[go: up one dir, main page]

WO2018179157A1 - 基板処理装置、ヒータユニットおよび半導体装置の製造方法 - Google Patents

基板処理装置、ヒータユニットおよび半導体装置の製造方法 Download PDF

Info

Publication number
WO2018179157A1
WO2018179157A1 PCT/JP2017/012974 JP2017012974W WO2018179157A1 WO 2018179157 A1 WO2018179157 A1 WO 2018179157A1 JP 2017012974 W JP2017012974 W JP 2017012974W WO 2018179157 A1 WO2018179157 A1 WO 2018179157A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
reaction tube
heater
temperature
substrate processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2017/012974
Other languages
English (en)
French (fr)
Inventor
野内 英博
稲田 哲明
立野 秀人
裕也 宮西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to PCT/JP2017/012974 priority Critical patent/WO2018179157A1/ja
Priority to JP2019508441A priority patent/JP6730513B2/ja
Priority to SG11201907981YA priority patent/SG11201907981YA/en
Priority to CN201780088409.5A priority patent/CN110419095A/zh
Publication of WO2018179157A1 publication Critical patent/WO2018179157A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a substrate processing apparatus, a heater unit, and a method for manufacturing a semiconductor device.
  • a liquid source containing hydrogen peroxide (H 2 O 2 ) is vaporized to generate a vaporized gas as a process gas, and this vaporized gas is applied to the substrate in the process chamber.
  • substrate processing including a supplying step is performed (see, for example, Patent Documents 1 and 2).
  • One of the objects of the present invention is to provide a technique capable of performing heating so as to prevent local deviation in the temperature of members forming the processing chamber.
  • a reaction tube that accommodates a substrate, a lid that closes a furnace port formed in the reaction tube, a heater provided on an outer periphery of a side wall near the furnace port of the reaction tube, A plurality of temperature sensors configured to measure temperatures at a plurality of positions different from each other in the circumferential direction of the side wall on the side wall near the furnace port of the reaction tube, and the measured values of the plurality of temperature sensors, respectively.
  • a control unit configured to control the heater.
  • FIG. 1 It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus used suitably by one Embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view. It is a schematic block diagram which shows the furnace port periphery structure of the reaction tube of the substrate processing apparatus used suitably by one Embodiment of this invention, and is a figure which shows a furnace port periphery by a horizontal sectional view.
  • A is a longitudinal cross-sectional view which shows the structure of one form of a heater unit, and the structure of the periphery of the said heater unit.
  • (B) is the longitudinal cross-sectional view of the heater unit in the dashed-dotted line seen from the direction A shown to (a).
  • (A) is a longitudinal cross-sectional view which shows the structure of the other form of a heater unit, and the structure of the periphery of the said heater unit.
  • (B) is the longitudinal cross-sectional view of the heater unit in the dashed-dotted line seen from the direction A shown to (a).
  • (A) is a longitudinal cross-sectional view which shows the structure of the other form of a heater unit, and the structure of the periphery of a heater unit.
  • (B) is the longitudinal cross-sectional view of the heater unit in the dashed-dotted line seen from the direction A shown to (a).
  • the longitudinal cross-sectional view which shows the structure of a soaking
  • the longitudinal cross-sectional view of the heater unit which shows the attachment structure of the side wall temperature sensor attached to a heater unit.
  • the flowchart which shows an example of a substrate processing process.
  • the schematic block diagram which shows the position of the temperature monitoring points A-N in an Example.
  • the schematic block diagram which shows the structure of a comparative example, and the position of temperature monitoring point AN.
  • the graph which shows the measurement result of the temperature in the temperature monitor points A-N in each of an Example and a comparative example.
  • the processing furnace 202 includes a reaction tube 203.
  • the reaction tube 203 is made of a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is configured as a cylindrical member having a furnace port (opening) at the lower end.
  • a processing chamber 201 is formed in the cylindrical hollow portion of the reaction tube 203.
  • the processing chamber 201 includes a wafer storage area A (hereinafter referred to as area A) as a first area for storing a wafer 200 as a substrate, and a furnace port peripheral area as a second area provided below the area A in the vertical direction. B (hereinafter referred to as region B) is provided inside.
  • a seal cap 219 is provided as a lid that can airtightly close the lower end opening of the reaction tube 203.
  • a rotation mechanism 267 is installed below the seal cap 219.
  • the seal cap 219 is formed in a disc shape, and is configured such that an upper surface base portion 219a constituting the upper surface side and a lower surface base portion 219b constituting the lower surface side are laminated.
  • the upper surface base portion 219a is made of a nonmetallic member such as quartz, and has a thickness of about 10 to 20 mm.
  • the lower surface base portion 219b is made of a metal member such as SUS.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • a bearing portion 219s of the rotating shaft 255 provided on the rotating shaft 255 is configured as a fluid seal such as a magnetic seal.
  • the seal cap 219 is raised and lowered in the vertical direction by a boat elevator 115 installed below the reaction tube 203.
  • the boat elevator 115 is configured as a transfer mechanism that loads and unloads (transfers) the boat 217, that is, the wafer 200 into and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC, and includes a top plate 217a and a bottom plate 217b above and below.
  • the heat insulator 218 supported in a multi-stage at a lower position of the boat 217 is made of a heat resistant material such as quartz or SiC, and is configured to suppress heat conduction between the region A and the region B. .
  • the heat insulator 218 can also be considered as a part of the components of the boat 217.
  • a heater 207 as a first heating unit and a heater 208 as a second heating unit are provided outside the reaction tube 203. Electric power is supplied from the heater power supply unit 210 to the heaters 207 and 208.
  • the heater 207 is vertically installed so as to surround the area A.
  • the heater 207 is controlled so as to heat the wafer 200 accommodated in the region A to a predetermined temperature in a substrate processing step to be described later.
  • the heater 208 is provided vertically below the heater 207 so as to surround the region B.
  • the heater 208 includes a plurality of heater units (heater units 208a to 208d) arranged (divided) in the outer peripheral direction of the reaction tube 203.
  • the heater 208 is controlled to maintain the temperature of the side wall around the furnace port of the reaction tube 203 and the temperature of the piping at predetermined temperatures in the substrate processing step described later.
  • the side wall around the furnace port of the reaction tube 203 is simply referred to as a furnace port side wall.
  • a temperature sensor protective tube 263 a that penetrates the side wall of the reaction tube 203 from the outside to the inside and extends along the inner wall of the reaction tube 203 is provided.
  • a temperature sensor 263 as a temperature detection unit is inserted from the outside of the reaction tube 203 and provided in the temperature sensor protection tube 263a. Based on the temperature information detected by the temperature sensor 263, the output of the heater 207 is adjusted.
  • the temperature sensor 263 is mainly composed of a thermocouple. A plurality of temperature sensors 263 and temperature sensor protective tubes 263a may be provided.
  • a gas supply pipe 232 a for supplying vaporized gas into the processing chamber 201 is connected to the side wall of the reaction pipe 203.
  • the gas supply pipe 232a penetrates the side wall in the vicinity of the furnace port of the reaction tube 203 (that is, around the region B) from the outside to the inside, and extends to the vicinity of the upper end along the inner wall of the reaction tube 203.
  • the gas supply port 232p is configured. Note that a plurality of gas supply pipes 232a having different heights may be provided, and the vaporized gas may be supplied into the processing chamber 201 from the gas supply ports provided at the respective upper ends.
  • the gas supply pipe 232a is provided with a gas generator 250a, a mass flow controller (MFC) 241a that is a flow rate controller (flow rate control unit), and a valve 243a that is an on-off valve in order from the upstream side.
  • the gas generator 250a is connected to a liquid supply pipe that supplies hydrogen peroxide as a liquid source, a carrier gas supply pipe that supplies a carrier gas used to vaporize the liquid, and the like.
  • the hydrogen peroxide solution is an aqueous solution obtained by dissolving hydrogen peroxide (H 2 O 2 ), which is liquid at room temperature, in water (H 2 O) as a solvent.
  • the gas generator 250a generates vaporized gas by, for example, heating the hydrogen peroxide solution to a predetermined temperature (vaporization temperature) and vaporizing or misting it.
  • the vaporized gas contains gaseous or mist-like H 2 O 2 and water vapor (H 2 O gas) at predetermined concentrations.
  • H 2 O 2 contained in the vaporized gas is a kind of active oxygen, is unstable and easily releases O, generates OH radicals, and acts as an oxidizing agent (O source) having a very strong oxidizing power. To do.
  • the gas supply pipe 232a, the MFC 241a, and the valve 243a constitute a vaporized gas supply system.
  • An exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201 is connected to the side wall of the reaction tube 203 near the furnace port (around the furnace port).
  • a vacuum pump 246 as an exhaust device is connected to the exhaust pipe 231 via a pressure sensor 245 as a pressure detector for detecting the pressure in the processing chamber 201 and an APC valve 244 as a pressure regulator.
  • the APC valve 244 can perform evacuation and evacuation stop in the processing chamber 201 by opening and closing the valve while the vacuum pump 246 is activated, and further, with the vacuum pump 246 activated,
  • the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • the heater 208 is mainly configured as follows to prevent these local low-temperature regions and high-temperature regions from occurring.
  • the heater unit 208 a is a portion of the side wall of the furnace port portion where the pipes such as the gas supply pipe 232 a, the temperature sensor protection pipe 263 a, and the exhaust pipe 231 are not connected (hereinafter referred to as “flat part”).
  • a unit arranged to heat a region (sometimes referred to as a “region”).
  • two heater units 208a (208a and 208a ′) are provided.
  • the heater unit 208b includes a peripheral portion of a portion where the gas supply pipe 232a is connected on the side wall of the furnace port, and a peripheral portion of the connection portion exposed outside the reaction tube 203 of the gas supply pipe 232a.
  • the heater unit 208c includes a peripheral portion of a portion where the temperature sensor protective tube 263a is connected on the side wall of the furnace port portion, and a peripheral portion of a connected portion which is exposed outside the reaction tube 203 of the temperature sensor protective tube 263a. , And a unit arranged to heat. That is, the heater unit 208c is configured to heat both the side wall of the reaction tube 203 and the temperature sensor protection tube 263a.
  • the heater unit 208d is a unit arranged to heat a peripheral portion of a connection portion with the reaction tube 203 in the exhaust pipe 231.
  • peripheral part of the location where the piping such as the gas supply pipe 232a, the temperature sensor protection pipe 263a, the exhaust pipe 231 and the like is connected is collectively referred to as a “projection part region” hereinafter. There is.
  • each of the heater units 208a to 208c can include a side wall temperature sensor (303a, 303b) that measures the outer peripheral surface temperature of the furnace port side wall. At least a plurality of side wall temperature sensors are provided at positions spaced apart in the outer circumferential direction. By controlling the heater 208 based on the temperatures respectively measured by the plurality of side wall temperature sensors, the temperature of the side wall of the reaction tube 203 can be heated to be uniform in the outer circumferential direction. Note that at least two or more side wall temperature sensors may be provided in the heater 208, and all of the heater units 208a to 208c do not have to include the side wall temperature sensor.
  • each of the heater units 208b to 208d can include a gas supply pipe temperature sensor 304b and an exhaust pipe temperature sensor 304d for measuring the temperature around the pipe such as the gas supply pipe 232a. ing.
  • the heater 208 By controlling the heater 208 based on the temperatures measured by the temperature sensors around these pipes, the pipes connected to the reaction tube 203 are individually heated, and the temperature of the side wall of the reaction tube 203 is more increased in the outer circumferential direction. It can be heated to be precisely uniform.
  • the heater units 208a to 208d are connected to the heater power supply unit 210, and the heater power supply unit 210 is configured to supply power to the heater units 208a to 208c. Further, the plurality of side wall temperature sensors are connected to a controller 121 as a control unit to be described later, and the controller 121 supplies power to the heater units 208a to 208d via the heater power supply unit 210 based on the measured temperature. Are configured to be controlled individually. By individually controlling the temperature of each of the plurality of heater units arranged in the outer peripheral direction of the reaction tube 203, it becomes easy to uniformly heat the furnace port side wall in the circumferential direction. Each of the heater units 208a to 208d may include an individual heater power supply unit and may be configured to be controlled by the controller 121.
