[go: up one dir, main page]

WO2018173623A1 - 1線式シリアルデータ伝送回路及び1線式シリアルデータ伝送方法 - Google Patents

1線式シリアルデータ伝送回路及び1線式シリアルデータ伝送方法 Download PDF

Info

Publication number
WO2018173623A1
WO2018173623A1 PCT/JP2018/006604 JP2018006604W WO2018173623A1 WO 2018173623 A1 WO2018173623 A1 WO 2018173623A1 JP 2018006604 W JP2018006604 W JP 2018006604W WO 2018173623 A1 WO2018173623 A1 WO 2018173623A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
data
slave
clock
Prior art date
Application number
PCT/JP2018/006604
Other languages
English (en)
French (fr)
Inventor
洋祐 福本
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US16/491,210 priority Critical patent/US10897342B2/en
Priority to JP2019507469A priority patent/JP6808814B2/ja
Publication of WO2018173623A1 publication Critical patent/WO2018173623A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/10Distribution of clock signals, e.g. skew
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0037Delay of clock signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop

Definitions

  • the present invention relates to a one-wire serial data transmission circuit that performs serial data transmission through a single transmission line and a one-wire serial data transmission method using the same.
  • serial data transmission is used for switching the output voltage in the power supply circuit.
  • a well-known general one-wire asynchronous serial interface performs transmission and reception on a single line. Although there is only one signal line, a plurality of slave devices can be connected by a bus. Power can also be supplied via a single bus.
  • Patent Document 1 discloses a one-wire serial data transmission method and a transmission interface circuit.
  • the transmission side mixes and transmits a clock signal to the data
  • the reception side extracts the clock timing to reconstruct the transmission side data bit string.
  • the transmitting side transmits, the H level chip selection signal that continues for a long period of time, after this chip selection signal, a return zero type 1 clock signal, and the data of each bit from the first bit of the transmission data to the last bit in order.
  • the receiving side receives the chip selection signal, the clock timing is extracted from the subsequent data, and the transmission data is written to the buffer memory bit by bit at a write timing that is predetermined in time delay from this timing.
  • Patent Document 2 discloses a one-wire serial data transmission method.
  • the data transmission request from the slave unit is asynchronously transmitted to the master unit.
  • a clock signal for synchronous communication is transmitted to the slave unit, and the slave unit transmits the data to the master unit in synchronization with the clock signal.
  • Patent Document 3 discloses a one-wire serial data transmission method.
  • a serial communication method in which transmission / reception is connected by only one line and data is sequentially transmitted bit by bit, a synchronization trigger for synchronizing transmission / reception is transmitted.
  • a predetermined number n (> 1) bits of data is transmitted between this synchronization trigger and the next synchronization trigger.
  • Patent Document 1 enable clock and data transmission from the slave side, and there is a concern that the circuit area increases.
  • the present invention has been made in consideration of the above-mentioned problems, and an object of the present invention is to provide a simple circuit system and transmission method in a one-wire serial data transmission circuit as compared with a conventional one-wire serial data transmission circuit. It is to be.
  • One aspect of the one-wire interface circuit of the present invention includes a master circuit and a slave circuit, and the master circuit uses a data clock adder used when writing transmission data from the master circuit to the slave circuit, and the slave A data receiver for use in writing received data from a circuit to the master circuit, and the slave circuit includes a data clock separator used for writing the transmission data from the master circuit to the slave circuit, and the slave circuit.
  • a data transmitter and an active generator used at the time of writing the received data to the master circuit are included, and the master circuit and the slave circuit are connected by a single signal line.
  • a clock signal and a data signal are combined by the data clock adder in the master circuit when the transmission data is written from the master circuit to the slave circuit.
  • the synthesized signal is transmitted to the slave circuit through the signal line, and the slave circuit extracts the clock signal through the delay circuit after the synthesized signal transmitted from the signal line passes through the data clock separator.
  • the data signal is extracted through the data clock separator.
  • a logic out signal from the logic of the slave circuit passes through the delay circuit and the data transmitter.
  • the data is transmitted to the master circuit via the signal line.
  • the read data signal is extracted from the transmission data transmitted from the signal line through the data receiver.
  • the slave circuit receives a synthesized signal obtained by synthesizing a clock signal and a data signal by the data clock adder, and receives data from the slave circuit.
  • the generated clock signal is input, and the control signal generated from the input of the signal terminal is input to the control terminal.
  • the slave data terminal receives the signal terminal input as the data signal
  • the slave clock terminal receives the signal.
  • a clock signal generated via a D flip-flop is input from an input of a signal terminal
  • the control signal generated via a delay circuit and a D flip-flop is input from the input of the signal terminal to the control terminal.
  • the input of the signal terminal is input to the slave data terminal as the data signal, and the signal terminal is input to the slave clock terminal.
  • the clock signal generated through the D flip-flop is input from the input of the signal, and the control signal generated through the delay circuit from the input of the signal terminal is input to the control terminal.
  • the delay circuit performs charging of the capacitor by a current source and discharging of the capacitor by a MOS transistor in order to delay input of the signal terminal.
  • the delay circuit is formed by a charge / discharge circuit including a resistor and a capacitor, and a delay time is determined by the resistance value of the resistor and the capacitance value of the capacitor. It is determined.
  • the clock signal can be generated when the control signal becomes high level, and the control signal becomes high when the control signal becomes high level or low level. Stabilize the control signal itself.
  • the slave circuit when a request for reading (reading) from the master circuit to the slave circuit is received, the slave circuit is connected to the signal line. Respond.
  • the slave circuit includes a switching power supply circuit.
  • the switching power supply circuit has at least one of an overcurrent protection function, an overvoltage protection function, an output ground fault protection function, and a temperature protection function.
  • communication is started from the falling edge of the combined signal obtained by combining the clock signal and the data signal by the data clock adder, and the low level is maintained for a specified time.
  • the control signal generated from the synthesized signal becomes high level, and the slave circuit becomes ready to accept.
  • the slave clock is extracted after a predetermined time from the falling edge of the synthesized signal, data is read at the rising edge of the slave clock, and the synthesized signal continues to be at a high level for a specified time, so that the control signal becomes low level, and the slave circuit becomes unacceptable and communication ends.
  • a start bit is followed at the head of the composite signal, followed by read (read) and write (write), address and data, and finally a stop bit.
  • the clock signal and the data signal are transmitted as AND signals from the master circuit as AND signals.
  • the control signal of the slave circuit becomes a high level, and the slave circuit becomes ready to accept.
  • the clock signal and the data signal are transmitted as AND signals from the master circuit as the composite signal
  • the slave circuit lowers the slave clock at the falling edge of the composite signal, generates a signal that rises after the cycle T / m of the clock signal, and determines slave data at the rising edge of the slave clock.
  • the clock signal is transmitted from the master circuit as the synthesized signal itself, and the slave circuit
  • the slave clock is lowered at the falling edge, and then a signal that rises after the period T / m of the clock signal is generated.
  • the logic out is determined at the rising edge of the slave clock, and the data out is determined at the rising edge of the slave clock.
  • the signal is read at the rising edge of the read clock of the master circuit.
  • the clock signal and the data signal are transmitted as AND signals from the master circuit as AND signals.
  • the control signal of the slave circuit becomes low level, and the slave circuit becomes unacceptable.
  • One aspect of the master circuit of the present invention includes a data clock adder used when writing transmission data to the slave circuit and a data receiver used when writing received data from the slave circuit.
  • a one-wire serial transmission circuit is configured by being connected through a single signal line.
  • the circuit scale in a so-called one-to-one connection in which one slave circuit is prepared for one master circuit, the circuit scale can be suppressed more than before. it can.
  • FIG. 3 is a block diagram showing a partial configuration of a slave circuit 4.
  • FIG. 3 is a circuit diagram showing a specific example of a part of the configuration shown in FIG. 2.
  • FIG. 3 is a circuit diagram showing another specific example of the partial configuration shown in FIG. 2.
  • FIG. 1 is a block diagram showing an outline of a one-wire serial data transmission circuit of the present invention.
  • the master circuit 1 has a data clock adder 2 and a data receiver 3 that add a clock CLK and data DATA.
  • the slave circuit 4 includes an active generator 5 that generates the control signal ACT, a data clock separator 6 that separates the slave clock SCLK and the slave data SDATA, and a data transmitter 7.
  • the master circuit 1 and the slave circuit 4 are connected by a signal line 8.
  • the slave circuit 4 is a power supply circuit in one example.
  • the built-in logic 9 receives the control signal ACT, the slave clock SCLK, and the slave data SDATA, for example, an overcurrent protection function (OCP) 10, an overvoltage protection function (OVP) 11, which are prepared as a protection circuit for the switching regulator 14, Control at least one protection function of a relatively large number of circuits, such as an output ground fault protection function (SCP) 12 and a temperature protection function (TSD) 13.
  • OCP overcurrent protection function
  • OVP overvoltage protection function
  • SCP output ground fault protection function
  • TSD temperature protection function
  • the overcurrent protection function 10 or the like controls the driver logic 15 of the switching regulator 14 under the conditions set by the logic 9.
  • the switching regulator 14 includes a driver logic 15, an error amplifier 16, a PWM comparator 17, an oscillator 18, a reference voltage source 19, a PMOS transistor P 1, and an NMOS transistor N 1 in addition to the overcurrent protection function 10 and the like. Composed. Further, the switching regulator 14 includes external terminals VIN, SW, PGND, FB, and COMP for establishing an electrical connection with the outside. Further, as external parts, a power source Vin, a coil L1, a capacitor C1, a capacitor C2, a resistor R1, a resistor R2, and a resistor R3 are provided. Since the topology of the switching regulator 14 is general, the description thereof is omitted in this document.
  • the clock CLK and data DATA are transmitted from the master circuit 1 to the slave circuit 4 and received as the slave clock SCLK and slave data SDATA by the slave circuit 4. Is done.
  • the slave circuit 4 changes settings of various protection functions based on the received slave data SDATA.
  • one user uses the detection threshold of the overvoltage protection function 11 as 25 V and the detection threshold of the overcurrent protection function 10 as 1.5 A, while another user uses the detection threshold of the overvoltage protection function 11 as 20 V.
  • the specification can be changed such that the detection threshold value of the overcurrent protection function 10 is 1.0 A.
  • an activation signal of low level L is transmitted from the master circuit 1 to the slave circuit 4 via the signal line 8.
  • the control signal ACT is activated by passing the activation signal through the active generator 5, and the logic 9 becomes ready to accept data.
  • write means writing of control data from the master circuit 1 to the slave circuit 4
  • read means reading of state data from the slave circuit 4 to the master circuit 1. It is.
  • the clock CLK and the data DATA are outputted from the master signal terminal Tms of the master circuit 1 to the signal line 8 as a synthesized signal SIG synthesized by the data clock adder 2.
  • the synthesized signal SIG is separated from the signal terminal Tsig through the data clock separator 6 into the slave data SDATA and the slave clock SCLK.
  • the clock CLK is transmitted from the master circuit 1 to the signal line 8 as the composite signal SIG itself.
  • the clock CLK input through the data clock separator 6 is used as the slave clock SCLK.
  • the output logic out LO from the logic 9 is made data out DO through the delay circuit LC 14, and this is outputted to the signal line 8 through the data transmitter 7.
  • the master circuit 1 reads the data out DO from the slave circuit 4 by the data receiver 3 using the read clock RCLK and uses it as read data RDATA.
  • a high level H inactivation signal is transmitted from the master circuit 1 to the slave circuit 4 via the signal line 8.
  • the control signal ACT is inactivated by passing the inactivation signal through the active generator 5, and the logic 9 becomes in a state where data cannot be received.
  • FIG. 2 is a block diagram showing a specific configuration of a part of the slave circuit 4 (the active generator 5, the data clock separator 6, and the data transmitter 7).
  • the slave circuit 4 includes a signal terminal Tsig that receives the combined signal SIG, a control terminal Tact that allows the slave circuit 4 to accept or disable data, a slave clock terminal Tsc, a slave data terminal Tsd, and a logic out terminal Tlo. Have.
  • the output of the buffer BUF11 is connected to the slave data terminal Tsd.
  • the input of the buffer BUF11 is connected to the signal terminal Tsig.
  • the output of the clock generation circuit CG11 is connected to the slave clock terminal Tsc.
  • the input of the clock generation circuit CG11 is connected to the output of the delay circuit LC13.
  • the input of the delay circuit LC13 is connected to the signal terminal Tsig.
  • the signal terminal Tsig is connected to the input of the inverter INV11 and the first input of the AND circuit AND11.
  • the output of the inverter INV11 is connected to the input of the delay circuit LC11.
  • the output of the delay circuit LC11 is connected to the set terminal Set of the RS flip-flop RSFF11.
  • the output terminal Q of the RS flip-flop RSFF11 is connected to the control terminal Tact and the second input of the AND circuit AND11.
  • the output of the AND circuit AND11 is connected to the input of the delay circuit LC12.
  • the output of the delay circuit LC12 is connected to the reset terminal Reset of the RS flip-flop RSFF11.
  • the logic out terminal Tlo is connected to the input of the delay circuit LC14.
  • the output of the delay circuit LC14 is connected to the input of the inverter INV91.
  • the output of the inverter INV91 is connected to the gate of the MOS transistor M91.
  • the source of the MOS transistor M91 is connected to the ground potential DGND.
  • the drain of the MOS transistor M91 is connected to the signal terminal Tsig.
  • the clock CLK and the data DATA are mixed and transmitted on one signal line, and the composite signal SIG also serves as the control signal ACT.
  • an inverter, a delay circuit, an RS flip-flop, and the like are used for separating these signals.
  • the RS flip-flop RSFF11 is used to hold the logic level of the control signal ACT.
  • Delay circuit LC13 and clock generation CG11 are used for clock extraction. Further, reading (reading) is performed using the MOS transistor M91.
  • the inverter circuit INV91 is prepared for driving the MOS transistor M91. Note that the inverter INV91 may be replaced with a buffer if the polarity of the signal can be allowed.
  • the delay circuit LC14 is used to match the output timing of reading.
  • FIG. 3 is a timing chart of various signals appearing at main nodes when the slave circuit 4 shown in FIG. 2 is written (written).
  • the synthesized signal SIG is input from the master circuit 1 to the signal terminal Tsig of the slave circuit 4 via the signal line 8.
  • the level and action of the combined signal SIG at each time are as follows.
  • the signal becomes low level L, and communication between the master circuit 1 and the slave circuit 4 starts.
  • the signal becomes high level H, and preparation for generating the slave clock SCLK is made.
  • the signal becomes low level L, and generation of the slave clock SCLK is started.
  • the signal goes to the high level H to prepare for reading the slave data SDATA.
  • the level becomes low level, and generation of the slave clock SCLK is started.
  • the signal becomes low level L and is prepared for reading of the slave data SDATA.
