[go: up one dir, main page]

WO2018179088A1 - 電流再利用型電界効果トランジスタ増幅器 - Google Patents

電流再利用型電界効果トランジスタ増幅器 Download PDF

Info

Publication number
WO2018179088A1
WO2018179088A1 PCT/JP2017/012641 JP2017012641W WO2018179088A1 WO 2018179088 A1 WO2018179088 A1 WO 2018179088A1 JP 2017012641 W JP2017012641 W JP 2017012641W WO 2018179088 A1 WO2018179088 A1 WO 2018179088A1
Authority
WO
WIPO (PCT)
Prior art keywords
fet
drain
source
gate
field effect
Prior art date
Application number
PCT/JP2017/012641
Other languages
English (en)
French (fr)
Inventor
整 久留須
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020197027542A priority Critical patent/KR102322947B1/ko
Priority to PCT/JP2017/012641 priority patent/WO2018179088A1/ja
Priority to US16/481,024 priority patent/US11012036B2/en
Priority to CN201780088820.2A priority patent/CN110463035B/zh
Priority to DE112017007348.0T priority patent/DE112017007348B4/de
Priority to JP2019508383A priority patent/JP6689450B2/ja
Publication of WO2018179088A1 publication Critical patent/WO2018179088A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0283Reducing the number of DC-current paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • H03F1/342Negative-feedback-circuit arrangements with or without positive feedback in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • H03F3/604Combinations of several amplifiers using FET's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/267A capacitor based passive circuit, e.g. filter, being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to bias current control in a current reuse type FET amplifier using a depletion mode field effect transistor (FET).
  • FET depletion mode field effect transistor
  • Patent Document 1 and Non-Patent Document 1 show examples of power amplifiers using GaAs FETs. As shown in this document, a circuit configuration that can be operated with a single 5 V power source that is generally available in a vehicle is selected due to restrictions on in-vehicle use, and a typical example thereof is a current reuse type circuit configuration. . FIG. 6 shows a circuit configuration of a current reusing amplifier using a GaAs FET.
  • reference numerals 11 and 12 denote depletion mode (normally-on) GaAs FETs (usually HEMTs called high electron mobility transistors are used), 31 to 33 are resistors, 21 to 26 are capacitors, and 51 to 54 are A transmission line that plays the same role as the inductance, 1 is an RF signal input terminal, 2 is an RF signal output terminal, 3 is a power supply terminal of the amplifier, and Idd is a drain current flowing through the FET 12. 22 and 24 are capacitors for grounding the sources of the FETs 11 and 12 in an RF manner, and a capacitor 21 is an input DC blocking capacitor.
  • the capacitor 23 and the transmission lines 51 and 52 form an interstage matching circuit, and the capacitors 25 and 26 and the transmission lines 53 and 54 form an output matching circuit and a drain feeding circuit for the FET 12.
  • the resistor 31 plays a role of fixing the gate potential of the FET 11 to 0 V in terms of DC, and the resistors 32 and 33 are self-bias resistors.
  • the drain current Idd flowing through the FET 12 flows through the resistor 33, then flows again as the drain current of the FET 11, and finally passes through the resistor 32 and flows to the ground. Since the gate voltage of the FET 11 (gate-source voltage) is fixed to 0 V by the resistor 31 by the resistor 32, the gate-source voltage of the FET 11 is negative by the voltage of the product of the resistor 32 and the current Idd. Self-biased. Similarly, the gate-source potential of the FET 12 is negatively self-biased by the product of the resistor 33 and the current Idd.
  • the current Idd that has flowed through the FET 12 also flows into the FET 11 again, this circuit configuration is called a current recycling type.
  • the FETs 11 and 12 also play a role of RF amplification. Since the FETs 11 and 12 are RF-source-grounded by the capacitors 22 and 24, the circuit of FIG. 5 is equivalent to a source-grounded two-stage amplifier. However, regarding the current, since the same Idd flows in the FETs 11 and 12 in common, the current consumed from the power supply Vdd is only Idd.
  • the reason why the current recycling circuit is applied to the RF amplification unit for in-vehicle radar is largely related to the breakdown voltage restriction of the GaAs FET rather than the current reduction effect. Since the FET applicable in the millimeter wave band has a short gate length of 0.2 ⁇ m or less, the DC drain-source breakdown voltage is often 4 V or less, and in some cases it is about 3 V. Therefore, there are many cases where the standard power supply voltage 5V mounted on the automobile cannot be directly applied. In the case of the current recycling circuit shown in FIG. 6, the DC applied voltage per FET is 2.5V, which is half of 5V, and can be set sufficiently lower than the withstand voltage of 4V, so that the power supply voltage 5V can be used as the power supply for the amplifier. .
  • Non-Patent Document 2 is an enhancement mode nMOS, a current mirror type bias circuit resistant to process variations can be applied.
  • FIG. 7 shows a simulation result of the fluctuation of the drain current Idd of the circuit with respect to the fluctuation of the Idss of the FET (the drain current of the FET when the gate-source voltage is 0 V) in the circuit of FIG.
  • a GaAs HEMT having a power source voltage of 5 V and a gate length of 0.1 ⁇ m was used as the FET.
  • a characteristic 301 when the values of the resistors 32 and 33 are small and a characteristic 302 when the values are large are plotted.
  • A1 to A4 in the figure indicate the intersections of dotted lines. From the figure, the change in the drain current Idd in the characteristic 301 is larger than that in the characteristic 302 with respect to the change in Idss.
  • the characteristic 301 varies greatly from 24 mA to 31.5 mA (27% variation with respect to the drain current 27.5 mA when there is no variation in Idss).
  • the fluctuation is as small as ⁇ 21 mA (change of 15% with respect to 19.5 mA drain current without fluctuation of Idss).
