっている。つまり、実装領域31Aは、一対の弾性支持領域34Aによって支持されている。実装領域31Aにおける各アクチュエータ領域33A側の側面には、第2櫛歯部31aAが設けられている。各第2櫛歯部31aAは、その直下の中間層4Aが除去されることで、支持層2Aに対して浮いた状態となっている。互いに対向する第1櫛歯部33aA及び第2櫛歯部31aAにおいては、第1櫛歯部33aAの各櫛歯が第2櫛歯部31aAの各櫛歯間に位置している。
The elastic deformation part 34bA of each elastic support area 34A is connected to the mounting area 31A. The mounting region 31A is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the mounting region 31A. That is, the mounting area 31A is supported by the pair of elastic support areas 34A. A second comb tooth portion 31aA is provided on a side surface of each mounting region 31A on the side of each actuator region 33A. Each second comb tooth portion 31aA is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below it. In the first comb tooth portion 33aA and the second comb tooth portion 31aA facing each other, the comb teeth of the first comb tooth portion 33aA are located between the comb teeth of the second comb tooth portion 31aA.
一対の弾性支持領域34Aは、XA軸に平行な方向AAに対して両側から実装領域31Aを挟んでおり、実装領域31Aが方向AAに沿って移動すると、実装領域31Aが初期位置に戻るように実装領域31Aに弾性力を作用させる。したがって、第1電極35Aと第2電極36Aとの間に電圧が印加されて、互いに対向する第1櫛歯部33aA及び第2櫛歯部31aA間に静電引力が作用すると、当該静電引力と一対の弾性支持領域34Aによる弾性力とがつり合う位置まで、方向AAに沿って実装領域31Aが移動させられる。このように、駆動領域32Aは、静電アクチュエータとして機能する。
The pair of elastic support regions 34A sandwich the mounting region 31A from both sides with respect to the direction AA parallel to the XA axis so that when the mounting region 31A moves along the direction AA, the mounting region 31A returns to the initial position. An elastic force is applied to the mounting region 31A. Accordingly, when a voltage is applied between the first electrode 35A and the second electrode 36A and an electrostatic attractive force acts between the first comb tooth portion 33aA and the second comb tooth portion 31aA facing each other, the electrostatic attractive force The mounting region 31A is moved along the direction AA to a position where the elastic force of the pair of elastic support regions 34A is balanced. Thus, the drive region 32A functions as an electrostatic actuator.
光モジュール1Aは、可動ミラー5Aと、固定ミラー6Aと、ビームスプリッタ7Aと、光入射部8Aと、光出射部9Aと、を更に備えている。可動ミラー5A、固定ミラー6A及びビームスプリッタ7Aは、マイケルソン干渉光学系である干渉光学系10Aを構成するように、デバイス層3A上に配置されている。
The optical module 1A further includes a movable mirror 5A, a fixed mirror 6A, a beam splitter 7A, a light incident part 8A, and a light emitting part 9A. The movable mirror 5A, the fixed mirror 6A, and the beam splitter 7A are arranged on the device layer 3A so as to constitute an interference optical system 10A that is a Michelson interference optical system.
可動ミラー5Aは、XA軸方向におけるビームスプリッタ7Aの一方の側において、デバイス層3Aの実装領域31Aに実装されている。可動ミラー5Aが有するミラー部51Aのミラー面51aAは、デバイス層3Aに対して支持層2Aとは反対側に位置している。ミラー面51aAは、例えばXA軸方向に垂直な面(すなわち、方向AAに垂直な面)であり、ビームスプリッタ7A側に向いている。
The movable mirror 5A is mounted on the mounting region 31A of the device layer 3A on one side of the beam splitter 7A in the XA axis direction. The mirror surface 51aA of the mirror portion 51A included in the movable mirror 5A is located on the opposite side of the support layer 2A with respect to the device layer 3A. The mirror surface 51aA is, for example, a surface perpendicular to the XA axis direction (that is, a surface perpendicular to the direction AA) and faces the beam splitter 7A side.
固定ミラー6Aは、YA軸方向におけるビームスプリッタ7Aの一方の側において、デバイス層3Aの実装領域37Aに実装されている。固定ミラー6Aが有するミラー部61Aのミラー面61aAは、デバイス層3Aに対して支持層2Aとは反対側に位置している。ミラー面61aAは、例えばYA軸方向に垂直な面であり、ビームスプリッタ7A側に向いている。
The fixed mirror 6A is mounted on the mounting region 37A of the device layer 3A on one side of the beam splitter 7A in the YA axis direction. The mirror surface 61aA of the mirror portion 61A of the fixed mirror 6A is located on the opposite side of the support layer 2A with respect to the device layer 3A. The mirror surface 61aA is, for example, a surface perpendicular to the YA axis direction and faces the beam splitter 7A side.
光入射部8Aは、YA軸方向におけるビームスプリッタ7Aの他方の側において、デバイス層3Aに実装されている。光入射部8Aは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光入射部8Aは、外部から干渉光学系10Aに測定光を入射させるように配置されている。
The light incident portion 8A is mounted on the device layer 3A on the other side of the beam splitter 7A in the YA axis direction. The light incident part 8A is configured by, for example, an optical fiber and a collimating lens. The light incident part 8A is arranged so that measurement light is incident on the interference optical system 10A from the outside.
光出射部9Aは、XA軸方向におけるビームスプリッタ7Aの他方の側において、デバイス層3Aに実装されている。光出射部9Aは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光出射部9Aは、干渉光学系10Aから外部に測定光(干渉光)を出射させるように配置されている。
The light emitting portion 9A is mounted on the device layer 3A on the other side of the beam splitter 7A in the XA axis direction. The light emitting unit 9A is configured by, for example, an optical fiber and a collimating lens. The light emitting portion 9A is arranged to emit measurement light (interference light) from the interference optical system 10A to the outside.
ビームスプリッタ7Aは、光学機能面7aAを有するキューブタイプのビームスプリッタである。光学機能面7aAは、デバイス層3Aに対して支持層2Aとは反対側に位置している。ビームスプリッタ7Aは、デバイス層3Aに形成された矩形状の開口3aAの1つの隅部にビームスプリッタ7Aの底面側の1つの角部が接触させられることで、位置決めされている。ビームスプリッタ7Aは、位置決めされた状態で接着等によって支持層2Aに固定されることで、支持層2Aに実装されている。
The beam splitter 7A is a cube type beam splitter having an optical functional surface 7aA. The optical functional surface 7aA is located on the side opposite to the support layer 2A with respect to the device layer 3A. The beam splitter 7A is positioned by bringing one corner on the bottom side of the beam splitter 7A into contact with one corner of the rectangular opening 3aA formed in the device layer 3A. The beam splitter 7A is mounted on the support layer 2A by being fixed to the support layer 2A by adhesion or the like in a positioned state.
以上のように構成された光モジュール1Aでは、光入射部8Aを介して外部から干渉光学系10Aに測定光L0Aが入射すると、測定光L0Aの一部は、ビームスプリッタ7Aの光学機能面7aAで反射されて可動ミラー5Aに向かって進行し、測定光L0Aの残部は、ビームスプリッタ7Aの光学機能面7aAを透過して固定ミラー6Aに向かって進行する。測定光L0Aの一部は、可動ミラー5Aのミラー面51aAで反射されて、同一光路上をビームスプリッタ7Aに向かって進行し、ビームスプリッタ7Aの光学機能面7aAを透過する。測定光L0Aの残部は、固定ミラー6Aのミラー面61aAで反射されて、同一光路上をビームスプリッタ7Aに向かって進行し、ビームスプリッタ7Aの光学機能面7aAで反射される。ビームスプリッタ7Aの光学機能面7aAを透過した測定光L0Aの一部と、ビームスプリッタ7Aの光学機能面7aAで反射された測定光L0Aの残部とは、干渉光である測定光L1Aとなり、測定光L1Aは、光出射部9Aを介して干渉光学系10Aから外部に出射する。光モジュール1Aによれば、方向AAに沿って可動ミラー5Aを高速で往復動させることができるので、小型且つ高精度のFTIRを提供することができる。
[可動ミラー及びその周辺構造] In theoptical module 1A configured as described above, when the measurement light L0A is incident on the interference optical system 10A from the outside via the light incident portion 8A, a part of the measurement light L0A is transmitted to the optical functional surface 7aA of the beam splitter 7A. The reflected light travels toward the movable mirror 5A, and the remaining portion of the measurement light L0A passes through the optical function surface 7aA of the beam splitter 7A and travels toward the fixed mirror 6A. A part of the measurement light L0A is reflected by the mirror surface 51aA of the movable mirror 5A, travels on the same optical path toward the beam splitter 7A, and passes through the optical functional surface 7aA of the beam splitter 7A. The remaining part of the measurement light L0A is reflected by the mirror surface 61aA of the fixed mirror 6A, travels on the same optical path toward the beam splitter 7A, and is reflected by the optical function surface 7aA of the beam splitter 7A. A part of the measurement light L0A transmitted through the optical functional surface 7aA of the beam splitter 7A and the remaining part of the measurement light L0A reflected by the optical functional surface 7aA of the beam splitter 7A become the measurement light L1A that is interference light, and the measurement light L1A is emitted to the outside from the interference optical system 10A via the light emitting portion 9A. According to the optical module 1A, the movable mirror 5A can be reciprocated at high speed along the direction AA, so that a small and highly accurate FTIR can be provided.
[Movable mirror and surrounding structure]
[可動ミラー及びその周辺構造] In the
[Movable mirror and surrounding structure]
図2、図3、及び図4に示されるように、可動ミラー(光学素子)5Aは、ミラー面(光学面)51aAを有するミラー部(光学部)51Aと、環状の弾性部52Aと、ミラー部51Aと弾性部52Aとを互いに連結する連結部(第1連結部)53Aと、一対の支持部56Aと、支持部56Aと弾性部52Aとを互いに連結する一対の連結部(第2連結部)57Aと、を有している。ミラー部51Aは、円板状に形成されている。ミラー面51aAは、ミラー部51Aの円形状の板面である。可動ミラー5Aは、ミラー面51aAが主面BsAに交差(例えば直交)する状態においてベースBAに実装されている。
As shown in FIGS. 2, 3, and 4, the movable mirror (optical element) 5A includes a mirror part (optical part) 51A having a mirror surface (optical surface) 51aA, an annular elastic part 52A, and a mirror. 53A of connection part (1st connection part) which mutually connects 51A and elastic part 52A, a pair of support part 56A, and a pair of connection part (2nd connection part) which mutually connect 56 A of support parts, and elastic part 52A ) 57A. The mirror part 51A is formed in a disc shape. The mirror surface 51aA is a circular plate surface of the mirror portion 51A. The movable mirror 5A is mounted on the base BA in a state where the mirror surface 51aA intersects (for example, is orthogonal to) the main surface BsA.
弾性部52Aは、ミラー面51aAに交差する方向(第2方向、XA軸方向)からみて、ミラー部51Aから離間しつつミラー部51Aを取り囲むように円環状に形成されている。すなわち、弾性部52Aは、ミラー部51Aの周囲に設けられ、円環状の環状領域CAAを形成している。連結部53Aは、主面BsAに交差する方向(第3方向、ZA軸方向)におけるミラー部51Aの中心において、ミラー部51Aと弾性部52Aとを互いに連結している。ここでは、単一の連結部53Aが設けられている。
The elastic part 52A is formed in an annular shape so as to surround the mirror part 51A while being separated from the mirror part 51A when viewed from the direction intersecting the mirror surface 51aA (second direction, XA axis direction). In other words, the elastic portion 52A is provided around the mirror portion 51A and forms an annular region CAA. The connecting portion 53A connects the mirror portion 51A and the elastic portion 52A to each other at the center of the mirror portion 51A in the direction intersecting the main surface BsA (third direction, ZA axis direction). Here, a single connecting portion 53A is provided.
弾性部52Aは、半円状の板バネ52aAと、板バネ52aAに連続する半円状の板バネ52bAとによって、円環板状に形成されている。板バネ52aAは、ZA軸方向におけるミラー部51Aの中心を通る中心線CLAよりも主面BsA側(後述する脚部54A側)に配置される部分である。中心線CLAは、ミラー面51aA及び主面BsAに沿った方向(第1方向、YA軸方向)に沿って延びる仮想的な直線である。板バネ52bAは、中心線CLAよりも主面BsAの反対側(後述する脚部54Aと反対側)に配置される部分である。板バネ52aAのばね定数と、板バネ52bAのばね定数とは、互いに等しい。つまり、弾性部52Aは、中心線CLAに対して対称的な形状であり、且つ、弾性部52Aのばね定数は、中心線CLAの両側において互いに等しい。
The elastic portion 52A is formed in an annular plate shape by a semicircular leaf spring 52aA and a semicircular leaf spring 52bA continuous to the leaf spring 52aA. The leaf spring 52aA is a portion disposed on the main surface BsA side (a leg portion 54A side described later) with respect to the center line CLA passing through the center of the mirror portion 51A in the ZA axis direction. The center line CLA is an imaginary straight line extending along a direction (first direction, YA axis direction) along the mirror surface 51aA and the main surface BsA. The leaf spring 52bA is a portion disposed on the opposite side of the main surface BsA from the center line CLA (on the opposite side to a leg portion 54A described later). The spring constant of the leaf spring 52aA and the spring constant of the leaf spring 52bA are equal to each other. That is, the elastic part 52A has a symmetrical shape with respect to the center line CLA, and the spring constant of the elastic part 52A is equal to each other on both sides of the center line CLA.
支持部56Aは、断面矩形の棒状であって、YA軸方向にミラー部51A及び弾性部52Aを挟むように設けられている。支持部56Aは、YA軸方向に沿って連結部53Aに対応する位置において、連結部57Aにより弾性部52Aに連結されている。したがって、例えば連結部57Aに対応する位置において、YA軸方向の両側から支持部56Aを挟むように支持部56Aに力を加えることにより、弾性部52AをYA軸方向に圧縮するように弾性変形させることができる。すなわち、YA軸方向に沿った支持部56Aの互いの距離は、弾性部52Aの弾性変形に応じて可変である。また、支持部56Aには、弾性部52Aの弾性力が付与され得る。なお、ここでは、一対の連結部57Aと連結部53Aとが、中心線CLA上に一列に配列されている。
The support portion 56A has a bar shape with a rectangular cross section, and is provided so as to sandwich the mirror portion 51A and the elastic portion 52A in the YA axis direction. The support portion 56A is coupled to the elastic portion 52A by a coupling portion 57A at a position corresponding to the coupling portion 53A along the YA axis direction. Therefore, for example, at the position corresponding to the connecting portion 57A, by applying force to the support portion 56A so as to sandwich the support portion 56A from both sides in the YA axis direction, the elastic portion 52A is elastically deformed so as to be compressed in the YA axis direction. be able to. That is, the mutual distance between the support portions 56A along the YA axis direction is variable according to the elastic deformation of the elastic portion 52A. Further, the elastic force of the elastic portion 52A can be applied to the support portion 56A. Here, the pair of connecting portions 57A and the connecting portion 53A are arranged in a line on the center line CLA.
支持部56Aは、脚部54Aを含む。脚部54Aは、全体として、ZA軸方向に沿って連結部57Aからミラー面51aAを越えてミラー面51aAの一方側(ここでは主面BsA側)に延在している。脚部54Aは、係止部55Aを含む。係止部55Aは、脚部54Aの先端側の部分である。係止部55Aは、全体としてV字状に屈曲している。係止部55Aは、傾斜面55aA及び傾斜面55bAを含む。傾斜面55aA及び傾斜面55bAは、一対の係止部55Aにおける互いに対向する面の反対側の面である(外面である)。
The support portion 56A includes a leg portion 54A. As a whole, the leg portion 54A extends from the connecting portion 57A over the mirror surface 51aA to one side (here, the main surface BsA side) of the mirror surface 51aA along the ZA axis direction. The leg portion 54A includes a locking portion 55A. The locking portion 55A is a portion on the distal end side of the leg portion 54A. The locking portion 55A is bent in a V shape as a whole. The locking portion 55A includes an inclined surface 55aA and an inclined surface 55bA. The inclined surface 55aA and the inclined surface 55bA are opposite surfaces (outer surfaces) of the surfaces of the pair of locking portions 55A that face each other.
傾斜面55aAは、一対の係止部55A間において、連結部57Aから遠ざかる方向(ZA軸負方向)に互いに近づくように傾斜している。傾斜面55bAは、ZA軸負方向に互いに離間するように傾斜している。XA軸方向からみて、ZA軸に対する傾斜面55aAの傾斜角αAの絶対値は、90°未満である。同様に、傾斜面55bAの傾斜角βAの絶対値は、90°未満である。ここでは、一例として、傾斜角αAの絶対値と傾斜角βAの絶対値とは互いに等しい。
The inclined surfaces 55aA are inclined so as to approach each other in the direction away from the connecting portion 57A (the ZA axis negative direction) between the pair of locking portions 55A. The inclined surfaces 55bA are inclined so as to be separated from each other in the negative direction of the ZA axis. When viewed from the XA axis direction, the absolute value of the inclination angle αA of the inclined surface 55aA with respect to the ZA axis is less than 90 °. Similarly, the absolute value of the inclination angle βA of the inclined surface 55bA is less than 90 °. Here, as an example, the absolute value of the inclination angle αA and the absolute value of the inclination angle βA are equal to each other.
ここで、実装領域31Aには、開口31bAが形成されている。ここでは、開口31bAは、ZA軸方向に延びてデバイス層3Aを貫通している。したがって、開口31bAは、主面BsAとデバイス層3Aにおける主面BsAの反対側の表面とに連通している(至っている)。開口31bAは、ZA軸方向からみたときの形状が台形である柱状を呈している(図4参照)。開口31bAの詳細については後述する。
Here, an opening 31bA is formed in the mounting region 31A. Here, the opening 31bA extends in the ZA axis direction and penetrates the device layer 3A. Accordingly, the opening 31bA communicates with (is led to) the main surface BsA and the surface of the device layer 3A opposite to the main surface BsA. The opening 31bA has a columnar shape with a trapezoidal shape when viewed from the ZA axis direction (see FIG. 4). Details of the opening 31bA will be described later.
支持部56Aは、弾性部52Aの弾性力が付与された状態において、この開口31bAに挿入される。換言すれば、支持部56A(すなわち可動ミラー5A)が開口31bAを介して実装領域31Aを貫通している。より具体的には、支持部56Aのうちの係止部55Aの一部が、開口31bA内に位置している。その状態において、係止部55Aは、ZA軸方向における開口31bAの一対の縁部(主面BsA側の縁部及び主面BsAの反対側の縁部)に接触している。
The support portion 56A is inserted into the opening 31bA in a state where the elastic force of the elastic portion 52A is applied. In other words, the support portion 56A (that is, the movable mirror 5A) penetrates the mounting region 31A through the opening 31bA. More specifically, a part of the locking portion 55A in the support portion 56A is located in the opening 31bA. In this state, the locking portion 55A is in contact with a pair of edges (the edge on the main surface BsA side and the edge on the opposite side of the main surface BsA) of the opening 31bA in the ZA axial direction.
ここでは、傾斜面55aAが開口31bAの主面BsA側の縁部に接触し、傾斜面55bAが開口31bAの主面BsAの反対側の縁部に接触している。これにより、ZA軸方向において係止部55Aが実装領域31Aを挟むように実装領域31Aに係止される。この結果、ZA軸方向について、可動ミラー5AがベースBAから抜けることが抑制される。
Here, the inclined surface 55aA is in contact with the edge of the opening 31bA on the main surface BsA side, and the inclined surface 55bA is in contact with the edge of the opening 31bA on the opposite side of the main surface BsA. Accordingly, the locking portion 55A is locked to the mounting area 31A so as to sandwich the mounting area 31A in the ZA axis direction. As a result, the movable mirror 5A is prevented from coming off the base BA in the ZA axis direction.
ここで、中間層4Aには、開口41Aが形成されている。開口41Aは、ZA軸方向において中間層4Aの両側に開口している。支持層2Aには、開口21Aが形成されている。開口21Aは、ZA軸方向において支持層2Aの両側に開口している。光モジュール1Aでは、中間層4Aの開口41A内の領域及び支持層2Aの開口21A内の領域によって、一続きの空間S1Aが構成されている。つまり、空間S1Aは、中間層4Aの開口41A内の領域及び支持層2Aの開口21A内の領域を含んでいる。
Here, an opening 41A is formed in the intermediate layer 4A. The openings 41A are opened on both sides of the intermediate layer 4A in the ZA axis direction. An opening 21A is formed in the support layer 2A. The openings 21A are opened on both sides of the support layer 2A in the ZA axial direction. In the optical module 1A, a continuous space S1A is constituted by a region in the opening 41A of the intermediate layer 4A and a region in the opening 21A of the support layer 2A. That is, the space S1A includes a region in the opening 41A of the intermediate layer 4A and a region in the opening 21A of the support layer 2A.
空間S1Aは、支持層2Aとデバイス層3Aとの間に形成されており、少なくとも実装領域31A及び駆動領域32Aに対応している。具体的には、中間層4Aの開口41A内の領域及び支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいる。中間層4Aの開口41A内の領域は、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分(すなわち、支持層2Aに対して浮いた状態とすべき部分であって、例えば、実装領域31Aの全体、各弾性支持領域34Aの弾性変形部34bA、第1櫛歯部33aA及び第2櫛歯部31aA)を支持層2Aから離間させるための隙間を形成している。
The space S1A is formed between the support layer 2A and the device layer 3A, and corresponds to at least the mounting region 31A and the drive region 32A. Specifically, the region in the opening 41A of the intermediate layer 4A and the region in the opening 21A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction. The region in the opening 41A of the intermediate layer 4A is a portion that should be separated from the support layer 2A in the mounting region 31A and the drive region 32A (that is, a portion that should be in a floating state with respect to the support layer 2A. A gap for separating the entire mounting region 31A, the elastic deformation portion 34bA, the first comb tooth portion 33aA, and the second comb tooth portion 31aA) of each elastic support region 34A from the support layer 2A is formed.
空間S1Aには、可動ミラー5Aが有する各係止部55Aの一部が位置している。具体的には、各係止部55Aの一部は、中間層4Aの開口41A内の領域を介して、支持層2Aの開口21A内の領域に位置している。各係止部55Aの一部は、デバイス層3Aにおける中間層4A側の表面から空間S1A内に、例えば100μm程度突出している。上述したように、中間層4Aの開口41A内の領域及び支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいるため、実装領域31Aが方向AAに沿って往復動した際に、可動ミラー5Aの各係止部55Aうち空間S1Aに位置する一部が、中間層4A及び支持層2Aと接触することはない。
A part of each locking portion 55A of the movable mirror 5A is located in the space S1A. Specifically, a part of each locking portion 55A is located in a region in the opening 21A of the support layer 2A via a region in the opening 41A of the intermediate layer 4A. A part of each locking portion 55A protrudes from the surface on the intermediate layer 4A side in the device layer 3A into the space S1A, for example, by about 100 μm. As described above, the region in the opening 41A of the intermediate layer 4A and the region in the opening 21A of the support layer 2A include the range in which the mounting region 31A moves when viewed from the ZA axis direction. Is reciprocated along the direction AA, a part of each locking portion 55A of the movable mirror 5A located in the space S1A does not come into contact with the intermediate layer 4A and the support layer 2A.
ここで、図4に示されるように、開口31bAの内面は、一対の傾斜面SLAと、基準面SRAと、を含む。傾斜面SLAは、一端SLaAと他端SLbAとを含む。一端SLaA及び他端SLbAは、ZA軸方向からみたときの傾斜面SLAの両端部である。一対の傾斜面SLAは、一端SLaAから他端SLbAに向けて互いの距離が拡大するように(例えばXA軸に対して)傾斜している。基準面SRAは、ZA軸方向からみて、一方の傾斜面SLAの他端SLbAと他方の傾斜面SLAの他端SLbAとを互いに接続する基準線BLAに沿って延在している。ここでは、基準面SRAは、単に、他端SLbA同士を互いに接続している。上述したように、ZA軸方向からみたときの開口31bAの形状は台形である。したがって、ここでは、傾斜面SLAが台形の脚に相当し、基準面SRAは台形の下底に相当する。
Here, as shown in FIG. 4, the inner surface of the opening 31bA includes a pair of inclined surfaces SLA and a reference surface SRA. The inclined surface SLA includes one end SLaA and the other end SLbA. One end SLaA and the other end SLbA are both ends of the inclined surface SLA when viewed from the ZA axis direction. The pair of inclined surfaces SLA are inclined (for example, with respect to the XA axis) such that the distance from one end SLaA toward the other end SLbA increases. The reference surface SRA extends along a reference line BLA that connects the other end SLbA of one inclined surface SLA and the other end SLbA of the other inclined surface SLA when viewed from the ZA axis direction. Here, the reference surface SRA simply connects the other ends SLbA to each other. As described above, the shape of the opening 31bA when viewed from the ZA axis direction is a trapezoid. Accordingly, here, the inclined surface SLA corresponds to a trapezoidal leg, and the reference surface SRA corresponds to a lower base of the trapezoid.
ここでは、開口31bAは単一の空間である。YA軸方向における開口31bAの寸法の最小値(すなわち、傾斜面SLAの一端SLaA同士の間隔)は、YA軸方向に沿って弾性部52Aを圧縮するように弾性変形させたとき、一対の係止部55Aを一括して開口31bA内に配置可能な値である。一方、YA軸方向における開口31bAの寸法の最大値(すなわち、傾斜面SLAの他端SLbA同士の間隔)は、一対の係止部55Aが開口31bAに配置されているときに弾性部52Aの弾性変形の一部のみが解放され得る(すなわち弾性部52Aが自然長に至らない)値である。
Here, the opening 31bA is a single space. The minimum value of the dimension of the opening 31bA in the YA axis direction (that is, the interval between the one ends SLaA of the inclined surface SLA) is a pair of latches when the elastic portion 52A is elastically deformed to be compressed along the YA axis direction. The value is such that the portion 55A can be disposed in the opening 31bA in a lump. On the other hand, the maximum value of the dimension of the opening 31bA in the YA-axis direction (that is, the interval between the other ends SLbA of the inclined surface SLA) is the elasticity of the elastic part 52A when the pair of locking parts 55A is disposed in the opening 31bA. Only a part of the deformation can be released (that is, the elastic portion 52A does not reach the natural length).
したがって、開口31bA内に一対の係止部55Aを配置すると、弾性部52Aの弾性力によって係止部55Aが開口31bAの内面を押圧し、開口31bAの内面からの反力が係止部55A(支持部56A)に付与されることになる。これにより、可動ミラー5Aは、ミラー面51aAが主面BsAに交差(例えば直交)した状態において、開口31bAの内面から支持部56Aに付与される弾性力の反力により実装領域31Aに支持される。
Therefore, when the pair of locking portions 55A is arranged in the opening 31bA, the locking portion 55A presses the inner surface of the opening 31bA by the elastic force of the elastic portion 52A, and the reaction force from the inner surface of the opening 31bA is generated by the locking portion 55A ( The support portion 56A) is applied. Accordingly, the movable mirror 5A is supported by the mounting region 31A by the reaction force of the elastic force applied to the support portion 56A from the inner surface of the opening 31bA in a state where the mirror surface 51aA intersects (for example, orthogonally) the main surface BsA. .
特に、係止部55Aは、開口31bAの傾斜面SLAに当接される。このため、係止部55Aは、傾斜面SLAからの反力のXA軸方向の成分によって傾斜面SLA上を基準面SRAに向けて摺動し、傾斜面SLAに接触しながら基準面SRAに突き当てられる。これにより、係止部55Aは、傾斜面SLAと基準面SRAとによって規定される角部に内接し、XA軸方向及びYA軸方向の両方において位置決めされる(弾性力によりセルフアライメントされる)。ここでは、係止部55Aの断面形状が四角形であるので、ZA軸方向から見て、傾斜面SLAは係止部55Aに対して点で接触し、基準面SRAは係止部55Aに対して線で接触する。すなわち、ここでは、開口31bAの内面は、ZA軸方向からみて2つの点及び2つの線で一対の係止部55Aに接触する。
Particularly, the locking portion 55A is brought into contact with the inclined surface SLA of the opening 31bA. For this reason, the locking portion 55A slides on the inclined surface SLA toward the reference surface SRA by a component in the XA axis direction of the reaction force from the inclined surface SLA, and pushes against the reference surface SRA while contacting the inclined surface SLA. Hit. As a result, the locking portion 55A is inscribed in a corner defined by the inclined surface SLA and the reference surface SRA, and is positioned in both the XA axis direction and the YA axis direction (self-aligned by elastic force). Here, since the cross-sectional shape of the locking portion 55A is a quadrangle, when viewed from the ZA axis direction, the inclined surface SLA contacts the locking portion 55A at a point, and the reference surface SRA is fixed to the locking portion 55A. Touch with a line. That is, here, the inner surface of the opening 31bA contacts the pair of locking portions 55A at two points and two lines as seen from the ZA axis direction.
一方、図2に示されるように、XA軸方向からみて、係止部55Aには、開口31bAの縁部においても開口31bAの内面から弾性力の反力が付与される。可動ミラー5Aの実装時には、係止部55Aの傾斜面55aA及び傾斜面55bAの一方に対して反力が付与される場合がある。この場合には、当該反力の傾斜面55aA又は傾斜面55bAに沿った成分によって傾斜面55aA及び傾斜面55bAの一方が縁部に摺動し、傾斜面55aAと傾斜面55bAとの両方が縁部に当接する位置(すなわちZA軸方向に沿って実装領域31Aを挟む位置)に至るようにZA軸方向に沿って移動する。これにより、当該位置において係止部55Aが係止され、可動ミラー5AがZA軸方向について位置決めされる(弾性力によりセルフアライメントされる)。つまり、可動ミラー5Aにおいては、弾性部52Aの弾性力を利用して、3次元的にセルフアライメントがなされる。
On the other hand, as shown in FIG. 2, when viewed from the XA axis direction, an elastic reaction force is applied to the locking portion 55A from the inner surface of the opening 31bA even at the edge of the opening 31bA. When the movable mirror 5A is mounted, a reaction force may be applied to one of the inclined surface 55aA and the inclined surface 55bA of the locking portion 55A. In this case, one of the inclined surface 55aA and the inclined surface 55bA slides on the edge due to the component of the reaction force along the inclined surface 55aA or the inclined surface 55bA, and both the inclined surface 55aA and the inclined surface 55bA are edges. It moves along the ZA axis direction so as to reach a position where it contacts the part (that is, a position sandwiching the mounting region 31A along the ZA axis direction). Accordingly, the locking portion 55A is locked at the position, and the movable mirror 5A is positioned in the ZA axis direction (self-aligned by the elastic force). That is, in the movable mirror 5A, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52A.
以上のような可動ミラー5Aは、例えばMEMS技術(パターニング及びエッチング)によって一体的に形成される。したがって、可動ミラー5Aの厚さ(ミラー面51aAに交差する方向の寸法)は、各部において一定であり、例えば、320μm程度である。また、ミラー面51aAの直径は、例えば1mm程度である。さらに、弾性部52Aのミラー部51A側の表面(内面)と、ミラー部51Aの弾性部52A側の表面(外面)との間隔は、例えば200μm程度である。弾性部52Aの厚さ(板バネの厚さ)は、例えば10μm以上20μm以下程度である。
[固定ミラー及びその周辺構造] Themovable mirror 5A as described above is integrally formed by, for example, MEMS technology (patterning and etching). Accordingly, the thickness of the movable mirror 5A (the dimension in the direction intersecting the mirror surface 51aA) is constant in each part, and is, for example, about 320 μm. The diameter of the mirror surface 51aA is, for example, about 1 mm. Furthermore, the distance between the surface (inner surface) of the elastic part 52A on the mirror part 51A side and the surface (outer surface) of the mirror part 51A on the elastic part 52A side is, for example, about 200 μm. The thickness of the elastic portion 52A (thickness of the leaf spring) is, for example, about 10 μm to 20 μm.
[Fixed mirror and its peripheral structure]
[固定ミラー及びその周辺構造] The
[Fixed mirror and its peripheral structure]
固定ミラー6A及びその周辺構造は、実装領域が可動しないことを除いて、上記の可動ミラー5A及びその周辺構造と同様となっている。すなわち、図5及び図6に示されるように、固定ミラー(光学素子)6Aは、ミラー面(光学面)61aAを有するミラー部(光学部)61Aと、環状の弾性部62Aと、ミラー部61Aと弾性部62Aとを互いに連結する連結部(第1連結部)63Aと、一対の支持部66Aと、支持部66Aと弾性部62Aとを互いに連結する一対の連結部(第2連結部)67Aと、を有している。ミラー部61Aは、円板状に形成されている。ミラー面61aAは、ミラー部61Aの円形状の板面である。固定ミラー6Aは、ミラー面61aAがベースBAの主面BsAに交差(例えば直交)する状態において、ベースBAに実装されている。
The fixed mirror 6A and its peripheral structure are the same as the movable mirror 5A and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 5 and 6, the fixed mirror (optical element) 6A includes a mirror part (optical part) 61A having a mirror surface (optical surface) 61aA, an annular elastic part 62A, and a mirror part 61A. And the elastic portion 62A, a connecting portion (first connecting portion) 63A, a pair of supporting portions 66A, and a pair of connecting portions (second connecting portions) 67A that connect the supporting portions 66A and the elastic portion 62A to each other. And have. The mirror part 61A is formed in a disc shape. The mirror surface 61aA is a circular plate surface of the mirror part 61A. The fixed mirror 6A is mounted on the base BA in a state where the mirror surface 61aA intersects (for example, is orthogonal to) the main surface BsA of the base BA.
弾性部62Aは、ミラー面61aAに交差する方向(第2方向、YA軸方向)からみて、ミラー部61Aから離間しつつミラー部61Aを取り囲むように円環状に形成されている。したがって、弾性部62Aは、ミラー部61Aの周囲に設けられ、円環状の環状領域CAAを形成している。連結部63Aは、主面BsAに交差する方向(第3方向、ZA軸方向)におけるミラー部61Aの中心において、ミラー部61Aと弾性部62Aとを互いに連結している。ここでは、単一の連結部63Aが設けられている。
The elastic portion 62A is formed in an annular shape so as to surround the mirror portion 61A while being separated from the mirror portion 61A when viewed from the direction intersecting the mirror surface 61aA (second direction, YA axis direction). Therefore, the elastic part 62A is provided around the mirror part 61A and forms an annular region CAA. The connecting portion 63A connects the mirror portion 61A and the elastic portion 62A to each other at the center of the mirror portion 61A in the direction intersecting the main surface BsA (third direction, ZA axis direction). Here, a single connecting portion 63A is provided.
弾性部62Aは、半円状の板バネ62aAと、板バネ62aAに連続する半円状の板バネ62bAとによって、円環板状に形成されている。板バネ62aAは、ZA軸方向におけるミラー部61Aの中心を通る中心線CLAよりも主面BsA側(後述する脚部64A側)に配置される部分である。中心線CLAは、ミラー面61aA及び主面BsAに沿った方向(第1方向、XA軸方向)に沿って延びる仮想的な直線である。板バネ62bAは、中心線CLAよりも主面BsAの反対側(後述する脚部64Aと反対側)に配置される部分である。板バネ62aAのばね定数と、板バネ62bAのばね定数とは互いに等しい。つまり、弾性部62Aは、中心線CLAに対して対称的な形状であり、且つ、弾性部62Aのばね定数は、中心線CLAの両側において互いに等しい。
The elastic portion 62A is formed in an annular plate shape by a semicircular leaf spring 62aA and a semicircular leaf spring 62bA continuous to the leaf spring 62aA. The leaf spring 62aA is a portion disposed on the main surface BsA side (a leg portion 64A side described later) with respect to the center line CLA passing through the center of the mirror portion 61A in the ZA axis direction. The center line CLA is an imaginary straight line extending along a direction (first direction, XA axis direction) along the mirror surface 61aA and the main surface BsA. The leaf spring 62bA is a portion disposed on the opposite side of the main surface BsA from the center line CLA (on the opposite side to the leg portion 64A described later). The spring constant of the leaf spring 62aA and the spring constant of the leaf spring 62bA are equal to each other. That is, the elastic part 62A has a symmetrical shape with respect to the center line CLA, and the spring constant of the elastic part 62A is equal to each other on both sides of the center line CLA.
支持部66Aは、断面矩形の棒状であって、XA軸方向にミラー部61A及び弾性部62Aを挟むように設けられている。支持部66Aは、YA軸方向に沿って連結部63Aに対応する位置において、連結部67Aにより弾性部62Aに連結されている。したがって、例えば連結部67Aに対応する位置において、XA軸方向の両側から支持部66Aを挟むように支持部66Aに力を加えることにより、弾性部62AをXA軸方向に圧縮するように弾性変形させることができる。すなわち、XA軸方向に沿った支持部66Aの互いの距離は、弾性部62Aの弾性変形に応じて可変である。また、支持部66Aには、弾性部62Aの弾性力が付与され得る。なお、ここでは、一対の連結部67Aと連結部63Aとが、中心線CLA上に一列に配列されている。
The support portion 66A is a rod having a rectangular cross section, and is provided so as to sandwich the mirror portion 61A and the elastic portion 62A in the XA axis direction. The support portion 66A is coupled to the elastic portion 62A by a coupling portion 67A at a position corresponding to the coupling portion 63A along the YA axis direction. Therefore, for example, at the position corresponding to the connecting portion 67A, by applying force to the support portion 66A so as to sandwich the support portion 66A from both sides in the XA axis direction, the elastic portion 62A is elastically deformed so as to be compressed in the XA axis direction. be able to. That is, the distance between the support portions 66A along the XA axis direction is variable according to the elastic deformation of the elastic portion 62A. Further, the elastic force of the elastic portion 62A can be applied to the support portion 66A. Here, the pair of connecting portions 67A and the connecting portion 63A are arranged in a line on the center line CLA.
支持部66Aは、脚部64Aを含む。脚部64Aは、全体として、ZA軸方向に沿って、連結部67Aからミラー面61aAを越えてミラー面61aAの一方側(ここでは主面BsA側)に延在している。脚部64Aは、係止部65Aを含む。係止部65Aは、脚部64Aの先端側の部分である。係止部65Aは、全体として屈曲している。係止部65Aは、傾斜面65aA及び傾斜面65bAを含む。傾斜面65aA及び傾斜面65bAは、一対の係止部65Aにおける互いに対向する面の反対側の面である(外面である)。
The support portion 66A includes a leg portion 64A. The leg portion 64A as a whole extends from the connecting portion 67A to the one side (here, the main surface BsA side) of the mirror surface 61aA across the mirror surface 61aA along the ZA axis direction. The leg portion 64A includes a locking portion 65A. The locking portion 65A is a tip side portion of the leg portion 64A. The locking portion 65A is bent as a whole. The locking portion 65A includes an inclined surface 65aA and an inclined surface 65bA. The inclined surface 65aA and the inclined surface 65bA are surfaces opposite to the surfaces facing each other in the pair of locking portions 65A (outer surfaces).
傾斜面65aAは、一対の係止部65A間において、連結部67Aから遠ざかる方向(ZA軸負方向)に互いに近づくように傾斜している。傾斜面65bAは、ZA軸負方向に互いに離間するように傾斜している。YA軸方向からみて、ZA軸に対する傾斜面65aA,65bAの傾斜角は、可動ミラー5Aにおける傾斜面55aA,55bAと同様である。
The inclined surfaces 65aA are inclined so as to approach each other in the direction away from the connecting portion 67A (the ZA axis negative direction) between the pair of locking portions 65A. The inclined surfaces 65bA are inclined so as to be separated from each other in the ZA axis negative direction. When viewed from the YA axis direction, the inclination angles of the inclined surfaces 65aA and 65bA with respect to the ZA axis are the same as those of the inclined surfaces 55aA and 55bA in the movable mirror 5A.
ここで、実装領域37Aには、開口37aAが形成されている。ここでは、開口37aAは、ZA軸方向にデバイス層3Aを貫通している。したがって、開口37aAは、主面BsAとデバイス層3Aにおける主面BsAの反対側の表面とに連通している(至っている)。開口37aAは、実装領域31Aにおける開口31bAと同様に、ZA軸方向からみたときの形状が台形である柱状を呈している。
Here, an opening 37aA is formed in the mounting region 37A. Here, the opening 37aA penetrates the device layer 3A in the ZA axis direction. Accordingly, the opening 37aA communicates with (is led to) the main surface BsA and the surface of the device layer 3A opposite to the main surface BsA. The opening 37aA, like the opening 31bA in the mounting region 31A, has a columnar shape with a trapezoidal shape when viewed from the ZA axis direction.
支持部66Aは、弾性部62Aの弾性力が付与された状態において、この開口37aAに挿入される。換言すれば、支持部66A(すなわち固定ミラー6A)が開口37aAを介して実装領域37Aを貫通している。より具体的には、支持部66Aのうちの係止部65Aの一部が、開口37aA内に位置している。その状態において、係止部65Aは、ZA軸方向における開口37aAの一対の縁部(主面BsA側の縁部及び主面BsAの反対側の縁部)に接触している。ここでは、傾斜面65aAが開口37aAの主面BsA側の縁部に接触し、傾斜面65bAが開口37aAの主面BsAの反対側の縁部に接触している。これにより、ZA軸方向において係止部65Aが実装領域37Aを挟むように実装領域37Aに係止される。この結果、ZA軸方向について、固定ミラー6AがベースBAから抜けることが抑制される。
The support portion 66A is inserted into the opening 37aA in a state where the elastic force of the elastic portion 62A is applied. In other words, the support portion 66A (that is, the fixed mirror 6A) penetrates the mounting region 37A through the opening 37aA. More specifically, a part of the locking portion 65A of the support portion 66A is located in the opening 37aA. In this state, the locking portion 65A is in contact with a pair of edges (the edge on the main surface BsA side and the edge on the opposite side of the main surface BsA) of the opening 37aA in the ZA axial direction. Here, the inclined surface 65aA is in contact with the edge of the opening 37aA on the main surface BsA side, and the inclined surface 65bA is in contact with the edge of the opening 37aA on the opposite side of the main surface BsA. Accordingly, the locking portion 65A is locked to the mounting region 37A so as to sandwich the mounting region 37A in the ZA axis direction. As a result, the fixed mirror 6A is prevented from coming off the base BA in the ZA axis direction.
ここで、中間層4Aには、開口42Aが形成されている。開口42Aは、ZA軸方向から見た場合に実装領域37Aの開口37aAを含んでおり、ZA軸方向において中間層4Aの両側に開口している。支持層2Aには、開口22Aが形成されている。開口22Aは、ZA軸方向から見た場合に実装領域37Aの開口37aAを含んでおり、ZA軸方向において支持層2Aの両側に開口している。光モジュール1Aでは、中間層4Aの開口42A内の領域及び支持層2Aの開口22A内の領域によって、一続きの空間S2Aが構成されている。つまり、空間S2Aは、中間層4Aの開口42A内の領域及び支持層2Aの開口22A内の領域を含んでいる。
Here, an opening 42A is formed in the intermediate layer 4A. The opening 42A includes the opening 37aA of the mounting region 37A when viewed from the ZA axis direction, and opens on both sides of the intermediate layer 4A in the ZA axis direction. An opening 22A is formed in the support layer 2A. The opening 22A includes the opening 37aA of the mounting region 37A when viewed from the ZA axis direction, and is open on both sides of the support layer 2A in the ZA axis direction. In the optical module 1A, a continuous space S2A is constituted by the region in the opening 42A of the intermediate layer 4A and the region in the opening 22A of the support layer 2A. That is, the space S2A includes a region in the opening 42A of the intermediate layer 4A and a region in the opening 22A of the support layer 2A.
空間S2Aには、固定ミラー6Aが有する各係止部65Aの一部が位置している。具体的には、各係止部65Aの一部は、中間層4Aの開口42A内の領域を介して、支持層2Aの開口22A内の領域に位置している。各係止部65Aの一部は、デバイス層3Aにおける中間層4A側の表面から空間S2A内に、例えば100μm程度突出している。
A part of each locking portion 65A of the fixed mirror 6A is located in the space S2A. Specifically, a part of each locking portion 65A is located in a region in the opening 22A of the support layer 2A via a region in the opening 42A of the intermediate layer 4A. A part of each locking portion 65A protrudes from the surface of the device layer 3A on the intermediate layer 4A side into the space S2A, for example, by about 100 μm.
ここで、開口37aAの内面は、実装領域31Aにおける開口31bAの内面と同様に構成されている。したがって、開口37aA内に一対の係止部65Aを配置すると、弾性部62Aの弾性力によって係止部65Aが開口37aAの内面を押圧し、開口37aAの内面からの反力が係止部65A(支持部66A)に付与されることになる。これにより、固定ミラー6Aは、ミラー面61aAが主面BsAに交差(例えば直交)した状態において、開口37aAの内面から支持部66Aに付与される弾性力の反力によりベースBAに支持される。特に、固定ミラー6Aにおいても、可動ミラー5Aの場合と同様に、開口37aAの内面と弾性力とを利用した3次元的なセルフアライメントがなされる。
Here, the inner surface of the opening 37aA is configured similarly to the inner surface of the opening 31bA in the mounting region 31A. Therefore, when the pair of locking portions 65A is disposed in the opening 37aA, the locking portion 65A presses the inner surface of the opening 37aA by the elastic force of the elastic portion 62A, and the reaction force from the inner surface of the opening 37aA is increased by the locking portion 65A ( It will be applied to the support 66A). Accordingly, the fixed mirror 6A is supported by the base BA by the reaction force of the elastic force applied to the support portion 66A from the inner surface of the opening 37aA in a state where the mirror surface 61aA intersects (for example, orthogonally) the main surface BsA. In particular, also in the fixed mirror 6A, as in the case of the movable mirror 5A, three-dimensional self-alignment using the inner surface of the opening 37aA and the elastic force is performed.
以上のような固定ミラー6Aも、可動ミラー5Aと同様に、例えばMEMS技術(パターニング及びエッチング)によって一体的に形成される。固定ミラー6Aの各部の寸法は、例えば可動ミラー5Aの各部の上述した寸法と同様である。
[作用及び効果] The fixedmirror 6A as described above is also integrally formed by, for example, the MEMS technique (patterning and etching) similarly to the movable mirror 5A. The dimensions of each part of the fixed mirror 6A are the same as the above-described dimensions of each part of the movable mirror 5A, for example.
