[go: up one dir, main page]

WO2018179433A1 - Wireless device, wireless system, and processing method - Google Patents

Wireless device, wireless system, and processing method Download PDF

Info

Publication number
WO2018179433A1
WO2018179433A1 PCT/JP2017/013838 JP2017013838W WO2018179433A1 WO 2018179433 A1 WO2018179433 A1 WO 2018179433A1 JP 2017013838 W JP2017013838 W JP 2017013838W WO 2018179433 A1 WO2018179433 A1 WO 2018179433A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
interval
data signal
time
receiver
Prior art date
Application number
PCT/JP2017/013838
Other languages
French (fr)
Japanese (ja)
Inventor
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/013838 priority Critical patent/WO2018179433A1/en
Publication of WO2018179433A1 publication Critical patent/WO2018179433A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a wireless device, a wireless system, and a processing method.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • ITU-R presents eMBB, mMTC, and URLLC as main services (for example, see Non-Patent Document 1 below).
  • ITU-R is an abbreviation for International Telecommunication Union Radiocommunications Sector (International Telecommunication Union Radiocommunication Division).
  • eMBB is an abbreviation for enhanced Mobile Broad Band.
  • mMTC is an abbreviation for massive machine type communications.
  • URLLC is an abbreviation for Ultra-Reliable and Low Latency Communications.
  • 3GPP has determined the wireless requirements of the next generation system based on the recommendation of ITU-R and has started the basic study of the system (for example, see Non-Patent Document 2 below).
  • techniques for improving the reliability of wireless transmission techniques relating to frequency diversity for transmitting the same data at different frequencies, time diversity for transmitting the same data at different times, and the like are known.
  • an object of the present invention is to provide a wireless device, a wireless system, and a processing method that can reduce transmission delay while suppressing deterioration in reception characteristics.
  • a wireless device capable of transmitting a data signal to another wireless device has a first frequency having a first interval with each other at a first time, and Transmitting the data signal at each of the second frequencies, and transmitting the data signal at each of a third frequency and a fourth frequency having a second interval different from the first interval at a second time different from the first time.
  • a transmitting wireless device, a wireless system and a processing method are proposed.
  • a wireless device capable of receiving a data signal from another wireless device is transmitted at each of a first frequency and a second frequency having a first interval in a first time. Radio that receives the data signal and receives the data signal transmitted at each of a third frequency and a fourth frequency having a second interval different from the first interval at a second time different from the first time.
  • the present invention has an effect that transmission delay can be reduced while suppressing deterioration of reception characteristics.
  • FIG. 1 is a diagram illustrating an example of a wireless system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a low-delay transmission system to which the wireless system according to the embodiment is applied.
  • FIG. 3 is a diagram of an example of the transmitter according to the first embodiment.
  • FIG. 4 is a diagram of an example of the receiver according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of the transmitter according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of a hardware configuration of the receiver according to the embodiment.
  • FIG. 8 is a sequence diagram illustrating an example of processing by the low-delay transmission system according to the first embodiment.
  • FIG. 9 is a flowchart of an example of processing performed by the transmitter according to the first embodiment.
  • FIG. 10 is a flowchart of an example of processing performed by the receiver according to the first embodiment.
  • FIG. 11 is a diagram (part 1) illustrating an example of determination of F and ⁇ F by the receiver according to the first embodiment.
  • FIG. 12 is a diagram (part 2) illustrating an example of determination of F and ⁇ F by the receiver according to the first embodiment.
  • FIG. 14 is a sequence diagram illustrating an example of processing by the low-delay transmission system according to the second embodiment.
  • FIG. 15 is a flowchart of an example of processing performed by the transmitter according to the second embodiment.
  • FIG. 16 is a flowchart of an example of processing performed by the receiver according to the second embodiment.
  • FIG. 1 is a diagram illustrating an example of a wireless system according to the first embodiment.
  • the wireless system 100 according to the embodiment includes a first wireless device 110 and a second wireless device 120.
  • a case where a data signal is wirelessly transmitted from the first wireless device 110 to the second wireless device 120 will be described.
  • the first wireless device 110 includes a transmission unit 111 and a control unit 112.
  • the transmission unit 111 can transmit a data signal to the second radio apparatus 120 under the control of the control unit 112.
  • the control unit 112 controls the transmission unit 111 to transmit the same data signal at each of the first frequency and the second frequency in the first time.
  • the first time is, for example, a time resource assigned to transmission of a data signal from the first radio apparatus 110 to the second radio apparatus 120.
  • the first frequency and the second frequency are each frequency having a first interval.
  • the first interval is a frequency interval greater than zero.
  • control unit 112 controls the transmission unit 111 to transmit the same data signal as the data signal transmitted in the first time at each of the third frequency and the fourth frequency in the second time.
  • the third frequency and the fourth frequency are frequencies having a second interval.
  • the second interval is a frequency interval greater than 0 and different from the first interval.
  • the second time is a time resource different from the first time.
  • the second time is a time resource after the first time or a time resource before the first time.
  • the second radio apparatus 120 includes a receiving unit 121 and a control unit 122.
  • the receiving unit 121 can receive a data signal from the first radio apparatus 110 under the control of the control unit 122.
  • the control unit 122 performs control to cause the reception unit 121 to receive the data signal transmitted by each of the first frequency and the second frequency in the first time.
  • control unit 122 performs control to cause the reception unit 121 to receive data signals transmitted by the third frequency and the fourth frequency, respectively, in the second time described above.
  • control unit 122 may not cause the reception unit 121 to receive the data signal at the second time when the reception unit 121 can decode the data signal received at the first time.
  • the control unit 122 performs control to cause the receiving unit 121 to receive the data signal at the second time.
  • the same data signal in the first time, can be transmitted by each of the first frequency and the second frequency having the first interval. Further, in the second time different from the first time, the same data signal can be transmitted by each of the third frequency and the fourth frequency having a second interval different from the first interval.
  • wireless apparatus 120 can be improved according to each effect of a frequency diversity, a time diversity, and a frequency space
  • the reception characteristic is, for example, an error rate such as BLER (Block Error Rate).
  • the decrease in the effect of time diversity can be compensated by frequency interval diversity.
  • frequency interval diversity it is possible to reduce transmission delay while suppressing deterioration of reception characteristics. For this reason, for example, a highly reliable and low-delay radio system can be realized.
  • control unit 112 of the first radio apparatus 110 provides, for example, information that can specify each of the above-described frequencies (first frequency, second frequency, third frequency, and fourth frequency) to the transmission unit 111. Control may be performed to transmit to the two wireless devices 120. Thereby, for example, even in the configuration in which the first radio apparatus 110 determines each frequency described above, the second radio apparatus 120 can receive the data signal from the first radio apparatus 110 with diversity.
  • the first frequency and the third frequency described above can be set to the same reference frequency, for example.
  • the reference frequency is, for example, a frequency assigned for data signal transmission from the first radio apparatus 110 to the second radio apparatus 120.
  • the information that can identify each frequency described above includes, for example, information indicating the first frequency, information indicating the first interval (for example, F described later), and the second interval (for example, F1 described later). It can be realized by the information indicating.
  • the second radio apparatus 120 can specify the first frequency and the third frequency based on the information indicating the first frequency. Further, the second radio apparatus 120 can specify the second frequency based on the information indicating the first frequency and the information indicating the first interval. Further, the second radio apparatus 120 can identify the fourth frequency based on information indicating the first frequency and information indicating the second interval.
  • the second radio apparatus 120 includes information indicating the first interval, information indicating the difference between the first interval and the second interval, information specifying the second interval and indicating the first frequency, The fourth frequency can be specified based on the specified second interval.
  • the first radio apparatus 110 transmits information indicating a part of the above-described frequencies and information indicating a difference between the part of the frequencies and the other frequencies.
  • the amount of signaling from the first wireless device 110 to the second wireless device 120 can be reduced.
  • the information that can specify each frequency described above is not limited thereto, and may be information that directly indicates each frequency, for example.
  • the information that can identify each frequency described above may be individually transmitted by the first wireless device 110 to the second wireless device 120, or each wireless device that performs wireless communication with the first wireless device 110.
  • wireless apparatus 110 may alert
  • control unit 112 of the first radio apparatus 110 may control the transmission unit 111 to transmit the information that can specify the first time and the second time to the second radio apparatus 120. Good.
  • the second radio apparatus 120 can receive the data signal from the first radio apparatus 110 with diversity.
  • FIG. 2 is a diagram illustrating an example of a low-delay transmission system to which the wireless system according to the embodiment is applied.
  • the low delay transmission system 200 shown in FIG. 2 includes a transmitter 210 and a receiver 220.
  • the first radio apparatus 110 shown in FIG. 1 can be realized by the transmitter 210, for example.
  • the second radio apparatus 120 shown in FIG. 1 can be realized by the receiver 220, for example.
  • the transmitter 210 wirelessly transmits a data signal to the receiver 220
  • the IP layer or Layer 1/2 is used for wireless transmission of this data signal.
  • IP is an abbreviation for Internet Protocol.
  • the transmitter 210 is a base station such as eNB (evolved Node B).
  • Receiver 220 is a terminal such as a UE (User Equipment: user terminal).
  • the transmitter 210 may be a terminal such as a UE.
  • the receiver 220 may be a base station such as an eNB.
  • the low-delay transmission system 200 shown in FIG. 2 can be applied to automatic driving control of a car, remote control of a robot in a factory, a dangerous place, or the like.
  • Wireless communication for these controls requires high reliability and low delay characteristics.
  • services such as the above-described URLLC are newly introduced.
  • the transmission delay time is within 1 [ms] and the data transmission success rate is defined as 10 to the fifth power.
  • HARQ is used as a time diversity transmission method.
  • HARQ is an abbreviation for Hybrid Automatic Repeat reQuest (hybrid automatic repeat request).
  • the HARQ may be, for example, a HARQ of a chase combination that combines power on the receiving side.
  • the time diversity transmission used for transmission of the data signal from the transmitter 210 to the receiver 220 is not limited to HARQ, and can be various time diversity transmissions.
  • FIG. 3 is a diagram of an example of the transmitter according to the first embodiment.
  • the transmitter 210 includes, for example, an antenna 301, an RF receiving unit 302, and a reception control signal processing unit 303. Further, the transmitter 210 includes, for example, a transmission control unit 304, a data signal generation unit 305, a pilot signal generation unit 306, a control signal generation unit 307, multiplexing units 308a to 308c, an RF transmission unit 309, an antenna, and the like. 310 and a retransmission control unit 311.
  • RF is an abbreviation for Radio Frequency.
  • the antenna 301 receives a signal wirelessly transmitted from another wireless device such as the receiver 220, and outputs the received signal to the RF receiving unit 302.
  • the RF receiver 302 performs an RF reception process on the signal output from the antenna 301.
  • the RF reception processing by the RF receiver 302 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like.
  • the RF reception unit 302 outputs the signal subjected to the RF reception process to the reception control signal processing unit 303.
  • the reception control signal processing unit 303 demodulates the control signal included in the signal output from the RF reception unit 302 and decodes the demodulated control signal. Reception control signal processing section 303 then outputs the control signal obtained by decoding to transmission control section 304.
  • the control signal output from the reception control signal processing unit 303 to the transmission control unit 304 includes a response signal (ACK or NACK) from the receiver 220 to the data signal transmitted from the transmitter 210 to the receiver 220.
  • the control signal output from the reception control signal processing unit 303 to the transmission control unit 304 includes, for example, wireless section characteristic information indicating an evaluation value of wireless section characteristics (wireless quality) between the transmitter 210 and the receiver 220. Is included.
  • wireless section characteristic information indicating an evaluation value of wireless section characteristics (wireless quality) between the transmitter 210 and the receiver 220.
  • a CQI value indicating the wireless section characteristic with an index value can be used.
  • CQI is an abbreviation for Channel Quality Indicator.
  • control signal output from the reception control signal processing unit 303 to the transmission control unit 304 includes information indicating F and ⁇ F determined by the receiver 220, for example. F and ⁇ F will be described later.
  • the transmission control unit 304 controls data signal generation by the data signal generation unit 305, control signal generation by the control signal generation unit 307, and retransmission control by the retransmission control unit 311. For example, the transmission control unit 304 selects the MCS value of the data signal to be transmitted to the receiver 220 based on the radio section characteristic information output from the reception control signal processing unit 303. Then, the transmission control unit 304 controls the data signal generation unit 305 to apply the modulation scheme and the coding scheme indicated by the selected MCS value to the data signal.