  • the signal goes to high level H, and preparations for the end of communication are made.
  • the control signal ACT is a signal input (output) to the control terminal Tact, and determines whether the slave circuit 4 can accept data and cannot accept data. When the control signal ACT is at the low level L, the slave circuit 4 cannot accept the slave data SDATA.
  • the control signal ACT becomes high level H at time t2, and the slave circuit 4 becomes ready to accept data.
  • a predetermined response start time Y is provided from time t0 to t2. This is to prevent an erroneous value from being written to the slave circuit 4 due to noise or the like.
  • the slave clock SCLK is a signal extracted to the slave clock terminal Tsc. At time t1, the slave clock SCLK responds. At this time, since the control signal ACT is at the low level L, the slave circuit 4 does not operate. The response waiting time X1 until the slave clock SCLK responds will be described later.
  • the slave clock SCLK is generated at the time t6 with a delay of the response waiting time X2 from the fall of the composite signal SIG at the time t4.
  • the setting of the response waiting time X2 is very important in reading the slave data SDATA.
  • the clock CLK and the data DATA are mixed and transmitted as the synthesized signal SIG. Therefore, it is not possible to determine at what timing the slave data SDATA should be read unless the data DATA is positioned behind the clock CLK.
  • the slave data SDATA is held at the high level H and the low level L at the same timing as the synthesized signal SIG, and is read out at the rising edge of the slave clock SCLK.
  • the slave clock SCLK responds.
  • the control signal ACT is at the low level L, the slave circuit 4 does not operate.
  • the high level H is read as the slave data SDATA in this example.
  • the low level L is read as the slave data SDATA in this example.
  • the response waiting times X1, X2, and X3 are selected to be the same value in the embodiment of the present invention.
  • FIG. 4 is an example of a specific circuit diagram showing the active generator 5 and the data clock separator 6 shown in the block diagram of FIG.
  • the one-wire serial transmission circuit having the active generator 5 and the data clock separator 6 shown in FIG. 4 includes a signal terminal Tsig that receives the composite signal SIG, and a control terminal Tact that enables the slave circuit 4 to accept and disable data.
  • a slave clock terminal Tsc and a slave data terminal Tsd Have a slave clock terminal Tsc and a slave data terminal Tsd.
  • the signal terminal Tsig is connected to the input of the inverter INV21, the input of the buffer BUF21, and the input of the buffer BUF23, and the output of the buffer BUF23 is connected to the slave data terminal Tsd.
  • the buffer BUF23 is used to pass the composite signal SIG as slave data SDATA to the subsequent stage.
  • the output of the inverter INV21 is connected to the CP input of the D flip-flop DFF22, and the power supply potential VREG3D is connected to the D input of the D flip-flop DFF22.
  • the inverter INV21 is used to operate the D flip-flop DFF22 at the falling edge of the signal.
  • the output of the inverter INV22 is connected to the RN input of the D flip-flop DFF22, and the input of the inverter INV24 is connected to the output of the D flip-flop DFF22.
  • the D flip-flop DFF22 is used for taking out the slave clock SCLK.
  • the output of the inverter INV24 is connected to the slave clock terminal Tsc.
  • the inverter INV24 is used as a buffer for adjusting the polarity of the slave clock SCLK, adjusting the delay time, and connecting the D flip-flop DFF22 to the slave clock terminal Tsc.
  • the output of the buffer BUF21 is connected to the second input of the NAND circuit NAND21 and the gate of the MOS transistor M21, and the source of the MOS transistor M21 is connected to the ground potential DGND.
  • the buffer BUF21 is used for driving the MOS transistor M21.
  • the drain of the MOS transistor M21 is connected to one end of the capacitor C21, the input of the buffer BUF22, and one end of the current source CC21, and the other end of the capacitor C21 is connected to the ground potential DGND.
  • the other end of the current source CC21 is connected to the power supply potential VREG3D.
  • the output of the buffer BUF22 is connected to the CP input of the D flip-flop DFF21, and the power supply potential VREG3D is connected to the D input of the D flip-flop DFF21.
  • the buffer BUF22 is used for shaping the waveform of the triangular wave signal generated by the current source CC21 and the capacitor C21.
  • the output of the AND circuit AND21 is connected to the RN input of the D flip-flop DFF21, and the output of the D flip-flop DFF21 is connected to the control terminal Tact.
  • the D flip-flop DFF21 is used for holding the control signal ACT.
  • the first input of the NAND circuit NAND21 is connected to the control terminal Tact, the output of the NAND circuit NAND21 is connected to the gate of the MOS transistor M22, and the source of the MOS transistor M22 is connected to the ground potential DGND.
  • the drain of the MOS transistor M22 is connected to one end of the capacitor C22, the input of the inverter INV22, and one end of the current source CC22.
  • the NAND circuit NAND21 is controlled by the control signal ACT and is used to drive the MOS transistor M22.
  • the inverter INV22 is used for shaping the waveform of the triangular wave signal generated by the current source CC22 and the capacitor C22.
  • the other end of the capacitor C22 is connected to the ground potential DGND, and the other end of the current source CC22 is connected to the power supply potential VREG3D.
  • the slave clock terminal Tsc is connected to the gate of the MOS transistor M23.
  • the source of the MOS transistor M23 is connected to the ground potential DGND.
  • the drain of the MOS transistor M23 is one end of the capacitor C23, the input of the inverter INV23, and the current.
  • the other end of the capacitor C23 is connected to the ground potential DGND, and the other end of the current source CC23 is connected to the power supply potential VREG3D.
  • the output of the inverter INV23 is connected to the first input of the AND circuit AND22, and the control terminal Tact is connected to the second input of the AND circuit AND22.
  • the inverter INV23 is used for shaping the waveform of the triangular wave signal generated by the current source CC23 and the capacitor C23.
  • the AND circuit AND22 is controlled by the control signal ACT and used to generate the slave clock SCLK.
  • the response start time Y in FIG. 3 is determined by the current value of the current source CC21 and the capacitance value of the capacitor C21.
  • the response end time Z in FIG. 3 is determined by the current value of the current source CC22 and the capacitance value of the capacitor C22.
  • the response waiting time X in FIG. 3 is determined by the current value of the current source CC23 and the capacitance value of the capacitor C23.
  • FIG. 5 is a circuit diagram showing another specific example of the partial configuration shown in FIG. The major difference from FIG. 4 is that the number of capacitors is reduced by sharing the delay circuit used for the active generator 5.
  • the response start times Y and Z in FIG. 3 are generated by the shared delay circuit.
  • the active generator 5 and the data clock separator 6 shown in FIG. 5 include a signal terminal Tsig that receives the combined signal SIG, a control terminal Tact that enables the slave circuit 4 to receive data, a slave clock terminal Tsc, and slave data Terminal Tsd.
  • the signal terminal Tsig is connected to the input of the inverter INV31 and the input of the buffer BUF31, and the output of the buffer BUF31 is connected to the slave data terminal Tsd.
  • the buffer BUF31 is used to transfer the combined signal SIG as slave data SDATA to the subsequent stage.
  • the output of the inverter INV31 is connected to one end of the resistor R31, the input of the inverter INV33, the input of the inverter INV36, and the CP input of the D flip-flop DFF31.
  • the power supply potential VREG3D is connected to the D input of the D flip-flop DFF31. Has been.
  • the inverter INV31 is used for driving the resistor R31.
  • the output of the AND circuit AND33 is connected to the RN input of the D flip-flop DFF31.
  • the output of the D flip-flop DFF31 is connected to the input of the inverter INV39.
  • the output of the inverter INV39 is connected to the slave clock terminal Tsc. It is connected.
  • the inverter INV39 is used as a buffer for adjusting the polarity of the slave clock SCLK, adjusting the delay time, and connecting the D flip-flop DFF31 to the slave clock terminal Tsc.
  • the D flip-flop DFF31 is used for taking out the slave clock SCLK.
  • the output of the inverter INV36 is connected to the second input of the AND circuit AND31, the input of the inverter INV35 is connected to the control terminal Tact, and the output of the inverter INV35 is connected to the first input of the AND circuit AND31.
  • the output of the AND circuit AND31 is connected to the gate of the MOS transistor M33.
  • the inverter INV35 and the inverter INV36 are used to adjust the polarities of the composite signal SIG and the control signal ACT input to the AND circuit AND31, respectively.
  • the AND circuit AND31 is controlled by the control signal ACT and used to drive the MOS transistor M33.
  • the output of the inverter INV33 is connected to the second input of the OR circuit OR31, the input of the inverter INV32 is connected to the control terminal Tact, and the output of the inverter INV32 is connected to the first input of the OR circuit OR31.
  • the output of the OR circuit OR31 is connected to the gate of the MOS transistor M31.
  • the inverter INV32 and the inverter INV33 are used to adjust the polarities of the combined signal SIG and the control signal ACT input to the OR circuit OR31, respectively.
  • the OR circuit OR31 is controlled by the control signal ACT and used to drive the MOS transistor M31.
  • the source of the MOS transistor M31 is connected to the power supply potential VREG3D, and the drain of the MOS transistor M31 is connected to the other end of the resistor R31, one end of the capacitor C31, the drain of the MOS transistor M33, and the input of the Schmitt inverter SMT31.
  • the output of the Schmitt inverter SMT31 is connected to the input of the inverter INV37.
  • the Schmitt inverter SMT31 is used for shaping a triangular wave signal generated by the resistor R31 and the capacitor C31.
  • the source of the MOS transistor M33 is connected to the ground potential DGND, the other end of the capacitor C31 is connected to the ground potential DGND, the source of the MOS transistor M34 is connected to the ground potential DGND, and the capacitor C32 Is connected to the ground potential DGND.
  • the drain of the MOS transistor M34 is connected to the other end of the capacitor C32, the input of the inverter INV38, and one end of the resistor R32.
  • the slave clock terminal Tsc is connected to the gate of the MOS transistor M34, and the other end of the resistor R32. Is connected to the drain of the MOS transistor M32, and the source of the MOS transistor M32 is connected to the power supply potential VREG3D.
  • the output of the inverter INV38 is connected to the first input of the AND circuit AND33, and the control terminal Tact is connected to the second input of the AND circuit AND33.
  • the inverter INV38 is used for shaping a triangular wave signal generated by the resistor R32 and the capacitor C32.
  • the AND circuit AND33 is controlled by the control signal ACT and is used to generate the slave clock SCLK.
  • the output of the inverter INV37 is connected to the input of the buffer BUF32 and the input of the inverter INV34, the output of the inverter INV34 is connected to the gate of the MOS transistor M32, and the output of the buffer BUF32 is connected to the control terminal Tact. ing.
  • the inverter INV37 is used for polarity adjustment.
  • the inverter INV34 is used for driving the MOS transistor M32.
  • the buffer BUF32 is used for driving the control signal ACT.
  • FIG. 6 shows an example of the data configuration employed in the serial data transmission method of the present invention.
  • the data used in the present invention has a start bit 61 at the head, the read / write 62 is determined by the next 1 bit, the address 63 is specified by the next 7 bits, and the data 64 is transmitted by the next 8 bits. Received and finally composed of stop bits 65.
  • the address 63 stores the detection threshold storage location of the overvoltage protection function 11 and the data 64 sets the detection threshold.
  • FIG. 7 shows various signals appearing at main nodes of the master circuit 1 and the slave circuit 4 in FIG.
  • a description will be given with reference to FIGS. 1 and 6.
  • the transmission frequency f1 is, for example, about 100 kHz to about 2 MHz.
  • This frequency change is made by adjusting the resistor R31 and capacitor C31 and the resistor R32 and capacitor C32 (in FIG. 4, each constant current source and capacitor), adjusting the delay time of the delay circuit LC14 in FIG. It is possible to set the master circuit 1 in accordance with the frequency (change the setting of the read clock RCLK).
  • FIG. 7 shows a signal of the start bit 61.
  • the transmission frequency f1 is, for example, 200 kHz, that is, the clock CLK is transmitted in a form of falling by 1 ⁇ s (clock transmission time y2) every 5 ⁇ s (one cycle time y1).
  • the clock CLK transmits the low level L for about 1/5 period (T / 5) in one period (T).
  • Data DATA continues at the low level L for a period of 2 cycles (2T) or more.
  • 2T 2 cycles
  • a time longer than the period T is set.
  • the composite signal SIG has an AND waveform of the clock CLK and data DATA.
  • the control signal ACT becomes the high level H when the composite signal SIG continues the low level L for two periods (2T) or more, and the slave circuit 4 becomes ready to accept the data DATA.
  • the response start transmission time y3 must be greater than or equal to the response start time y4.
  • 2 periods (2T) is 10 ⁇ s (response start time y4).
  • the next 1 bit determines whether it is read / write 62. Read (read) is indicated at high level H, and write (write) is indicated at low level L.
  • the subsequent 7 bits indicate the address 63, and the subsequent 8 bits indicate the data 64. Finally, the communication is terminated with the stop bit 65.
  • FIG. 8 shows a stop bit 65 signal.
  • the clock CLK transmits the low level L for about 1/5 period (T / 5) in one period (T).
  • Data DATA keeps high level H for two cycles (2T) or more.
  • 2T time of writing
  • a time exceeding the period T is set.
  • the composite signal SIG has an AND waveform of the clock CLK and data DATA.
  • the control signal ACT becomes the low level L when the composite signal SIG continues the high level H for two periods (2T) or more, and the slave circuit 4 becomes unable to accept the data DATA.
  • the response end transmission time y5 must be longer than the response end time y6.
  • two periods (2T) are 10 ⁇ s (response end time y6).
  • FIG. 9 shows a signal (clock CLK and data DATA) in the master circuit 1 at the time of writing (writing), a combined signal SIG, and a signal (slave clock SCLK and slave data SDATA) in the slave circuit 4.
  • the clock CLK transmits the low level L for about 1/5 period (T / 5) in one period (T).
  • the low level L is output for about 4/5 periods (4T / 5) (data low time y7), and when the data DATA is at the high level H, one period (T) (data high High level H is output over time y8).
  • the composite signal SIG has an AND waveform of the clock CLK and data DATA.
  • the slave clock SCLK shows a waveform Tr1 that falls at the same time as the fall Tf1 of the composite signal SIG and rises after about 2/5 period (2T / 5) (after the clock reception time y9 has elapsed).
  • the slave data SDATA is a signal as it is as the combined signal SIG.
  • the slave circuit 4 reads the slave data SDATA at the rising Tr1 of the slave clock SCLK.
  • FIG. 10 shows a signal (clock CLK and read clock RCLK) in the master circuit 1 at the time of reading (reading), a composite signal SIG, and a signal in the slave circuit 4 (slave clock SCLK, logic out LO, and data out DO). ).
  • the clock CLK transmits the low level L for about 1/5 period (T / 5) in one period (T).
  • the read clock RCLK falls simultaneously with the fall of the clock CLK, and reads the read data RDATA at the rise of the set terminal Set after about 3/5 period (3T / 5) (after the read time y10 elapses).
  • the slave clock SCLK shows a waveform Tr2 that falls simultaneously with the fall Tf2 of the composite signal SIG and rises after about 2/5 period (2T / 5) (after the clock reception time y9 has elapsed).
  • the output of the logic out LO is determined at the rising edge of the slave clock SCLK.
  • the logic level to be output is determined at the falling edge of the logic-out LO, and the logic level is output for about 2/5 period (2T / 5) (data output time y11). Become.
  • the read (read) function is deleted, four divisions are sufficient. Further, the number of divisions may be increased such as 6 divisions or 7 divisions.
  • the period is equally divided into five for the sake of easy understanding, but this is not the case in the embodiment.
  • each signal is described as initial high, but it is natural that it can be realized as an initial low in which all signals are reversed.
  • a high-speed 1-wire serial transmission circuit can be configured with a very simple circuit configuration.
  • the present invention provides a one-wire serial transmission circuit and a transmission method thereof that greatly contribute to the space saving demanded in recent years. Therefore, the present invention has very high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dc Digital Transmission (AREA)
  • Dc-Dc Converters (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