  • the heater unit 208a is disposed along the outer periphery of the side wall of the furnace port. More specifically, the heater unit 208 a is placed on a flange that forms the lower end of the reaction tube 203 via an O-ring protection part 273. In addition, a partition portion 308 formed of SUS or the like is provided between the heater unit 208a and the heater 207, and in order to suppress heat influence from the heater 207 and heat escape from the heater unit 208a. Material 307 is filled.
  • the seal cap 219 has relatively few protruding structures such as the gas supply pipe 232a around the furnace port of the reaction tube 203. Therefore, it is relatively easy to heat the seal cap 219 evenly with the cap 209.
  • an O-ring 220a is provided as a seal member that contacts the lower end of the reaction tube 203. Further, an O-ring 220b as a seal member that comes into contact with the lower surface of the upper surface base portion 219a is provided on the upper surface of the lower surface base portion 219b.
  • the refrigerant flow path 274 provided in the O-ring protection part 273 and the refrigerant flow path 270 provided in the lower surface base 219b are respectively set so that the O-ring 220a and the O-ring 220b are not heated to a predetermined temperature or higher. It is configured to cool.
  • the heater unit 208a includes a heating wire 301a, a heating wire storage unit 305 integrally formed in a block shape for storing the heating wire 301a, and a heater cover 306 provided so as to surround the heating wire storage unit 305.
  • the side wall temperature sensor 303a which measures the outer peripheral surface temperature of the furnace port part side wall arrange
  • the exothermic wire 301a is formed of a spiral (spring-like) Kanthal wire or the like, and is provided at a position facing the outer periphery of the reaction tube 203 along the circumferential direction of the outer periphery.
  • the heating wire 301a is composed of one or a plurality of parallel heating wires. In order to heat the side wall of the reaction tube 203 evenly in the height direction, it is preferable to use a plurality of parallel heating lines.
  • the heating wire 301a is composed of four Kanthal wires arranged in parallel to each other.
  • the heating line 301a is constituted by a plurality of independent heating lines, but four parallel heating lines are formed by folding a single Kanthal line a plurality of times. You can also.
  • the heating wire 301a it is particularly preferable to use a wire having a characteristic that the peak wavelength of the heat rays radiated when generating heat at around 80 to 100 ° C. is around 5 to 10 ⁇ m (for example, Kanthal wire). These wavelengths are easily absorbed by quartz and are suitable for efficiently heating structures such as the reaction tube 203 and the gas supply tube 232a formed of quartz. The same applies to heating lines 301b, 302b, and 302d described later.
  • the heating wire storage portion 305 is formed of a low thermal conductivity material (thermal conductivity is 0.3 W / m ⁇ K or less) such as a porous industrial alumina board, and between the heating wires constituting the heating wire 301a. Temperature interference is suppressed. That is, the heating wire storage unit 305 functions as a separation member that prevents temperature interference between the heating wires.
  • a low thermal conductivity material thermal conductivity is 0.3 W / m ⁇ K or less
  • the heat generation amount of the heat generation lines arranged at the upper and lower ends among the plurality of heat generation lines arranged in parallel is larger than the heat generation amount of the other heat generation lines sandwiched between those heat generation lines.
  • the heating wire 301a By configuring the heating wire 301a to be large, the side wall of the reaction tube 203 is heated evenly in the height direction. More specifically, the thickness of the heating lines arranged at the upper and lower ends is configured to be thinner than the thickness of other heating lines sandwiched between the heating lines. Thereby, the electric resistance value of each heating wire is made different so that the heating value is made different for the same supply current amount.
  • the electric power supplied from the heater power supply unit 210 to the heating wire 301a is controlled by the controller 121 mainly based on the measured temperature of the side wall temperature sensor 303a.
  • the supplied power can be controlled based on the measured temperature of the side wall temperature sensor provided in another heater unit.
  • the supplied power can be controlled based on both the measured temperature of the sidewall temperature sensor 303a and the measured temperature of the other sidewall temperature sensor.
  • Heat unit 208b The configuration of the heater unit 208b and its periphery will be described in detail below with reference to FIGS. 4 (a) and 4 (b). Similarly to the heater unit 208a, the heater unit 208b is disposed along the outer periphery of the side wall of the furnace port. Among the specific configurations, the same components as those of the heater unit 208a and its surroundings are denoted by the same reference numerals in FIGS. 4A and 4B, and description thereof is omitted.
  • the heater unit 208b includes a heating line 301b and a heating line 302b, a heating line storage unit 305 that stores the heating lines 301a and 302b, and a gas supply pipe temperature sensor 304b as a pipe temperature sensor that measures the temperature in the vicinity of the gas supply pipe 232a.
  • a gas supply pipe temperature sensor 304b as a pipe temperature sensor that measures the temperature in the vicinity of the gas supply pipe 232a.
  • the side wall temperature sensor 303b which measures the outer peripheral surface temperature of a furnace port part side wall can be provided similarly to the heater unit 208a.
  • the gas supply pipe temperature sensor 304b may directly measure the temperature of the gas supply pipe 232a itself as long as the temperature state of the gas supply pipe 232a in the vicinity of the side wall of the reaction tube 203 can be grasped.
  • the heating wire 301b is provided along the circumferential direction of the outer periphery at a position facing the outer periphery of the reaction tube 203, and has the same configuration as the heating wire 301a. However, unlike the heating wire 301a, the heating wire 301b is disposed only at a position that avoids the position where the gas supply pipe 232a is disposed.
  • the heating wire 302b is composed of one or a plurality of heating wires arranged in the vicinity of the gas supply pipe 232a and arranged along the extending direction of the gas supply pipe 232a (parallel to the extending direction).
  • these heating lines are arranged so as to surround the gas supply pipe 232a.
  • only the exothermic wire 301b heats only the portion immediately adjacent to the side wall of the reaction tube 203 among the gas supply tube 232a protruding from the side wall of the reaction tube 203, and sufficiently heats the gas supply tube 232a in the extending direction. Is difficult. Therefore, heat escape from the side wall of the reaction tube 203 to the gas supply tube 232a cannot be prevented.
  • the heating wire 302b since the heating wire 302b is arranged in parallel to the gas supply pipe 232a, the gas supply pipe 232a can be heated uniformly in the extending direction.
  • the gas supply pipe temperature measurement sensor 304b is inserted into the heating wire storage unit 305 in parallel to the gas supply pipe 232a. It is preferable that the heating lines 302b are spaced apart from each other by a uniform distance.
  • the heating wire storage unit 305 is configured as an integrally formed member (storage block) that stores the heating wire 301b and the heating wire 302b, and suppresses temperature interference between the heating wire 301b and the heating wire 302b.
  • the temperatures (supply power) of the heating wire 301b and the heating wire 302b are individually controlled by the control unit, and the side wall of the reaction tube 203 and the gas supply tube 232a are individually heated.
  • independent and precise heating control can be easily performed on the side wall of the reaction tube 203 and the gas supply tube 232a.
  • the power supply from the heater power supply unit 210 to the heating wire 301b and the heating wire 302b is individually controlled by the controller 121.
  • the controller 121 controls the power supplied to the heating wire 301b via the heater power supply unit 210 mainly based on the measured temperature of the side wall temperature sensor 303b.
  • the controller 121 controls the power supplied to the heating wire 302b through the heater power supply unit 210 mainly based on the measured temperature of the gas supply pipe temperature sensor 304b.
  • the power supplied to at least one of the heating wire 301b and the heating wire 302b can be controlled based on both the measured temperature of the side wall temperature sensor 303b and the measured temperature of the gas supply pipe temperature sensor 204b.
  • one gas supply pipe 232a is connected to the protruding region on the side wall of the reaction tube 203 in which the heater unit 208b is disposed.
  • a modification in which a plurality of gas supply pipes are connected to the projecting region where one heater unit heater is disposed is conceivable.
  • 5A and 5B show the configuration of the heater unit 208b-1 and its surroundings in this modification. Among the specific configurations, the same components as those of the heater unit 208b and its surroundings are denoted by the same reference numerals in FIGS. 5A and 5B, and description thereof is omitted.
  • the heater unit 208b-1 is provided with one or a plurality of heating wires 302b for each of the plurality of gas supply pipes 232a.
  • the heating wire 302b is arranged in parallel to the gas supply pipe 232a, so that the gas supply pipe is heated evenly even when the interval between the gas supply pipes is narrow. Can do.
  • the heat generation lines 302b are arranged between the adjacent gas supply pipes 232a so that the plurality of gas supply pipes are heated by one heat generation line. Can do.
  • the gas supply pipe temperature measurement sensor 304b is provided for at least one of the plurality of gas supply pipes 232a, but may be provided for each of the plurality of gas supply pipes 232a.
  • Heat unit 208c The configuration of the heater unit 208c and its periphery is the same as that of the heater unit 208b.
  • the heater unit 208b heats the connection location of the gas supply pipe 232a, whereas the heater unit 208c differs only in heating the connection location of the temperature sensor protection pipe 263a.
  • Heat unit 208d Similarly to the heater units 208a to 208c, the heater unit 208d is disposed along the outer periphery of the side wall of the furnace port. The configuration of the heater unit 208d and its periphery will be described in detail below with reference to FIG.
  • the heater unit 208d includes a heating wire 302d, a storage member 305a that stores the heating wire 302d, storage members 305b and 305c that do not store the heating wire 302d, and an exhaust pipe 231 between the outer periphery of the exhaust pipe 231 and the heating wire 302d.
  • a soaking sheet 320 is provided so as to cover it.
  • an exhaust pipe temperature sensor 304d similarly to the gas supply pipe temperature sensor 304b in the heater unit 208b, an exhaust pipe temperature sensor 304d as a pipe temperature sensor for measuring the temperature in the vicinity of the exhaust pipe 231 can be provided.
  • the heating line 302d is configured by a plurality of heating lines arranged in the vicinity of the exhaust pipe 231 and in parallel with the exhaust pipe 231 similarly to the heating line 302b.
  • the heating wire 302d may not be disposed so as to surround the entire outer peripheral surface of the exhaust pipe 231. Therefore, the heater unit 208d is arranged so that at least one of these heat generation lines extends along only a part of the outer peripheral surface of the exhaust pipe 231 and is not disposed at a position along the remaining outer peripheral surface where the heat generation lines cannot be arranged. .
  • the storage members 305a to 305c are made of a low thermal conductivity material, similar to the heating wire storage portion 305. In addition, the storage members 305a to 305c are divided to facilitate attachment to the exhaust pipe 231.
  • the soaking sheet 320 conducts heat from the heating wire 302d disposed along only a part of the outer peripheral surface of the exhaust pipe 231 to the entire outer peripheral surface, and uniformly heats the outer peripheral surface of the exhaust pipe 231. It is provided as follows.
  • the soaking sheet 320 is made of an insulating material 321 made of a material such as alumina cloth, a high heat conductive material 322 made of a material such as an aluminum sheet, and a material such as a carbon sheet.
  • the structured cushioning material 323 is laminated and disposed.
  • the high heat conductive material 322 is disposed on the side close to the heating wire 302d, and conducts the heat of the heating wire 302d evenly in the entire outer circumferential direction of the exhaust pipe 231.
  • the cushion material 323 is disposed on the side close to the exhaust pipe 231, and causes the soaking sheet 320 to adhere to the outer peripheral surface of the exhaust pipe 231.
  • the thickness of the soaking sheet 320 is about 3 to 5 mm.
  • the soaking sheet 320 By providing the soaking sheet 320, local high temperature portions are suppressed from being generated on the outer peripheral surface of the exhaust pipe 231 facing the heating line 302d, and on the outer peripheral surface of the exhaust pipe 231 where the heating line 302d is not disposed. Generation of a local low temperature part can be suppressed.
  • the electric power supplied from the heater power supply unit 210 to the heating wire 302d is controlled by the controller 121 mainly based on the measured temperature of the exhaust pipe temperature sensor or the side wall temperature sensor provided in another heater unit.
  • the tip part which is the temperature measurement sensor part of the side wall temperature sensor 303a is in contact with the furnace port part side wall by the structure shown in FIG.
  • a fixing member 309 is fixed to the heater cover 306, and a spring 310, which is an elastic member, is provided between the protruding portion of the side wall temperature sensor 303a and the fixing member 309.
  • the spring 310 is configured to press the side wall temperature sensor 303a against the side wall of the reaction tube 203 with the fixing member 309 as a fulcrum.
  • the side wall temperature sensor 303b is also installed with a similar structure.