  • MCS is an abbreviation for Modulation and Coding Scheme.
  • the transmission control unit 304 controls the frequency of each identical data signal generated by the data signal generation unit 305 based on the information indicating F and ⁇ F output from the reception control signal processing unit 303. Also, the transmission control unit 304 controls the control signal generation unit 307 to transmit a control signal including the selected MCS value. If the response signal from the receiver 220 output from the reception control signal processing unit 303 is NACK, the transmission control unit 304 controls the retransmission control unit 311 to retransmit the corresponding data signal.
  • a data signal to be transmitted from the transmitter 210 to the receiver 220 is input to the data signal generation unit 305 and the retransmission control unit 311.
  • the data signal generation unit 305 generates first to fourth data signals in accordance with control from the transmission control unit 304.
  • the first to fourth data signals are data signals indicating the same data.
  • the first and second data signals are each data signal transmitted by the same time resource and transmitted by each frequency resource whose frequency interval is F.
  • the third and fourth data signals are data signals transmitted by the same time resource after the first and second data signals and transmitted by each frequency resource whose frequency interval is F1.
  • the first to fourth data signals will be described later (see, for example, FIG. 7).
  • the data signal generation unit 305 performs the first to second operations based on the retransmission data output from the retransmission control unit 311 according to the control from the transmission control unit 304. 4 data signals are generated. Then, the data signal generation unit 305 outputs the generated first and second data signals to the multiplexing unit 308a. In addition, the data signal generation unit 305 outputs the generated third and fourth data signals to the multiplexing unit 308b.
  • Pilot signal generation section 306 generates pilot signals having different frequencies, and outputs the generated pilot signals to multiplexing sections 308a and 308b, respectively.
  • the control signal generation unit 307 generates first to fourth control signals corresponding to the first to fourth data signals, respectively, according to the control from the transmission control unit 304. Then, the control signal generation unit 307 outputs the generated first and second control signals to the multiplexing unit 308a. In addition, the control signal generation unit 307 outputs the generated third and fourth control signals to the multiplexing unit 308b.
  • the multiplexing unit 308 a includes the first and second data signals output from the data signal generation unit 305, the data signal output from the pilot signal generation unit 306, and the third and third data signals output from the control signal generation unit 307. 4 control signals are frequency multiplexed (or frequency time multiplexed). Then, the multiplexing unit 308a outputs the frequency multiplexed (or frequency time multiplexed) signal to the multiplexing unit 308c.
  • the multiplexing unit 308b includes the third and fourth data signals output from the data signal generation unit 305, the data signal output from the pilot signal generation unit 306, and the third and third data signals output from the control signal generation unit 307. 4 control signals are frequency multiplexed (or frequency time multiplexed). Then, the multiplexing unit 308b outputs the frequency multiplexed (or frequency time multiplexed) signal to the multiplexing unit 308c.
  • the multiplexing unit 308c frequency multiplexes the signals output from the multiplexing units 308a and 308b, and outputs the frequency-multiplexed signal to the RF transmission unit 309.
  • the RF transmission unit 309 performs RF transmission processing of the signal output from the multiplexing unit 308c.
  • the RF transmission processing by the RF transmission unit 309 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like.
  • the RF transmission unit 309 outputs the signal subjected to the RF transmission process to the antenna 310.
  • the antenna 310 wirelessly transmits the signal output from the RF transmission unit 309 to another communication device (for example, the receiver 220).
  • the retransmission control unit 311 has a retransmission data buffer for storing the input data signal. Then, according to control from transmission control section 304, retransmission control section 311 outputs the data signal stored in the retransmission data buffer to data signal generation section 305 as retransmission data.
  • the control unit 112 of the first radio apparatus 110 illustrated in FIG. 1 can be realized by the transmission control unit 304, for example.
  • the configuration including two multiplexing units has been described as the configuration when the number of continuous automatic transmissions (Nmax) by the transmitter 210 is two. It is not restricted to such a configuration. For example, when the number of continuous automatic transmissions (Nmax) by the transmitter 210 is three times or more, a configuration including three or more multiplexing units may be employed.
  • FIG. 4 is a diagram of an example of the receiver according to the first embodiment.
  • the receiver 220 includes, for example, an antenna 401, an RF reception unit 402, a reception data signal processing unit 403, a reception data signal buffer 404, and an ACK / NACK signal generation unit 405.
  • the receiver 220 includes a reception pilot signal processing unit 406, a radio section characteristic evaluation unit 407, a control signal generation unit 408, a reception control signal processing unit 409, an RF transmission unit 410, and an antenna 411. .
  • the antenna 401 receives a signal wirelessly transmitted from another communication device (for example, the transmitter 210) and outputs the signal to the RF receiving unit 402.
  • the RF reception unit 402 performs an RF reception process on the signal output from the antenna 401.
  • the RF reception processing by the RF reception unit 402 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like.
  • the RF reception unit 402 outputs the signal subjected to the RF reception processing to the reception data signal processing unit 403, the reception pilot signal processing unit 406, and the reception control signal processing unit 409.
  • the reception data signal processing unit 403 performs reception processing of a data signal included in the signal output from the RF reception unit 402. For example, the reception data signal processing unit 403 performs reception processing by a decoding method based on the MCS value output from the reception control signal processing unit 409. Reception data signal processing section 403 outputs the data signal obtained by the reception processing to reception data signal buffer 404. Reception data signal processing section 403 outputs the data signal error detection result in the reception processing to ACK / NACK signal generation section 405.
  • the reception data signal buffer 404 stores the data signal output from the reception data signal processing unit 403.
  • the data signal stored by the reception data signal buffer 404 is used for combining with the retransmitted data signal, for example, when the HARQ method is used as the retransmission method.
  • the ACK / NACK signal generation unit 405 generates a response signal based on the error detection result output from the reception data signal processing unit 403. For example, the ACK / NACK signal generation unit 405 generates an ACK when the reception data signal processing unit 403 obtains a normal data signal, and the reception data signal processing unit 403 does not obtain a normal data signal. Generates a NACK. Then, the ACK / NACK signal generation unit 405 outputs the generated response signal (ACK or NACK) to the RF transmission unit 410 as a control signal.
  • the reception pilot signal processing unit 406 performs reception processing of a pilot signal included in the signal output from the RF reception unit 402, and outputs the pilot signal obtained by the reception processing to the radio section characteristic evaluation unit 407.
  • Radio section characteristic evaluation section 407 calculates radio section characteristic information between transmitter 210 and receiver 220 based on the pilot signal output from reception pilot signal processing section 406.
  • the radio section characteristic evaluation unit 407 calculates the radio section characteristic information using a measurement result such as RSSI or RSRP based on the reception result output from the reception pilot signal processing unit 406.
  • RSSI is an abbreviation for Received Signal Strength Indicator (received signal strength).
  • RSRP is an abbreviation for Reference Signal Received Power (reference signal received power).
  • a CQI value indicating the wireless section characteristic (quality) as an index value can be used.
  • the radio section characteristic evaluation unit 407 may determine the above-described F and ⁇ F based on the reception result output from the reception pilot signal processing unit 406.
  • the wireless section characteristic evaluation unit 407 outputs the calculated wireless section characteristic information, F and ⁇ F, to the control signal generation unit 408.
  • the control signal generation unit 408 generates a control signal including the wireless section characteristic information, F and ⁇ F output from the wireless section characteristic evaluation unit 407, and outputs the generated control signal to the RF transmission unit 410.
  • the reception control signal processing unit 409 performs reception processing of a control signal included in the signal output from the RF reception unit 402.
  • the reception control signal processing unit 409 outputs the MCS value included in the control signal obtained by the reception processing to the reception data signal processing unit 403.
  • the RF transmitter 410 receives the response signal (ACK or NACK) output from the ACK / NACK signal generator 405 and the control signal output from the control signal generator 408.
  • the RF transmission unit 410 performs an RF transmission process on the input signal.
  • the RF transmission processing by the RF transmission unit 410 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like.
  • the RF transmission unit 410 outputs the signal subjected to the RF transmission process to the antenna 411.
  • the antenna 411 wirelessly transmits the signal output from the RF transmission unit 410 to another communication device (for example, the transmitter 210).
  • the control unit 122 of the second radio apparatus 120 illustrated in FIG. 1 can be realized by the reception data signal processing unit 403 and the reception control signal processing unit 409, for example.
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of the transmitter according to the embodiment.
  • the transmitter 210 illustrated in FIG. 3 can be realized by the communication apparatus 500 illustrated in FIG. 5, for example, when applied to a base station such as eNB.
  • the communication device 500 includes a CPU 501, a memory 502, a wireless communication interface 503, and a wired communication interface 504.
  • the CPU 501, the memory 502, the wireless communication interface 503, and the wired communication interface 504 are connected by a bus 509.
  • a CPU 501 Central Processing Unit controls the entire communication device 500.
  • the memory 502 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the main memory is used as a work area for the CPU 501.
  • the auxiliary memory is, for example, a nonvolatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • Various programs for operating the communication device 500 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 501.
  • the wireless communication interface 503 is a communication interface that performs communication with the outside of the communication device 500 (for example, the receiver 220) wirelessly.
  • the wireless communication interface 503 is controlled by the CPU 501.
  • the wired communication interface 504 is a communication interface that performs communication with the outside of the communication device 500 (for example, a host device of the transmitter 210) by wire.
  • the wired communication interface 504 is controlled by the CPU 501.
  • the 3 includes the antenna 301, the RF receiving unit 302, the RF transmitting unit 309, and the antenna 310, for example, included in the wireless communication interface 503.
  • the reception control signal processing unit 303, the transmission control unit 304, the data signal generation unit 305, and the pilot signal generation unit 306 illustrated in FIG. 3 can be realized by at least one of the CPU 501 and the wireless communication interface 503, for example.
  • the control signal generation unit 307, the multiplexing units 308a to 308c, and the retransmission control unit 311 illustrated in FIG. 3 can be realized by at least one of the CPU 501 and the wireless communication interface 503, for example.
  • FIG. 6 is a diagram illustrating an example of a hardware configuration of the receiver according to the embodiment.
  • the receiver 220 illustrated in FIG. 4 can be realized by the communication apparatus 600 illustrated in FIG. 6, for example.
  • the communication device 600 includes a CPU 601, a memory 602, a user interface 603, and a wireless communication interface 604.
  • the CPU 601, the memory 602, the user interface 603, and the wireless communication interface 604 are connected by a bus 609.
  • the CPU 601 governs overall control of the communication device 600.
  • the memory 602 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM.
  • the main memory is used as a work area for the CPU 601.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory.
  • Various programs for operating the communication device 600 are stored in the auxiliary memory.
  • the program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 601.
  • the user interface 603 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like.
  • the input device can be realized by a key (for example, a keyboard) or a remote controller, for example.
  • the output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like.
  • the user interface 603 is controlled by the CPU 601.
  • the wireless communication interface 604 is a communication interface that performs communication with the outside of the communication device 600 (for example, the transmitter 210) wirelessly.
  • the wireless communication interface 604 is controlled by the CPU 601.
  • the antenna 401, the RF receiving unit 402, the RF transmitting unit 410, and the antenna 411 illustrated in FIG. 4 are included in the wireless communication interface 604, for example.
  • the reception data signal processing unit 403, the reception data signal buffer 404, and the ACK / NACK signal generation unit 405 illustrated in FIG. 4 can be realized by at least one of the CPU 601 and the wireless communication interface 604, for example.
  • Reception pilot signal processing section 406, wireless section characteristic evaluation section 407, control signal generation section 408, and reception control signal processing section 409 can be realized by at least one of CPU 601 and wireless communication interface 604, for example.
  • the horizontal axis indicates time, and the vertical axis indicates frequency.
  • FIG. 7 illustrates a case where the number of times that the transmitter 210 continuously transmits the data signal to the receiver 220 (continuous automatic transmission number Nmax) is two.
  • Transmitter 210 wirelessly transmits data signals 711, 712, 721, 722 to receiver 220, for example.
  • the data signals 711, 712, 721, 722 are data signals indicating the same data.