1線式シリアルデータ伝送回路は、マスター回路1とスレーブ回路4とを有し、マスター回路1は、ライト(書込)用のデータクロック加算器2とリード(読取)用のデータ受信器3を有する。スレーブ回路4は、アクティブ生成器5とライト(書込)用のデータクロック分離器6とリード(読取)用のデータ送信器7を有する。マスター回路1とスレーブ回路4は、1本の信号線8で接続されており、マスター回路1がスレーブ回路4に対してデータを書き込む時、マスター回路1においてクロック信号とデータ信号を合成した信号が、信号線8を介してスレーブ回路4に送信され、スレーブ回路4では、送信されてきた信号がデータクロック分離器6を通してクロック信号とデータ信号が取り出される。

Description

1線式シリアルデータ伝送回路及び1線式シリアルデータ伝送方法
 本発明は、単一伝送路でシリアルデータ伝送を行う1線式シリアルデータ伝送回路及びこれを用いた1線式シリアルデータ伝送方法に関する。
 昨今、半導体集積回路装置には、小型化かつ高機能化、高性能化の要望が高まってきている。例えば、電源用ICなどに実装されるデジタル信号制御用のインターフェイス回路においては、パラレルインターフェイス回路からシリアルインターフェイス回路にすることで、ピン数が削減されるようになってきた。
 例えば、シリアルデータ伝送は、電源回路における出力電圧の切替に用いられる。
 しかし、シリアルインターフェイス回路といっても、現状では依然として3線式、2線式のシリアルインターフェイス方式が多く、1線式はそれほど多く普及していない。
 よく知られている一般的な1線式の非同期式のシリアルインターフェイスは、送信と受信を1本の線で行う。信号線が1本で済むにもかかわらず、複数のスレーブデバイスをバス接続することが可能であるという特徴がある。また、電源も1つのバス経由で与えることができる。
 特許文献1には、1線式シリアルデータ伝送方法および伝送インターフェイス回路が開示されている。本伝送方式では、送信側はデータにクロック信号を混ぜて伝送し、受信側はクロックタイミングを抽出して、送信側データビット列を再構成する。送信側が送信するとき、長い期間継続するHレベルのチップ選択信号と、このチップ選択信号の後、リターンゼロ型の1クロック信号と、送信データの先頭ビットから順に最終ビットまでの1ビットずつのデータとを交互に送信する。受信側がチップ選択信号を受信したとき、後続するデータからクロックタイミングを抽出し、このタイミングから予め定められた時間遅れの書き込みタイミングで送信データを1ビットずつバッファメモリに書き込む。
 特許文献2には、1線式シリアルデータ伝送方法が開示されている。マスター部の動作とは非同期的にスレーブ部で発生するデータをシリアルにマスター部に送信する通信システムにおいて、前記スレーブ部からのデータ送信要求を非同期的に前記マスター部に送信し、前記マスター部はこの送信要求に基づいて同期通信用クロック信号を前記スレーブ部に送信し、前記スレーブ部は、前記クロック信号に同期して前記データを前記マスター部に送信する。
 特許文献3には、1線式シリアルデータ伝送方法が開示されている。送受信間を1線のみで結線してデータを1ビットずつ順次送信するシリアル通信方式において、送受信間の同期をとるための同期トリガを送信する。この同期トリガと次の同期トリガとの間に所定数n(>1)ビットのデータを送信することを特徴とする。これにより、同期トリガを挿入して同期ずれを防止しながら、転送レートの低下を避けることが可能な1線式のシリアル通信方式を実現することができる。
特開2002-335234号公報 特開2003-163653号公報 特開2003-273942号公報
 しかしながら、上記一般的な1線式シリアルインターフェイスは、複数のデバイスを接続できるようにしているため、制御方法が複雑になる。また、電源回路の対応のため大容量コンデンサの内蔵が必要であり、回路面積が大きくなるという不具合が懸念される。
 また、特許文献1に記載された1線式シリアルデータ伝送方法および伝送回路では、スレーブ側からのクロックおよびデータの送信を可能としており、回路面積が大きくなるという不具合が懸念される。
 また、特許文献2に記載された1線式シリアルデータ伝送方法では、複数台のスレーブの接続を可能としているため、その回路面積が大きくなる。さらに、スタートビット及びストップビットを使用しているが、複数台のスレーブの判定及びスレーブからマスターへの通信開始においてのみ使用しており、本発明におけるスタートビット及びストップビットの使用目的とは異なっている。
 また、特許文献3に記載された1線式シリアルデータ伝送方法では、マスターとスレーブの両方にクロックが必要となり、回路面積が大きくなるという不具合が懸念される。また、お互いのクロック周波数の誤差が大きい場合は、高速のデータ転送ができないという不具合が懸念される。
 本発明は、上記問題点を考慮してなされたものであり、その目的は、1線式シリアルデータ伝送回路において従来の1線式シリアルデータ伝送回路に比べて簡便な回路方式及び伝送方法を提供することである。
 本発明の1線式インターフェイス回路の一態様は、マスター回路とスレーブ回路とを持ち、前記マスター回路は、前記マスター回路から前記スレーブ回路への送信データ書き込み時に使用するデータクロック加算器と、前記スレーブ回路から前記マスター回路への受信データ書き込み時に使用するデータ受信器を含み、前記スレーブ回路は、前記マスター回路から前記スレーブ回路への前記送信データ書き込み時に使用するデータクロック分離器と、前記スレーブ回路から前記マスター回路への前記受信データ書き込み時に使用するデータ送信器とアクティブ生成器を含み、前記マスター回路と前記スレーブ回路は、1本の信号線で接続されている。
 また、本発明の1線式インターフェイス回路の別の一態様は、前記マスター回路から前記スレーブ回路への前記送信データ書き込み時、前記マスター回路において、クロック信号とデータ信号を前記データクロック加算器により合成した合成信号が前記信号線を介して前記スレーブ回路に送信され、前記スレーブ回路では、前記信号線から送信されてきた前記合成信号が前記データクロック分離器を通した後に遅延回路を通してクロック信号が取り出され、前記データクロック分離器を通して前記データ信号が取り出される。
 また、本発明の1線式インターフェイス回路の別の一態様は、前記スレーブ回路から前記マスター回路への受信データ書き込み時、前記スレーブ回路のロジックからロジックアウト信号が遅延回路及び前記データ送信器を通して、前記信号線を介して前記マスター回路に送信され、前記マスター回路では、前記信号線から送信されてきた送信データが前記データ受信器を通してリードデータ信号が取り出される。
 また、本発明の1線式インターフェイス回路の別の一態様において、前記スレーブ回路は、クロック信号とデータ信号を前記データクロック加算器により合成した合成信号を受ける信号端子と、前記スレーブ回路をデータ受信状態にする制御端子と、スレーブクロック端子と、スレーブデータ端子を備え、前記スレーブデータ端子には、前記信号端子の入力がデータ信号として入力され、前記スレーブクロック端子には、前記信号端子の入力から生成された前記クロック信号が入力され、前記制御端子には、前記信号端子の入力から生成された制御信号が入力される。
 また、本発明の1線式インターフェイス回路の別の一態様では、前記スレーブ回路において、前記スレーブデータ端子には、前記信号端子の入力が前記データ信号として入力され、前記スレーブクロック端子には、前記信号端子の入力からDフリップフロップを介して生成されたクロック信号が入力され、前記制御端子には、前記信号端子の入力から遅延回路及びDフリップフロップを介して生成された前記制御信号が入力される。
 また、本発明の1線式インターフェイス回路の別の一態様は、前記スレーブ回路において、前記スレーブデータ端子には前記信号端子の入力が前記データ信号として入力され、前記スレーブクロック端子には前記信号端子の入力からDフリップフロップを介して生成されたクロック信号が入力され、前記制御端子には前記信号端子の入力から遅延回路を介して生成された前記制御信号が入力される。
 また、本発明の1線式インターフェイス回路の別の一態様において、前記遅延回路は、前記信号端子の入力を遅延させるために、電流源によるコンデンサの充電及びMOSトランジスタによるコンデンサの放電を行う。
 また、本発明の1線式インターフェイス回路の別の一態様において、前記遅延回路は、抵抗とコンデンサによる充放電回路により形成されており、前記抵抗の抵抗値と前記コンデンサの容量値で遅延時間が決定される。
 また、本発明の1線式インターフェイス回路の別の一態様において、前記クロック信号は、前記制御信号がハイレベルになることで生成可能となり、前記制御信号は、ハイレベルまたはロウレベルになった時に前記制御信号自身を安定化させる。
 また、本発明の1線式インターフェイス回路の別の一態様において、前記マスター回路より前記スレーブ回路に対してリード(読取)の要求があった際には、前記スレーブ回路は、前記信号線に対して応答する。
 また、本発明の1線式インターフェイス回路の別の一態様において、前記スレーブ回路は、スイッチング電源回路を含む。
 また、本発明の1線式インターフェイス回路の別の一態様において、前記スイッチング電源回路は、過電流保護機能、過電圧保護機能、出力地絡保護機能、温度保護機能の少なくとも1つの機能を有する。
 また、本発明の別の発明である1線式シリアル伝送方法は、クロック信号とデータ信号を前記データクロック加算器により合成した合成信号の立ち下りから通信が開始され、規定時間ロウレベルを続けることで前記合成信号から生成された制御信号がハイレベルとなり、前記スレーブ回路が受付可能状態となる。前記合成信号の立下りから既定時間後にスレーブクロックを抽出し、この前記スレーブクロックの立ち上がりでデータを読み取り、前記合成信号が規定時間ハイレベルを続けることで、前記制御信号がロウレベルとなり、前記スレーブ回路が受付不可能状態となり通信が終了する。
 また、本発明の1線式シリアル伝送方法の別の一態様では、前記合成信号の先頭にスタートビット、ついでリード(読取)及びライト(書込)、アドレス、データと続き、最後にストップビットとなる。
 また、本発明の1線式シリアル伝送方法の別の一態様では、通信開始時、前記マスター回路から前記クロック信号と前記データ信号がアンド論理で前記合成信号として送信されており、前記合成信号が周期T以上ロウレベルを継続することで前記スレーブ回路の前記制御信号がハイレベルとなり、前記スレーブ回路が受付可能状態となる。
 また、本発明の1線式シリアル伝送方法の別の一態様では、前記クロック信号のパルス幅y2は、y2=周期T/m(2≦m≦50)と設定されており、一周期の時間から前記パルス幅を除外した時間で他のイベントが処理される。
 また、本発明の1線式シリアル伝送方法の別の一態様では、ライト(書込)時、前記マスター回路から前記クロック信号と前記データ信号がアンド論理で前記合成信号として送信されており、前記スレーブ回路は、前記合成信号の立下りでスレーブクロックを立ち下げそれから前記クロック信号の周期T/mよりも後に立ち上がる信号を生成し、前記スレーブクロックの立ち上がりでスレーブデータを確定する。