[Action and effect]
[作用及び効果] The fixed
[Action and effect]
光モジュール1Aにおいては、可動ミラー5Aが、弾性部52Aと、弾性部52Aの弾性変形に応じて互いの距離が可変とされた一対の支持部56Aと、を有する。一方、可動ミラー5Aが実装されるベースBAの実装領域31Aには、主面BsAに連通する開口31bAが形成されている。したがって、一例として支持部56A間の距離が縮小するように弾性部52Aを弾性変形させた状態において支持部56Aを開口31bAに挿入し、弾性部52Aの弾性変形の一部を解放することにより、開口31bA内において支持部56Aの互いの距離が拡大し、支持部56Aを開口31bAの内面に当接させることができる。
In the optical module 1A, the movable mirror 5A includes an elastic portion 52A and a pair of support portions 56A whose distances can be changed according to the elastic deformation of the elastic portion 52A. On the other hand, an opening 31bA communicating with the main surface BsA is formed in the mounting area 31A of the base BA on which the movable mirror 5A is mounted. Therefore, as an example, by inserting the support portion 56A into the opening 31bA in a state where the elastic portion 52A is elastically deformed so that the distance between the support portions 56A is reduced, and releasing a part of the elastic deformation of the elastic portion 52A, The distance between the support portions 56A in the opening 31bA increases, and the support portion 56A can be brought into contact with the inner surface of the opening 31bA.
これにより、可動ミラー5Aは、開口31bAの内面から支持部56Aに付与される反力によって支持される。このように、この光モジュール1Aにおいては、弾性力を利用して可動ミラー5AをベースBAに実装する。したがって、接着剤の悪影響等を考慮することなく、すなわち、実装領域31Aの特性によらず確実に光学素子を実装可能である。なお、ここでは、可動ミラー5Aを例に作用及び効果を説明しているが、固定ミラー6Aに関しても同様の作用及び効果が奏される。
Thereby, the movable mirror 5A is supported by the reaction force applied to the support portion 56A from the inner surface of the opening 31bA. As described above, in the optical module 1A, the movable mirror 5A is mounted on the base BA using the elastic force. Therefore, the optical element can be reliably mounted without considering the adverse effect of the adhesive, that is, regardless of the characteristics of the mounting region 31A. Here, the operation and effect are described by taking the movable mirror 5A as an example, but the same operation and effect are also achieved with respect to the fixed mirror 6A.
また、可動ミラー5Aにおいては、弾性部52Aが環状領域CAAを形成するように設けられている。このため、例えば弾性部52Aが片持ち状態とされる場合(この場合には、弾性部52Aによって環状等の閉じた領域が形成されない)と比較して、弾性部52Aの強度が向上する。したがって、例えば、可動ミラー5Aの製造時やハンドリング時に、弾性部52Aの破損を抑制可能である。
Further, in the movable mirror 5A, the elastic portion 52A is provided so as to form the annular area CAA. For this reason, for example, the strength of the elastic portion 52A is improved as compared with a case where the elastic portion 52A is in a cantilever state (in this case, a closed region such as an annular shape is not formed by the elastic portion 52A). Therefore, for example, breakage of the elastic portion 52A can be suppressed when the movable mirror 5A is manufactured or handled.
また、光モジュール1Aにおいては、ベースBAは、支持層2Aと、支持層2A上に設けられ、主面BsA及び実装領域31Aを含むデバイス層3Aと、を有する。また、開口31bAは、主面BsAに交差する方向(ZA軸方向)にデバイス層3Aを貫通している。そして、支持部56Aは、ZA軸方向における開口31bAの一対の縁部に当接するように屈曲した係止部55Aを含んでいる。このため、係止部55Aが開口31bAの一対の縁部に当接する位置において実装領域31Aに係止される。このため、可動ミラー5AをベースBAに確実に実装可能であると共に、ベースBAの主面BsAに交差する方向について可動ミラー5Aの位置決めが可能である。
In the optical module 1A, the base BA has a support layer 2A and a device layer 3A provided on the support layer 2A and including the main surface BsA and the mounting region 31A. Further, the opening 31bA passes through the device layer 3A in a direction intersecting the main surface BsA (ZA axis direction). The support portion 56A includes a locking portion 55A that is bent so as to come into contact with a pair of edges of the opening 31bA in the ZA axial direction. Therefore, the locking portion 55A is locked to the mounting region 31A at a position where the locking portion 55A contacts the pair of edges of the opening 31bA. Therefore, the movable mirror 5A can be reliably mounted on the base BA, and the movable mirror 5A can be positioned in the direction intersecting the main surface BsA of the base BA.
また、光モジュール1Aにおいては、開口31bAの内面は、ZA軸方向からみて、一端SLaAから他端SLbAに向けて互いの距離が拡大するように傾斜した一対の傾斜面SLAと、一方の傾斜面SLAの他端SLbAと他方の傾斜面SLAの他端SLbAとを接続する基準線BLAに沿って延在する基準面SRAと、を含んでいる。このため、支持部56Aを開口31bAに挿入して弾性部52Aの弾性変形の一部を解放したときに、弾性力によって支持部56Aを傾斜面SLAに摺動させて基準面SRAに突き当てることができる。このため、主面BsAに沿った方向における可動ミラー5Aの位置決めが可能である。
In the optical module 1A, the inner surface of the opening 31bA has a pair of inclined surfaces SLA inclined so that the distance from one end SLaA to the other end SLbA increases as viewed from the ZA axis direction, and one inclined surface. And a reference surface SRA extending along a reference line BLA connecting the other end SLbA of the SLA and the other end SLbA of the other inclined surface SLA. Therefore, when the support portion 56A is inserted into the opening 31bA and a part of the elastic deformation of the elastic portion 52A is released, the support portion 56A is slid on the inclined surface SLA by the elastic force and abuts against the reference surface SRA. Can do. Therefore, the movable mirror 5A can be positioned in the direction along the main surface BsA.
また、光モジュール1Aにおいては、弾性部52Aは、XA軸方向からみてミラー部51Aを囲うように環状に形成されることにより環状領域CAAを形成している。このため、弾性部52Aに端部が生じないため、弾性部52Aの強度を確実に向上可能である。
Further, in the optical module 1A, the elastic portion 52A is formed in an annular shape so as to surround the mirror portion 51A when viewed from the XA axis direction, thereby forming an annular region CAA. For this reason, since an edge part does not arise in 52 A of elastic parts, the intensity | strength of 52 A of elastic parts can be improved reliably.
また、光モジュール1Aにおいては、支持部56Aは、弾性部52Aに接続される連結部57Aと、ZA軸方向に沿って連結部57Aからミラー面51aAを越えて延在し、開口31bAに挿入される脚部54Aと、を含んでいる。このため、ミラー面51aAの全体をベースBAの主面BsA上に突出させた状態において、可動ミラー5AをベースBAに実装可能である。
In the optical module 1A, the support portion 56A extends from the connecting portion 57A connected to the elastic portion 52A and the mirror surface 51aA along the ZA axis direction beyond the mirror surface 51aA, and is inserted into the opening 31bA. Leg portion 54A. For this reason, the movable mirror 5A can be mounted on the base BA in a state where the entire mirror surface 51aA protrudes on the main surface BsA of the base BA.
さらに、可動ミラー5Aにおいては、弾性部52Aが、ミラー面51aAの中心線CLAに対して対称的な形状であり、且つ、弾性部52Aのばね定数が、中心線CLAの両側において互いに等しい。このため、例えばYA軸方向に沿って弾性部52Aを弾性変形させるときに、可動ミラー5Aの姿勢が不安定になりにくい(例えばねじれが発生しにくい)。また、弾性部52Aの弾性変形の一部を解放したときに、開口31bAの内面から一対の支持部56Aに対して不均一に反力が入力されることが抑制される。
Furthermore, in the movable mirror 5A, the elastic part 52A has a symmetrical shape with respect to the center line CLA of the mirror surface 51aA, and the spring constant of the elastic part 52A is equal to each other on both sides of the center line CLA. For this reason, for example, when the elastic portion 52A is elastically deformed along the YA axis direction, the posture of the movable mirror 5A is less likely to be unstable (for example, twist is not easily generated). Further, when a part of the elastic deformation of the elastic portion 52A is released, the reaction force is suppressed from being input non-uniformly to the pair of support portions 56A from the inner surface of the opening 31bA.
ここで、光モジュール1Aでは、可動ミラー5Aがデバイス層3Aの実装領域31Aを貫通しており、可動ミラー5Aの各係止部55Aの一部が支持層2Aとデバイス層3Aとの間に形成された空間S1Aに位置している。これにより、例えば各係止部55Aのサイズ等が制限されないため、デバイス層3Aの実装領域31Aに可動ミラー5Aを安定的に且つ強固に固定することができる。よって、光モジュール1Aによれば、デバイス層3Aに対する可動ミラー5Aの確実な実装が実現される。
Here, in the optical module 1A, the movable mirror 5A passes through the mounting region 31A of the device layer 3A, and a part of each locking portion 55A of the movable mirror 5A is formed between the support layer 2A and the device layer 3A. Is located in the space S1A. Thereby, for example, the size and the like of each locking portion 55A is not limited, so that the movable mirror 5A can be stably and firmly fixed to the mounting region 31A of the device layer 3A. Therefore, according to the optical module 1A, reliable mounting of the movable mirror 5A to the device layer 3A is realized.
また、光モジュール1Aでは、可動ミラー5Aの各係止部55Aの一部が、中間層4Aの開口41A内の領域を介して、支持層2Aの開口21A内の領域に位置している。これにより、デバイス層3Aに対する可動ミラー5Aの確実な実装のための構成を好適に実現することができる。
Further, in the optical module 1A, a part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the opening 41A of the intermediate layer 4A. Thereby, the structure for reliable mounting of movable mirror 5A to device layer 3A can be suitably realized.
また、光モジュール1Aでは、支持層2AがSOI基板の第1シリコン層であり、デバイス層3AがSOI基板の第2シリコン層であり、中間層4AがSOI基板の絶縁層である。これにより、デバイス層3Aに対する可動ミラー5Aの確実な実装のための構成をSOI基板によって好適に実現することができる。
In the optical module 1A, the support layer 2A is the first silicon layer of the SOI substrate, the device layer 3A is the second silicon layer of the SOI substrate, and the intermediate layer 4A is the insulating layer of the SOI substrate. Thereby, the structure for reliable mounting of the movable mirror 5A to the device layer 3A can be suitably realized by the SOI substrate.
また、光モジュール1Aでは、可動ミラー5Aのミラー面51aAが、デバイス層3Aに対して支持層2Aとは反対側に位置している。これにより、光モジュール1Aの構成を簡易化することができる。
In the optical module 1A, the mirror surface 51aA of the movable mirror 5A is located on the opposite side of the support layer 2A with respect to the device layer 3A. Thereby, the configuration of the optical module 1A can be simplified.
また、光モジュール1Aでは、可動ミラー5A、固定ミラー6A及びビームスプリッタ7Aが、干渉光学系10Aを構成するように配置されている。これにより、感度が向上されたFTIRを得ることができる。
In the optical module 1A, the movable mirror 5A, the fixed mirror 6A, and the beam splitter 7A are arranged so as to constitute the interference optical system 10A. Thereby, FTIR with improved sensitivity can be obtained.
また、光モジュール1Aでは、光入射部8Aが、外部から干渉光学系10Aに測定光を入射させるように配置されており、光出射部9Aが、干渉光学系10Aから外部に測定光を出射させるように配置されている。これにより、光入射部8A及び光出射部9Aを備えるFTIRを得ることができる。
[変形例] In theoptical module 1A, the light incident part 8A is arranged so that the measurement light is incident on the interference optical system 10A from the outside, and the light emitting part 9A emits the measurement light from the interference optical system 10A to the outside. Are arranged as follows. Thereby, FTIR provided with 8 A of light-incidence parts and 9 A of light-projection parts can be obtained.
[Modification]
[変形例] In the
[Modification]
以上、本開示の一側面の一実施形態について説明したが、本開示の一側面は、上記実施形態に限定されない。例えば、各構成の材料及び形状は、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。
Although one embodiment of one aspect of the present disclosure has been described above, one aspect of the present disclosure is not limited to the above embodiment. For example, the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed.
また、空間S1Aは、支持層2Aとデバイス層3Aとの間に形成されており、少なくとも実装領域31A及び駆動領域32Aに対応していれば、図7及び図8に示されるように、様々な態様を採用することができる。
Further, the space S1A is formed between the support layer 2A and the device layer 3A, and as long as it corresponds to at least the mounting region 31A and the drive region 32A, as shown in FIG. 7 and FIG. Aspects can be employed.
図7に示される構成では、開口21Aの代わりに、デバイス層3A側に開口する凹部23Aが支持層2Aに形成されており、中間層4Aの開口41A内の領域及び支持層2Aの凹部23A内の領域によって空間S1Aが構成されている。この場合、支持層2Aの凹部23A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいる。可動ミラー5Aの各係止部55Aの一部は、中間層4Aの開口41A内の領域を介して、凹部23A内の領域に位置している。この構成によっても、デバイス層3Aに対する可動ミラー5Aの確実な実装のための構成を好適に実現することができる。
In the configuration shown in FIG. 7, a recess 23A that opens to the device layer 3A side is formed in the support layer 2A instead of the opening 21A, and the region in the opening 41A of the intermediate layer 4A and the recess 23A in the support layer 2A A space S1A is configured by the regions. In this case, the region in the recess 23A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A through a region in the opening 41A of the intermediate layer 4A. Also with this configuration, a configuration for reliably mounting the movable mirror 5A on the device layer 3A can be suitably realized.
図8の(a)に示される構成では、支持層2Aの開口21A内の領域が、ZA軸方向から見た場合に可動ミラー5Aの各係止部55Aが移動する範囲を含んでいる。図8の(b)に示される構成では、支持層2Aの凹部23A内の領域が、ZA軸方向から見た場合に可動ミラー5Aの各係止部55Aが移動する範囲を含んでいる。これらの場合、中間層4Aの開口41A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。いずれの構成でも、実装領域31Aが方向AAに沿って往復動した際に、可動ミラー5Aの各係止部55Aうち空間S1Aに位置する一部が、中間層4A及び支持層2Aと接触することはない。
8A, the region in the opening 21A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction. In the configuration shown in FIG. 8B, the region in the recess 23A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction. In these cases, the region in the opening 41A of the intermediate layer 4A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and is separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the power portion from the support layer 2A is formed. In any configuration, when the mounting region 31A reciprocates along the direction AA, a part of each locking portion 55A of the movable mirror 5A located in the space S1A comes into contact with the intermediate layer 4A and the support layer 2A. There is no.
また、支持層2Aとデバイス層3Aとは、中間層4Aを介さずに互いに接合されていてもよい。この場合、支持層2Aは、例えば、シリコン、ホウケイ酸ガラス、石英ガラス、又は、セラミックによって形成され、デバイス層3Aは、例えばシリコンによって形成される。支持層2Aとデバイス層3Aとは、例えば、表面活性化による常温接合、低温プラズマ接合、高温処理を行う直接接合、絶縁樹脂接着、メタル接合、又は、ガラスフリットによる接合等によって互いに接合される。この場合にも、空間S1Aは、支持層2Aとデバイス層3Aとの間に形成されており、少なくとも実装領域31A及び駆動領域32Aに対応していれば、図9、図10、図11及び図12に示されるように、様々な態様を採用することができる。いずれの構成によっても、デバイス層3Aに対する可動ミラー5Aの確実な実装のための構成を好適に実現することができる。
Further, the support layer 2A and the device layer 3A may be joined to each other without interposing the intermediate layer 4A. In this case, the support layer 2A is formed of, for example, silicon, borosilicate glass, quartz glass, or ceramic, and the device layer 3A is formed of, for example, silicon. The support layer 2A and the device layer 3A are bonded to each other by, for example, room temperature bonding by surface activation, low temperature plasma bonding, direct bonding by high temperature treatment, insulating resin bonding, metal bonding, or glass frit bonding. Also in this case, the space S1A is formed between the support layer 2A and the device layer 3A, and if it corresponds to at least the mounting region 31A and the drive region 32A, FIG. 9, FIG. 10, FIG. As shown in FIG. 12, various aspects can be employed. In any of the configurations, a configuration for surely mounting the movable mirror 5A on the device layer 3A can be suitably realized.
図9の(a)に示される構成では、支持層2Aの開口21A内の領域によって空間S1Aが構成されている。この場合、支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、支持層2Aの開口21A内の領域に位置している。
In the configuration shown in FIG. 9A, a space S1A is formed by the region in the opening 21A of the support layer 2A. In this case, the region in the opening 21A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. A part of each locking portion 55A of the movable mirror 5A is located in a region within the opening 21A of the support layer 2A.
図9の(b)に示される構成では、支持層2Aの凹部23A内の領域によって空間S1Aが構成されている。この場合、支持層2Aの凹部23A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、支持層2Aの凹部23A内の領域に位置している。
In the configuration shown in FIG. 9B, the space S1A is configured by the region in the recess 23A of the support layer 2A. In this case, the region in the recess 23A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A.
図10の(a)に示される構成では、支持層2A側に開口する凹部(第1凹部)38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域及び支持層2Aの開口21A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域及び支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいる。デバイス層3Aの凹部38A内の領域は、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域を介して、支持層2Aの開口21A内の領域に位置している。
In the configuration shown in FIG. 10A, a recess (first recess) 38A that opens to the support layer 2A side is formed in the device layer 3A, and the region in the recess 38A of the device layer 3A and the support layer 2A A space S1A is configured by the region in the opening 21A. In this case, the region in the recess 38A of the device layer 3A and the region in the opening 21A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction. The region in the recess 38A of the device layer 3A forms a gap for separating the portion to be separated from the support layer 2A in the mounting region 31A and the drive region 32A from the support layer 2A. A part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the recess 38A of the device layer 3A.
図10の(b)に示される構成では、凹部38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域及び支持層2Aの凹部(第2凹部)23A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域及び支持層2Aの凹部23A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいる。デバイス層3Aの凹部38A内の領域は、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域を介して、支持層2Aの凹部23A内の領域に位置している。
In the configuration shown in FIG. 10B, the recess 38A is formed in the device layer 3A, and the space is defined by the region in the recess 38A of the device layer 3A and the region in the recess (second recess) 23A of the support layer 2A. S1A is configured. In this case, the region in the recess 38A of the device layer 3A and the region in the recess 23A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction. The region in the recess 38A of the device layer 3A forms a gap for separating the portion to be separated from the support layer 2A in the mounting region 31A and the drive region 32A from the support layer 2A. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A via a region in the recess 38A of the device layer 3A.
図11の(a)に示される構成では、凹部38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域及び支持層2Aの開口21A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に可動ミラー5Aの各係止部55Aが移動する範囲を含んでいる。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域を介して、支持層2Aの開口21A内の領域に位置している。
In the configuration shown in FIG. 11A, the recess 38A is formed in the device layer 3A, and the space S1A is configured by the region in the recess 38A of the device layer 3A and the region in the opening 21A of the support layer 2A. Yes. In this case, the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. The region in the opening 21A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction. A part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the recess 38A of the device layer 3A.
図11の(b)に示される構成では、凹部38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域及び支持層2Aの凹部(第2凹部)23A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。支持層2Aの凹部23A内の領域は、ZA軸方向から見た場合に可動ミラー5Aの各係止部55Aが移動する範囲を含んでいる。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域を介して、支持層2Aの凹部23A内の領域に位置している。
In the configuration shown in FIG. 11B, the recess 38A is formed in the device layer 3A, and the space is defined by the region in the recess 38A of the device layer 3A and the region in the recess (second recess) 23A of the support layer 2A. S1A is configured. In this case, the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. The region in the recess 23A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A via a region in the recess 38A of the device layer 3A.
図12に示される構成では、凹部38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域に位置している。
In the configuration shown in FIG. 12, a recess 38A is formed in the device layer 3A, and a space S1A is formed by a region in the recess 38A of the device layer 3A. In this case, the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 38A of the device layer 3A.
また、図13の(a)及び(b)に示されるように、可動ミラー5Aの各脚部54Aの一部及び各係止部55Aの一部が空間S1Aに位置しており、可動ミラー5Aのミラー面51aAが、支持層2Aに対してデバイス層3Aとは反対側に位置していてもよい。この場合、固定ミラー6Aのミラー面61aA及びビームスプリッタ7Aの光学機能面7aAも、支持層2Aに対してデバイス層3Aとは反対側に位置している。なお、図13の(b)に示される構成では、支持層2Aとは反対側に突出するスペーサ39Aがデバイス層3Aに一体的に設けられている。スペーサ39Aは、可動ミラー5Aの各係止部55Aのうちデバイス層3Aから支持層2Aとは反対側に突出する部分よりも突出しており、当該部分を保護している。また、ここでは、開口31bAは、スペーサ39Aにより規定される空間を介して主面BsAに連通している。或いは、ここでは、開口31bAは、空間S1Aを介して主面BsAと反対側の表面である別の主面に連通している。
As shown in FIGS. 13A and 13B, a part of each leg 54A and a part of each locking part 55A of the movable mirror 5A are located in the space S1A, and the movable mirror 5A The mirror surface 51aA may be located on the opposite side of the support layer 2A from the device layer 3A. In this case, the mirror surface 61aA of the fixed mirror 6A and the optical functional surface 7aA of the beam splitter 7A are also located on the opposite side of the support layer 2A from the device layer 3A. In the configuration shown in FIG. 13B, the device layer 3A is integrally provided with a spacer 39A protruding to the side opposite to the support layer 2A. The spacer 39A protrudes from a portion of each locking portion 55A of the movable mirror 5A that protrudes from the device layer 3A to the side opposite to the support layer 2A, and protects the portion. Here, the opening 31bA communicates with the main surface BsA through a space defined by the spacer 39A. Alternatively, here, the opening 31bA communicates with another main surface that is a surface opposite to the main surface BsA via the space S1A.
ここで、上記実施形態においては、可動ミラー5Aは、そのミラー面51aAの全体が主面BsA、又は、ベースBAにおける主面BsAと反対側の表面に突出する場合について説明した。しかしながら、可動ミラー5Aの態様はこの場合に限定されない。例えば、可動ミラー5Aのミラー面51aAの一部が、ベースBAの内部に配置されていてもよい。以下、この例について説明する。
Here, in the above embodiment, the movable mirror 5A has been described with respect to the case where the entire mirror surface 51aA protrudes from the main surface BsA or the surface of the base BA opposite to the main surface BsA. However, the aspect of the movable mirror 5A is not limited to this case. For example, a part of the mirror surface 51aA of the movable mirror 5A may be disposed inside the base BA. This example will be described below.
図14、図15、及び図16に示されるように、ここでは、可動ミラー5AAは、図2に示される可動ミラー5Aと比較して、支持部56Aに代えて支持部56AAを有する点において可動ミラー5Aと相違している。支持部56AAにおける弾性部52Aとの関係については、支持部56Aと同様である。これに対して、支持部56AAは、脚部54Aを含まない点において支持部56Aと相違している。
As shown in FIGS. 14, 15 and 16, here, the movable mirror 5AA is movable in that it has a support portion 56AA in place of the support portion 56A, compared to the movable mirror 5A shown in FIG. This is different from the mirror 5A. The relationship between the support portion 56AA and the elastic portion 52A is the same as that of the support portion 56A. On the other hand, the support portion 56AA is different from the support portion 56A in that the leg portion 54A is not included.
すなわち、ここでは、支持部56AAの全体が、係止部55Aとされている。これにより、支持部56AAは、ZA軸方向におけるミラー面51aAの中心線CLAに対して対称的な形状とされ、中心線CLAの一方側に相対的に長く延在する部分を有していない。このため、ここでは、支持部56AAは、可動ミラー5AAの全体が開口31bAを介して実装領域31Aを貫通している状態において、可動ミラー5AAを支持している。ミラー面51aAは、実装領域31Aに交差している。
That is, here, the entire support portion 56AA is the locking portion 55A. Accordingly, the support portion 56AA has a symmetrical shape with respect to the center line CLA of the mirror surface 51aA in the ZA axis direction, and does not have a portion that extends relatively long on one side of the center line CLA. For this reason, here, the support portion 56AA supports the movable mirror 5AA in a state where the entire movable mirror 5AA penetrates the mounting region 31A through the opening 31bA. The mirror surface 51aA intersects the mounting area 31A.
ここでは、係止部55A(支持部56AA)の一部分(中心部分)が、YA軸方向に沿ってミラー部51Aに重複している。そして、可動ミラー5AAは、その係止部55Aにおいてデバイス層3Aに係止され、実装領域31Aに支持される。したがって、中心線CLAの一方側に相対的に長く延びる支持部56A(脚部54A)により可動ミラー5Aを支持する場合と比較して、支持点と重心との乖離が小さく、安定的な実装を実現可能である。
Here, a part (center portion) of the locking portion 55A (support portion 56AA) overlaps the mirror portion 51A along the YA axis direction. The movable mirror 5AA is locked to the device layer 3A at the locking portion 55A and supported by the mounting region 31A. Therefore, compared with the case where the movable mirror 5A is supported by the support portion 56A (leg portion 54A) that extends relatively long on one side of the center line CLA, the deviation between the support point and the center of gravity is small, and stable mounting is achieved. It is feasible.
具体的には、一例として、支持部56AAは、ZA軸方向におけるミラー面51aAの中心線CLAが、デバイス層3Aの厚さ方向の中心に一致するように、可動ミラー5AAを支持している。したがって、ミラー面51aAの一部(ここでは半分以上)が、主面BsAよりも支持層2A側に位置することになる。これに対して、ここでは、開口31bAが、実装領域31Aにおけるミラー面51aAの臨む側の端部に至るように延びて開放されている。したがって、この場合であっても、ミラー面51aAに向かう測定光L0Aの光路の制御により、測定光L0Aが実装領域31Aに干渉することを避け、ミラー面51aAの全体を有効に利用することができる。
Specifically, as an example, the support portion 56AA supports the movable mirror 5AA so that the center line CLA of the mirror surface 51aA in the ZA axis direction coincides with the center in the thickness direction of the device layer 3A. Therefore, a part (here, half or more) of the mirror surface 51aA is located on the support layer 2A side with respect to the main surface BsA. On the other hand, here, the opening 31bA is extended and opened so as to reach the end of the mounting region 31A on the side facing the mirror surface 51aA. Therefore, even in this case, by controlling the optical path of the measurement light L0A toward the mirror surface 51aA, the measurement light L0A can be prevented from interfering with the mounting region 31A, and the entire mirror surface 51aA can be used effectively. .
以上のように、可動ミラー5AAにおいては、支持部56AA(ここでは、可動ミラー5AAの全体)が、ZA軸方向におけるミラー面51aAの中心線CLAに対して対称的に形成されている。そして、可動ミラー5AAは、その中心線CLAに対応する位置において、支持部56AAにより支持されている。したがって、ZA軸方向について支持点と重心とを実質的に一致させ、より安定的な実装を実現可能である。
As described above, in the movable mirror 5AA, the support portion 56AA (here, the entire movable mirror 5AA) is formed symmetrically with respect to the center line CLA of the mirror surface 51aA in the ZA axis direction. The movable mirror 5AA is supported by the support portion 56AA at a position corresponding to the center line CLA. Therefore, the support point and the center of gravity are substantially matched in the ZA axis direction, and more stable mounting can be realized.
また、上記実施形態では、固定ミラー6Aがデバイス層3Aに実装されていたが、固定ミラー6Aは、支持層2A又は中間層4Aに実装されていてもよい。また、上記実施形態では、ビームスプリッタ7Aが支持層2Aに実装されていたが、ビームスプリッタ7Aは、デバイス層3A又は中間層4Aに実装されていてもよい。また、ビームスプリッタ7Aは、キューブタイプのビームスプリッタに限定されず、プレートタイプのビームスプリッタであってもよい。
In the above embodiment, the fixed mirror 6A is mounted on the device layer 3A. However, the fixed mirror 6A may be mounted on the support layer 2A or the intermediate layer 4A. In the above embodiment, the beam splitter 7A is mounted on the support layer 2A. However, the beam splitter 7A may be mounted on the device layer 3A or the intermediate layer 4A. The beam splitter 7A is not limited to a cube type beam splitter, and may be a plate type beam splitter.
また、光モジュール1Aは、光入射部8Aに加え、光入射部8Aに入射させる測定光を発生させる発光素子を備えていてもよい。或いは、光モジュール1Aは、光入射部8Aに代えて、干渉光学系10Aに入射させる測定光を発生させる発光素子を備えていてもよい。また、光モジュール1Aは、光出射部9Aに加え、光出射部9Aから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。或いは、光モジュール1Aは、光出射部9Aに代えて、干渉光学系10Aから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。
The optical module 1A may include a light emitting element that generates measurement light to be incident on the light incident portion 8A in addition to the light incident portion 8A. Alternatively, the optical module 1A may include a light emitting element that generates measurement light incident on the interference optical system 10A, instead of the light incident portion 8A. The optical module 1A may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9A in addition to the light emitting unit 9A. Alternatively, the optical module 1A may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10A, instead of the light emitting unit 9A.
また、各アクチュエータ領域33Aに電気的に接続された第1貫通電極、及び各弾性支持領域34Aの両端部34aAのそれぞれに電気的に接続された第2貫通電極が、支持層2A及び中間層4A(中間層4Aが存在しない場合には支持層2Aのみ)に設けられており、第1貫通電極と第2貫通電極との間に電圧が印加されてもよい。また、実装領域31Aを移動させるアクチュエータは、静電アクチュエータに限定されず、例えば、圧電式アクチュエータ、電磁式アクチュエータ等であってもよい。また、光モジュール1Aは、FTIRを構成するものに限定されず、他の光学系を構成するものであってもよい。
In addition, the first through electrode electrically connected to each actuator region 33A and the second through electrode electrically connected to each of both end portions 34aA of each elastic support region 34A are the support layer 2A and the intermediate layer 4A. (Only the support layer 2A when the intermediate layer 4A does not exist) is provided, and a voltage may be applied between the first through electrode and the second through electrode. The actuator that moves the mounting region 31A is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like. Further, the optical module 1A is not limited to the one constituting the FTIR, and may constitute another optical system.
引き続いて変形例の説明を続ける。なお、以下では、可動ミラー5A,5AA及び開口31bAを用いて変形例を説明するが、固定ミラー6A及び開口37aAについても同様の変形が可能である。図17に示されるように、可動ミラー5Aは、ミラー部51Aと弾性部52Aとを互いに連結する複数の連結部(第1連結部)53Aを有していてもよい。
Continuation of the explanation of the modified example. In the following, a modification is described using the movable mirrors 5A, 5AA and the opening 31bA, but the same modification can be made for the fixed mirror 6A and the opening 37aA. As shown in FIG. 17, the movable mirror 5A may include a plurality of connecting portions (first connecting portions) 53A that connect the mirror portion 51A and the elastic portion 52A to each other.
図17の(a)に示される例では、可動ミラー5Aは、一対の連結部53Aを有している。ここでは、一対の連結部53Aは、一対の連結部57Aと異なる位置に配置されている。一対の連結部53Aは、中心線CLAの両側に分配されて配置されている。特に、ここでは、一対の連結部53Aは、中心線CLAに対して対称的な位置に配置されている。したがって、ここでは、一対の連結部53Aを結ぶ直線に対して、弾性部52A及び可動ミラー5Aの全体が対称的に構成される。
In the example shown in FIG. 17A, the movable mirror 5A has a pair of connecting portions 53A. Here, the pair of connecting portions 53A are arranged at positions different from the pair of connecting portions 57A. The pair of connecting portions 53A are distributed and arranged on both sides of the center line CLA. In particular, here, the pair of connecting portions 53A are disposed at positions symmetrical with respect to the center line CLA. Therefore, here, the entire elastic portion 52A and the movable mirror 5A are configured symmetrically with respect to a straight line connecting the pair of connecting portions 53A.
また、図17の(b)に示される例では、可動ミラー5Aは、3つの連結部53Aを有している。3つの連結部53Aは、一対の連結部57Aと異なる位置に配置されている。ここでは、3つの連結部53Aのうちの1つの連結部53Aと2つの連結部53Aとが、中心線CLAの両側に分配されて配置されている。同様に、図17の(c)に示される例では、可動ミラー5Aは、4つの連結部53Aを有している。4つの連結部は、一対の連結部57Aと異なる位置に配置されている。ここでは、4つの連結部53Aは、中心線CLAの両側に2つずつ分配されて配置されている。
Further, in the example shown in FIG. 17B, the movable mirror 5A has three connecting portions 53A. The three connecting portions 53A are arranged at positions different from the pair of connecting portions 57A. Here, one connecting portion 53A and two connecting portions 53A among the three connecting portions 53A are distributed and arranged on both sides of the center line CLA. Similarly, in the example shown in FIG. 17C, the movable mirror 5A has four connecting portions 53A. The four connecting portions are arranged at positions different from the pair of connecting portions 57A. Here, the four connecting portions 53A are distributed and arranged on both sides of the center line CLA.
一方、図18の(a)に示されるように、可動ミラー5Aは、複数の弾性部52Aを有することができる。ここでは、可動ミラー5Aは、一対の弾性部52Aを有している。一対の弾性部52Aは、それぞれ円環板状に形成されており、互いに同心に配置されている。換言すれば、ここでは、一の弾性部52Aが、ミラー部51Aを取り囲むように設けられ、別の弾性部52Aが、当該一の弾性部52A及びミラー部51Aを取り囲むように設けられている。弾性部52Aのそれぞれが環状領域CAAを形成している。
On the other hand, as shown in FIG. 18A, the movable mirror 5A can have a plurality of elastic portions 52A. Here, the movable mirror 5A has a pair of elastic portions 52A. The pair of elastic portions 52A are each formed in an annular plate shape and are arranged concentrically with each other. In other words, here, one elastic part 52A is provided so as to surround the mirror part 51A, and another elastic part 52A is provided so as to surround the one elastic part 52A and the mirror part 51A. Each of the elastic portions 52A forms an annular area CAA.
他方、弾性部52Aは、円環板状に限らず、図18の(b)に示されるように楕円環板状であってもよい。すなわち、ミラー面51aAに交差する方向(XA軸方向)からみて、弾性部52Aは楕円状であってもよい。ここでは、一対の連結部53Aは、弾性部52Aの楕円の長軸に対応する位置に配置されている。また、一対の連結部57Aは、弾性部52Aの楕円の短軸に対応する位置に配置されている。
On the other hand, the elastic portion 52A is not limited to an annular plate shape, and may be an elliptical ring plate shape as shown in FIG. That is, the elastic portion 52A may be elliptical when viewed from the direction intersecting the mirror surface 51aA (XA axis direction). Here, the pair of connecting portions 53A are arranged at positions corresponding to the major axis of the ellipse of the elastic portion 52A. The pair of connecting portions 57A is disposed at a position corresponding to the short axis of the ellipse of the elastic portion 52A.
弾性部52Aの変形例の説明を続ける。図19の(a)に示される例では、可動ミラー5Aは、長方形板状の一対の弾性部52Aと、弾性部52A同士を互いに接続する一対の板状の接続部58Aと、を有する。弾性部52Aは、YA軸方向にミラー部51Aを挟むようにミラー部51Aの両側に配置されている。弾性部52Aは、支持部56Aと略平行にZA軸方向に沿って延在している。接続部58Aは、弾性部52Aの長手方向の両端部に設けられ、弾性部52A同士を接続している。これにより、ここでは、弾性部52Aと接続部58Aとよって、矩形環状の環状領域CAAが形成されている。なお、ここでは、単一の連結部53Aが接続部58Aを介して弾性部52Aとミラー部51Aとを互いに連結している。
The description of the modified example of the elastic portion 52A is continued. In the example shown in FIG. 19A, the movable mirror 5A includes a pair of rectangular plate-like elastic portions 52A and a pair of plate-like connection portions 58A that connect the elastic portions 52A to each other. The elastic parts 52A are arranged on both sides of the mirror part 51A so as to sandwich the mirror part 51A in the YA axis direction. The elastic portion 52A extends along the ZA axis direction substantially parallel to the support portion 56A. 58 A of connection parts are provided in the both ends of the longitudinal direction of 52 A of elastic parts, and connect 52 A of elastic parts. Thereby, here, a rectangular annular region CAA is formed by the elastic portion 52A and the connecting portion 58A. Here, a single connecting portion 53A connects the elastic portion 52A and the mirror portion 51A to each other via the connecting portion 58A.
また、図19の(b)に示される例でも、可動ミラー5Aは、一対の弾性部52Aを有している。ここでは、弾性部52Aは、ZA軸方向にミラー部51Aを挟むようにミラー部51Aの両側に配置されている。弾性部52Aは、それぞれ、波板状に形成されている。すなわち、XA軸方向からみて、弾性部52Aは、波形状(ここでは矩形波形状)である。弾性部52Aは、それぞれ、その両端部において支持部56Aに接続されている。これにより、ここでは、弾性部52Aと支持部56Aとによって、概ね矩形の環状領域CAAが形成されている。また、ここでは、連結部53Aは、支持部56Aとミラー部51Aとを互いに連結している。このように、ミラー部51Aは、支持部56Aに連結されていてもよい。
Also in the example shown in FIG. 19B, the movable mirror 5A has a pair of elastic portions 52A. Here, the elastic portions 52A are arranged on both sides of the mirror portion 51A so as to sandwich the mirror portion 51A in the ZA axis direction. The elastic portions 52A are each formed in a corrugated plate shape. That is, when viewed from the XA axis direction, the elastic portion 52A has a wave shape (here, a rectangular wave shape). Each of the elastic parts 52A is connected to the support part 56A at both ends thereof. Thereby, here, a substantially rectangular annular area CAA is formed by the elastic portion 52A and the support portion 56A. Here, the connecting portion 53A connects the support portion 56A and the mirror portion 51A to each other. Thus, the mirror part 51A may be connected to the support part 56A.
また、図19の(c)に示される例でも、可動ミラー5Aは、一対の弾性部52Aを有している。ここでも、弾性部52Aは、ZA軸方向にミラー部51Aを挟むようにミラー部51Aの両側に配置されている。弾性部52Aは、それぞれ、V字板状に形成されている。すなわち、XA軸方向からみて、弾性部52Aは、V字状である。弾性部52Aは、それぞれ、その両端部において支持部56Aに接続されている。これにより、ここでは、弾性部52Aと支持部56Aとによって、概ね矩形の環状領域CAAが形成されている。なお、ここでも、連結部53Aは、支持部56Aとミラー部51Aとを互いに連結している。
Also in the example shown in FIG. 19C, the movable mirror 5A has a pair of elastic portions 52A. Also here, the elastic portions 52A are arranged on both sides of the mirror portion 51A so as to sandwich the mirror portion 51A in the ZA axis direction. Each of the elastic portions 52A is formed in a V-shaped plate shape. That is, the elastic part 52A is V-shaped when viewed from the XA axis direction. Each of the elastic parts 52A is connected to the support part 56A at both ends thereof. Thereby, here, a substantially rectangular annular area CAA is formed by the elastic portion 52A and the support portion 56A. Also here, the connecting portion 53A connects the support portion 56A and the mirror portion 51A to each other.
また、図20の(a)に示される例では、弾性部52Aは、XA軸方向からみて、互いに逆向きに配置された一対の半円部と、半円部同士を接続する一対の直線部とによって、環状に形成されてもよい。或いは、図20の(b)に示されるように、弾性部52Aは、XA軸方向からみて、互いに同じ向きに配置された一対の半円部と、半円部同士を接続する一対の直線部とによって、環状に形成されてもよい。
Further, in the example shown in FIG. 20A, the elastic portion 52A includes a pair of semicircular portions arranged in opposite directions as viewed from the XA axis direction, and a pair of linear portions connecting the semicircular portions. And may be formed in an annular shape. Alternatively, as shown in FIG. 20B, the elastic portion 52A includes a pair of semicircular portions arranged in the same direction as viewed from the XA axis direction and a pair of linear portions connecting the semicircular portions. And may be formed in an annular shape.
また、図21に示されるように、弾性部52Aは、XA軸方向からみて、環の一部を切り欠いた形状に形成されてもよい。図21の(a)に示される例では、弾性部52Aは、円環に対して中心線CLAの両側に一対の切り欠き部52cAを設けた形状とされている。すなわち、ここでは、弾性部52Aは、切り欠き部52cAにおいて互いに離間した一対の円弧状部分52dAからなる。連結部53Aは、円弧状部分52dAのそれぞれの端部において、弾性部52Aとミラー部51Aとを互いに連結している。これにより、ここでは、一の円弧状部分52dAと、当該一の円弧状部分52dAに接続された一対の連結部53Aと、ミラー部51Aとによって、1つの環状領域CAAが形成されている。
Further, as shown in FIG. 21, the elastic portion 52A may be formed in a shape in which a part of the ring is notched as viewed from the XA axis direction. In the example shown in FIG. 21A, the elastic portion 52A has a shape in which a pair of notches 52cA are provided on both sides of the center line CLA with respect to the ring. That is, here, the elastic portion 52A is composed of a pair of arcuate portions 52dA that are separated from each other in the cutout portion 52cA. The connecting portion 53A connects the elastic portion 52A and the mirror portion 51A to each other at each end of the arc-shaped portion 52dA. Thereby, here, one circular area CAA is formed by one arcuate part 52dA, a pair of connecting parts 53A connected to the one arcuate part 52dA, and the mirror part 51A.
図21の(b),(c)に示される例では、弾性部52Aは、単一の切り欠き部52cAによって単一の円弧状部分52dAとして構成されている。連結部53Aは、弾性部52Aの端部において弾性部52Aとミラー部51Aとを互いに接続している。これにより、ここでは、弾性部52Aと一対の連結部53Aとミラー部51Aとによって環状領域CAAが形成されている。なお、ここでは、連結部53Aは、切り欠き部52cAを介して支持部56Aとミラー部51Aとを連結している。すなわち、ミラー部51Aを直接的に支持部56Aに連結してもよい。
21 (b) and (c), the elastic portion 52A is configured as a single arc-shaped portion 52dA by a single notch 52cA. The connecting portion 53A connects the elastic portion 52A and the mirror portion 51A to each other at the end of the elastic portion 52A. Thereby, here, the annular portion CAA is formed by the elastic portion 52A, the pair of connecting portions 53A, and the mirror portion 51A. Here, the connecting portion 53A connects the support portion 56A and the mirror portion 51A via the notch portion 52cA. That is, the mirror part 51A may be directly connected to the support part 56A.
図22の(a)に示される例では、図2に示される形態と比較して、係止部55Aの形状が変更されている。ここでは、係止部55Aは、脚部54Aから連結部57Aと反対方向(ZA軸負方向)に延びて終端している。すなわち、係止部55Aは、端部55cAを含む。また、係止部55Aは、端部55cAよりも連結部57A側の位置から他方の係止部55A側に突出した突出部55dAを含む。突出部55dAは、傾斜面55bAを含む。端部55cAと傾斜面55bAとは、ZA軸方向に沿って互いに対向している。
In the example shown in FIG. 22A, the shape of the locking portion 55A is changed compared to the configuration shown in FIG. Here, the engaging portion 55A extends from the leg portion 54A in the opposite direction to the connecting portion 57A (the ZA axis negative direction) and terminates. That is, the locking portion 55A includes the end portion 55cA. The locking portion 55A includes a protruding portion 55dA that protrudes toward the other locking portion 55A from a position closer to the connecting portion 57A than the end portion 55cA. The protrusion 55dA includes an inclined surface 55bA. The end 55cA and the inclined surface 55bA face each other along the ZA axis direction.
端部55cAは、主面BsA上における開口31bAの周縁部に接触する。一方、傾斜面55bAは、開口31bAの主面BsAの反対側の縁部に接触している。これにより、ZA軸方向において係止部55Aが実装領域31Aを挟むように実装領域31Aに係止される。すなわち、ここでも、支持部56Aは、主面BsAに交差する方向における開口31bAの一対の縁部に当接するように屈曲した係止部55Aを含むことになる。この結果、ZA軸方向について、可動ミラー5AがベースBAから抜けることが抑制される。
The end 55cA is in contact with the peripheral edge of the opening 31bA on the main surface BsA. On the other hand, the inclined surface 55bA is in contact with the edge of the opening 31bA opposite to the main surface BsA. Accordingly, the locking portion 55A is locked to the mounting area 31A so as to sandwich the mounting area 31A in the ZA axis direction. That is, also here, the support portion 56A includes a locking portion 55A that is bent so as to abut against a pair of edges of the opening 31bA in a direction intersecting the main surface BsA. As a result, the movable mirror 5A is prevented from coming off the base BA in the ZA axis direction.
図22の(b)に示される例では、係止部55Aは、傾斜面55aAを有すると共に、傾斜面55aAよりも先端側において連結部57A側に折り返すように屈曲して終端している。すなわち、係止部55Aは、端部55cAを含む。端部55cAと傾斜面55aAとは、ZA軸方向に沿って互いに対向している。
In the example shown in FIG. 22 (b), the locking portion 55A has an inclined surface 55aA and is bent and terminated so as to be folded back toward the connecting portion 57A on the tip side of the inclined surface 55aA. That is, the locking portion 55A includes the end portion 55cA. The end 55cA and the inclined surface 55aA face each other along the ZA axis direction.
端部55cAは、主面BsAと反対側の面上における開口31bAの周縁部に接触する。一方、傾斜面55aAは、開口31bAの主面BsA側の縁部に接触している。これにより、ZA軸方向において係止部55Aが実装領域31Aを挟むように実装領域31Aに係止される。すなわち、ここでも、支持部56Aは、主面BsAに交差する方向における開口31bAの一対の縁部に当接するように屈曲した係止部55Aを含むことになる。この結果、ZA軸方向について、可動ミラー5AがベースBAから抜けることが抑制される。
The end 55cA is in contact with the peripheral edge of the opening 31bA on the surface opposite to the main surface BsA. On the other hand, the inclined surface 55aA is in contact with the edge of the opening 31bA on the main surface BsA side. Accordingly, the locking portion 55A is locked to the mounting area 31A so as to sandwich the mounting area 31A in the ZA axis direction. That is, also here, the support portion 56A includes a locking portion 55A that is bent so as to abut against a pair of edges of the opening 31bA in a direction intersecting the main surface BsA. As a result, the movable mirror 5A is prevented from coming off the base BA in the ZA axis direction.
引き続いて、図15に示された可動ミラー5AAの変形例について説明する。図23の(a)に示される可動ミラー5AAは、一対のハンドル部59Aをさらに備えている。また、ここでは、弾性部52Aは、半円状の板バネ52aAと板バネ52bAとから構成されている。板バネ52aA,52bAは、互いに逆向きに配置され、支持部56AA(係止部55A)により互いに接続されている。これにより、ここでは、弾性部52Aと支持部56AAとによって、概ね楕円状の環状領域CAAが形成されている。
Subsequently, a modification of the movable mirror 5AA shown in FIG. 15 will be described. The movable mirror 5AA shown in FIG. 23A further includes a pair of handle portions 59A. Here, the elastic portion 52A is composed of a semicircular leaf spring 52aA and a leaf spring 52bA. The leaf springs 52aA and 52bA are arranged in opposite directions and are connected to each other by a support portion 56AA (locking portion 55A). Thereby, here, an approximately elliptical annular region CAA is formed by the elastic portion 52A and the support portion 56AA.