  • Data signals 711 and 712 are data signals transmitted at the same time t1.
  • Data signals 721 and 722 are data signals transmitted at the same time t2.
  • Data signals 711 and 721 are data signals transmitted at the reference frequency f_1.
  • the reference frequency f_1 is a frequency used for transmitting a data signal from the transmitter 210 to the receiver 220, and is notified from the transmitter 210 to the receiver 220 by a radio control signal, for example.
  • the data signal 712 is a data signal transmitted at a frequency f_2 whose frequency interval with the reference frequency f_1 is F.
  • the data signal 722 is a data signal transmitted at a frequency f_3 having a frequency interval F1 from the reference frequency f_1.
  • ⁇ F is a value smaller than 0 or larger than 0 ( ⁇ F ⁇ 0 or ⁇ F> 0).
  • the time interval between the time t1 when the data signals 711 and 712 are transmitted and the time t2 when the data signals 721 and 722 are transmitted is T2.
  • the time interval T2 is set to a sufficiently small value with respect to an allowable transmission delay amount (for example, 1 [ms]).
  • an allowable transmission delay amount for example, 1 [ms]
  • the receiver 220 performs diversity reception that decodes the original data based on at least one of the data signals 711, 712, 721, and 722. For example, the receiver 220 performs the decoding process in the order of the data signals 711, 712, 721, 722 until the data is successfully decoded. Alternatively, the data signals 711 and 712 may be combined to perform decoding processing, and if decoding fails, the data signals 721 and 722 may be combined to perform decoding processing. Alternatively, the receiver 220 may perform decoding processing by combining the data signals 711, 712, 721, 722. However, the diversity reception by the receiver 220 based on the data signals 711, 712, 721, 722 is not limited to these and can be various diversity receptions.
  • the transmitter 210 notifies the receiver 220 of the reference frequency f_1, and transmits control information such as F1, T2, Nmax, F, and ⁇ F using the reference frequency f_1.
  • the receiver 220 receives the data signal 711 transmitted at the frequency f_1 based on the frequency f_1 notified from the transmitter 210, and controls F1, T2, Nmax, F, and ⁇ F transmitted at the frequency f_1. Information can be received.
  • the receiver 220 receives the data signal 712 whose frequency is separated from the data signal 711 by F based on F included in the received control information.
  • the receiver 220 receives a data signal 721 that is transmitted with a delay of T2 from the data signals 711 and 712, based on Nmax included in the received control information. Further, the receiver 220 receives a data signal 722 having a frequency separated from the data signal 721 by F1 based on F1 included in the received control information.
  • FIG. 8 is a sequence diagram illustrating an example of processing by the low-delay transmission system according to the first embodiment.
  • the transmitter 210 for example, base station
  • the receiver 220 for example, terminal
  • Bidirectional communication between the transmitter 210 and the receiver 220 shown in FIG. 8 is performed by, for example, FDD or TDD.
  • FDD is an abbreviation for Frequency Division Duplex.
  • TDD is an abbreviation for Time Division Duplex.
  • the transmitter 210 wirelessly transmits a pilot signal to the receiver 220 (step S801). Further, transmitter 210 continues to transmit the pilot signal to receiver 220 wirelessly after step S801. Next, the receiver 220 determines CQI, F, and ⁇ F based on the measurement result of the pilot signal received in step S801 (step S802). A method for determining F and ⁇ F will be described later (see, for example, FIGS. 11 and 12).
  • the receiver 220 transmits information indicating CQI, F, and ⁇ F determined in step S802 to the transmitter 210 (step S803).
  • the transmission in step S803 can be executed using, for example, an RRC (Radio Resource Control) message from the receiver 220 to the transmitter 210 or a Layer-1 or Layer-2 control signal.
  • RRC Radio Resource Control
  • the transmitter 210 transmits information indicating F1, T2, and Nmax, F, and ⁇ F determined in step S804 to the receiver 220 (step S805). Note that the transmitter 210 may not transmit the information indicating F and ⁇ F in step S805.
  • the transmission in step S805 can be executed using, for example, an RRC message from the transmitter 210 to the receiver 220 or a Layer-1 or Layer-2 control signal.
  • the transmitter 210 wirelessly transmits the data signal generated by performing processing such as channel coding to the data generated in step S806 and the control signal to the receiver 220 (step S807).
  • the transmitter 210 transmits a data signal using the F indicated by the information received in step S803 at the reference frequency f_1 and the frequency f_2 whose frequency interval between the frequencies f_1 is F. (Frequency interval F). Further, the transmitter 210 transmits the control signal to the receiver 220 using the reference frequency f_1, for example.
  • control signal transmitted in step S807 includes information such as an MCS value for decoding the data signal transmitted in step S807, for example.
  • the receiver 220 receives the data signal transmitted at the frequency interval F in step S807 using F determined in step S802 or F indicated by the information received in step S803.
  • the receiver 220 decodes the received data signal based on the MCS value included in the received control signal.
  • the transmitter 210 retransmits the data signal and the control signal wirelessly transmitted in step S807 to the receiver 220 at the timing when the continuous transmission interval T2 has elapsed from the wireless transmission in step S807 (step S808).
  • the frequency f_3 is a frequency whose frequency interval with the frequency f_1 is F1.
  • the transmitter 210 transmits the control signal to the receiver 220 using the reference frequency f_1, for example.
  • the receiver 220 decodes the received data signal based on the MCS value included in the received control signal.
  • the receiver 220 wirelessly transmits a response signal (ACK or NACK) corresponding to the reception result of the data signal in steps S807 and S808 to the transmitter 210 (step S809). Further, receiver 220 determines F and ⁇ F based on the measurement result of the pilot signal received from transmitter 210 after step S801 (step S810). The determination of F and ⁇ F in step S810 is the same as the determination of F and ⁇ F in step S802, for example.
  • the receiver 220 transmits each piece of information indicating F and ⁇ F determined in step S810 to the transmitter 210 (step S811). Transmission of each information by step S811 can be performed using the RRC message from the receiver 220 to the transmitter 210, for example.
  • step S812 new data or retransmission data to be transmitted to the receiver 220 is generated in the transmitter 210 (step S812). For example, if NACK is transmitted from the receiver 220 to the transmitter 210 in step S809, retransmission data is generated in step S812. If ACK is transmitted from the receiver 220 to the transmitter 210 in step S809 and new data to be transmitted to the receiver 220 is input to the transmitter 210, new data is generated in step S812.
  • the receiver 220 does not have to determine F in step S810. In this case, the receiver 220 may not transmit information indicating F in step S811. In this case, the transmitter 210 transmits the data signal in steps S813 and S814 using F indicated by the information received in step S803 and ⁇ F indicated by the information received in step S811.
  • FIG. 9 is a flowchart of an example of processing performed by the transmitter according to the first embodiment.
  • the transmitter 210 according to the first embodiment executes, for example, each step shown in FIG. First, the transmitter 210 starts transmitting a pilot signal (step S901).
  • Step S901 is executed, for example, when the pilot signal generation unit 306 generates a pilot signal and outputs the pilot signal to the multiplexing units 308a and 308b.
  • Step S902 is executed by monitoring the control signal received by the reception control signal processing unit 303, for example.
  • Step S903 is executed by the transmission control unit 304 and the control signal generation unit 307, for example.
  • transmission control section 304 determines T2 and Nmax based on the CQI received in step S902, for example.
  • Control signal generating section 307 outputs a control signal including F1, T2, and Nmax determined by transmission control section 304 to multiplexing sections 308a and 308b.
  • Step S904 determines whether or not data to be transmitted to the receiver 220 is generated (step S904), and waits until data to be transmitted to the receiver 220 is generated (step S904: No loop). ).
  • Step S904 is executed, for example, when the transmission control unit 304 monitors the data signal input to the data signal generation unit 305.
  • step S904 when data to be transmitted to the receiver 220 is generated (step S904: Yes), the transmitter 210 sets N to “0” (step S905).
  • N is information stored in a memory (eg, the memory 502) of the transmitter 210.
  • Step S905 is executed by the transmission control unit 304, for example.
  • the transmitter 210 transmits a data signal and a control signal to the receiver 220 (step S906).
  • Step S906 is executed by, for example, the transmission control unit 304, the data signal generation unit 305, and the control signal generation unit 307.
  • Step S907 is executed by the transmission control unit 304, for example.
  • the transmitter 210 determines whether or not N has reached Nmax determined in step S903 (step S908).
  • Step S908 is executed by the transmission control unit 304, for example.
  • step S908 when N has not reached Nmax (step S908: No), the transmitter 210 returns to step S906 and retransmits the data signal and the control signal to the receiver 220. At this time, transmitter 210 retransmits the data signal and the control signal to receiver 220 with a time interval of T2 determined in step S903 from the previous transmission of the data signal and control signal in step S906.
  • step S908 when N reaches Nmax (step S908: Yes), the transmitter 210 receives an ACK or NACK for the data signal transmitted in step S906 from the receiver 220 (step S909).
  • Step S909 is executed by monitoring the control signal received by the reception control signal processing unit 303, for example.
  • step S910 determines whether or not the response signal received in step S909 is ACK (step S910).
  • Step S910 is executed by, for example, the transmission control unit 304. When it is not ACK (step S910: No), the transmitter 210 moves to step S905. When it is ACK (step S910: Yes), the transmitter 210 moves to step S904.
  • FIG. 10 is a flowchart of an example of processing performed by the receiver according to the first embodiment.
  • the receiver 220 according to the first embodiment executes, for example, each step shown in FIG. First, the receiver 220 receives and measures a pilot signal from the transmitter 210 (step S1001).
  • Step S1001 is executed by, for example, reception pilot signal processing section 406 and radio section characteristic evaluation section 407.
  • receiver 220 determines CQI, F, and ⁇ F based on the measurement result of the pilot signal in step S1001, and transmits information indicating the determined CQI, F, and ⁇ F to transmitter 210 (step S1002). ).
  • Step S1002 is executed by, for example, the wireless section characteristic evaluation unit 407 and the control signal generation unit 408.
  • radio section characteristic evaluation unit 407 determines CQI, F, and ⁇ F based on the measurement result of the pilot signal, and outputs the determined CQI, F, and ⁇ F to control signal generation unit 408.
  • the control signal generation unit 408 generates a control signal including CQI, F, and ⁇ F output from the wireless section characteristic evaluation unit 407, and outputs the generated control signal to the RF transmission unit 410.
  • Step S1003 is executed, for example, by monitoring the control signal received by the wireless section characteristic evaluation unit 407.
  • the receiver 220 starts monitoring the received signal from the transmitter 210 (step S1004).
  • Step S1004 is executed, for example, when the reception data signal processing unit 403 and the reception control signal processing unit 409 start monitoring the signal output from the RF reception unit 402.
  • the receiver 220 sets N and A to “0” (step S1005).
  • N and A are information stored in a memory (eg, memory 602) of receiver 220, for example.
  • Step S1005 is executed by the received data signal processing unit 403, for example.
  • the receiver 220 determines whether there is received data from the transmitter 210 based on the monitoring result started in step S1004 (step S1006). Wait until it is determined that there is received data (step S1006: No loop).
  • Step S1006 is executed by at least one of the reception data signal processing unit 403 and the reception control signal processing unit 409.
  • Step S1008 is executed, for example, when the reception data signal processing unit 403 performs a decoding process based on the MCS value from the reception control signal processing unit 409.
  • the receiver 220 determines whether or not the received data has been successfully decoded in step S1008 (step S1009).
  • Step S1009 is executed by the received data signal processing unit 403, for example. If the decoding is successful (step S1009: Yes), the receiver 220 sets A to “1” (step S1010).
  • Step S1010 is executed by received data signal processing section 403, for example.
  • step S1011 determines whether or not N has reached Nmax received from the transmitter 210 in step S1003 (step S1011).
  • Step S1011 is executed by the received data signal processing unit 403, for example. If N has not reached Nmax (step S1011: No), the receiver 220 proceeds to step S1006. If N has reached Nmax (step S1011: Yes), the receiver 220 determines whether A is “1” (step S1012). Step S1011 is executed by the received data signal processing unit 403, for example.
  • step S1012 when A is “1” (step S1012: Yes), the receiver 220 transmits ACK to the transmitter 210 (step S1013), and proceeds to step S1001.