 また、本発明の1線式シリアル伝送方法の別の一態様では、リード(読取)時、前記マスター回路から前記クロック信号が前記合成信号そのものとして送信されており、前記スレーブ回路は、前記クロック信号の立下りでスレーブクロックを立ち下げ、それから前記クロック信号の周期T/mよりも後に立ち上がる信号を生成し、前記スレーブクロックの立ち上がりでロジックアウトを確定し、前記スレーブクロックの立ち上がりでデータアウトを確定し、前記マスター回路のリード用クロックの立ち上がりで信号を読み取る。
 また、本発明の1線式シリアル伝送方法の別の一態様では、通信終了時、前記マスター回路から前記クロック信号と前記データ信号がアンド論理で前記合成信号として送信されており、前記合成信号が前記クロック信号の周期Tより長くハイレベルを継続することで前記スレーブ回路の前記制御信号がロウレベルとなり、前記スレーブ回路が受付不可能状態となる。
 また、本発明のマスター回路の一態様は、スレーブ回路への送信データ書き込み時に使用するデータクロック加算器と、前記スレーブ回路からの受信データ書き込み時に使用するデータ受信器を含み、前記スレーブ回路と1本の信号線を介して接続されることにより1線式シリアル伝送回路を構成する。
 この発明によれば、1線式シリアル伝送回路において、1つのマスター回路に対して1つのスレーブ回路が用意されるいわゆる1対1で接続される構成において、従前よりも回路規模を抑制することができる。
本発明の1線式シリアルデータ伝送回路の概要を示すブロック図である。 スレーブ回路4の一部の構成を示すブロック図である。 図2におけるタイミングチャートを示す図である。 図2に示した一部の構成の一具体例を示す回路図である。 図2に示した一部の構成の別の一具体例を示す回路図である。 本発明の1線式シリアルデータ伝送方法に採用するデータ構成例を示す図である。 本発明の1線式シリアルデータ伝送方法において用いるスタートビット信号を示す図である。 本発明の1線式シリアルデータ伝送方法において用いるストップビット信号を示す図である。 本発明の1線式シリアルデータ伝送方法において用いる書込信号(Write)を示す図である。 本発明の1線式シリアルデータ伝送方法において用いる読取信号(Read)を示す図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 図1は、本発明の1線式シリアルデータ伝送回路の概要を示したブロック図である。マスター回路1は、クロックCLKとデータDATAとを加算するデータクロック加算器2とデータ受信器3を持つ。スレーブ回路4は、制御信号ACTを生成するアクティブ生成器5と、スレーブクロックSCLKとスレーブデータSDATAとを分離するデータクロック分離器6と、データ送信器7を持つ。マスター回路1とスレーブ回路4は、信号線8で接続されている。
 スレーブ回路4は、一例では電源回路である。内蔵されたロジック9は、制御信号ACT、スレーブクロックSCLK及びスレーブデータSDATAを受けて、例えばスイッチングレギュレータ14の保護回路として用意される過電流保護機能(OCP)10、過電圧保護機能(OVP)11、出力地絡保護機能(SCP)12や温度保護機能(TSD)13など、比較的多くの回路の少なくとも1つの保護機能を制御する。過電流保護機能10などは、ロジック9から設定された条件でスイッチングレギュレータ14のドライバロジック15を制御する。
 スイッチングレギュレータ14は、過電流保護機能10などの他に、ドライバロジック15、エラーアンプ16、PWMコンパレータ17、発振器18、基準電圧源19、PMOSトランジスタP1、NMOSトランジスタN1を備え、これらを集積化して構成される。また、スイッチングレギュレータ14は、外部との電気的接続を確立するための外部端子VIN、SW、PGND、FB、COMPを備えている。更に外部部品として、電源Vin、コイルL1、コンデンサC1、コンデンサC2、抵抗R1、抵抗R2、抵抗R3を備えている。スイッチングレギュレータ14のトポロジは一般的であるため、本書では説明を省略する。
 本図の1線式シリアル伝送回路とその伝送方法を電源回路に導入すると、マスター回路1からクロックCLKとデータDATAがスレーブ回路4に送信され、スレーブ回路4でスレーブクロックSCLKとスレーブデータSDATAとして受信される。スレーブ回路4では、受信したスレーブデータSDATAに基づいて各種保護機能の設定を変更する。
 例えば、あるユーザーにおいては、過電圧保護機能11の検出閾値を25Vとし、過電流保護機能10の検出閾値を1.5Aとして使用する一方、別のユーザーでは、過電圧保護機能11の検出閾値を20Vとし、過電流保護機能10の検出閾値を1.0Aとして使用する、といった仕様の変更が可能となる。
 マスター回路1とスレーブ回路4とで通信を行う通信開始時は、マスター回路1からスレーブ回路4へと信号線8を介して例えばロウレベルLの活性化信号が送信される。スレーブ回路4では、その活性化信号をアクティブ生成器5に通すことにより、制御信号ACTを活性化し、ロジック9がデータ受付可能状態となる。
 本書では、ライト(書込)は、マスター回路1からスレーブ回路4への制御データの書き込みを意味し、リード(読取)は、スレーブ回路4からマスター回路1への状態データの読み出しを意味するものである。
 ライト(書込)時は、クロックCLKとデータDATAがデータクロック加算器2で合成された合成信号SIGとして、マスター回路1のマスター信号端子Tmsから信号線8へと出力される。スレーブ回路4では、合成信号SIGが信号端子Tsigからデータクロック分離器6を通り、スレーブデータSDATAとスレーブクロックSCLKに分離される。
 リード(読取)時は、クロックCLKが合成信号SIGそのものとしてマスター回路1から信号線8に送信される。スレーブ回路4では、データクロック分離器6を介して入力されるクロックCLKがスレーブクロックSCLKとして使用される。ロジック9からの出力ロジックアウトLOは、遅延回路LC14を通してデータアウトDOとされ、これがデータ送信器7を通して信号線8に出力される。マスター回路1は、スレーブ回路4からのデータアウトDOをリードクロックRCLKを用いてデータ受信器3で読み取り、リードデータRDATAとして使用する。
 通信終了時は、マスター回路1からスレーブ回路4へと信号線8を介してハイレベルHの不活性化信号が送信される。スレーブ回路4では、その不活性化信号をアクティブ生成器5に通すことにより、制御信号ACTを不活性化し、ロジック9がデータ受付不可能状態となる。
 図2は、スレーブ回路4の一部(アクティブ生成器5、データクロック分離器6及びデータ送信器7)の具体的な構成を示すブロック図である。
 スレーブ回路4は、合成信号SIGを受ける信号端子Tsigと、スレーブ回路4をデータ受付可能または不可能状態にする制御端子Tactと、スレーブクロック端子Tscと、スレーブデータ端子Tsdと、ロジックアウト端子Tloを有する。
 スレーブデータ端子Tsdには、バッファBUF11の出力が接続されている。バッファBUF11の入力は、信号端子Tsigに接続されている。スレーブクロック端子Tscには、クロック生成回路CG11の出力が接続されている。クロック生成回路CG11の入力は、遅延回路LC13の出力に接続されている。遅延回路LC13の入力は、信号端子Tsigに接続されている。
 信号端子Tsigには、インバータINV11の入力とアンド回路AND11の第1入力が接続されている。インバータINV11の出力は、遅延回路LC11の入力に接続されている。遅延回路LC11の出力は、RSフリップフロップRSFF11のセット端子Setに接続されている。
 RSフリップフロップRSFF11の出力端子Qは、制御端子Tactとアンド回路AND11の第2入力に接続されている。アンド回路AND11の出力は、遅延回路LC12の入力に接続されている。遅延回路LC12の出力は、RSフリップフロップRSFF11のリセット端子Resetに接続されている。
 ロジックアウト端子Tloは、遅延回路LC14の入力に接続されている。遅延回路LC14の出力は、インバータINV91の入力に接続されている。インバータINV91の出力は、MOSトランジスタM91のゲートに接続されている。MOSトランジスタM91のソースは、接地電位DGNDに接続されている。MOSトランジスタM91のドレインは、信号端子Tsigに接続されている。
 本図の1線式シリアル伝送回路では、1本の信号線にクロックCLKとデータDATAを混ぜて送信しており、合成信号SIGは制御信号ACTも兼ねている。そのため、インバータや遅延回路やRSフリップフロップなどがそれらの信号の分離に用いられる。
 例えば、インバータINV11と遅延回路LC11は、合成信号SIGがロウレベルL(=活性時の論理レベル)とされてから、制御信号ACTを規定時間後にハイレベルHにするために用意されている。一方、アンド回路AND11と遅延回路LC12は、合成信号SIGがハイレベルH(=不活性時の論理レベル)とされてから、制御信号ACTを規定時間後にロウレベルLにするために用意されている。また、RSフリップフロップRSFF11は、制御信号ACTの論理レベルを保持する為に用いられる。
 クロック取り出しのために遅延回路LC13とクロック生成CG11が用いられる。また、リード(読取)は、MOSトランジスタM91を用いて行われる。インバータ回路INV91は、MOSトランジスタM91の駆動のために準備されている。なお、信号の極性が許せるならば、インバータINV91をバッファに置き換えても構わない。遅延回路LC14は、リード(読取)の出力タイミングを合わせるために用いられる。
 図3は、図2に示したスレーブ回路4のライト(書込)時における主なノードに表れる各種信号のタイミングチャートを示す。
 合成信号SIGは、マスター回路1より信号線8を介してスレーブ回路4の信号端子Tsigに入力される。合成信号SIGの各時刻でのレベルと作用は次のとおりである。
 時刻t0からロウレベルLになり、マスター回路1とスレーブ回路4との間で通信が始まる。時刻t3でハイレベルHになり、スレーブクロックSCLKの発生準備をする。時刻t4でロウレベルLになり、スレーブクロックSCLKの生成を開始する。時刻t5でハイレベルHになり、スレーブデータSDATAの読出しに備える。時刻t7でロウレベルLになり、スレーブクロックSCLKの生成を開始する。時刻t8でロウレベルLになり、スレーブデータSDATAの読出しに備える。時刻t9でハイレベルHになり、通信終了の準備をする。
 制御信号ACTは、制御端子Tactに入力(出力)される信号であり、スレーブ回路4のデータ受付可能及びデータ受付不可能状態を決定する。制御信号ACTがロウレベルLのとき、スレーブ回路4はスレーブデータSDATAの受付を不可能とする。
 制御信号ACTは、時刻t2においてハイレベルHになり、スレーブ回路4がデータ受付可能状態となる。時刻t0からt2までは、あらかじめ定められた応答開始時間Yを設けている。これはスレーブ回路4にノイズなどで誤った値が書き込まれないようにするためである。