  • the drain current of the characteristic 302 has a small current change, but since the resistance value is large, the drain current value when there is no Idss fluctuation is low.
  • a current reusing FET amplifier includes a first gate to which an RF signal is input, a first source, a first field effect transistor having a first drain, a first source, and a ground.
  • a second resistor having a first resistor connected between the power terminals, a second source, a second gate, and a second drain connected to the power terminal and outputting an amplified RF signal.
  • a field effect transistor a second resistor connected between the first drain and the second source, a capacitor connected between the first drain and the second gate, and a third
  • a third field effect transistor having a source, a third drain connected to the power supply terminal, and a third gate connected to the ground terminal; a fourth source; a fourth drain; A fourth electric field having a fourth gate connected to the source;
  • a fourth resistor connected between the first gate and a fifth resistor connected between the fourth drain and the second gate.
  • the current reusing FET amplifier according to the present invention changes the gate voltage of the amplifying FET or the resistance value for self-bias of the amplifying FET in accordance with the process variation of the saturation current Idss of the FET. It has the effect of suppressing the change of. Furthermore, since fluctuations in the drain voltage of the first stage FET can be suppressed, it is possible to avoid a state where the DC breakdown voltage between the drain and source of the FET is exceeded due to process variations of Idss.
  • FIG. 2 is a circuit configuration of a current reusing FET amplifier according to the first embodiment.
  • 4 is another circuit configuration for comparison with the current reusing FET amplifier according to the first embodiment.
  • FIG. 4 The simulation result of the drain voltage of FET11 with respect to the fluctuation
  • FIG. 4 is a circuit configuration of a current reusing FET amplifier according to a second embodiment. A circuit configuration of the entire current reusing FET amplifier for comparison.
  • a current reusing FET amplifier according to an embodiment of the present invention will be described with reference to the drawings.
  • a GaAs depletion mode FET including a high electron mobility transistor HEMT
  • FIG. 1 shows a circuit configuration of the amplification unit 101 and a circuit configuration of the control circuit unit 102 of the current reuse type FET amplifier according to Embodiment 1 of the present invention.
  • the transmission line and the like are omitted, and only elements that mainly contribute in a DC manner are shown.
  • a resistor 32 and a capacitor 22 are connected in parallel between the source of the FET 11 and the ground to constitute a DC negative feedback for DC operation and a source ground for RF operation. Since the drain current Idd also flows as the drain current of the FET 11 after flowing through the FET 12, the circuit of FIG.
  • the RF signal input to the input terminal 1 is amplified by the FET 11 and further input to the gate of the FET 12 via the capacitor 27.
  • the RF signal amplified by the FET 12 is output from the drain of the FET 12 through the capacitor 25.
  • the FET 13 has a gate grounded, a resistor 35 as a source load, and a resistor 36 as a drain load.
  • the FET 14 has a gate connected to the source of the FET 13, and has a source load of the diode 61 and a drain load of the resistor 37. Between the drain of the FET 12 and the ground, a load in which diodes 62 and 63 and resistors 38 and 39 are connected in series is connected.
  • the drain resistance loads 36 and 37 are connected to the power supply terminal 4.
  • the power supply terminal 4 of the control circuit unit 102 may be shared with the power supply terminal 3 of the amplification unit 101.
  • the control circuit 102 and the amplifying unit 101 are connected by two control signals.
  • the first control signal is given to the gate of the FET 11 via the resistor 34 connected between the connection point of the resistors 38 and 39 of the control circuit unit 102 and the gate of the FET 11.
  • the second control signal is given to the gate of the FET 12 through the resistor 40 connected between the connection point of the diodes 62 and 63 of the control circuit unit 102 and the gate of the FET 12.
  • the diode in FIG. 1 is assumed to be a GaAs Schottky junction diode that can be manufactured in the same process as the FET, but an equivalent operation can be realized even with a pn matching diode.
  • the gate voltage of the FET 11 is lowered when Idss becomes higher than a predetermined value, and conversely When Idss becomes lower than a predetermined value, the gate voltage of the FET 11 may be increased. Further, in order to suppress the fluctuation of the drain voltage of the FET 11 in addition to the fluctuation of the drain current Idd, as shown in FIG. 1, the gate voltage of the FET 12 is separated from the drain voltage of the FET 11 by using the capacitor 27, The gate voltage of the FET 12 may be appropriately controlled according to the process variation of Idd.
  • the change in the source potential of the FET 14 in the control circuit unit 102 is suppressed to be small with respect to the source current change in the FET 14 by the source load diode 61.
  • a plurality of diodes 61 may be connected in series according to the threshold voltage of the FET 14.
  • the source load of the FET 13 is the resistor 35
  • the source voltage of the FET 13 increases as Idss increases. Therefore, the gate-source voltage of the FET 14 increases as Idss increases, and the drain current of the FET 14 also increases.
  • the voltage drop of the drain load resistor 37 increases and the drain voltage of the FET 14 decreases.
  • This decrease in the drain voltage is level-shifted by the diode 62 and transmitted to the gate of the FET 12 through the resistor 40, and the other is level-shifted by the diodes 62 and 63 and then divided by the resistors 38 and 39. And transmitted to the gate of the FET 11 through the resistor 34.