  • Step S1013 is executed by the ACK / NACK signal generation unit 405, for example.
  • step S1014 is executed by the ACK / NACK signal generation unit 405, for example.
  • step S1009 when decoding is not successful (step S1009: No), the receiver 220 determines whether N is greater than 1 (step S1015).
  • Step S1015 is executed by received data signal processing section 403, for example.
  • N is not larger than 1 (step S1015: No)
  • the receiver 220 stores the previous received data in the received data signal buffer 404 (buffer) (step S1016), and proceeds to step S1011.
  • Step S1016 is executed by received data signal processing section 403, for example.
  • step S1015 if N is greater than 1 (step S1015: Yes), it can be determined that the immediately preceding received data is retransmission data.
  • the receiver 220 synthesizes and decodes the immediately previous received data and the data (data in the buffer) in the received data signal buffer 404 (step S1017).
  • Step S1017 is executed by received data signal processing section 403, for example.
  • step S1018 determines whether or not the decoding in step S1017 is successful (step S1018).
  • Step S1018 is executed by received data signal processing section 403, for example.
  • the receiver 220 proceeds to step S1011.
  • the receiver 220 sets A to “1” (step S1019), and proceeds to step S1011.
  • Step S1019 is executed by received data signal processing section 403, for example.
  • FIG. 11 and FIG. 12 are diagrams illustrating an example of determination of F and ⁇ F by the receiver according to the first embodiment.
  • the horizontal axis represents time
  • the vertical axis represents received power at the receiver 220.
  • Delay waves 1101 to 1104 indicate delay waves received by the receiver 220 in pilot signals transmitted from the transmitter 210 to the receiver 220.
  • the receiver 220 acquires the dispersion characteristics of the pilot signal in the time domain based on the measurement results of the delay waves 1101 to 1104.
  • the frequency dispersion characteristic 1200 is a dispersion characteristic in the frequency domain of a pilot signal transmitted from the transmitter 210 to the receiver 220.
  • the receiver 220 can obtain the frequency dispersion characteristic 1200 by Fourier-transforming the dispersion characteristic in the time domain of the pilot signal acquired based on the measurement results of the delay waves 1101 to 1104 shown in FIG.
  • the receiver 220 detects a plurality of coherent bands 1211 to 1214 in the frequency dispersion characteristic 1200. Then, the receiver 220 calculates the bandwidth of the coherent bandwidths 1211-1124,..., That is, the average value and deviation of the coherent bandwidth (Coherent Bandwidth). In addition, the receiver 220 determines F and ⁇ F based on the calculated average value and deviation of the coherent bandwidth.
  • the receiver 220 determines F and ⁇ F based on the coherent bandwidth of the pilot signal received from the transmitter 210, for example.
  • the receiver 220 may calculate F and F based on the average value and deviation of the coherent bandwidth of the pilot signal from the transmitter 210 calculated from the frequency dispersion characteristic 1200 of the received power of the delayed waves 1101 to 1104 of the received pilot signal. ⁇ F is determined. Thereby, F and ⁇ F that increase the effect of frequency interval diversity can be determined.
  • the receiving characteristic for example, BER
  • the interval (T2) between the time t1 and the time t2 is reduced in order to reduce the transmission delay
  • the decrease in the effect of time diversity can be compensated for by the frequency interval diversity.
  • the horizontal axis indicates time
  • the vertical axis indicates frequency.
  • FIG. 13 illustrates a case where the number of times that the transmitter 210 continuously transmits the data signal to the receiver 220 (continuous automatic transmission number Nmax) is three.
  • the transmitter 210 wirelessly transmits data signals 1311, 1312, 1321, 1322, 1331, and 1332 to the receiver 220, for example.
  • Data signals 1311, 1312, 1321, 1322, 1331, and 1332 are all data signals indicating the same data.
  • Data signals 1311 and 1312 are data signals transmitted at the same time t1.
  • Data signals 1321 and 1322 are data signals transmitted at the same time t2.
  • Data signals 1331 and 1332 are data signals transmitted at the same time t3.
  • Data signals 1311, 1321, and 1331 are data signals transmitted at the reference frequency f_1.
  • the data signal 1312 is a data signal transmitted at a frequency f_2 whose frequency interval with the reference frequency f_1 is F.
  • Data signals 1322 and 1332 are data signals transmitted at a frequency f_3 having a frequency interval F1 from the reference frequency f_1.
  • each time interval between the time t1 when the data signals 1311 and 1312 are transmitted, the time t2 when the data signals 1321 and 1322 are transmitted, and the time t3 when the data signals 1331 and 1332 are transmitted is T2.
  • the time interval T2 ⁇ 2 is set to a sufficiently small value with respect to, for example, an allowable transmission delay amount (for example, 1 [ms]).
  • time diversity in which the same data signal is transmitted three times may be used.
  • the frequency interval between the data signals 1321 and 1322 and the frequency interval between the data signals 1331 and 1332 are the same F1, but the configuration is not limited thereto.
  • the frequency interval between the data signals 1331 and 1332 may be the same F as the frequency interval of the data signals 1311 and 1312.
  • the frequency interval between the data signals 1331 and 1332 may be F2 which is different from F and F1.
  • the number of times that the transmitter 210 transmits the same data signal is not limited to two times (for example, see FIG. 7) or three times (for example, see FIG. 13), and can be any number of two or more.
  • the sum of the time intervals of the transmission of the same data signal by the transmitter 210 a plurality of times is set to a sufficiently small value with respect to an allowable transmission delay amount (for example, 1 [ms]).
  • Embodiment 2 In the second embodiment, parts different from the first embodiment will be described. Although the configuration in which receiver 220 determines F and ⁇ F has been described in Embodiment 1, the configuration in which transmitter 210 determines F and ⁇ F will be described in Embodiment 2.
  • FIG. 14 is a sequence diagram illustrating an example of processing by the low-delay transmission system according to the second embodiment.
  • the transmitter 210 for example, a base station
  • the receiver 220 for example, a terminal
  • the bidirectional communication between the transmitter 210 and the receiver 220 shown in FIG. 14 is executed by, for example, TDD.
  • TDD time division duplex
  • the same frequency is used for transmission of a radio signal from the transmitter 210 to the receiver 220 and transmission of a radio signal from the receiver 220 to the transmitter 210. Therefore, the transmitter 210 can estimate the reception quality of the pilot signal from the transmitter 210 at the receiver 220 based on the measurement result of the pilot signal from the receiver 220.
  • the receiver 220 wirelessly transmits a pilot signal to the transmitter 210 (step S1401).
  • Receiver 220 continues to transmit the pilot signal to transmitter 210 continuously after step S1401.
  • the transmitter 210 determines F1, T2, Nmax, F, and ⁇ F based on the measurement result of the pilot signal received in step S1401 (step S1402).
  • the determination method of F and ⁇ F based on the measurement result of the pilot signal by the transmitter 210 is the same as the determination method of F and ⁇ F based on the measurement result of the pilot signal by the receiver 220 described above, for example.
  • the method for determining T2 and Nmax by transmitter 210 is the same as the method for determining T2 and Nmax by receiver 220 described above, for example. In the example shown in FIG. 14, it is assumed that 2 is determined as Nmax.
  • the transmitter 210 transmits information indicating F1, T2, Nmax, F, and ⁇ F determined in step S1402 to the receiver 220 (step S1403).
  • the transmission in step S1403 can be executed using, for example, an RRC message from the transmitter 210 to the receiver 220.
  • Steps S1404 to S1407 shown in FIG. 14 are the same as steps S806 to S809 shown in FIG.
  • the transmitter 210 transmits a data signal using the F determined in step S1402 at the reference frequency f_1 and the frequency f_2 whose frequency interval between the frequencies f_1 is F ( Frequency interval F).
  • the receiver 220 receives the data signal transmitted at the frequency interval F using F indicated by the information received in step S1403.
  • Steps S1408 to S1411 shown in FIG. 14 are the same as steps S812 to S815 shown in FIG.
  • the transmitter 210 may newly determine F and ⁇ F based on the measurement result of the pilot signal received from the receiver 220 after step S1401.
  • the determination of F and ⁇ F is the same as the determination of F and ⁇ F in step S1402, for example.
  • the transmitter 210 transmits a data signal using F and ⁇ F newly determined in steps S1409 and S1410.
  • the transmitter 210 may newly determine ⁇ F based on the measurement result of the pilot signal received from the receiver 220 after step S1401. This determination of ⁇ F is the same as the determination of ⁇ F in step S1402, for example. In this case, the transmitter 210 transmits a data signal using F determined in step S1402 and the newly determined ⁇ F in steps S1409 and S1410.
  • FIG. 15 is a flowchart of an example of processing performed by the transmitter according to the second embodiment.
  • the transmitter 210 according to the second embodiment executes, for example, each step illustrated in FIG. First, the transmitter 210 receives and measures a pilot signal from the receiver 220 (step S1501). Next, transmitter 210 determines F1, T2, Nmax, F and ⁇ F based on the measurement result of the pilot signal in step S1501, and receives each information indicating the determined F1, T2, Nmax, F and ⁇ F. It transmits to the machine 220 (step S1502).
  • Steps S1503 to S1509 shown in FIG. 15 are the same as steps S904 to S910 shown in FIG. However, in step S1507, the transmitter 210 determines whether N has reached Nmax determined in step S1502.
  • FIG. 16 is a flowchart of an example of processing performed by the receiver according to the second embodiment.
  • the receiver 220 according to the second embodiment executes, for example, each step illustrated in FIG. First, the receiver 220 starts transmitting a pilot signal to the transmitter 210 (step S1601). Steps S1602 to S1618 shown in FIG. 16 are the same as steps S1003 to S1019 shown in FIG.
  • the wireless device As described above, according to the wireless device, the wireless system, and the processing method, it is possible to reduce transmission delay while suppressing deterioration of reception characteristics.
  • the variation factors of the characteristics of a certain radio section are a plurality of different types of causes (for example, Doppler shift, presence of a delayed wave with a long time length, multipath, etc.), combining different types of diversity transmission methods,
  • the resistance to fluctuations in the characteristics of the radio section is increased. For this reason, the stability of transmission of a radio signal increases.
  • the effect of frequency diversity is increased.
  • the characteristics for example, reception amplitude at the receiver
  • time diversity that provides diversity in the time domain.
  • wireless communication between a base station and an automobile is strongly affected by both Doppler shift and multipath.
  • a large diversity gain can be obtained by applying a combination of frequency diversity and time diversity to wireless communication between a base station and an automobile.
  • transmission by time diversity is not suitable for application where low-delay transmission is required because the transmission delay of a radio signal increases.
  • the time interval for transmitting a radio signal is shortened in time diversity, there is a problem in that although transmission delay is reduced, diversity gain is reduced.
  • the frequency interval is changed between the first transmission and the second transmission.
  • diversity can be given to the frequency interval, and diversity gain can be increased. Therefore, even if the time interval for transmitting radio signals in time diversity is shortened, the reduction in diversity gain can be suppressed. For this reason, it is possible to reduce transmission delay while suppressing deterioration of reception characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A first wireless device (110) comprises a transmission unit (111) and a control unit (112). The transmission unit (111) is capable of sending data signals to a second wireless device (120). A control unit (112) causes the transmission unit (111) to: transmit data signals at a first frequency and a second frequency that have a first interval therebetween, during a first hour; and transmit data signals at a third frequency and a fourth frequency having a second interval therebetween that differs from the first interval, during a second hour differing from the first hour.

Description

無線装置、無線システムおよび処理方法Wireless device, wireless system, and processing method
 本発明は、無線装置、無線システムおよび処理方法に関する。 The present invention relates to a wireless device, a wireless system, and a processing method.
 通称LTE(Long Term Evolution)システムと呼ばれる移動通信システムの仕様を策定した3GPP(3rd Generation Partnership Project)は、いわゆる第5世代移動通信システムの仕様策定ための基本検討作業を開始した。 3GPP (3rd Generation Partnership Project), which has developed specifications for a mobile communication system called the so-called LTE (Long Term Evolution) system, has begun basic study work for formulating specifications for so-called fifth generation mobile communication systems.