  • the flat region on the side wall of the reaction tube 203 where the heater unit 208a is installed is likely to be hotter than the projecting region where the heater units 208b, 208c and 208d are installed, and conversely, the projecting region is a flat region.
  • the temperature tends to be lower than that. This is because heat escape from the protruding portion such as the gas supply pipe 232a hardly occurs in the flat portion region, and the area in which the heating lines 301b and 301c are arranged in the protruding portion region is uniform. The reason is that it is difficult to heat properly.
  • the side wall temperature sensor 303a is provided in the heater unit 208a that heats the longest flat portion region
  • the side wall temperature sensor 303a ′ is provided in the heater unit 208a ′ disposed at a position facing the heater 208a
  • the protruding portion region is provided.
  • a side wall temperature sensor 303b is provided in the heater unit 208b ′ for heating the heater.
  • the side wall temperature sensors are arranged at these positions with heater control points at positions separated from each other in the outer peripheral direction of the reaction tube 203, the temperature of the side wall of the reaction tube 203 is determined based on the temperature measured at each position.
  • the heater units 208a to 208d can be individually controlled so as to be uniform in the outer circumferential direction.
  • the target temperature value (first target temperature) measured by the side wall temperature sensors 303a and 303a ′ for measuring the temperature of the flat portion region that is likely to become high is as follows. It is preferable to set the temperature lower than the target value (second target temperature) of the temperature measured by the side wall temperature sensor 303b that measures the temperature of the protruding region that tends to be low. This makes it easy to control the heater 208 so that the temperature of the side wall of the reaction tube 203 is uniform in the outer circumferential direction.
  • the heater units 208a and 208a ′ are mainly arranged so that the temperature measured by the side wall temperature sensors 303a and 303a ′ that measure the temperature of the flat region does not exceed a predetermined temperature (for example, a first upper limit temperature described later). By controlling, it becomes easy to prevent a local high temperature region from being generated on the side wall around the furnace port.
  • a predetermined temperature for example, a first upper limit temperature described later.
  • the heater unit 208b ′ controls the heater unit 208b ′ so that the temperature measured by the side wall temperature sensor 303b that measures the temperature of the protruding region does not become lower than a predetermined temperature (for example, a first lower limit temperature described later), It becomes easy to prevent a local low temperature region from occurring on the side wall around the furnace port.
  • a predetermined temperature for example, a first lower limit temperature described later
  • the heater 208 it is possible to more easily control the heater 208 so that the temperature of the side wall of the reaction tube 203 falls within a predetermined temperature range (for example, the first lower limit temperature or higher and the first upper limit temperature or lower) in the outer peripheral direction. .
  • a predetermined temperature range for example, the first lower limit temperature or higher and the first upper limit temperature or lower
  • three sidewall temperature sensors are provided.
  • at least one sidewall temperature sensor is provided for each of the flat region where the heater unit 208a is disposed and the protruding region where the heater units 208b to 208d are disposed.
  • the above-described effects can be obtained.
  • the heater units 208a to 208d are connected to each other by a structure in which crank-shaped end faces are combined as shown in FIG.
  • the outer peripheral surfaces of the connection portions of the heater units 208a to 208d are covered (covered) with a protective cover 330 made of a material such as SUS.
  • the controller 121 as a control unit is configured as a computer including a CPU 121a, a RAM 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c is configured by a flash memory, an HDD, or the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 121 to execute each procedure described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • the process recipe is also simply called a recipe.
  • program When the term “program” is used in this specification, it may include only a recipe, only a control program, or both.
  • the RAM 121b is configured as a memory area that temporarily stores programs, data, and the like read by the CPU 121a.
  • the I / O port 121d includes the MFC 241a, the valve 243a, the gas generator 250a, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the heater power supply unit 210, the temperature sensor 263, the side wall temperature sensors 303a and 303b, and the gas supply pipe.
  • the temperature sensor 304b, the exhaust pipe temperature sensor 304d, the rotation mechanism 267, the boat elevator 115, and the like are connected.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a performs a gas generation operation by the gas generator 250a, a gas flow rate adjustment operation by the MFC 241a, an opening / closing operation of the valve 243a, a pressure adjustment operation by the APC valve 244 based on the pressure sensor 245, and a vacuum in accordance with the contents of the read recipe.
  • the controller 121 installs the above-mentioned program stored in an external storage device (for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • a film having a silazane bond (—Si—N—) (polysilazane film) is formed on the surface of the substrate that is subjected to predetermined processing in the substrate processing step.
  • this film contains nitrogen (N) and hydrogen (H), and may further contain carbon (C) and other impurities.
  • the polysilazane film formed on the wafer 200 is modified (oxidized) by supplying a vaporized gas containing H 2 O 2 under a relatively low temperature condition.
  • a plurality of wafers 200 having a polysilazane film formed on the surface are loaded into a boat 217. Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201. In this state, the seal cap 219 is in a state of sealing the lower end of the reaction tube 203 via the O-ring 220a.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246 so that the space in which the wafer 200 exists, that is, the space where the wafer 200 exists becomes a predetermined pressure (reforming pressure). Further, the reaction tube 203, the wafer 200 accommodated in the processing chamber 201, the seal cap 219, and the like are heated by the heaters 207 and 208 and the cap heater 209.
  • the state of energization from the heater power supply unit 210 to the heater 207 is feedback controlled based on the temperature information detected by the temperature sensor 263 so that the wafer 200 accommodated in the region A has a predetermined temperature.
  • the side wall of the furnace port portion of the reaction tube 203 is detected.
  • the temperature and the temperature of the gas supply pipe 232a, the temperature sensor protection pipe 263a, and the exhaust pipe 231 are each set to a predetermined temperature (or a predetermined temperature distribution). The state of energization is feedback controlled.
  • the feedback control of the heaters 207 and 208 is continuously performed at least until the processing on the wafer 200 is completed. Further, the rotation of the wafer 200 by the rotation mechanism 267 is started. The operation of the vacuum pump 246 and the heating and rotation of the wafer 200 are continuously performed at least until the processing on the wafer 200 is completed.
  • valve 243a is closed and the supply of the vaporized gas into the processing chamber 201 is stopped.
  • Examples of the processing conditions for the reforming step include the following. H 2 O 2 concentration of liquid raw material: 20 to 40%, preferably 25 to 35% Liquid raw material vaporization conditions: Heated to 120 to 200 ° C. at approximately atmospheric pressure Reforming pressure: 700 to 1000 hPa (any of atmospheric pressure, slightly reduced pressure, and slightly increased pressure) Wafer 200 temperature: 70 to 110 ° C., preferably 70 to 80 ° C.
  • the vaporized gas supplied into the processing chamber 201 is liquefied in the processing chamber 201, and the liquid thus generated can stay around the furnace port (such as the upper surface of the seal cap 219).
  • the furnace port such as the upper surface of the seal cap 219.
  • the gas supply pipe 232a in the processing chamber 201, the temperature sensor protection pipe 263a, and the like a local low temperature region may be generated as described above, and the locally generated low temperature region is contacted. By doing so, the vaporized gas tends to re-liquefy.
  • the heater 208 configured as described above, the side wall of the furnace port of the reaction tube 203 and the like are heated evenly, and a local low temperature region is prevented from being generated.
  • temperature control is performed so that a region below a predetermined temperature (first lower limit temperature) does not occur on the side wall and the like around the furnace port.
  • the lower limit temperature varies depending on conditions such as the concentration of vaporized gas, but is, for example, 80 ° C. or higher under the above-described processing conditions.
  • the liquid generated by re-liquefaction of the vaporized gas tends to be in a state where H 2 O 2 is concentrated to a high concentration, that is, a high concentration H 2 O 2 solution. Further, the retained high concentration H 2 O 2 liquid tends to change to a state in which H 2 O 2 is further concentrated to a higher concentration.
  • the high-concentration H 2 O 2 liquid is very reactive and has a strong corrosive action, which may cause serious damage to the furnace port member.
  • H 2 O 2 is O 2 gas and the H 2 O gas contained in the high concentration H 2 O 2 solution
  • the explosive decomposition reaction means that a liquid containing H 2 O 2 is rapidly decomposed into oxygen gas (O 2 ) and water vapor (H 2 O) and expands to explode, burn, or close to these. It is to cause a phenomenon.
  • An explosive decomposition reaction can occur when the H 2 O 2 liquid exceeds a certain temperature (explosion critical temperature) at a certain H 2 O 2 liquid concentration and pressure. Therefore, the high concentration H 2 O 2 liquid retained by reliquefaction must be maintained so as not to exceed the explosion critical temperature.
  • the explosion critical temperature varies depending on the concentration of H 2 O 2 in the high-concentration H 2 O 2 liquid, and specifically decreases as the concentration of H 2 O 2 increases.
  • the lowering of the explosion critical temperature becomes the lower limit when the concentration of the high concentration H 2 O 2 liquid reaches 100%. Therefore, when the treatment pressure is atmospheric pressure, the temperature of the high concentration H 2 O 2 liquid is maintained at a temperature lower than 112 ° C., which is the explosion critical temperature when the concentration is 100%. Occurrence can be reliably avoided.
  • the side wall and the like of the furnace port of the reaction tube 203 are evenly heated to prevent the occurrence of a local high temperature region.
  • temperature control is performed so that a region exceeding a predetermined temperature (first upper limit temperature) does not occur on the side wall around the furnace port. I do.
  • the first upper limit temperature is 112 ° C. or lower when the processing pressure is atmospheric pressure.
  • the present embodiment is applied when performing temperature control in a temperature region (that is, a temperature region of 120 ° C. or lower, more preferably 100 ° C. or lower) in which the influence of heat transfer by heat conduction is larger than that of heat transfer by radiation.
  • a temperature region that is, a temperature region of 120 ° C. or lower, more preferably 100 ° C. or lower
  • temperature controllability can be improved.
  • the heating control by the cap heater 209 can be maintained within the temperature range so that the temperature controllability by the heater 208 can be maintained.
  • the heater 207 is controlled to heat the wafer 200 to a temperature higher than the above-described reforming temperature. By maintaining this temperature, the wafer 200 and the inside of the processing chamber 201 are gently dried.
  • the seal cap 219 is lowered by the boat elevator 115 and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is unloaded from the lower end of the reaction tube 203 to the outside of the reaction tube 203.
  • Example An example of the present embodiment and a comparative example will be described below.
  • the temperature of the heater 208 in this embodiment was controlled, and the temperatures at the temperature monitoring points A to N shown in FIG. 12 were measured.
  • Monitor points A to H are points on the upper surface base 219a
  • monitor points I to N are points on the outer peripheral surface of the side wall around the furnace port.
  • temperature control is performed by a heater having the following configuration in place of the heater 208 of the present embodiment, and temperature monitoring points A, B, E, F, I, K, L are performed in the same manner as in the examples.
  • N were measured.
  • the control was performed by setting the target temperature at the monitor points A to H to 80 to 112 ° C.
  • the substrate processing apparatus in the comparative example includes a heater 400 that heats the side wall around the furnace port, and a jacket heater 401 that heats the protruding portion such as the gas supply pipe 232a.
  • the heater 400 does not include the side wall temperature sensor 303a of this embodiment, and is configured to perform temperature control only by the heater output.
  • the jacket heater 401 is installed so as to be wound around each protrusion such as the gas supply pipe 232a, and is mainly provided for the purpose of heating only the protrusion.
  • FIG. 14 shows the measurement results of the temperatures at the monitor points A to N in the example and the comparative example.
  • the occurrence of a local high temperature region was particularly noticeable particularly at the monitor points A and I having a large distance from the protruding portion.
  • the result exceeded 112 ° C. as the first upper limit temperature.
  • processing procedure and processing conditions at this time can be the same processing procedure and processing conditions as in the above-described embodiment, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