 スレーブクロックSCLKはスレーブクロック端子Tscに取り出される信号である。時刻t1において、スレーブクロックSCLKが応答するが、この時、制御信号ACTはロウレベルLのため、スレーブ回路4としては動作しない。なお、スレーブクロックSCLKが応答するまでの応答待機時間X1については後述する。
 スレーブクロックSCLKは、時刻t6において、時刻t4の合成信号SIGの立下りより応答待機時間X2遅れて発生する。この応答待機時間X2の設定は、スレーブデータSDATAの読出しにおいて非常に重要である。本発明に係る1線式シリアル伝送方法にでは、クロックCLKとデータDATAを混ぜて合成信号SIGとして送信している。したがって、データDATAをクロックCLKのどれだけ後方に位置させるかを定めておかなければ、どのタイミングでスレーブデータSDATAを読み出せばよいかが決定できないからである。
 スレーブデータSDATAは、合成信号SIGと同じタイミングでハイレベルHとロウレベルLを保持し、スレーブクロックSCLKの立ち上がりで読みだされることになる。時刻t1において、スレーブクロックSCLKが応答するが、この時、制御信号ACTはロウレベルLのため、スレーブ回路4としては動作しない。
 スレーブデータSDATAは、時刻t6において、ハイレベルHとなっているので、本例では、スレーブデータSDATAとしてハイレベルHが読み出されることとなる。
 スレーブデータSDATAは、時刻t7から応答待機時間X3経過後の時刻t8においては、ロウレベルLとなっているので、本例では、スレーブデータSDATAとしてロウレベルLが読み出されることとなる。なお、応答待機時間X1、X2及びX3は、本発明の実施の形態では同じ値に選ばれている。
 時刻t9において、合成信号SIGがハイレベルHとなり、時刻t10までの定められた応答終了時間Zの期間が経過すると、制御信号ACTがロウレベルLとなり、スレーブ回路4がデータ受付不可能状態となり、通信を終了する。
 図4は、図2のブロック図に示したアクティブ生成器5とデータクロック分離機6を具体的な回路図で示した一例である。図4のアクティブ生成器5とデータクロック分離器6を有する1線式シリアル伝送回路は、合成信号SIGを受ける信号端子Tsigと、スレーブ回路4をデータ受付可能及び不可能状態にする制御端子Tactと、スレーブクロック端子Tscと、スレーブデータ端子Tsdとを有する。
 信号端子Tsigには、インバータINV21の入力とバッファBUF21の入力とバッファBUF23の入力が接続されており、バッファBUF23の出力は、スレーブデータ端子Tsdに接続されている。バッファBUF23は、合成信号SIGをスレーブデータSDATAとして後段に受け渡すために用いられる。
 インバータINV21の出力は、DフリップフロップDFF22のCP入力に接続されており、DフリップフロップDFF22のD入力には、電源電位VREG3Dが接続されている。インバータINV21は、DフリップフロップDFF22を信号の立下りで動作させるために用いられる。
 DフリップフロップDFF22のRN入力には、インバータINV22の出力が接続されており、DフリップフロップDFF22の出力は、インバータINV24の入力が接続されている。DフリップフロップDFF22は、スレーブクロックSCLKの取り出しのために用いられる。インバータINV24の出力は、スレーブクロック端子Tscに接続されている。インバータINV24は、スレーブクロックSCLKの極性の調整や遅延時間の調整、さらには、DフリップフロップDFF22をスレーブクロック端子Tscに接続するバッファとして用いられる。
 バッファBUF21の出力は、ナンド回路NAND21の第2入力とMOSトランジスタM21のゲートに接続されており、MOSトランジスタM21のソースは、接地電位DGNDに接続されている。バッファBUF21は、MOSトランジスタM21の駆動に用いられる。
 MOSトランジスタM21のドレインは、コンデンサC21の一端とバッファBUF22の入力と電流源CC21の一端と接続されており、コンデンサC21の他端は、接地電位DGNDに接続されている。
 電流源CC21の他端は、電源電位VREG3Dに接続されている。バッファBUF22の出力は、DフリップフロップDFF21のCP入力に接続されており、DフリップフロップDFF21のD入力には、電源電位VREG3Dが接続されている。バッファBUF22は、電流源CC21とコンデンサC21で生成される三角波状信号の波形の整形に用いられる。
 DフリップフロップDFF21のRN入力には、アンド回路AND21の出力が接続されており、DフリップフロップDFF21の出力は制御端子Tactに接続されている。DフリップフロップDFF21は、制御信号ACTの保持に用いられる。
 ナンド回路NAND21の第1入力は、制御端子Tactと接続されており、ナンド回路NAND21の出力は、MOSトランジスタM22のゲートに接続されており、MOSトランジスタM22のソースは、接地電位DGNDに接続されており、MOSトランジスタM22のドレインは、コンデンサC22の一端とインバータINV22の入力と電流源CC22の一端と接続されている。ナンド回路NAND21は、制御信号ACTによって制御され、MOSトランジスタM22の駆動に用いられる。インバータINV22は、電流源CC22とコンデンサC22で生成される三角波状信号の波形の整形に用いられる。
 コンデンサC22の他端は、接地電位DGNDに接続されており、電流源CC22の他端は、電源電位VREG3Dに接続されている。
 スレーブクロック端子TscはMOSトランジスタM23のゲートに接続されており、MOSトランジスタM23のソースは、接地電位DGNDに接続されており、MOSトランジスタM23のドレインは、コンデンサC23の一端とインバータINV23の入力と電流源CC23の一端と接続されており、コンデンサC23の他端は、接地電位DGNDに接続されており、電流源CC23の他端は、電源電位VREG3Dに接続されている。
 インバータINV23の出力は、アンド回路AND22の第1入力に接続されており、制御端子Tactは、アンド回路AND22の第2入力に接続されている。インバータINV23は、電流源CC23とコンデンサC23で生成される三角波状信号の波形の整形に用いられる。アンド回路AND22は、制御信号ACTによって制御され、スレーブクロックSCLKの生成に用いられる。
 電流源CC21の電流値とコンデンサC21の容量値で、図3における応答開始時間Yが決定されている。電流源CC22の電流値とコンデンサC22容量値で、図3における応答終了時間Zが決定されている。電流源CC23の電流値とコンデンサC23の容量値で、図3における応答待機時間Xが決定されている。
 図5は、図2に示した一部の構成の別の一具体例を示す回路図である。図4との大きな違いは、アクティブ生成器5に用いる遅延回路の共有化により、コンデンサの数を減らしていることである。共有化された遅延回路によって、図3における応答開始時間Y及びZが生成される。
 図5に示したアクティブ生成器5及びデータクロック分離器6は、合成信号SIGを受ける信号端子Tsigと、スレーブ回路4をデータ受信可能状態にする制御端子Tactと、スレーブクロック端子Tscと、スレーブデータ端子Tsdとを有する。
 信号端子Tsigには、インバータINV31の入力とバッファBUF31の入力が接続されており、バッファBUF31の出力は、スレーブデータ端子Tsdに接続されている。バッファBUF31は、合成信号SIGをスレーブデータSDATAとして後段に受け渡すために用いられる。
 インバータINV31の出力は、抵抗R31の一端とインバータINV33の入力とインバータINV36の入力とDフリップフロップDFF31のCP入力とに接続されており、DフリップフロップDFF31のD入力には、電源電位VREG3Dが接続されている。インバータINV31は、抵抗R31を駆動させるために用いられる。
 DフリップフロップDFF31のRN入力には、アンド回路AND33の出力が接続されており、DフリップフロップDFF31の出力は、インバータINV39の入力が接続されており、インバータINV39の出力は、スレーブクロック端子Tscに接続されている。インバータINV39は、スレーブクロックSCLKの極性の調整や遅延時間の調整、さらには、DフリップフロップDFF31をスレーブクロック端子Tscに接続するバッファとして用いられる。DフリップフロップDFF31は、スレーブクロックSCLKの取り出しのために用いられる。
 インバータINV36の出力は、アンド回路AND31の第2入力に接続されており、インバータINV35の入力は、制御端子Tactに接続されており、インバータINV35の出力は、アンド回路AND31の第1入力に接続されており、アンド回路AND31の出力は、MOSトランジスタM33のゲートに接続されている。インバータINV35、インバータINV36は、アンド回路AND31にそれぞれ入力する合成信号SIG及び制御信号ACTの極性を調整する為に用いられる。
 アンド回路AND31は、制御信号ACTによって制御され、MOSトランジスタM33の駆動に用いられる。
 インバータINV33の出力は、オア回路OR31の第2入力に接続されており、インバータINV32の入力は、制御端子Tactに接続されており、インバータINV32の出力は、オア回路OR31の第1入力に接続されており、オア回路OR31の出力は、MOSトランジスタM31のゲートに接続されている。インバータINV32、インバータINV33は、オア回路OR31にそれぞれ入力する合成信号SIG及び制御信号ACTの極性を調整する為に用いられる。
 オア回路OR31は、制御信号ACTによって制御され、MOSトランジスタM31の駆動に用いられる。
 MOSトランジスタM31のソースは、電源電位VREG3Dに接続されており、MOSトランジスタM31のドレインは、抵抗R31の他端とコンデンサC31の一端とMOSトランジスタM33のドレインとシュミットインバータSMT31の入力に接続されており、シュミットインバータSMT31の出力は、インバータINV37の入力に接続されている。シュミットインバータSMT31は、抵抗R31とコンデンサC31で生成される三角波状の信号の整形に用いられる。
 MOSトランジスタM33のソースは、接地電位DGNDに接続されており、コンデンサC31の他端は、接地電位DGNDに接続されており、MOSトランジスタM34のソースは、接地電位DGNDに接続されており、コンデンサC32の一端は、接地電位DGNDに接続されている。
 MOSトランジスタM34のドレインは、コンデンサC32の他端とインバータINV38の入力と抵抗R32の一端と接続されており、スレーブクロック端子Tscは、MOSトランジスタM34のゲートに接続されており、抵抗R32の他端は、MOSトランジスタM32のドレインと接続されており、MOSトランジスタM32のソースは、電源電位VREG3Dに接続されている。
 インバータINV38の出力は、アンド回路AND33の第1入力に接続されており、制御端子Tactは、アンド回路AND33の第2入力に接続されている。インバータINV38は、抵抗R32とコンデンサC32で生成される三角波状の信号の整形に用いられる。アンド回路AND33は、制御信号ACTによって制御され、スレーブクロックSCLKの生成に用いられる。