 第5世代移動通信システムについて、ITU-Rは、主要サービスとしてeMBB、mMTCおよびURLLCを提示している(たとえば、下記非特許文献1参照。)。ITU-RはInternational Telecommunication Union Radiocommunications Sector(国際電気通信連合 無線通信部門)の略である。eMBBはenhanced Mobile Broad Bandの略である。mMTCはmassive Machine Type Communicationsの略である。URLLCはUltra-Reliable and Low Latency Communicationsの略である。 Regarding the fifth generation mobile communication system, ITU-R presents eMBB, mMTC, and URLLC as main services (for example, see Non-Patent Document 1 below). ITU-R is an abbreviation for International Telecommunication Union Radiocommunications Sector (International Telecommunication Union Radiocommunication Division). eMBB is an abbreviation for enhanced Mobile Broad Band. mMTC is an abbreviation for massive machine type communications. URLLC is an abbreviation for Ultra-Reliable and Low Latency Communications.
 3GPPは、ITU-Rの勧告に基づき、次世代システムの無線要件等を決定し、システムの基本検討を開始している(たとえば、下記非特許文献2参照。)。また、無線伝送の信頼性を高めるための技術として、同一のデータを異なる周波数で送信する周波数ダイバシティや、同一のデータを異なる時間で送信する時間ダイバシティなどに関する技術が知られている。 3GPP has determined the wireless requirements of the next generation system based on the recommendation of ITU-R and has started the basic study of the system (for example, see Non-Patent Document 2 below). As techniques for improving the reliability of wireless transmission, techniques relating to frequency diversity for transmitting the same data at different frequencies, time diversity for transmitting the same data at different times, and the like are known.
 しかしながら、上述した従来技術では、受信特性の低下を抑制しつつ伝送遅延を低減することができない場合がある。たとえば時間ダイバシティを用いる場合に、同一のデータを送信する時間間隔を長くすると伝送遅延が増大する。また、同一のデータを送信する時間間隔を短くすると時間ダイバシティ効果が小さくなり受信特性が低下する。 However, with the above-described conventional technology, there is a case where the transmission delay cannot be reduced while suppressing the deterioration of the reception characteristics. For example, when time diversity is used, if the time interval for transmitting the same data is lengthened, the transmission delay increases. Also, if the time interval for transmitting the same data is shortened, the time diversity effect is reduced and the reception characteristics are degraded.
 1つの側面では、本発明は、受信特性の低下を抑制しつつ伝送遅延を低減することができる無線装置、無線システムおよび処理方法を提供することを目的とする。 In one aspect, an object of the present invention is to provide a wireless device, a wireless system, and a processing method that can reduce transmission delay while suppressing deterioration in reception characteristics.
 上述した課題を解決し、目的を達成するため、1つの実施態様では、他の無線装置へのデータ信号を送信可能な無線装置が、第1時間において、第1間隔を互いに有する第1周波数および第2周波数のそれぞれにより前記データ信号を送信し、前記第1時間と異なる第2時間において、前記第1間隔と異なる第2間隔を互いに有する第3周波数および第4周波数のそれぞれにより前記データ信号を送信する無線装置、無線システムおよび処理方法が提案される。 In order to solve the above-described problem and achieve the object, in one embodiment, a wireless device capable of transmitting a data signal to another wireless device has a first frequency having a first interval with each other at a first time, and Transmitting the data signal at each of the second frequencies, and transmitting the data signal at each of a third frequency and a fourth frequency having a second interval different from the first interval at a second time different from the first time. A transmitting wireless device, a wireless system and a processing method are proposed.
 また、別の1つの実施態様では、他の無線装置からのデータ信号を受信可能な無線装置が、第1時間において、第1間隔を互いに有する第1周波数および第2周波数のそれぞれにより送信される前記データ信号を受信し、前記第1時間と異なる第2時間において、前記第1間隔と異なる第2間隔を互いに有する第3周波数および第4周波数のそれぞれにより送信される前記データ信号を受信する無線装置、無線システムおよび処理方法が提案される。 In another embodiment, a wireless device capable of receiving a data signal from another wireless device is transmitted at each of a first frequency and a second frequency having a first interval in a first time. Radio that receives the data signal and receives the data signal transmitted at each of a third frequency and a fourth frequency having a second interval different from the first interval at a second time different from the first time. An apparatus, a wireless system and a processing method are proposed.
 1つの側面では、本発明は、受信特性の低下を抑制しつつ伝送遅延を低減することができるという効果を奏する。 In one aspect, the present invention has an effect that transmission delay can be reduced while suppressing deterioration of reception characteristics.
図1は、実施の形態1にかかる無線システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a wireless system according to the first embodiment. 図2は、実施の形態にかかる無線システムを適用した低遅延伝送システムの一例を示す図である。FIG. 2 is a diagram illustrating an example of a low-delay transmission system to which the wireless system according to the embodiment is applied. 図3は、実施の形態1にかかる送信機の一例を示す図である。FIG. 3 is a diagram of an example of the transmitter according to the first embodiment. 図4は、実施の形態1にかかる受信機の一例を示す図である。FIG. 4 is a diagram of an example of the receiver according to the first embodiment. 図5は、実施の形態にかかる送信機のハードウェア構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of a hardware configuration of the transmitter according to the embodiment. 図6は、実施の形態にかかる受信機のハードウェア構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of a hardware configuration of the receiver according to the embodiment. 図7は、実施の形態1にかかる送信機によるダイバシティ送信の一例(Nmax=2)を示す図である。FIG. 7 is a diagram of an example of diversity transmission (Nmax = 2) by the transmitter according to the first embodiment. 図8は、実施の形態1にかかる低遅延伝送システムによる処理の一例を示すシーケンス図である。FIG. 8 is a sequence diagram illustrating an example of processing by the low-delay transmission system according to the first embodiment. 図9は、実施の形態1にかかる送信機による処理の一例を示すフローチャートである。FIG. 9 is a flowchart of an example of processing performed by the transmitter according to the first embodiment. 図10は、実施の形態1にかかる受信機による処理の一例を示すフローチャートである。FIG. 10 is a flowchart of an example of processing performed by the receiver according to the first embodiment. 図11は、実施の形態1にかかる受信機によるFおよびΔFの決定の一例を示す図(その1)である。FIG. 11 is a diagram (part 1) illustrating an example of determination of F and ΔF by the receiver according to the first embodiment. 図12は、実施の形態1にかかる受信機によるFおよびΔFの決定の一例を示す図(その2)である。FIG. 12 is a diagram (part 2) illustrating an example of determination of F and ΔF by the receiver according to the first embodiment. 図13は、実施の形態1にかかる送信機によるダイバシティ送信の一例(Nmax=3)を示す図である。FIG. 13 is a diagram illustrating an example of diversity transmission (Nmax = 3) by the transmitter according to the first embodiment. 図14は、実施の形態2にかかる低遅延伝送システムによる処理の一例を示すシーケンス図である。FIG. 14 is a sequence diagram illustrating an example of processing by the low-delay transmission system according to the second embodiment. 図15は、実施の形態2にかかる送信機による処理の一例を示すフローチャートである。FIG. 15 is a flowchart of an example of processing performed by the transmitter according to the second embodiment. 図16は、実施の形態2にかかる受信機による処理の一例を示すフローチャートである。FIG. 16 is a flowchart of an example of processing performed by the receiver according to the second embodiment.
 以下に図面を参照して、本発明にかかる無線装置、無線システムおよび処理方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of a wireless device, a wireless system, and a processing method according to the present invention will be described in detail with reference to the drawings.
(実施の形態1)
(実施の形態1にかかる無線システム)
 図1は、実施の形態1にかかる無線システムの一例を示す図である。図1に示すように、実施の形態にかかる無線システム100は、第1無線装置110と、第2無線装置120と、を含む。図1に示す例では、第1無線装置110から第2無線装置120へデータ信号を無線送信する場合について説明する。
(Embodiment 1)
(Radio system according to the first embodiment)
FIG. 1 is a diagram illustrating an example of a wireless system according to the first embodiment. As illustrated in FIG. 1, the wireless system 100 according to the embodiment includes a first wireless device 110 and a second wireless device 120. In the example illustrated in FIG. 1, a case where a data signal is wirelessly transmitted from the first wireless device 110 to the second wireless device 120 will be described.
 第1無線装置110は、送信部111と、制御部112と、を備える。送信部111は、制御部112からの制御により、第2無線装置120へのデータ信号を送信可能である。制御部112は、送信部111に対して、第1時間において、第1周波数および第2周波数のそれぞれにより同一のデータ信号を送信させる制御を行う。第1時間は、たとえば第1無線装置110から第2無線装置120へのデータ信号の送信に割り当てられた時間リソースである。第1周波数および第2周波数は、互いに第1間隔を有する各周波数である。第1間隔は、0より大きい周波数間隔である。 The first wireless device 110 includes a transmission unit 111 and a control unit 112. The transmission unit 111 can transmit a data signal to the second radio apparatus 120 under the control of the control unit 112. The control unit 112 controls the transmission unit 111 to transmit the same data signal at each of the first frequency and the second frequency in the first time. The first time is, for example, a time resource assigned to transmission of a data signal from the first radio apparatus 110 to the second radio apparatus 120. The first frequency and the second frequency are each frequency having a first interval. The first interval is a frequency interval greater than zero.
 また、制御部112は、送信部111に対して、第2時間において、第3周波数および第4周波数のそれぞれにより、第1時間において送信させたデータ信号と同一のデータ信号を送信させる制御を行う。第3周波数および第4周波数は、互いに第2間隔を有する各周波数である。第2間隔は、0より大きく、かつ第1間隔と異なる周波数間隔である。第2時間は、第1時間と異なる時間リソースである。たとえば、第2時間は、第1時間より後の時間リソース、または第1時間より前の時間リソースである。 In addition, the control unit 112 controls the transmission unit 111 to transmit the same data signal as the data signal transmitted in the first time at each of the third frequency and the fourth frequency in the second time. . The third frequency and the fourth frequency are frequencies having a second interval. The second interval is a frequency interval greater than 0 and different from the first interval. The second time is a time resource different from the first time. For example, the second time is a time resource after the first time or a time resource before the first time.
 第2無線装置120は、受信部121と、制御部122と、を備える。受信部121は、制御部122からの制御により、第1無線装置110からのデータ信号を受信可能である。制御部122は、受信部121に対して、上述の第1時間において、上述の第1周波数および第2周波数のそれぞれにより送信されるデータ信号を受信させる制御を行う。 The second radio apparatus 120 includes a receiving unit 121 and a control unit 122. The receiving unit 121 can receive a data signal from the first radio apparatus 110 under the control of the control unit 122. The control unit 122 performs control to cause the reception unit 121 to receive the data signal transmitted by each of the first frequency and the second frequency in the first time.
 また、制御部122は、受信部121に対して、上述の第2時間において、上述の第3周波数および第4周波数のそれぞれにより送信されるデータ信号を受信させる制御を行う。ただし、制御部122は、受信部121が第1時間において受信したデータ信号を復号できた場合は、受信部121に対して第2時間においてデータ信号を受信させなくてもよい。この場合に、制御部122は、受信部121が第1時間において受信したデータ信号を復号できなかった場合は、受信部121に対して第2時間においてデータ信号を受信させる制御を行う。 Further, the control unit 122 performs control to cause the reception unit 121 to receive data signals transmitted by the third frequency and the fourth frequency, respectively, in the second time described above. However, the control unit 122 may not cause the reception unit 121 to receive the data signal at the second time when the reception unit 121 can decode the data signal received at the first time. In this case, when the receiving unit 121 cannot decode the data signal received at the first time, the control unit 122 performs control to cause the receiving unit 121 to receive the data signal at the second time.
 このように、無線システム100によれば、第1時間において、第1間隔を互いに有する第1周波数および第2周波数のそれぞれにより同じデータ信号を送信することができる。また、第1時間と異なる第2時間において、第1間隔と異なる第2間隔を互いに有する第3周波数および第4周波数のそれぞれにより同じデータ信号を送信することができる。これにより、周波数ダイバシティ、時間ダイバシティおよび周波数間隔ダイバシティの各効果により第2無線装置120における受信特性を向上させることができる。受信特性は、たとえばBLER(Block Error Rate:ビット誤り率)等の誤り率である。 Thus, according to the wireless system 100, in the first time, the same data signal can be transmitted by each of the first frequency and the second frequency having the first interval. Further, in the second time different from the first time, the same data signal can be transmitted by each of the third frequency and the fourth frequency having a second interval different from the first interval. Thereby, the receiving characteristic in the 2nd radio | wireless apparatus 120 can be improved according to each effect of a frequency diversity, a time diversity, and a frequency space | interval diversity. The reception characteristic is, for example, an error rate such as BLER (Block Error Rate).