ハンドル部59Aは、環状領域CAAの内側に配置されている。ハンドル部59Aは、U字状を呈しており、その両端が支持部56AAに接続されている。一対の支持部56AA及び一対のハンドル部59Aは、中心線CLA上に一列に配列されている。連結部53Aは、一方のハンドル部59Aに接続されている。したがって、連結部53Aは、ハンドル部59Aを介して、支持部56AAとミラー部51Aとを互いに連結している。この可動ミラー5AAにおいては、例えば、一対のハンドル部59Aを把持した状態においてハンドル部59A同士が近づくようにハンドル部59Aに力を加えることにより、YA軸方向に沿って弾性部52Aを圧縮するように弾性変形させることができる。
The handle portion 59A is disposed inside the annular area CAA. The handle portion 59A has a U shape, and both ends thereof are connected to the support portion 56AA. The pair of support portions 56AA and the pair of handle portions 59A are arranged in a line on the center line CLA. The connecting portion 53A is connected to one handle portion 59A. Therefore, the connecting portion 53A connects the support portion 56AA and the mirror portion 51A to each other via the handle portion 59A. In the movable mirror 5AA, for example, a force is applied to the handle portion 59A so that the handle portions 59A approach each other while the pair of handle portions 59A are gripped, so that the elastic portion 52A is compressed along the YA axis direction. Can be elastically deformed.
図23の(b)に示されるように、ハンドル部59Aは、弾性部52Aに設けられていてもよい。ここでは、ハンドル部59Aは、環状領域CAAの外側に突出している。一対のハンドル部59Aは、中心線CLAの両側に分配されて配置されている。特に、ここでは、一対のハンドル部59Aは、中心線CLAに対して対称的な位置に配置されている。この可動ミラー5AAにおいては、例えば、一対のハンドル部59Aを把持した状態においてハンドル部59A同士を遠ざけるようにハンドル部59Aに力を加えることにより、YA軸方向に沿って弾性部52Aを圧縮するように弾性変形させることができる。
23 (b), the handle portion 59A may be provided on the elastic portion 52A. Here, the handle portion 59A protrudes outside the annular area CAA. The pair of handle portions 59A are distributed and arranged on both sides of the center line CLA. In particular, here, the pair of handle portions 59A are arranged at symmetrical positions with respect to the center line CLA. In the movable mirror 5AA, for example, by applying a force to the handle portion 59A so as to keep the handle portions 59A away from each other while holding the pair of handle portions 59A, the elastic portion 52A is compressed along the YA axis direction. Can be elastically deformed.
なお、図23の(c)に示されるように、一対の支持部56AAと一対のハンドル部59Aとを中心線CLAに沿って一列に配置する場合に、環状領域CAAの外側に突出するようにハンドル部59Aを支持部56AAに接続してもよい。
As shown in FIG. 23 (c), when the pair of support portions 56AA and the pair of handle portions 59A are arranged in a line along the center line CLA, they protrude outside the annular region CAA. The handle portion 59A may be connected to the support portion 56AA.
引き続いて、図4に示された開口31bAの変形例について説明する。図24の(a)に示されるように、開口31bAのZA軸方向からみたときの形状は、三角形であってもよい。この場合、開口31bAの内面は、一対の傾斜面SLAと基準面SRAとからなる。ここでは、傾斜面SLAの一端SLaA同士が互いに接続されている。この場合にも、傾斜面SLAと基準面SRAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方について可動ミラー5Aの位置決めが可能である。
Subsequently, a modification of the opening 31bA shown in FIG. 4 will be described. As shown in FIG. 24A, the shape of the opening 31bA when viewed from the ZA axis direction may be a triangle. In this case, the inner surface of the opening 31bA includes a pair of inclined surfaces SLA and a reference surface SRA. Here, the one ends SLaA of the inclined surfaces SLA are connected to each other. Also in this case, the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the engagement portion 55A being inscribed at the corner defined by the inclined surface SLA and the reference surface SRA.
図24の(b)に示される例では、開口31bAのZA軸方向からみたときの形状は、六角形である。この場合、開口31bAの内面は、一対の傾斜面SLAと、傾斜面SLAと反対側に傾斜する一対の傾斜面SKAと、を含む。一対の傾斜面SKAは、一端SkaAから他端SKbAに向けて互いの距離が拡大するように傾斜している。ここでは、傾斜面SLAの他端SLbAと傾斜面SKAの他端SKbAとが互いに接続され、1つの角部を形成している。この場合にも、傾斜面SLAと傾斜面SKAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方について可動ミラー5Aの位置決めが可能である。ここでは、ZA軸方向からみて、1つの係止部55Aが2つの点において開口31bAの内面に接触する。
In the example shown in FIG. 24B, the shape of the opening 31bA when viewed from the ZA axis direction is a hexagon. In this case, the inner surface of the opening 31bA includes a pair of inclined surfaces SLA and a pair of inclined surfaces SKA inclined to the opposite side of the inclined surface SLA. The pair of inclined surfaces SKA are inclined so that the distance from each other increases from one end SkaA to the other end SKbA. Here, the other end SLbA of the inclined surface SLA and the other end SKbA of the inclined surface SKA are connected to each other to form one corner. In this case as well, the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA. Here, when viewed from the ZA axis direction, one locking portion 55A contacts the inner surface of the opening 31bA at two points.
図24の(c)に示されるように、傾斜面SLAは、曲面であってもよい。この場合には、一対の傾斜面SLAは、一端SLaAから他端SLbAに向けて互いに距離が拡大するように傾斜し、且つ、湾曲している。ここでは、ZA軸方向からみて、傾斜面SLAは、傾斜面SLAの接線のXA軸に対する傾きが一端SLaAから他端SLbAに向けて徐々に拡大するように湾曲している。傾斜面SLAは、開口31bAの内側に向けて凸となるように湾曲している。この場合であっても、傾斜面SLAと基準面SRAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方について可動ミラー5Aの位置決めが可能である。
As shown in (c) of FIG. 24, the inclined surface SLA may be a curved surface. In this case, the pair of inclined surfaces SLA are inclined and curved so that the distance increases from one end SLaA to the other end SLbA. Here, when viewed from the ZA axis direction, the inclined surface SLA is curved such that the inclination of the tangent to the inclined surface SLA with respect to the XA axis gradually increases from one end SLaA to the other end SLbA. The inclined surface SLA is curved so as to be convex toward the inside of the opening 31bA. Even in this case, the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by inscribed the engaging portion 55A in the corner defined by the inclined surface SLA and the reference surface SRA. is there.
図25の(a)に示される例では、傾斜面SLA及び傾斜面SKAの両方が、開口31bAの内側に凸となるような曲面である。また、傾斜面SLAの他端SLbAと傾斜面SKAの他端SKbAとは、XA軸方向に沿って延びる接続面を介して互いに接続されている。この場合にも、傾斜面SLAと傾斜面SKAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方について可動ミラー5Aの位置決めが可能である。
In the example shown in FIG. 25A, both the inclined surface SLA and the inclined surface SKA are curved surfaces that are convex toward the inside of the opening 31bA. The other end SLbA of the inclined surface SLA and the other end SKbA of the inclined surface SKA are connected to each other via a connection surface extending along the XA axis direction. In this case as well, the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
図25の(b)に示される例では、ZA軸方向からみて2つの部分31pAに分割されている。2つの部分31pAのそれぞれが、傾斜面SLAと基準面SRAとを有している。すなわち、ここでは、基準面SRAも2つの部分に分割されている。ただし、ZA軸方向からみて、基準面SRAは、全体として、一方の部分31pAの傾斜面SLAの他端SLbAと、他方の部分31pAの傾斜面SLAの他端SLbAと、を接続する基準線BLAに沿って延びている。この場合には、1つの係止部55Aが開口31bAの1つの部分31pAに挿入される。そして、傾斜面SLAと基準面SRAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方について可動ミラー5Aの位置決めが可能である。
In the example shown in (b) of FIG. 25, it is divided into two parts 31pA when viewed from the ZA axis direction. Each of the two portions 31pA has an inclined surface SLA and a reference surface SRA. That is, here, the reference surface SRA is also divided into two parts. However, when viewed from the ZA axis direction, the reference surface SRA as a whole is connected to the other end SLbA of the inclined surface SLA of the one portion 31pA and the other end SLbA of the inclined surface SLA of the other portion 31pA. It extends along. In this case, one locking portion 55A is inserted into one portion 31pA of the opening 31bA. The engaging portion 55A is inscribed in the corner defined by the inclined surface SLA and the reference surface SRA, so that the movable mirror 5A can be positioned in both the XA axis direction and the YA axis direction.
図25の(c)に示される例でも、ZA軸方向からみて2つの部分31pAに分割されている。2つの部分31pAのそれぞれが、傾斜面SLAと傾斜面SKAとを有している。この場合にも、傾斜面SLAと傾斜面SKAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方について可動ミラー5Aの位置決めが可能である。
Also in the example shown in FIG. 25C, it is divided into two portions 31pA as seen from the ZA axis direction. Each of the two portions 31pA has an inclined surface SLA and an inclined surface SKA. In this case as well, the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
図26の(a)に示される例では、開口31bAのZA軸方向からみたときの形状が菱形である。ここでは、開口31bAの内面が、傾斜面SLAと傾斜面SKAとによって構成されていうる。つまり、ここでは、傾斜面SLAと傾斜面SKAとが互いに接続されることに加えて、傾斜面SLAの一端SLaA同士が互いに接続され、且つ、傾斜面SKAの一端SkaA同士が互いに接続されている。この場合にも、傾斜面SLAと傾斜面SKAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方について可動ミラー5Aの位置決めが可能である。
In the example shown in FIG. 26A, the shape of the opening 31bA when viewed from the ZA axis direction is a rhombus. Here, the inner surface of the opening 31bA may be constituted by the inclined surface SLA and the inclined surface SKA. That is, here, in addition to the inclined surface SLA and the inclined surface SKA being connected to each other, the one ends SLaA of the inclined surfaces SLA are connected to each other, and the one ends SkaA of the inclined surfaces SKA are connected to each other. . In this case as well, the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
さらに、図26の(b)に示される例では、傾斜面SLAの他端SLbAと傾斜面SKAの他端SKbAとが、XA軸方向に沿って延びる接続面を介して互いに接続されている。また、傾斜面SLAの一端SLaA同士が互いに接続され、且つ、傾斜面SKAの一端SkaA同士が互いに接続されている。この場合にも、傾斜面SLAと傾斜面SKAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方について可動ミラー5Aの位置決めが可能である。
Furthermore, in the example shown in FIG. 26B, the other end SLbA of the inclined surface SLA and the other end SKbA of the inclined surface SKA are connected to each other via a connection surface extending along the XA axis direction. Further, the one ends SLaA of the inclined surfaces SLA are connected to each other, and the one ends SkaA of the inclined surfaces SKA are connected to each other. In this case as well, the movable mirror 5A can be positioned in both the XA-axis direction and the YA-axis direction by the locking portion 55A being inscribed at the corner defined by the inclined surface SLA and the inclined surface SKA.
ここで、上記においては、支持部56Aが対向する方向に沿って弾性部52Aを圧縮するように弾性変形することにより、支持部56A同士の間隔を縮小させてから係止部55Aを開口31bAに挿入する場合について例示した。しかしながら、支持部56A同士の間隔を拡大させてから係止部55Aを開口31bAに挿入するような変形例も採用し得る。
Here, in the above, the elastic portion 52A is elastically deformed so as to compress the elastic portion 52A along the direction in which the support portion 56A faces, thereby reducing the interval between the support portions 56A, and then the locking portion 55A into the opening 31bA. The case of inserting was illustrated. However, it is also possible to adopt a modification in which the locking portion 55A is inserted into the opening 31bA after the interval between the support portions 56A is enlarged.
すなわち、可動ミラー5A及び開口31bAは、図27及び図28に示されるように変形可能である。図27の例では、支持部56Aは、脚部54A、及び、係止部55Aを備えるが、係止部55Aの屈曲の方向が図2の例と異なる。係止部55Aは、一対の支持部56A間において、互いの対向方向の反対側に凸となるように屈曲している。そして、係止部55Aは、一致の支持部56A間において互いに対向する面(内面)として、傾斜面55aA及び傾斜面55bAを含む。
That is, the movable mirror 5A and the opening 31bA can be deformed as shown in FIGS. In the example of FIG. 27, the support portion 56A includes a leg portion 54A and a locking portion 55A, but the bending direction of the locking portion 55A is different from the example of FIG. 55 A of latching parts are bent so that it may become convex on the opposite side of a mutual opposing direction between a pair of support parts 56A. The locking portion 55A includes an inclined surface 55aA and an inclined surface 55bA as surfaces (inner surfaces) facing each other between the matching support portions 56A.
傾斜面55aAは、連結部57Aから遠ざかる方向(ZA軸負方向)に互いに離間するように傾斜している。また、傾斜面55bAは、ZA軸負方向に互いに近づくように傾斜している。それぞれのZA軸に対する傾斜角の絶対値は、上記の例と同様である。なお、ここでは、支持部56Aのそれぞれに対して、ハンドル部59Aが設けられている。ハンドル部59Aは、YA軸方向にミラー部51A及び弾性部52Aを挟むように配置されている。ハンドル部59A及び連結部57Aは、中心線CLA上に一列に配列されている。
The inclined surfaces 55aA are inclined so as to be separated from each other in a direction away from the connecting portion 57A (ZA axis negative direction). Further, the inclined surfaces 55bA are inclined so as to approach each other in the negative direction of the ZA axis. The absolute value of the inclination angle with respect to each ZA axis is the same as in the above example. Here, a handle portion 59A is provided for each of the support portions 56A. The handle portion 59A is arranged so as to sandwich the mirror portion 51A and the elastic portion 52A in the YA axis direction. The handle portion 59A and the connecting portion 57A are arranged in a line on the center line CLA.
図27の(a)の例では、ハンドル部59AはU字状に形成されており、支持部56Aとの間に孔部59sAを形成している。したがって、例えば孔部59sAにアームを挿入することにより、支持部56A同士の間隔を拡大するようにハンドル部59Aに力を加えることができる。また、図27の(b)の例では、ハンドル部59Aは直線状に形成されている。したがって、ハンドル部59Aを摘まむことにより、支持部56A同士の間隔を拡大するようにハンドル部59Aに力を加えることができる。これらの場合、弾性部52Aは、YA軸方向に引き延ばされるように弾性変形する。
27 (a), the handle portion 59A is formed in a U-shape, and a hole 59sA is formed between the handle portion 59A and the support portion 56A. Therefore, for example, by inserting an arm into the hole 59sA, it is possible to apply a force to the handle portion 59A so as to increase the interval between the support portions 56A. Further, in the example of FIG. 27B, the handle portion 59A is formed in a straight line shape. Therefore, by gripping the handle portion 59A, a force can be applied to the handle portion 59A so as to increase the interval between the support portions 56A. In these cases, the elastic portion 52A is elastically deformed so as to be extended in the YA axis direction.
これに対応して、図28に示されるように開口31bAを変形することができる。図28の(a)の例では、開口31bAは2つの3角形状の部分31pAに分割されている。図27に示された可動ミラー5Aにおいては、開口31bAに係止部55Aを挿入した状態において弾性部52Aの弾性変形の一部を解放すると、係止部55A同士が互いに近づくように変位する。この変位を利用してセルフアライメントを行うために、開口31bAのそれぞれの部分31pAにおいては、YA軸方向における実装領域31Aの中心側の面として傾斜面SLAが形成されている。
Correspondingly, the opening 31bA can be deformed as shown in FIG. In the example of FIG. 28A, the opening 31bA is divided into two triangular portions 31pA. In the movable mirror 5A shown in FIG. 27, when a part of the elastic deformation of the elastic portion 52A is released in a state where the locking portion 55A is inserted into the opening 31bA, the locking portions 55A are displaced so as to approach each other. In order to perform self-alignment using this displacement, an inclined surface SLA is formed as a surface on the center side of the mounting region 31A in the YA axis direction in each portion 31pA of the opening 31bA.
傾斜面SLAは、一端SLaAと他端SLbAとを含む。一端SLaA及び他端SLbAは、ZA軸方向からみたときの傾斜面SLAの両端部である。一対の傾斜面SLAは、一端SLaAから他端SLbAに向けて互いの距離が縮小するように(例えばXA軸に対して)傾斜している。それぞれの部分31pAの基準面SRAは、ZA軸方向からみて、一方の傾斜面SLAの他端SLbAと他方の傾斜面SLAの他端SLbAとを互いに接続する基準線BLAに沿って延在している。
The inclined surface SLA includes one end SLaA and the other end SLbA. One end SLaA and the other end SLbA are both ends of the inclined surface SLA when viewed from the ZA axis direction. The pair of inclined surfaces SLA are inclined so as to reduce the distance from one end SLaA toward the other end SLbA (for example, with respect to the XA axis). The reference surface SRA of each portion 31pA extends along a reference line BLA that connects the other end SLbA of one inclined surface SLA and the other end SLbA of the other inclined surface SLA when viewed from the ZA axis direction. Yes.
したがって、開口31bA内に一対の係止部55Aを配置すると、係止部55Aは、傾斜面SLAからの反力のXA軸方向の成分によって傾斜面SLA上を基準面SRAに向けて摺動し、傾斜面SLAに接触しながら基準面SRAに突き当てられる。これにより、係止部55Aは、傾斜面SLAと基準面SRAとによって規定される角部に内接し、XA軸方向及びYA軸方向の両方において位置決めされる(弾性力によりセルフアライメントされる)。
Therefore, when the pair of locking portions 55A are arranged in the opening 31bA, the locking portions 55A slide on the inclined surface SLA toward the reference surface SRA by the component in the XA axis direction of the reaction force from the inclined surface SLA. The abutting against the reference surface SRA while contacting the inclined surface SLA. As a result, the locking portion 55A is inscribed in a corner defined by the inclined surface SLA and the reference surface SRA, and is positioned in both the XA axis direction and the YA axis direction (self-aligned by elastic force).
図28の(b)の例では、開口31bAは、2つの菱形状の部分31pAに分割されている。開口31bAのそれぞれの部分31pAにおいては、YA軸方向における実装領域31Aの中心側の一対の面として傾斜面SLA及び傾斜面SKAが形成されている。1つの部分31pAに着目したとき、傾斜面SLAと傾斜面SLAとは反対側に傾斜している。傾斜面SKAは、一端SkaAから他端SKbAに向けて互いの距離が縮小するように傾斜している。ここでは、傾斜面SLAの他端SLbAと傾斜面SKAの他端SKbAとが互いに接続され、1つの角部を形成している。この場合にも、傾斜面SLAと傾斜面SKAとによって規定される角部に係止部55Aが内接することにより、XA軸方向及びYA軸方向の両方において位置決めされる(弾性力によりセルフアライメントされる)。
28 (b), the opening 31bA is divided into two rhombus portions 31pA. In each portion 31pA of the opening 31bA, an inclined surface SLA and an inclined surface SKA are formed as a pair of surfaces on the center side of the mounting region 31A in the YA axis direction. When attention is paid to one portion 31pA, the inclined surface SLA and the inclined surface SLA are inclined to the opposite side. The inclined surfaces SKA are inclined so that the distance from one end SkaA to the other end SKbA decreases. Here, the other end SLbA of the inclined surface SLA and the other end SKbA of the inclined surface SKA are connected to each other to form one corner. Also in this case, the engaging portion 55A is inscribed in the corner portion defined by the inclined surface SLA and the inclined surface SKA, thereby being positioned in both the XA axis direction and the YA axis direction (self-alignment is performed by elastic force). )
以上、可動ミラー5A,5AA及び開口31bAの種々の変形例について説明したが、可動ミラー5A,5AA及び開口31bAの変形例は、上述したものに限定されない。例えば、可動ミラー5A,5AA及び開口31bAは、上述した変形例の任意の一部分同士を交換して構成される別の変形例とすることができる。なお、固定ミラー6A及び開口37aAについても同様である。
Although various modifications of the movable mirrors 5A and 5AA and the opening 31bA have been described above, the modifications of the movable mirrors 5A and 5AA and the opening 31bA are not limited to those described above. For example, the movable mirrors 5A and 5AA and the opening 31bA may be another modified example configured by exchanging arbitrary portions of the above-described modified examples. The same applies to the fixed mirror 6A and the opening 37aA.
さらに、上記実施形態においては、ベースBAに実装される光学素子として、可動ミラー及び固定ミラーを例示した。この例では、光学面はミラー面である。しかしながら、実装対象となる光学素子はミラーに限定されず、例えば、グレーティングや光学フィルタ等の任意のものとすることができる。
Furthermore, in the said embodiment, the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BA. In this example, the optical surface is a mirror surface. However, the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter.
また、ミラー部51A,61A及びミラー面51aA,61aAの形状は、円形に限定されず、矩形やその他の形状であってもよい。以上の第1実施形態について、以下に付記する。
[付記1]
光学素子と前記光学素子が実装されるベースとを備える光モジュールであって、
前記光学素子は、光学面を有する光学部と、環状領域を形成するように前記光学部の周囲に設けられた弾性部と、前記光学面に沿った第1方向に前記光学部を挟むように設けられ、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、を有し、
前記ベースは、主面と、前記主面に連通する開口が設けられた実装領域と、を有し、
前記支持部は、前記弾性部の弾性力が付与された状態において前記開口に挿入され、
前記光学素子は、前記光学面が前記主面に交差した状態において、前記開口の内面から前記支持部に付与される前記弾性力の反力により前記実装領域に支持される、
光モジュール。
[付記2]
前記ベースは、支持層と、前記支持層上に設けられ、前記主面及び前記実装領域を含むデバイス層と、を有し、
前記開口は、前記主面に交差する方向に前記デバイス層を貫通しており、
前記支持部は、前記主面に交差する方向における前記開口の一対の縁部に当接するように屈曲した係止部を含む、
付記1に記載の光モジュール。
[付記3]
前記開口の内面は、前記主面に交差する方向からみて、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一方の前記傾斜面の前記他端と他方の前記傾斜面の前記他端とを接続する基準線に沿って延在する基準面と、を含む、
付記1又は2に記載の光モジュール。
[付記4]
前記光学素子は、前記光学部と前記弾性部とを互いに連結する第1連結部を有する、
付記1~3のいずれか一項に記載の光モジュール。
[付記5]
前記弾性部は、前記光学面に交差する第2方向からみて前記光学部を囲うように環状に形成されることにより前記環状領域を形成している、
付記1~4のいずれか一項に記載の光モジュール。
[付記6]
前記支持部は、前記弾性部に接続される第2連結部と、前記光学面に沿うと共に前記第1方向に交差する第3方向に沿って前記第2連結部から前記光学面を越えて延在し、前記開口に挿入される脚部と、を含む、
付記1~5のいずれか一項に記載の光モジュール。
[付記7]
前記支持層、前記デバイス層、又は、中間層に実装された固定ミラーと、
前記支持層、前記デバイス層、又は、前記中間層に実装されたビームスプリッタと、を更に備え、
前記光学素子は、ミラー面である前記光学面を含む可動ミラーであり、
前記デバイス層は、前記実装領域に接続された駆動領域を有し、
前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、
付記2に記載の光モジュール。
[付記8]
前記ベースは、前記支持層と前記デバイス層との間に設けられた前記中間層を有し、
前記支持層は、SOI基板の第1シリコン層であり、
前記デバイス層は、前記SOI基板の第2シリコン層であり、
前記中間層は、前記SOI基板の絶縁層である、
付記7に記載の光モジュール。
[付記9]
外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、
を備える、
付記7又は8に記載の光モジュール。
[第2実施形態] Further, the shapes of the mirror portions 51A and 61A and the mirror surfaces 51aA and 61aA are not limited to a circle, and may be a rectangle or other shapes. The above first embodiment will be additionally described below.
[Appendix 1]
An optical module comprising an optical element and a base on which the optical element is mounted,
The optical element includes an optical part having an optical surface, an elastic part provided around the optical part so as to form an annular region, and the optical part sandwiched in a first direction along the optical surface. A pair of support portions provided with elastic force according to the elastic deformation of the elastic portion and having a mutual distance variable.
The base has a main surface and a mounting region provided with an opening communicating with the main surface;
The support portion is inserted into the opening in a state where the elastic force of the elastic portion is applied,
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the support portion in a state where the optical surface intersects the main surface.
Optical module.
[Appendix 2]
The base includes a support layer, and a device layer provided on the support layer and including the main surface and the mounting region,
The opening passes through the device layer in a direction intersecting the main surface,
The support portion includes a locking portion that is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
The optical module according toAppendix 1.
[Appendix 3]
The inner surface of the opening has a pair of inclined surfaces inclined so that the distance from one end to the other end increases as viewed from the direction intersecting the main surface, and the other end and the other of the one inclined surface A reference surface extending along a reference line connecting the other end of the inclined surface,
The optical module according toappendix 1 or 2.
[Appendix 4]
The optical element includes a first connecting part that connects the optical part and the elastic part to each other.
The optical module according to any one ofappendices 1 to 3.
[Appendix 5]
The elastic part is formed in an annular shape so as to surround the optical part when viewed from the second direction intersecting the optical surface, thereby forming the annular region.
The optical module according to any one ofappendices 1 to 4.
[Appendix 6]
The support part extends beyond the optical surface from the second connection part along a third direction that extends along the optical surface and intersects the first direction, and a second connection part connected to the elastic part. And a leg inserted into the opening,
The optical module according to any one ofappendices 1 to 5.
[Appendix 7]
A fixed mirror mounted on the support layer, the device layer, or an intermediate layer;
A beam splitter mounted on the support layer, the device layer, or the intermediate layer, and
The optical element is a movable mirror including the optical surface which is a mirror surface;
The device layer has a drive region connected to the mounting region,
The movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system,
The optical module according to Appendix 2.
[Appendix 8]
The base has the intermediate layer provided between the support layer and the device layer,
The support layer is a first silicon layer of an SOI substrate;
The device layer is a second silicon layer of the SOI substrate;
The intermediate layer is an insulating layer of the SOI substrate.
The optical module according to appendix 7.
[Appendix 9]
A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
A light emitting portion arranged to emit the measurement light to the outside from the interference optical system;
Comprising
The optical module according to appendix 7 or 8.
[Second Embodiment]
[付記1]
光学素子と前記光学素子が実装されるベースとを備える光モジュールであって、
前記光学素子は、光学面を有する光学部と、環状領域を形成するように前記光学部の周囲に設けられた弾性部と、前記光学面に沿った第1方向に前記光学部を挟むように設けられ、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、を有し、
前記ベースは、主面と、前記主面に連通する開口が設けられた実装領域と、を有し、
前記支持部は、前記弾性部の弾性力が付与された状態において前記開口に挿入され、
前記光学素子は、前記光学面が前記主面に交差した状態において、前記開口の内面から前記支持部に付与される前記弾性力の反力により前記実装領域に支持される、
光モジュール。
[付記2]
前記ベースは、支持層と、前記支持層上に設けられ、前記主面及び前記実装領域を含むデバイス層と、を有し、
前記開口は、前記主面に交差する方向に前記デバイス層を貫通しており、
前記支持部は、前記主面に交差する方向における前記開口の一対の縁部に当接するように屈曲した係止部を含む、
付記1に記載の光モジュール。
[付記3]
前記開口の内面は、前記主面に交差する方向からみて、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一方の前記傾斜面の前記他端と他方の前記傾斜面の前記他端とを接続する基準線に沿って延在する基準面と、を含む、
付記1又は2に記載の光モジュール。
[付記4]
前記光学素子は、前記光学部と前記弾性部とを互いに連結する第1連結部を有する、
付記1~3のいずれか一項に記載の光モジュール。
[付記5]
前記弾性部は、前記光学面に交差する第2方向からみて前記光学部を囲うように環状に形成されることにより前記環状領域を形成している、
付記1~4のいずれか一項に記載の光モジュール。
[付記6]
前記支持部は、前記弾性部に接続される第2連結部と、前記光学面に沿うと共に前記第1方向に交差する第3方向に沿って前記第2連結部から前記光学面を越えて延在し、前記開口に挿入される脚部と、を含む、
付記1~5のいずれか一項に記載の光モジュール。
[付記7]
前記支持層、前記デバイス層、又は、中間層に実装された固定ミラーと、
前記支持層、前記デバイス層、又は、前記中間層に実装されたビームスプリッタと、を更に備え、
前記光学素子は、ミラー面である前記光学面を含む可動ミラーであり、
前記デバイス層は、前記実装領域に接続された駆動領域を有し、
前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、
付記2に記載の光モジュール。
[付記8]
前記ベースは、前記支持層と前記デバイス層との間に設けられた前記中間層を有し、
前記支持層は、SOI基板の第1シリコン層であり、
前記デバイス層は、前記SOI基板の第2シリコン層であり、
前記中間層は、前記SOI基板の絶縁層である、
付記7に記載の光モジュール。
[付記9]
外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、
を備える、
付記7又は8に記載の光モジュール。
[第2実施形態] Further, the shapes of the
[Appendix 1]
An optical module comprising an optical element and a base on which the optical element is mounted,
The optical element includes an optical part having an optical surface, an elastic part provided around the optical part so as to form an annular region, and the optical part sandwiched in a first direction along the optical surface. A pair of support portions provided with elastic force according to the elastic deformation of the elastic portion and having a mutual distance variable.
The base has a main surface and a mounting region provided with an opening communicating with the main surface;
The support portion is inserted into the opening in a state where the elastic force of the elastic portion is applied,
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the support portion in a state where the optical surface intersects the main surface.
Optical module.
[Appendix 2]
The base includes a support layer, and a device layer provided on the support layer and including the main surface and the mounting region,
The opening passes through the device layer in a direction intersecting the main surface,
The support portion includes a locking portion that is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
The optical module according to
[Appendix 3]
The inner surface of the opening has a pair of inclined surfaces inclined so that the distance from one end to the other end increases as viewed from the direction intersecting the main surface, and the other end and the other of the one inclined surface A reference surface extending along a reference line connecting the other end of the inclined surface,
The optical module according to
[Appendix 4]
The optical element includes a first connecting part that connects the optical part and the elastic part to each other.
The optical module according to any one of
[Appendix 5]
The elastic part is formed in an annular shape so as to surround the optical part when viewed from the second direction intersecting the optical surface, thereby forming the annular region.
The optical module according to any one of
[Appendix 6]
The support part extends beyond the optical surface from the second connection part along a third direction that extends along the optical surface and intersects the first direction, and a second connection part connected to the elastic part. And a leg inserted into the opening,
The optical module according to any one of
[Appendix 7]
A fixed mirror mounted on the support layer, the device layer, or an intermediate layer;
A beam splitter mounted on the support layer, the device layer, or the intermediate layer, and
The optical element is a movable mirror including the optical surface which is a mirror surface;
The device layer has a drive region connected to the mounting region,
The movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system,
The optical module according to Appendix 2.
[Appendix 8]
The base has the intermediate layer provided between the support layer and the device layer,
The support layer is a first silicon layer of an SOI substrate;
The device layer is a second silicon layer of the SOI substrate;
The intermediate layer is an insulating layer of the SOI substrate.
The optical module according to appendix 7.
[Appendix 9]
A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
A light emitting portion arranged to emit the measurement light to the outside from the interference optical system;
Comprising
The optical module according to appendix 7 or 8.
[Second Embodiment]
MEMS(Micro Electro Mechanical Systems)技術によってSOI(Silicon On Insulator)基板に干渉光学系が形成された光モジュールが知られている(例えば、特表2012-524295号公報参照)。このような光モジュールは、高精度な光学配置が実現されたFTIR(フーリエ変換型赤外分光分析器)を提供し得るため、注目されている。
An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, JP 2012-524295 A). Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
米国特許出願公開第2002/0186477号明細書には、光学システムの製造プロセスが記載されている。このプロセスにおいては、まず、テンプレート基板及び光学ベンチを用意する。テンプレート基板には、エッチングによってアライメントスロットが形成されている。光学ベンチの主面にはボンドパッドが配置されている。続いて、アライメントスロットがボンドパッド上に配置されるように、テンプレート基板を光学ベンチの主面に取り付ける。続いて、光学要素をアライメントスロットの側壁を用いて位置決めしながらアライメントスロットに挿入し、ボンドパッド上に位置させる。そして、ボンドパッドのリフローにより光学要素を光学ベンチに接着する。
US Patent Application Publication No. 2002/0186477 describes an optical system manufacturing process. In this process, first, a template substrate and an optical bench are prepared. An alignment slot is formed on the template substrate by etching. Bond pads are arranged on the main surface of the optical bench. Subsequently, the template substrate is attached to the main surface of the optical bench so that the alignment slot is disposed on the bond pad. Subsequently, the optical element is inserted into the alignment slot while being positioned using the side wall of the alignment slot, and is positioned on the bond pad. Then, the optical element is bonded to the optical bench by reflowing the bond pad.
上述したような光モジュールには、例えば可動ミラーのサイズがSOI基板に対する深堀加工の達成度に依存する点で、次のような課題がある。すなわち、SOI基板に対する深堀加工の達成度は最大でも500μm程度であるため、可動ミラーのサイズを大きくしてFTIRにおける感度を向上させるのには限界がある。そこで、別体で形成された可動ミラーをデバイス層(例えばSOI基板において駆動領域が形成される層)に実装する技術が考えられる。
The optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 μm at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
これに対して、特表2012-524295号公報に記載のMEMSデバイスの作製に際して特許文献2に記載のプロセスを用いると、アクチュエータに接続されて可動とされた実装領域に対して、可動ミラーといった光学要素をボンドパッドのリフローにより接着して実装することになる。この場合、ボンドパッドの使用量や形成領域等を十分にコントロールしないと、ボンドパッドの接着が実装領域の駆動に影響を及ぼすおそれがある。このため、光学要素の実装領域の特性によっては、特表2012-524295号公報に記載のプロセスが適用できない場合がある。
On the other hand, when the process described in Patent Document 2 is used in manufacturing the MEMS device described in JP-T-2012-524295, an optical device such as a movable mirror is mounted on a mounting region that is movable by being connected to an actuator. The elements are mounted by bonding by reflow of bond pads. In this case, if the amount of use of the bond pad, the formation region, and the like are not sufficiently controlled, bonding of the bond pad may affect the driving of the mounting region. For this reason, depending on the characteristics of the mounting region of the optical element, the process described in JP 2012-524295 A may not be applicable.
本開示の別の一側面は、実装領域の特性によらず確実に光学素子を実装可能な光モジュール及びその実装方法を提供することを目的とする。
Another object of the present disclosure is to provide an optical module that can reliably mount an optical element regardless of the characteristics of the mounting region, and a mounting method thereof.
本開示の別の一側面の光モジュールは、光学素子と、光学素子が実装されるベースと、を備え、光学素子は、光学面を有する光学部と、弾性変形可能な弾性部と、互いに対向するように設けられ、弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、一対の支持部間の距離が変化するように弾性部を弾性変形させるために用いられるハンドルと、を有し、ベースは、主面と、主面に連通する開口が設けられた実装領域と、を有し、一対の支持部は、弾性部の弾性力が付与された状態において開口に挿入され、光学素子は、開口の内面から付与される弾性力の反力により実装領域に支持され、ハンドルは、光学素子が実装領域に実装された状態において、光学部及び一対の支持部に対して、主面に交差する方向における一方側に位置する。
An optical module according to another aspect of the present disclosure includes an optical element and a base on which the optical element is mounted. The optical element opposes an optical part having an optical surface and an elastic part that can be elastically deformed. A pair of support portions that are provided with an elastic force according to elastic deformation of the elastic portion and whose distance is variable, and the elastic portion is configured so that the distance between the pair of support portions changes. A handle used for elastic deformation, the base has a main surface and a mounting region provided with an opening communicating with the main surface, and the pair of support portions are elastic forces of the elastic portions. The optical element is supported in the mounting area by the reaction force of the elastic force applied from the inner surface of the opening, and the handle is optically mounted in the state where the optical element is mounted in the mounting area. Part and a pair of support parts on the main surface Located on one side in a direction difference.
この光モジュールにおいては、光学素子が、弾性部と、弾性部の弾性変形に応じて互いの距離が可変とされた一対の支持部と、を有する。一方、光学素子が実装されるベースの実装領域には、主面に連通する開口が形成されている。したがって、一例として支持部間の距離が縮小するように弾性部を弾性変形させた状態において支持部を開口に挿入し、弾性部の弾性変形の一部を解放することにより、開口内において支持部の互いの距離が拡大し、支持部を開口の内面に当接させることができる。これにより、光学素子は、開口の内面から支持部に付与される反力によって支持される。このように、この光モジュールにおいては、弾性力を利用して光学素子をベースに実装する。したがって、接着剤の使用量を低減すること、或いは接着剤を不要とすることが可能となり、接着剤の影響等を考慮することなく、すなわち、実装領域の特性によらず、確実に光学素子を実装可能である。
In this optical module, the optical element has an elastic part and a pair of support parts whose distances can be changed according to the elastic deformation of the elastic part. On the other hand, an opening communicating with the main surface is formed in the mounting region of the base on which the optical element is mounted. Therefore, as an example, the support portion is inserted into the opening in a state in which the elastic portion is elastically deformed so that the distance between the support portions is reduced, and a part of the elastic deformation of the elastic portion is released, so that the support portion is opened in the opening. The distance between each other increases, and the support portion can be brought into contact with the inner surface of the opening. Thereby, an optical element is supported by the reaction force provided to a support part from the inner surface of opening. As described above, in this optical module, the optical element is mounted on the base using the elastic force. Therefore, it is possible to reduce the amount of adhesive used or eliminate the need for an adhesive, and to reliably perform the optical element without considering the influence of the adhesive or the like, that is, regardless of the characteristics of the mounting area. Can be implemented.
更に、この光モジュールでは、光学素子が、一対の支持部間の距離が変化するように弾性部を弾性変形させるために用いられるハンドルを有する。このハンドルは、光学素子が実装領域に実装された状態において、光学部及び一対の支持部に対して、主面に交差する方向における一方側に位置する。このため、ハンドルを用いて弾性部を弾性変形させて一対の支持部間の距離を変化させた状態において、一対の支持部を開口に挿入する場合に、光学部が作業の妨げになり難い。したがって、光学素子をベースに容易に実装することができる。よって、この光モジュールによれば、光モジュールの実装工程を容易化することができる。
Furthermore, in this optical module, the optical element has a handle used for elastically deforming the elastic portion so that the distance between the pair of support portions changes. The handle is located on one side in the direction intersecting the main surface with respect to the optical part and the pair of support parts in a state where the optical element is mounted in the mounting region. For this reason, in a state where the elastic portion is elastically deformed using the handle and the distance between the pair of support portions is changed, the optical portion is unlikely to hinder the work when the pair of support portions are inserted into the openings. Therefore, the optical element can be easily mounted on the base. Therefore, according to this optical module, the mounting process of the optical module can be facilitated.
本開示の別の一側面の光モジュールでは、ハンドルは、一対の支持部間の距離を縮小させるために用いられてもよいし、或いは、一対の支持部間の距離を拡大させるために用いられてもよい。これによれば、光学素子の容易な実装のための構成を好適に実現することができる。
In the optical module according to another aspect of the present disclosure, the handle may be used to reduce the distance between the pair of support parts, or may be used to increase the distance between the pair of support parts. May be. According to this, the structure for easy mounting of an optical element is suitably realizable.
本開示の別の一側面の光モジュールでは、ハンドルは、互いに離れる方向に変位することによって一対の支持部間の距離を変化させる一対の変位部を有してもよいし、或いは、互いに近づく方向に変位することによって一対の支持部間の距離を変化させる一対の変位部を有してもよい。これによれば、光学素子をベースに一層容易に実装することができる。
In the optical module according to another aspect of the present disclosure, the handle may have a pair of displacement portions that change a distance between the pair of support portions by displacing in a direction away from each other, or a direction in which the handles approach each other. You may have a pair of displacement part which changes the distance between a pair of support parts by displacing to. According to this, the optical element can be more easily mounted on the base.
本開示の別の一側面の光モジュールでは、一対の変位部は、主面に交差する方向、及び一対の変位部同士が対向する方向の双方に垂直な方向から見た場合に、主面に交差する方向における一方側に向かうにつれて互いの距離が拡大するように傾斜して配置されていてもよい。これによれば、例えば、主面に交差する方向における一方側から一対の変位部間に進入させたボンダヘッドを一対の変位部に押し当て、当該方向における他方側に向けて一対の変位部上を摺動させることで、一対の変位部を互いに離れる方向に変位させることできる。したがって、光モジュールの実装工程を一層容易化することができる。
In the optical module according to another aspect of the present disclosure, the pair of displacement portions is formed on the principal surface when viewed from a direction perpendicular to both the direction intersecting the principal surface and the direction in which the pair of displacement portions face each other. You may incline and arrange | position so that a mutual distance may expand as it goes to the one side in the direction which cross | intersects. According to this, for example, the bonder head that has entered between the pair of displacement parts from one side in the direction intersecting the main surface is pressed against the pair of displacement parts, and on the pair of displacement parts toward the other side in the direction. By sliding, the pair of displacement portions can be displaced in directions away from each other. Therefore, the mounting process of the optical module can be further facilitated.
本開示の別の一側面の光モジュールでは、ハンドルは、光学素子が実装領域に実装された状態において、弾性部に対して、主面に交差する方向における一方側に位置してもよい。これによれば、ハンドルを用いて弾性部を弾性変形させて一対の支持部間の距離を変化させた状態において、一対の支持部を開口に挿入する場合に、弾性部が作業の妨げになり難い。したがって、光学素子をベースに対してより一層容易に実装することができる。
In the optical module according to another aspect of the present disclosure, the handle may be positioned on one side in the direction intersecting the main surface with respect to the elastic portion in a state where the optical element is mounted in the mounting region. According to this, in a state in which the elastic portion is elastically deformed using the handle and the distance between the pair of support portions is changed, the elastic portion obstructs the work when the pair of support portions is inserted into the opening. hard. Therefore, the optical element can be more easily mounted on the base.
本開示の別の一側面に係る光モジュールでは、ベースは、支持層と、支持層上に設けられ、主面及び実装領域を含むデバイス層と、を有し、開口は、主面に交差する方向にデバイス層を貫通しており、支持部は、主面に交差する方向における開口の一対の縁部に当接するように屈曲した係止部を含んでもよい。この場合、係止部が開口の一対の縁部に当接する位置において実装領域に係止される。このため、光学素子をベースにより確実に実装可能であると共に、ベースの主面に交差する方向について光学素子の位置決めが可能である。
In the optical module according to another aspect of the present disclosure, the base includes a support layer and a device layer provided on the support layer and including a main surface and a mounting region, and the opening intersects the main surface. The device layer may penetrate the device layer in a direction, and the support portion may include a locking portion that is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface. In this case, the locking portion is locked to the mounting region at a position where the locking portion contacts the pair of edges of the opening. For this reason, the optical element can be reliably mounted on the base, and the optical element can be positioned in the direction intersecting the main surface of the base.
本開示の別の一側面に係る光モジュールは、支持層、デバイス層、及び支持層とデバイス層との間に設けられた中間層の少なくとも1つに実装された固定ミラーと、支持層、デバイス層、及び中間層の少なくとも1つに実装されたビームスプリッタと、を更に備え、光学素子は、ミラー面である光学面を含む可動ミラーであり、デバイス層は、実装領域に接続された駆動領域を有し、可動ミラー、固定ミラー及びビームスプリッタは、干渉光学系を構成するように配置されていてもよい。この場合、感度が向上されたFTIRを得ることができる。また、ここでは、可動ミラーが実装される実装領域は、駆動領域に接続されて駆動される特性を有している。したがって、接着剤の悪影響等を受けやすいため、上記の構成がより有効となる。
An optical module according to another aspect of the present disclosure includes a fixed mirror, a support layer, and a device mounted on at least one of a support layer, a device layer, and an intermediate layer provided between the support layer and the device layer. And a beam splitter mounted on at least one of the intermediate layers, the optical element is a movable mirror including an optical surface that is a mirror surface, and the device layer is a drive region connected to the mounting region The movable mirror, the fixed mirror, and the beam splitter may be arranged to constitute an interference optical system. In this case, an FTIR with improved sensitivity can be obtained. Here, the mounting area where the movable mirror is mounted has a characteristic of being connected to the driving area and driven. Therefore, the above configuration is more effective because it is easily affected by the adverse effects of the adhesive.
本開示の別の一側面に係る光モジュールにおいては、ベースは、支持層とデバイス層との間に設けられた中間層を有し、支持層は、SOI基板の第1シリコン層であり、デバイス層は、SOI基板の第2シリコン層であり、中間層は、SOI基板の絶縁層であってもよい。この場合、デバイス層に対する可動ミラーの確実な実装のための構成をSOI基板によって好適に実現することができる。
In the optical module according to another aspect of the present disclosure, the base includes an intermediate layer provided between the support layer and the device layer, and the support layer is the first silicon layer of the SOI substrate. The layer may be a second silicon layer of the SOI substrate, and the intermediate layer may be an insulating layer of the SOI substrate. In this case, a configuration for reliably mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
本開示の別の一側面に係る光モジュールは、外部から干渉光学系に測定光を入射させるように配置された光入射部と、干渉光学系から外部に測定光を出射させるように配置された光出射部と、を備えてもよい。この場合、光入射部及び光出射部を備えるFTIRを得ることができる。
An optical module according to another aspect of the present disclosure is disposed so that measurement light is incident on the interference optical system from the outside and the measurement light is emitted from the interference optical system to the outside. A light emitting portion. In this case, an FTIR including a light incident part and a light emission part can be obtained.
本開示の別の一側面の光モジュールの実装方法は、ハンドルに力を付加することにより一対の支持部間の距離を変化させた状態において、一対の支持部を開口に挿入する第1ステップと、ハンドルに付加していた力を解放することにより、一対の支持部を開口の内面に当接させて光学素子をベースに固定する第2ステップと、を備える。
The optical module mounting method according to another aspect of the present disclosure includes a first step of inserting the pair of support portions into the opening in a state where the distance between the pair of support portions is changed by applying a force to the handle. And a second step of fixing the optical element to the base by releasing the force applied to the handle to bring the pair of support portions into contact with the inner surface of the opening.