基板を収容する反応管と、反応管に形成された炉口を閉塞する蓋部と、反応管の炉口近傍の側壁の外周に設けられたヒータと、反応管の炉口近傍の側壁における、側壁の周方向において互いに異なる複数の位置の温度をそれぞれ測定するよう構成された複数の温度センサと、複数の温度センサのそれぞれの測定値に基づいて、ヒータを制御するよう構成された制御部と、を備える基板処理装置を提供する。これにより、処理室を形成する部材の温度に局所的な偏りが生じることを防止するように加熱を行う。

Description

基板処理装置、ヒータユニットおよび半導体装置の製造方法
 本発明は、基板処理装置、ヒータユニットおよび半導体装置の製造方法に関する。
 半導体装置の製造工程の一工程として、過酸化水素(H)を含む液体原料を気化させて処理ガスとしての気化ガスを生成する工程と、処理室内の基板に対してこの気化ガスを供給する工程と、を含む基板処理が行われることがある(例えば特許文献1,2参照)。
国際公開第2014/069826号 国際公開第2013/070343号
 上述の基板処理を行うと、条件によっては、処理室内へ供給された気化ガスが処理室内において冷やされて液化したり、液化で生じた液体が加熱されて急激な反応を起こしたりする。このような現象は、処理室を形成する部材の温度が不均一になることによって局所的な低温領域や高温領域が生じることにより起こる場合がある。本発明の目的の一つは、処理室を形成する部材の温度に局所的な偏りが生じることを防止するように加熱を行うことが可能な技術を提供することにある。
 本発明の一態様によれば、基板を収容する反応管と、前記反応管に形成された炉口を閉塞する蓋部と、前記反応管の炉口近傍の側壁の外周に設けられたヒータと、前記反応管の炉口近傍の側壁における、前記側壁の周方向において互いに異なる複数の位置の温度をそれぞれ測定するよう構成された複数の温度センサと、前記複数の温度センサのそれぞれの測定値に基づいて、前記ヒータを制御するよう構成された制御部と、を備える基板処理装置が提供される。
本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図。 本発明の一実施形態で好適に用いられる基板処理装置の反応管の炉口周辺構造を示す概略構成図であり、炉口周辺を水平断面図で示す図。 (a)は、ヒータユニットの一形態の構成、及び当該ヒータユニットの周辺の構成を示す縦断面図。(b)は、(a)に示す方向Aから見た、一点鎖線におけるヒータユニットの縦断面図。 (a)は、ヒータユニットの他の形態の構成、及び当該ヒータユニットの周辺の構成を示す縦断面図。(b)は、(a)に示す方向Aから見た、一点鎖線におけるヒータユニットの縦断面図。 (a)は、ヒータユニットの他の形態の構成、及びヒータユニットの周辺の構成を示す縦断面図。(b)は、(a)に示す方向Aから見た、一点鎖線におけるヒータユニットの縦断面図。 ヒータユニットの他の形態の構成を示す概略構成図であり、排気管の延伸方向に垂直な面を断面とした縦断面図。 均熱シートの構成を示す縦断面図。 ヒータユニットに取り付けられる側壁温度センサの取り付け構造を示すヒータユニットの縦断面図。 ヒータユニット間の接続構造を説明する概略構成図。 本発明の一実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図。 基板処理工程の一例を示すフロー図。 実施例における温度モニタ点A~Nの位置を示す概略構成図。 比較例の構成と、温度モニタ点A~Nの位置を示す概略構成図。 実施例と比較例それぞれにおける温度モニタ点A~Nにおける温度の測定結果を示すグラフ。
<本発明の一実施形態>
 以下、本発明の一実施形態について、図1~図2を用いて説明する。
(1)基板処理装置の構成
 図1に示すように、処理炉202は反応管203を備えている。反応管203は、例えば石英(SiO)や炭化シリコン(SiC)等の耐熱性材料からなり、下端に炉口(開口)を有する円筒部材として構成されている。反応管203の筒中空部には、処理室201が形成される。処理室201は、基板としてのウエハ200を収容する第1領域としてのウエハ収容領域A(以下、領域A)、および、領域Aの鉛直方向下方に設けられた第2領域としての炉口周辺領域B(以下、領域B)を、内部に備えている。
 反応管203の下方には、反応管203の下端開口を気密に閉塞可能な蓋部としてのシールキャップ219が設けられている。シールキャップ219の下方には、回転機構267が設置されている。シールキャップ219は円盤状に形成されており、上面側を構成する上面ベース部219aと、下面側を構成する下面ベース部219bとが積層するように構成されている。上面ベース部219aは、例えば石英等の非金属部材により構成され、その厚さは10~20mm程度である。下面ベース部219bは、例えばSUS等の金属部材により構成されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。回転軸255に開設された回転軸255の軸受部219sは、磁気シール等の流体シールとして構成されている。シールキャップ219は、反応管203の下方に設置されたボートエレベータ115によって垂直方向に昇降させられる。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217すなわちウエハ200を処理室201内外に搬入および搬出(搬送)する搬送機構として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなり、上下に天板217a、底板217bを備えている。ボート217の下部に水平姿勢で多段に支持された断熱体218は、例えば石英やSiC等の耐熱性材料からなり、領域Aと領域Bとの間の熱伝導を抑制するように構成されている。断熱体218をボート217の構成部材の一部と考えることもできる。
 反応管203の外側には、第1加熱部としてのヒータ207と、第2加熱部としてのヒータ208と、が設けられている。ヒータ207,208へは、ヒータ電源ユニット210から電力が供給される。
 ヒータ207は、領域Aを囲うように垂直に据え付けられている。ヒータ207は、後述する基板処理工程において、領域Aに収容されたウエハ200を所定の温度に加熱するように制御される。
 ヒータ208は、領域Bを囲うようにヒータ207の鉛直方向下方に設けられている。ヒータ208は、反応管203の外周方向に配列(分割)された複数のヒータユニット(ヒータユニット208a~208d)により構成されている。ヒータ208は、後述する基板処理工程において、特に反応管203の炉口周辺の側壁の温度や配管の温度をそれぞれ所定の温度に維持するよう制御される。なお以下では、反応管203の炉口周辺の側壁を、単に炉口部側壁と称する。
 処理室201内には、反応管203の側壁を外側から内側に貫通するとともに、反応管203の内壁に沿って延伸する、温度センサ保護管263aが設けられている。温度センサ保護管263aの管内には、温度検出部としての温度センサ263が反応管203の外側から挿通されて設けられている。温度センサ263により検出された温度情報に基づいて、ヒータ207の出力が調整される。温度センサ263は主に熱電対により構成される。なお、温度センサ263及び温度センサ保護管263aは複数設けてもよい。
 反応管203の側壁には、気化ガスを処理室201内に供給するガス供給管232aが接続されている。ガス供給管232aは、反応管203の炉口近傍(すなわち領域B周辺)の側壁を外側から内側に貫通して、反応管203の内壁に沿って上端近傍まで延伸しており、その先端は開口してガス供給ポート232pを構成している。なお、高さが互いに異なるガス供給管232aを複数設けて、それぞれの上端に設けられたガス供給ポートから気化ガスを処理室201内に供給するように構成してもよい。ガス供給管232aには、上流側から順に、ガス発生器250a、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a、開閉弁であるバルブ243aが設けられている。ガス発生器250aには、液体原料としての過酸化水素水を供給する液体供給管や、液体を気化させるために用いるキャリアガスを供給するキャリアガス供給管等が接続されている。
 ここで過酸化水素水とは、常温で液体である過酸化水素(H)を溶媒としての水(HO)中に溶解させることで得られる水溶液のことである。ガス発生器250aは、過酸化水素水を所定の温度(気化温度)に加熱する等し、これを気化或いはミスト化させることによって気化ガスを発生させる。気化ガス中には、ガス状或いはミスト状のHおよび水蒸気(HOガス)がそれぞれ所定の濃度で含まれる。気化ガスに含まれるHは、活性酸素の一種であり、不安定であってOを放出しやすく、OHラジカルを生成させ、非常に強い酸化力を持つ酸化剤(Oソース)として作用する。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、気化ガス供給系が構成される。
 反応管203の炉口近傍(炉口周辺)の側壁には、処理室201内の雰囲気を排気する排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器としての圧力センサ245および圧力調整器としてのAPCバルブ244を介して、排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、さらに、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 ここで、炉口部側壁では、ガス供給管232a、温度センサ保護管263a、排気管231等のように反応管203から外側に突出した部位(突出部)から熱逃げが発生したり、突出部が存在することによりヒータによる均一な加熱が困難であったりする。そのため、炉口部側壁や、処理室201内のガス供給管232aや温度センサ保護管263a等に局所的な低温領域が生じることがある。また一方で、局所的な低温領域が生じないようにヒータの出力を上げることにより、反対に局所的な高温領域が生じることがある。本実施形態では、主にヒータ208を以下のように構成することにより、これらの局所的な低温領域や高温領域が生じることを防止する。
(ヒータ208の構成)
 ヒータ208を構成するヒータユニット208a~208dのそれぞれの構成について説明する。
 図2に示されるように、ヒータユニット208aは、炉口部側壁のうち、ガス供給管232a、温度センサ保護管263a、及び排気管231等の配管が接続されていない部分(以下、「平坦部領域」と称することがある)を加熱するよう配設されたユニットである。本実施形態では、ヒータユニット208aが2個(208a及び208a´)設けられている。