 また、たとえば伝送遅延を小さくするために第1時間および第2時間の間隔を小さくしても、時間ダイバシティの効果の低下を周波数間隔ダイバシティにより補うことができる。これにより、受信特性の低下を抑制しつつ伝送遅延を低減することができる。このため、たとえば高信頼かつ低遅延の無線システムを実現することができる。 Also, for example, even if the interval between the first time and the second time is reduced in order to reduce the transmission delay, the decrease in the effect of time diversity can be compensated by frequency interval diversity. Thereby, it is possible to reduce transmission delay while suppressing deterioration of reception characteristics. For this reason, for example, a highly reliable and low-delay radio system can be realized.
 また、第1無線装置110の制御部112は、たとえば、送信部111に対して、上述の各周波数(第1周波数、第2周波数、第3周波数および第4周波数)を特定可能な情報を第2無線装置120へ送信させる制御を行ってもよい。これにより、たとえば上述の各周波数を第1無線装置110が決定する構成においても、第2無線装置120が第1無線装置110からのデータ信号をダイバシティ受信することができる。 In addition, the control unit 112 of the first radio apparatus 110 provides, for example, information that can specify each of the above-described frequencies (first frequency, second frequency, third frequency, and fourth frequency) to the transmission unit 111. Control may be performed to transmit to the two wireless devices 120. Thereby, for example, even in the configuration in which the first radio apparatus 110 determines each frequency described above, the second radio apparatus 120 can receive the data signal from the first radio apparatus 110 with diversity.
 上述の第1周波数および第3周波数は、たとえば同一の基準周波数とすることができる。基準周波数は、たとえば第1無線装置110から第2無線装置120へのデータ信号の送信に割り当てられた周波数である。この場合に、上述の各周波数を特定可能な情報は、たとえば、第1周波数を示す情報と、第1間隔(たとえば後述のF)を示す情報と、上述の第2間隔(たとえば後述のF1)を示す情報と、により実現することができる。 The first frequency and the third frequency described above can be set to the same reference frequency, for example. The reference frequency is, for example, a frequency assigned for data signal transmission from the first radio apparatus 110 to the second radio apparatus 120. In this case, the information that can identify each frequency described above includes, for example, information indicating the first frequency, information indicating the first interval (for example, F described later), and the second interval (for example, F1 described later). It can be realized by the information indicating.
 この場合に、第2無線装置120は、第1周波数を示す情報に基づいて第1周波数および第3周波数を特定することができる。また、第2無線装置120は、第1周波数を示す情報と、第1間隔を示す情報と、に基づいて第2周波数を特定することができる。また、第2無線装置120は、第1周波数を示す情報と、第2間隔を示す情報と、に基づいて第4周波数を特定することができる。 In this case, the second radio apparatus 120 can specify the first frequency and the third frequency based on the information indicating the first frequency. Further, the second radio apparatus 120 can specify the second frequency based on the information indicating the first frequency and the information indicating the first interval. Further, the second radio apparatus 120 can identify the fourth frequency based on information indicating the first frequency and information indicating the second interval.
 または、上述の第2間隔を示す情報に代えて、第1間隔および第2間隔の間の差分(たとえば後述のΔF)を示す情報を用いてもよい。この場合に、第2無線装置120は、第1間隔を示す情報と、第1間隔および第2間隔の間の差分を示す情報と、第2間隔を特定し、第1周波数を示す情報と、特定した第2間隔と、に基づいて第4周波数を特定することができる。 Alternatively, instead of the information indicating the second interval described above, information indicating a difference between the first interval and the second interval (for example, ΔF described later) may be used. In this case, the second radio apparatus 120 includes information indicating the first interval, information indicating the difference between the first interval and the second interval, information specifying the second interval and indicating the first frequency, The fourth frequency can be specified based on the specified second interval.
 このように、第1無線装置110は、上述の各周波数のうち、一部の周波数を示す情報と、その一部の周波数と他の周波数との差分を示す情報と、を送信することにより、第1無線装置110から第2無線装置120へのシグナリングの量を低減することができる。ただし、上述の各周波数を特定可能な情報は、これらに限らず、たとえば各周波数をそれぞれ直接的に示す情報であってもよい。 As described above, the first radio apparatus 110 transmits information indicating a part of the above-described frequencies and information indicating a difference between the part of the frequencies and the other frequencies. The amount of signaling from the first wireless device 110 to the second wireless device 120 can be reduced. However, the information that can specify each frequency described above is not limited thereto, and may be information that directly indicates each frequency, for example.
 また、上述の各周波数を特定可能な情報について、第1無線装置110が第2無線装置120へ個別に送信してもよいし、第1無線装置110との間で無線通信を行う各無線装置に対して第1無線装置110が報知してもよい。 Further, the information that can identify each frequency described above may be individually transmitted by the first wireless device 110 to the second wireless device 120, or each wireless device that performs wireless communication with the first wireless device 110. 1st radio | wireless apparatus 110 may alert | report.
 また、第1無線装置110の制御部112は、たとえば、送信部111に対して、上述の第1時間および第2時間を特定可能な情報を第2無線装置120へ送信させる制御を行ってもよい。これにより、たとえば上述の第1時間および第2時間を第1無線装置110が決定する構成においても、第2無線装置120が第1無線装置110からのデータ信号をダイバシティ受信することができる。 For example, the control unit 112 of the first radio apparatus 110 may control the transmission unit 111 to transmit the information that can specify the first time and the second time to the second radio apparatus 120. Good. Thereby, for example, even in the configuration in which the first radio apparatus 110 determines the first time and the second time described above, the second radio apparatus 120 can receive the data signal from the first radio apparatus 110 with diversity.
(実施の形態にかかる無線システムを適用した低遅延伝送システム)
 図2は、実施の形態にかかる無線システムを適用した低遅延伝送システムの一例を示す図である。図2に示す低遅延伝送システム200は、送信機210と、受信機220と、を含む。図1に示した第1無線装置110は、たとえば送信機210により実現することができる。図1に示した第2無線装置120は、たとえば受信機220により実現することができる。
(Low-delay transmission system to which the wireless system according to the embodiment is applied)
FIG. 2 is a diagram illustrating an example of a low-delay transmission system to which the wireless system according to the embodiment is applied. The low delay transmission system 200 shown in FIG. 2 includes a transmitter 210 and a receiver 220. The first radio apparatus 110 shown in FIG. 1 can be realized by the transmitter 210, for example. The second radio apparatus 120 shown in FIG. 1 can be realized by the receiver 220, for example.
 図2に示す例では、送信機210が受信機220へデータ信号を無線送信する場合について説明する。このデータ信号の無線送信には、IP層やLayer1/2が用いられる。IPはInternet Protocol(インターネットプロトコル)の略である。送信機210は、たとえばeNB(evolved Node B)などの基地局である。受信機220は、たとえばUE(User Equipment:ユーザ端末)などの端末である。ただし、送信機210はUEなどの端末であってもよい。また、受信機220はeNBなどの基地局であってもよい。 In the example shown in FIG. 2, a case where the transmitter 210 wirelessly transmits a data signal to the receiver 220 will be described. For wireless transmission of this data signal, the IP layer or Layer 1/2 is used. IP is an abbreviation for Internet Protocol. The transmitter 210 is a base station such as eNB (evolved Node B). Receiver 220 is a terminal such as a UE (User Equipment: user terminal). However, the transmitter 210 may be a terminal such as a UE. The receiver 220 may be a base station such as an eNB.
 また、図2に示す低遅延伝送システム200は、自動車の自動運転制御や、工場や危険場所等でのロボットの遠隔制御などに適用することができる。これらの制御のための無線通信には、高信頼かつ低遅延の特性が求められる。たとえば、3GPPで仕様規定される次世代移動通信システムでは、上述のURLLCなどのサービスが新たに導入されることになっている。 Further, the low-delay transmission system 200 shown in FIG. 2 can be applied to automatic driving control of a car, remote control of a robot in a factory, a dangerous place, or the like. Wireless communication for these controls requires high reliability and low delay characteristics. For example, in the next generation mobile communication system specified by 3GPP, services such as the above-described URLLC are newly introduced.
 たとえば、自動車の自動運転等の人命に関わるデータ送信においては、低遅延と超高信頼の両立が要求されている。3GPPでは、このような無線区間におけるデータのLayer1/2について、伝送遅延時間が1[ms]以内かつデータ送信成功率が10のマイナス5乗を要件として定めている。 For example, in data transmission related to human life such as automatic driving of automobiles, both low delay and ultra-high reliability are required. In 3GPP, for Layer 1/2 of data in such a wireless section, the transmission delay time is within 1 [ms] and the data transmission success rate is defined as 10 to the fifth power.
 送信機210から受信機220へのデータ信号の伝送においては、時間ダイバシティ送信の方式として、たとえばHARQが用いられる。HARQはHybrid Automatic Repeat reQuest(ハイブリッド自動再送要求)の略である。この場合のHARQは、たとえば受信側で電力をコンバインするチェイス合成(Chase combine)のHARQとすることができる。ただし、送信機210から受信機220へのデータ信号の伝送に用いられる時間ダイバシティ送信は、HARQに限らず各種の時間ダイバシティ送信とすることができる。 In the transmission of data signals from the transmitter 210 to the receiver 220, for example, HARQ is used as a time diversity transmission method. HARQ is an abbreviation for Hybrid Automatic Repeat reQuest (hybrid automatic repeat request). In this case, the HARQ may be, for example, a HARQ of a chase combination that combines power on the receiving side. However, the time diversity transmission used for transmission of the data signal from the transmitter 210 to the receiver 220 is not limited to HARQ, and can be various time diversity transmissions.
(実施の形態1にかかる送信機)
 図3は、実施の形態1にかかる送信機の一例を示す図である。図3に示すように、送信機210は、たとえば、アンテナ301と、RF受信部302と、受信制御信号処理部303と、を備える。また、送信機210は、たとえば、送信制御部304と、データ信号生成部305と、パイロット信号生成部306と、制御信号生成部307と、多重部308a~308cと、RF送信部309と、アンテナ310と、再送制御部311と、を備える。RFはRadio Frequency(高周波)の略である。
(Transmitter according to the first embodiment)
FIG. 3 is a diagram of an example of the transmitter according to the first embodiment. As illustrated in FIG. 3, the transmitter 210 includes, for example, an antenna 301, an RF receiving unit 302, and a reception control signal processing unit 303. Further, the transmitter 210 includes, for example, a transmission control unit 304, a data signal generation unit 305, a pilot signal generation unit 306, a control signal generation unit 307, multiplexing units 308a to 308c, an RF transmission unit 309, an antenna, and the like. 310 and a retransmission control unit 311. RF is an abbreviation for Radio Frequency.
 アンテナ301は、受信機220などの他の無線装置から無線送信された信号を受信し、受信した信号をRF受信部302へ出力する。RF受信部302は、アンテナ301から出力された信号のRF受信処理を行う。RF受信部302によるRF受信処理には、たとえば、増幅、RF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。RF受信部302は、RF受信処理を行った信号を受信制御信号処理部303へ出力する。 The antenna 301 receives a signal wirelessly transmitted from another wireless device such as the receiver 220, and outputs the received signal to the RF receiving unit 302. The RF receiver 302 performs an RF reception process on the signal output from the antenna 301. The RF reception processing by the RF receiver 302 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like. The RF reception unit 302 outputs the signal subjected to the RF reception process to the reception control signal processing unit 303.
 受信制御信号処理部303は、RF受信部302から出力された信号に含まれる制御信号を復調し、復調した制御信号を復号する。そして、受信制御信号処理部303は、復号により得られた制御信号を送信制御部304へ出力する。受信制御信号処理部303から送信制御部304へ出力される制御信号には、送信機210から受信機220へ送信したデータ信号に対する受信機220からの応答信号(ACKまたはNACK)が含まれる。 The reception control signal processing unit 303 demodulates the control signal included in the signal output from the RF reception unit 302 and decodes the demodulated control signal. Reception control signal processing section 303 then outputs the control signal obtained by decoding to transmission control section 304. The control signal output from the reception control signal processing unit 303 to the transmission control unit 304 includes a response signal (ACK or NACK) from the receiver 220 to the data signal transmitted from the transmitter 210 to the receiver 220.