この光モジュールの実装方法では、弾性部の弾性力を利用して光学素子をベースに実装する。これにより、接着剤の使用量を低減すること、或いは接着剤を不要とすることが可能となり、接着剤の影響等を考慮することなく、すなわち、実装領域の特性によらず、確実に光学素子を実装可能である。また、ハンドルに力を付加することにより一対の支持部間の距離を変化させた状態において、一対の支持部を開口に挿入する。このとき、ハンドルが、光学素子が実装領域に実装された状態において、光学部及び一対の支持部に対して、主面に交差する方向における一方側に位置するように設けられているため、光学部が作業の妨げになり難い。したがって、一対の支持部間の距離を変化させた状態において、一対の支持部を容易に開口に挿入することができる。よって、この光モジュールの実装方法によれば、光モジュールの実装工程が容易化される。
In this optical module mounting method, the optical element is mounted based on the elastic force of the elastic part. As a result, it is possible to reduce the amount of adhesive used or eliminate the need for an adhesive, and it is possible to reliably perform the optical element without considering the influence of the adhesive, etc. Can be implemented. Further, in a state where the distance between the pair of support portions is changed by applying a force to the handle, the pair of support portions is inserted into the opening. At this time, since the handle is provided so as to be positioned on one side in the direction intersecting the main surface with respect to the optical portion and the pair of support portions in a state where the optical element is mounted in the mounting region, The department is unlikely to interfere with work. Therefore, in a state where the distance between the pair of support portions is changed, the pair of support portions can be easily inserted into the opening. Therefore, according to this optical module mounting method, the optical module mounting process is facilitated.
本開示の別の一側面によれば、実装領域の特性によらず確実に光学素子を実装可能な光モジュールを提供することができる。
According to another aspect of the present disclosure, it is possible to provide an optical module that can reliably mount an optical element regardless of characteristics of a mounting region.
以下、本開示の別の一側面の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光モジュールの構成] Hereinafter, an embodiment of another aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
[光モジュールの構成] Hereinafter, an embodiment of another aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
図29に示されるように、光モジュール1Bは、ベースBBを備えている。ベースBBは、主面BsBを備えている。ベースBBは、支持層2Bと、支持層2B上に設けられたデバイス層3Bと、支持層2Bとデバイス層3Bとの間に設けられた中間層4Bと、備えている。主面BsBは、ここでは、デバイス層3Bにおける支持層2Bと反対側の表面である。支持層2B、デバイス層3B及び中間層4Bは、SOI基板によって構成されている。具体的には、支持層2Bは、SOI基板の第1シリコン層である。デバイス層3Bは、SOI基板の第2シリコン層である。中間層4Bは、SOI基板の絶縁層である。支持層2B、デバイス層3B及び中間層4Bは、それらの積層方向であるZB軸方向(ZB軸に平行な方向)から見た場合に、例えば、一辺が10mm程度の矩形状を呈している。支持層2B及びデバイス層3Bのそれぞれの厚さは、例えば数百μm程度である。中間層4Bの厚さは、例えば数μm程度である。なお、図29では、デバイス層3Bの1つの角部及び中間層4Bの1つの角部が切り欠かれた状態で、デバイス層3B及び中間層4Bが示されている。
As shown in FIG. 29, the optical module 1B includes a base BB. The base BB includes a main surface BsB. The base BB includes a support layer 2B, a device layer 3B provided on the support layer 2B, and an intermediate layer 4B provided between the support layer 2B and the device layer 3B. Here, the main surface BsB is a surface of the device layer 3B opposite to the support layer 2B. The support layer 2B, the device layer 3B, and the intermediate layer 4B are configured by an SOI substrate. Specifically, the support layer 2B is the first silicon layer of the SOI substrate. The device layer 3B is a second silicon layer of the SOI substrate. The intermediate layer 4B is an insulating layer of the SOI substrate. The support layer 2B, the device layer 3B, and the intermediate layer 4B have a rectangular shape with, for example, a side of about 10 mm when viewed from the ZB axis direction (a direction parallel to the ZB axis) that is the stacking direction thereof. Each thickness of the support layer 2B and the device layer 3B is, for example, about several hundred μm. The thickness of the intermediate layer 4B is, for example, about several μm. In FIG. 29, the device layer 3B and the intermediate layer 4B are shown with one corner of the device layer 3B and one corner of the intermediate layer 4B cut out.
デバイス層3Bは、実装領域31Bと、実装領域31Bに接続された駆動領域32Bと、を有している。駆動領域32Bは、一対のアクチュエータ領域33Bと、一対の弾性支持領域34Bと、を含んでいる。実装領域31B及び駆動領域32B(すなわち、実装領域31B並びに一対のアクチュエータ領域33B及び一対の弾性支持領域34B)は、MEMS技術(パターニング及びエッチング)によってデバイス層3Bの一部に一体的に形成されている。
The device layer 3B has a mounting area 31B and a drive area 32B connected to the mounting area 31B. The drive region 32B includes a pair of actuator regions 33B and a pair of elastic support regions 34B. The mounting region 31B and the drive region 32B (that is, the mounting region 31B and the pair of actuator regions 33B and the pair of elastic support regions 34B) are integrally formed on a part of the device layer 3B by MEMS technology (patterning and etching). Yes.
一対のアクチュエータ領域33Bは、XB軸方向(ZB軸に直交するXB軸に平行な方向)において実装領域31Bの両側に配置されている。つまり、実装領域31Bは、XB軸方向において一対のアクチュエータ領域33Bに挟まれている。各アクチュエータ領域33Bは、中間層4Bを介して支持層2Bに固定されている。各アクチュエータ領域33Bにおける実装領域31B側の側面には、第1櫛歯部33aBが設けられている。各第1櫛歯部33aBは、その直下の中間層4Bが除去されることで、支持層2Bに対して浮いた状態となっている。各アクチュエータ領域33Bには、第1電極35Bが設けられている。
The pair of actuator regions 33B are disposed on both sides of the mounting region 31B in the XB axis direction (a direction parallel to the XB axis perpendicular to the ZB axis). That is, the mounting region 31B is sandwiched between the pair of actuator regions 33B in the XB axis direction. Each actuator region 33B is fixed to the support layer 2B via the intermediate layer 4B. A first comb tooth portion 33aB is provided on the side surface of each actuator region 33B on the mounting region 31B side. Each first comb tooth portion 33aB is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the first comb tooth portion 33aB. A first electrode 35B is provided in each actuator region 33B.
一対の弾性支持領域34Bは、YB軸方向(ZB軸及びXB軸に直交するYB軸に平行な方向)において実装領域31Bの両側に配置されている。つまり、実装領域31Bは、YB軸方向において一対の弾性支持領域34Bに挟まれている。各弾性支持領域34Bの両端部34aBは、中間層4Bを介して支持層2Bに固定されている。各弾性支持領域34Bの弾性変形部34bB(両端部34aBの間の部分)は、複数の板バネが連結された構造を有している。各弾性支持領域34Bの弾性変形部34bBは、その直下の中間層4Bが除去されることで、支持層2Bに対して浮いた状態となっている。各弾性支持領域34Bにおいて両端部34aBのそれぞれには、第2電極36Bが設けられている。
The pair of elastic support regions 34B are disposed on both sides of the mounting region 31B in the YB axis direction (a direction parallel to the YB axis perpendicular to the ZB axis and the XB axis). That is, the mounting region 31B is sandwiched between the pair of elastic support regions 34B in the YB axis direction. Both end portions 34aB of each elastic support region 34B are fixed to the support layer 2B via the intermediate layer 4B. Each elastic support region 34B has an elastic deformation portion 34bB (a portion between both end portions 34aB) having a structure in which a plurality of leaf springs are connected. The elastic deformation portion 34bB of each elastic support region 34B is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below it. In each elastic support region 34B, a second electrode 36B is provided at each of both end portions 34aB.
実装領域31Bには、各弾性支持領域34Bの弾性変形部34bBが接続されている。実装領域31Bは、その直下の中間層4Bが除去されることで、支持層2Bに対して浮いた状態となっている。つまり、実装領域31Bは、一対の弾性支持領域34Bによって支持されている。実装領域31Bにおける各アクチュエータ領域33B側の側面には、第2櫛歯部31aBが設けられている。各第2櫛歯部31aBは、その直下の中間層4Bが除去されることで、支持層2Bに対して浮いた状態となっている。互いに対向する第1櫛歯部33aB及び第2櫛歯部31aBにおいては、第1櫛歯部33aBの各櫛歯が第2櫛歯部31aBの各櫛歯間に位置している。
The elastic deformation portion 34bB of each elastic support region 34B is connected to the mounting region 31B. The mounting region 31B is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the mounting region 31B. That is, the mounting area 31B is supported by the pair of elastic support areas 34B. A second comb tooth portion 31aB is provided on the side surface of each mounting region 31B on the side of each actuator region 33B. Each second comb tooth portion 31aB is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the second comb tooth portion 31aB. In the first comb tooth portion 33aB and the second comb tooth portion 31aB facing each other, the comb teeth of the first comb tooth portion 33aB are located between the comb teeth of the second comb tooth portion 31aB.
一対の弾性支持領域34Bは、XB軸に平行な方向ABから見た場合に両側から実装領域31Bを挟んでおり、実装領域31Bが方向ABに沿って移動すると、実装領域31Bが初期位置に戻るように実装領域31Bに弾性力を作用させる。したがって、第1電極35Bと第2電極36Bとの間に電圧が印加されて、互いに対向する第1櫛歯部33aB及び第2櫛歯部31aB間に静電引力が作用すると、当該静電引力と一対の弾性支持領域34Bによる弾性力とがつり合う位置まで、方向ABに沿って実装領域31Bが移動させられる。このように、駆動領域32Bは、静電アクチュエータとして機能する。
The pair of elastic support regions 34B sandwich the mounting region 31B from both sides when viewed from the direction AB parallel to the XB axis. When the mounting region 31B moves along the direction AB, the mounting region 31B returns to the initial position. Thus, an elastic force is applied to the mounting region 31B. Therefore, when a voltage is applied between the first electrode 35B and the second electrode 36B and an electrostatic attractive force acts between the first comb tooth portion 33aB and the second comb tooth portion 31aB facing each other, the electrostatic attractive force The mounting region 31B is moved along the direction AB to a position where the elastic force of the pair of elastic support regions 34B is balanced. Thus, the drive region 32B functions as an electrostatic actuator.
光モジュール1Bは、可動ミラー5Bと、固定ミラー6Bと、ビームスプリッタ7Bと、光入射部8Bと、光出射部9Bと、を更に備えている。可動ミラー5B、固定ミラー6B及びビームスプリッタ7Bは、マイケルソン干渉光学系である干渉光学系10Bを構成するように、デバイス層3B上に配置されている。
The optical module 1B further includes a movable mirror 5B, a fixed mirror 6B, a beam splitter 7B, a light incident part 8B, and a light emitting part 9B. The movable mirror 5B, the fixed mirror 6B, and the beam splitter 7B are arranged on the device layer 3B so as to constitute an interference optical system 10B that is a Michelson interference optical system.
可動ミラー5Bは、XB軸方向におけるビームスプリッタ7Bの一方の側において、デバイス層3Bの実装領域31Bに実装されている。可動ミラー5Bが有するミラー部51Bのミラー面51aBは、デバイス層3Bに対して支持層2Bとは反対側に位置している。ミラー面51aBは、例えばXB軸方向に垂直な面(すなわち、方向ABに垂直な面)であり、ビームスプリッタ7B側に向いている。
The movable mirror 5B is mounted on the mounting region 31B of the device layer 3B on one side of the beam splitter 7B in the XB axis direction. The mirror surface 51aB of the mirror part 51B of the movable mirror 5B is located on the opposite side of the support layer 2B with respect to the device layer 3B. The mirror surface 51aB is, for example, a surface perpendicular to the XB axis direction (that is, a surface perpendicular to the direction AB) and faces the beam splitter 7B side.
固定ミラー6Bは、YB軸方向におけるビームスプリッタ7Bの一方の側において、デバイス層3Bの実装領域37Bに実装されている。固定ミラー6Bが有するミラー部61Bのミラー面61aBは、デバイス層3Bに対して支持層2Bとは反対側に位置している。ミラー面61aBは、例えばYB軸方向に垂直な面であり、ビームスプリッタ7B側に向いている。
The fixed mirror 6B is mounted on the mounting region 37B of the device layer 3B on one side of the beam splitter 7B in the YB axis direction. The mirror surface 61aB of the mirror part 61B of the fixed mirror 6B is located on the opposite side of the support layer 2B with respect to the device layer 3B. The mirror surface 61aB is, for example, a surface perpendicular to the YB axis direction and faces the beam splitter 7B side.
光入射部8Bは、YB軸方向におけるビームスプリッタ7Bの他方の側において、デバイス層3Bに実装されている。光入射部8Bは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光入射部8Bは、外部から干渉光学系10Bに測定光を入射させるように配置されている。
The light incident part 8B is mounted on the device layer 3B on the other side of the beam splitter 7B in the YB axis direction. The light incident portion 8B is configured by, for example, an optical fiber and a collimator lens. The light incident portion 8B is arranged so that the measurement light is incident on the interference optical system 10B from the outside.
光出射部9Bは、XB軸方向におけるビームスプリッタ7Bの他方の側において、デバイス層3Bに実装されている。光出射部9Bは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光出射部9Bは、干渉光学系10Bから外部に測定光(干渉光)を出射させるように配置されている。
The light emitting portion 9B is mounted on the device layer 3B on the other side of the beam splitter 7B in the XB axis direction. The light emitting portion 9B is configured by, for example, an optical fiber and a collimating lens. The light emitting unit 9B is arranged to emit measurement light (interference light) to the outside from the interference optical system 10B.
ビームスプリッタ7Bは、光学機能面7aBを有するキューブタイプのビームスプリッタである。光学機能面7aBは、デバイス層3Bに対して支持層2Bとは反対側に位置している。ビームスプリッタ7Bは、デバイス層3Bに形成された矩形状の開口3aBの1つの隅部にビームスプリッタ7Bの底面側の1つの角部が接触させられることで、位置決めされている。ビームスプリッタ7Bは、位置決めされた状態で接着等によって支持層2Bに固定されることで、支持層2Bに実装されている。
The beam splitter 7B is a cube type beam splitter having an optical functional surface 7aB. The optical functional surface 7aB is located on the side opposite to the support layer 2B with respect to the device layer 3B. The beam splitter 7B is positioned by bringing one corner on the bottom side of the beam splitter 7B into contact with one corner of the rectangular opening 3aB formed in the device layer 3B. The beam splitter 7B is mounted on the support layer 2B by being fixed to the support layer 2B by bonding or the like in a positioned state.
以上のように構成された光モジュール1Bでは、光入射部8Bを介して外部から干渉光学系10Bに測定光L0Bが入射すると、測定光L0Bの一部は、ビームスプリッタ7Bの光学機能面7aBで反射されて可動ミラー5Bに向かって進行し、測定光L0Bの残部は、ビームスプリッタ7Bの光学機能面7aBを透過して固定ミラー6Bに向かって進行する。測定光L0Bの一部は、可動ミラー5Bのミラー面51aBで反射されて、同一光路上をビームスプリッタ7Bに向かって進行し、ビームスプリッタ7Bの光学機能面7aBを透過する。測定光L0Bの残部は、固定ミラー6Bのミラー面61aBで反射されて、同一光路上をビームスプリッタ7Bに向かって進行し、ビームスプリッタ7Bの光学機能面7aBで反射される。ビームスプリッタ7Bの光学機能面7aBを透過した測定光L0Bの一部と、ビームスプリッタ7Bの光学機能面7aBで反射された測定光L0Bの残部とは、干渉光である測定光L1Bとなり、測定光L1Bは、光出射部9Bを介して干渉光学系10Bから外部に出射する。光モジュール1Bによれば、方向ABに沿って可動ミラー5Bを高速で往復動させることができるので、小型且つ高精度のFTIRを提供することができる。
[可動ミラー及びその周辺構造] In theoptical module 1B configured as described above, when the measurement light L0B is incident on the interference optical system 10B from the outside via the light incident portion 8B, a part of the measurement light L0B is transmitted to the optical function surface 7aB of the beam splitter 7B. The reflected light travels toward the movable mirror 5B, and the remaining portion of the measurement light L0B passes through the optical function surface 7aB of the beam splitter 7B and travels toward the fixed mirror 6B. Part of the measurement light L0B is reflected by the mirror surface 51aB of the movable mirror 5B, travels on the same optical path toward the beam splitter 7B, and passes through the optical function surface 7aB of the beam splitter 7B. The remaining part of the measurement light L0B is reflected by the mirror surface 61aB of the fixed mirror 6B, travels on the same optical path toward the beam splitter 7B, and is reflected by the optical function surface 7aB of the beam splitter 7B. A part of the measurement light L0B that has passed through the optical functional surface 7aB of the beam splitter 7B and the remaining part of the measurement light L0B reflected by the optical functional surface 7aB of the beam splitter 7B become the measurement light L1B that is interference light. L1B is emitted to the outside from the interference optical system 10B via the light emitting portion 9B. According to the optical module 1B, the movable mirror 5B can be reciprocated at high speed along the direction AB, so that a small and highly accurate FTIR can be provided.
[Movable mirror and surrounding structure]
[可動ミラー及びその周辺構造] In the
[Movable mirror and surrounding structure]
図30、図31及び図32に示されるように、可動ミラー(光学素子)5Bは、ミラー面(光学面)51aBを有するミラー部(光学部)51Bと、弾性変形可能な弾性部52Bと、ミラー部51Bと弾性部52Bとを互いに連結する連結部53Bと、一対の支持部54Bと、ハンドル56Bと、を有している。可動ミラー5Bは、ミラー面51aBが主面BsBと交差(例えば、直交)する平面上に位置し、かつミラー面51aBがベースBBの主面BsB側に位置した状態において、ベースBBの実装領域31Bに実装されている。
As shown in FIGS. 30, 31, and 32, the movable mirror (optical element) 5B includes a mirror part (optical part) 51B having a mirror surface (optical surface) 51aB, an elastic part 52B that can be elastically deformed, It has a connecting portion 53B that connects the mirror portion 51B and the elastic portion 52B to each other, a pair of support portions 54B, and a handle 56B. The movable mirror 5B has a base BB mounting region 31B in a state where the mirror surface 51aB is located on a plane intersecting (for example, orthogonal to) the main surface BsB and the mirror surface 51aB is located on the main surface BsB side of the base BB. Has been implemented.
ミラー部51Bは、ミラー面51aBを主面として有する板状(例えば、円板状)に形成されている。ミラー部51Bにおいて、主面BsBに交差する方向(ZB軸方向)における一方側(ZB軸正方向側)の縁部には、ZB軸正方向側に平坦面を有する平坦部51bBが設けられている。
The mirror part 51B is formed in a plate shape (for example, a disk shape) having the mirror surface 51aB as a main surface. In the mirror portion 51B, a flat portion 51bB having a flat surface on the ZB-axis positive direction side is provided at one edge (ZB-axis positive direction side) of the edge in the direction (ZB-axis direction) intersecting the main surface BsB. Yes.
弾性部52Bは、ミラー面51aBに交差する方向(XB軸方向)から見た場合に、ミラー部51Bから離間しつつミラー部51Bを囲むように形成されている。ここでは、弾性部52Bは、円環状からZB軸正方向側の一部が欠けた環形状を有している。連結部53Bは、中心線CLBに沿って延在し、ミラー部51BにおけるZB軸負方向側の縁部と弾性部52Bとを互いに連結している。中心線CLBは、XB軸方向から見た場合のミラー面51aBの中心を通り、ZB軸方向に延びる仮想的な直線である。
The elastic part 52B is formed so as to surround the mirror part 51B while being separated from the mirror part 51B when viewed from the direction intersecting the mirror surface 51aB (XB axis direction). Here, the elastic part 52B has an annular shape in which a part from the annular shape to the ZB-axis positive direction side is missing. The connecting portion 53B extends along the center line CLB and connects the edge portion on the ZB-axis negative direction side in the mirror portion 51B and the elastic portion 52B to each other. The center line CLB is a virtual straight line that passes through the center of the mirror surface 51aB when viewed from the XB axis direction and extends in the ZB axis direction.
一対の支持部54Bは、それぞれ断面矩形の棒状であり、ミラー面51aB及び主面BsBに沿った方向(YB軸方向)において互いに対向するように設けられている。一対の支持部54Bは、中心線CLBに対してYB軸方向における一方側及び他方側のそれぞれにおいて、弾性部52Bに接続されている。一対の支持部54Bは、ミラー部51Bに対してZB軸負方向側に位置している。
The pair of support portions 54B each have a rectangular cross section, and are provided to face each other in the direction along the mirror surface 51aB and the main surface BsB (YB axis direction). The pair of support portions 54B is connected to the elastic portion 52B on each of one side and the other side in the YB axis direction with respect to the center line CLB. The pair of support portions 54B is located on the ZB-axis negative direction side with respect to the mirror portion 51B.
各支持部54Bは、係止部55Bを含む。一対の係止部55Bのそれぞれは、XB軸方向から見た場合に内側(互いに近づく側)に例えばV字状に屈曲するように形成されている。この例では、支持部54Bの全体が係止部55Bである。各係止部55Bは、傾斜面55aB及び傾斜面55bBを含む。傾斜面55aB及び傾斜面55bBは、一対の係止部55Bにおける互いに対向する面の反対側の面である(外面である)。一対の係止部55B間において、傾斜面55aBは、ZB軸負方向に向かうにつれて互いに近づくように傾斜している。傾斜面55bBは、ZB軸負方向に向かうにつれて互いに離れるように傾斜している。
Each support portion 54B includes a locking portion 55B. Each of the pair of locking portions 55B is formed to be bent in, for example, a V shape on the inner side (side approaching each other) when viewed from the XB axis direction. In this example, the entire support portion 54B is a locking portion 55B. Each locking portion 55B includes an inclined surface 55aB and an inclined surface 55bB. The inclined surface 55aB and the inclined surface 55bB are surfaces opposite to the surfaces facing each other in the pair of locking portions 55B (outer surfaces). Between the pair of locking portions 55B, the inclined surfaces 55aB are inclined so as to approach each other as they go in the negative direction of the ZB axis. The inclined surfaces 55bB are inclined so as to be separated from each other in the negative direction of the ZB axis.
ハンドル56Bは、弾性部52Bの両端にそれぞれ接続された一対の変位部56aBを有する。一対の変位部56aBは、それぞれ断面矩形の棒状であり、YB軸方向において互いに対向するように設けられている。各変位部56aBは、弾性部52Bの端部からZB軸正方向に向かって延びている。一対の変位部56aBは、XB軸方向(主面BsBに交差するZB軸方向、及び一対の変位部56aB同士が対向するYB軸方向に垂直な方向)から見た場合に、ZB軸正方向に向かうにつれて互いの距離が拡大するように傾斜して配置されている。一対の変位部56aBは、可動ミラー5Bが実装領域31Bに実装された状態において、ミラー部51B、弾性部52B及び一対の支持部54Bに対してZB軸正方向側に位置する。
The handle 56B has a pair of displacement portions 56aB connected to both ends of the elastic portion 52B. The pair of displacement portions 56aB each have a bar shape with a rectangular cross section, and are provided so as to face each other in the YB axis direction. Each displacement part 56aB is extended toward the ZB-axis positive direction from the edge part of the elastic part 52B. The pair of displacement portions 56aB are in the ZB axis positive direction when viewed from the XB axis direction (the ZB axis direction intersecting the main surface BsB and the direction perpendicular to the YB axis direction where the pair of displacement portions 56aB face each other). It is inclined and arranged so that the distance between each other increases as it goes. The pair of displacement portions 56aB are located on the ZB axis positive direction side with respect to the mirror portion 51B, the elastic portion 52B, and the pair of support portions 54B in a state where the movable mirror 5B is mounted in the mounting region 31B.
一対の支持部54Bは、弾性部52Bに接続されており、弾性部52Bは、一対の変位部56aBに接続されている。すなわち、一対の変位部56aBは、弾性部52Bを介して一対の支持部54Bに接続されている。したがって、例えば、互いに離れる方向に変位するように一対の変位部56aBに力を付加することにより、弾性部52BをYB軸方向に伸張するように弾性変形させ、一対の支持部54B間の距離を縮小させることができる。すなわち、YB軸方向に沿った一対の支持部54Bの互いの距離は、弾性部52Bの弾性変形に応じて可変である。また、一対の支持部54Bには、弾性部52Bの弾性力が付与され得る。
The pair of support portions 54B are connected to the elastic portion 52B, and the elastic portion 52B is connected to the pair of displacement portions 56aB. That is, the pair of displacement portions 56aB is connected to the pair of support portions 54B via the elastic portion 52B. Therefore, for example, by applying a force to the pair of displacement portions 56aB so as to be displaced away from each other, the elastic portion 52B is elastically deformed so as to extend in the YB axis direction, and the distance between the pair of support portions 54B is increased. Can be reduced. That is, the distance between the pair of support portions 54B along the YB axis direction is variable according to the elastic deformation of the elastic portion 52B. Further, the elastic force of the elastic portion 52B can be applied to the pair of support portions 54B.
ここで、ベースBBの実装領域31Bには、開口31bBが形成されている。ここでは、開口31bBは、ZB軸方向に延びてデバイス層3Bを貫通している。したがって、開口31bBは、主面BsBとデバイス層3Bにおける主面BsBの反対側の表面とに連通している(至っている)。開口31bBは、ZB軸方向から見た場合の形状が台形である柱状を呈している(図32参照)。開口31bBの詳細については後述する。
Here, an opening 31bB is formed in the mounting region 31B of the base BB. Here, the opening 31bB extends in the ZB axis direction and penetrates the device layer 3B. Therefore, the opening 31bB communicates with (is led to) the main surface BsB and the surface of the device layer 3B opposite to the main surface BsB. The opening 31bB has a columnar shape that is trapezoidal when viewed from the ZB-axis direction (see FIG. 32). Details of the opening 31bB will be described later.
一対の支持部54Bは、弾性部52Bの弾性力が付与された状態において、開口31bBに挿入される。換言すれば、各支持部54B(すなわち可動ミラー5B)が開口31bBを介して実装領域31Bを貫通している。より具体的には、各支持部54Bのうちの係止部55Bの一部が、開口31bB内に位置している。その状態において、各係止部55Bは、ZB軸方向における開口31bBの一対の縁部(主面BsB側の縁部及び主面BsBの反対側の縁部)に接触している。
The pair of support parts 54B are inserted into the opening 31bB in a state where the elastic force of the elastic part 52B is applied. In other words, each support portion 54B (that is, the movable mirror 5B) penetrates the mounting region 31B through the opening 31bB. More specifically, a part of the locking portion 55B among the support portions 54B is located in the opening 31bB. In this state, each locking portion 55B is in contact with a pair of edges (the edge on the main surface BsB side and the edge on the opposite side of the main surface BsB) of the opening 31bB in the ZB axis direction.
ここでは、傾斜面55aBが開口31bBの主面BsB側の縁部に接触し、傾斜面55bBが開口31bBの主面BsBの反対側の縁部に接触している。これにより、ZB軸方向において一対の係止部55Bが実装領域31Bを挟むように実装領域31Bに係止される。この結果、ZB軸方向について、可動ミラー5BがベースBBから抜けることが抑制される。
Here, the inclined surface 55aB is in contact with the edge of the opening 31bB on the main surface BsB side, and the inclined surface 55bB is in contact with the edge of the opening 31bB on the opposite side of the main surface BsB. Thereby, a pair of latching | locking part 55B is latched by the mounting area | region 31B so that the mounting area | region 31B may be pinched | interposed in a ZB axial direction. As a result, the movable mirror 5B is prevented from coming off the base BB in the ZB axis direction.
ここで、中間層4Bには、開口41Bが形成されている。開口41Bは、ZB軸方向において中間層4Bの両側に開口している。支持層2Bには、開口21Bが形成されている。開口21Bは、ZB軸方向において支持層2Bの両側に開口している。光モジュール1Bでは、中間層4Bの開口41B内の領域及び支持層2Bの開口21B内の領域によって、一続きの空間S1Bが構成されている。つまり、空間S1Bは、中間層4Bの開口41B内の領域及び支持層2Bの開口21B内の領域を含んでいる。
Here, an opening 41B is formed in the intermediate layer 4B. The openings 41B are opened on both sides of the intermediate layer 4B in the ZB axis direction. An opening 21B is formed in the support layer 2B. The openings 21B are opened on both sides of the support layer 2B in the ZB axis direction. In the optical module 1B, a continuous space S1B is configured by the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B. That is, the space S1B includes a region in the opening 41B of the intermediate layer 4B and a region in the opening 21B of the support layer 2B.
空間S1Bは、支持層2Bとデバイス層3Bとの間に形成されており、少なくとも実装領域31B及び駆動領域32Bに対応している。具体的には、中間層4Bの開口41B内の領域及び支持層2Bの開口21B内の領域は、ZB軸方向から見た場合に実装領域31Bが移動する範囲を含んでいる。中間層4Bの開口41B内の領域は、実装領域31B及び駆動領域32Bのうち支持層2Bから離間させるべき部分(すなわち、支持層2Bに対して浮いた状態とすべき部分であって、例えば、実装領域31Bの全体、各弾性支持領域34Bの弾性変形部34bB、第1櫛歯部33aB及び第2櫛歯部31aB)を支持層2Bから離間させるための隙間を形成している。
The space S1B is formed between the support layer 2B and the device layer 3B, and corresponds to at least the mounting region 31B and the drive region 32B. Specifically, the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B include a range in which the mounting region 31B moves when viewed from the ZB axis direction. The region in the opening 41B of the intermediate layer 4B is a portion that should be separated from the support layer 2B in the mounting region 31B and the drive region 32B (that is, a portion that should be in a floating state with respect to the support layer 2B. A gap for separating the entire mounting region 31B, the elastic deformation portion 34bB, the first comb tooth portion 33aB, and the second comb tooth portion 31aB) of each elastic support region 34B from the support layer 2B is formed.
空間S1Bには、可動ミラー5Bが有する各係止部55Bの一部が位置している。具体的には、各係止部55Bの一部は、中間層4Bの開口41B内の領域を介して、支持層2Bの開口21B内の領域に位置している。各係止部55Bの一部は、デバイス層3Bにおける中間層4B側の表面から空間S1B内に、例えば100μm程度突出している。上述したように、中間層4Bの開口41B内の領域及び支持層2Bの開口21B内の領域は、ZB軸方向から見た場合に実装領域31Bが移動する範囲を含んでいるため、実装領域31Bが方向ABに沿って往復動した際に、可動ミラー5Bの各係止部55Bうち空間S1Bに位置する一部が、中間層4B及び支持層2Bと接触することはない。
A part of each locking portion 55B of the movable mirror 5B is located in the space S1B. Specifically, a part of each locking portion 55B is located in a region in the opening 21B of the support layer 2B via a region in the opening 41B of the intermediate layer 4B. A part of each locking portion 55B protrudes from the surface on the intermediate layer 4B side in the device layer 3B into the space S1B, for example, about 100 μm. As described above, the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B include the range in which the mounting region 31B moves when viewed from the ZB axis direction. Is reciprocated along the direction AB, a part of the locking portions 55B of the movable mirror 5B located in the space S1B does not come into contact with the intermediate layer 4B and the support layer 2B.
ここで、図32に示されるように、開口31bBの内面は、一対の傾斜面SLBと、基準面SRBと、を含む。傾斜面SLBは、一端SLaBと他端SLbBとを含む。一端SLaB及び他端SLbBは、ZB軸方向から見た場合の傾斜面SLBの両端部である。一対の傾斜面SLBは、一端SLaBから他端SLbBに向けて互いの距離が拡大するように(例えばXB軸に対して)傾斜している。基準面SRBは、ZB軸方向から見た場合に、一方の傾斜面SLBの他端SLbBと他方の傾斜面SLBの他端SLbBとを互いに接続する基準線BLBに沿って延在している。ここでは、基準面SRBは、他端SLbB同士を互いに接続している。上述したように、ZB軸方向から見た場合の開口31bBの形状は台形である。したがって、ここでは、傾斜面SLBが台形の脚に相当し、基準面SRBは台形の下底に相当する。
Here, as shown in FIG. 32, the inner surface of the opening 31bB includes a pair of inclined surfaces SLB and a reference surface SRB. The inclined surface SLB includes one end SLaB and the other end SLbB. One end SLaB and the other end SLbB are both ends of the inclined surface SLB when viewed from the ZB-axis direction. The pair of inclined surfaces SLB is inclined (for example, with respect to the XB axis) so that the distance from each other increases from one end SLaB to the other end SLbB. The reference surface SRB extends along a reference line BLB that connects the other end SLbB of one inclined surface SLB and the other end SLbB of the other inclined surface SLB when viewed from the ZB axis direction. Here, the reference surface SRB connects the other ends SLbB to each other. As described above, the shape of the opening 31bB when viewed from the ZB-axis direction is a trapezoid. Accordingly, here, the inclined surface SLB corresponds to a trapezoidal leg, and the reference surface SRB corresponds to a lower base of the trapezoid.
ここでは、開口31bBは単一の空間である。YB軸方向における開口31bBの寸法の最小値(すなわち、傾斜面SLBの一端SLaB同士の間隔)は、YB軸方向に沿って弾性部52Bを圧縮するように弾性変形させたとき、一対の係止部55Bを一括して開口31bB内に配置可能な値である。一方、YB軸方向における開口31bBの寸法の最大値(すなわち、傾斜面SLBの他端SLbB同士の間隔)は、一対の係止部55Bが開口31bBに配置されているときに弾性部52Bの弾性変形の一部のみが解放され得る(すなわち弾性部52Bが自然長に至らない)値である。
Here, the opening 31bB is a single space. The minimum value of the dimension of the opening 31bB in the YB axis direction (that is, the interval between the one ends SLaB of the inclined surface SLB) is a pair of latches when the elastic portion 52B is elastically deformed so as to compress along the YB axis direction. This is a value at which the portion 55B can be placed in the opening 31bB collectively. On the other hand, the maximum value of the dimension of the opening 31bB in the YB-axis direction (that is, the distance between the other ends SLbB of the inclined surface SLB) is the elasticity of the elastic part 52B when the pair of locking parts 55B are disposed in the opening 31bB. Only a part of the deformation can be released (that is, the elastic portion 52B does not reach the natural length).
したがって、開口31bB内に一対の係止部55Bを配置すると、弾性部52Bの弾性力によって各係止部55Bが開口31bBの内面を押圧し、開口31bBの内面からの反力が各係止部55B(支持部54B)に付与されることになる。これにより、可動ミラー5Bは、開口31bBの内面から各支持部54Bに付与される弾性力の反力により実装領域31Bに支持される。
Therefore, when the pair of locking portions 55B are arranged in the opening 31bB, each locking portion 55B presses the inner surface of the opening 31bB by the elastic force of the elastic portion 52B, and the reaction force from the inner surface of the opening 31bB is generated by each locking portion. 55B (support portion 54B). Accordingly, the movable mirror 5B is supported on the mounting region 31B by the reaction force of the elastic force applied to each support portion 54B from the inner surface of the opening 31bB.
特に、各係止部55Bは、開口31bBの傾斜面SLBに当接される。このため、各係止部55Bは、傾斜面SLBからの反力のXB軸方向の成分によって傾斜面SLB上を基準面SRBに向けて摺動し、傾斜面SLBに接触しながら基準面SRBに突き当てられる。これにより、各係止部55Bは、傾斜面SLBと基準面SRBとによって規定される角部に内接し、XB軸方向及びYB軸方向の両方において位置決めされる(弾性力によりセルフアライメントされる)。
In particular, each locking portion 55B comes into contact with the inclined surface SLB of the opening 31bB. Therefore, each locking portion 55B slides on the inclined surface SLB toward the reference surface SRB by the component in the XB axis direction of the reaction force from the inclined surface SLB, and contacts the inclined surface SLB while contacting the inclined surface SLB. It is hit. Accordingly, each locking portion 55B is inscribed in a corner defined by the inclined surface SLB and the reference surface SRB, and is positioned in both the XB axis direction and the YB axis direction (self-aligned by elastic force). .
一方、図30に示されるように、XB軸方向から見た場合に、各係止部55Bには、開口31bBの縁部においても開口31bBの内面から弾性力の反力が付与される。可動ミラー5Bの実装時には、各係止部55Bの傾斜面55aB及び傾斜面55bBの一方に対して反力が付与される場合がある。この場合には、当該反力の傾斜面55aB又は傾斜面55bBに沿った成分によって傾斜面55aB及び傾斜面55bBの一方が縁部に摺動し、傾斜面55aBと傾斜面55bBとの両方が縁部に当接する位置(すなわちZB軸方向に沿って実装領域31Bを挟む位置)に至るようにZB軸方向に沿って移動する。これにより、当該位置において各係止部55Bが係止され、可動ミラー5BがZB軸方向について位置決めされる(弾性力によりセルフアライメントされる)。つまり、可動ミラー5Bにおいては、弾性部52Bの弾性力を利用して、3次元的にセルフアライメントがなされる。
On the other hand, as shown in FIG. 30, when viewed from the XB-axis direction, an elastic reaction force is applied to each locking portion 55B from the inner surface of the opening 31bB even at the edge of the opening 31bB. When the movable mirror 5B is mounted, a reaction force may be applied to one of the inclined surface 55aB and the inclined surface 55bB of each locking portion 55B. In this case, one of the inclined surface 55aB and the inclined surface 55bB slides on the edge by the component along the inclined surface 55aB or the inclined surface 55bB of the reaction force, and both the inclined surface 55aB and the inclined surface 55bB are edges. It moves along the ZB axis direction so as to reach a position where it contacts the part (that is, a position that sandwiches the mounting region 31B along the ZB axis direction). Thereby, each latching | locking part 55B is latched in the said position, and the movable mirror 5B is positioned about a ZB axial direction (it is self-aligned with an elastic force). That is, in the movable mirror 5B, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52B.
以上のような可動ミラー5Bは、例えばMEMS技術(パターニング及びエッチング)によって一体的に形成される。したがって、可動ミラー5Bの厚さ(ミラー面51aBに交差する方向の寸法)は、各部において一定であり、例えば、320μm程度である。また、ミラー面51aBの直径は、例えば1mm程度である。さらに、弾性部52Bのミラー部51B側の表面(内面)と、ミラー部51Bの弾性部52B側の表面(外面)との間隔は、例えば200μm程度である。弾性部52Bの厚さ(板バネの厚さ)は、例えば10μm以上20μm以下程度である。
[固定ミラー及びその周辺構造] Themovable mirror 5B as described above is integrally formed by, for example, MEMS technology (patterning and etching). Accordingly, the thickness of the movable mirror 5B (the dimension in the direction intersecting the mirror surface 51aB) is constant in each part, and is, for example, about 320 μm. The diameter of the mirror surface 51aB is, for example, about 1 mm. Further, the distance between the surface (inner surface) of the elastic part 52B on the mirror part 51B side and the surface (outer surface) of the mirror part 51B on the elastic part 52B side is, for example, about 200 μm. The thickness of the elastic portion 52B (thickness of the leaf spring) is, for example, about 10 μm to 20 μm.
[Fixed mirror and its peripheral structure]
[固定ミラー及びその周辺構造] The
[Fixed mirror and its peripheral structure]
固定ミラー6B及びその周辺構造は、実装領域が可動しないことを除いて、上記の可動ミラー5B及びその周辺構造と同様となっている。すなわち、図33及び図34に示されるように、固定ミラー(光学素子)6Bは、ミラー面(光学面)61aBを有するミラー部(光学部)61Bと、弾性変形可能な弾性部62Bと、ミラー部61Bと弾性部62Bとを互いに連結する連結部63Bと、一対の支持部64Bと、ハンドル66Bと、を有している。固定ミラー6Bは、ミラー面61aBが主面BsBと交差(例えば、直交)する平面上に位置し、かつミラー面61aBがベースBBの主面BsB側に位置した状態において、ベースBBに実装されている。
The fixed mirror 6B and its peripheral structure are the same as the movable mirror 5B and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 33 and 34, the fixed mirror (optical element) 6B includes a mirror part (optical part) 61B having a mirror surface (optical surface) 61aB, an elastically deformable elastic part 62B, and a mirror. It has a connecting part 63B that connects the part 61B and the elastic part 62B to each other, a pair of support parts 64B, and a handle 66B. The fixed mirror 6B is mounted on the base BB in a state where the mirror surface 61aB is located on a plane intersecting (for example, orthogonal to) the main surface BsB and the mirror surface 61aB is located on the main surface BsB side of the base BB. Yes.
ミラー部61Bは、ミラー面61aBを主面として有する板状(例えば、円板状)に形成されている。ミラー部61Bにおいて、主面BsBに交差する方向(ZB軸方向)における一方側(ZB軸正方向側)の縁部には、ZB軸正方向側に平坦面を有する平坦部61bBが設けられている。
The mirror part 61B is formed in a plate shape (for example, a disk shape) having the mirror surface 61aB as a main surface. In the mirror part 61B, a flat part 61bB having a flat surface on the ZB-axis positive direction side is provided on one edge (ZB-axis positive direction side) of the edge in the direction (ZB-axis direction) intersecting the main surface BsB. Yes.
弾性部62Bは、ミラー面61aBに交差する方向(YB軸方向)から見た場合に、ミラー部61Bから離間しつつミラー部61Bを囲むように形成されている。ここでは、弾性部62Bは、円環状からZB軸正方向側の一部が欠けた環形状を有している。連結部63Bは、中心線CLB上において、ミラー部61BにおけるZB軸負方向側の縁部と弾性部62Bとを互いに連結している。中心線CLBは、YB軸方向から見た場合のミラー面61aBの中心を通り、ZB軸方向に延びる仮想的な直線である。
The elastic part 62B is formed so as to surround the mirror part 61B while being separated from the mirror part 61B when viewed from the direction intersecting the mirror surface 61aB (YB axis direction). Here, the elastic portion 62B has an annular shape in which a part from the annular shape to the ZB-axis positive direction side is missing. The connecting part 63B connects the edge part on the ZB-axis negative direction side of the mirror part 61B and the elastic part 62B to each other on the center line CLB. The center line CLB is a virtual straight line that passes through the center of the mirror surface 61aB when viewed from the YB axis direction and extends in the ZB axis direction.
一対の支持部64Bは、それぞれ断面矩形の棒状であり、ミラー面61aB及び主面BsBに沿った方向(XB軸方向)において互いに対向するように設けられている。一対の支持部64Bは、中心線CLBに対してXB軸方向における一方側及び他方側のそれぞれにおいて、弾性部62Bに接続されている。一対の支持部64Bは、ミラー部61Bに対してZB軸負方向側に位置している。
The pair of support portions 64B each have a bar shape with a rectangular cross section, and are provided to face each other in the direction along the mirror surface 61aB and the main surface BsB (XB axis direction). The pair of support parts 64B are connected to the elastic part 62B on each of one side and the other side in the XB axis direction with respect to the center line CLB. The pair of support portions 64B are located on the ZB-axis negative direction side with respect to the mirror portion 61B.
各支持部64Bは、係止部65Bを含む。一対の係止部65Bのそれぞれは、YB軸方向から見た場合に内側(互いに近づく側)に例えばV字状に屈曲するように形成されている。各係止部65Bは、傾斜面65aB及び傾斜面65bBを含む。傾斜面65aB及び傾斜面65bBは、一対の係止部65Bにおける互いに対向する面の反対側の面である(外面である)。一対の係止部65B間において、傾斜面65aBは、ZB軸負方向に向かうにつれて互いに近づくように傾斜している。傾斜面65bBは、ZB軸負方向に向かうにつれて互いに離れるように傾斜している。
Each support portion 64B includes a locking portion 65B. Each of the pair of locking portions 65B is formed to be bent in, for example, a V shape on the inner side (side approaching each other) when viewed from the YB axis direction. Each locking portion 65B includes an inclined surface 65aB and an inclined surface 65bB. The inclined surface 65aB and the inclined surface 65bB are surfaces opposite to the surfaces facing each other in the pair of locking portions 65B (outer surfaces). Between the pair of locking portions 65B, the inclined surfaces 65aB are inclined so as to approach each other as they go in the negative direction of the ZB axis. The inclined surfaces 65bB are inclined so as to be separated from each other in the negative direction of the ZB axis.
ハンドル66Bは、弾性部62Bの両端にそれぞれ接続された一対の変位部66aBを有する。一対の変位部66aBは、それぞれ断面矩形の棒状であり、XB軸方向において互いに対向するように設けられている。各変位部66aBは、弾性部62Bの端部からZB軸正方向に向かって延びている。一対の変位部66aBは、YB軸方向(主面BsBに交差するZB軸方向、及び一対の変位部66aB同士が対向するXB軸方向に垂直な方向)から見た場合に、ZB軸正方向に向かうにつれて互いの距離が拡大するように傾斜して配置されている。一対の変位部66aBは、可動ミラー5Bが実装領域37Bに実装された状態において、ミラー部61B、弾性部62B及び一対の支持部64Bに対してZB軸正方向側に位置する。
The handle 66B has a pair of displacement portions 66aB connected to both ends of the elastic portion 62B. The pair of displacement portions 66aB each have a bar shape with a rectangular cross section, and are provided so as to face each other in the XB axis direction. Each displacement part 66aB is extended toward the ZB-axis positive direction from the edge part of the elastic part 62B. The pair of displacement portions 66aB is in the positive direction of the ZB axis when viewed from the YB axis direction (the ZB axis direction intersecting the main surface BsB and the direction perpendicular to the XB axis direction where the pair of displacement portions 66aB face each other). It is inclined and arranged so that the distance between each other increases as it goes. The pair of displacement portions 66aB are positioned on the ZB axis positive direction side with respect to the mirror portion 61B, the elastic portion 62B, and the pair of support portions 64B in a state where the movable mirror 5B is mounted in the mounting region 37B.
一対の支持部64Bは、弾性部62Bに接続されており、弾性部62Bは、一対の変位部66aBに接続されている。すなわち、一対の変位部66aBは、弾性部62Bを介して一対の支持部64Bに接続されている。したがって、例えば、互いに離れる方向に変位するように一対の変位部66aBに力を付加することにより、弾性部62BをXB軸方向に圧縮するように弾性変形させ、一対の支持部64B間の距離を縮小させることができる。すなわち、XB軸方向に沿った一対の支持部64Bの互いの距離は、弾性部62Bの弾性変形に応じて可変である。また、支持部64Bには、弾性部62Bの弾性力が付与され得る。
The pair of support portions 64B are connected to the elastic portion 62B, and the elastic portion 62B is connected to the pair of displacement portions 66aB. In other words, the pair of displacement portions 66aB is connected to the pair of support portions 64B via the elastic portion 62B. Therefore, for example, by applying a force to the pair of displacement portions 66aB so as to be displaced away from each other, the elastic portion 62B is elastically deformed so as to be compressed in the XB axial direction, and the distance between the pair of support portions 64B is increased. Can be reduced. That is, the distance between the pair of support portions 64B along the XB axis direction is variable according to the elastic deformation of the elastic portion 62B. Further, the elastic force of the elastic part 62B can be applied to the support part 64B.