  • the current reusing FET amplifier according to the first embodiment can independently control the gate voltage of the FET 11 and the gate voltage of the FET 12 according to the process variation of Idss.
  • the fluctuation of the drain voltage can also be suppressed.
  • the DC withstand voltage between the drain and the source has no margin with respect to a voltage that is 1 ⁇ 2 of the power supply voltage, a failure due to the excess withstand voltage is caused. Therefore, stable operation can be expected.
  • the circuit configuration of the comparison circuit is shown in FIG.
  • the main difference from the circuit of FIG. 1 is that the comparison circuit of FIG. 2 is directly connected without the capacitor 27 separating the drain voltage of the FET 11 and the gate voltage of the FET 12 as in FIG. That is, an FET 15 functioning as a resistor and a gate resistor 41 are provided.
  • the variable resistance value of the FET 15 is controlled by the resistance 41 from the drain voltage of the FET 14 in the control circuit unit 102.
  • FIG. 3 shows the simulation result of the drain current Idd with respect to the Idss fluctuation of the circuits of FIGS. 1 and 2
  • FIG. 4 shows the simulation result of the drain voltage of the FET 11 with respect to the Idss fluctuation of the circuits of FIGS. 3 and 4
  • the characteristics 401 and 403 indicate the simulation results of the circuit in FIG. 1
  • the characteristics 402 and 404 indicate the simulation results of the comparison circuit in FIG. B1 to B4 and C1 to C4 indicate intersections with the characteristics with respect to the variation of Idss of ⁇ 20%.
  • the change of the drain current Idd in the circuits of FIGS. 1 and 2 is quite close, and the fluctuation of the drain current Idd can be considerably suppressed in both circuit configurations.
  • the voltage change of the characteristic 403 is 0.8V from 2.8V at the point B3 to 2V at the point B4, whereas the voltage change of the characteristic 404 is 0.7V at the point C3. From point C4, the voltage changes by 4.0V to 4.0V.
  • the drain-source breakdown voltage of the FET 11 and FET 12 is 3V, if Idss increases by 20%, 4V is applied to the FET 11 and exceeds the breakdown voltage.
  • the voltage change of the characteristic 403 is 2.8V at the maximum and 2.0V at the minimum.
  • the main difference between the characteristics 403 and 404 is whether or not the gate voltage is applied to the FET 12 from the control circuit unit 102.
  • the gate voltage of the amplification FET or the resistance value for self-bias of the amplification FET is set according to the process variation of the saturation current Idss of the FET. Since it is changed, it has the effect of suppressing changes in the drain current of the amplifier. Furthermore, since fluctuations in the drain voltage of the first stage FET can be suppressed, it is possible to avoid a state where the DC breakdown voltage between the drain and source of the FET is exceeded due to process variations of Idss.
  • the circuit configuration described here also has an effect that the suppression of fluctuations in the drain current and the drain voltage of the first stage in the current reuse amplifier using the depletion mode FET can be realized by a positive single power source.
  • FIG. 5 shows a circuit configuration of the current reusing FET amplifier according to the second embodiment of the present invention, which is a modification of the first embodiment. 1 is different from FIG. 1 of the first embodiment in that the resistor 33 in FIG. 1 is changed to a variable resistor composed of an FET 15 and a resistor 41, and in order to control the variable resistor, a resistor 42, an FET 16, and a diode 64. Is added to the control circuit unit 102.
  • the gate of the FET 16 is connected to the source of the FET 13 and the drain of the FET 16 is connected to the gate of the FET 15 via the resistor 41 so that the drain-source resistance value of the FET 15 can be varied.
  • the source voltage of the FET 13 in the control circuit unit 102 increases and the drain current of the FET 16 increases. Since the increase in the drain current increases the voltage drop of the resistor 42, the gate voltage of the FET 15 is decreased. As a result, the drain-source resistance of the FET 15 is increased, the source potential of the FET 12 is increased, and the drain current of the FET 12 is decreased. As a result, it can be expected to be suppressed more than the fluctuation of the drain current with respect to the fluctuation of Idss in the first embodiment. Regarding the fluctuation of the drain voltage of the FET 11, the same effect as that of the first embodiment can be obtained because the gate voltage control circuit of the FET 12 is the same.
  • a control circuit composed of the FET 16, the resistor 42, and the diode 64 is newly added to control the gate voltage of the FET 15, but this is to give design freedom.
  • one end of the resistor 41 can be connected to the drain of the FET 14, the connection point between the diodes 62 and 63, or the connection point between the diode 63 and the resistor 38.
  • a GaAs depletion mode FET (including a high electron mobility transistor HEMT) has been described as an example.
  • an n-channel depletion mode FET can be used as an InP FET or a GaN FET.
  • the same effect can be obtained with a Si-based MOSFET.
  • the enhancement mode differs from a normal Si MOSFET, and in the case of a GaAs FET, InP FET, and GaN FET, a depletion mode FET is used in most of the products. It is important for practical use.
  • RF input terminal 2 RF output terminal 3: Drain power supply terminal of amplifier section 4: Drain power supply terminals of control circuit section 11 to 16: Depletion mode GaAs FET 21 to 27: Capacitors 31 to 41: Resistors 51 to 54: Transmission lines 61 to 64: Diode 101: Amplifying unit 102: Control circuit unit 301, 302: Drain current 401 against Idss fluctuation of the comparison circuit 401: Idss of the first embodiment Drain current 402 for fluctuation: Drain current 403 for Idss fluctuation of comparison circuit: Drain voltage 404 for Idss fluctuation of the first embodiment 404: Drain voltage for Idss fluctuation of comparison circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