 インバータINV37の出力は、バッファBUF32の入力とインバータINV34の入力に接続されており、インバータINV34の出力は、MOSトランジスタM32のゲートに接続されており、バッファBUF32の出力は、制御端子Tactに接続されている。インバータINV37は、極性の調整に用いられる。インバータINV34は、MOSトランジスタM32の駆動に用いられる。バッファBUF32は、制御信号ACTの駆動に用いられる。
 図6は、本発明のシリアルデータ伝送方法に採用するデータ構成例を示している。本発明に用いるデータは、先頭にスタートビット61があり、次の1ビットでリード/ライト62の判定をし、次の7ビットでアドレス63を指定し、次の8ビットでデータ64を送信あるいは受信し、最後にストップビット65で構成されている。例えば、アドレス63で過電圧保護機能11の検出閾値の格納先を指定し、データ64で検出閾値を設定するといった使い方が想定される。
 スレーブ回路4がコマンドを受け付けるためには、スタートビット61をマスター回路1から受信する必要がある。
 図7は、図1におけるマスター回路1とスレーブ回路4の主なノードに表われる各種信号を示す。以下、図1及び図6を参照して説明する。
 本例では、送信周波数f1は、例えば100kHzから2MHz程度までである。この周波数の変更は、図5における抵抗R31とコンデンサC31及び抵抗R32とコンデンサC32(図4においては各定電流源とコンデンサ)の調整と、図2における遅延回路LC14の遅延時間の調整と、それぞれの周波数に合わせたマスター回路1の設定(リード用クロックRCLKの設定変更)とで可能となる。
 なお、図7はスタートビット61の信号を示す。本例においては、送信周波数f1として例えば200kHz、すなわちクロックCLKは5μs(一周期時間y1)毎に1μs(クロック送信時間y2)立ち下がるという形式で送信される。
 クロックCLKは、1周期(T)のうち、約1/5周期(T/5)だけロウレベルLを送信する。
 データDATAは、2周期(2T)以上の時間、ロウレベルLを続ける。これは、後述されるライト(書込)時のデータDATAのロウレベルLと区別する為に、周期T以上の時間が設定されている。しかし、ICの製造上のばらつきを考慮すると、2周期以上ある方が好ましいため、本例では2周期以上としている。
 合成信号SIGは、クロックCLKとデータDATAのアンドの波形となる。
 制御信号ACTは、合成信号SIGが2周期(2T)以上の時間ロウレベルLを続けることでハイレベルHとなり、スレーブ回路4がデータDATAを受付可能状態となる。応答開始送信時間y3は、応答開始時間y4以上でなければならない。
 本例では、2周期(2T)は10μs(応答開始時間y4)となる。その次の1ビットでリード/ライト62かを判定する。ハイレベルHでリード(読取)、ロウレベルLでライト(書込)を示すものとする。その後の7ビットでアドレス63を示し、その後の8ビットでデータ64を示すものとする。最後にストップビット65で通信終了となる。
 図8はストップビット65の信号を示す。
 クロックCLKは、1周期(T)のうち、約1/5周期(T/5)だけロウレベルLを送信する。
 データDATAは、2周期(2T)以上の時間、ハイレベルHを続ける。これは、後述されるライト(書込)時のデータDATAのハイレベルHと区別する為に周期Tを超える時間が設定されている。しかしICの製造上のばらつきを考慮すると2周期以上ある方が好ましいため、本例では2周期以上としている。
 合成信号SIGは、クロックCLKとデータDATAのアンドの波形となる。
 制御信号ACTは、合成信号SIGが2周期(2T)以上の時間ハイレベルHを続けることでロウレベルLとなり、スレーブ回路4がデータDATAを受付不可能状態となる。応答終了送信時間y5は、応答終了時間y6より長くしなければならない。本例では、2周期(2T)は10μs(応答終了時間y6)となる。
 図9は、ライト(書込)時におけるマスター回路1での信号(クロックCLKとデータDATA)と、合成信号SIGと、スレーブ回路4での信号(スレーブクロックSCLKとスレーブデータSDATA)を示す。
 クロックCLKは、1周期(T)のうち、約1/5周期(T/5)だけロウレベルLを送信する。
 データDATAは、ロウレベルLのときは、約4/5周期(4T/5)(データロウ時間y7)に亘ってロウレベルLを出力し、ハイレベルHのときは、1周期(T)(データハイ時間y8)に亘ってハイレベルHを出力する。
 合成信号SIGは、クロックCLKとデータDATAのアンドの波形となる。
 スレーブクロックSCLKは、合成信号SIGの立下がりTf1と同時に立ち下がり、それから約2/5周期(2T/5)後(クロック受信時間y9の経過後)に立ち上がる波形Tr1を示す。
 スレーブデータSDATAは、合成信号SIGそのままの信号となる。
 スレーブ回路4は、スレーブクロックSCLKの立ち上がりTr1でスレーブデータSDATAを読むという動作になる。
 図10は、リード(読取)時におけるマスター回路1での信号(クロックCLKとリード用クロックRCLK)と、合成信号SIGと、スレーブ回路4での信号(スレーブクロックSCLKとロジックアウトLOとデータアウトDO)を示す。
 クロックCLKは、1周期(T)のうち、約1/5周期(T/5)だけロウレベルLを送信する。
 リードクロックRCLKは、クロックCLKの立下がりと同時に立ち下がり、約3/5周期(3T/5)後(リード時間y10経過後)におけるセット端子Setの立ち上がりでリードデータRDATAを読む。
 合成信号SIGとしては、マスター回路1からのクロックCLKとスレーブ回路4からのデータアウトDOとの論理積信号が送信されてくる。
 スレーブクロックSCLKは、合成信号SIGの立下がりTf2と同時に立ち下がり、それから約2/5周期(2T/5)後(クロック受信時間y9の経過後)に立ち上がる波形Tr2を示す。
 ロジックアウトLOは、スレーブクロックSCLKの立ち上がりで出力を確定される。
 データアウトDOは、ロジックアウトLOの立ち下がりで出力すべき論理レベルが確定し、約2/5周期(2T/5)間(データ出力時間y11)に亘ってその論理レベルを出力するという動作になる。
 本発明では、一例として1周期を5分割して使用しているが、これに限定されない。
 本例では、1周期の間に起こるイベントが以下の4つに分けられている。
 すなわち、マスター回路1からのクロックCLKの送信、スレーブ回路4のスレーブクロックSCLKの生成、マスター回路1のリードクロックRCLKの生成、及び、マスター回路1からのデータDATAの送信(またはスレーブ回路4からのデータアウトDOの送信)の4つである。
 上記4つのイベントと初期値に戻るというイベントを合わせて、5つのイベントが1周期に必要となるため、5分割して説明している。
 例えば、リード(読取)機能を削除すれば4分割で十分となる。また、6分割、7分割というように分割数を増やしても良い。
 さらに、本発明では、理解を簡単にするために周期を均等に5分割したが、実施の形態に際してはそれにこだわらない。例えば、クロックCLKのパルス幅y2は、y2=周期T/m(2≦m≦50)で設定される。すなわち、クロックCLKの生成は本例よりも短い時間または長い時間で処理され、残った時間は他のイベントで使用されればよい。すなわち、ライト(書込)時のイベントで説明を行うと、クロックのパルス幅y2とクロック受信時間y9とデータロウ時間y7及びデータハイ時間y8は、y2<y9<y7(またはy8)という関係を維持していればよい。こうした大小関係を持たせることで、これらのクロック信号とデータ信号の処理を的確に行うことができる。
 また、本発明では、各信号をイニシャルハイとして説明を行ったが、全ての信号を逆転したイニシャルロウとしても成り立つことは当然である。
 以上のように、非常に簡単な回路構成で高速な1線シリアル伝送回路を構成することが可能である。
 本発明は、近年求められている省スペース化に大いに貢献する1線式シリアル伝送回路とその伝送方法を提供するものである。そのため、本発明は、産業上の利用可能性は極めて高い。
  1 マスター回路
  2 データクロック加算器
  3 データ受信器
  4 スレーブ回路
  5 アクティブ生成器
  6 データクロック分離器
  7 データ送信器
  8 信号線
  9 ロジック
  10 過電流保護機能
  11 過電圧保護機能
  12 出力地絡保護機能
  13 温度保護機能
  14 スイッチングレギュレータ
  15 ドライバロジック
  16 エラーアンプ
  17 PWMコンパレータ
  18 発振器
  19 基準電圧源
  61 スタートビット
  62 リード/ライト
  63 アドレス
  64 データ
  65 ストップビット
  ACT 制御信号
  AND11,AND21,AND22,AND31-AND33 アンド回路
  BUF11,BUF21-BUF23,BUF31,BUF32 バッファ回路
  C1,C2,C21-C23,C31,C32 コンデンサ
  CC21-CC23 電流源
  CLK クロック
  CG11 クロック生成回路
  COMP 位相補償端子
  DATA データ
  DGND 接地電位
  DFF21,DFF22,DFF31 Dフリップフロップ回路
  DO データアウト
  f1 送信周波数
  FB 帰還端子
  H ハイレベル
  INV11,INV21-INV24,INV31-INV39,INV91 インバータ回路
  L ロウレベル
  L1 コイル
  LC11-LC14 遅延回路
  LO ロジックアウト
  M21-M23,M31-M34,M91 MOSトランジスタ
  N1 NMOSトランジスタ
  NAND21 ナンド回路
  OCP 過電流保護機能
  OVP 過電圧保護機能
  OR31 オア回路
  P1 PMOSトランジスタ
  PGND 接地端子
  Q 出力端子
  R1,R2,R3,R31,R32 抵抗
  RCLK リードクロック
  RDATA リードデータ
  Reset リセット端子
  RSFF11 RSフリップフロップ回路
  SCLK スレーブクロック
  SCP 出力地絡保護機能
  SDATA スレーブデータ
  Set セット端子
  SIG 合成信号
  SMT31 シュミットインバータ回路
  SW スイッチング端子
  T 周期
  Tact 制御端子
  Tlo ロジックアウト端子
  Tms マスター信号端子
  Tsc スレーブクロック端子
  Tsd スレーブデータ端子
  TSD 温度保護機能
  Tsig 信号端子
  VIN 電源端子
  Vin 電源
  VREG3D 電源電位
  X1,X2,X3 応答待機時間
  Y 応答開始時間
  y1 一周期時間
  y2 クロック送信時間(クロックのパルス幅)
  y3 応答開始送信時間
  y4 応答開始時間
  y5 応答終了送信時間
  y6 応答終了時間
  y7 データロウ時間
  y8 データハイ時間
  y9 クロック受信時間
  y10 データ出力時間
  y11 リード時間
  Z 応答終了時間