ここで、実装領域37Bには、開口37aBが形成されている。ここでは、開口37aBは、ZB軸方向にデバイス層3Bを貫通している。したがって、開口37aBは、主面BsBとデバイス層3Bにおける主面BsBの反対側の表面とに連通している(至っている)。開口37aBは、実装領域31Bにおける開口31bBと同様に、ZB軸方向からみたときの形状が台形である柱状を呈している。
Here, an opening 37aB is formed in the mounting region 37B. Here, the opening 37aB penetrates the device layer 3B in the ZB axis direction. Accordingly, the opening 37aB communicates with (is led to) the main surface BsB and the surface of the device layer 3B opposite to the main surface BsB. Similar to the opening 31bB in the mounting region 31B, the opening 37aB has a columnar shape with a trapezoidal shape when viewed from the ZB axis direction.
一対の支持部64Bは、弾性部62Bの弾性力が付与された状態において、開口37aBに挿入される。換言すれば、支持部64B(すなわち固定ミラー6B)が開口37aBを介して実装領域37Bを貫通している。より具体的には、支持部64Bのうちの係止部65Bの一部が、開口37aB内に位置している。その状態において、係止部65Bは、ZB軸方向における開口37aBの一対の縁部(主面BsB側の縁部及び主面BsBの反対側の縁部)に接触している。ここでは、傾斜面65aBが開口37aBの主面BsB側の縁部に接触し、傾斜面65bBが開口37aBの主面BsBの反対側の縁部に接触している。これにより、ZB軸方向において係止部65Bが実装領域37Bを挟むように実装領域37Bに係止される。この結果、ZB軸方向について、固定ミラー6BがベースBBから抜けることが抑制される。
The pair of support portions 64B are inserted into the opening 37aB in a state where the elastic force of the elastic portion 62B is applied. In other words, the support portion 64B (that is, the fixed mirror 6B) penetrates the mounting region 37B through the opening 37aB. More specifically, a part of the locking portion 65B of the support portion 64B is located in the opening 37aB. In this state, the locking portion 65B is in contact with a pair of edges of the opening 37aB in the ZB axis direction (an edge on the main surface BsB side and an edge on the opposite side of the main surface BsB). Here, the inclined surface 65aB is in contact with the edge of the opening 37aB on the main surface BsB side, and the inclined surface 65bB is in contact with the edge of the opening 37aB on the opposite side of the main surface BsB. Accordingly, the locking portion 65B is locked to the mounting region 37B so as to sandwich the mounting region 37B in the ZB axial direction. As a result, the fixed mirror 6B is prevented from coming off the base BB in the ZB axis direction.
ここで、中間層4Bには、開口42Bが形成されている。開口42Bは、ZB軸方向から見た場合に実装領域37Bの開口37aBを含んでおり、ZB軸方向において中間層4Bの両側に開口している。支持層2Bには、開口22Bが形成されている。開口22Bは、ZB軸方向から見た場合に実装領域37Bの開口37aBを含んでおり、ZB軸方向において支持層2Bの両側に開口している。光モジュール1Bでは、中間層4Bの開口42B内の領域及び支持層2Bの開口22B内の領域によって、一続きの空間S2Bが構成されている。つまり、空間S2Bは、中間層4Bの開口42B内の領域及び支持層2Bの開口22B内の領域を含んでいる。
Here, an opening 42B is formed in the intermediate layer 4B. The opening 42B includes the opening 37aB of the mounting region 37B when viewed from the ZB axis direction, and opens on both sides of the intermediate layer 4B in the ZB axis direction. An opening 22B is formed in the support layer 2B. The opening 22B includes the opening 37aB of the mounting region 37B when viewed from the ZB axis direction, and opens on both sides of the support layer 2B in the ZB axis direction. In the optical module 1B, a continuous space S2B is constituted by a region in the opening 42B of the intermediate layer 4B and a region in the opening 22B of the support layer 2B. That is, the space S2B includes a region in the opening 42B of the intermediate layer 4B and a region in the opening 22B of the support layer 2B.
空間S2Bには、固定ミラー6Bが有する各係止部65Bの一部が位置している。具体的には、各係止部65Bの一部は、中間層4Bの開口42B内の領域を介して、支持層2Bの開口22B内の領域に位置している。各係止部65Bの一部は、デバイス層3Bにおける中間層4B側の表面から空間S2B内に、例えば100μm程度突出している。
A part of each locking portion 65B of the fixed mirror 6B is located in the space S2B. Specifically, a part of each locking portion 65B is located in a region in the opening 22B of the support layer 2B via a region in the opening 42B of the intermediate layer 4B. A part of each locking portion 65B protrudes from the surface on the intermediate layer 4B side in the device layer 3B into the space S2B, for example, about 100 μm.
ここで、開口37aBの内面は、実装領域31Bにおける開口31bBの内面と同様に構成されている。したがって、開口37aB内に一対の係止部65Bを配置すると、弾性部62Bの弾性力によって係止部65Bが開口37aBの内面を押圧し、開口37aBの内面からの反力が係止部65B(支持部64B)に付与されることになる。これにより、固定ミラー6Bは、開口37aBの内面から支持部64Bに付与される弾性力の反力によりベースBBに支持される。特に、固定ミラー6Bにおいても、可動ミラー5Bの場合と同様に、開口37aBの内面と弾性力とを利用した3次元的なセルフアライメントがなされる。
Here, the inner surface of the opening 37aB is configured similarly to the inner surface of the opening 31bB in the mounting region 31B. Therefore, when the pair of locking portions 65B are arranged in the opening 37aB, the locking portion 65B presses the inner surface of the opening 37aB by the elastic force of the elastic portion 62B, and the reaction force from the inner surface of the opening 37aB is increased by the locking portion 65B ( It will be given to support part 64B). Accordingly, the fixed mirror 6B is supported on the base BB by the reaction force of the elastic force applied to the support portion 64B from the inner surface of the opening 37aB. In particular, the fixed mirror 6B also performs three-dimensional self-alignment using the inner surface of the opening 37aB and the elastic force, as in the case of the movable mirror 5B.
以上のような固定ミラー6Bも、可動ミラー5Bと同様に、例えばMEMS技術(パターニング及びエッチング)によって一体的に形成される。固定ミラー6Bの各部の寸法は、例えば可動ミラー5Bの各部の上述した寸法と同様である。
[可動ミラーの製造工程及び実装工程] The fixedmirror 6B as described above is also integrally formed by, for example, the MEMS technique (patterning and etching) similarly to the movable mirror 5B. The dimensions of each part of the fixed mirror 6B are the same as the above-described dimensions of each part of the movable mirror 5B, for example.
[Movable mirror manufacturing process and mounting process]
[可動ミラーの製造工程及び実装工程] The fixed
[Movable mirror manufacturing process and mounting process]
まず、図35に示されるように、シリコンからなるウェハWBを準備し、ウェハWBの表面にレジスト層RBを形成する。レジスト層RBは、エッチングによりパターニングされ、複数の可動ミラー5Bに対応したパターンを有している。続いて、図36に示されるように、レジスト層RBをマスクとしてエッチングした後に、レジスト層RBを除去することにより、二列に配列された複数の可動ミラー5Bを形成する。続いて、ダンシングラインDLBにおいてウェハWBを切断し、個片化された可動ミラー5Bを得る。以上の工程により、可動ミラー5Bが製造される。
First, as shown in FIG. 35, a wafer WB made of silicon is prepared, and a resist layer RB is formed on the surface of the wafer WB. The resist layer RB is patterned by etching and has a pattern corresponding to the plurality of movable mirrors 5B. Subsequently, as shown in FIG. 36, after etching using the resist layer RB as a mask, the resist layer RB is removed to form a plurality of movable mirrors 5B arranged in two rows. Subsequently, the wafer WB is cut along the dancing line DLB to obtain the movable mirror 5B that is separated into individual pieces. The movable mirror 5B is manufactured by the above process.
続いて、図37及び図38に示されるように、一の可動ミラー5BをピックアップヘッドPHBによってピックアップし、次工程の作業位置まで搬送する。ピックアップヘッドPHBは、例えば、真空吸着可能に構成されており、載置面MFB上に載置された可動ミラー5Bのミラー部51Bを吸着することにより、可動ミラー5Bを保持する。ピックアップヘッドPHBの動作は、例えば、図示しない制御装置により制御される。
Subsequently, as shown in FIGS. 37 and 38, one movable mirror 5B is picked up by the pickup head PHB and conveyed to the work position of the next process. The pickup head PHB is configured to be capable of vacuum suction, for example, and holds the movable mirror 5B by sucking the mirror portion 51B of the movable mirror 5B placed on the placement surface MFB. The operation of the pickup head PHB is controlled by a control device (not shown), for example.
続いて、図39(a)~図39(c)に示されるように、ボンダヘッドBHBをミラー部51Bとは反対側から一対の変位部56aB間に進入させて一対の変位部56aBに押し当て、ミラー部51B側に向けて一対の変位部56aB上を摺動させる。これにより、一対の変位部56aBに力が付加され、一対の変位部56aBが互いに離れる方向に変位する。これにより、弾性部52Bが、一対の変位部56aB同士が対向する方向に伸張するように弾性変形し、一対の支持部54B間の距離が縮小する。ボンダヘッドBHBにおいて一対の変位部56aB間に進入させられる部分は、互いに離れる方向に変位させられる前の一対の変位部56aB間の距離よりも広い幅を有している。ボンダヘッドBHBの動作は、例えば、上記制御装置により制御される。
Subsequently, as shown in FIGS. 39A to 39C, the bonder head BHB is caused to enter between the pair of displacement portions 56aB from the side opposite to the mirror portion 51B and pressed against the pair of displacement portions 56aB. Slide on the pair of displacement portions 56aB toward the mirror portion 51B side. Thereby, force is applied to the pair of displacement portions 56aB, and the pair of displacement portions 56aB are displaced in directions away from each other. Thereby, the elastic portion 52B is elastically deformed so as to extend in a direction in which the pair of displacement portions 56aB face each other, and the distance between the pair of support portions 54B is reduced. A portion of the bonder head BHB that is inserted between the pair of displacement portions 56aB has a width wider than a distance between the pair of displacement portions 56aB before being displaced in a direction away from each other. The operation of the bonder head BHB is controlled by the control device, for example.
図39(c)に示されるように、ボンダヘッドBHBは、ミラー部51Bに設けられた平坦部51bBに当接する位置まで、一対の変位部56aB上を摺動する。ボンダヘッドBHBは、例えば、真空吸着可能に構成されており、平坦部51bBを吸着することにより、一対の変位部56aBに力を付加した状態において可動ミラー5Bを保持する。ボンダヘッドBHBが平坦部51bBの吸着を開始した後、ピックアップヘッドPHBが可動ミラー5Bの保持を解除する。
As shown in FIG. 39 (c), the bonder head BHB slides on the pair of displacement portions 56aB to a position where it abuts on the flat portion 51bB provided on the mirror portion 51B. The bonder head BHB is configured to be capable of vacuum suction, for example, and holds the movable mirror 5B in a state where force is applied to the pair of displacement portions 56aB by sucking the flat portion 51bB. After the bonder head BHB starts attracting the flat portion 51bB, the pickup head PHB releases the holding of the movable mirror 5B.
続いて、図40(a)及び図40(b)に示されるように、一対の変位部56aBに力を付加することにより一対の支持部54B間の距離を縮小させた状態において、一対の支持部54BをベースBBの開口31bBに挿入する(第1ステップ)。第1ステップでは、ボンダヘッドBHBを移動させることにより、可動ミラー5Bを開口31bBの位置まで搬送し、主面BsB側から開口31bBに挿入する。
Subsequently, as shown in FIGS. 40 (a) and 40 (b), in the state where the distance between the pair of support portions 54B is reduced by applying a force to the pair of displacement portions 56aB, the pair of support portions The part 54B is inserted into the opening 31bB of the base BB (first step). In the first step, by moving the bonder head BHB, the movable mirror 5B is conveyed to the position of the opening 31bB, and is inserted into the opening 31bB from the main surface BsB side.
続いて、一対の変位部56aBに付加していた力を解放することにより、一対の支持部54Bを開口31bBの内面に当接させて可動ミラー5BをベースBBに固定する(第2ステップ)。第2ステップでは、まず、ボンダヘッドBHBに逆噴射させることにより、ボンダヘッドBHBを平坦部51bBから離間させる。続いて、ボンダヘッドBHBを主面BsBから遠ざかる側(ZB軸正方向側)に移動させ、一対の変位部56aB間から抜き取る。これにより、一対の変位部56aBに付加されていた力が解放され、一対の変位部56aBが互い近づく方向に変位する。これにより、弾性部52Bの弾性変形の一部が解放され、一対の支持部54B間の距離が拡大する。これにより、弾性部52Bの弾性力を利用して3次元的にセルフアライメントがなされ、可動ミラー5BがXB軸方向、YB軸方向及びZB軸方向において位置決めされる(図30参照)。以上の工程により、可動ミラー5BがベースBBに実装される。
[作用及び効果] Subsequently, by releasing the force applied to the pair of displacement portions 56aB, the pair ofsupport portions 54B are brought into contact with the inner surface of the opening 31bB to fix the movable mirror 5B to the base BB (second step). In the second step, first, the bonder head BHB is separated from the flat portion 51bB by performing reverse injection to the bonder head BHB. Subsequently, the bonder head BHB is moved to the side away from the main surface BsB (ZB axis positive direction side), and is extracted from between the pair of displacement portions 56aB. As a result, the force applied to the pair of displacement portions 56aB is released, and the pair of displacement portions 56aB are displaced toward each other. Thereby, a part of elastic deformation of the elastic part 52B is released, and the distance between the pair of support parts 54B is increased. Thereby, self-alignment is performed three-dimensionally using the elastic force of the elastic portion 52B, and the movable mirror 5B is positioned in the XB axis direction, the YB axis direction, and the ZB axis direction (see FIG. 30). Through the above steps, the movable mirror 5B is mounted on the base BB.
[Action and effect]
[作用及び効果] Subsequently, by releasing the force applied to the pair of displacement portions 56aB, the pair of
[Action and effect]
光モジュール1Bでは、可動ミラー5Bが、弾性部52Bと、弾性部52Bの弾性変形に応じて互いの距離が可変とされた一対の支持部54Bと、を有する。一方、可動ミラー5Bが実装されるベースBBの実装領域31Bには、主面BsBに連通する開口31bBが形成されている。したがって、一例として支持部54B間の距離が縮小するように弾性部52Bを弾性変形させた状態において支持部54Bを開口31bBに挿入し、弾性部52Bの弾性変形の一部を解放することにより、開口31bB内において支持部54Bの互いの距離が拡大し、支持部54Bを開口31bBの内面に当接させることができる。
In the optical module 1B, the movable mirror 5B includes an elastic part 52B and a pair of support parts 54B whose distances can be changed according to the elastic deformation of the elastic part 52B. On the other hand, an opening 31bB communicating with the main surface BsB is formed in the mounting region 31B of the base BB on which the movable mirror 5B is mounted. Therefore, as an example, by inserting the support portion 54B into the opening 31bB in a state where the elastic portion 52B is elastically deformed so that the distance between the support portions 54B is reduced, and releasing a part of the elastic deformation of the elastic portion 52B, In the opening 31bB, the distance between the support portions 54B is increased, and the support portion 54B can be brought into contact with the inner surface of the opening 31bB.
これにより、可動ミラー5Bは、開口31bBの内面から支持部54Bに付与される反力によって支持される。このように、光モジュール1Bにおいては、弾性力を利用して可動ミラー5BをベースBBに実装する。したがって、接着剤の使用量を低減すること、或いは接着剤を不要とすることが可能となり、接着剤の影響等を考慮することなく、すなわち、実装領域31Bの特性によらず、確実に可動ミラー5Bを実装可能である。なお、ここでは、可動ミラー5Bを例に作用及び効果を説明しているが、固定ミラー6Bに関しても同様の作用及び効果が奏される。
Thereby, the movable mirror 5B is supported by the reaction force applied to the support portion 54B from the inner surface of the opening 31bB. Thus, in the optical module 1B, the movable mirror 5B is mounted on the base BB using elastic force. Therefore, it is possible to reduce the amount of adhesive used or eliminate the need for an adhesive, and reliably move the movable mirror without considering the influence of the adhesive or the like, that is, regardless of the characteristics of the mounting region 31B. 5B can be mounted. Here, the operation and effect are described by taking the movable mirror 5B as an example, but the same operation and effect are also achieved with respect to the fixed mirror 6B.
更に、光モジュール1Bでは、可動ミラー5Bが、一対の支持部54B間の距離が変化するように弾性部52Bを弾性変形させるために用いられるハンドル56Bを有する。このハンドル56Bは、可動ミラー5Bが実装領域31Bに実装された状態において、ミラー部51B及び一対の支持部54Bに対してZB軸正方向側に位置する。このため、ハンドル56Bを用いて弾性部52Bを弾性変形させて一対の支持部54B間の距離を変化させた状態において、一対の支持部54Bを開口31bBに挿入する場合に、ミラー部51Bが作業の妨げになり難い。したがって、可動ミラー5BをベースBBに容易に実装することができる。よって、この光モジュール1Bによれば、光モジュール1Bの実装工程を容易化することができる。
Furthermore, in the optical module 1B, the movable mirror 5B has a handle 56B used for elastically deforming the elastic portion 52B so that the distance between the pair of support portions 54B changes. The handle 56B is positioned on the ZB axis positive direction side with respect to the mirror portion 51B and the pair of support portions 54B in a state where the movable mirror 5B is mounted in the mounting region 31B. Therefore, when the pair of support portions 54B is inserted into the opening 31bB in a state where the elastic portion 52B is elastically deformed using the handle 56B and the distance between the pair of support portions 54B is changed, the mirror portion 51B is operated It is hard to interfere. Therefore, the movable mirror 5B can be easily mounted on the base BB. Therefore, according to this optical module 1B, the mounting process of the optical module 1B can be facilitated.
また、光モジュール1Bでは、ハンドル56Bが、一対の支持部54B間の距離を縮小させるために用いられる。これにより、可動ミラー5Bの容易な実装のための構成を好適に実現することができる。また、光モジュール1Bでは、ハンドル56Bが、互いに離れる方向に変位することによって一対の支持部54B間の距離を変化させる一対の変位部56aBを有している。これにより、可動ミラー5BをベースBBに一層容易に実装することができる。
In the optical module 1B, the handle 56B is used to reduce the distance between the pair of support portions 54B. Thereby, the structure for easy mounting of the movable mirror 5B is suitably realizable. In the optical module 1B, the handle 56B has a pair of displacement portions 56aB that change the distance between the pair of support portions 54B by being displaced in directions away from each other. Thereby, the movable mirror 5B can be more easily mounted on the base BB.
また、光モジュール1Bでは、一対の変位部56aBが、XB軸方向から見た場合に、ZB軸正方向側に向かうにつれて互いの距離が拡大するように傾斜して配置されている。これにより、例えば、ZB軸正方向側から一対の変位部56aB間に進入させたボンダヘッドBHBを一対の変位部56aBに押し当て、ZB軸負方向側に向けて一対の変位部56aB上を摺動させることで、一対の変位部56aBを互いに離れる方向に変位させることできる。したがって、光モジュール1Bの実装工程を一層容易化することができる。
Further, in the optical module 1B, the pair of displacement portions 56aB are arranged so as to be inclined so that the distance from each other increases toward the ZB-axis positive direction side when viewed from the XB-axis direction. Thereby, for example, the bonder head BHB entered between the pair of displacement portions 56aB from the ZB axis positive direction side is pressed against the pair of displacement portions 56aB, and slides on the pair of displacement portions 56aB toward the ZB axis negative direction side. By doing so, the pair of displacement portions 56aB can be displaced in directions away from each other. Therefore, the mounting process of the optical module 1B can be further facilitated.
また、光モジュール1Bでは、ハンドル56Bが、可動ミラー5Bが実装領域31Bに実装された状態において、弾性部52Bに対してZB軸正方向側に位置する。これにより、ハンドル56Bを用いて弾性部52Bを弾性変形させて一対の支持部54B間の距離を変化させた状態において、一対の支持部54Bを開口31bBに挿入する場合に、弾性部52Bが作業の妨げになり難い。したがって、可動ミラー5BをベースBBに対してより一層容易に実装することができる。
In the optical module 1B, the handle 56B is positioned on the ZB axis positive direction side with respect to the elastic portion 52B in a state where the movable mirror 5B is mounted in the mounting region 31B. Accordingly, when the pair of support portions 54B is inserted into the opening 31bB in a state in which the elastic portion 52B is elastically deformed using the handle 56B and the distance between the pair of support portions 54B is changed, It is hard to interfere. Therefore, the movable mirror 5B can be more easily mounted on the base BB.
また、光モジュール1Bでは、ベースBBが、支持層2Bと、支持層2B上に設けられ、主面BsB及び実装領域31Bを含むデバイス層3Bと、を有している。また、開口31bBが、ZB軸方向にデバイス層3Bを貫通している。そして、支持部54Bが、ZB軸方向における開口31bBの一対の縁部に当接するように屈曲した係止部55Bを含んでいる。このため、係止部55Bが開口31bBの一対の縁部に当接する位置において実装領域31Bに係止される。このため、可動ミラー5BをベースBBにより確実に実装可能であると共に、ZB軸方向について可動ミラー5Bの位置決めが可能である。
In the optical module 1B, the base BB includes the support layer 2B and the device layer 3B provided on the support layer 2B and including the main surface BsB and the mounting region 31B. Further, the opening 31bB penetrates the device layer 3B in the ZB axis direction. And the support part 54B contains the latching | locking part 55B bent so that it might contact | abut to a pair of edge part of the opening 31bB in a ZB axial direction. Therefore, the locking portion 55B is locked to the mounting region 31B at a position where the locking portion 55B contacts the pair of edges of the opening 31bB. Therefore, the movable mirror 5B can be reliably mounted on the base BB, and the movable mirror 5B can be positioned in the ZB axis direction.
また、光モジュール1Bでは、可動ミラー5B、固定ミラー6B及びビームスプリッタ7Bが、干渉光学系10Bを構成するように配置されている。これにより、感度が向上されたFTIRを得ることができる。
Further, in the optical module 1B, the movable mirror 5B, the fixed mirror 6B, and the beam splitter 7B are arranged so as to constitute the interference optical system 10B. Thereby, FTIR with improved sensitivity can be obtained.
また、光モジュール1Bでは、支持層2BがSOI基板の第1シリコン層であり、デバイス層3BがSOI基板の第2シリコン層であり、中間層4BがSOI基板の絶縁層である。これにより、デバイス層3Bに対する可動ミラー5Bの確実な実装のための構成をSOI基板によって好適に実現することができる。
In the optical module 1B, the support layer 2B is the first silicon layer of the SOI substrate, the device layer 3B is the second silicon layer of the SOI substrate, and the intermediate layer 4B is the insulating layer of the SOI substrate. Thereby, the structure for reliable mounting of the movable mirror 5B to the device layer 3B can be suitably realized by the SOI substrate.
また、光モジュール1Bでは、光入射部8Bが、外部から干渉光学系10Bに測定光を入射させるように配置されており、光出射部9Bが、干渉光学系10Bから外部に測定光を出射させるように配置されている。これにより、光入射部8B及び光出射部9Bを備えるFTIRを得ることができる。
In the optical module 1B, the light incident part 8B is arranged so that the measurement light is incident on the interference optical system 10B from the outside, and the light emitting part 9B emits the measurement light to the outside from the interference optical system 10B. Are arranged as follows. Thereby, FTIR provided with the light-incidence part 8B and the light-projection part 9B can be obtained.
また、上述した光モジュール1Bの実装方法では、弾性部52Bの弾性力を利用して可動ミラー5BをベースBBに実装する。これにより、接着剤の使用量を低減すること、或いは接着剤を不要とすることが可能となり、接着剤の影響等を考慮することなく、すなわち、実装領域31Bの特性によらず、確実に可動ミラー5Bを実装可能である。また、ハンドル56Bに力を付加することにより一対の支持部54B間の距離を変化させた状態において、一対の支持部54Bを開口31bBに挿入する。このとき、ハンドル56Bが、可動ミラー5Bが実装領域31Bに実装された状態において、ミラー部51B及び一対の支持部54Bに対してZB軸正方向側に位置するように設けられているため、ミラー部51Bが作業の妨げになり難い。したがって、一対の支持部54B間の距離を変化させた状態において、一対の支持部54Bを容易に開口31bBに挿入することができる。よって、光モジュール1Bの実装方法によれば、光モジュール1Bの実装工程が容易化される。更に、上述したように、自動機(ピックアップヘッドPHB及びボンダヘッドBHB)による実装が可能となり、実装工程の自動化が可能となる。
[変形例] In the mounting method of theoptical module 1B described above, the movable mirror 5B is mounted on the base BB using the elastic force of the elastic portion 52B. As a result, it is possible to reduce the amount of adhesive used or eliminate the need for the adhesive, and it is possible to move reliably without considering the influence of the adhesive, that is, regardless of the characteristics of the mounting region 31B. The mirror 5B can be mounted. Further, in a state where the distance between the pair of support portions 54B is changed by applying a force to the handle 56B, the pair of support portions 54B is inserted into the opening 31bB. At this time, since the handle 56B is provided so as to be positioned on the ZB-axis positive direction side with respect to the mirror portion 51B and the pair of support portions 54B in a state where the movable mirror 5B is mounted in the mounting region 31B, the mirror The part 51B is unlikely to obstruct work. Therefore, in a state where the distance between the pair of support portions 54B is changed, the pair of support portions 54B can be easily inserted into the opening 31bB. Therefore, according to the mounting method of the optical module 1B, the mounting process of the optical module 1B is facilitated. Furthermore, as described above, mounting by an automatic machine (pickup head PHB and bonder head BHB) is possible, and the mounting process can be automated.
[Modification]
[変形例] In the mounting method of the
[Modification]
以上、本開示の別の一側面の一実施形態について説明したが、本開示の別の一側面は、上記実施形態に限定されない。例えば、各構成の材料及び形状は、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。
As mentioned above, although one embodiment of another aspect of the present disclosure has been described, another aspect of the present disclosure is not limited to the above embodiment. For example, the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed.
また、図41(a)に示されるように、連結部53Bが、一対の変位部56aB同士が対向する方向(YB軸方向)に沿って延在し、ミラー部51BにおけるYB軸方向の一方側の縁部と弾性部52Bを互いに連結していてもよい。また、図41(b)に示されるように、弾性部52Bが、円環状からZB軸負方向側の一部が欠けた環形状を有していてもよい。この例では、連結部53Bが、ミラー部51BにおけるZB軸正方向側の縁部と弾性部52Bとを互いに連結している。一対の支持部54Bが、弾性部52Bの両端にそれぞれ接続されている。各変位部56aBが、弾性部52Bの中間部からZB軸正方向に向かって延びている。このような変形例によっても、上記実施形態と同様に、実装領域31Bの特性によらず確実に可動ミラー5Bを実装可能であると共に、光モジュール1Bの実装工程を容易化することができる。
As shown in FIG. 41A, the connecting portion 53B extends along the direction (YB axis direction) in which the pair of displacement portions 56aB face each other, and one side of the mirror portion 51B in the YB axis direction. The edge portion and the elastic portion 52B may be connected to each other. As shown in FIG. 41 (b), the elastic portion 52B may have an annular shape in which a part on the ZB-axis negative direction side is missing from the annular shape. In this example, the connecting portion 53B connects the edge portion on the ZB axis positive direction side of the mirror portion 51B and the elastic portion 52B. A pair of support portions 54B are connected to both ends of the elastic portion 52B. Each displacement part 56aB is extended toward the ZB-axis positive direction from the intermediate part of the elastic part 52B. Even with such a modification, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated, as in the above embodiment.
また、上記実施形態では、可動ミラー5BがベースBBに実装された状態において、一対の支持部54Bには、内側(互いに近づく側)に向けて開口31bBの内面からの反力が付与されていたが、図42に示される可動ミラー5ABのように、一対の支持部54Bには、外側(互いに離れる側)に向けて開口31bBの内面からの反力が付与されてもよい。この例では、開口31bBが、ベースBBの実装領域31Bに一対形成されている。一対の係止部55ABのそれぞれが、XB軸方向から見た場合に外側(互いに離れる側)にV字状に屈曲するように形成されている。一対の係止部55AB間において、傾斜面55aBが、ZB軸負方向に向かうにつれて互いに離れるように傾斜している。傾斜面55bBが、ZB軸負方向に向かうにつれて互いに近づくように傾斜している。一対の係止部55ABが、一対の開口31bBにそれぞれ挿入される。
Further, in the above embodiment, in the state where the movable mirror 5B is mounted on the base BB, the reaction force from the inner surface of the opening 31bB is applied to the pair of support portions 54B toward the inner side (side closer to each other). However, like the movable mirror 5AB shown in FIG. 42, a reaction force from the inner surface of the opening 31bB may be applied to the pair of support portions 54B toward the outside (sides away from each other). In this example, a pair of openings 31bB are formed in the mounting region 31B of the base BB. Each of the pair of locking portions 55AB is formed to be bent outwardly (sides away from each other) in a V shape when viewed from the XB axis direction. Between the pair of locking portions 55AB, the inclined surfaces 55aB are inclined so as to be separated from each other in the ZB-axis negative direction. The inclined surfaces 55bB are inclined so as to approach each other in the negative direction of the ZB axis. The pair of locking portions 55AB are inserted into the pair of openings 31bB, respectively.
可動ミラー5ABの実装時には、一対の変位部56aBに力を付加することにより、一対の変位部56aBを互いに近づく方向に変位させる。これにより、弾性部52BがYB軸方向に縮小するように弾性変形し、一対の支持部54B間の距離が拡大する。続いて、一対の支持部54B間の距離を拡大させた状態において、一対の支持部54Bを一対の開口31bBにそれぞれ挿入する。続いて、一対の変位部56aBに付加していた力を解放することにより、各支持部54Bを各開口31bBの内面に当接させて可動ミラー5ABをベースBBに固定する。このような変形例によっても、上記実施形態と同様に、実装領域31Bの特性によらず確実に可動ミラー5Bを実装可能であると共に、光モジュール1Bの実装工程を容易化することができる。
When mounting the movable mirror 5AB, a force is applied to the pair of displacement portions 56aB to displace the pair of displacement portions 56aB in a direction approaching each other. Thereby, the elastic part 52B is elastically deformed so as to be reduced in the YB axis direction, and the distance between the pair of support parts 54B is increased. Subsequently, in a state where the distance between the pair of support portions 54B is enlarged, the pair of support portions 54B are inserted into the pair of openings 31bB, respectively. Subsequently, by releasing the force applied to the pair of displacement portions 56aB, each support portion 54B is brought into contact with the inner surface of each opening 31bB to fix the movable mirror 5AB to the base BB. Even with such a modification, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated, as in the above embodiment.
また、上記実施形態では、一対の変位部56aBが互いに離れる方向に変位することによって一対の支持部54B間の距離が縮小されたが、図43(a)に示される可動ミラー5BB及び図43(b)に示される可動ミラー5CBのように、ハンドル56ABの一対の変位部56AaBが互いに近づく方向に変位することによって一対の支持部54B間の距離が縮小されてもよい。可動ミラー5BBでは、各支持部54Bは、ZB軸方向に沿って延在する脚部57Bを更に含む。一対の脚部57Bは、YB軸方向にミラー部51Bを挟むように設けられ、変位部56AaBと係止部55Bとに接続されている。各変位部56AaBは、脚部57Bと同一直線上に位置するようにZB軸方向に沿って延在している。弾性部52Bは、一対の弾性部52aB,52bBを含む。各弾性部52aB,52bBは、例えば半円環状である。弾性部52aBは、一対の変位部56AaBを互いに連結し、弾性部52bBは、一対の脚部57Bを互いに連結している。弾性部52aBは、一対の変位部56AaBに対してZB軸正方向側に位置する。可動ミラー5CBでは、弾性部52Bは、弾性部52aBのみを含み、弾性部52bBを含まない。連結部53BがYB軸方向に沿って延在し、ミラー部51BにおけるYB軸方向の一方側の縁部と脚部57Bとを互いに連結している。これらの変形例によっても、上記実施形態と同様に、実装領域31Bの特性によらず確実に可動ミラー5Bを実装可能であると共に、光モジュール1Bの実装工程を容易化することができる。
In the above embodiment, the distance between the pair of support portions 54B is reduced by the pair of displacement portions 56aB moving away from each other, but the movable mirror 5BB shown in FIG. 43A and FIG. Like the movable mirror 5CB shown in b), the distance between the pair of support portions 54B may be reduced by displacing the pair of displacement portions 56AaB of the handle 56AB toward each other. In the movable mirror 5BB, each support portion 54B further includes a leg portion 57B extending along the ZB axis direction. The pair of leg portions 57B is provided so as to sandwich the mirror portion 51B in the YB axis direction, and is connected to the displacement portion 56AaB and the locking portion 55B. Each displacement part 56AaB extends along the ZB axis direction so as to be positioned on the same straight line as the leg part 57B. The elastic part 52B includes a pair of elastic parts 52aB and 52bB. Each elastic part 52aB, 52bB has a semi-annular shape, for example. The elastic portion 52aB connects the pair of displacement portions 56AaB to each other, and the elastic portion 52bB connects the pair of leg portions 57B to each other. The elastic portion 52aB is located on the ZB axis positive direction side with respect to the pair of displacement portions 56AaB. In the movable mirror 5CB, the elastic part 52B includes only the elastic part 52aB and does not include the elastic part 52bB. The connecting portion 53B extends along the YB axis direction, and connects the edge portion on one side of the mirror portion 51B in the YB axis direction and the leg portion 57B. According to these modified examples, similarly to the above embodiment, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated.
また、図44に示される可動ミラー5DBのように、ミラー面51aBの一部がベースBBの内部に配置されていてもよい。この例では、ミラー面51aBが実装領域31Bに交差し、可動ミラー5ABの全体が開口31bBを介して実装領域31Bを貫通している。また、一対の支持部54Bが、YB軸方向にミラー部51B及び弾性部52Bを挟むように設けられ、係止部55Bの屈曲部において弾性部52Bにそれぞれ接続されている。実装領域31Bにおいて開口31bBを画定する部分のうちミラー面51aBに対向する部分は、測定光L0Bを通過させるために、切り欠かれる。この例においても、可動ミラー5BB,5CBと同様に、一対の変位部56aBが互いに近づく方向に変位することによって一対の支持部54B間の距離が縮小される。このような変形例によっても、上記実施形態と同様に、実装領域31Bの特性によらず確実に可動ミラー5Bを実装可能であると共に、光モジュール1Bの実装工程を容易化することができる。
Further, as in the movable mirror 5DB shown in FIG. 44, a part of the mirror surface 51aB may be arranged inside the base BB. In this example, the mirror surface 51aB intersects the mounting area 31B, and the entire movable mirror 5AB penetrates the mounting area 31B through the opening 31bB. A pair of support portions 54B are provided so as to sandwich the mirror portion 51B and the elastic portion 52B in the YB axis direction, and are connected to the elastic portion 52B at the bent portion of the locking portion 55B. Of the portion that defines the opening 31bB in the mounting region 31B, the portion that faces the mirror surface 51aB is cut out to allow the measurement light L0B to pass therethrough. Also in this example, similarly to the movable mirrors 5BB and 5CB, the distance between the pair of support portions 54B is reduced by the pair of displacement portions 56aB being displaced in a direction approaching each other. Even with such a modification, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated, as in the above embodiment.
また、図45に示されるように可動ミラー5EBが構成されてもよい。可動ミラー5EBでは、ハンドル56ABの一対の変位部56AaBが互いに離れる方向に変位することによって一対の支持部54B間の距離が拡大される。開口31bBは、図42の場合と同様に構成されている。可動ミラー5EBがベースBBに実装された状態において、一対の支持部54Bには、外側(互いに離れる側)に向けて開口31bBの内面からの反力が付与される。可動ミラー5EBの実装時には、例えば、ピンセットTB(ピンセットTBの一対の先端部)によって一対の変位部56AaBを互いに離れる方向に変位させることにより、一対の支持部54B間の距離を拡大させた状態において、一対の係止部55Bを一対の開口31bBにそれぞれ挿入させる。このような変形例によっても、上記実施形態と同様に、実装領域31Bの特性によらず確実に可動ミラー5Bを実装可能であると共に、光モジュール1Bの実装工程を容易化することができる。
Further, the movable mirror 5EB may be configured as shown in FIG. In the movable mirror 5EB, the distance between the pair of support portions 54B is increased by the pair of displacement portions 56AaB of the handle 56AB being displaced in directions away from each other. The opening 31bB is configured in the same manner as in FIG. In a state where the movable mirror 5EB is mounted on the base BB, a reaction force from the inner surface of the opening 31bB is applied to the pair of support portions 54B toward the outside (sides away from each other). When the movable mirror 5EB is mounted, for example, in a state where the distance between the pair of support portions 54B is increased by displacing the pair of displacement portions 56AaB away from each other by the tweezers TB (a pair of tip portions of the tweezers TB). The pair of locking portions 55B are inserted into the pair of openings 31bB, respectively. Even with such a modification, the movable mirror 5B can be reliably mounted regardless of the characteristics of the mounting region 31B, and the mounting process of the optical module 1B can be facilitated, as in the above embodiment.
また、上記実施形態では、一対の変位部56aBが、XB軸方向から見た場合に、ZB軸正方向側に向かうにつれて互いの距離が拡大するように傾斜して配置されていたが、一対の変位部56aBは、例えば、互いに平行にZB軸方向に沿って延在していてもよい。この場合、例えば、ボンダヘッドBHBの先端部に、先端部から離れるほど互いの距離が拡大するように傾斜した一対の傾斜面が設けられてもよい。更に、先端部における傾斜面間の距離が、一対の変位部56aB間の距離よりも狭くなっていてもよい。これによれば、ボンダヘッドBHBを先端部側から一対の変位部56aB間に進入させて一対の変位部56aBに押し当て、ミラー部51B側に向けて一対の変位部56aB上を摺動させることにより、一対の変位部56aBを互いに離れる方向に変位させることができる。
Further, in the above embodiment, the pair of displacement portions 56aB are disposed so as to be inclined so that the distance from each other increases toward the ZB axis positive direction side when viewed from the XB axis direction. For example, the displacement portions 56aB may extend along the ZB axis direction in parallel with each other. In this case, for example, a pair of inclined surfaces may be provided at the distal end portion of the bonder head BHB so that the distance from each other increases as the distance from the distal end portion increases. Furthermore, the distance between the inclined surfaces at the tip may be narrower than the distance between the pair of displacement portions 56aB. According to this, by causing the bonder head BHB to enter between the pair of displacement portions 56aB from the tip end side, press against the pair of displacement portions 56aB, and slide on the pair of displacement portions 56aB toward the mirror portion 51B side. The pair of displacement portions 56aB can be displaced in directions away from each other.
また、上記実施形態では、固定ミラー6Bがデバイス層3Bに実装されていたが、固定ミラー6Bは、支持層2Bに実装されていてもよい。また、上記実施形態では、ビームスプリッタ7Bが支持層2Bに実装されていたが、ビームスプリッタ7Bは、デバイス層3Bに実装されていてもよい。また、ビームスプリッタ7Bは、キューブタイプのビームスプリッタに限定されず、プレートタイプのビームスプリッタであってもよい。
In the above embodiment, the fixed mirror 6B is mounted on the device layer 3B, but the fixed mirror 6B may be mounted on the support layer 2B. In the above embodiment, the beam splitter 7B is mounted on the support layer 2B. However, the beam splitter 7B may be mounted on the device layer 3B. The beam splitter 7B is not limited to a cube type beam splitter, and may be a plate type beam splitter.
また、光モジュール1Bは、光入射部8Bに加え、光入射部8Bに入射させる測定光を発生させる発光素子を備えていてもよい。或いは、光モジュール1Bは、光入射部8Bに代えて、干渉光学系10Bに入射させる測定光を発生させる発光素子を備えていてもよい。また、光モジュール1Bは、光出射部9Bに加え、光出射部9Bから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。或いは、光モジュール1Bは、光出射部9Bに代えて、干渉光学系10Bから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。
The optical module 1B may include a light emitting element that generates measurement light incident on the light incident portion 8B in addition to the light incident portion 8B. Alternatively, the optical module 1B may include a light emitting element that generates measurement light incident on the interference optical system 10B, instead of the light incident portion 8B. The optical module 1B may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9B in addition to the light emitting unit 9B. Alternatively, the optical module 1B may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10B, instead of the light emitting unit 9B.
また、各アクチュエータ領域33Bに電気的に接続された第1貫通電極、及び各弾性支持領域34Bの両端部34aBのそれぞれに電気的に接続された第2貫通電極が、支持層2B及び中間層4B(中間層4Bが存在しない場合には支持層2Bのみ)に設けられており、第1貫通電極と第2貫通電極との間に電圧が印加されてもよい。また、実装領域31Bを移動させるアクチュエータは、静電アクチュエータに限定されず、例えば、圧電式アクチュエータ、電磁式アクチュエータ等であってもよい。また、光モジュール1Bは、FTIRを構成するものに限定されず、他の光学系を構成するものであってもよい。
In addition, the first through electrode electrically connected to each actuator region 33B and the second through electrode electrically connected to each of both end portions 34aB of each elastic support region 34B are the support layer 2B and the intermediate layer 4B. (Only the support layer 2B when the intermediate layer 4B is not present) is provided, and a voltage may be applied between the first through electrode and the second through electrode. The actuator that moves the mounting region 31B is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like. Moreover, the optical module 1B is not limited to what constitutes FTIR, and may constitute another optical system.
さらに、上記実施形態においては、ベースBBに実装される光学素子として、可動ミラー及び固定ミラーを例示した。この例では、光学面はミラー面である。しかしながら、実装対象となる光学素子はミラーに限定されず、例えば、グレーティングや光学フィルタ等の任意のものとすることができる。以上の第2実施形態について、以下に付記する。
[付記10]
光学素子と、前記光学素子が実装されるベースと、を備え、
前記光学素子は、
光学面を有する光学部と、
弾性変形可能な弾性部と、
互いに対向するように設けられ、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、
前記一対の支持部間の距離が変化するように前記弾性部を弾性変形させるために用いられるハンドルと、を有し、
前記ベースは、主面と、前記主面に連通する開口が設けられた実装領域と、を有し、
前記一対の支持部は、前記弾性部の弾性力が付与された状態において前記開口に挿入され、
前記光学素子は、前記開口の内面から付与される前記弾性力の反力により前記実装領域に支持され、
前記ハンドルは、前記光学素子が前記実装領域に実装された状態において、前記光学部及び前記一対の支持部に対して、前記主面に交差する方向における一方側に位置する、光モジュール。
[付記11]
前記ハンドルは、前記一対の支持部間の距離を縮小させるために用いられる、付記10に記載の光モジュール。
[付記12]
前記ハンドルは、前記一対の支持部間の距離を拡大させるために用いられる、付記10に記載の光モジュール。
[付記13]
前記ハンドルは、互いに離れる方向に変位することによって前記一対の支持部間の距離を変化させる一対の変位部を有する、付記10~12のいずれか一項に記載の光モジュール。
[付記14]
前記ハンドルは、互いに近づく方向に変位することによって前記一対の支持部間の距離を変化させる一対の変位部を有する、付記10~12のいずれか一項に記載の光モジュール。
[付記15]
前記一対の変位部は、前記主面に交差する方向、及び前記一対の変位部同士が対向する方向の双方に垂直な方向から見た場合に、前記主面に交差する方向における前記一方側に向かうにつれて互いの距離が拡大するように傾斜して配置されている、付記13に記載の光モジュール。
[付記16]
前記ハンドルは、前記光学素子が前記実装領域に実装された状態において、前記弾性部に対して、前記主面に交差する方向における前記一方側に位置する、付記10~15のいずれか一項に記載の光モジュール。
[付記17]
前記ベースは、支持層と、前記支持層上に設けられ、前記主面及び前記実装領域を含むデバイス層と、を有し、
前記開口は、前記主面に交差する方向に前記デバイス層を貫通しており、
前記支持部は、前記主面に交差する方向における前記開口の一対の縁部に当接するように屈曲した係止部を含む、付記10~16のいずれか一項に記載の光モジュール。
[付記18]
前記支持層、前記デバイス層、及び前記支持層と前記デバイス層との間に設けられた中間層の少なくとも1つに実装された固定ミラーと、
前記支持層、前記デバイス層、及び前記中間層の少なくとも1つに実装されたビームスプリッタと、を更に備え、
前記光学素子は、ミラー面である前記光学面を含む可動ミラーであり、
前記デバイス層は、前記実装領域に接続された駆動領域を有し、
前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、付記17に記載の光モジュール。
[付記19]
前記ベースは、前記支持層と前記デバイス層との間に設けられた中間層を有し、
前記支持層は、SOI基板の第1シリコン層であり、
前記デバイス層は、前記SOI基板の第2シリコン層であり、
前記中間層は、前記SOI基板の絶縁層である、付記18に記載の光モジュール。
[付記20]
外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、を備える、付記18又は19に記載の光モジュール。
[付記21]
付記10~20のいずれか一項に記載の光モジュールの実装方法であって、
前記ハンドルに力を付加することにより前記一対の支持部間の距離を変化させた状態において、前記一対の支持部を前記開口に挿入する第1ステップと、
前記ハンドルに付加していた力を解放することにより、前記一対の支持部を前記開口の前記内面に当接させて前記光学素子を前記ベースに固定する第2ステップと、を備える、光モジュールの実装方法。
[第3実施形態] Furthermore, in the said embodiment, the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BB. In this example, the optical surface is a mirror surface. However, the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter. The above second embodiment will be additionally described below.
[Appendix 10]
An optical element, and a base on which the optical element is mounted,
The optical element is
An optical unit having an optical surface;
An elastic part capable of elastic deformation;
A pair of support portions provided so as to be opposed to each other, to which an elastic force is applied according to the elastic deformation of the elastic portion and the distance between them is variable;
A handle used to elastically deform the elastic portion so that the distance between the pair of support portions changes,
The base has a main surface and a mounting region provided with an opening communicating with the main surface;
The pair of support portions are inserted into the openings in a state where the elastic force of the elastic portion is applied,
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening,
The handle is an optical module that is positioned on one side in a direction intersecting the main surface with respect to the optical unit and the pair of support units in a state where the optical element is mounted in the mounting region.