本発明に係る電流再利用型FET増幅器は、初段の第1のFETのドレインと次段の第2のFETのゲートの間に容量を設け、第2のFETのゲート電圧を第1のFETのドレイン電圧と電気的に分離し、FETの飽和電流Idssの変動に対して、第2のFETのドレイン電流の変動と第1のFETのドレイン電圧の変動を抑制するように第1のFETのゲート電圧と第2のFETのゲート電圧を制御する制御回路を備える。さらに本発明に係る電流再利用型FET増幅器は、デプレッションモードのFETだけを用いて、正の単一電源で動作可能な回路構成を提供する。

Description

電流再利用型電界効果トランジスタ増幅器
 本発明は、デプレションモードの電界効果トランジスタ(FET)を用いた電流再利用型FET増幅器におけるバイアス電流制御に関するものである。
 近年,自動車の自動運転や衝突時の衝撃緩和を目的として、マイクロ波帯・ミリ波帯を用いた車載レーダの需要が増加している。この車載レーダの遠方監視には、直進性が良好で、かつ比較的雨天でも減衰しにくい77GHz帯のミリ波が使われている。そのレーダの信号の電力増幅や周波数変換を担う回路には、高周波での高出力・高利得特性に優れたGaAs系電界効果トランジスタ(以下電界効果トランジスタをFETと呼ぶ)を用いた電力増幅器がしばしば利用されている。(例えば特許文献1(P.4、図1)、或いは非特許文献1(Fig.9)参照)
特開2012-119794号 2011 Proc. Of the 6th European Microwave Integrated Circuits Conference, pp. 29-32, "E-Band Radio Link Communication Chipset in Cost Effective Wafer Level Chip Size Package (WLCSP) Technology" 2005 IEEE Journal of Solid-State Circuits, pp. 1288-1295, "A 1.8-V Operation 5-GHz-Band CMOS Frequency Doubler Using Current-Reuse Circuit Design Technique"
特許文献1及び非特許文献1には、GaAs系FETを用いた電力増幅器の例が示されている。当該文献に示すように、車載という制約から車内で一般に利用可能な、5Vの単一電源で動作可能な回路構成が選択されており、その代表例が電流再利用型の回路構成となっている。図6に、GaAs系FETを用いた電流再利用型増幅器の回路構成を示す。図で、11、12はデプレションモード(ノーマリオン)のGaAs系FET(通常は高電子移動度トランジスタと呼ばれるHEMTが使われる)、31~33は抵抗、21~26は容量、51~54はインダクタンスと同様の役割を担う伝送線路、1はRF信号の入力端子、2はRF信号の出力端子、3は増幅部の電源端子、IddはFET12を流れるドレイン電流である。22、24はFET11と12のソースをRF的に接地するための容量で、容量21は入力のDC阻止容量である。容量23と伝送線路51と52は段間整合回路を形成し、容量25、26と伝送線路53と54は出力整合回路とFET12のドレイン給電回路を形成している。また、抵抗31はFET11のゲート電位をDC的に0Vに固定する役割を担い、抵抗32、33は自己バイアス用の抵抗である。
次にバイアスに関して説明する。FET12を流れるドレイン電流Iddは、抵抗33を流れ、その後FET11のドレイン電流として再度流れ、最後に抵抗32を通過して接地に流れる。FET11のゲートバイアス(ゲート・ソース間電圧)は、抵抗32によってゲート電圧が抵抗31により0Vに固定されているため、抵抗32と電流Iddの積の電圧によって、FET11のゲート・ソース間電圧は負に自己バイアスされる。FET12のゲート・ソース間電位も同様に、抵抗33と電流Iddの積により負に自己バイアスされる。
FET12を流れた電流Iddが再度FET11にも流れるため、本回路構成は電流再利用型と呼ばれる。FET11と12はRF増幅の役割も担い、容量22及び24によってFET 11及び12はRF的にソース接地されているので、図5の回路は、ソース接地の2段増幅器と等価である。しかし、電流に関しては同じIddがFET11と12を共通に流れるため、電源Vddから消費される電流はIddだけですむ。
一方、電源電圧Vdd/2がFET11及び12のドレイン端子に各々印加される通常のソース接地型2段増幅器の場合、FET F1及びF2に電流Iddが流れるとすると、電源電圧Vdd/2から消費される電流は2・Iddとなり、電流再利用型の2倍になる。バッテリ駆動の製品では主にバッテリの電流容量が制限されるので、電流再利用型の回路を採用することで、消費電流を削減できる場合が多い。
車載レーダ用のRF増幅部に電流再利用回路が適用される理由は、この電流削減効果よりもむしろGaAs系FETの耐圧制約に関係するところが大きい。ミリ波帯で適用可能なFETは0.2μm以下の短ゲート長のため、DC的なドレイン・ソース間耐圧が4V以下の場合が多く、場合によっては3V程度の場合もある。そのため、自動車に搭載される標準電源電圧5Vを直接印加できない場合が多い。図6に示す電流再利用回路の場合、FET1段当たりのDC印加電圧は5Vの半分である2.5Vとなり、4Vの耐圧よりも十分低く設定できるので、電源電圧5Vを増幅器の電源として利用できる。
しかし、GaAs系FETは通常デプレッションモードであるため、エンハンスメントモードのCMOS系やバイポーラ系デバイスに比べて、プロセスばらつき変動に依存せずに一定のドレイン電流を供給できるバイアス回路を構成することが一般に難しい。例えば、非特許文献2に記載の電流再利用回路はエンハンスメントモードのnMOSであるため、プロセスばらつきに強いカレントミラー型のバイアス回路を適用できる。
図7は、図6の回路において、FETのIdss(ゲート・ソース間電圧0V時のFETのドレイン電流)の変動に対する回路のドレイン電流Iddの変動のシミュレーション結果を示す。電源電圧は5V、FETはゲート長0.1umのGaAs系HEMTを使用した。図には、抵抗32、33の値が小さい場合の特性301と大きい場合の特性302がプロットされている。図中のA1~A4は点線の交点を示す。図より、Idssの変化に対して、特性301のドレイン電流Iddの変化は特性302に比べて大きい。Idssの±20%の変動に対して、特性301では24mA~31.5mA(Idssの変動無時のドレイン電流27.5mAに対しての27%変化)と大きく変動するのが、特性302では18mA~21mA(Idssの変動無時のドレイン電流19.5mAに対して15%の変化)と変動は小さい。また、特性302のドレイン電流は、電流変化は小さいが、抵抗値が大きいためIdss変動無時のドレイン電流値自身が低くなってしまう。