 ヒータユニット208bは、炉口部側壁のうちガス供給管232aが接続されている箇所の周辺部分と、ガス供給管232aのうち反応管203の外に露出している接続箇所の周辺部分と、を加熱するよう配設されたユニットである。すなわち、ヒータユニット208bは、反応管203の側壁とガス供給管232aの両者を加熱するように構成されている。
 ヒータユニット208cは、炉口部側壁のうち温度センサ保護管263aが接続されている箇所の周辺部分と、温度センサ保護管263aのうち反応管203の外に露出している接続箇所の周辺部分と、を加熱するよう配設されたユニットである。すなわち、ヒータユニット208cは、反応管203の側壁と温度センサ保護管263aの両者を加熱するように構成されている。
 ヒータユニット208dは、排気管231のうち反応管203との接続箇所の周辺部分を加熱するよう配設されたユニットである。
 なお、炉口部側壁のうち、ガス供給管232a、温度センサ保護管263a、排気管231等の配管が接続されている箇所の周辺部分を、以下、総称して「突出部領域」と称することがある。
 ヒータユニット208a~208cは、後述するように、それぞれが炉口部側壁の外周面温度を測定する側壁温度センサ(303a,303b)を備えることが可能な構成となっており、ヒータ208は、互いに外周方向に離間した位置に配置された、少なくとも複数の側壁温度センサを備えている。これらの複数の側壁温度センサでそれぞれ測定された温度に基づいてヒータ208を制御することにより、反応管203の側壁の温度を外周方向において均等になるように加熱することができる。なお、側壁温度センサは、ヒータ208において少なくとも2以上備えられればよく、ヒータユニット208a~208cの全てが側壁温度センサを備える必要はない。
また、ヒータユニット208b~208dは、後述するように、それぞれがガス供給管232a等の配管周辺の温度を測定するガス供給管温度センサ304bや排気管温度センサ304dを備えることが可能な構成となっている。これらの配管周辺の温度センサで測定された温度に基づいてヒータ208を制御することにより、反応管203に接続された配管を個別に加熱して、反応管203の側壁の温度を外周方向においてより精密に均等になるように加熱することができる。
 ヒータユニット208a~208dはヒータ電源ユニット210に接続されており、ヒータ電源ユニット210からは、ヒータユニット208a~208cそれぞれに対して電力が供給されるように構成されている。また、複数の側壁温度センサは、後述する制御部としてのコントローラ121に接続されており、コントローラ121は測定された温度に基づいて、ヒータ電源ユニット210を介してヒータユニット208a~208dへの供給電力を個別に制御するよう構成されている。反応管203の外周方向に配列された複数のヒータユニットそれぞれが個別に温度制御を行うことにより、炉口部側壁を周方向で均等に加熱することが容易になる。なお、ヒータユニット208a~208dは、それぞれが個別のヒータ電源ユニットを備え、それぞれがコントローラ121により制御されるように構成されていてもよい。
(ヒータユニット208a)
 ヒータユニット208a及びその周辺の構成について、図3(a)(b)を参照しながら以下詳述する。 ヒータユニット208aは、炉口部側壁外周に沿って配設されている。より具体的には、ヒータユニット208aは、反応管203の下端をなすフランジの上にOリング保護部273を介して載置されている。また、ヒータユニット208aとヒータ207の間にはSUS等で形成された仕切り部308が設けられており、その間にはヒータ207からの熱影響やヒータユニット208aからの熱逃げを抑制するために断熱材307が充填されている。
 また、シールキャップ219の下面には、シールキャップ219の上面(より具体的には上面ベース219aの上面)を所定の温度(例えば90℃)とするようにシールキャップ219を加熱するキャップヒータ209が配設されている。なお、シールキャップ219には、反応管203の炉口周辺におけるガス供給管232a等のような突出した構造が比較的少ない。そのため、キャップ209によってシールキャップ219を均等に加熱することは、比較的容易である。
 上面ベース部219aの上面には、反応管203の下端と当接するシール部材としてのOリング220aが設けられている。また、下面ベース部219bの上面には、上面ベース部219aの下面と当接するシール部材としてのOリング220bが設けられている。Oリング保護部273内に設けられた冷媒流路274、及び下面ベース219b内に設けられた冷媒流路270はそれぞれ、Oリング220a及びOリング220bが所定の温度以上に加熱されないように、それらを冷却するように構成されている。
 ヒータユニット208aは、発熱線301a、発熱線301aを格納するブロック状に一体形成された発熱線格納部305、及び発熱線格納部305を囲うように設けられたヒータカバー306により構成されている。また、発熱線格納部305及びヒータカバー306を貫通して配置された、炉口部側壁の外周面温度を測定する側壁温度センサ303aを備えることができる。
 発熱線301aは、らせん状(バネ状)に形成されたカンタル線等によって形成され、反応管203の外周に面する位置に、外周の周方向に沿って設けられている。 発熱線301aは、1本又は複数本の互いに平行な発熱線により構成される。反応管203の側壁を高さ方向において均等に加熱するためには、互いに平行な発熱線を複数本とすることが好ましい。本実施形態では、発熱線301aは4本の互いに平行に配置されたカンタル線により構成されている。なお、本実施形態では、それぞれが独立した複数本の発熱線により発熱線301aを構成しているが、1本のカンタル線を複数回折り返すことにより4本の互いに平行な発熱線を形成することもできる。
発熱線301aは、80~100℃付近で発熱する時に放射する熱線のピーク波長が5~10μm付近となる特性を有するもの(例えばカンタル線)を用いることが特に好ましい。これらの波長は石英に吸収され易く、石英で形成された、反応管203やガス供給管232a等の構造物を効率的に加熱するために適している。後述する発熱線301b,302b,302dについても同様である。
 発熱線格納部305は、ポーラス状の工業用アルミナボード等の低熱伝導率材料(熱伝導率が0.3W/m・K以下)により形成されており、発熱線301aを構成する各発熱線間の温度干渉を抑制している。すなわち、発熱線間格納部305は、発熱線間の温度干渉を防止する離間部材として機能する。
 ただし、発熱線301aを構成する各発熱線間における温度干渉を完全に遮断することは一般に困難である。そのため、本実施形態では、平行に配置された複数本の発熱線のうち、上下端に配置された発熱線の発熱量が、それらの発熱線に挟まれた他の発熱線の発熱量よりも大きくなるように発熱線301aを構成することにより、反応管203の側壁が高さ方向において均等に加熱されるようにしている。より具体的には、上下端に配置された発熱線の太さが、それらの発熱線に挟まれた他の発熱線の太さよりも細くなるように構成している。これにより、各発熱線の電気抵抗値を異ならせて、同じ供給電流量に対して発熱量を異ならせている。
 ヒータ電源ユニット210から発熱線301aへ供給される電力は、主に側壁温度センサ303aの測定温度に基づいて、コントローラ121により制御される。但し、当該ヒータユニット208aに側壁温度センサ303aが設けられていない場合には、他のヒータユニットに設けられた側壁温度センサの測定温度に基づいて供給電力を制御することもできる。また、側壁温度センサ303aの測定温度と他の側壁温度センサの測定温度の両方に基づいて供給電力を制御することもできる。
(ヒータユニット208b)
 ヒータユニット208b及びその周辺の構成について、図4(a)(b)を参照しながら以下詳述する。 ヒータユニット208bは、ヒータユニット208aと同様に、炉口部側壁外周に沿って配設されている。具体的な構成のうち、ヒータユニット208a及びその周辺の構成と同じものについては、図4(a)(b)において同じ符号を付しており説明を省略する。
 ヒータユニット208bは、発熱線301b及び発熱線302b、発熱線301a及び302bを格納する発熱線格納部305、及びガス供給管232aの近傍温度を測定する配管温度センサとしてのガス供給管温度センサ304bを備えている。また、ヒータユニット208aと同様に、炉口部側壁の外周面温度を測定する側壁温度センサ303bを備えることができる。なお、ガス供給管温度センサ304bは、反応管203の側壁近傍のガス供給管232aの温度状態を把握できれば、ガス供給管232a自体の温度を直接測定するものであってもよい。
 発熱線301bは、反応管203の外周に面する位置に、外周の周方向に沿って設けられており、発熱線301aと同様の構成を備えている。ただし、発熱線301bは発熱線301aと異なり、ガス供給管232aが配置された位置を避ける位置にのみ配置されている。
 発熱線302bは、ガス供給管232aの近傍に配置され、且つガス供給管232aの延伸方向に沿って(延伸方向に対して平行に)配置された、1本又は複数本の発熱線により構成される。複数本の発熱線により構成されている場合、これらの発熱線はガス供給管232aを取り囲むように配置される。ここで、発熱線301bのみでは、反応管203の側壁から突出したガス供給管232aのうち、反応管203の側壁直近部分のみを加熱するにとどまり、ガス供給管232aを延伸方向において十分に加熱することが困難である。そのため、反応管203の側壁からガス供給管232aへの熱逃げを防ぐことができない。一方、本実施形態によれば、発熱線302bはガス供給管232aに対して平行に配置されているため、ガス供給管232aを延伸方向において均等に加熱することができる。
 ガス供給管温度測定センサ304bは、ガス供給管232aに対して平行に発熱線格納部305内に挿入されている。発熱線302bの複数本の発熱線からは均等な距離をもって離間していることが好ましい。
 発熱線格納部305は、発熱線301bと発熱線302bを格納する、一体形成された部材(格納ブロック)として構成されおり、発熱線301bと発熱線302bの間の温度干渉を抑制している。後述するように、発熱線301b及び発熱線302bの温度(供給電力)は制御部により個別に制御され、反応管203の側壁とガス供給管232aをそれぞれ個別に加熱するように構成されている。ここで、発熱線301bと発熱線302bの間の温度干渉を抑えることにより、反応管203の側壁とガス供給管232aに対して、独立した緻密な加熱制御を行うことが容易になる。