[Appendix 11]
The optical module according to appendix 10, wherein the handle is used to reduce a distance between the pair of support portions.
[Appendix 12]
The optical module according to appendix 10, wherein the handle is used to increase a distance between the pair of support portions.
[Appendix 13]
The optical module according to any one of appendices 10 to 12, wherein the handle has a pair of displacement portions that change a distance between the pair of support portions by being displaced in directions away from each other.
[Appendix 14]
The optical module according to any one of appendices 10 to 12, wherein the handle includes a pair of displacement portions that change a distance between the pair of support portions by being displaced in a direction approaching each other.
[Appendix 15]
The pair of displacement portions are located on the one side in a direction intersecting the main surface when viewed from a direction perpendicular to both the direction intersecting the main surface and the direction in which the pair of displacement portions face each other. 14. The optical module according to appendix 13, wherein the optical module is arranged so as to be inclined so that a distance from each other increases.
[Appendix 16]
The handle according to any one of appendices 10 to 15, wherein the handle is located on the one side in a direction intersecting the main surface with respect to the elastic portion in a state where the optical element is mounted in the mounting region. The optical module as described.
[Appendix 17]
The base includes a support layer, and a device layer provided on the support layer and including the main surface and the mounting region,
The opening passes through the device layer in a direction intersecting the main surface,
The optical module according to any one of appendices 10 to 16, wherein the support portion includes a locking portion that is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
[Appendix 18]
A fixed mirror mounted on at least one of the support layer, the device layer, and an intermediate layer provided between the support layer and the device layer;
A beam splitter mounted on at least one of the support layer, the device layer, and the intermediate layer, and
The optical element is a movable mirror including the optical surface which is a mirror surface;
The device layer has a drive region connected to the mounting region,
The optical module according to appendix 17, wherein the movable mirror, the fixed mirror, and the beam splitter are arranged so as to constitute an interference optical system.
[Appendix 19]
The base has an intermediate layer provided between the support layer and the device layer;
The support layer is a first silicon layer of an SOI substrate;
The device layer is a second silicon layer of the SOI substrate;
The optical module according to appendix 18, wherein the intermediate layer is an insulating layer of the SOI substrate.
[Appendix 20]
A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
An optical module according to appendix 18 or 19, comprising: a light emitting portion arranged to emit the measurement light to the outside from the interference optical system.
[Appendix 21]
An optical module mounting method according to any one of appendices 10 to 20, comprising:
A first step of inserting the pair of support portions into the opening in a state where the distance between the pair of support portions is changed by applying a force to the handle;
A second step of releasing the force applied to the handle to bring the pair of support portions into contact with the inner surface of the opening and fixing the optical element to the base. Implementation method.
[Third Embodiment]
[付記10]
光学素子と、前記光学素子が実装されるベースと、を備え、
前記光学素子は、
光学面を有する光学部と、
弾性変形可能な弾性部と、
互いに対向するように設けられ、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、
前記一対の支持部間の距離が変化するように前記弾性部を弾性変形させるために用いられるハンドルと、を有し、
前記ベースは、主面と、前記主面に連通する開口が設けられた実装領域と、を有し、
前記一対の支持部は、前記弾性部の弾性力が付与された状態において前記開口に挿入され、
前記光学素子は、前記開口の内面から付与される前記弾性力の反力により前記実装領域に支持され、
前記ハンドルは、前記光学素子が前記実装領域に実装された状態において、前記光学部及び前記一対の支持部に対して、前記主面に交差する方向における一方側に位置する、光モジュール。
[付記11]
前記ハンドルは、前記一対の支持部間の距離を縮小させるために用いられる、付記10に記載の光モジュール。
[付記12]
前記ハンドルは、前記一対の支持部間の距離を拡大させるために用いられる、付記10に記載の光モジュール。
[付記13]
前記ハンドルは、互いに離れる方向に変位することによって前記一対の支持部間の距離を変化させる一対の変位部を有する、付記10~12のいずれか一項に記載の光モジュール。
[付記14]
前記ハンドルは、互いに近づく方向に変位することによって前記一対の支持部間の距離を変化させる一対の変位部を有する、付記10~12のいずれか一項に記載の光モジュール。
[付記15]
前記一対の変位部は、前記主面に交差する方向、及び前記一対の変位部同士が対向する方向の双方に垂直な方向から見た場合に、前記主面に交差する方向における前記一方側に向かうにつれて互いの距離が拡大するように傾斜して配置されている、付記13に記載の光モジュール。
[付記16]
前記ハンドルは、前記光学素子が前記実装領域に実装された状態において、前記弾性部に対して、前記主面に交差する方向における前記一方側に位置する、付記10~15のいずれか一項に記載の光モジュール。
[付記17]
前記ベースは、支持層と、前記支持層上に設けられ、前記主面及び前記実装領域を含むデバイス層と、を有し、
前記開口は、前記主面に交差する方向に前記デバイス層を貫通しており、
前記支持部は、前記主面に交差する方向における前記開口の一対の縁部に当接するように屈曲した係止部を含む、付記10~16のいずれか一項に記載の光モジュール。
[付記18]
前記支持層、前記デバイス層、及び前記支持層と前記デバイス層との間に設けられた中間層の少なくとも1つに実装された固定ミラーと、
前記支持層、前記デバイス層、及び前記中間層の少なくとも1つに実装されたビームスプリッタと、を更に備え、
前記光学素子は、ミラー面である前記光学面を含む可動ミラーであり、
前記デバイス層は、前記実装領域に接続された駆動領域を有し、
前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、付記17に記載の光モジュール。
[付記19]
前記ベースは、前記支持層と前記デバイス層との間に設けられた中間層を有し、
前記支持層は、SOI基板の第1シリコン層であり、
前記デバイス層は、前記SOI基板の第2シリコン層であり、
前記中間層は、前記SOI基板の絶縁層である、付記18に記載の光モジュール。
[付記20]
外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、を備える、付記18又は19に記載の光モジュール。
[付記21]
付記10~20のいずれか一項に記載の光モジュールの実装方法であって、
前記ハンドルに力を付加することにより前記一対の支持部間の距離を変化させた状態において、前記一対の支持部を前記開口に挿入する第1ステップと、
前記ハンドルに付加していた力を解放することにより、前記一対の支持部を前記開口の前記内面に当接させて前記光学素子を前記ベースに固定する第2ステップと、を備える、光モジュールの実装方法。
[第3実施形態] Furthermore, in the said embodiment, the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BB. In this example, the optical surface is a mirror surface. However, the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter. The above second embodiment will be additionally described below.
[Appendix 10]
An optical element, and a base on which the optical element is mounted,
The optical element is
An optical unit having an optical surface;
An elastic part capable of elastic deformation;
A pair of support portions provided so as to be opposed to each other, to which an elastic force is applied according to the elastic deformation of the elastic portion and the distance between them is variable;
A handle used to elastically deform the elastic portion so that the distance between the pair of support portions changes,
The base has a main surface and a mounting region provided with an opening communicating with the main surface;
The pair of support portions are inserted into the openings in a state where the elastic force of the elastic portion is applied,
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening,
The handle is an optical module that is positioned on one side in a direction intersecting the main surface with respect to the optical unit and the pair of support units in a state where the optical element is mounted in the mounting region.
[Appendix 11]
The optical module according to appendix 10, wherein the handle is used to reduce a distance between the pair of support portions.
[Appendix 12]
The optical module according to appendix 10, wherein the handle is used to increase a distance between the pair of support portions.
[Appendix 13]
The optical module according to any one of appendices 10 to 12, wherein the handle has a pair of displacement portions that change a distance between the pair of support portions by being displaced in directions away from each other.
[Appendix 14]
The optical module according to any one of appendices 10 to 12, wherein the handle includes a pair of displacement portions that change a distance between the pair of support portions by being displaced in a direction approaching each other.
[Appendix 15]
The pair of displacement portions are located on the one side in a direction intersecting the main surface when viewed from a direction perpendicular to both the direction intersecting the main surface and the direction in which the pair of displacement portions face each other. 14. The optical module according to appendix 13, wherein the optical module is arranged so as to be inclined so that a distance from each other increases.
[Appendix 16]
The handle according to any one of appendices 10 to 15, wherein the handle is located on the one side in a direction intersecting the main surface with respect to the elastic portion in a state where the optical element is mounted in the mounting region. The optical module as described.
[Appendix 17]
The base includes a support layer, and a device layer provided on the support layer and including the main surface and the mounting region,
The opening passes through the device layer in a direction intersecting the main surface,
The optical module according to any one of appendices 10 to 16, wherein the support portion includes a locking portion that is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
[Appendix 18]
A fixed mirror mounted on at least one of the support layer, the device layer, and an intermediate layer provided between the support layer and the device layer;
A beam splitter mounted on at least one of the support layer, the device layer, and the intermediate layer, and
The optical element is a movable mirror including the optical surface which is a mirror surface;
The device layer has a drive region connected to the mounting region,
The optical module according to appendix 17, wherein the movable mirror, the fixed mirror, and the beam splitter are arranged so as to constitute an interference optical system.
[Appendix 19]
The base has an intermediate layer provided between the support layer and the device layer;
The support layer is a first silicon layer of an SOI substrate;
The device layer is a second silicon layer of the SOI substrate;
The optical module according to appendix 18, wherein the intermediate layer is an insulating layer of the SOI substrate.
[Appendix 20]
A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
An optical module according to appendix 18 or 19, comprising: a light emitting portion arranged to emit the measurement light to the outside from the interference optical system.
[Appendix 21]
An optical module mounting method according to any one of appendices 10 to 20, comprising:
A first step of inserting the pair of support portions into the opening in a state where the distance between the pair of support portions is changed by applying a force to the handle;
A second step of releasing the force applied to the handle to bring the pair of support portions into contact with the inner surface of the opening and fixing the optical element to the base. Implementation method.
[Third Embodiment]
MEMS(Micro Electro Mechanical Systems)技術によってSOI(Silicon On Insulator)基板に干渉光学系が形成された光モジュールが知られている(例えば、特表2012-524295号公報参照)。このような光モジュールは、高精度な光学配置が実現されたFTIR(フーリエ変換型赤外分光分析器)を提供し得るため、注目されている。
An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, JP 2012-524295 A). Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
米国特許出願公開第2002/0186477号明細書には、光学システムの製造プロセスが記載されている。このプロセスにおいては、まず、テンプレート基板及び光学ベンチを用意する。テンプレート基板には、エッチングによってアライメントスロットが形成されている。光学ベンチの主面にはボンドパッドが配置されている。続いて、アライメントスロットがボンドパッド上に配置されるように、テンプレート基板を光学ベンチの主面に取り付ける。続いて、光学要素をアライメントスロットの側壁を用いて位置決めしながらアライメントスロットに挿入し、ボンドパッド上に位置させる。そして、ボンドパッドのリフローにより光学要素を光学ベンチに接着する。
US Patent Application Publication No. 2002/0186477 describes an optical system manufacturing process. In this process, first, a template substrate and an optical bench are prepared. An alignment slot is formed on the template substrate by etching. Bond pads are arranged on the main surface of the optical bench. Subsequently, the template substrate is attached to the main surface of the optical bench so that the alignment slot is disposed on the bond pad. Subsequently, the optical element is inserted into the alignment slot while being positioned using the side wall of the alignment slot, and is positioned on the bond pad. Then, the optical element is bonded to the optical bench by reflowing the bond pad.
上述したような光モジュールには、例えば可動ミラーのサイズがSOI基板に対する深堀加工の達成度に依存する点で、次のような課題がある。すなわち、SOI基板に対する深堀加工の達成度は最大でも500μm程度であるため、可動ミラーのサイズを大きくしてFTIRにおける感度を向上させるのには限界がある。そこで、別体で形成された可動ミラーをデバイス層(例えばSOI基板において駆動領域が形成される層)に実装する技術が考えられる。
The optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 μm at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
これに対して、特表2012-524295号公報に記載のMEMSデバイスの作製に際して米国特許出願公開第2002/0186477号明細書に記載のプロセスを用いると、アクチュエータに接続されて可動とされた実装領域に対して、可動ミラーといった光学要素をボンドパッドのリフローにより接着して実装することになる。この場合、ボンドパッドの使用量や形成領域等を十分にコントロールしないと、ボンドパッドの接着が実装領域の駆動に悪影響を及ぼすおそれがある。このため、光学要素の実装領域の特性によっては、特表2012-524295号公報に記載のプロセスが適用できない場合がある。
On the other hand, when the process described in US Patent Application Publication No. 2002/0186477 is used in the production of the MEMS device described in Japanese Patent Application Publication No. 2012-524295, the mounting region that is connected to the actuator and is movable On the other hand, an optical element such as a movable mirror is bonded and mounted by reflow of a bond pad. In this case, the bond pad adhesion may adversely affect the driving of the mounting area unless the amount of use of the bond pad and the formation area are sufficiently controlled. For this reason, depending on the characteristics of the mounting region of the optical element, the process described in JP 2012-524295 A may not be applicable.
本開示のさらに別の一側面は、実装領域の特性によらず安定して光学素子を実装可能な光モジュールを提供することを目的とする。
Another object of the present disclosure is to provide an optical module capable of stably mounting an optical element regardless of the characteristics of the mounting region.
本開示のさらに別の一側面に係る光モジュールは、光学素子と光学素子が実装されるベースとを備える光モジュールであって、光学素子は、光学面を有する光学部と、一端部及び他端部を含み光学部の周囲に設けられた弾性部と、一端部及び他端部のそれぞれから光学部よりもベース側に延びる一対の支持部と、支持部の一方と光学部とを互いに連結する連結部と、を有し、ベースは、主面と、主面に連通する開口が設けられた実装領域と、を有し、支持部は、弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされており、弾性力が付与された状態において開口に挿入され、光学素子は、光学面が主面に交差した状態において、開口の内面から支持部に付与される弾性力の反力により実装領域に支持され、連結部は、光学面の中心よりもベース側に設けられている。
An optical module according to still another aspect of the present disclosure is an optical module including an optical element and a base on which the optical element is mounted. The optical element includes an optical unit having an optical surface, one end, and the other end. An elastic part provided around the optical part, a pair of support parts extending from the one end part and the other end part to the base side of the optical part, and one of the support parts and the optical part are connected to each other The base has a main surface and a mounting region provided with an opening communicating with the main surface, and the support portion is given an elastic force according to elastic deformation of the elastic portion. The distance between each other is variable and is inserted into the opening in a state where the elastic force is applied, and the optical element is applied to the support portion from the inner surface of the opening in a state where the optical surface intersects the main surface. Supported by the mounting area by the reaction force of the elastic force, the connecting part It is provided on the base side than the center of the optical surface.
この光モジュールにおいては、光学素子が、弾性部と、弾性部の弾性変形に応じて互いの距離が可変とされた一対の支持部と、を有する。一方、光学素子が実装されるベースの実装領域には、主面に連通する開口が形成されている。したがって、一例として支持部間の距離が縮小するように弾性部を弾性変形させた状態において支持部を開口に挿入し、弾性部の弾性変形の一部を解放することにより、開口内において支持部の互いの距離が拡大し、支持部を開口の内面に当接させることができる。これにより、光学素子は、開口の内面から支持部に付与される反力によって支持される。このように、この光モジュールにおいては、弾性力を利用して光学素子をベースに実装する。したがって、接着剤の悪影響等を考慮することなく、すなわち、実装領域の特性によらずに光学素子を実装可能である。
In this optical module, the optical element has an elastic part and a pair of support parts whose distances can be changed according to the elastic deformation of the elastic part. On the other hand, an opening communicating with the main surface is formed in the mounting region of the base on which the optical element is mounted. Therefore, as an example, the support portion is inserted into the opening in a state in which the elastic portion is elastically deformed so that the distance between the support portions is reduced, and a part of the elastic deformation of the elastic portion is released, so that the support portion is opened in the opening. The distance between each other increases, and the support portion can be brought into contact with the inner surface of the opening. Thereby, an optical element is supported by the reaction force provided to a support part from the inner surface of opening. As described above, in this optical module, the optical element is mounted on the base using the elastic force. Therefore, it is possible to mount the optical element without considering the adverse effect of the adhesive, that is, without depending on the characteristics of the mounting region.
ここで、この光学素子にあっては、光学部と支持部とを互いに連結する連結部が、光学面の中心よりもベース側に設けられている。このため、例えば連結部を光学面の中心よりもベースと反対側に設ける場合と比較して、光学素子の全体としての重心がベースに近くなる。このため、安定度が向上する。
Here, in this optical element, a connecting portion that connects the optical portion and the support portion to each other is provided on the base side from the center of the optical surface. For this reason, for example, the center of gravity of the optical element as a whole is closer to the base than in the case where the connecting portion is provided on the opposite side of the base from the center of the optical surface. For this reason, stability improves.
また、同様の理由から、光学面の中心よりもベースと反対側の領域の全体において、光学部の周囲に弾性部を設けることができる。このため、弾性部を比較的長くすることが可能となり、ばね定数の調整がしやすくなる。その結果、ばね定数の増大を抑制することにより、弾性変形に伴う弾性部の破損を抑制し、安定した実装を実現可能である。このように、この光モジュールによれば、実装領域の特性によらずに光学素子を安定して実装可能である。
For the same reason, an elastic part can be provided around the optical part in the entire region opposite to the base from the center of the optical surface. For this reason, the elastic portion can be made relatively long, and the spring constant can be easily adjusted. As a result, by suppressing an increase in the spring constant, it is possible to suppress damage to the elastic portion due to elastic deformation and realize stable mounting. Thus, according to this optical module, the optical element can be stably mounted regardless of the characteristics of the mounting region.
なお、この光学素子によれば、上述したように、光学面の中心よりもベースと反対側の領域の全体において、光学部の周囲に弾性部を設けることができる。このため、光学部に近接するように弾性部を設けた場合であっても、弾性部の長さを十分に確保可能である。つまり、この光学素子によれば、弾性部の長さを確保しつつ光学素子のコンパクト化を実現可能である。
In addition, according to this optical element, as described above, the elastic portion can be provided around the optical portion in the entire region opposite to the base from the center of the optical surface. For this reason, even if it is a case where an elastic part is provided so that it may adjoin to an optical part, the length of an elastic part is securable enough. That is, according to this optical element, it is possible to realize a compact optical element while ensuring the length of the elastic portion.
本開示のさらに別の一側面に係る光モジュールにおいては、弾性部は、光学面に交差する方向からみて、光学部を部分的に囲うように形成された円弧状部分を含み、一端部及び他端部は、円弧状部分の先端に設けられていてもよい。このように弾性部が円弧状部分を有することにより、コンパクト化と弾性部の長さの確保とを確実に両立することができる。
In the optical module according to still another aspect of the present disclosure, the elastic portion includes an arc-shaped portion formed so as to partially surround the optical portion when viewed from the direction intersecting the optical surface, and includes one end portion and the other. The end may be provided at the tip of the arcuate portion. Thus, when an elastic part has a circular arc-shaped part, compactization and ensuring of the length of an elastic part can be made to be compatible reliably.
本開示のさらに別の一側面に係る光モジュールにおいては、支持部は、連結部による光学部との連結位置を越えてベース側に延び、開口に挿入される係止部を含み、光学面に交差する方向からみて、係止部の太さは弾性部の太さよりも大きくてもよい。この場合、係止部を介してより安定して光学素子をベースに支持することができる。
In the optical module according to still another aspect of the present disclosure, the support portion includes a locking portion that extends to the base side beyond the connection position of the optical portion by the connection portion and is inserted into the opening, and is provided on the optical surface. The thickness of the locking portion may be larger than the thickness of the elastic portion when viewed from the intersecting direction. In this case, the optical element can be supported on the base more stably via the locking portion.
本開示のさらに別の一側面に係る光モジュールにおいては、光学面に交差する方向からみて、支持部の太さは弾性部の太さよりも大きくてもよい。この場合、弾性部を弾性変形させるための力を、支持部を介して安定して弾性部に加えることができる。
In the optical module according to still another aspect of the present disclosure, the thickness of the support portion may be larger than the thickness of the elastic portion when viewed from the direction intersecting the optical surface. In this case, the force for elastically deforming the elastic part can be stably applied to the elastic part via the support part.
本開示のさらに別の一側面に係る光モジュールにおいては、光学面に交差する方向からみて、連結部の太さは弾性部の太さよりも大きくてもよい。この場合、支持部と光学部とを確実に連結することができる。
In the optical module according to still another aspect of the present disclosure, the thickness of the connecting portion may be larger than the thickness of the elastic portion when viewed from the direction intersecting the optical surface. In this case, the support portion and the optical portion can be reliably connected.
本開示のさらに別の一側面に係る光モジュールにおいては、開口の内面は、主面に交差する方向からみて、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一方の傾斜面の他端と他方の傾斜面の他端とを接続する基準線に沿って延在する基準面と、を含んでもよい。この場合、支持部を開口に挿入して弾性部の弾性変形の一部を解放したときに、弾性力によって支持部を傾斜面に摺動させて基準面に突き当てることができる。このため、主面に沿った方向における光学素子の位置決めが可能である。
In the optical module according to still another aspect of the present disclosure, the inner surface of the opening is a pair of inclined surfaces that are inclined so that the distance from each other increases from one end to the other when viewed from the direction intersecting the main surface. And a reference plane extending along a reference line connecting the other end of the one inclined surface and the other end of the other inclined surface. In this case, when the support portion is inserted into the opening and a part of the elastic deformation of the elastic portion is released, the support portion can be slid on the inclined surface by the elastic force and abut against the reference surface. For this reason, the optical element can be positioned in the direction along the main surface.
本開示のさらに別の一側面に係る光モジュールは、ベースに実装された固定ミラーとビームスプリッタとを更に備え、光学素子は、ミラー面である光学面を含む可動ミラーであり、ベースは、実装領域に接続された駆動領域を有し、可動ミラー、固定ミラー及びビームスプリッタは、干渉光学系を構成するように配置されていてもよい。この場合、感度が向上されたFTIRを得ることができる。また、ここでは、可動ミラーが実装される実装領域は、駆動領域に接続されて駆動される特性を有している。したがって、接着剤の悪影響等を受けやすいため、上記の構成がより有効となる。
An optical module according to another aspect of the present disclosure further includes a fixed mirror and a beam splitter mounted on a base, the optical element is a movable mirror including an optical surface that is a mirror surface, and the base is mounted. The movable mirror, the fixed mirror, and the beam splitter may be arranged so as to constitute an interference optical system. In this case, an FTIR with improved sensitivity can be obtained. Here, the mounting area where the movable mirror is mounted has a characteristic of being connected to the driving area and driven. Therefore, the above configuration is more effective because it is easily affected by the adverse effects of the adhesive.
本開示のさらに別の一側面に係る光モジュールにおいては、ベースは、支持層と、支持層上に設けられたデバイス層と、支持層とデバイス層との間に設けられた中間層を有し、支持層は、SOI基板の第1シリコン層であり、デバイス層は、SOI基板の第2シリコン層であり、中間層は、SOI基板の絶縁層であってもよい。この場合、デバイス層に対する可動ミラーの確実な実装のための構成をSOI基板によって好適に実現することができる。
In the optical module according to yet another aspect of the present disclosure, the base includes a support layer, a device layer provided on the support layer, and an intermediate layer provided between the support layer and the device layer. The support layer may be a first silicon layer of the SOI substrate, the device layer may be a second silicon layer of the SOI substrate, and the intermediate layer may be an insulating layer of the SOI substrate. In this case, a configuration for reliably mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
本開示のさらに別の一側面に係る光モジュールは、外部から干渉光学系に測定光を入射させるように配置された光入射部と、干渉光学系から外部に測定光を出射させるように配置された光出射部と、を備えてもよい。この場合、光入射部及び光出射部を備えるFTIRを得ることができる。
An optical module according to yet another aspect of the present disclosure is disposed so that the measurement light is incident on the interference optical system from the outside and the measurement light is emitted from the interference optical system to the outside. A light emitting part. In this case, an FTIR including a light incident part and a light emission part can be obtained.
本開示のさらに別の一側面によれば、実装領域の特性によらず安定して光学素子を実装可能な光モジュールを提供することができる。
According to still another aspect of the present disclosure, it is possible to provide an optical module capable of stably mounting an optical element regardless of the characteristics of the mounting region.
以下、本開示のさらに別の一側面の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光モジュールの構成] Hereinafter, embodiments of still another aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
[光モジュールの構成] Hereinafter, embodiments of still another aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
図46に示されるように、光モジュール1Cは、ベースBCを備えている。ベースBCは、主面BsCを備えている。ベースBCは、支持層2Cと、支持層2C上に設けられたデバイス層3Cと、支持層2Cとデバイス層3Cとの間に設けられた中間層4Cと、備えている。主面BsCは、ここでは、デバイス層3Cにおける支持層2Cと反対側の表面である。支持層2C、デバイス層3C及び中間層4Cは、SOI基板によって構成されている。具体的には、支持層2Cは、SOI基板の第1シリコン層である。デバイス層3Cは、SOI基板の第2シリコン層である。中間層4Cは、SOI基板の絶縁層である。支持層2C、デバイス層3C及び中間層4Cは、それらの積層方向であるZC軸方向(ZC軸に平行な方向)から見た場合に、例えば、一辺が10mm程度の矩形状を呈している。支持層2C及びデバイス層3Cのそれぞれの厚さは、例えば数百μm程度である。中間層4Cの厚さは、例えば数μm程度である。なお、図46では、デバイス層3Cの1つの角部及び中間層4Cの1つの角部が切り欠かれた状態で、デバイス層3C及び中間層4Cが示されている。
As shown in FIG. 46, the optical module 1C includes a base BC. The base BC has a main surface BsC. The base BC includes a support layer 2C, a device layer 3C provided on the support layer 2C, and an intermediate layer 4C provided between the support layer 2C and the device layer 3C. Here, the main surface BsC is a surface of the device layer 3C opposite to the support layer 2C. The support layer 2C, the device layer 3C, and the intermediate layer 4C are configured by an SOI substrate. Specifically, the support layer 2C is the first silicon layer of the SOI substrate. The device layer 3C is a second silicon layer of the SOI substrate. The intermediate layer 4C is an insulating layer of the SOI substrate. The support layer 2C, the device layer 3C, and the intermediate layer 4C have a rectangular shape with, for example, a side of about 10 mm when viewed from the ZC axis direction (a direction parallel to the ZC axis) that is the stacking direction thereof. Each thickness of the support layer 2C and the device layer 3C is, for example, about several hundred μm. The thickness of the intermediate layer 4C is, for example, about several μm. In FIG. 46, the device layer 3C and the intermediate layer 4C are shown with one corner of the device layer 3C and one corner of the intermediate layer 4C cut away.
デバイス層3Cは、実装領域31Cと、実装領域31Cに接続された駆動領域32Cと、を有している。駆動領域32Cは、一対のアクチュエータ領域33Cと、一対の弾性支持領域34Cと、を含んでいる。実装領域31C及び駆動領域32C(すなわち、実装領域31C並びに一対のアクチュエータ領域33C及び一対の弾性支持領域34C)は、MEMS技術(パターニング及びエッチング)によってデバイス層3Cの一部に一体的に形成されている。
The device layer 3C has a mounting area 31C and a drive area 32C connected to the mounting area 31C. The drive region 32C includes a pair of actuator regions 33C and a pair of elastic support regions 34C. The mounting region 31C and the drive region 32C (that is, the mounting region 31C and the pair of actuator regions 33C and the pair of elastic support regions 34C) are integrally formed on a part of the device layer 3C by MEMS technology (patterning and etching). Yes.
一対のアクチュエータ領域33Cは、XC軸方向(ZC軸に直交するXC軸に平行な方向)において実装領域31Cの両側に配置されている。つまり、実装領域31Cは、XC軸方向において一対のアクチュエータ領域33Cに挟まれている。各アクチュエータ領域33Cは、中間層4Cを介して支持層2Cに固定されている。各アクチュエータ領域33Cにおける実装領域31C側の側面には、第1櫛歯部33aCが設けられている。各第1櫛歯部33aCは、その直下の中間層4Cが除去されることで、支持層2Cに対して浮いた状態となっている。各アクチュエータ領域33Cには、第1電極35Cが設けられている。
The pair of actuator regions 33C are disposed on both sides of the mounting region 31C in the XC axis direction (direction parallel to the XC axis orthogonal to the ZC axis). That is, the mounting region 31C is sandwiched between the pair of actuator regions 33C in the XC axis direction. Each actuator region 33C is fixed to the support layer 2C via the intermediate layer 4C. A first comb tooth portion 33aC is provided on the side surface of each actuator region 33C on the mounting region 31C side. Each first comb tooth portion 33aC is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the first comb tooth portion 33aC. Each actuator region 33C is provided with a first electrode 35C.
一対の弾性支持領域34Cは、YC軸方向(ZC軸及びXC軸に直交するYC軸に平行な方向)において実装領域31Cの両側に配置されている。つまり、実装領域31Cは、YC軸方向において一対の弾性支持領域34Cに挟まれている。各弾性支持領域34Cの両端部34aCは、中間層4Cを介して支持層2Cに固定されている。各弾性支持領域34Cの弾性変形部34bC(両端部34aCの間の部分)は、複数の板バネが連結された構造を有している。各弾性支持領域34Cの弾性変形部34bCは、その直下の中間層4Cが除去されることで、支持層2Cに対して浮いた状態となっている。各弾性支持領域34Cにおいて両端部34aCのそれぞれには、第2電極36Cが設けられている。
The pair of elastic support regions 34C are disposed on both sides of the mounting region 31C in the YC axis direction (a direction parallel to the YC axis perpendicular to the ZC axis and the XC axis). That is, the mounting region 31C is sandwiched between the pair of elastic support regions 34C in the YC axis direction. Both end portions 34aC of each elastic support region 34C are fixed to the support layer 2C via the intermediate layer 4C. Each elastic support region 34C has an elastic deformation portion 34bC (a portion between both end portions 34aC) having a structure in which a plurality of leaf springs are connected. The elastic deformation portion 34bC of each elastic support region 34C is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the elastic deformation portion 34bC. In each elastic support region 34C, a second electrode 36C is provided at each of both end portions 34aC.
実装領域31Cには、各弾性支持領域34Cの弾性変形部34bCが接続されている。実装領域31Cは、その直下の中間層4Cが除去されることで、支持層2Cに対して浮いた状態となっている。つまり、実装領域31Cは、一対の弾性支持領域34Cによって支持されている。実装領域31Cにおける各アクチュエータ領域33C側の側面には、第2櫛歯部31aCが設けられている。各第2櫛歯部31aCは、その直下の中間層4Cが除去されることで、支持層2Cに対して浮いた状態となっている。互いに対向する第1櫛歯部33aC及び第2櫛歯部31aCにおいては、第1櫛歯部33aCの各櫛歯が第2櫛歯部31aCの各櫛歯間に位置している。
The elastic region 34bC of each elastic support region 34C is connected to the mounting region 31C. The mounting region 31C is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the mounting region 31C. That is, the mounting region 31C is supported by the pair of elastic support regions 34C. A second comb tooth portion 31aC is provided on the side surface of each mounting region 31C on the side of each actuator region 33C. Each second comb tooth portion 31aC is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the second comb tooth portion 31aC. In the first comb tooth portion 33aC and the second comb tooth portion 31aC facing each other, each comb tooth of the first comb tooth portion 33aC is located between each comb tooth of the second comb tooth portion 31aC.
一対の弾性支持領域34Cは、XC軸に平行な方向ACからみて両側から実装領域31Cを挟んでおり、実装領域31Cが方向ACに沿って移動すると、実装領域31Cが初期位置に戻るように実装領域31Cに弾性力を作用させる。したがって、第1電極35Cと第2電極36Cとの間に電圧が印加されて、互いに対向する第1櫛歯部33aC及び第2櫛歯部31aC間に静電引力が作用すると、当該静電引力と一対の弾性支持領域34Cによる弾性力とがつり合う位置まで、方向ACに沿って実装領域31Cが移動させられる。このように、駆動領域32Cは、静電アクチュエータとして機能する。
The pair of elastic support regions 34C sandwich the mounting region 31C from both sides when viewed in the direction AC parallel to the XC axis, and the mounting region 31C is mounted so that the mounting region 31C returns to the initial position when the mounting region 31C moves along the direction AC. An elastic force is applied to the region 31C. Therefore, when a voltage is applied between the first electrode 35C and the second electrode 36C and an electrostatic attractive force acts between the first comb tooth portion 33aC and the second comb tooth portion 31aC facing each other, the electrostatic attractive force The mounting region 31C is moved along the direction AC to a position where the elastic force generated by the pair of elastic support regions 34C is balanced. Thus, the drive region 32C functions as an electrostatic actuator.
光モジュール1Cは、可動ミラー5Cと、固定ミラー6Cと、ビームスプリッタ7Cと、光入射部8Cと、光出射部9Cと、を更に備えている。可動ミラー5C、固定ミラー6C及びビームスプリッタ7Cは、マイケルソン干渉光学系である干渉光学系10Cを構成するように、デバイス層3C上に配置されている。
The optical module 1C further includes a movable mirror 5C, a fixed mirror 6C, a beam splitter 7C, a light incident part 8C, and a light emitting part 9C. The movable mirror 5C, the fixed mirror 6C, and the beam splitter 7C are arranged on the device layer 3C so as to constitute an interference optical system 10C that is a Michelson interference optical system.
可動ミラー5Cは、XC軸方向におけるビームスプリッタ7Cの一方の側において、デバイス層3Cの実装領域31Cに実装されている。可動ミラー5Cが有するミラー部51Cのミラー面51aCは、デバイス層3Cに対して支持層2Cとは反対側に位置している。ミラー面51aCは、例えばXC軸方向に垂直な面(すなわち、方向ACに垂直な面)であり、ビームスプリッタ7C側に向いている。
The movable mirror 5C is mounted on the mounting region 31C of the device layer 3C on one side of the beam splitter 7C in the XC axis direction. The mirror surface 51aC of the mirror part 51C included in the movable mirror 5C is located on the opposite side of the support layer 2C with respect to the device layer 3C. The mirror surface 51aC is, for example, a surface perpendicular to the XC axis direction (that is, a surface perpendicular to the direction AC) and faces the beam splitter 7C side.
固定ミラー6Cは、YC軸方向におけるビームスプリッタ7Cの一方の側において、デバイス層3Cの実装領域37Cに実装されている。固定ミラー6Cが有するミラー部61Cのミラー面61aCは、デバイス層3Cに対して支持層2Cとは反対側に位置している。ミラー面61aCは、例えばYC軸方向に垂直な面であり、ビームスプリッタ7C側に向いている。
The fixed mirror 6C is mounted on the mounting region 37C of the device layer 3C on one side of the beam splitter 7C in the YC axis direction. The mirror surface 61aC of the mirror portion 61C of the fixed mirror 6C is located on the opposite side of the support layer 2C with respect to the device layer 3C. The mirror surface 61aC is, for example, a surface perpendicular to the YC axis direction and faces the beam splitter 7C side.
光入射部8Cは、YC軸方向におけるビームスプリッタ7Cの他方の側において、デバイス層3Cに実装されている。光入射部8Cは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光入射部8Cは、外部から干渉光学系10Cに測定光を入射させるように配置されている。
The light incident portion 8C is mounted on the device layer 3C on the other side of the beam splitter 7C in the YC axis direction. The light incident part 8C is configured by, for example, an optical fiber and a collimating lens. The light incident part 8C is arranged so that the measurement light is incident on the interference optical system 10C from the outside.
光出射部9Cは、XC軸方向におけるビームスプリッタ7Cの他方の側において、デバイス層3Cに実装されている。光出射部9Cは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光出射部9Cは、干渉光学系10Cから外部に測定光(干渉光)を出射させるように配置されている。
The light emitting portion 9C is mounted on the device layer 3C on the other side of the beam splitter 7C in the XC axis direction. The light emitting portion 9C is configured by, for example, an optical fiber and a collimating lens. The light emitting unit 9C is arranged to emit measurement light (interference light) from the interference optical system 10C to the outside.
ビームスプリッタ7Cは、光学機能面7aCを有するキューブタイプのビームスプリッタである。光学機能面7aCは、デバイス層3Cに対して支持層2Cとは反対側に位置している。ビームスプリッタ7Cは、デバイス層3Cに形成された矩形状の開口3aCの1つの隅部にビームスプリッタ7Cの底面側の1つの角部が接触させられることで、位置決めされている。ビームスプリッタ7Cは、位置決めされた状態で接着等によって支持層2Cに固定されることで、支持層2Cに実装されている。
The beam splitter 7C is a cube type beam splitter having an optical functional surface 7aC. The optical functional surface 7aC is located on the side opposite to the support layer 2C with respect to the device layer 3C. The beam splitter 7C is positioned by bringing one corner on the bottom side of the beam splitter 7C into contact with one corner of the rectangular opening 3aC formed in the device layer 3C. The beam splitter 7C is mounted on the support layer 2C by being fixed to the support layer 2C by bonding or the like in a positioned state.
以上のように構成された光モジュール1Cでは、光入射部8Cを介して外部から干渉光学系10Cに測定光L0Cが入射すると、測定光L0Cの一部は、ビームスプリッタ7Cの光学機能面7aCで反射されて可動ミラー5Cに向かって進行し、測定光L0Cの残部は、ビームスプリッタ7Cの光学機能面7aCを透過して固定ミラー6Cに向かって進行する。測定光L0Cの一部は、可動ミラー5Cのミラー面51aCで反射されて、同一光路上をビームスプリッタ7Cに向かって進行し、ビームスプリッタ7Cの光学機能面7aCを透過する。測定光L0Cの残部は、固定ミラー6Cのミラー面61aCで反射されて、同一光路上をビームスプリッタ7Cに向かって進行し、ビームスプリッタ7Cの光学機能面7aCで反射される。ビームスプリッタ7Cの光学機能面7aCを透過した測定光L0Cの一部と、ビームスプリッタ7Cの光学機能面7aCで反射された測定光L0Cの残部とは、干渉光である測定光L1Cとなり、測定光L1Cは、光出射部9Cを介して干渉光学系10Cから外部に出射する。光モジュール1Cによれば、方向ACに沿って可動ミラー5Cを高速で往復動させることができるので、小型且つ高精度のFTIRを提供することができる。
[可動ミラー及びその周辺構造] In theoptical module 1C configured as described above, when the measurement light L0C is incident on the interference optical system 10C from the outside via the light incident portion 8C, a part of the measurement light L0C is transmitted to the optical functional surface 7aC of the beam splitter 7C. The reflected light travels toward the movable mirror 5C, and the remaining portion of the measurement light L0C passes through the optical function surface 7aC of the beam splitter 7C and travels toward the fixed mirror 6C. A part of the measurement light L0C is reflected by the mirror surface 51aC of the movable mirror 5C, travels toward the beam splitter 7C on the same optical path, and passes through the optical function surface 7aC of the beam splitter 7C. The remaining part of the measurement light L0C is reflected by the mirror surface 61aC of the fixed mirror 6C, travels on the same optical path toward the beam splitter 7C, and is reflected by the optical function surface 7aC of the beam splitter 7C. A part of the measurement light L0C transmitted through the optical functional surface 7aC of the beam splitter 7C and the remaining part of the measurement light L0C reflected by the optical functional surface 7aC of the beam splitter 7C become the measurement light L1C that is interference light, and the measurement light L1C is emitted to the outside from the interference optical system 10C via the light emitting portion 9C. According to the optical module 1C, since the movable mirror 5C can be reciprocated at high speed along the direction AC, a small and highly accurate FTIR can be provided.
[Movable mirror and surrounding structure]
[可動ミラー及びその周辺構造] In the
[Movable mirror and surrounding structure]
図47、図48、及び図49に示されるように、可動ミラー(光学素子)5Cは、ミラー面(光学面)51aCを有するミラー部(光学部)51Cと、弾性部52Cと、一対の支持部56Cと、一方の支持部56Cとミラー部51Cとを互いに連結する単一の連結部57Cと、を有している。ミラー部51Cは、円板状に形成されている。ミラー面51aCは、ミラー部51Cの円形状の板面である。可動ミラー5Cは、ミラー面51aCが主面BsCに交差(例えば直交)する状態においてベースBCに実装されている。
47, 48, and 49, the movable mirror (optical element) 5C includes a mirror part (optical part) 51C having a mirror surface (optical surface) 51aC, an elastic part 52C, and a pair of supports. 56C, and a single connecting portion 57C that connects the one supporting portion 56C and the mirror portion 51C to each other. The mirror part 51C is formed in a disk shape. The mirror surface 51aC is a circular plate surface of the mirror part 51C. The movable mirror 5C is mounted on the base BC in a state where the mirror surface 51aC intersects (for example, is orthogonal to) the main surface BsC.
弾性部52Cは、ミラー部51Cの周囲に設けられている。ここでは、弾性部52Cは、ZC軸方向におけるミラー部51Cの中心よりもベースBCの主面BsCと反対側において、ミラー部51Cの全体を囲うようにミラー部51Cの周囲に設けられている。弾性部52Cは、ミラー部51Cから離間している。弾性部52Cは、ミラー面51aCに交差する方向(XC軸方向)からみてミラー部51Cを部分的に囲うように円弧状に形成された円弧状部分52aCを含む。弾性部52Cは、この円弧状部分52aCを含め全体として板バネとして構成されている。ここでは、円弧状部分52aCは、ZC軸方向におけるミラー部51Cの中心を通る中心線CLCよりもベースBCの主面BsCと反対側に配置されている。中心線CLCは、ミラー面51aC及び主面BsCに沿った方向(YC軸方向)に沿って延びる仮想的な直線である。
The elastic part 52C is provided around the mirror part 51C. Here, the elastic part 52C is provided around the mirror part 51C so as to surround the entire mirror part 51C on the opposite side of the main surface BsC of the base BC from the center of the mirror part 51C in the ZC axis direction. The elastic part 52C is separated from the mirror part 51C. The elastic portion 52C includes an arc-shaped portion 52aC formed in an arc shape so as to partially surround the mirror portion 51C when viewed from the direction intersecting the mirror surface 51aC (XC axis direction). 52 C of elastic parts are comprised as a leaf | plate spring as a whole including this circular arc-shaped part 52aC. Here, the arc-shaped portion 52aC is disposed on the opposite side of the main surface BsC of the base BC from the center line CLC passing through the center of the mirror portion 51C in the ZC axis direction. The center line CLC is a virtual straight line extending along the direction (YC axis direction) along the mirror surface 51aC and the main surface BsC.
弾性部52Cは、円弧状部分52aCの両端に設けられた一端部52pC及び他端部52rCを含む。一端部52pC及び他端部52rCは、円弧状部分52aCから連続する曲線状であってもよいし、直線状であってもよい。一端部52pC及び他端部52rCは、例えば中心線CLCと重複する。ここでは、弾性部52Cは、YC軸方向におけるミラー部51Cの中心を通る別の中心線DLCに対して、対称的に構成されている。中心線DLCは、中心線CLCに交差(直交)しておりZC軸方向に沿って延びる仮想的な線である。
The elastic portion 52C includes one end 52pC and the other end 52rC provided at both ends of the arc-shaped portion 52aC. The one end portion 52pC and the other end portion 52rC may be curved or continuous from the arcuate portion 52aC. The one end 52pC and the other end 52rC overlap with, for example, the center line CLC. Here, the elastic part 52C is configured symmetrically with respect to another center line DLC passing through the center of the mirror part 51C in the YC axis direction. The center line DLC is a virtual line that intersects (orthogonally) the center line CLC and extends along the ZC axis direction.
支持部56Cは、一例として断面矩形の棒状であって、YC軸方向にミラー部51Cの少なくとも一部(ベースBCの主面BsC側の一部)を挟むように設けられている。支持部56Cは、弾性部52Cの一端部52pC及び他端部52rCのそれぞれに接続されている(一続きに形成されている)。支持部56Cは、一端部52pC及び他端部52rCのそれぞれからミラー部51CよりもベースBC側に延びる。より具体的には、支持部56Cは、一端部52pC及び他端部52rCからベースBCに向かうにつれて互いの距離が近づくように傾斜した傾斜部56aCを含む。また、支持部56Cは、傾斜部56aCにおける一端部52pC及び他端部52rCと反対側の端部から延設された係止部55Cを含む。
The support portion 56C is a rod having a rectangular cross section as an example, and is provided so as to sandwich at least a part of the mirror part 51C (a part on the main surface BsC side of the base BC) in the YC axis direction. The support portion 56C is connected to each of the one end portion 52pC and the other end portion 52rC of the elastic portion 52C (formed in a continuous manner). The support part 56C extends from the one end part 52pC and the other end part 52rC to the base BC side from the mirror part 51C. More specifically, the support portion 56C includes an inclined portion 56aC that is inclined so that the distance from each other approaches the base BC from the one end portion 52pC and the other end portion 52rC. The support portion 56C includes a locking portion 55C extending from the end portion on the opposite side to the one end portion 52pC and the other end portion 52rC in the inclined portion 56aC.
支持部56Cは、一対の支持部56C間において互いに反対方向に傾斜部56aCから突出する突設部56cCを含む。支持部56Cにおいては、傾斜部56aC、係止部55C、及び、突設部56cCによって、角部56pCが形成されている。一対の支持部56C間において、角部56pCは互いに反対側に臨んでいる。
The support portion 56C includes a protruding portion 56cC that protrudes from the inclined portion 56aC in a direction opposite to each other between the pair of support portions 56C. In the support portion 56C, a corner portion 56pC is formed by the inclined portion 56aC, the locking portion 55C, and the projecting portion 56cC. Between the pair of support portions 56C, the corner portions 56pC face opposite to each other.
支持部56Cは、YC軸方向の両側から支持部56Cを挟むように支持部56Cに力を加えることにより、弾性部52CをYC軸方向に圧縮するように弾性変形させることができる。すなわち、YC軸方向に沿った支持部56Cの互いの距離は、弾性部52Cの弾性変形に応じて可変である。また、支持部56Cには、弾性部52Cの弾性力が付与され得る。なお、支持部56Cに弾性部52Cを変形させるための力を付与する場合には、例えば突設部56cCを利用することができる(すなわち、突設部56cCから力を入力することができる)。
The support portion 56C can be elastically deformed so as to compress the elastic portion 52C in the YC axis direction by applying a force to the support portion 56C so as to sandwich the support portion 56C from both sides in the YC axis direction. That is, the mutual distance between the support portions 56C along the YC axis direction is variable according to the elastic deformation of the elastic portion 52C. Further, the elastic force of the elastic portion 52C can be applied to the support portion 56C. In addition, when giving the force for deforming the elastic part 52C to the support part 56C, the protrusion part 56cC can be utilized, for example (namely, force can be input from the protrusion part 56cC).