ミリ波帯の場合、FETの持つ利得を最大限に引き出すために、ゲート電圧0Vより少し低い電圧(例えば-0.05V~-0.15V)に設定することが多いため、抵抗32、32の値は小さい。その結果、図7の特性301に示すように自己バイアス回路だけでは大きなドレイン電流の変化を伴う。バイアス電流の大きな変化は、増幅器の利得特性を大きく変動させるので、その抑制が課題であった。負の電源を利用したIdssの変化を抑制するバイアス回路に関する報告はこれまでもあったが、本願で扱う、正の単一電源で動作可能なバイアス回路の提供とIdssのプロセス変動に対してドレイン電流の変化を抑制できる回路の提供が課題であった。
 本発明に係る電流再利用型FET増幅器は、RF信号が入力される第1のゲートと、第1のソースと、第1のドレインを有する第1の電界効果トランジスタと、第1のソースと接地用端子の間に接続された第1の抵抗と、第2のソースと、第2のゲートと、電源用端子に接続され且つ増幅されたRF信号を出力する第2のドレインとを有する第2の電界効果トランジスタと、第1のドレインと第2のソースとの間に接続された第2の抵抗と、第1のドレインと第2のゲートとの間に接続された容量と、第3のソース、電源用端子に接続された第3のドレイン、及び接地用端子に接続された第3ゲートを有する第3の電界効果トランジスタと、第4のソースと、第4のドレインと、第3のソースに接続された第4ゲートとを有する第4の電界効果トランジスタと、第4のソースと接地用端子との間に接続された第1のダイオードと、電源端子と第4のドレインとの間に接続された第3の抵抗と、第4のドレインと第1のゲートとの間に接続された第4の抵抗と、第4のドレインと前記第2のゲートとの間に接続された第5の抵抗とを備える。
 本発明に係る電流再利用型FET増幅器は、FETの飽和電流Idssのプロセスばらつきに応じて、増幅用FETのゲート電圧或いは増幅用FETの自己バイアス用の抵抗値を変化させるので、増幅器のドレイン電流の変化を抑制する効果を有する。さらに、初段のFETのドレイン電圧の変動も抑制できるので、Idssのプロセスばらつきに対してFETのドレイン・ソース間DC耐圧を超える状態を回避できる。
実施の形態1に係る電流再利用型FET増幅器の回路構成。 実施の形態1に係る電流再利用型FET増幅器と比較するための別の回路構成。 実施の形態1に係る電流再利用型FET増幅器の回路構成のIdssの変動に対するドレイン電流Iddのシミュレーション結果。 実施の形態1に係る電流再利用型FET増幅器の回路構成のIdssの変動に対するFET11のドレイン電圧のシミュレーション結果。 実施の形態2に係る電流再利用型FET増幅器の回路構成。 比較のための電流再利用型FET増幅器全体の回路構成。 比較のための電流再利用型FET増幅器の回路構成のIdssの変動に対するドレイン電流Iddのシミュレーション結果。
 本発明の実施の形態に係る電流再利用型FET増幅器について図面を参照して説明する。既に述べた図面も含めて、同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。以下に、GaAs系デプレッションモードFET(高電子移動度トランジスタのHEMTを含む)を例に説明する
[実施の形態1]
(構成の説明)
 図1に、本発明の実施の形態1に係る電流再利用型FET増幅器の増幅部101の回路構成と制御回路部102の回路構成を示す。図1では図面簡便化のために、伝送線路等を省略し、主にDC的に寄与する素子だけを示している。図6と同様に、FET11のソースと接地の間に抵抗32と容量22を並列に接続し、DC動作上の直流負帰還とRF動作上のソース接地を構成している。ドレイン電流Iddは、FET12を流れた後、FET11のドレイン電流としても流れるので、図1の回路は図6の回路と同様に電流再利用回路である。
入力端子1に入力されたRF信号はFET11で増幅され、さらに容量27を介してFET12のゲートに入力される。FET12で増幅されたRF信号は、FET1 2のドレインから容量25を介して出力される。
制御回路部102において、FET13は、ゲートが接地され、ソース負荷として抵抗35、ドレイン負荷として抵抗36を有する。FET14は、ゲートがFET 13のソースに接続され、ダイオード61のソース負荷、抵抗37のドレイン負荷を有する。FET12のドレインと接地の間には、ダイオード62、63、抵抗38、39が直列に接続された負荷が接続されている。ドレイン抵抗負荷36、37は電源端子4に接続されている。尚、制御回路部102の電源端子4は、増幅部101の電源端子3と共通にしてもよい。
制御回路102と増幅部101は、2つの制御信号で接続されている。第1の制御信号は、制御回路部102の抵抗38と39の接続点とFET11のゲート間に接続した抵抗34を介して、FET11のゲートに与えられる。第2の制御信号は、制御回路部102のダイオード62と63の接続点とFET12のゲートの間に接続された抵抗40を介して、FET12のゲートに与えられる。
図1のダイオードは、FETと同じ工程で作製可能なGaAs系ショットキー接合ダイオードを想定しているが、pn整合ダイオードでも同等の動作を実現できる。
(動作の説明)
 図1のドレイン電流Iddの変化を、プロセスばらつきによるFETの飽和電流Idssの変化に対してできるだけ抑制するには、Idssが所定の値よりも高くなった時にはFET11のゲート電圧を低下させ、逆にIdssが所定の値よりも低くなった時にはFET11のゲート電圧を増加させればよい。さらに、ドレイン電流Iddの変動の抑制に加えて、FET11のドレイン電圧の変動を抑制するには、図1に示すように、FET12のゲート電圧をFET11のドレイン電圧から容量27を用いて分離し、FET12のゲート電圧をIddのプロセス変動に応じて適切に制御すればよい。
制御回路部102のFET14のソース電位の変化は、ソース負荷のダイオード61によりFET14のソース電流変化に対して小さく抑制される。ここで、FET 14の閾値電圧に応じて、ダイオード61の直列接続段数を複数個にしてもよい。