 発熱線301b及び発熱線302bに対するヒータ電源ユニット210からの電力供給は、コントローラ121によりそれぞれ個別に制御される。コントローラ121は、ヒータ電源ユニット210を介して、発熱線301bへの供給電力を、主に側壁温度センサ303bの測定温度に基づいて制御する。また、コントローラ121は、ヒータ電源ユニット210を介して、発熱線302bへの供給電力を、主にガス供給管温度センサ304bの測定温度に基づいて制御する。但し、発熱線301b及び発熱線302bの少なくとも一方の供給電力を、側壁温度センサ303bの測定温度とガス供給管温度センサ204bの測定温度の両方に基づいて制御することもできる。
(ヒータユニット208bの変形例)
 本実施形態では、ヒータユニット208bが配置された反応管203の側壁の突出部領域に対して、1本のガス供給管232aが接続されている。これに対して、1つのヒータユニットヒータが配置された突出部領域に対して、複数本のガス供給管が接続される変形例が考えられる。図5(a)(b)は、この変形例におけるヒータユニット208b-1及びその周辺の構成を示している。 具体的な構成のうち、ヒータユニット208b及びその周辺の構成と同じものについては、図5(a)(b)において同じ符号を付しており説明を省略する。
 ヒータユニット208b-1は特に、複数のガス供給管232aのそれぞれに対して、発熱線302bが1本又は複数本配置されている。図5(b)に示した構成のように、本変形例では、複数のガス供給管232aの間隔が狭くなっており、このような場合、従来は発熱線の配置が困難であった。一方、本変形例によれば、発熱線302bがガス供給管232aに対して平行に配置されているため、ガス供給管の間隔が狭い場合であっても、ガス供給管を均等に加熱することができる。また、複数のガス供給管232aの間隔が狭い場合、隣り合うガス供給管232aの間に発熱線302bを配置することにより、1本の発熱線で複数のガス供給管を加熱するよう構成することができる。
 また、ガス供給管温度測定センサ304bは、複数のガス供給管232aの少なくとも1本に対して設けられるが、複数のガス供給管232aそれぞれに対して設けてもよい。
(ヒータユニット208c)
 ヒータユニット208c及びその周辺の構成は、ヒータユニット208bと同様である。ヒータユニット208bはガス供給管232aの接続箇所を加熱する一方、ヒータユニット208cは温度センサ保護管263aの接続箇所を加熱することのみが異なる。
(ヒータユニット208d)
 ヒータユニット208dは、ヒータユニット208a~208cと同様に、炉口部側壁外周に沿って配設されている。ヒータユニット208d及びその周辺の構成について、図6を参照しながら以下詳述する。
 ヒータユニット208dは、発熱線302d、発熱線302dを格納する格納部材305aと、発熱線302dを格納しない格納部材305b及び305c、及び排気管231の外周と発熱線302dの間に、排気管231を覆うように設けられた均熱シート320を備えている。また、ヒータユニット208bにおけるガス供給管温度センサ304bと同様に、排気管231の近傍の温度を測定する配管温度センサとしての排気管温度センサ304dを備えることができる。
 発熱線302dは、発熱線302bと同様に、排気管231の近傍に配置され、且つ排気管231に対して平行に配置された複数本の発熱線により構成される。ここで、例えばヒータユニットの設置位置等の理由により、発熱線302dを排気管231の外周面の全面を取り囲むように配置できない場合がある。そこで、ヒータユニット208dは、これらの発熱線の少なくとも1本が、排気管231の外周面の一部のみに沿うように配置され、発熱線が配置できない残りの外周面に沿う位置には配置されない。
 格納部材305a~305cは、発熱線格納部305と同様に、低熱伝導率材料により形成されている。また、格納部材305a~305cは分割されており、排気管231への取り付けを容易にしている。
 均熱シート320は、排気管231の外周面の一部のみに沿うように配置された発熱線302dからの熱を外周面の全体に伝導させて、排気管231の外周面を均等に加熱するように設けられている。
 均熱シート320は、図7に示すように、アルミナクロス等の材料で構成された絶縁材321の内部に、アルミニウムシート等の材料で構成された高熱伝導材322と、カーボンシート等の材料で構成されたクッション材323とが積層されて配置された構造を有している。高熱伝導材322は発熱線302dに近い側に配置され、発熱線302dの熱を排気管231の外周方向全体に均等に伝導させる。クッション材323は排気管231に近い側に配置され、均熱シート320を排気管231の外周面に密着させる。均熱シート320の厚さは3~5mm程度である。
 均熱シート320を設けることにより、発熱線302dに面した排気管231の外周面において局所的な高温部が発生するのを抑制し、発熱線302dが配置されていない排気管231の外周面において局所的な低温部が発生するのを抑制することができる。
 ヒータ電源ユニット210から発熱線302dへ供給される電力は、主に排気管温度センサや、他のヒータユニットに設けられた側壁温度センサの測定温度に基づいて、コントローラ121により制御される。
(側壁温度センサの取り付け構造)
 側壁温度センサ303aの温度測定センサ部である先端部は、図8に示す構造により、炉口部側壁に押し付けられるように接触している。ヒータカバー306には固定部材309が固定されており、側壁温度センサ303aの突出部と固定部材309の間には、弾性部材であるバネ310が設けられている。バネ310は固定部材309を支点として、側壁温度センサ303aを反応管203の側壁に押付けるように構成されている。なお、側壁温度センサ303bも同様の構造により設置されている。
(側壁温度センサの設置位置)
 ヒータユニット208aが設置されている反応管203側壁の平坦部領域は、ヒータユニット208b,208c,208dが設置されている突出部領域よりも高温になり易く、逆に突出部領域は、平坦部領域よりも低温になり易い傾向がある。これは、平坦部領域ではガス供給管232a等の突出部からの熱逃げが起こりにくいことや、突出部領域では発熱線301bや301c等が配置される面積が限られるため、高さ方向における均等な加熱が難しいことなどが理由としてある。
 本実施形態では、最も長い平坦部領域を加熱するヒータユニット208aに側壁温度センサ303aを設け、ヒータ208aと対向する位置に配置されたヒータユニット208a´に側壁温度センサ303a´を設け、突出部領域を加熱するヒータユニット208b´に側壁温度センサ303bを設けている。
 反応管203の外周方向において互いに離間した位置をヒータ制御点として、これらの位置に各側壁温度センサを配置しているため、それぞれで測定された温度に基づいて、反応管203の側壁の温度が外周方向において均等になるように、ヒータユニット208a~208dを個別に制御することができる。
 ここで、ヒータユニット208a~208dを個別に制御する際に、高温になり易い平坦部領域の温度を測定する側壁温度センサ303a,303a´により測定される温度の目標値(第1目標温度)は、低温になり易い突出部領域の温度を測定する側壁温度センサ303bにより測定される温度の目標値(第2目標温度)よりも低く設定することが好ましい。これにより、反応管203の側壁の温度が外周方向において均等になるようにヒータ208を制御することが容易になる。
 さらに、平坦部領域の温度を測定する側壁温度センサ303a,303a´により測定された温度が所定の温度(例えば後述する第1上限温度)を超えないように、主にヒータユニット208a,208a´を制御することにより、炉口周辺の側壁において局所的な高温領域が発生することを防ぐことが容易になる。
 また、突出部領域の温度を測定する側壁温度センサ303bにより測定された温度が所定の温度(例えば後述する第1下限温度)未満とならないように、主にヒータユニット208b´を制御することにより、炉口周辺の側壁において局所的な低温領域が発生することを防ぐことが容易になる。
 したがって、反応管203の側壁の温度が外周方向において所定の温度範囲(例えば第1下限温度以上、第1上限温度以下)になるように、ヒータ208を制御することをより容易にすることができる。
 なお、本実施形態では側壁温度センサを3個設けているが、ヒータユニット208aが配置される平坦部領域と、ヒータユニット208b~208dが配置される突出部領域のそれぞれに少なくとも1個ずつ側壁温度センサを設けることによって、上述の効果を得ることができる。ただし、反応管203の側壁の温度を外周方向においてより均等に近づけるためには、側壁温度センサは3個以上設けることが望ましい。
(ヒータユニット間の接続構造)
 ヒータユニット208a~208dは互いに、図9に示すようなクランク状の端面が組み合わされる構造により接続されている。また、ヒータユニット208a~208dの接続箇所の外周面は、SUS等の材料で構成された保護カバー330によりカバー(被覆)される。このような接続構造を有することにより、ヒータ208と反応管203の側壁との間の空間(内周空間)の雰囲気がヒータ208の外周側に漏れることを防止し、内周空間と外周側との間の気流置換による温度低下を最小限にすることができる。なお、各ヒータユニットの端面の形状はクランク状に限らず、凸形状と凹形状の組合せなど、端面に凹凸が形成された形状の組合せであればよい。
 図2に示すように、制御部であるコントローラ121は、CPU121a、RAM121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介してCPU121aとデータ交換可能なように構成されている。コントローラ121には、タッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cはフラッシュメモリやHDD等により構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域として構成されている。