 また、受信制御信号処理部303から送信制御部304へ出力される制御信号には、たとえば送信機210と受信機220との間の無線区間特性(無線品質)の評価値を示す無線区間特性情報が含まれる。無線区間特性情報には、一例としては、無線区間特性をインデックス値で示すCQI値を用いることができる。CQIはChannel Quality Indicator(チャネル品質指標)の略である。 The control signal output from the reception control signal processing unit 303 to the transmission control unit 304 includes, for example, wireless section characteristic information indicating an evaluation value of wireless section characteristics (wireless quality) between the transmitter 210 and the receiver 220. Is included. As an example of the wireless section characteristic information, a CQI value indicating the wireless section characteristic with an index value can be used. CQI is an abbreviation for Channel Quality Indicator.
 また、受信制御信号処理部303から送信制御部304へ出力される制御信号には、たとえば受信機220により決定されたFおよびΔFを示す情報が含まれる。FおよびΔFについては後述する。 Further, the control signal output from the reception control signal processing unit 303 to the transmission control unit 304 includes information indicating F and ΔF determined by the receiver 220, for example. F and ΔF will be described later.
 送信制御部304は、データ信号生成部305によるデータ信号の生成、制御信号生成部307による制御信号の生成、および再送制御部311による再送制御を制御する。たとえば、送信制御部304は、受信制御信号処理部303から出力された無線区間特性情報に基づいて、受信機220へ送信するデータ信号のMCS値を選択する。そして、送信制御部304は、選択したMCS値が示す変調方式および符号化方式をデータ信号に適用するようにデータ信号生成部305を制御する。MCSはModulation and Coding Scheme(変調・符号化方式)の略である。 The transmission control unit 304 controls data signal generation by the data signal generation unit 305, control signal generation by the control signal generation unit 307, and retransmission control by the retransmission control unit 311. For example, the transmission control unit 304 selects the MCS value of the data signal to be transmitted to the receiver 220 based on the radio section characteristic information output from the reception control signal processing unit 303. Then, the transmission control unit 304 controls the data signal generation unit 305 to apply the modulation scheme and the coding scheme indicated by the selected MCS value to the data signal. MCS is an abbreviation for Modulation and Coding Scheme.
 また、送信制御部304は、受信制御信号処理部303から出力されたFおよびΔFを示す情報に基づいて、データ信号生成部305が生成する同一の各データ信号の周波数を制御する。また、送信制御部304は、選択したMCS値を含む制御信号を送信するように制御信号生成部307を制御する。また、送信制御部304は、受信制御信号処理部303から出力された受信機220からの応答信号がNACKである場合は、対応するデータ信号を再送するように再送制御部311を制御する。 Also, the transmission control unit 304 controls the frequency of each identical data signal generated by the data signal generation unit 305 based on the information indicating F and ΔF output from the reception control signal processing unit 303. Also, the transmission control unit 304 controls the control signal generation unit 307 to transmit a control signal including the selected MCS value. If the response signal from the receiver 220 output from the reception control signal processing unit 303 is NACK, the transmission control unit 304 controls the retransmission control unit 311 to retransmit the corresponding data signal.
 送信機210が受信機220へ送信すべきデータ信号は、データ信号生成部305および再送制御部311へ入力される。データ信号生成部305は、送信制御部304からの制御にしたがって第1~第4のデータ信号を生成する。第1~第4のデータ信号は、同一のデータを示すデータ信号である。第1,第2のデータ信号は、同じ時間リソースにより伝送され、かつ周波数間隔がFである各周波数リソースにより伝送される各データ信号である。第3,第4のデータ信号は、第1,第2のデータ信号より後の互いに同じ時間リソースにより伝送され、かつ周波数間隔がF1である各周波数リソースにより伝送される各データ信号である。第1~第4のデータ信号については後述する(たとえば図7参照)。 A data signal to be transmitted from the transmitter 210 to the receiver 220 is input to the data signal generation unit 305 and the retransmission control unit 311. The data signal generation unit 305 generates first to fourth data signals in accordance with control from the transmission control unit 304. The first to fourth data signals are data signals indicating the same data. The first and second data signals are each data signal transmitted by the same time resource and transmitted by each frequency resource whose frequency interval is F. The third and fourth data signals are data signals transmitted by the same time resource after the first and second data signals and transmitted by each frequency resource whose frequency interval is F1. The first to fourth data signals will be described later (see, for example, FIG. 7).
 また、データ信号生成部305は、再送制御部311から再送データが出力された場合は、送信制御部304からの制御にしたがって、再送制御部311から出力された再送データに基づいて第1~第4のデータ信号を生成する。そして、データ信号生成部305は、生成した第1,第2のデータ信号を多重部308aへ出力する。また、データ信号生成部305は、生成した第3,第4のデータ信号を多重部308bへ出力する。 Further, when the retransmission data is output from the retransmission control unit 311, the data signal generation unit 305 performs the first to second operations based on the retransmission data output from the retransmission control unit 311 according to the control from the transmission control unit 304. 4 data signals are generated. Then, the data signal generation unit 305 outputs the generated first and second data signals to the multiplexing unit 308a. In addition, the data signal generation unit 305 outputs the generated third and fourth data signals to the multiplexing unit 308b.
 パイロット信号生成部306は、それぞれ異なる周波数の各パイロット信号を生成し、生成した各パイロット信号をそれぞれ多重部308a,308bへ出力する。 Pilot signal generation section 306 generates pilot signals having different frequencies, and outputs the generated pilot signals to multiplexing sections 308a and 308b, respectively.
 制御信号生成部307は、送信制御部304からの制御にしたがって、それぞれ第1~第4のデータ信号に対応する第1~第4の制御信号を生成する。そして、制御信号生成部307は、生成した第1,第2の制御信号を多重部308aへ出力する。また、制御信号生成部307は、生成した第3,第4の制御信号を多重部308bへ出力する。 The control signal generation unit 307 generates first to fourth control signals corresponding to the first to fourth data signals, respectively, according to the control from the transmission control unit 304. Then, the control signal generation unit 307 outputs the generated first and second control signals to the multiplexing unit 308a. In addition, the control signal generation unit 307 outputs the generated third and fourth control signals to the multiplexing unit 308b.
 多重部308aは、データ信号生成部305から出力された第1,第2のデータ信号と、パイロット信号生成部306から出力されたデータ信号と、制御信号生成部307から出力された第3,第4の制御信号と、を周波数多重(または周波数時間多重)する。そして、多重部308aは、周波数多重(または周波数時間多重)した信号を多重部308cへ出力する。 The multiplexing unit 308 a includes the first and second data signals output from the data signal generation unit 305, the data signal output from the pilot signal generation unit 306, and the third and third data signals output from the control signal generation unit 307. 4 control signals are frequency multiplexed (or frequency time multiplexed). Then, the multiplexing unit 308a outputs the frequency multiplexed (or frequency time multiplexed) signal to the multiplexing unit 308c.
 多重部308bは、データ信号生成部305から出力された第3,第4のデータ信号と、パイロット信号生成部306から出力されたデータ信号と、制御信号生成部307から出力された第3,第4の制御信号と、を周波数多重(または周波数時間多重)する。そして、多重部308bは、周波数多重(または周波数時間多重)した信号を多重部308cへ出力する。 The multiplexing unit 308b includes the third and fourth data signals output from the data signal generation unit 305, the data signal output from the pilot signal generation unit 306, and the third and third data signals output from the control signal generation unit 307. 4 control signals are frequency multiplexed (or frequency time multiplexed). Then, the multiplexing unit 308b outputs the frequency multiplexed (or frequency time multiplexed) signal to the multiplexing unit 308c.
 多重部308cは、多重部308a,308bから出力された各信号を周波数多重し、周波数多重された信号をRF送信部309へ出力する。 The multiplexing unit 308c frequency multiplexes the signals output from the multiplexing units 308a and 308b, and outputs the frequency-multiplexed signal to the RF transmission unit 309.
 RF送信部309は、多重部308cから出力された信号のRF送信処理を行う。RF送信部309によるRF送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からRF帯への周波数変換、増幅等が含まれる。RF送信部309は、RF送信処理を行った信号をアンテナ310へ出力する。アンテナ310は、RF送信部309から出力された信号を他の通信装置(たとえば受信機220)へ無線送信する。 The RF transmission unit 309 performs RF transmission processing of the signal output from the multiplexing unit 308c. The RF transmission processing by the RF transmission unit 309 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like. The RF transmission unit 309 outputs the signal subjected to the RF transmission process to the antenna 310. The antenna 310 wirelessly transmits the signal output from the RF transmission unit 309 to another communication device (for example, the receiver 220).
 再送制御部311は、入力されたデータ信号を格納する再送データバッファを有する。そして、再送制御部311は、送信制御部304からの制御に従って、再送データバッファに格納したデータ信号を再送データとしてデータ信号生成部305へ出力する。 The retransmission control unit 311 has a retransmission data buffer for storing the input data signal. Then, according to control from transmission control section 304, retransmission control section 311 outputs the data signal stored in the retransmission data buffer to data signal generation section 305 as retransmission data.
 図1に示した第1無線装置110の送信部111は、たとえばデータ信号生成部305、多重部308a~308c、RF送信部309、アンテナ310および再送制御部311により実現することができる。図1に示した第1無線装置110の制御部112は、たとえば送信制御部304により実現することができる。 1 can be realized by, for example, the data signal generation unit 305, the multiplexing units 308a to 308c, the RF transmission unit 309, the antenna 310, and the retransmission control unit 311. The control unit 112 of the first radio apparatus 110 illustrated in FIG. 1 can be realized by the transmission control unit 304, for example.
 なお、図3に示す例では、送信機210による連続自動送信数(Nmax)が2回である場合の構成として、2個の多重部(多重部308a,308b)を備える構成について説明したが、このような構成に限らない。たとえば、送信機210による連続自動送信数(Nmax)が3回以上である場合は、3個以上の多重部を備える構成としてよい。 In the example illustrated in FIG. 3, the configuration including two multiplexing units (multiplexing units 308a and 308b) has been described as the configuration when the number of continuous automatic transmissions (Nmax) by the transmitter 210 is two. It is not restricted to such a configuration. For example, when the number of continuous automatic transmissions (Nmax) by the transmitter 210 is three times or more, a configuration including three or more multiplexing units may be employed.
(実施の形態1にかかる受信機)
 図4は、実施の形態1にかかる受信機の一例を示す図である。図4に示すように、受信機220は、たとえば、アンテナ401と、RF受信部402と、受信データ信号処理部403と、受信データ信号バッファ404と、ACK/NACK信号生成部405と、を備える。また、受信機220は、受信パイロット信号処理部406と、無線区間特性評価部407と、制御信号生成部408と、受信制御信号処理部409と、RF送信部410と、アンテナ411と、を備える。
(Receiver according to the first embodiment)
FIG. 4 is a diagram of an example of the receiver according to the first embodiment. As illustrated in FIG. 4, the receiver 220 includes, for example, an antenna 401, an RF reception unit 402, a reception data signal processing unit 403, a reception data signal buffer 404, and an ACK / NACK signal generation unit 405. . The receiver 220 includes a reception pilot signal processing unit 406, a radio section characteristic evaluation unit 407, a control signal generation unit 408, a reception control signal processing unit 409, an RF transmission unit 410, and an antenna 411. .
 アンテナ401は、他の通信装置(たとえば送信機210)から無線送信された信号を受信してRF受信部402へ出力する。RF受信部402は、アンテナ401から出力された信号のRF受信処理を行う。RF受信部402によるRF受信処理には、たとえば、増幅、RF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。RF受信部402は、RF受信処理を行った信号を受信データ信号処理部403、受信パイロット信号処理部406および受信制御信号処理部409へ出力する。 The antenna 401 receives a signal wirelessly transmitted from another communication device (for example, the transmitter 210) and outputs the signal to the RF receiving unit 402. The RF reception unit 402 performs an RF reception process on the signal output from the antenna 401. The RF reception processing by the RF reception unit 402 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like. The RF reception unit 402 outputs the signal subjected to the RF reception processing to the reception data signal processing unit 403, the reception pilot signal processing unit 406, and the reception control signal processing unit 409.