一方、FET13のソース負荷は抵抗35のため、Idssの増加と共にFET13のソース電圧も増加する。そのため、FET14のゲート・ソース間電圧はIdssの増加と共に増加し、FET14のドレイン電流も増加する。その結果、ドレイン負荷抵抗37の電圧降下の増大し、FET14のドレイン電圧は減少する。このドレイン電圧の減少は、1つはダイオード62でレベルシフトされ、抵抗40を介してFET12のゲートに伝達され、もう一つはダイオード62、63でレベルシフトされた後、抵抗38と39で分圧され、抵抗34を介してFET11のゲートに伝達される。
 実施の形態1に係る電流再利用FET増幅器は、FET11のゲート電圧とFET12のゲート電圧をIdssのプロセス変動に応じて独立に制御できるため、ドレイン電流Iddの変動を抑制するだけでなく、FET11のドレイン電圧の変動も抑制できる。その結果、Idssのプロセス変動に対する利得の変動を抑制できるだけでなく、ドレイン・ソース間のDC耐圧が電源電圧の1/2の電圧に対して余裕がない場合でも、耐圧超過に起因した故障を起こさず、安定な動作が期待できる。
(比較回路との違いの説明)
次に実施の形態1に係る回路と比較回路との効果の違いを説明する。比較回路の回路構成を図2に示す。図1の回路との主要な違いは、図2の比較回路では図6と同様にFET11のドレイン電圧とFET12のゲート電圧を分離する容量27がなく直結されていること、抵抗33の代わりに可変抵抗として機能するFET15とゲート抵抗41が設けられていることである。FET15の可変抵抗値はそのゲート電圧を制御回路部102のFET14のドレイン電圧から抵抗41を介して制御される。
図3に図1と図2の回路のIdss変動に対するドレイン電流Iddのシミュレーション結果を、図4に図1と図2の回路のIdss変動に対するFET11のドレイン電圧のシミュレーション結果を示す。図3、図4において、特性401及び特性403が図1の回路のシミュレーション結果を、特性402及び特性404が図2の比較回路のシミュレーション結果を示す。またB1~B4、C1~C4は、±20%のIdssの変動に対する特性との交点を示す。
図3に示すように、図1と図2の回路のドレイン電流Iddの変化はかなり近く、どちらの回路構成でもドレイン電流Iddの変動をかなり抑制できる。
一方、図4に示すように、特性403の電圧変化は、点B3の2.8Vから点B4の2Vの0.8Vの変化に対して、特性404の電圧変化は、点C3の0.7Vから点C4の4.0Vの3.3V変化となっている。FET11とFET12のドレイン・ソース間耐圧が3Vの場合、Idssが20%増加すると、FET11に4V印加されることになり、耐圧を超えてしまう。これに対して、特性403の電圧変化は最大2.8V、最低2.0Vのため、3Vの耐圧の範囲内で動作可能になる。
ゲート長の短縮化による高周波領域での利得向上を図る場合、ドレイン・ソース間耐圧も必然的に低下するので、図4に示すようにドレイン電圧変化が小さい回路構成を実現することは、実使用では重要である。尚、特性403と404の違いは、FET12に対してゲート電圧を制御回路部102から印加しているか、していないかの違いが主要因である。
(実施の形態1の効果)
以上述べたように、実施の形態1に係る電流再利用型FET増幅器は、FETの飽和電流Idssのプロセスばらつきに応じて、増幅用FETのゲート電圧或いは増幅用FETの自己バイアス用の抵抗値を変化させるので、増幅器のドレイン電流の変化を抑制する効果を有する。さらに、初段のFETのドレイン電圧の変動も抑制できるので、Idssのプロセスばらつきに対してFETのドレイン・ソース間DC耐圧を超える状態を回避できる。また、ここで述べた回路構成はデプレッションモードのFETを用いた電流再利用増幅器におけるドレイン電流と初段のドレイン電圧の変動の抑制を正の単一電源で実現できる効果も有する。
[実施の形態2]
 図5は、本発明の実施の形態2に係る電流再利用型FET増幅器の回路構成で、実施の形態1の変形例である。実施の形態1の図1との違いは、図1の抵抗33をFET15と抵抗41で構成される可変抵抗に変更していること、その可変抵抗の制御ために、抵抗42、FET16、ダイオード64で構成される制御回路が制御回路部102に追加されていることである。FET16のゲートはFET13のソースに接続され、FET16のドレインが抵抗41を経由してFET15のゲートに接続され、FET15のドレイン・ソース間抵抗値を可変できるようにしている。
 実施の形態1で述べたように、Idssが増加した場合、制御回路部102のFET13のソース電圧が上昇し、FET16のドレイン電流を増加させる。ドレイン電流の増加は抵抗42の電圧降下を増大させるので、FET15のゲート電圧を低下させる。これにより、FET15のドレイン・ソース間抵抗が増大され、FET12のソース電位を上昇させ、FET12のドレイン電流を減少させる。その結果、実施の形態1のIdssの変動に対するドレイン電流の変動よりも抑制されることが期待できる。FET11のドレイン電圧の変動に関しては、FET12のゲート電圧制御回路が同じであるため、実施の形態1と同等の効果が得られる。
 尚、図5では、FET16、抵抗42、ダイオード64で構成される制御回路が、FET15のゲート電圧を制御するために新たに追加されているが、これは設計の自由度を持たせるためで、回路定数の設定次第では、抵抗41の一端をFET14のドレイン、あるいはダイオード62と63の接続点、あるいはダイオード63と抵抗38との接続点に接続することも可能である。
尚、以上述べた実施の形態はGaAs系デプレッションモードFET(高電子移動度トランジスタのHEMTを含む)を例に説明したが、n型チャネルのデプレッションモードFETであれば、InP系FETでもGaN系FETでもSi系MOSFETでも同様の効果が得られることを付記しておく。
特に、エンハンスメントモードが通常のSi系MOSFETと異なり、GaAs系FET、InP系FET、GaN系FETの場合、そのほとんどの製品においてデプレッションモードのFETが用いられるため、本発明によるドレイン電流変動の抑制は実用上重要である。
1:RF入力端子
2:RF出力端子
3:増幅部のドレイン電源端子
4:制御回路部のドレイン電源端子
11~16:デプレッションモードのGaAs系FET
21~27:容量
31~41:抵抗
51~54:伝送線路
61~64:ダイオード
101:増幅部
102:制御回路部
301、302:比較回路のIdss変動に対するドレイン電流
401:実施の形態1のIdss変動に対するドレイン電流
402:比較回路のIdss変動に対するドレイン電流
403:実施の形態1のIdss変動に対するドレイン電圧
404:比較回路のIdss変動に対するドレイン電圧