 I/Oポート121dは、上述のMFC241a、バルブ243a、ガス発生器250a、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ電源ユニット210、温度センサ263、側壁温度センサ303a,303b、ガス供給管温度センサ304b、排気管温度センサ304d、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、ガス発生器250aによるガス生成動作、MFC241aによるガスの流量調整動作、バルブ243aの開閉動作、圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263、側壁温度センサ303a,303b、ガス供給管温度センサ304b、排気管温度センサ304dに基づくヒータ電源ユニット210からヒータ207,208,キャップヒータ209への電力供給量の調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 続いて、上述の基板処理装置を用い、半導体装置の製造工程の一工程として実施される基板処理工程の一例について、図11を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作は、コントローラ121により制御される。 なお、この基板処理工程において所定の処理が施される基板の表面には、シラザン結合(-Si-N-)を有する膜(ポリシラザン膜)が形成されている。この膜には、シリコン(Si)の他、窒素(N)、水素(H)が含まれ、さらに、炭素(C)や他の不純物が混ざっている場合がある。この基板処理工程では、ウエハ200上に形成されたポリシラザン膜に対し、比較的低温の条件下でHを含む気化ガスを供給することで、この膜を改質(酸化)する。
(基板搬入工程)
 表面にポリシラザン膜が形成された複数枚のウエハ200が、ボート217に装填される。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入される。この状態で、シールキャップ219は、Oリング220aを介して反応管203の下端をシールした状態となる。
(圧力・温度調整工程)
 処理室201内、すなわち、ウエハ200が存在する空間が所定の圧力(改質圧力)となるように、真空ポンプ246によって処理室201内が真空排気される。また、ヒータ207,208、キャップヒータ209により、反応管203、処理室201に収容されたウエハ200、シールキャップ219、等が加熱される。
 この際、領域Aに収容されたウエハ200が所定の温度となるように、温度センサ263が検出した温度情報に基づいて、ヒータ電源ユニット210からヒータ207への通電具合がフィードバック制御される。
 また、ヒータ208に設けられた温度センサ(側壁温度センサ303a,303b、ガス供給管温度センサ304b、排気管温度センサ304d)が検出した温度情報に基づいて、反応管203の炉口部の側壁の温度と、ガス供給管232a、温度センサ保護管263a及び排気管231の温度とがそれぞれ所定の温度(又は所定の温度分布)となるように、ヒータ電源ユニット210からヒータユニット208a~208dそれぞれへの通電具合がフィードバック制御される。
 ヒータ207,208のフィードバック制御は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。また、回転機構267によるウエハ200の回転を開始する。真空ポンプ246の稼働、ウエハ200の加熱および回転は、いずれも、少なくとも、ウエハ200に対する処理が終了するまでの間は継続して行われる。
(改質工程)
 続いて、ガス発生器250aへの液体原料及びキャリアガスの供給を開始し、ガス発生器250aによりHガスおよびHOガスを含む気化ガスを発生させる。気化ガスの発生量や濃度等が安定したら、バルブ243aを開き、MFC241aにより流量制御しながら、ガス供給ポート232pを介した処理室201内への気化ガスの供給を開始する。処理室201内へ供給された気化ガスは、排気管231から排気される。このとき、ウエハ200に対して気化ガスが供給される。その結果、ウエハ200の表面で酸化反応が生じ、ウエハ200上のポリシラザン膜は、シリコン酸化膜(SiO膜)へと改質される。
 所定時間が経過し、ポリシラザン膜のSiO膜への改質が終了したら、バルブ243aを閉じ、処理室201内への気化ガスの供給を停止する。
 改質工程の処理条件としては、以下が例示される。
 液体原料のH濃度:20~40%、好ましくは25~35%
 液体原料の気化条件:略大気圧下で120~200℃に加熱
 改質圧力:700~1000hPa(大気圧、微減圧および微加圧のうちいずれか)
 ウエハ200の温度:70~110℃、好ましくは70~80℃
 ここで述べた温度条件下では、処理室201内へ供給された気化ガスが処理室201内で再液化し、これにより生じた液体が炉口周辺(シールキャップ219の上面等)に滞留する可能性がある。特に、炉口部側壁や、処理室201内のガス供給管232a、温度センサ保護管263a等では、上述の通り、局所的な低温領域が生じることがあり、局所的に発生した低温領域に接触することで気化ガスが再液化しやすい。
 本実施形態では、上述の通り構成されたヒータ208を制御することにより、反応管203の炉口の側壁等を均等に加熱し、局所的な低温領域が生じるのを防止する。ここで、再液化を防止するため、炉口周辺の側壁等において、所定温度(第1下限温度)を下回る領域が発生しないように温度制御を行う。下限温度は気化ガスの濃度等の条件により異なるが、例えば上述の処理条件においては80℃以上である。
 また、気化ガスの再液化によって生じた液体は、Hが高濃度に濃縮された状態、すなわち、高濃度H液となる傾向がある。また、滞留した高濃度H液は、Hがさらに高濃度に濃縮された状態に変化する傾向がある。高濃度H液は、非常に反応性が高く、強力な腐食作用を有することから、炉口部の部材に深刻なダメージを与える可能性がある。
 また、炉口付近に滞留した高濃度H液が何らかの要因で再気化した場合、これにより発生した再気化ガスはHを非常に高濃度に含むガスとなり、作業の安全性をさらに脅かす可能性がある。例えば、再気化ガスに含まれるHの濃度が大気圧下において26モル%を超える状態では、高濃度H液に含まれるHがOガスとHOガスとに急激に分解して膨張し、上述の爆発的分解反応を引き起こす懸念もある。
 ここで、爆発的分解反応とは、Hを含む液体が酸素ガス(O)と水蒸気(HO)とに急激に分解して膨張し、爆発や燃焼、或いは、これらに近い現象を起こすことである。爆発的分解反応は、あるH液の濃度及び圧力において、H液が決まった温度(爆発臨界温度)を超えた場合に起こり得る。そのため、再液化により滞留した高濃度H液は、爆発臨界温度を超えないように維持されなければならない。爆発臨界温度は、高濃度H液におけるHの濃度によって変動し、具体的には、Hの濃度の増加に伴って低温化する。但し、爆発臨界温度の低温化は、高濃度H液の濃度が100%に到達した時点で下限となる。従って、処理圧力を大気圧とした場合、高濃度H液の温度を、濃度が100%の場合における爆発臨界温度である112℃未満の温度に維持することにより、爆発的分解反応の発生を確実に回避することが可能となる。
 本実施形態では、上述の通り構成されたヒータ208を制御することにより、反応管203の炉口の側壁等を均等に加熱し、局所的な高温領域が生じるのを防止する。ここで、滞留した高濃度H液の爆発的分解反応の発生を防止するため、炉口周辺の側壁等において、所定温度(第1上限温度)を上回る領域が発生しないように温度制御を行う。第1上限温度は、処理圧力を大気圧とした場合、112℃以下とする。
 また、本実施形態は、輻射による熱伝達よりも熱伝導による熱伝達の影響が大きい温度領域(すなわち120℃以下、より好ましくは100℃以下の温度領域)における温度制御を行う際に適用することにより、温度制御性を高めることができる。例えば、側壁温度センサ303a等の測定温度が、これらの温度領域内となる範囲で温度制御を行うことが好ましい。また、キャップヒータ209による加熱制御についても、これらの温度領域内となる範囲で実施することで、ヒータ208による温度制御性を維持することができる。
(乾燥工程)
 改質工程が終了したら、ヒータ207を制御し、ウエハ200を、上述の改質温度よりも高い温度に加熱する。この温度を保持することにより、ウエハ200と処理室201内とを緩やかに乾燥させる。
(降温・大気圧復帰工程)
 乾燥工程が終了した後、処理室201内を真空排気する。その後、処理室201内を大気圧に復帰させ、所定時間経過した後、処理室201内を所定の搬出可能温度に降温させる。
(基板搬出工程)
 ボートエレベータ115によりシールキャップ219が下降され、反応管203の下端が開口される。そして、処理済のウエハ200が反応管203の下端から反応管203の外部に搬出される。
(3)実施例
 本実施形態の実施例と比較例について以下説明する。実施例として、本実施形態におけるヒータ208の温度制御を行い、図12に示す温度モニタ点A~Nにおける温度を測定した。モニタ点A~Hは上面ベース219a上の点であり、モニタ点I~Nは炉口周辺の側壁の外周面上の点である。一方、比較例として、本実施形態のヒータ208に替えて以下に示す構成を有するヒータにより温度制御を行い、実施例と同様に、温度モニタ点A,B,E,F,I,K,L,Nにおける温度を測定した。なお、実施例及び比較例のいずれについても、モニタ点A~Hにおける目標温度を80~112℃に設定し制御を行った。
 比較例における基板処理装置は、図13に示すように、炉口周辺の側壁を加熱するヒータ400と、ガス供給管232a等の突出部を加熱するジャケットヒータ401を備えている。ヒータ400は本実施形態の側壁温度センサ303a等を備えておらず、ヒータ出力のみにより温度制御を行うよう構成されている。ジャケットヒータ401は、ガス供給管232a等の突出部それぞれに巻き付けるように設置され、主に突出部のみを加熱することを目的として設けられている。
 図14に、実施例と比較例それぞれにおけるモニタ点A~Nにおける温度の測定結果を示す。比較例においては、特に突出部からの距離が大きいモニタ点AやIにおいて、局所的な高温領域の発生が特に顕著にみられた。また、他のモニタ点においても第1上限温度としての112℃を超える結果となった。これに対して実施例においては、全てのモニタ点において、第1下限温度としての80℃以上、且つ第1上限温度としての112℃以下の温度範囲を実現することができた。
<本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、ポリシラザン膜が形成された基板を処理する例を示したが、本発明はこれに限定されない。すなわち、処理対象の膜がポリシラザン膜でなくとも、上述の実施形態と同様の効果が得られる。
 上述の実施形態や変形例等は、適宜組み合わせて用いることができる。また、このときの処理手順、処理条件は、例えば上述の実施形態と同様な処理手順、処理条件とすることができる。
 本発明によれば、処理室を形成する部材の温度に局所的な偏りが生じることを防止するように加熱を行うことが可能な技術を提供することが可能となる。
 200 ウエハ(基板)
 203 反応管
 208 ヒータ
 232a ガス供給管
 121 コントローラ
 