Claims (20)

  1.  マスター回路とスレーブ回路とを持ち、
     前記マスター回路は、前記マスター回路から前記スレーブ回路への送信データ書き込み時に使用するデータクロック加算器と、前記スレーブ回路から前記マスター回路への受信データ書き込み時に使用するデータ受信器を含み、
     前記スレーブ回路は、前記マスター回路から前記スレーブ回路への前記送信データ書き込み時に使用するデータクロック分離器と、前記スレーブ回路から前記マスター回路への前記受信データ書き込み時に使用するデータ送信器とアクティブ生成器を含み、
     前記マスター回路と前記スレーブ回路は、1本の信号線で接続されている1線式シリアル伝送回路。
  2.  前記マスター回路から前記スレーブ回路への前記送信データ書き込み時、前記マスター回路において、クロック信号とデータ信号を前記データクロック加算器により合成した合成信号が前記信号線を介して前記スレーブ回路に送信され、前記スレーブ回路では、前記信号線から送信されてきた前記合成信号が前記データクロック分離器を通した後に遅延回路を通して前記クロック信号が取り出され、前記データクロック分離器を通して前記データ信号が取り出される請求項1に記載の1線式シリアル伝送回路。
  3.  前記スレーブ回路から前記マスター回路への受信データ書き込み時、前記スレーブ回路のロジックからロジックアウト信号が遅延回路及び前記データ送信器を通して、前記信号線を介して前記マスター回路に送信され、前記マスター回路では、前記信号線から送信されてきた送信データが前記データ受信器を通してリードデータ信号が取り出される請求項1に記載の1線式シリアル伝送回路。
  4.  前記スレーブ回路は、
     クロック信号とデータ信号を前記データクロック加算器により合成した合成信号を受ける信号端子と、
     前記スレーブ回路をデータ受信状態にする制御端子と、
     スレーブクロック端子と、
     スレーブデータ端子を備え、
     前記スレーブデータ端子には、前記信号端子の入力が前記データ信号として入力され、前記スレーブクロック端子には、前記信号端子の入力から生成された前記クロック信号が入力され、前記制御端子には、前記信号端子の入力から生成された制御信号が入力される請求項1から請求項3のいずれか一項に記載の1線式シリアル伝送回路。
  5.  前記スレーブ回路において、
     前記スレーブデータ端子には、前記信号端子の入力が前記データ信号として入力され、前記スレーブクロック端子には、前記信号端子の入力からDフリップフロップを介して生成された前記クロック信号が入力され、前記制御端子には、前記信号端子の入力から遅延回路及びDフリップフロップを介して生成された前記制御信号が入力される請求項4に記載の1線式シリアル伝送回路。
  6.  前記スレーブ回路において、
     前記スレーブデータ端子には、前記信号端子の入力が前記データ信号として入力され、前記スレーブクロック端子には、前記信号端子の入力からDフリップフロップを介して生成された前記クロック信号が入力され、前記制御端子には、前記信号端子の入力から遅延回路を介して生成された前記制御信号が入力される請求項4に記載の1線式シリアル伝送回路。
  7.  前記遅延回路は、前記信号端子の入力を遅延させるために、電流源によるコンデンサの充電及びMOSトランジスタによるコンデンサの放電を行う請求項5に記載の1線式シリアル伝送回路。
  8.  前記遅延回路は、抵抗とコンデンサによる充放電回路により形成されており、前記抵抗の抵抗値と前記コンデンサの容量値で遅延時間が決定される請求項7に記載の1線式シリアル伝送回路。
  9.  前記クロック信号は、前記制御信号がハイレベルになることで生成可能となり、前記制御信号は、ハイレベルまたはロウレベルになった時に前記制御信号自身を安定化させる請求項5または6に記載の1線式シリアル伝送回路。
  10.  前記マスター回路より前記スレーブ回路に対してリード(読取)の要求があった際に、前記スレーブ回路は、前記信号線に対して応答する請求項1から請求項9のいずれか一項に記載の1線式シリアル伝送回路。
  11.  前記スレーブ回路は、スイッチング電源回路を含む請求項1から請求項10のいずれか一項に記載の1線式シリアル伝送回路。
  12.  前記スイッチング電源回路は、過電流保護機能、過電圧保護機能、出力地絡保護機能、温度保護機能の少なくとも1つの機能を有する請求項11に記載の1線式シリアル伝送回路。
  13.  請求項1から請求項10のいずれか一項に記載の1線式シリアル伝送回路の伝送方法であって、
     クロック信号とデータ信号を前記データクロック加算器により合成した合成信号の立下りから通信が開始され、規定時間ロウレベルを続けることで前記合成信号から生成された制御信号がハイレベルとなり、前記スレーブ回路が受付可能状態となり、前記合成信号の立下りから既定時間後にスレーブクロックを抽出し、この前記スレーブクロックの立ち上がりでデータを読み取り、前記合成信号が規定時間ハイレベルを続けることで、前記制御信号がロウレベルとなり、前記スレーブ回路が受付不可能状態となり通信が終了することを特徴とする1線式シリアル伝送方法。
  14.  前記合成信号の先頭にスタートビット、ついでリード(読取)及びライト(書込)、アドレス、データと続き、最後にストップビットとなる請求項13に記載の1線式シリアル伝送方法。
  15.  通信開始時、前記マスター回路から前記クロック信号と前記データ信号がアンド論理で前記合成信号として送信されており、前記合成信号が前記クロック信号の周期T以上ロウレベルを継続することで前記スレーブ回路の前記制御信号がハイレベルとなり、前記スレーブ回路が受付可能状態となる請求項13に記載の1線式シリアル伝送方法。
  16.  前記クロック信号のパルス幅y2は、y2=周期T/m(2≦m≦50)と設定されており、一周期の時間から前記パルス幅を除外した時間で他のイベントが処理される請求項15に記載の1線式シリアル伝送方法。
  17.  ライト(書込)時、前記マスター回路から前記クロック信号と前記データ信号がアンド論理で前記合成信号として送信されており、前記スレーブ回路は、前記合成信号の立下りでスレーブクロックを立ち下げそれから前記クロック信号の周期T/mよりも後に立ち上がる信号を生成し、前記スレーブクロックの立ち上がりでスレーブデータを確定する請求項15に記載の1線式シリアル伝送方法。
  18.  リード(読取)時、前記マスター回路から前記クロック信号が前記合成信号そのものとして送信されており、前記スレーブ回路は、前記クロック信号の立下りでスレーブクロックを立ち下げ、それから前記クロック信号の周期T/mよりも後に立ち上がる信号を生成し、前記スレーブクロックの立ち上がりでロジックアウトを確定し、前記スレーブクロックの立ち上がりでデータアウトを確定し、前記マスター回路のリード用クロックの立ち上がりで信号を読み取る請求項15に記載の1線式シリアル伝送方法。
  19.  通信終了時、前記マスター回路から前記クロック信号と前記データ信号がアンド論理で前記合成信号として送信されており、前記合成信号が前記クロック信号の周期Tより長くハイレベルを継続することで前記スレーブ回路の前記制御信号がロウレベルとなり、前記スレーブ回路が受付不可能状態となる請求項15に記載の1線式シリアル伝送方法。
  20.  スレーブ回路への送信データ書き込み時に使用するデータクロック加算器と、前記スレーブ回路からの受信データ書き込み時に使用するデータ受信器を含み、
     前記スレーブ回路と1本の信号線を介して接続されることにより1線式シリアル伝送回路を構成するマスター回路。
PCT/JP2018/006604 2017-03-22 2018-02-23 1線式シリアルデータ伝送回路及び1線式シリアルデータ伝送方法 WO2018173623A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/491,210 US10897342B2 (en) 2017-03-22 2018-02-23 Single-line serial data transmission circuit and single-line serial data transmission method
JP2019507469A JP6808814B2 (ja) 2017-03-22 2018-02-23 1線式シリアルデータ伝送回路及び1線式シリアルデータ伝送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017056235 2017-03-22
JP2017-056235 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173623A1 true WO2018173623A1 (ja) 2018-09-27