Claims (6)

  1.  RF信号が入力される第1のゲートと、第1のソースと、第1のドレインを有する第1の電界効果トランジスタと、
     前記第1のソースと接地用端子の間に接続された第1の抵抗と、
     第2のソースと、第2のゲートと、第1の電源用端子に接続され且つ増幅されたRF信号を出力する第2のドレインとを有する第2の電界効果トランジスタと、
     前記第1のドレインと前記第2のソースとの間に接続された第2の抵抗と、
     前記第1のドレインと前記第2のゲートとの間に接続された容量と、
     第3のソース、第2の電源用端子に接続された第3のドレイン、及び前記接地用端子に接続された第3ゲートを有する第3の電界効果トランジスタと、
     第4のソースと、第4のドレインと、前記第3のソースに接続された第4ゲートとを有する第4の電界効果トランジスタと、
     前記第4のソースと前記接地用端子との間に接続された第1のダイオードと、
     前記第2の電源用端子と前記第4のドレインとの間に接続された第3の抵抗と、
     前記第4のドレインと前記第1のゲートとの間に接続された第4の抵抗と、
    前記第4のドレインと前記第2のゲートとの間に接続された第5の抵抗と、
    を備え、
     前記第1乃至第4の電界効果トランジスタがデプレッションモードであることを特徴とする電流再利用型電界効果トランジスタ増幅器。
  2.  第5のゲートと、前記第2のソースに接続された第5のドレインと、前記第1のドレインに接続された第5のソースを有する、前記第2の抵抗の代わりに設けられたデプレションモードの第5の電界効果トランジスタと、
    を備え、
     前記第5のゲートが前記第4のドレインに接続されていること、を特徴とする請求項1に記載の電流再利用型電界効果トランジスタ増幅器。
  3.  前記第2の電源用端子が前記第1の電源用端子に接続され、共通化されていることを特徴とする請求項1または2のいずれか1項に記載の電流再利用型電界効果トランジスタ増幅器。
  4.  前記第1乃至第5の電界効果トランジスタがGaAs系あるいはInP系あるいはGaN系のいずれかの化合物半導体電界効果トランジスタであることを特徴とする請求項1乃至3のいずれか1項に記載の電流再利用型電界効果トランジスタ増幅器。
  5.  第5のゲートと、前記第2のソースに接続された第5のドレインと、前記第1のドレインに接続された第5のソースを有する、前記第2の抵抗の代わりに設けられた第5の電界効果トランジスタと、
     第6のソースと、第6のドレインと、前記第3のソースに接続された第6ゲートとを有する第6の電界効果トランジスタと、
     前記第6のソースと前記接地用端子との間に接続された第2のダイオードと、
     前記第2の電源端子と前記第6のドレインとの間に接続された第6の抵抗と、
    を備え、
     前記第1乃至第6の電界効果トランジスタがデプレッションモードであることを特徴とする請求項1乃至4のいずれか1項に記載の電流再利用型電界効果トランジスタ増幅器。
  6.  前記第1乃至第6の電界効果トランジスタがGaAs系あるいはInP系あるいはGaN系のいずれかの化合物半導体電界効果トランジスタであることを特徴とする請求項5に記載の電流再利用型電界効果トランジスタ増幅器。
PCT/JP2017/012641 2017-03-28 2017-03-28 電流再利用型電界効果トランジスタ増幅器 WO2018179088A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197027542A KR102322947B1 (ko) 2017-03-28 2017-03-28 전류 재이용형 전계 효과 트랜지스터 증폭기
PCT/JP2017/012641 WO2018179088A1 (ja) 2017-03-28 2017-03-28 電流再利用型電界効果トランジスタ増幅器
US16/481,024 US11012036B2 (en) 2017-03-28 2017-03-28 Current reuse type field effect transistor amplifier
CN201780088820.2A CN110463035B (zh) 2017-03-28 2017-03-28 电流再利用型场效应晶体管放大器
DE112017007348.0T DE112017007348B4 (de) 2017-03-28 2017-03-28 Stromwiederverwendungstyp-Feldeffekttransistor-Verstärker
JP2019508383A JP6689450B2 (ja) 2017-03-28 2017-03-28 電流再利用型電界効果トランジスタ増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012641 WO2018179088A1 (ja) 2017-03-28 2017-03-28 電流再利用型電界効果トランジスタ増幅器