Claims (18)

  1. 基板を収容する反応管と、
    前記反応管に形成された炉口を閉塞する蓋部と、
    前記反応管の炉口近傍の側壁の外周に設けられたヒータと、
    前記反応管の炉口近傍の側壁における、前記側壁の周方向において互いに異なる複数の位置の温度をそれぞれ測定するよう構成された複数の温度センサと、
    前記複数の温度センサのそれぞれの測定値に基づいて、前記ヒータを制御するよう構成された制御部と、
    を備える基板処理装置。
  2. 前記ヒータは、
    前記側壁の周方向において分割された複数のヒータユニットによって構成されている、
    請求項1記載の基板処理装置。
  3. 前記反応管の炉口近傍の側壁に接続する配管を備え、
    前記複数のヒータユニットの少なくとも1つは、前記反応管の炉口近傍の側壁の一部であって前記配管が接続された箇所の周辺部分及び前記配管を、共に加熱するように構成された第1のヒータユニットであり、
    前記複数のヒータユニットの少なくとも他の1つは、前記反応管の炉口近傍の側壁の一部であって前記配管が接続されていない部分を加熱するように構成された第2のヒータユニットである、
    請求項2記載の基板処理装置。
  4. 前記制御部は、
    前記第1のヒータユニットと前記第2のヒータユニットとへ供給される電力をそれぞれ個別に制御して、前記反応管の炉口近傍の側壁及び前記配管を加熱させるよう構成される、
    請求項3記載の基板処理装置。
  5. 前記複数の温度センサは、
    前記第1のヒータユニットにより加熱される前記反応管の側壁の部分の温度を測定するよう構成された第1の温度センサと、
    前記第2のヒータユニットにより加熱される前記反応管の側壁の部分の温度を測定するよう構成された第2の温度センサと、を含む、
    請求項3記載の基板処理装置。
  6. 前記制御部は、
    前記第1の温度センサの測定値が第1温度となるように、前記第1のヒータユニットに供給される電力を制御し、
    前記第2の温度センサの測定値が前記第1温度よりも低い第2温度となるように、前記第2のヒータユニットに供給される電力を制御する、よう構成される、
    請求項5記載の基板処理装置。
  7. 前記第1のヒータユニットは、
    複数の前記配管、及び前記反応管の炉口近傍の側壁の一部であって前記複数の配管のそれぞれが接続される箇所の周辺部分を、共に加熱するように構成されている、
    請求項3記載の基板処理装置。
  8. 前記配管は、
    前記反応管内に処理ガスを供給するガス供給配管、前記反応管内の雰囲気を排出するガス排気管、及び前記反応管内に挿入される温度センサを保護するように管状に構成され温度センサ保護管、より構成される群より選択される少なくとも1つである、
    請求項3記載の基板処理装置。
  9. 前記第1のヒータユニットは、
    前記側壁に対向するように前記側壁の周方向に沿って配置された第1の発熱線と、
    前記配管の周囲に前記配管の延伸方向に沿って配置された第2の発熱線と、を備える、
    請求項3記載の基板処理装置。
  10. 前記制御部は、
    前記第1の発熱線と前記第2の発熱線へ供給される電力をそれぞれ個別に制御して、前記側壁及び前記配管を加熱させるよう構成される、
    請求項9記載の基板処理装置。
  11. 前記第1のヒータユニットは、
    前記配管の温度を測定する配管温度センサを備え、
    前記制御部は、
    前記配管温度センサの測定値に基づいて前記第2の発熱線へ供給される電力を制御して、前記配管を加熱させるよう構成される、
    請求項9記載の基板処理装置。
  12. 前記第1のヒータユニットは、
    前記第2の発熱線と前記配管との間に高熱伝導率を有するシートを備えている、
    請求項9記載の基板処理装置。
  13. 前記第1のヒータユニットは、
    前記第1の発熱線及び前記第2の発熱線を格納する、ブロック状に一体形成された格納部材を備え、
    前記格納部材の熱伝導率は、0.3W/m・K以下である、
    請求項9記載の基板処理装置。
  14. 前記反応管は石英で構成され、
    前記ヒータは、
    80~100℃で発熱する時に放射する熱線のピーク波長が5~10μmとなる特性を有する発熱線を備える、
    請求項1記載の基板処理装置。
  15. 前記制御部は、
    前記複数の温度センサの測定値が120℃以下となるように、前記ヒータに供給される電力を制御するよう構成される、
    請求項1記載の基板処理装置。
  16. 前記反応管内に過酸化水素を含むガスを供給するよう構成されたガス供給系を備え、
    前記制御部は、
    前記複数の温度センサの測定値が80℃以上112℃未満となるように、前記ヒータに供給され電力を制御するよう構成される、
    請求項1記載の基板処理装置。
  17. 基板を収容する反応管と、前記反応管に形成された炉口を閉塞する蓋部と、前記反応管の炉口近傍の側壁に接続する配管と、を備える基板処理装置に設けられ、
    前記反応管の炉口近傍の側壁の外周に設けられて、前記側壁の周方向において複数に分割されたヒータを構成し、
    前記側壁に対向するように前記側壁の周方向に沿って配置された第1の発熱線と、前記配管の周囲に前記配管の延伸方向に沿って配置された第2の発熱線と、を備えるヒータユニット。
  18. 基板を収容する反応管と、前記反応管に形成された炉口を閉塞する蓋部と、前記反応管の炉口近傍の側壁の外周に設けられたヒータと、前記反応管の炉口近傍の側壁における、前記側壁の周方向において互いに異なる複数の位置の温度をそれぞれ測定するよう構成された複数の温度センサと、を備えた基板処理装置を提供する工程と、
    前記反応管内に前記基板を収容する工程と、
    前記基板を加熱する工程と、を有し、
    前記基板を加熱する工程では、前記複数の温度センサのそれぞれの測定値に基づいて、前記ヒータに供給される電力を制御して前記炉口近傍の側壁を加熱する、半導体装置の製造方法。 
     
PCT/JP2017/012974 2017-03-29 2017-03-29 基板処理装置、ヒータユニットおよび半導体装置の製造方法 Ceased WO2018179157A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/012974 WO2018179157A1 (ja) 2017-03-29 2017-03-29 基板処理装置、ヒータユニットおよび半導体装置の製造方法
JP2019508441A JP6730513B2 (ja) 2017-03-29 2017-03-29 基板処理装置、ヒータユニットおよび半導体装置の製造方法
SG11201907981YA SG11201907981YA (en) 2017-03-29 2017-03-29 Substrate processing device, heater unit, and semiconductor device manufacturing method
CN201780088409.5A CN110419095A (zh) 2017-03-29 2017-03-29 基板处理装置、加热单元以及半导体装置的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012974 WO2018179157A1 (ja) 2017-03-29 2017-03-29 基板処理装置、ヒータユニットおよび半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2018179157A1 true WO2018179157A1 (ja) 2018-10-04

Family

ID=63677636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012974 Ceased WO2018179157A1 (ja) 2017-03-29 2017-03-29 基板処理装置、ヒータユニットおよび半導体装置の製造方法

Country Status (4)

Country Link
JP (1) JP6730513B2 (ja)
CN (1) CN110419095A (ja)
SG (1) SG11201907981YA (ja)
WO (1) WO2018179157A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166238A (ja) * 2020-04-07 2021-10-14 東京エレクトロン株式会社 クリーニング方法及び熱処理装置
KR20210131737A (ko) * 2020-04-24 2021-11-03 주식회사 원익아이피에스 기판 처리 장치 및 온도 제어 방법
KR20210131736A (ko) * 2020-04-24 2021-11-03 주식회사 원익아이피에스 기판 처리 장치 및 기판 처리 장치에 이용되는 히터
KR20210131738A (ko) * 2020-04-24 2021-11-03 주식회사 원익아이피에스 기판 처리 장치 및 온도 제어 방법
EP4156235A1 (en) 2021-09-24 2023-03-29 Kokusai Electric Corp. Substrate processing apparatus, use of substrate processing apparatus, method of manufacturing semiconductor device and computer program product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144746A (ja) * 1991-11-20 1993-06-11 Nec Corp 減圧cvd装置
JP2007258307A (ja) * 2006-03-22 2007-10-04 Fujitsu Ltd 薄膜製造方法及び薄膜製造装置
JP2009004715A (ja) * 2007-06-25 2009-01-08 Hitachi Kokusai Electric Inc 基板処理装置及及びこれに用いられる加熱装置
JP2010040952A (ja) * 2008-08-08 2010-02-18 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2011023514A (ja) * 2009-07-15 2011-02-03 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
WO2014192871A1 (ja) * 2013-05-31 2014-12-04 株式会社日立国際電気 基板処理装置、半導体製造装置の製造方法及び炉口蓋体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144746A (ja) * 1991-11-20 1993-06-11 Nec Corp 減圧cvd装置
JP2007258307A (ja) * 2006-03-22 2007-10-04 Fujitsu Ltd 薄膜製造方法及び薄膜製造装置
JP2009004715A (ja) * 2007-06-25 2009-01-08 Hitachi Kokusai Electric Inc 基板処理装置及及びこれに用いられる加熱装置
JP2010040952A (ja) * 2008-08-08 2010-02-18 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2011023514A (ja) * 2009-07-15 2011-02-03 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
WO2014192871A1 (ja) * 2013-05-31 2014-12-04 株式会社日立国際電気 基板処理装置、半導体製造装置の製造方法及び炉口蓋体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166238A (ja) * 2020-04-07 2021-10-14 東京エレクトロン株式会社 クリーニング方法及び熱処理装置
KR20210131737A (ko) * 2020-04-24 2021-11-03 주식회사 원익아이피에스 기판 처리 장치 및 온도 제어 방법
KR20210131736A (ko) * 2020-04-24 2021-11-03 주식회사 원익아이피에스 기판 처리 장치 및 기판 처리 장치에 이용되는 히터
KR20210131738A (ko) * 2020-04-24 2021-11-03 주식회사 원익아이피에스 기판 처리 장치 및 온도 제어 방법
KR102855380B1 (ko) * 2020-04-24 2025-09-04 주식회사 원익아이피에스 기판 처리 장치 및 온도 제어 방법
KR102855377B1 (ko) * 2020-04-24 2025-09-04 주식회사 원익아이피에스 기판 처리 장치 및 온도 제어 방법
KR102856280B1 (ko) * 2020-04-24 2025-09-05 주식회사 원익아이피에스 기판 처리 장치 및 기판 처리 장치에 이용되는 히터
EP4156235A1 (en) 2021-09-24 2023-03-29 Kokusai Electric Corp. Substrate processing apparatus, use of substrate processing apparatus, method of manufacturing semiconductor device and computer program product
KR20230043676A (ko) 2021-09-24 2023-03-31 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 처리 용기, 반도체 장치의 제조 방법 및 프로그램
US12338529B2 (en) 2021-09-24 2025-06-24 Kokusai Electric Corporation Substrate processing apparatus, process vessel, method of manufacturing semiconductor device and non-transitory tangible medium

Also Published As

Publication number Publication date
JPWO2018179157A1 (ja) 2019-11-07
CN110419095A (zh) 2019-11-05
SG11201907981YA (en) 2019-09-27
JP6730513B2 (ja) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6730513B2 (ja) 基板処理装置、ヒータユニットおよび半導体装置の製造方法
JP6068633B2 (ja) 基板処理装置、半導体装置の製造方法及び炉口蓋体
JP5778846B2 (ja) 気化装置、基板処理装置、及び半導体装置の製造方法
JP6038043B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6417052B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
US9587313B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and non-transitory computer-readable recording medium
JP7281519B2 (ja) 基板処理装置、半導体装置の製造方法および処理容器
WO2018179507A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP7691204B2 (ja) 成膜方法及び熱処理装置
JPWO2017138183A1 (ja) 基板処理装置、継手部および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019508441

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903868

Country of ref document: EP

Kind code of ref document: A1