Family

ID=63586158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006604 WO2018173623A1 (ja) 2017-03-22 2018-02-23 1線式シリアルデータ伝送回路及び1線式シリアルデータ伝送方法

Country Status (3)

Country Link
US (1) US10897342B2 (ja)
JP (1) JP6808814B2 (ja)
WO (1) WO2018173623A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2586496A (en) * 2019-08-21 2021-02-24 Univ Oxford Innovation Ltd Method and apparatus for synchronisation and data transmission
US10958412B1 (en) 2020-01-22 2021-03-23 Infineon Technologies Ag Communication using edge timing in a signal

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10447027B1 (en) * 2016-12-23 2019-10-15 Intersil Americas LLC Method and apparatus for reverse over current protection
CN112486883A (zh) * 2020-11-16 2021-03-12 江苏科大亨芯半导体技术有限公司 单线读写通讯系统及方法
JP2024059485A (ja) 2022-10-18 2024-05-01 ローム株式会社 スレーブ回路およびそれを用いた遠隔制御システム
KR20250007318A (ko) * 2023-07-05 2025-01-14 엘지전자 주식회사 기기들 간에 통신을 수행하는 통신 시스템 및 방법
CN118524037B (zh) * 2024-07-22 2024-09-20 成都市易冲半导体有限公司 一种通信信号短路检测方法、电路、设备及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147054A (en) * 1979-05-04 1980-11-15 Nec Corp Data transmission system
JP2010114636A (ja) * 2008-11-06 2010-05-20 Sony Corp 情報処理装置、及びモード切り替え方法
JP2011010450A (ja) * 2009-06-25 2011-01-13 Fujitsu Semiconductor Ltd 半導体集積回路および電源装置
JP2016032322A (ja) * 2014-07-28 2016-03-07 ローム株式会社 スイッチング電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2287622B (en) * 1994-03-17 1998-10-28 Nissan Motor Multiplex serial data communication circuit network and method and motor control system and method using multiplex serial data communication circuit network
JP3534375B2 (ja) * 1997-01-17 2004-06-07 株式会社ルネサステクノロジ 差動回路を含む電子回路
US7912562B2 (en) * 2000-07-25 2011-03-22 Electronic Solutions, Inc. System, device and method for comprehensive input/output interface between process or machine transducers and controlling device or system
DE10048353B4 (de) * 2000-09-29 2007-04-26 Siemens Ag Antriebssteuerung für einen elektrischen Antrieb
JP2002335234A (ja) 2001-05-10 2002-11-22 Fuji Electric Co Ltd シリアルデータ伝送方法およびその方法を用いた伝送インタフェース回路
JP3823313B2 (ja) 2001-11-28 2006-09-20 横河電機株式会社 シリアルデータ通信方法
JP2003273942A (ja) 2002-03-15 2003-09-26 Seiko Epson Corp シリアル通信方式
US20080258273A1 (en) * 2005-04-07 2008-10-23 Jiangsu Changjiang Electronics Technology Co., Ltd Package Structure With Flat Bumps For Electronic Device and Method of Manufacture the Same
US10003265B2 (en) 2014-07-28 2018-06-19 Rohm Co., Ltd. Switching power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147054A (en) * 1979-05-04 1980-11-15 Nec Corp Data transmission system
JP2010114636A (ja) * 2008-11-06 2010-05-20 Sony Corp 情報処理装置、及びモード切り替え方法
JP2011010450A (ja) * 2009-06-25 2011-01-13 Fujitsu Semiconductor Ltd 半導体集積回路および電源装置
JP2016032322A (ja) * 2014-07-28 2016-03-07 ローム株式会社 スイッチング電源装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2586496A (en) * 2019-08-21 2021-02-24 Univ Oxford Innovation Ltd Method and apparatus for synchronisation and data transmission
WO2021032989A1 (en) * 2019-08-21 2021-02-25 Oxford University Innovation Limited Method and apparatus for synchronisation and data transmission
CN114270692A (zh) * 2019-08-21 2022-04-01 牛津大学科技创新有限公司 用于同步和数据传输的方法和装置
US12341344B2 (en) 2019-08-21 2025-06-24 Oxford University Innovation Limited Method and apparatus for synchronisation and data transmission
US10958412B1 (en) 2020-01-22 2021-03-23 Infineon Technologies Ag Communication using edge timing in a signal

Also Published As

Publication number Publication date
JPWO2018173623A1 (ja) 2019-12-19
US10897342B2 (en) 2021-01-19
JP6808814B2 (ja) 2021-01-06
US20200036504A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2018173623A1 (ja) 1線式シリアルデータ伝送回路及び1線式シリアルデータ伝送方法
CN108959155B (zh) 地址扩展电路和i2c通信接口芯片
US20100064083A1 (en) Communications device without passive pullup components
US7868660B2 (en) Serial communications bus with active pullup
CN101599053A (zh) 支持多种传输协议的串行接口控制器及控制方法
US8369443B2 (en) Single-wire asynchronous serial interface
WO2007107957A1 (en) Pseudo-synchronous small register designs with very low power consumption and methods to implement
CN113282528A (zh) Spi广播模式
CN112908375B (zh) 半导体装置和半导体系统
CN114003541B (zh) 一种通用型iic总线电路及其传输方法
CN110767254B (zh) 读取延迟控制电路及方法
JP2003032084A (ja) 入出力インタフェースおよび半導体集積回路
JP2001057084A (ja) 半導体記憶装置
CN117421273A (zh) 传送数据的方法以及相应的片上系统
EP1239594B1 (en) Method and system for efficient information exchange
CN114550764B (zh) 存储器电路的接口及其存储器系统
JP4289868B2 (ja) 半導体メモリカード、その制御方法及び半導体メモリカード用インターフェース装置
CN103064817B (zh) 一种简化两线式串行数据总线传输方法
CN109101448B (zh) 地址扩展电路和具有该电路的i2c通信接口芯片
CN102751966A (zh) 延迟电路和存储器的潜伏时间控制电路及其信号延迟方法
CN118230777A (zh) 发送器、存储器件和包括该发送器的半导体器件
US7529960B2 (en) Apparatus, system and method for generating self-generated strobe signal for peripheral device
US20180181511A1 (en) Dynamic termination circuit, semiconductor apparatus and system including the same
US10991434B2 (en) Serial interface circuit, semiconductor device and serial-parallel conversion method
CN114756500A (zh) 主从式系统及其副集成电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771047

Country of ref document: EP

Kind code of ref document: A1