連結部57Cは、一対の支持部56Cのうちの一方に設けられており、当該支持部56Cとミラー部51Cとを互いに連結している。ここでは、連結部57Cは、支持部56Cのうちの傾斜部56aCに接続されている。また、連結部57Cは、傾斜部56aCとの接続位置よりもベースBCと反対側の位置においてミラー部51Cに接続されている。したがって、連結部57Cは、連結部57Cが設けられていない一方の支持部56Cから他方の支持部56Cに向かうにつれてベースBCに近づくように傾斜している(斜めになっている)。また、連結部57Cは、ミラー面51aCの中心よりもベースBC側に設けられている。したがって、一対の支持部56Cは、当該連結部57Cによるミラー部51Cとの連結位置CPCを越えてベースBC側に延びることになる。係止部55Cは、後述する開口31bCに挿入される。
The connecting portion 57C is provided on one of the pair of support portions 56C, and connects the support portion 56C and the mirror portion 51C to each other. Here, the connecting portion 57C is connected to the inclined portion 56aC of the support portion 56C. The connecting portion 57C is connected to the mirror portion 51C at a position opposite to the base BC with respect to the connecting position with the inclined portion 56aC. Accordingly, the connecting portion 57C is inclined (inclined) so as to approach the base BC from the one supporting portion 56C where the connecting portion 57C is not provided toward the other supporting portion 56C. The connecting portion 57C is provided closer to the base BC than the center of the mirror surface 51aC. Therefore, the pair of support portions 56C extend to the base BC side beyond the connection position CPC with the mirror portion 51C by the connection portion 57C. The locking portion 55C is inserted into an opening 31bC described later.
係止部55Cは、全体としてV字状に屈曲している。係止部55Cは、傾斜面55aC及び傾斜面55bCを含む。傾斜面55aC及び傾斜面55bCは、一対の係止部55Cにおける互いに対向する面の反対側の面である(外面である)。傾斜面55aCは、一対の係止部55C間において、連結部57Cから遠ざかる方向(ZC軸負方向)に互いに近づくように傾斜している。傾斜面55bCは、ZC軸負方向に互いに離間するように傾斜している。XC軸方向からみて、ZC軸に対する傾斜面55aCの傾斜角の絶対値は、90°未満である。同様に、傾斜面55bCの傾斜角の絶対値は、90°未満である。ここでは、一例として、それらの傾斜角の絶対値は互いに等しい。
The locking portion 55C is bent in a V shape as a whole. The locking portion 55C includes an inclined surface 55aC and an inclined surface 55bC. The inclined surface 55aC and the inclined surface 55bC are surfaces on the opposite side of the surfaces facing each other in the pair of locking portions 55C (outer surfaces). The inclined surfaces 55aC are inclined so as to approach each other in the direction away from the connecting portion 57C (ZC axis negative direction) between the pair of locking portions 55C. The inclined surfaces 55bC are inclined so as to be separated from each other in the negative direction of the ZC axis. When viewed from the XC axis direction, the absolute value of the inclination angle of the inclined surface 55aC with respect to the ZC axis is less than 90 °. Similarly, the absolute value of the inclination angle of the inclined surface 55bC is less than 90 °. Here, as an example, the absolute values of the inclination angles are equal to each other.
ここで、実装領域31Cには、開口31bCが形成されている。ここでは、開口31bCは、ZC軸方向に延びてデバイス層3Cを貫通している。したがって、開口31bCは、主面BsCとデバイス層3Cにおける主面BsCの反対側の表面とに連通している(至っている)。開口31bCは、ZC軸方向からみたときの形状が台形である柱状を呈している(図49参照)。開口31bCの詳細については後述する。
Here, an opening 31bC is formed in the mounting region 31C. Here, the opening 31bC extends in the ZC axis direction and penetrates the device layer 3C. Therefore, the opening 31bC communicates with (is led to) the main surface BsC and the surface of the device layer 3C opposite to the main surface BsC. The opening 31bC has a columnar shape that is trapezoidal when viewed from the ZC axis direction (see FIG. 49). Details of the opening 31bC will be described later.
支持部56Cは、弾性部52Cの弾性力が付与された状態において、この開口31bCに挿入される。換言すれば、支持部56C(すなわち可動ミラー5C)が開口31bCを介して実装領域31Cを貫通している。より具体的には、支持部56Cのうちの係止部55Cの一部が、開口31bC内に位置している。その状態において、係止部55Cは、ZC軸方向における開口31bCの一対の縁部(主面BsC側の縁部及び主面BsCの反対側の縁部)に接触している。
The support portion 56C is inserted into the opening 31bC in a state where the elastic force of the elastic portion 52C is applied. In other words, the support portion 56C (that is, the movable mirror 5C) penetrates the mounting region 31C through the opening 31bC. More specifically, a part of the locking portion 55C of the support portion 56C is located in the opening 31bC. In this state, the locking portion 55C is in contact with a pair of edges (the edge on the main surface BsC side and the edge on the opposite side of the main surface BsC) of the opening 31bC in the ZC axis direction.
ここでは、傾斜面55aCが開口31bCの主面BsC側の縁部に接触し、傾斜面55bCが開口31bCの主面BsCの反対側の縁部に接触している。これにより、ZC軸方向において係止部55Cが実装領域31Cを挟むように実装領域31Cに係止される。この結果、ZC軸方向について、可動ミラー5CがベースBCから抜けることが抑制される。
Here, the inclined surface 55aC is in contact with the edge of the opening 31bC on the main surface BsC side, and the inclined surface 55bC is in contact with the edge of the opening 31bC on the opposite side of the main surface BsC. Accordingly, the locking portion 55C is locked to the mounting region 31C so as to sandwich the mounting region 31C in the ZC axial direction. As a result, the movable mirror 5C is prevented from coming off the base BC in the ZC axis direction.
ここで、中間層4Cには、開口41Cが形成されている。開口41Cは、ZC軸方向において中間層4Cの両側に開口している。支持層2Cには、開口21Cが形成されている。開口21Cは、ZC軸方向において支持層2Cの両側に開口している。光モジュール1Cでは、中間層4Cの開口41C内の領域及び支持層2Cの開口21C内の領域によって、一続きの空間S1Cが構成されている。つまり、空間S1Cは、中間層4Cの開口41C内の領域及び支持層2Cの開口21C内の領域を含んでいる。
Here, an opening 41C is formed in the intermediate layer 4C. The openings 41C are opened on both sides of the intermediate layer 4C in the ZC axis direction. An opening 21C is formed in the support layer 2C. The openings 21C are opened on both sides of the support layer 2C in the ZC axis direction. In the optical module 1C, a continuous space S1C is formed by the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C. That is, the space S1C includes a region in the opening 41C of the intermediate layer 4C and a region in the opening 21C of the support layer 2C.
空間S1Cは、支持層2Cとデバイス層3Cとの間に形成されており、少なくとも実装領域31C及び駆動領域32Cに対応している。具体的には、中間層4Cの開口41C内の領域及び支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいる。中間層4Cの開口41C内の領域は、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分(すなわち、支持層2Cに対して浮いた状態とすべき部分であって、例えば、実装領域31Cの全体、各弾性支持領域34Cの弾性変形部34bC、第1櫛歯部33aC及び第2櫛歯部31aC)を支持層2Cから離間させるための隙間を形成している。
The space S1C is formed between the support layer 2C and the device layer 3C, and corresponds to at least the mounting region 31C and the drive region 32C. Specifically, the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction. The region in the opening 41C of the intermediate layer 4C is a portion that should be separated from the support layer 2C in the mounting region 31C and the drive region 32C (that is, a portion that should be in a floating state with respect to the support layer 2C. A gap for separating the entire mounting region 31C, the elastic deformation portion 34bC, the first comb tooth portion 33aC, and the second comb tooth portion 31aC) of each elastic support region 34C from the support layer 2C is formed.
ここで、図49に示されるように、開口31bCの内面は、一対の傾斜面SLCと、基準面SRCと、を含む。傾斜面SLCは、一端SLaCと他端SLbCとを含む。一端SLaC及び他端SLbCは、ZC軸方向からみたときの傾斜面SLCの両端部である。一対の傾斜面SLCは、一端SLaCから他端SLbCに向けて互いの距離が拡大するように(例えばXC軸に対して)傾斜している。基準面SRCは、ZC軸方向からみて、一方の傾斜面SLCの他端SLbCと他方の傾斜面SLCの他端SLbCとを互いに接続する基準線BLCに沿って延在している。ここでは、基準面SRCは、単に、他端SLbC同士を互いに接続している。上述したように、ZC軸方向からみたときの開口31bCの形状は台形である。したがって、ここでは、傾斜面SLCが台形の脚に相当し、基準面SRCは台形の下底に相当する。
Here, as shown in FIG. 49, the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a reference surface SRC. The inclined surface SLC includes one end SLaC and the other end SLbC. One end SLaC and the other end SLbC are both ends of the inclined surface SLC when viewed from the ZC axis direction. The pair of inclined surfaces SLC are inclined (for example, with respect to the XC axis) such that the distance from one end SLaC to the other end SLbC increases. The reference surface SRC extends along a reference line BLC that connects the other end SLbC of one inclined surface SLC and the other end SLbC of the other inclined surface SLC, as viewed from the ZC axis direction. Here, the reference surface SRC simply connects the other ends SLbC to each other. As described above, the shape of the opening 31bC when viewed from the ZC axis direction is a trapezoid. Therefore, here, the inclined surface SLC corresponds to a trapezoidal leg, and the reference surface SRC corresponds to the lower base of the trapezoid.
ここでは、開口31bCは単一の空間である。YC軸方向における開口31bCの寸法の最小値(すなわち、傾斜面SLCの一端SLaC同士の間隔)は、YC軸方向に沿って弾性部52Cを圧縮するように弾性変形させたとき、一対の係止部55Cを一括して開口31bC内に配置可能な値である。一方、YC軸方向における開口31bCの寸法の最大値(すなわち、傾斜面SLCの他端SLbC同士の間隔)は、一対の係止部55Cが開口31bCに配置されているときに弾性部52Cの弾性変形の一部のみが解放され得る(すなわち弾性部52Cが自然長に至らない)値である。
Here, the opening 31bC is a single space. The minimum value of the dimension of the opening 31bC in the YC axis direction (that is, the distance between the one ends SLaC of the inclined surface SLC) is a pair of locking when the elastic portion 52C is elastically deformed along the YC axis direction. The value is such that the portion 55C can be placed in the opening 31bC in a lump. On the other hand, the maximum value of the dimension of the opening 31bC in the YC-axis direction (that is, the interval between the other ends SLbC of the inclined surface SLC) is the elasticity of the elastic part 52C when the pair of locking parts 55C is disposed in the opening 31bC. Only a part of the deformation can be released (that is, the elastic portion 52C does not reach the natural length).
したがって、開口31bC内に一対の係止部55Cを配置すると、弾性部52Cの弾性力によって係止部55Cが開口31bCの内面を押圧し、開口31bCの内面からの反力が係止部55C(支持部56C)に付与されることになる。これにより、可動ミラー5Cは、ミラー面51aCが主面BsCに交差(例えば直交)した状態において、開口31bCの内面から支持部56Cに付与される弾性力の反力により実装領域31Cに支持される。
Accordingly, when the pair of locking portions 55C is disposed in the opening 31bC, the locking portion 55C presses the inner surface of the opening 31bC by the elastic force of the elastic portion 52C, and the reaction force from the inner surface of the opening 31bC is increased by the locking portion 55C ( The support portion 56C) is provided. Accordingly, the movable mirror 5C is supported by the mounting region 31C by the reaction force of the elastic force applied from the inner surface of the opening 31bC to the support portion 56C in a state where the mirror surface 51aC intersects (for example, orthogonally) the main surface BsC. .
特に、係止部55Cは、開口31bCの傾斜面SLCに当接される。このため、係止部55Cは、傾斜面SLCからの反力のXC軸方向の成分によって傾斜面SLC上を基準面SRCに向けて摺動し、傾斜面SLCに接触しながら基準面SRCに突き当てられる。これにより、係止部55Cは、傾斜面SLCと基準面SRCとによって規定される角部に内接し、XC軸方向及びYC軸方向の両方において位置決めされる(弾性力によりセルフアライメントされる)。ここでは、係止部55Cの断面形状が四角形であるので、ZC軸方向から見て、傾斜面SLCは係止部55Cに対して点で接触し、基準面SRCは係止部55Cに対して線で接触する。すなわち、ここでは、開口31bCの内面は、ZC軸方向からみて2つの点及び2つの線で一対の係止部55Cに接触する。
Particularly, the locking portion 55C is brought into contact with the inclined surface SLC of the opening 31bC. For this reason, the locking portion 55C slides on the inclined surface SLC toward the reference surface SRC by the component in the XC axis direction of the reaction force from the inclined surface SLC, and pushes against the reference surface SRC while contacting the inclined surface SLC. Hit. Accordingly, the locking portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, and is positioned in both the XC axis direction and the YC axis direction (self-aligned by elastic force). Here, since the cross-sectional shape of the locking portion 55C is a quadrangle, when viewed from the ZC axial direction, the inclined surface SLC contacts the locking portion 55C at a point, and the reference surface SRC is in contact with the locking portion 55C. Touch with a line. That is, here, the inner surface of the opening 31bC contacts the pair of locking portions 55C at two points and two lines when viewed from the ZC axial direction.
一方、図47に示されるように、XC軸方向からみて、係止部55Cには、開口31bCの縁部においても開口31bCの内面から弾性力の反力が付与される。可動ミラー5Cの実装時には、係止部55Cの傾斜面55aC及び傾斜面55bCの一方に対して反力が付与される場合がある。この場合には、当該反力の傾斜面55aC又は傾斜面55bCに沿った成分によって傾斜面55aC及び傾斜面55bCの一方が縁部に摺動し、傾斜面55aCと傾斜面55bCとの両方が縁部に当接する位置(すなわちZC軸方向に沿って実装領域31Cを挟む位置)に至るようにZC軸方向に沿って移動する。これにより、当該位置において係止部55Cが係止され、可動ミラー5CがZC軸方向について位置決めされる(弾性力によりセルフアライメントされる)。つまり、可動ミラー5Cにおいては、弾性部52Cの弾性力を利用して、3次元的にセルフアライメントがなされる。
On the other hand, as shown in FIG. 47, when viewed from the XC axial direction, the locking portion 55C is applied with a reaction force of elastic force from the inner surface of the opening 31bC even at the edge of the opening 31bC. When the movable mirror 5C is mounted, a reaction force may be applied to one of the inclined surface 55aC and the inclined surface 55bC of the locking portion 55C. In this case, one of the inclined surface 55aC and the inclined surface 55bC slides on the edge by the component of the reaction force along the inclined surface 55aC or the inclined surface 55bC, and both the inclined surface 55aC and the inclined surface 55bC are edges. It moves along the ZC axis direction so as to reach a position where it contacts the part (that is, a position that sandwiches the mounting region 31C along the ZC axis direction). Accordingly, the locking portion 55C is locked at the position, and the movable mirror 5C is positioned in the ZC axial direction (self-aligned by the elastic force). That is, in the movable mirror 5C, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52C.
以上のような可動ミラー5Cは、例えばMEMS技術(パターニング及びエッチング)によって一体的に形成される。したがって、可動ミラー5Cの厚さ(ミラー面51aCに交差する方向の寸法)は、各部において一定であり、例えば、320μm程度である。また、ミラー面51aCの直径は、例えば1mm程度である。さらに、弾性部52Cのミラー部51C側の表面(内面)と、ミラー部51Cの弾性部52C側の表面(外面)との間隔は、例えば200μm程度である。弾性部52Cの厚さ(板バネの厚さ)は、例えば10μm以上20μm以下程度である。
The movable mirror 5C as described above is integrally formed by, for example, MEMS technology (patterning and etching). Accordingly, the thickness of the movable mirror 5C (the dimension in the direction intersecting the mirror surface 51aC) is constant in each part, and is, for example, about 320 μm. The diameter of the mirror surface 51aC is, for example, about 1 mm. Furthermore, the distance between the surface (inner surface) of the elastic part 52C on the mirror part 51C side and the surface (outer surface) of the mirror part 51C on the elastic part 52C side is, for example, about 200 μm. The thickness of the elastic portion 52C (thickness of the leaf spring) is, for example, about 10 μm to 20 μm.
なお、ミラー面51aCに交差する方向(XC軸方向)からみて、係止部55Cの太さは弾性部52Cの太さ(板厚)よりも大きい。また、XC軸方向からみて、支持部56Cの全体の太さは弾性部52Cの太さよりも大きい。さらに、XC軸方向からみて、連結部57Cの太さは弾性部52Cの太さよりも大きい。すなわち、ここでは、弾性部52C、支持部56C、及び連結部57Cのなかで弾性部52Cが最も細く(薄く)されている。したがって、例えば支持部56Cからの力の入力により弾性部52Cを弾性変形させるときに、支持部56C及び連結部57Cは実質的に変形しない。ただし、支持部56C及び連結部57Cは、わずかに変形してもよい。換言すれば、支持部56C及び連結部57Cは、支持部56C及び連結部57Cの変形量が弾性部52Cの変形量よりも小さい範囲において変形する場合もある(なお、支持部56C及び連結部57Cの変形量が0の場合もある)。
[固定ミラー及びその周辺構造] Note that the thickness of the lockingportion 55C is larger than the thickness (plate thickness) of the elastic portion 52C when viewed from the direction intersecting the mirror surface 51aC (XC axis direction). Further, when viewed from the XC axis direction, the overall thickness of the support portion 56C is larger than the thickness of the elastic portion 52C. Furthermore, when viewed from the XC axis direction, the thickness of the connecting portion 57C is larger than the thickness of the elastic portion 52C. That is, here, the elastic portion 52C is the thinnest (thinner) among the elastic portion 52C, the support portion 56C, and the connecting portion 57C. Therefore, for example, when the elastic portion 52C is elastically deformed by inputting force from the support portion 56C, the support portion 56C and the connecting portion 57C are not substantially deformed. However, the support part 56C and the connection part 57C may be slightly deformed. In other words, the support portion 56C and the connection portion 57C may be deformed in a range in which the deformation amount of the support portion 56C and the connection portion 57C is smaller than the deformation amount of the elastic portion 52C (note that the support portion 56C and the connection portion 57C). The amount of deformation may be zero).
[Fixed mirror and its peripheral structure]
[固定ミラー及びその周辺構造] Note that the thickness of the locking
[Fixed mirror and its peripheral structure]
固定ミラー6C及びその周辺構造は、実装領域が可動しないことを除いて、上記の可動ミラー5C及びその周辺構造と同様となっている。すなわち、図50及び図51に示されるように、固定ミラー(光学素子)6Cは、ミラー面(光学面)61aCを有するミラー部(光学部)61Cと、弾性部62Cと、一対の支持部66Cと、一方の支持部66Cとミラー部61Cとを互いに連結する単一の連結部67Cと、を有している。ミラー部61Cは、円板状に形成されている。ミラー面61aCは、ミラー部61Cの円形状の板面である。固定ミラー6Cは、ミラー面61aCが主面BsCに交差(例えば直交)する状態においてベースBCに実装されている。
The fixed mirror 6C and its peripheral structure are the same as the movable mirror 5C and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 50 and 51, the fixed mirror (optical element) 6C includes a mirror part (optical part) 61C having a mirror surface (optical surface) 61aC, an elastic part 62C, and a pair of support parts 66C. And a single connecting portion 67C that connects the one supporting portion 66C and the mirror portion 61C to each other. The mirror part 61C is formed in a disk shape. The mirror surface 61aC is a circular plate surface of the mirror portion 61C. The fixed mirror 6C is mounted on the base BC in a state where the mirror surface 61aC intersects (for example, is orthogonal to) the main surface BsC.
弾性部62Cは、ミラー部61Cの周囲に設けられている。ここでは、弾性部62Cは、ZC軸方向におけるミラー部61Cの中心よりもベースBCの主面BsCと反対側の全体を囲うように、ミラー部61Cの周囲に設けられている。弾性部62Cは、ミラー面61aCに交差する方向(XC軸方向)からみて、ミラー部61Cから離間しつつミラー部61Cを部分的に囲うように円弧状に形成された円弧状部分62aCを含む。弾性部62Cは、この円弧状部分62aCを含め全体として板バネとして構成されている。ここでは、円弧状部分62aCは、ZC軸方向におけるミラー部61Cの中心を通る中心線CLCよりもベースBCの主面BsCと反対側に配置されている。中心線CLCは、ミラー面61aC及び主面BsCに沿った方向(XC軸方向)に沿って延びる仮想的な直線である。
The elastic part 62C is provided around the mirror part 61C. Here, the elastic portion 62C is provided around the mirror portion 61C so as to surround the entire portion of the base BC opposite to the main surface BsC from the center of the mirror portion 61C in the ZC axis direction. The elastic portion 62C includes an arc-shaped portion 62aC formed in an arc shape so as to partially surround the mirror portion 61C while being separated from the mirror portion 61C when viewed from the direction intersecting the mirror surface 61aC (XC axis direction). The elastic portion 62C is configured as a leaf spring as a whole including the arcuate portion 62aC. Here, the arc-shaped portion 62aC is disposed on the opposite side of the main surface BsC of the base BC from the center line CLC passing through the center of the mirror portion 61C in the ZC axis direction. The center line CLC is a virtual straight line extending along the direction (XC axis direction) along the mirror surface 61aC and the main surface BsC.
弾性部62Cは、円弧状部分62aCの両端に設けられた一端部62pC及び他端部62rCを含む。一端部62pC及び他端部62rCは、円弧状部分62aCから連続的に円弧状に湾曲していてもよいし、直線状であってもよい。一端部62pC及び他端部62rCは、例えば中心線CLC上に位置する。ここでは、弾性部62Cは、ZC軸方向におけるミラー部61Cの中心を通る別の中心線DLCに対して、対称的に構成されている。中心線DLCは、中心線CLCに交差(直交)しておりZC軸方向に沿って延びる仮想的な線である。
The elastic portion 62C includes one end 62pC and the other end 62rC provided at both ends of the arc-shaped portion 62aC. The one end portion 62pC and the other end portion 62rC may be continuously curved in an arc shape from the arc-shaped portion 62aC, or may be linear. The one end 62pC and the other end 62rC are located on the center line CLC, for example. Here, the elastic portion 62C is configured symmetrically with respect to another center line DLC passing through the center of the mirror portion 61C in the ZC axis direction. The center line DLC is a virtual line that intersects (orthogonally) the center line CLC and extends along the ZC axis direction.
支持部66Cは、断面矩形の棒状であって、XC軸方向にミラー部61Cの少なくとも一部(ベースBCの主面BsC側の一部)を挟むように設けられている。支持部66Cは、弾性部62Cの一端部62pC及び他端部62rCのそれぞれに接続されている(一続きに形成されている)。支持部66Cは、一端部62pC及び他端部62rCのそれぞれからミラー部61CよりもベースBC側に延びる。より具体的には、支持部66Cは、一端部62pC及び他端部62rCからベースBCに向かうにつれて互いの距離が近づくように傾斜した傾斜部66aCを含む。また、支持部66Cは、傾斜部66aCにおける一端部62pC及び他端部62rCと反対側の端部から延設された係止部65Cを含む。
The support portion 66C is a rod having a rectangular cross section, and is provided so as to sandwich at least a part of the mirror part 61C (a part on the main surface BsC side of the base BC) in the XC axis direction. The support portion 66C is connected to each of the one end portion 62pC and the other end portion 62rC of the elastic portion 62C (formed in a continuous manner). The support portion 66C extends from the one end portion 62pC and the other end portion 62rC to the base BC side from the mirror portion 61C. More specifically, the support portion 66C includes an inclined portion 66aC that is inclined so that the distance from each other approaches the base BC from the one end portion 62pC and the other end portion 62rC. Further, the support portion 66C includes a locking portion 65C extending from the end portion on the opposite side to the one end portion 62pC and the other end portion 62rC in the inclined portion 66aC.
さらに、支持部66Cは、一対の支持部66C間において互いに反対方向に傾斜部66aCから突出する突設部66cCを含む。支持部66Cにおいては、傾斜部66aC、係止部65C、及び、突設部66cCによって、角部66pCが形成されている。一対の支持部66C間において、角部66pCは互いに反対側に臨んでいる。
Furthermore, the support portion 66C includes a protruding portion 66cC that protrudes from the inclined portion 66aC in the opposite direction between the pair of support portions 66C. In the support portion 66C, a corner portion 66pC is formed by the inclined portion 66aC, the locking portion 65C, and the protruding portion 66cC. Between the pair of support portions 66C, the corner portions 66pC face opposite to each other.
支持部66Cは、XC軸方向の両側から支持部66Cを挟むように支持部66Cに力を加えることにより、弾性部62CをXC軸方向に圧縮するように弾性変形させることができる。すなわち、XC軸方向に沿った支持部66Cの互いの距離は、弾性部62Cの弾性変形に応じて可変である。また、支持部66Cには、弾性部62Cの弾性力が付与され得る。なお、支持部66Cに弾性部62Cを変形させるための力を付与する場合には、例えば突設部66cCを利用することができる(すなわち、突設部66cCから力を入力することができる)。
The support portion 66C can be elastically deformed so as to compress the elastic portion 62C in the XC axis direction by applying a force to the support portion 66C so as to sandwich the support portion 66C from both sides in the XC axis direction. That is, the distance between the support portions 66C along the XC axis direction is variable according to the elastic deformation of the elastic portion 62C. Further, the elastic force of the elastic portion 62C can be applied to the support portion 66C. In addition, when providing the force for deform | transforming the elastic part 62C to the support part 66C, the protrusion part 66cC can be utilized, for example (namely, force can be input from the protrusion part 66cC).
連結部67Cは、一対の支持部66Cのうちの一方に設けられており、当該支持部66Cとミラー部61Cとを互いに連結している。ここでは、連結部67Cは、支持部66Cのうちの傾斜部66aCに接続されている。また、連結部67Cは、傾斜部66aCとの接続位置よりもベースBCと反対側の位置においてミラー部61Cに接続されている。したがって、連結部67Cは、連結部67Cが設けられていない一方の支持部66Cから他方の支持部66Cに向かうにつれてベースBCに近づくように傾斜している。また、連結部67Cは、ミラー面61aCの中心よりもベースBC側に設けられている。したがって、一対の支持部66Cは、当該連結部67Cによるミラー部61Cとの連結位置CPCを越えてベースBC側に延び、後述する開口37aCに挿入される。
The connecting portion 67C is provided on one of the pair of support portions 66C, and connects the support portion 66C and the mirror portion 61C to each other. Here, the connecting portion 67C is connected to the inclined portion 66aC of the support portion 66C. The connecting portion 67C is connected to the mirror portion 61C at a position opposite to the base BC with respect to the connecting position with the inclined portion 66aC. Accordingly, the connecting portion 67C is inclined so as to approach the base BC as it goes from one support portion 66C where the connecting portion 67C is not provided to the other support portion 66C. Further, the connecting portion 67C is provided closer to the base BC than the center of the mirror surface 61aC. Therefore, the pair of support portions 66C extend to the base BC side beyond the connection position CPC with the mirror portion 61C by the connection portion 67C, and are inserted into an opening 37aC described later.
係止部65Cは、全体として屈曲している。係止部65Cは、傾斜面65aC及び傾斜面65bCを含む。傾斜面65aC及び傾斜面65bCは、一対の係止部65Cにおける互いに対向する面の反対側の面である(外面である)。傾斜面65aCは、一対の係止部65C間において、連結部67Cから遠ざかる方向(ZC軸負方向)に互いに近づくように傾斜している。傾斜面65bCは、ZC軸負方向に互いに離間するように傾斜している。YC軸方向からみて、ZC軸に対する傾斜面65aC,65bCの傾斜角は、可動ミラー5Cにおける傾斜面55aC,55bCと同様である。
The locking portion 65C is bent as a whole. The locking portion 65C includes an inclined surface 65aC and an inclined surface 65bC. The inclined surface 65aC and the inclined surface 65bC are surfaces opposite to the surfaces facing each other in the pair of locking portions 65C (outer surfaces). The inclined surfaces 65aC are inclined so as to approach each other in the direction away from the connecting portion 67C (ZC axis negative direction) between the pair of locking portions 65C. The inclined surfaces 65bC are inclined so as to be separated from each other in the ZC axis negative direction. When viewed from the YC axis direction, the inclination angles of the inclined surfaces 65aC and 65bC with respect to the ZC axis are the same as those of the inclined surfaces 55aC and 55bC in the movable mirror 5C.
ここで、中間層4Cには、開口42Cが形成されている。開口42Cは、ZC軸方向から見た場合に実装領域37Cの開口37aCを含んでおり、ZC軸方向において中間層4Cの両側に開口している。支持層2Cには、開口22Cが形成されている。開口22Cは、ZC軸方向から見た場合に実装領域37Cの開口37aCを含んでおり、ZC軸方向において支持層2Cの両側に開口している。光モジュール1Cでは、中間層4Cの開口42C内の領域及び支持層2Cの開口22C内の領域によって、一続きの空間S2Cが構成されている。つまり、空間S2Cは、中間層4Cの開口42C内の領域及び支持層2Cの開口22C内の領域を含んでいる。
Here, an opening 42C is formed in the intermediate layer 4C. The opening 42C includes the opening 37aC of the mounting region 37C when viewed from the ZC axis direction, and opens on both sides of the intermediate layer 4C in the ZC axis direction. An opening 22C is formed in the support layer 2C. The opening 22C includes the opening 37aC of the mounting region 37C when viewed from the ZC axis direction, and opens on both sides of the support layer 2C in the ZC axis direction. In the optical module 1C, a continuous space S2C is formed by the region in the opening 42C of the intermediate layer 4C and the region in the opening 22C of the support layer 2C. That is, the space S2C includes a region in the opening 42C of the intermediate layer 4C and a region in the opening 22C of the support layer 2C.
ここで、開口37aCの内面は、実装領域31Cにおける開口31bCの内面と同様に構成されている。したがって、開口37aC内に一対の係止部65Cを配置すると、弾性部62Cの弾性力によって係止部65Cが開口37aCの内面を押圧し、開口37aCの内面からの反力が係止部65C(支持部66C)に付与されることになる。これにより、固定ミラー6Cは、ミラー面61aCが主面BsCに交差(例えば直交)した状態において、開口37aCの内面から支持部66Cに付与される弾性力の反力によりベースBCに支持される。特に、固定ミラー6Cにおいても、可動ミラー5Cの場合と同様に、開口37aCの内面や縁部と弾性力とを利用したセルフアライメントがなされる。
Here, the inner surface of the opening 37aC is configured in the same manner as the inner surface of the opening 31bC in the mounting region 31C. Therefore, when the pair of locking portions 65C is disposed in the opening 37aC, the locking portion 65C presses the inner surface of the opening 37aC by the elastic force of the elastic portion 62C, and the reaction force from the inner surface of the opening 37aC is increased by the locking portion 65C ( The support portion 66C) is applied. Accordingly, the fixed mirror 6C is supported by the base BC by the reaction force of the elastic force applied to the support portion 66C from the inner surface of the opening 37aC in a state where the mirror surface 61aC intersects (for example, orthogonally) with the main surface BsC. In particular, in the fixed mirror 6C, as in the case of the movable mirror 5C, self-alignment using the inner surface and edge of the opening 37aC and the elastic force is performed.
以上のような固定ミラー6Cも、可動ミラー5Cと同様に、例えばMEMS技術(パターニング及びエッチング)によって一体的に形成される。固定ミラー6Cの各部の寸法は、例えば可動ミラー5Cの各部の上述した寸法と同様である。
The fixed mirror 6C as described above is also integrally formed by, for example, MEMS technology (patterning and etching) similarly to the movable mirror 5C. The dimension of each part of the fixed mirror 6C is the same as the above-described dimension of each part of the movable mirror 5C, for example.
すなわち、ミラー面61aCに交差する方向(YC軸方向)からみて、係止部65Cの太さは弾性部62Cの太さ(板厚)よりも大きい。また、YC軸方向からみて、支持部66Cの全体の太さは弾性部62Cの太さよりも大きい。さらに、YC軸方向からみて、連結部67Cの太さは弾性部62Cの太さよりも大きい。すなわち、ここでは、弾性部62C、支持部66C、及び連結部67Cのなかで弾性部62Cが最も細く(薄く)されている。したがって、例えば支持部66Cからの力の入力により弾性部62Cを弾性変形させるときに、支持部66C及び連結部67Cは実質的に変形しない。ただし、支持部66C及び連結部67Cは、わずかに変形してもよい。換言すれば、支持部66C及び連結部67Cは、支持部66C及び連結部67Cの変形量が弾性部62Cの変形量よりも小さい範囲において変形する場合もある(なお、支持部66C及び連結部67Cの変形量が0の場合もある)。
[作用及び効果] That is, when viewed from the direction crossing the mirror surface 61aC (YC axis direction), the thickness of the lockingportion 65C is larger than the thickness (plate thickness) of the elastic portion 62C. Further, when viewed from the YC axis direction, the overall thickness of the support portion 66C is larger than the thickness of the elastic portion 62C. Furthermore, as viewed from the YC axis direction, the thickness of the connecting portion 67C is larger than the thickness of the elastic portion 62C. That is, here, the elastic portion 62C is the thinnest (thinner) among the elastic portion 62C, the support portion 66C, and the connecting portion 67C. Therefore, for example, when the elastic portion 62C is elastically deformed by inputting force from the support portion 66C, the support portion 66C and the connecting portion 67C are not substantially deformed. However, the support part 66C and the connection part 67C may be slightly deformed. In other words, the support part 66C and the connection part 67C may be deformed in a range where the deformation amount of the support part 66C and the connection part 67C is smaller than the deformation amount of the elastic part 62C (note that the support part 66C and the connection part 67C). The amount of deformation may be zero).
[Action and effect]
[作用及び効果] That is, when viewed from the direction crossing the mirror surface 61aC (YC axis direction), the thickness of the locking
[Action and effect]
光モジュール1Cにおいては、可動ミラー5Cが、弾性部52Cと、弾性部52Cの弾性変形に応じて互いの距離が可変とされた一対の支持部56Cと、を有する。一方、可動ミラー5Cが実装されるベースBCの実装領域31Cには、主面BsCに連通する開口31bCが形成されている。したがって、一例として支持部56C間の距離が縮小するように弾性部52Cを弾性変形させた状態において支持部56Cを開口31bCに挿入し、弾性部52Cの弾性変形の一部を解放することにより、開口31bC内において支持部56Cの互いの距離が拡大し、支持部56Cを開口31bCの内面に当接させることができる。
In the optical module 1C, the movable mirror 5C includes an elastic portion 52C and a pair of support portions 56C whose distances can be changed according to the elastic deformation of the elastic portion 52C. On the other hand, an opening 31bC communicating with the main surface BsC is formed in the mounting region 31C of the base BC on which the movable mirror 5C is mounted. Therefore, as an example, by inserting the support portion 56C into the opening 31bC in a state where the elastic portion 52C is elastically deformed so that the distance between the support portions 56C is reduced, and releasing a part of the elastic deformation of the elastic portion 52C, The mutual distance between the support portions 56C increases in the opening 31bC, and the support portion 56C can be brought into contact with the inner surface of the opening 31bC.
これにより、可動ミラー5Cは、開口31bCの内面から支持部56Cに付与される反力によって支持される。このように、この光モジュール1Cにおいては、弾性力を利用して可動ミラー5CをベースBCに実装する。したがって、接着剤の悪影響等を考慮することなく、すなわち、実装領域31Cの特性によらず確実に光学素子を実装可能である。なお、ここでは、可動ミラー5Cを例に作用及び効果を説明しているが、固定ミラー6Cに関しても同様の作用及び効果が奏される(以下同様)。
Thereby, the movable mirror 5C is supported by the reaction force applied to the support portion 56C from the inner surface of the opening 31bC. Thus, in this optical module 1C, the movable mirror 5C is mounted on the base BC by using an elastic force. Therefore, the optical element can be reliably mounted without considering the adverse effect of the adhesive, that is, regardless of the characteristics of the mounting region 31C. Here, the action and effect have been described by taking the movable mirror 5C as an example, but the same action and effect are also obtained with respect to the fixed mirror 6C (the same applies hereinafter).
ここで、この可動ミラー5Cにあっては、ミラー部51Cと支持部56Cとを互いに連結する連結部57Cが、ミラー面51aCの中心よりもベースBC側に設けられている。このため、例えば連結部57Cをミラー面51aCの中心よりもベースBCと反対側に設ける場合と比較して、可動ミラー5Cの全体としての重心がベースBCに近くなる。このため、安定度が向上する。
Here, in this movable mirror 5C, a connecting portion 57C that connects the mirror portion 51C and the support portion 56C to each other is provided on the base BC side with respect to the center of the mirror surface 51aC. Therefore, for example, the center of gravity of the movable mirror 5C as a whole is closer to the base BC than when the connecting portion 57C is provided on the opposite side of the base BC from the center of the mirror surface 51aC. For this reason, stability improves.
また、同様の理由から、ミラー面51aCの中心よりもベースBCと反対側の領域の全体において、ミラー部51Cの周囲に弾性部52Cを設けることができる。そして、当該領域には、弾性部52Cの弾性変形に影響を与える部材(例えば連結部)が必要ない。このため、弾性部52Cの自由に弾性変形可能な部分を比較的長くすることが可能となり、ばね定数の調整がしやすくなる。その結果、ばね定数の増大を抑制することにより、弾性変形に伴う弾性部の破損を抑制し、安定した実装を実現可能である。
For the same reason, the elastic portion 52C can be provided around the mirror portion 51C in the entire region opposite to the base BC from the center of the mirror surface 51aC. In this region, a member (for example, a connecting portion) that affects the elastic deformation of the elastic portion 52C is not necessary. For this reason, the elastically deformable portion of the elastic portion 52C can be made relatively long, and the spring constant can be easily adjusted. As a result, by suppressing an increase in the spring constant, it is possible to suppress damage to the elastic portion due to elastic deformation and realize stable mounting.
一方、仮に、例えば円弧状部分52aCの中心付近(ベースBCと反対側における中心線DLC上の位置)に連結部を設けて弾性部52Cとミラー部51Cとを互いに連結すると、弾性部52Cの自由に弾性変形可能な部分が当該連結部により分断されることになる。この結果、上記効果が得られ難い。以上のように、この光モジュール1Cによれば、実装領域31Cの特性によらずに可動ミラー5Cを安定して実装可能である。
On the other hand, for example, if a connecting portion is provided near the center of the arc-shaped portion 52aC (position on the center line DLC on the opposite side of the base BC) and the elastic portion 52C and the mirror portion 51C are connected to each other, the elastic portion 52C is free. The part which can be elastically deformed is divided by the connecting part. As a result, it is difficult to obtain the above effect. As described above, according to the optical module 1C, the movable mirror 5C can be stably mounted regardless of the characteristics of the mounting region 31C.
なお、可動ミラー5Cによれば、上述したように、ミラー面51aCの中心よりもベースBCと反対側の領域の全体において、ミラー部51Cの周囲に弾性部52Cを設けることができる。このため、ミラー部51Cに近接するように弾性部52Cを設けた場合であっても、弾性部52Cの長さを十分に確保可能である。つまり、この可動ミラー5Cによれば、弾性部52Cの長さを確保しつつ可動ミラー5Cのコンパクト化を実現可能である。
In addition, according to the movable mirror 5C, as described above, the elastic portion 52C can be provided around the mirror portion 51C in the entire region opposite to the base BC from the center of the mirror surface 51aC. For this reason, even if it is a case where the elastic part 52C is provided so that it may adjoin to the mirror part 51C, the length of the elastic part 52C is securable enough. That is, according to this movable mirror 5C, it is possible to realize a compact movable mirror 5C while ensuring the length of the elastic portion 52C.
また、光モジュール1Cにおいては、弾性部52Cは、ミラー面51aCに交差する方向からみて、ミラー部51Cを部分的に囲うように形成された円弧状部分52aCを含み、一端部52pC及び他端部52rCは、円弧状部分52aCの先端に設けられている。このように弾性部52Cが円弧状部分52aCを有することにより、コンパクト化と弾性部52Cの長さの確保とを確実に両立することができる。
In the optical module 1C, the elastic portion 52C includes an arc-shaped portion 52aC formed so as to partially surround the mirror portion 51C when viewed from the direction intersecting the mirror surface 51aC, and includes one end portion 52pC and the other end portion. 52rC is provided at the tip of the arcuate portion 52aC. Since the elastic portion 52C has the arc-shaped portion 52aC as described above, both compactness and securing of the length of the elastic portion 52C can be reliably achieved.
また、光モジュール1Cにおいては、支持部56Cは、連結部57Cによるミラー部51Cとの連結位置CPCを越えてベースBC側に延び、開口31bCに挿入される係止部55Cを含む。そして、ミラー面51aCに交差する方向からみて、係止部55Cの太さは弾性部52Cの太さよりも大きい。このため、係止部55Cを介してより安定して可動ミラー5CをベースBCに支持することができる。
In the optical module 1C, the support portion 56C includes a locking portion 55C that extends to the base BC side beyond the connection position CPC with the mirror portion 51C by the connection portion 57C and is inserted into the opening 31bC. Then, when viewed from the direction intersecting the mirror surface 51aC, the thickness of the locking portion 55C is larger than the thickness of the elastic portion 52C. For this reason, the movable mirror 5C can be more stably supported on the base BC via the locking portion 55C.
また、光モジュール1Cにおいては、ミラー面51aCに交差する方向からみて、支持部56Cの太さは弾性部52Cの太さよりも大きい。このため、弾性部52Cを弾性変形させるための力を、支持部56Cを介して安定して弾性部52Cに加えることができる。
In the optical module 1C, the thickness of the support portion 56C is larger than the thickness of the elastic portion 52C when viewed from the direction intersecting the mirror surface 51aC. For this reason, the force for elastically deforming the elastic part 52C can be stably applied to the elastic part 52C via the support part 56C.
また、光モジュール1Cにおいては、ミラー面51aCに交差する方向からみて、連結部57Cの太さは弾性部52Cの太さよりも大きくてもよい。この場合、支持部56Cとミラー部51Cとを確実に連結することができる。
In the optical module 1C, the thickness of the connecting portion 57C may be larger than the thickness of the elastic portion 52C when viewed from the direction intersecting the mirror surface 51aC. In this case, the support part 56C and the mirror part 51C can be reliably connected.
また、光モジュール1Cにおいては、開口31bCの内面は、ZC軸方向からみて、一端SLaCから他端SLbCに向けて互いの距離が拡大するように傾斜した一対の傾斜面SLCと、一方の傾斜面SLCの他端SLbCと他方の傾斜面SLCの他端SLbCとを接続する基準線BLCに沿って延在する基準面SRCと、を含んでいる。このため、支持部56Cを開口31bCに挿入して弾性部52Cの弾性変形の一部を解放したときに、弾性力によって支持部56Cを傾斜面SLCに摺動させて基準面SRCに突き当てることができる。このため、主面BsCに沿った方向における可動ミラー5Cの位置決めが可能である。
In the optical module 1C, the inner surface of the opening 31bC has a pair of inclined surfaces SLC that are inclined so that the distance from one end SLaC to the other end SLbC increases as viewed from the ZC axis direction, and one inclined surface. And a reference plane SRC extending along a reference line BLC connecting the other end SLbC of the SLC and the other end SLbC of the other inclined surface SLC. For this reason, when the support portion 56C is inserted into the opening 31bC and a part of the elastic deformation of the elastic portion 52C is released, the support portion 56C is slid on the inclined surface SLC by the elastic force and abuts against the reference surface SRC. Can do. For this reason, positioning of the movable mirror 5C in the direction along the main surface BsC is possible.
また、光モジュール1Cは、ベースBCに実装された固定ミラー6Cとビームスプリッタ7Cとを更に備え、ベースBCは、実装領域31Cに接続された駆動領域32Cを有し、可動ミラー5C、固定ミラー6C及びビームスプリッタ7Cは、干渉光学系10Cを構成するように配置されている。このため、感度が向上されたFTIRを得ることができる。また、ここでは、可動ミラー5Cが実装される実装領域31Cは、駆動領域32Cに接続されて駆動される特性を有している。したがって、接着剤の悪影響等を受けやすいため、上記の構成がより有効となる。
The optical module 1C further includes a fixed mirror 6C mounted on the base BC and a beam splitter 7C. The base BC has a drive region 32C connected to the mounting region 31C, and includes a movable mirror 5C and a fixed mirror 6C. The beam splitter 7C is arranged so as to constitute the interference optical system 10C. For this reason, FTIR with improved sensitivity can be obtained. Further, here, the mounting region 31C on which the movable mirror 5C is mounted has a characteristic of being driven by being connected to the drive region 32C. Therefore, the above configuration is more effective because it is easily affected by the adverse effects of the adhesive.
また、光モジュール1Cにおいては、ベースBCは、支持層2Cと、支持層2C上に設けられたデバイス層3Cと、支持層2Cとデバイス層3Cとの間に設けられた中間層4Cを有している。そして、支持層2Cは、SOI基板の第1シリコン層であり、デバイス層3Cは、SOI基板の第2シリコン層であり、中間層4Cは、SOI基板の絶縁層である。このため、デバイス層3Cに対する可動ミラー5Cの確実な実装のための構成をSOI基板によって好適に実現することができる。
In the optical module 1C, the base BC includes a support layer 2C, a device layer 3C provided on the support layer 2C, and an intermediate layer 4C provided between the support layer 2C and the device layer 3C. ing. The support layer 2C is a first silicon layer of the SOI substrate, the device layer 3C is a second silicon layer of the SOI substrate, and the intermediate layer 4C is an insulating layer of the SOI substrate. For this reason, the structure for reliable mounting of the movable mirror 5C to the device layer 3C can be suitably realized by the SOI substrate.
また、光モジュール1Cでは、可動ミラー5Cのミラー面51aCが、デバイス層3Cに対して支持層2Cとは反対側に位置している。これにより、光モジュール1Cの構成を簡易化することができる。
In the optical module 1C, the mirror surface 51aC of the movable mirror 5C is located on the opposite side of the support layer 2C with respect to the device layer 3C. Thereby, the configuration of the optical module 1C can be simplified.
また、光モジュール1Cでは、光入射部8Cが、外部から干渉光学系10Cに測定光を入射させるように配置されており、光出射部9Cが、干渉光学系10Cから外部に測定光を出射させるように配置されている。これにより、光入射部8C及び光出射部9Cを備えるFTIRを得ることができる。
[変形例] Further, in theoptical module 1C, the light incident part 8C is arranged so that the measurement light is incident on the interference optical system 10C from the outside, and the light emitting part 9C emits the measurement light from the interference optical system 10C to the outside. Are arranged as follows. Thereby, FTIR provided with the light incident part 8C and the light emission part 9C can be obtained.