Publications (1)

Publication Number Publication Date
WO2018179088A1 true WO2018179088A1 (ja) 2018-10-04

Family

ID=63674739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012641 WO2018179088A1 (ja) 2017-03-28 2017-03-28 電流再利用型電界効果トランジスタ増幅器

Country Status (6)

Country Link
US (1) US11012036B2 (ja)
JP (1) JP6689450B2 (ja)
KR (1) KR102322947B1 (ja)
CN (1) CN110463035B (ja)
DE (1) DE112017007348B4 (ja)
WO (1) WO2018179088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183895A (ja) * 2016-03-29 2017-10-05 三菱電機株式会社 電流再利用型電界効果トランジスタ増幅器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017108828B3 (de) * 2017-04-25 2018-07-05 Forschungsverbund Berlin E.V. Vorrichtung zur Ansteuerung eines selbstleitenden n-Kanal Endstufenfeldeffekttransistors
CN111696952B (zh) * 2019-03-13 2025-07-11 住友电工光电子器件创新株式会社 微波集成电路
US11309870B2 (en) * 2020-07-31 2022-04-19 GM Global Technology Operations LLC Field effect transistor (FET) configured to phase shift a radar signal using first and second variable voltages applied to a gate and a back gate of the FET
CN114265038B (zh) * 2021-11-22 2024-02-09 电子科技大学 一种具有温度补偿效应的高精度开关式移相单元
CN114866047B (zh) * 2022-07-07 2022-11-11 成都嘉纳海威科技有限责任公司 基于Bi-Hemt工艺的宽带双通道收发放大芯片
CN114978051B (zh) * 2022-07-15 2022-10-28 北京信芯科技有限公司 一种基于增强型晶体管的电流复用低噪声放大器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260957A (ja) * 1996-01-18 1997-10-03 Fujitsu Ltd 半導体増幅回路
JP2003332864A (ja) * 2002-05-17 2003-11-21 Mitsubishi Electric Corp 多段増幅回路
JP2012119794A (ja) * 2010-11-29 2012-06-21 Sumitomo Electric Ind Ltd 電子回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334445A (ja) * 1993-05-19 1994-12-02 Mitsubishi Electric Corp 半導体集積回路
JPH0846444A (ja) * 1994-07-27 1996-02-16 Oki Electric Ind Co Ltd 帰還増幅回路
US5757236A (en) * 1996-07-01 1998-05-26 Motorola, Inc. Amplifier bias circuit and method
JP3853604B2 (ja) * 2001-04-04 2006-12-06 松下電器産業株式会社 周波数変換回路
JP5543790B2 (ja) * 2010-01-25 2014-07-09 住友電気工業株式会社 電子回路
JP5479284B2 (ja) * 2010-09-24 2014-04-23 住友電気工業株式会社 電子回路
JP2013211666A (ja) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The 増幅器
JP2015128255A (ja) 2013-12-27 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. 整合回路、増幅回路、および通信装置
JP6620640B2 (ja) * 2016-03-29 2019-12-18 三菱電機株式会社 電流再利用型電界効果トランジスタ増幅器
JP2017184055A (ja) * 2016-03-30 2017-10-05 住友電気工業株式会社 増幅回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260957A (ja) * 1996-01-18 1997-10-03 Fujitsu Ltd 半導体増幅回路
JP2003332864A (ja) * 2002-05-17 2003-11-21 Mitsubishi Electric Corp 多段増幅回路
JP2012119794A (ja) * 2010-11-29 2012-06-21 Sumitomo Electric Ind Ltd 電子回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183895A (ja) * 2016-03-29 2017-10-05 三菱電機株式会社 電流再利用型電界効果トランジスタ増幅器

Also Published As

Publication number Publication date
KR102322947B1 (ko) 2021-11-05
JP6689450B2 (ja) 2020-04-28
DE112017007348B4 (de) 2024-02-08
DE112017007348T5 (de) 2019-12-12
CN110463035A (zh) 2019-11-15
US20200119694A1 (en) 2020-04-16
US11012036B2 (en) 2021-05-18
KR20190120291A (ko) 2019-10-23
CN110463035B (zh) 2023-05-16
JPWO2018179088A1 (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018179088A1 (ja) 電流再利用型電界効果トランジスタ増幅器
US7619482B1 (en) Compact low voltage low noise amplifier
US11038469B2 (en) Power amplification module
US9337777B2 (en) Amplifier
US11201594B2 (en) Cascode amplifier circuit
US8655287B2 (en) Switch control circuit, semiconductor device, and radio communication device
US10116273B2 (en) Current reuse field effect transistor amplifier
US11469718B2 (en) Amplifier circuit
CN112953423A (zh) 放大电路及通信装置
US10917084B2 (en) Output driving system with capacitance compensation
US9191005B2 (en) Level conversion circuit and level-conversion-function-equipped logic circuit
CN110476353B (zh) 二极管线性化电路
US10931244B2 (en) Common gate amplifier with high isolation from output to input
US11309852B2 (en) Power amplifier and compound semiconductor device
JP2012004777A (ja) 高周波増幅器
US6542036B2 (en) Low current amplifier circuit with protection against static electricity
US7256654B2 (en) Amplifying a signal using a current shared power amplifier
US10944363B2 (en) Power amplifier
JP3922950B2 (ja) 周波数変換回路
JP2010109710A (ja) 利得可変型増幅器
KR101960181B1 (ko) 안정적으로 이득을 부스팅하는 주파수 혼합기
WO2021186694A1 (ja) 半導体装置
JP2011019047A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508383

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027542

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17902598

Country of ref document: EP

Kind code of ref document: A1