[Modification]
[変形例] Further, in the
[Modification]
以上、本開示のさらに別の一側面の一実施形態について説明したが、本開示のさらに別の一側面は、上記実施形態に限定されない。例えば、各構成の材料及び形状は、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。
As mentioned above, although one embodiment of another aspect of the present disclosure has been described, still another aspect of the present disclosure is not limited to the above embodiment. For example, the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed.
また、空間S1Cは、支持層2Cとデバイス層3Cとの間に形成されており、少なくとも実装領域31C及び駆動領域32Cに対応していれば、図52及び図53に示されるように、様々な態様を採用することができる。
In addition, the space S1C is formed between the support layer 2C and the device layer 3C, and as long as it corresponds to at least the mounting region 31C and the drive region 32C, as shown in FIG. 52 and FIG. Aspects can be employed.
図52に示される構成では、開口21Cの代わりに、デバイス層3C側に開口する凹部23Cが支持層2Cに形成されており、中間層4Cの開口41C内の領域及び支持層2Cの凹部23C内の領域によって空間S1Cが構成されている。この場合、支持層2Cの凹部23C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいる。可動ミラー5Cの各係止部55Cの一部は、中間層4Cの開口41C内の領域を介して、凹部23C内の領域に位置している。この構成によっても、デバイス層3Cに対する可動ミラー5Cの確実な実装のための構成を好適に実現することができる。
In the configuration shown in FIG. 52, instead of the opening 21C, a recess 23C that opens to the device layer 3C side is formed in the support layer 2C, and the region in the opening 41C of the intermediate layer 4C and the recess 23C in the support layer 2C The space S1C is configured by the regions. In this case, the region in the recess 23C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction. A part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C through a region in the opening 41C of the intermediate layer 4C. Also with this configuration, a configuration for reliably mounting the movable mirror 5C on the device layer 3C can be suitably realized.
図53の(a)に示される構成では、支持層2Cの開口21C内の領域が、ZC軸方向から見た場合に可動ミラー5Cの各係止部55Cが移動する範囲を含んでいる。係止部55Cの一部は、中間層4Cの開口41C内の領域を介して、支持層2Cの開口21C内の領域に位置している。図53の(b)に示される構成では、支持層2Cの凹部23C内の領域が、ZC軸方向から見た場合に可動ミラー5Cの各係止部55Cが移動する範囲を含んでいる。これらの場合、中間層4Cの開口41C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。係止部55Cの一部は、中間層4Cの開口41C内の領域を介して、支持層2Cの凹部23C内の領域に位置している。
53 (a), the region in the opening 21C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. A part of the locking portion 55C is located in a region in the opening 21C of the support layer 2C via a region in the opening 41C of the intermediate layer 4C. In the configuration shown in FIG. 53 (b), the region in the recess 23C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axial direction. In these cases, the region in the opening 41C of the intermediate layer 4C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and is separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the power portion from the support layer 2C is formed. A part of the locking portion 55C is located in a region in the recess 23C of the support layer 2C via a region in the opening 41C of the intermediate layer 4C.
また、支持層2Cとデバイス層3Cとは、中間層4Cを介さずに互いに接合されていてもよい。この場合、支持層2Cは、例えば、シリコン、ホウケイ酸ガラス、石英ガラス、セラミックによって形成され、デバイス層3Cは、例えばシリコンによって形成される。支持層2Cとデバイス層3Cとは、例えば、表面活性化による常温接合、低温プラズマ接合、高温処理を行う直接接合、絶縁樹脂接着、メタル接合、ガラスフリットによる接合等によって互いに接合される。この場合にも、空間S1Cは、支持層2Cとデバイス層3Cとの間に形成されており、少なくとも実装領域31C及び駆動領域32Cに対応していれば、図54、図55、図56及び図57に示されるように、様々な態様を採用することができる。いずれの構成によっても、デバイス層3Cに対する可動ミラー5Cの確実な実装のための構成を好適に実現することができる。
Further, the support layer 2C and the device layer 3C may be joined to each other without the intermediate layer 4C. In this case, the support layer 2C is formed of, for example, silicon, borosilicate glass, quartz glass, or ceramic, and the device layer 3C is formed of, for example, silicon. The support layer 2C and the device layer 3C are bonded to each other by, for example, normal temperature bonding by surface activation, low temperature plasma bonding, direct bonding for performing high temperature treatment, insulating resin bonding, metal bonding, bonding by glass frit, or the like. Also in this case, the space S1C is formed between the support layer 2C and the device layer 3C, and if it corresponds to at least the mounting region 31C and the drive region 32C, FIG. 54, FIG. 55, FIG. As shown in 57, various aspects can be employed. In any configuration, it is possible to suitably realize a configuration for surely mounting the movable mirror 5C on the device layer 3C.
図54の(a)に示される構成では、支持層2Cの開口21C内の領域によって空間S1Cが構成されている。この場合、支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。係止部55Cの一部は、支持層2Cの開口21C内の領域に位置している。
54 (a), the space S1C is constituted by the region in the opening 21C of the support layer 2C. In this case, the region in the opening 21C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C out of the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. A part of the locking portion 55C is located in a region in the opening 21C of the support layer 2C.
図54の(b)に示される構成では、支持層2Cの凹部23C内の領域によって空間S1Cが構成されている。この場合、支持層2Cの凹部23C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。係止部55Cの一部は、支持層2Cの凹部23C内の領域に位置している。
In the configuration shown in FIG. 54 (b), the space S1C is configured by the region in the concave portion 23C of the support layer 2C. In this case, the region in the recess 23C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C out of the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. A part of the locking portion 55C is located in a region in the concave portion 23C of the support layer 2C.
図55の(a)に示される構成では、支持層2C側に開口する凹部(第1凹部)38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域及び支持層2Cの開口21C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域及び支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいる。デバイス層3Cの凹部38C内の領域は、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。係止部55Cの一部は、デバイス層3Cの凹部38C内の領域を介して、支持層2Cの開口21C内の領域に位置している。
In the configuration shown in FIG. 55A, a recess (first recess) 38C that opens to the support layer 2C side is formed in the device layer 3C, and the region in the recess 38C of the device layer 3C and the support layer 2C A space S1C is formed by the region in the opening 21C. In this case, the region in the recess 38C of the device layer 3C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction. A region in the recess 38C of the device layer 3C forms a gap for separating a portion to be separated from the support layer 2C from the support layer 2C in the mounting region 31C and the drive region 32C. A part of the locking portion 55C is located in a region in the opening 21C of the support layer 2C via a region in the recess 38C of the device layer 3C.
図55の(b)に示される構成では、凹部38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域及び支持層2Cの凹部(第2凹部)23C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域及び支持層2Cの凹部23C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいる。デバイス層3Cの凹部38C内の領域は、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。可動ミラー5Cの各係止部55Cの一部は、デバイス層3Cの凹部38C内の領域を介して、支持層2Cの凹部23C内の領域に位置している。
In the configuration shown in FIG. 55 (b), the recess 38C is formed in the device layer 3C, and the space is defined by the region in the recess 38C of the device layer 3C and the region in the recess (second recess) 23C of the support layer 2C. S1C is configured. In this case, the region in the recess 38C of the device layer 3C and the region in the recess 23C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction. A region in the recess 38C of the device layer 3C forms a gap for separating a portion to be separated from the support layer 2C from the support layer 2C in the mounting region 31C and the drive region 32C. A part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C of the support layer 2C via a region in the recess 38C of the device layer 3C.
図56の(a)に示される構成では、凹部38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域及び支持層2Cの開口21C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に可動ミラー5Cの各係止部55Cが移動する範囲を含んでいる。可動ミラー5Cの各係止部55Cの一部は、デバイス層3Cの凹部38C内の領域を介して、支持層2Cの開口21C内の領域に位置している。
In the configuration shown in FIG. 56A, the recess 38C is formed in the device layer 3C, and the space S1C is formed by the region in the recess 38C of the device layer 3C and the region in the opening 21C of the support layer 2C. Yes. In this case, the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. The region in the opening 21C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. A part of each locking portion 55C of the movable mirror 5C is located in a region in the opening 21C of the support layer 2C via a region in the recess 38C of the device layer 3C.
図56の(b)に示される構成では、凹部38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域及び支持層2Cの凹部(第2凹部)23C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。支持層2Cの凹部23C内の領域は、ZC軸方向から見た場合に可動ミラー5Cの各係止部55Cが移動する範囲を含んでいる。係止部55Cの一部は、デバイス層3Cの凹部38C内の領域を介して、支持層2Cの凹部23C内の領域に位置している。
In the configuration shown in FIG. 56 (b), the recess 38C is formed in the device layer 3C, and the space is defined by the region in the recess 38C of the device layer 3C and the region in the recess (second recess) 23C of the support layer 2C. S1C is configured. In this case, the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. The region in the recess 23C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. A part of the locking portion 55C is located in a region in the concave portion 23C of the support layer 2C via a region in the concave portion 38C of the device layer 3C.
図57に示される構成では、凹部38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。係止部55Cの一部は、デバイス層3Cの凹部38C内の領域に位置している。
In the configuration shown in FIG. 57, the recess 38C is formed in the device layer 3C, and the space S1C is configured by the region in the recess 38C of the device layer 3C. In this case, the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. A part of the locking part 55C is located in a region in the recess 38C of the device layer 3C.
また、図58の(a)及び(b)に示されるように、可動ミラー5Cのミラー面51aCが、支持層2Cに対してデバイス層3Cとは反対側に位置していてもよい。ここでは、可動ミラー5Cのミラー部51Cが支持層2Cのデバイス層3Cとは反対側の主面から突出している状態において、係止部55Cが開口31bCに至るように延長されている。この場合、固定ミラー6Cのミラー面61aC及びビームスプリッタ7Cの光学機能面7aCも、支持層2Cに対してデバイス層3Cとは反対側に位置している。なお、図58の(b)に示される構成では、支持層2Cとは反対側に突出するスペーサ39Cがデバイス層3Cに一体的に設けられている。スペーサ39Cは、可動ミラー5Cの各係止部55Cのうちデバイス層3Cから支持層2Cとは反対側に突出する部分よりも突出しており、当該部分を保護している。また、ここでは、開口31bCは、スペーサ39Cにより規定される空間を介して主面BsCに連通している。或いは、ここでは、開口31bCは、空間S1Cを介して主面BsCと反対側の表面である別の主面に連通している。
58 (a) and 58 (b), the mirror surface 51aC of the movable mirror 5C may be located on the opposite side of the device layer 3C with respect to the support layer 2C. Here, in a state where the mirror part 51C of the movable mirror 5C protrudes from the main surface of the support layer 2C opposite to the device layer 3C, the locking part 55C is extended so as to reach the opening 31bC. In this case, the mirror surface 61aC of the fixed mirror 6C and the optical functional surface 7aC of the beam splitter 7C are also located on the opposite side of the device layer 3C with respect to the support layer 2C. In the configuration shown in FIG. 58B, a spacer 39C that protrudes on the opposite side of the support layer 2C is provided integrally with the device layer 3C. The spacer 39C protrudes from a portion of each locking portion 55C of the movable mirror 5C that protrudes from the device layer 3C to the side opposite to the support layer 2C, and protects the portion. Here, the opening 31bC communicates with the main surface BsC through a space defined by the spacer 39C. Alternatively, here, the opening 31bC communicates with another main surface which is a surface opposite to the main surface BsC through the space S1C.
また、上記実施形態では、固定ミラー6Cがデバイス層3Cに実装されていたが、固定ミラー6Cは、支持層2C又は中間層4Cに実装されていてもよい。また、上記実施形態では、ビームスプリッタ7Cが支持層2Cに実装されていたが、ビームスプリッタ7Cは、デバイス層3C又は中間層4Cに実装されていてもよい。また、ビームスプリッタ7Cは、キューブタイプのビームスプリッタに限定されず、プレートタイプのビームスプリッタであってもよい。
In the above embodiment, the fixed mirror 6C is mounted on the device layer 3C. However, the fixed mirror 6C may be mounted on the support layer 2C or the intermediate layer 4C. In the above embodiment, the beam splitter 7C is mounted on the support layer 2C. However, the beam splitter 7C may be mounted on the device layer 3C or the intermediate layer 4C. The beam splitter 7C is not limited to a cube type beam splitter, and may be a plate type beam splitter.
また、光モジュール1Cは、光入射部8Cに加え、光入射部8Cに入射させる測定光を発生させる発光素子を備えていてもよい。或いは、光モジュール1Cは、光入射部8Cに代えて、干渉光学系10Cに入射させる測定光を発生させる発光素子を備えていてもよい。また、光モジュール1Cは、光出射部9Cに加え、光出射部9Cから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。或いは、光モジュール1Cは、光出射部9Cに代えて、干渉光学系10Cから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。
The optical module 1C may include a light emitting element that generates measurement light to be incident on the light incident portion 8C in addition to the light incident portion 8C. Alternatively, the optical module 1C may include a light emitting element that generates measurement light incident on the interference optical system 10C, instead of the light incident portion 8C. The optical module 1C may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9C in addition to the light emitting unit 9C. Alternatively, the optical module 1C may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10C instead of the light emitting unit 9C.
また、各アクチュエータ領域33Cに電気的に接続された第1貫通電極、及び各弾性支持領域34Cの両端部34aCのそれぞれに電気的に接続された第2貫通電極が、支持層2C及び中間層4C(中間層4Cが存在しない場合には支持層2Cのみ)に設けられており、第1貫通電極と第2貫通電極との間に電圧が印加されてもよい。また、実装領域31Cを移動させるアクチュエータは、静電アクチュエータに限定されず、例えば、圧電式アクチュエータ、電磁式アクチュエータ等であってもよい。また、光モジュール1Cは、FTIRを構成するものに限定されず、他の光学系を構成するものであってもよい。
In addition, the first through electrode electrically connected to each actuator region 33C and the second through electrode electrically connected to each of the both end portions 34aC of each elastic support region 34C are the support layer 2C and the intermediate layer 4C. (If the intermediate layer 4C does not exist, only the support layer 2C is provided), and a voltage may be applied between the first through electrode and the second through electrode. The actuator that moves the mounting region 31C is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like. Further, the optical module 1C is not limited to the one constituting the FTIR, and may constitute another optical system.
引き続いて、図49に示された開口31bCの変形例について説明する。図59の(a)に示されるように、開口31bCのZC軸方向からみたときの形状は、三角形であってもよい。この場合、開口31bCの内面は、一対の傾斜面SLCと基準面SRCとからなる。ここでは、傾斜面SLCの一端SLaC同士が互いに接続されている。この場合にも、傾斜面SLCと基準面SRCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。
Subsequently, a modification of the opening 31bC shown in FIG. 49 will be described. As shown in FIG. 59A, the shape of the opening 31bC when viewed from the ZC axis direction may be a triangle. In this case, the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a reference surface SRC. Here, the one ends SLaC of the inclined surfaces SLC are connected to each other. In this case as well, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by inscribed the locking portion 55C at the corner defined by the inclined surface SLC and the reference surface SRC.
図59の(b)に示される例では、開口31bCのZC軸方向からみたときの形状は、六角形である。この場合、開口31bCの内面は、一対の傾斜面SLCと、傾斜面SLCと反対側に傾斜する一対の傾斜面SKCと、を含む。一対の傾斜面SKCは、一端SKaCから他端SKbCに向けて互いの距離が拡大するように傾斜している。ここでは、傾斜面SLCの他端SLbCと傾斜面SKCの他端SKbCとが互いに接続され、1つの角部を形成している。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。ここでは、ZC軸方向からみて、1つの係止部55Cが2つの点において開口31bCの内面に接触する。
In the example shown in FIG. 59B, the shape of the opening 31bC when viewed from the ZC axis direction is a hexagon. In this case, the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a pair of inclined surfaces SKC inclined to the opposite side of the inclined surface SLC. The pair of inclined surfaces SKC are inclined so that the distance from each other increases from one end SKaC to the other end SKbC. Here, the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other to form one corner. Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC. Here, when viewed from the ZC axial direction, one locking portion 55C contacts the inner surface of the opening 31bC at two points.
図59の(c)に示されるように、傾斜面SLCは、曲面であってもよい。この場合には、一対の傾斜面SLCは、一端SLaCから他端SLbCに向けて互いに距離が拡大するように傾斜し、且つ、湾曲している。ここでは、ZC軸方向からみて、傾斜面SLCは、傾斜面SLCの接線のXC軸に対する傾きが一端SLaCから他端SLbCに向けて徐々に拡大するように湾曲している。傾斜面SLCは、開口31bCの内側に向けて凸となるように湾曲している。この場合であっても、傾斜面SLCと基準面SRCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。
As shown in FIG. 59 (c), the inclined surface SLC may be a curved surface. In this case, the pair of inclined surfaces SLC are inclined and curved so that the distance increases from one end SLaC to the other end SLbC. Here, when viewed from the ZC axis direction, the inclined surface SLC is curved such that the inclination of the tangent to the inclined surface SLC with respect to the XC axis gradually increases from one end SLaC to the other end SLbC. The inclined surface SLC is curved so as to be convex toward the inside of the opening 31bC. Even in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by inscribed in the corners defined by the inclined surface SLC and the reference surface SRC. is there.
図60の(a)に示される例では、傾斜面SLC及び傾斜面SKCの両方が、開口31bCの内側に凸となるような曲面である。また、傾斜面SLCの他端SLbCと傾斜面SKCの他端SKbCとは、XC軸方向に沿って延びる接続面を介して互いに接続されている。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。
60 (a), both the inclined surface SLC and the inclined surface SKC are curved surfaces that are convex toward the inside of the opening 31bC. The other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other via a connection surface extending along the XC axis direction. Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
図60の(b)に示される例では、ZC軸方向からみて2つの部分31pCに分割されている。2つの部分31pCのそれぞれが、傾斜面SLCと基準面SRCとを有している。すなわち、ここでは、基準面SRCも2つの部分に分割されている。ただし、ZC軸方向からみて、基準面SRCは、全体として、一方の部分31pCの傾斜面SLCの他端SLbCと、他方の部分31pCの傾斜面SLCの他端SLbCと、を接続する基準線BLCに沿って延びている。この場合には、1つの係止部55Cが開口31bCの1つの部分31pCに挿入される。そして、傾斜面SLCと基準面SRCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。
In the example shown in (b) of FIG. 60, it is divided into two portions 31pC when viewed from the ZC axis direction. Each of the two portions 31pC has an inclined surface SLC and a reference surface SRC. That is, here, the reference plane SRC is also divided into two parts. However, as viewed from the ZC axis direction, the reference surface SRC as a whole is connected to the other end SLbC of the inclined surface SLC of the one portion 31pC and the other end SLbC of the inclined surface SLC of the other portion 31pC. It extends along. In this case, one locking portion 55C is inserted into one portion 31pC of the opening 31bC. The engaging portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, so that the movable mirror 5C can be positioned in both the XC axis direction and the YC axis direction.
図60の(c)に示される例でも、ZC軸方向からみて2つの部分31pCに分割されている。2つの部分31pCのそれぞれが、傾斜面SLCと傾斜面SKCとを有している。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。
60C is also divided into two parts 31pC as viewed from the ZC axis direction. Each of the two portions 31pC has an inclined surface SLC and an inclined surface SKC. Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
図61の(a)に示される例では、開口31bCのZC軸方向からみたときの形状が菱形である。ここでは、開口31bCの内面が、傾斜面SLCと傾斜面SKCとによって構成されていうる。つまり、ここでは、傾斜面SLCと傾斜面SKCとが互いに接続されることに加えて、傾斜面SLCの一端SLaC同士が互いに接続され、且つ、傾斜面SKCの一端SKaC同士が互いに接続されている。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。
61 (a), the shape of the opening 31bC when viewed from the ZC axis direction is a rhombus. Here, the inner surface of the opening 31bC may be constituted by the inclined surface SLC and the inclined surface SKC. That is, here, in addition to the inclined surface SLC and the inclined surface SKC being connected to each other, the one ends SLaC of the inclined surfaces SLC are connected to each other, and the one ends SKaC of the inclined surfaces SKC are connected to each other. . Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
さらに、図61の(b)に示される例では、傾斜面SLCの他端SLbCと傾斜面SKCの他端SKbCとが、XC軸方向に沿って延びる接続面を介して互いに接続されている。また、傾斜面SLCの一端SLaC同士が互いに接続され、且つ、傾斜面SKCの一端SKaC同士が互いに接続されている。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。
Further, in the example shown in FIG. 61 (b), the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other via a connection surface extending along the XC axis direction. Further, the one ends SLaC of the inclined surfaces SLC are connected to each other, and the one ends SKaC of the inclined surfaces SKC are connected to each other. Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
なお、ミラー部51C,61C及びミラー面51aC,61aCの形状は、円形に限定されず、矩形やその他の形状であってもよい。
The shapes of the mirror portions 51C and 61C and the mirror surfaces 51aC and 61aC are not limited to a circle, and may be a rectangle or other shapes.
以上、可動ミラー5C及び開口31bCの種々の変形例について説明したが、可動ミラー5C及び開口31bCの変形例は、上述したものに限定されない。例えば、可動ミラー5C及び開口31bCは、上述した変形例の任意の一部分同士を交換して構成される別の変形例とすることができる。なお、固定ミラー6C及び開口37aCについても同様である。
Although various modifications of the movable mirror 5C and the opening 31bC have been described above, the modifications of the movable mirror 5C and the opening 31bC are not limited to those described above. For example, the movable mirror 5C and the opening 31bC may be another modified example configured by exchanging arbitrary portions of the above-described modified examples. The same applies to the fixed mirror 6C and the opening 37aC.
さらに、上記実施形態においては、ベースBCに実装される光学素子として、可動ミラー及び固定ミラーを例示した。この例では、光学面はミラー面である。しかしながら、実装対象となる光学素子はミラーに限定されず、例えば、グレーティングや光学フィルタ等の任意のものとすることができる。
Furthermore, in the said embodiment, the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BC. In this example, the optical surface is a mirror surface. However, the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter.
ここで、上述したミラー面(光学面)51aC,61aCの中心とは、ZC軸方向(主面BsCに交差(直交)する方向)におけるミラー面51aC,61aCの中心である。ただし、ミラー面51aC,61aCの形状が、その中心を一意に決定できる形状(例えば円形や四角形等)でない場合には、ミラー面51aC,61aCの中心とは、ZC軸方向におけるミラー面51aC,61aCの重心と置き換えて解釈することもできる。ここでの重心とは、ミラー面51aC,61aCの面積に応じて規定され得る。
Here, the centers of the mirror surfaces (optical surfaces) 51aC and 61aC described above are the centers of the mirror surfaces 51aC and 61aC in the ZC axis direction (direction intersecting (orthogonal) with the main surface BsC). However, when the shape of the mirror surfaces 51aC and 61aC is not a shape that can uniquely determine the center (for example, a circle or a quadrangle), the centers of the mirror surfaces 51aC and 61aC are the mirror surfaces 51aC and 61aC in the ZC axis direction. It can also be interpreted by replacing the center of gravity. Here, the center of gravity can be defined according to the areas of the mirror surfaces 51aC and 61aC.
また、上記実施形態においては、例えば、支持部56C同士の距離が縮小するように弾性部52Cを弾性変形させる場合について例示した。この場合には、開口31bC内において、弾性部52Cの弾性変形の一部を開放することにより支持部56C同士の距離を拡大させる。これにより、支持部56Cを開口31bCの内面に当接させてセルフアライメントを行う。しかしながら、例えば、支持部56C同士の間隔を拡大するように弾性部52Cを弾性変形させてもよい。その場合、開口31bCに係止部55Cを挿入した状態において弾性部52Cの弾性変形の一部を解放すると、係止部55C同士が互いに近づくように変位する。これにより、これにより、支持部56Cを開口31bCの内面に当接させてセルフアライメントを行う。以上の第3実施形態について、以下に付記する。
[付記22]
光学素子と前記光学素子が実装されるベースとを備える光モジュールであって、
前記光学素子は、光学面を有する光学部と、一端部及び他端部を含み前記光学部の周囲に設けられた弾性部と、前記一端部及び前記他端部のそれぞれから前記光学部よりも前記ベース側に延びる一対の支持部と、前記支持部の一方と前記光学部とを互いに連結する連結部と、を有し、
前記ベースは、主面と、前記主面に連通する開口が設けられた実装領域と、を有し、
前記支持部は、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされており、前記弾性力が付与された状態において前記開口に挿入され、
前記光学素子は、前記光学面が前記主面に交差した状態において、前記開口の内面から前記支持部に付与される前記弾性力の反力により前記実装領域に支持され、
前記連結部は、前記光学面の中心よりも前記ベース側に設けられている、
光モジュール。
[付記23]
前記弾性部は、前記光学面に交差する方向からみて、前記光学部を部分的に囲うように形成された円弧状部分を含み、
前記一端部及び前記他端部は、前記円弧状部分の先端に設けられている、
付記22に記載の光モジュール。
[付記24]
前記支持部は、前記連結部による前記光学部との連結位置を越えて前記ベース側に延び、前記開口に挿入される係止部を含み、
前記光学面に交差する方向からみて、前記係止部の太さは前記弾性部の太さよりも大きい、
付記22又は23に記載の光モジュール。
[付記25]
前記光学面に交差する方向からみて、前記支持部の太さは前記弾性部の太さよりも大きい、
付記22~24いずれか一項に記載の光モジュール。
[付記26]
前記光学面に交差する方向からみて、前記連結部の太さは前記弾性部の太さよりも大きい、
付記22~25のいずれか一項に記載の光モジュール。
[付記27]
前記開口の内面は、前記主面に交差する方向からみて、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一方の前記傾斜面の前記他端と他方の前記傾斜面の前記他端とを接続する基準線に沿って延在する基準面と、を含む、
付記22~26のいずれか一項に記載の光モジュール。
[付記28]
前記ベースに実装された固定ミラーとビームスプリッタとを更に備え、
前記光学素子は、ミラー面である前記光学面を含む可動ミラーであり、
前記ベースは、前記実装領域に接続された駆動領域を有し、
前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、
付記22~27のいずれか一項に記載の光モジュール。
[付記29]
前記ベースは、支持層と、前記支持層上に設けられたデバイス層と、前記支持層と前記デバイス層との間に設けられた中間層を有し、
前記支持層は、SOI基板の第1シリコン層であり、
前記デバイス層は、前記SOI基板の第2シリコン層であり、
前記中間層は、前記SOI基板の絶縁層である、
付記28に記載の光モジュール。
[付記30]
外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、
を備える、
付記28又は29に記載の光モジュール。 Moreover, in the said embodiment, it illustrated about the case where theelastic part 52C is elastically deformed so that the distance of 56 C of support parts may reduce, for example. In this case, the distance between the support portions 56C is increased by opening a part of the elastic deformation of the elastic portion 52C in the opening 31bC. Thereby, the support portion 56C is brought into contact with the inner surface of the opening 31bC to perform self-alignment. However, for example, the elastic portion 52C may be elastically deformed so as to increase the interval between the support portions 56C. In that case, when a part of the elastic deformation of the elastic portion 52C is released in a state where the locking portion 55C is inserted into the opening 31bC, the locking portions 55C are displaced so as to approach each other. Thus, self-alignment is performed by bringing the support portion 56C into contact with the inner surface of the opening 31bC. The above third embodiment will be additionally described below.
[Appendix 22]
An optical module comprising an optical element and a base on which the optical element is mounted,
The optical element includes an optical part having an optical surface, an elastic part including one end part and the other end part provided around the optical part, and the optical part from each of the one end part and the other end part. A pair of support parts extending to the base side, and a connecting part for connecting one of the support parts and the optical part to each other;
The base has a main surface and a mounting region provided with an opening communicating with the main surface;
The support portion is provided with an elastic force according to the elastic deformation of the elastic portion and the distance between the support portion is variable, and is inserted into the opening in a state where the elastic force is applied.
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the support portion in a state where the optical surface intersects the main surface,
The connecting portion is provided closer to the base than the center of the optical surface.
Optical module.
[Appendix 23]
The elastic portion includes an arc-shaped portion formed so as to partially surround the optical portion when viewed from a direction intersecting the optical surface,
The one end and the other end are provided at the tip of the arcuate portion,
The optical module according to appendix 22.
[Appendix 24]
The support part includes a locking part that extends to the base side beyond the connection position with the optical part by the connection part and is inserted into the opening.
When viewed from the direction intersecting the optical surface, the thickness of the locking portion is larger than the thickness of the elastic portion,
The optical module according to appendix 22 or 23.
[Appendix 25]
Seen from the direction intersecting the optical surface, the thickness of the support portion is larger than the thickness of the elastic portion,
The optical module according to any one of appendices 22 to 24.
[Appendix 26]
Seen from the direction intersecting the optical surface, the thickness of the connecting portion is larger than the thickness of the elastic portion,
The optical module according to any one of appendices 22 to 25.
[Appendix 27]
The inner surface of the opening has a pair of inclined surfaces inclined so that the distance from one end to the other end increases as viewed from the direction intersecting the main surface, and the other end and the other of the one inclined surface A reference surface extending along a reference line connecting the other end of the inclined surface,
27. The optical module according to any one of appendices 22 to 26.
[Appendix 28]
A fixed mirror and a beam splitter mounted on the base;
The optical element is a movable mirror including the optical surface which is a mirror surface;
The base has a drive region connected to the mounting region;
The movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system,
28. The optical module according to any one of appendices 22 to 27.
[Appendix 29]
The base has a support layer, a device layer provided on the support layer, and an intermediate layer provided between the support layer and the device layer,
The support layer is a first silicon layer of an SOI substrate;
The device layer is a second silicon layer of the SOI substrate;
The intermediate layer is an insulating layer of the SOI substrate.
29. The optical module according to appendix 28.
[Appendix 30]
A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
A light emitting portion arranged to emit the measurement light to the outside from the interference optical system;
Comprising
30. The optical module according to appendix 28 or 29.
[付記22]
光学素子と前記光学素子が実装されるベースとを備える光モジュールであって、
前記光学素子は、光学面を有する光学部と、一端部及び他端部を含み前記光学部の周囲に設けられた弾性部と、前記一端部及び前記他端部のそれぞれから前記光学部よりも前記ベース側に延びる一対の支持部と、前記支持部の一方と前記光学部とを互いに連結する連結部と、を有し、
前記ベースは、主面と、前記主面に連通する開口が設けられた実装領域と、を有し、
前記支持部は、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされており、前記弾性力が付与された状態において前記開口に挿入され、
前記光学素子は、前記光学面が前記主面に交差した状態において、前記開口の内面から前記支持部に付与される前記弾性力の反力により前記実装領域に支持され、
前記連結部は、前記光学面の中心よりも前記ベース側に設けられている、
光モジュール。
[付記23]
前記弾性部は、前記光学面に交差する方向からみて、前記光学部を部分的に囲うように形成された円弧状部分を含み、
前記一端部及び前記他端部は、前記円弧状部分の先端に設けられている、
付記22に記載の光モジュール。
[付記24]
前記支持部は、前記連結部による前記光学部との連結位置を越えて前記ベース側に延び、前記開口に挿入される係止部を含み、
前記光学面に交差する方向からみて、前記係止部の太さは前記弾性部の太さよりも大きい、
付記22又は23に記載の光モジュール。
[付記25]
前記光学面に交差する方向からみて、前記支持部の太さは前記弾性部の太さよりも大きい、
付記22~24いずれか一項に記載の光モジュール。
[付記26]
前記光学面に交差する方向からみて、前記連結部の太さは前記弾性部の太さよりも大きい、
付記22~25のいずれか一項に記載の光モジュール。
[付記27]
前記開口の内面は、前記主面に交差する方向からみて、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一方の前記傾斜面の前記他端と他方の前記傾斜面の前記他端とを接続する基準線に沿って延在する基準面と、を含む、
付記22~26のいずれか一項に記載の光モジュール。
[付記28]
前記ベースに実装された固定ミラーとビームスプリッタとを更に備え、
前記光学素子は、ミラー面である前記光学面を含む可動ミラーであり、
前記ベースは、前記実装領域に接続された駆動領域を有し、
前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、
付記22~27のいずれか一項に記載の光モジュール。
[付記29]
前記ベースは、支持層と、前記支持層上に設けられたデバイス層と、前記支持層と前記デバイス層との間に設けられた中間層を有し、
前記支持層は、SOI基板の第1シリコン層であり、
前記デバイス層は、前記SOI基板の第2シリコン層であり、
前記中間層は、前記SOI基板の絶縁層である、
付記28に記載の光モジュール。
[付記30]
外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、
を備える、
付記28又は29に記載の光モジュール。 Moreover, in the said embodiment, it illustrated about the case where the
[Appendix 22]
An optical module comprising an optical element and a base on which the optical element is mounted,
The optical element includes an optical part having an optical surface, an elastic part including one end part and the other end part provided around the optical part, and the optical part from each of the one end part and the other end part. A pair of support parts extending to the base side, and a connecting part for connecting one of the support parts and the optical part to each other;
The base has a main surface and a mounting region provided with an opening communicating with the main surface;
The support portion is provided with an elastic force according to the elastic deformation of the elastic portion and the distance between the support portion is variable, and is inserted into the opening in a state where the elastic force is applied.
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the support portion in a state where the optical surface intersects the main surface,
The connecting portion is provided closer to the base than the center of the optical surface.
Optical module.
[Appendix 23]
The elastic portion includes an arc-shaped portion formed so as to partially surround the optical portion when viewed from a direction intersecting the optical surface,
The one end and the other end are provided at the tip of the arcuate portion,
The optical module according to appendix 22.
[Appendix 24]
The support part includes a locking part that extends to the base side beyond the connection position with the optical part by the connection part and is inserted into the opening.
When viewed from the direction intersecting the optical surface, the thickness of the locking portion is larger than the thickness of the elastic portion,
The optical module according to appendix 22 or 23.
[Appendix 25]
Seen from the direction intersecting the optical surface, the thickness of the support portion is larger than the thickness of the elastic portion,
The optical module according to any one of appendices 22 to 24.
[Appendix 26]
Seen from the direction intersecting the optical surface, the thickness of the connecting portion is larger than the thickness of the elastic portion,
The optical module according to any one of appendices 22 to 25.
[Appendix 27]
The inner surface of the opening has a pair of inclined surfaces inclined so that the distance from one end to the other end increases as viewed from the direction intersecting the main surface, and the other end and the other of the one inclined surface A reference surface extending along a reference line connecting the other end of the inclined surface,
27. The optical module according to any one of appendices 22 to 26.
[Appendix 28]
A fixed mirror and a beam splitter mounted on the base;
The optical element is a movable mirror including the optical surface which is a mirror surface;
The base has a drive region connected to the mounting region;
The movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system,
28. The optical module according to any one of appendices 22 to 27.
[Appendix 29]
The base has a support layer, a device layer provided on the support layer, and an intermediate layer provided between the support layer and the device layer,
The support layer is a first silicon layer of an SOI substrate;
The device layer is a second silicon layer of the SOI substrate;
The intermediate layer is an insulating layer of the SOI substrate.
29. The optical module according to appendix 28.
[Appendix 30]
A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
A light emitting portion arranged to emit the measurement light to the outside from the interference optical system;
Comprising
30. The optical module according to appendix 28 or 29.
なお、以上の第1実施形態に係る光モジュール、第2実施形態に係る光モジュール、及び、第3実施形態に係る光モジュールは、それぞれの任意の要素を互いに追加、及び/または交換するように変更され得る。
Note that the optical module according to the first embodiment, the optical module according to the second embodiment, and the optical module according to the third embodiment described above are configured to add and / or replace each arbitrary element. Can be changed.
実装領域の特性によらず確実に光学素子を実装可能な光モジュールを提供することができる。
It is possible to provide an optical module capable of mounting optical elements reliably regardless of the characteristics of the mounting area.
1A…光モジュール、2A…支持層、3A…デバイス層、4A…中間層、5A,5AA…可動ミラー(光学素子)、6A…固定ミラー(光学素子)、7A…ビームスプリッタ、8A…光入射部、9A…光出射部、10A…干渉光学系、31A,37A…実装領域、31bA,37aA…開口、32A…駆動領域、51A,61A…ミラー部(光学部)、51aA,61aA…ミラー面(光学面)、52A,62A…弾性部、53A,63A…連結部(第1連結部)、54A,64A…脚部、55A,65A…係止部、55aA,55bA,65aA,65bA…傾斜面、56A,66A…支持部、57A,67A…連結部(第2連結部)、SLA…傾斜面、SLaA…一端、SLbA…他端、SRA…基準面、BLA…基準線、CAA…環状領域、1B…光モジュール、2B…支持層、3B…デバイス層、4B…中間層、5B…可動ミラー、7B…ビームスプリッタ、8B…光入射部、9B…光出射部、10B…干渉光学系、31B…実装領域、31bB…開口、51B…ミラー部、51aB…ミラー面、52B…弾性部、54B…支持部、55B…係止部、56B…ハンドル、56B…ハンドル、56aB…変位部、BB…ベース、1C…光モジュール、2C…支持層、3C…デバイス層、4C…中間層、5C…可動ミラー(光学素子)、6C…固定ミラー(光学素子)、7C…ビームスプリッタ、8C…光入射部、9C…光出射部、10C…干渉光学系、31C,37C…実装領域、31bC,37aC…開口、32C…駆動領域、51C,61C…ミラー部(光学部)、51aC,61aC…ミラー面(光学面)、52C,62C…弾性部、52aC,62aC…円弧状部分、52pC,62pC…一端部、52rC,62rC…他端部、55C,65C…係止部、56C,66C…支持部、57C,67C…連結部、SLC…傾斜面、SLaC…一端、SLbC…他端、SRC…基準面、BLC…基準線。
DESCRIPTION OF SYMBOLS 1A ... Optical module, 2A ... Support layer, 3A ... Device layer, 4A ... Intermediate layer, 5A, 5AA ... Movable mirror (optical element), 6A ... Fixed mirror (optical element), 7A ... Beam splitter, 8A ... Light incident part , 9A: Light emitting part, 10A: Interfering optical system, 31A, 37A ... Mounting area, 31bA, 37aA ... Opening, 32A ... Drive area, 51A, 61A ... Mirror part (optical part), 51aA, 61aA ... Mirror surface (optical) Surface), 52A, 62A ... elastic part, 53A, 63A ... connecting part (first connecting part), 54A, 64A ... leg part, 55A, 65A ... locking part, 55aA, 55bA, 65aA, 65bA ... inclined surface, 56A , 66A ... support part, 57A, 67A ... connecting part (second connecting part), SLA ... inclined surface, SLaA ... one end, SLbA ... other end, SRA ... reference plane, BLA ... reference line, CAA ... ring. 1B: optical module, 2B: support layer, 3B ... device layer, 4B ... intermediate layer, 5B ... movable mirror, 7B ... beam splitter, 8B ... light incident part, 9B ... light emitting part, 10B ... interference optical system, 31B ... Mounting area, 31bB ... Opening, 51B ... Mirror part, 51aB ... Mirror surface, 52B ... Elastic part, 54B ... Supporting part, 55B ... Locking part, 56B ... Handle, 56B ... Handle, 56aB ... Displacement part, BB ... Base, 1C ... Optical module, 2C ... Support layer, 3C ... Device layer, 4C ... Intermediate layer, 5C ... Movable mirror (optical element), 6C ... Fixed mirror (optical element), 7C ... Beam splitter, 8C ... Light incident part , 9C: Light emitting unit, 10C: Interference optical system, 31C, 37C: Mounting area, 31bC, 37aC: Opening, 32C: Drive area, 51C, 61C: Mirror part (optical part), 5 aC, 61aC ... mirror surface (optical surface), 52C, 62C ... elastic part, 52aC, 62aC ... arc-shaped part, 52pC, 62pC ... one end part, 52rC, 62rC ... other end part, 55C, 65C ... locking part, 56C , 66C ... support part, 57C, 67C ... connecting part, SLC ... inclined surface, SLaC ... one end, SLbC ... other end, SRC ... reference plane, BLC ... reference line.
Claims (4)
- 光学素子と、前記光学素子が実装されるベースと、を備え、
前記光学素子は、
光学面を有する光学部と、
弾性変形可能な弾性部と、
互いに対向するように設けられ、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、
を有し、
前記ベースは、主面と、前記主面に連通する開口が設けられた実装領域と、を有し、
前記一対の支持部は、前記弾性部の弾性力が付与された状態において前記開口に挿入され、
前記光学素子は、前記開口の内面から付与される前記弾性力の反力により前記実装領域に支持される、
光モジュール。 An optical element, and a base on which the optical element is mounted,
The optical element is
An optical unit having an optical surface;
An elastic part capable of elastic deformation;
A pair of support portions provided so as to be opposed to each other, to which an elastic force is applied according to the elastic deformation of the elastic portion and the distance between them is variable;
Have
The base has a main surface and a mounting region provided with an opening communicating with the main surface;
The pair of support portions are inserted into the openings in a state where the elastic force of the elastic portion is applied,
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening.
Optical module. - 前記弾性部は、環状領域を形成するように前記光学部の周囲に設けられ、
前記光学素子は、前記光学面が前記主面に交差した状態において、前記開口の内面から前記支持部に付与される前記弾性力の反力により前記実装領域に支持される、
請求項1に記載の光モジュール。 The elastic part is provided around the optical part so as to form an annular region,
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the support portion in a state where the optical surface intersects the main surface.
The optical module according to claim 1. - 前記光学素子は、前記一対の支持部間の距離が変化するように前記弾性部を弾性変形させるために用いられるハンドルを有し、
前記ハンドルは、前記光学素子が前記実装領域に実装された状態において、前記光学部及び前記一対の支持部に対して、前記主面に交差する方向における一方側に位置する、
請求項1又は2に記載の光モジュール。 The optical element has a handle used for elastically deforming the elastic portion so that a distance between the pair of support portions changes,
The handle is located on one side in a direction intersecting the main surface with respect to the optical part and the pair of support parts in a state where the optical element is mounted in the mounting region.
The optical module according to claim 1 or 2. - 前記弾性部は、一端部及び他端部を含み、前記光学部の周囲に設けられ、
前記一対の支持部は、前記一端部及び前記他端部のそれぞれから前記光学部よりも前記ベース側に延び、
前記光学素子は、前記支持部の一方と前記光学部とを互いに連結する連結部を有し、前記光学面が前記主面に交差した状態において、前記開口の内面から前記支持部に付与される前記弾性力の反力により前記実装領域に支持され、
前記連結部は、前記光学面の中心よりも前記ベース側に設けられている、
請求項1~3のいずれか一項に記載の光モジュール。 The elastic part includes one end part and the other end part, and is provided around the optical part.
The pair of support parts extend from the one end part and the other end part to the base side rather than the optical part,
The optical element includes a connecting portion that connects one of the support portions and the optical portion to each other, and is applied to the support portion from the inner surface of the opening in a state where the optical surface intersects the main surface. Supported by the mounting region by the reaction force of the elastic force,
The connecting portion is provided closer to the base than the center of the optical surface.
The optical module according to any one of claims 1 to 3.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018001385.5T DE112018001385T5 (en) | 2017-03-14 | 2018-03-14 | light module |
CN201880017324.2A CN110392858B (en) | 2017-03-14 | 2018-03-14 | Optical module |
US16/492,672 US11561388B2 (en) | 2017-03-14 | 2018-03-14 | Light module |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017048561 | 2017-03-14 | ||
JP2017-048561 | 2017-03-14 | ||
JP2017-048559 | 2017-03-14 | ||
JP2017048559A JP6782651B2 (en) | 2017-03-14 | 2017-03-14 | Optical module |
JP2017-051484 | 2017-03-16 | ||
JP2017051484A JP6778134B2 (en) | 2017-03-14 | 2017-03-16 | Optical module and its mounting method |
JP2017074494A JP6776169B2 (en) | 2017-03-14 | 2017-04-04 | Optical module |
JP2017-074494 | 2017-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168927A1 true WO2018168927A1 (en) | 2018-09-20 |
Family
ID=63522337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/009973 WO2018168927A1 (en) | 2017-03-14 | 2018-03-14 | Light module |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018168927A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4973160A (en) * | 1989-04-06 | 1990-11-27 | Yoshihiro Takiguchi | SHG autocorrelator |
US20010053261A1 (en) * | 1999-06-07 | 2001-12-20 | At&T Corp. | Angular-precision enhancement in free-space micromachined optical switches |
US20030049879A1 (en) * | 2001-07-25 | 2003-03-13 | Chuang-Chia Lin | Method of making a mems element having perpendicular portion formed from substrate |
JP2003159698A (en) * | 2001-09-17 | 2003-06-03 | Nikon Corp | Microactuator, microactuator device using the same, optical switch and optical switch array |
-
2018
- 2018-03-14 WO PCT/JP2018/009973 patent/WO2018168927A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4973160A (en) * | 1989-04-06 | 1990-11-27 | Yoshihiro Takiguchi | SHG autocorrelator |
US20010053261A1 (en) * | 1999-06-07 | 2001-12-20 | At&T Corp. | Angular-precision enhancement in free-space micromachined optical switches |
US20030049879A1 (en) * | 2001-07-25 | 2003-03-13 | Chuang-Chia Lin | Method of making a mems element having perpendicular portion formed from substrate |
JP2003159698A (en) * | 2001-09-17 | 2003-06-03 | Nikon Corp | Microactuator, microactuator device using the same, optical switch and optical switch array |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5452197B2 (en) | MEMS optical scanner | |
JP6480091B1 (en) | Mirror unit and optical module | |
JP6778134B2 (en) | Optical module and its mounting method | |
WO2018168927A1 (en) | Light module | |
CN110392858B (en) | Optical module | |
US20040005111A1 (en) | Collimator array and optical switch using the same | |
WO2018168935A1 (en) | Optical module | |
JP6782651B2 (en) | Optical module | |
US11513339B2 (en) | Optical module | |
JP4177051B2 (en) | Variable optical attenuator and optical component | |
WO2018168929A1 (en) | Optical module | |
US11579438B2 (en) | Optical module | |
JP6793066B2 (en) | Optical module | |
JP4763667B2 (en) | Groove for fixing optical transmission medium and optical device | |
WO2018180786A1 (en) | Optical component and optical connector and optical module comprising same | |
JP2019040063A (en) | prism | |
JP2020139980A (en) | Position adjustment mechanism and optical device using the same | |
JPH11242168A (en) | Light switch | |
JPH03260613A (en) | light switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767401 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18767401 Country of ref document: EP Kind code of ref document: A1 |