 受信データ信号処理部403は、RF受信部402から出力された信号に含まれるデータ信号の受信処理を行う。たとえば、受信データ信号処理部403は、受信制御信号処理部409から出力されたMCS値に基づく復号方式により受信処理を行う。また、受信データ信号処理部403は、受信処理によって得られたデータ信号を受信データ信号バッファ404へ出力する。また、受信データ信号処理部403は、受信処理におけるデータ信号の誤り検出結果をACK/NACK信号生成部405へ出力する。 The reception data signal processing unit 403 performs reception processing of a data signal included in the signal output from the RF reception unit 402. For example, the reception data signal processing unit 403 performs reception processing by a decoding method based on the MCS value output from the reception control signal processing unit 409. Reception data signal processing section 403 outputs the data signal obtained by the reception processing to reception data signal buffer 404. Reception data signal processing section 403 outputs the data signal error detection result in the reception processing to ACK / NACK signal generation section 405.
 受信データ信号バッファ404は、受信データ信号処理部403から出力されたデータ信号を格納する。受信データ信号バッファ404によって格納されたデータ信号は、たとえば再送方式としてHARQ方式が使用されている場合に、再送されたデータ信号との合成に用いられる。 The reception data signal buffer 404 stores the data signal output from the reception data signal processing unit 403. The data signal stored by the reception data signal buffer 404 is used for combining with the retransmitted data signal, for example, when the HARQ method is used as the retransmission method.
 ACK/NACK信号生成部405は、受信データ信号処理部403から出力された誤り検出結果に基づく応答信号を生成する。たとえば、ACK/NACK信号生成部405は、受信データ信号処理部403において正常なデータ信号が得られた場合はACKを生成し、受信データ信号処理部403において正常なデータ信号が得られなかった場合はNACKを生成する。そして、ACK/NACK信号生成部405は、生成した応答信号(ACKまたはNACK)を制御信号としてRF送信部410へ出力する。 The ACK / NACK signal generation unit 405 generates a response signal based on the error detection result output from the reception data signal processing unit 403. For example, the ACK / NACK signal generation unit 405 generates an ACK when the reception data signal processing unit 403 obtains a normal data signal, and the reception data signal processing unit 403 does not obtain a normal data signal. Generates a NACK. Then, the ACK / NACK signal generation unit 405 outputs the generated response signal (ACK or NACK) to the RF transmission unit 410 as a control signal.
 受信パイロット信号処理部406は、RF受信部402から出力された信号に含まれるパイロット信号の受信処理を行い、受信処理によって得られたパイロット信号を無線区間特性評価部407へ出力する。無線区間特性評価部407は、受信パイロット信号処理部406から出力されたパイロット信号に基づいて、送信機210と受信機220との間の無線区間特性情報を算出する。 The reception pilot signal processing unit 406 performs reception processing of a pilot signal included in the signal output from the RF reception unit 402, and outputs the pilot signal obtained by the reception processing to the radio section characteristic evaluation unit 407. Radio section characteristic evaluation section 407 calculates radio section characteristic information between transmitter 210 and receiver 220 based on the pilot signal output from reception pilot signal processing section 406.
 たとえば、無線区間特性評価部407は、受信パイロット信号処理部406から出力された受信結果に基づくRSSIやRSRPなどの測定結果を用いて無線区間特性情報を算出する。RSSIはReceived Signal Strength Indicator(受信信号強度)の略である。RSRPはReference Signal Received Power(基準信号受信電力)の略である。無線区間特性情報には、たとえば無線区間特性(品質)をインデックス値で示すCQI値を用いることができる。 For example, the radio section characteristic evaluation unit 407 calculates the radio section characteristic information using a measurement result such as RSSI or RSRP based on the reception result output from the reception pilot signal processing unit 406. RSSI is an abbreviation for Received Signal Strength Indicator (received signal strength). RSRP is an abbreviation for Reference Signal Received Power (reference signal received power). For the wireless section characteristic information, for example, a CQI value indicating the wireless section characteristic (quality) as an index value can be used.
 また、無線区間特性評価部407は、受信パイロット信号処理部406から出力された受信結果に基づいて、上述のFやΔFを決定してもよい。無線区間特性評価部407は、算出した無線区間特性情報、FやΔFを制御信号生成部408へ出力する。 Moreover, the radio section characteristic evaluation unit 407 may determine the above-described F and ΔF based on the reception result output from the reception pilot signal processing unit 406. The wireless section characteristic evaluation unit 407 outputs the calculated wireless section characteristic information, F and ΔF, to the control signal generation unit 408.
 制御信号生成部408は、無線区間特性評価部407から出力された無線区間特性情報、FやΔFを含む制御信号を生成し、生成した制御信号をRF送信部410へ出力する。受信制御信号処理部409は、RF受信部402から出力された信号に含まれる制御信号の受信処理を行う。そして、受信制御信号処理部409は、受信処理によって得られた制御信号に含まれるMCS値を受信データ信号処理部403へ出力する。 The control signal generation unit 408 generates a control signal including the wireless section characteristic information, F and ΔF output from the wireless section characteristic evaluation unit 407, and outputs the generated control signal to the RF transmission unit 410. The reception control signal processing unit 409 performs reception processing of a control signal included in the signal output from the RF reception unit 402. The reception control signal processing unit 409 outputs the MCS value included in the control signal obtained by the reception processing to the reception data signal processing unit 403.
 RF送信部410には、ACK/NACK信号生成部405から出力された応答信号(ACKまたはNACK)と、制御信号生成部408から出力された制御信号と、が入力される。RF送信部410は、入力された信号のRF送信処理を行う。RF送信部410によるRF送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からRF帯への周波数変換、増幅などが含まれる。RF送信部410は、RF送信処理を行った信号をアンテナ411へ出力する。アンテナ411は、RF送信部410から出力された信号を他の通信装置(たとえば送信機210)へ無線送信する。 The RF transmitter 410 receives the response signal (ACK or NACK) output from the ACK / NACK signal generator 405 and the control signal output from the control signal generator 408. The RF transmission unit 410 performs an RF transmission process on the input signal. The RF transmission processing by the RF transmission unit 410 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like. The RF transmission unit 410 outputs the signal subjected to the RF transmission process to the antenna 411. The antenna 411 wirelessly transmits the signal output from the RF transmission unit 410 to another communication device (for example, the transmitter 210).
 図1に示した第2無線装置120の受信部121は、たとえばアンテナ401、RF受信部402および受信データ信号処理部403により実現することができる。図1に示した第2無線装置120の制御部122は、たとえば受信データ信号処理部403および受信制御信号処理部409により実現することができる。 1 can be realized by, for example, the antenna 401, the RF receiving unit 402, and the received data signal processing unit 403. The control unit 122 of the second radio apparatus 120 illustrated in FIG. 1 can be realized by the reception data signal processing unit 403 and the reception control signal processing unit 409, for example.
(実施の形態にかかる送信機のハードウェア構成)
 図5は、実施の形態にかかる送信機のハードウェア構成の一例を示す図である。図3に示した送信機210は、たとえばeNBなどの基地局に適用される場合に、たとえば図5に示す通信装置500によって実現することができる。通信装置500は、CPU501と、メモリ502と、無線通信インタフェース503と、有線通信インタフェース504と、を備える。CPU501、メモリ502、無線通信インタフェース503および有線通信インタフェース504は、バス509によって接続される。
(Hardware configuration of transmitter according to embodiment)
FIG. 5 is a diagram illustrating an example of a hardware configuration of the transmitter according to the embodiment. The transmitter 210 illustrated in FIG. 3 can be realized by the communication apparatus 500 illustrated in FIG. 5, for example, when applied to a base station such as eNB. The communication device 500 includes a CPU 501, a memory 502, a wireless communication interface 503, and a wired communication interface 504. The CPU 501, the memory 502, the wireless communication interface 503, and the wired communication interface 504 are connected by a bus 509.
 CPU501(Central Processing Unit)は、通信装置500の全体の制御を司る。メモリ502には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAM(Random Access Memory)である。メインメモリは、CPU501のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発メモリである。補助メモリには、通信装置500を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU501によって実行される。 A CPU 501 (Central Processing Unit) controls the entire communication device 500. The memory 502 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM (Random Access Memory). The main memory is used as a work area for the CPU 501. The auxiliary memory is, for example, a nonvolatile memory such as a magnetic disk, an optical disk, or a flash memory. Various programs for operating the communication device 500 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 501.
 無線通信インタフェース503は、無線によって通信装置500の外部(たとえば受信機220)との間で通信を行う通信インタフェースである。無線通信インタフェース503は、CPU501により制御される。有線通信インタフェース504は、有線によって通信装置500の外部(たとえば送信機210の上位装置)との間で通信を行う通信インタフェースである。有線通信インタフェース504は、CPU501により制御される。 The wireless communication interface 503 is a communication interface that performs communication with the outside of the communication device 500 (for example, the receiver 220) wirelessly. The wireless communication interface 503 is controlled by the CPU 501. The wired communication interface 504 is a communication interface that performs communication with the outside of the communication device 500 (for example, a host device of the transmitter 210) by wire. The wired communication interface 504 is controlled by the CPU 501.
 図3に示したアンテナ301、RF受信部302、RF送信部309およびアンテナ310は、たとえば無線通信インタフェース503に含まれる。図3に示した受信制御信号処理部303、送信制御部304、データ信号生成部305およびパイロット信号生成部306は、たとえばCPU501および無線通信インタフェース503の少なくとも一方により実現することができる。図3に示した制御信号生成部307、多重部308a~308cおよび再送制御部311は、たとえばCPU501および無線通信インタフェース503の少なくとも一方により実現することができる。 3 includes the antenna 301, the RF receiving unit 302, the RF transmitting unit 309, and the antenna 310, for example, included in the wireless communication interface 503. The reception control signal processing unit 303, the transmission control unit 304, the data signal generation unit 305, and the pilot signal generation unit 306 illustrated in FIG. 3 can be realized by at least one of the CPU 501 and the wireless communication interface 503, for example. The control signal generation unit 307, the multiplexing units 308a to 308c, and the retransmission control unit 311 illustrated in FIG. 3 can be realized by at least one of the CPU 501 and the wireless communication interface 503, for example.
(実施の形態にかかる受信機のハードウェア構成)
 図6は、実施の形態にかかる受信機のハードウェア構成の一例を示す図である。図4に示した受信機220は、たとえばUEなどの端末に適用される場合に、たとえば図6に示す通信装置600によって実現することができる。通信装置600は、CPU601と、メモリ602と、ユーザインタフェース603と、無線通信インタフェース604と、を備える。CPU601、メモリ602、ユーザインタフェース603および無線通信インタフェース604は、バス609によって接続される。
(Hardware configuration of receiver according to embodiment)
FIG. 6 is a diagram illustrating an example of a hardware configuration of the receiver according to the embodiment. When applied to a terminal such as a UE, for example, the receiver 220 illustrated in FIG. 4 can be realized by the communication apparatus 600 illustrated in FIG. 6, for example. The communication device 600 includes a CPU 601, a memory 602, a user interface 603, and a wireless communication interface 604. The CPU 601, the memory 602, the user interface 603, and the wireless communication interface 604 are connected by a bus 609.
 CPU601は、通信装置600の全体の制御を司る。メモリ602には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAMである。メインメモリは、CPU601のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、フラッシュメモリなどの不揮発メモリである。補助メモリには、通信装置600を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU601によって実行される。 The CPU 601 governs overall control of the communication device 600. The memory 602 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM. The main memory is used as a work area for the CPU 601. The auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory. Various programs for operating the communication device 600 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 601.
 ユーザインタフェース603は、たとえば、ユーザからの操作入力を受け付ける入力デバイスや、ユーザへ情報を出力する出力デバイスなどを含む。入力デバイスは、たとえばキー(たとえばキーボード)やリモコンなどによって実現することができる。出力デバイスは、たとえばディスプレイやスピーカなどによって実現することができる。また、タッチパネルなどによって入力デバイスおよび出力デバイスを実現してもよい。ユーザインタフェース603は、CPU601により制御される。 The user interface 603 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like. The input device can be realized by a key (for example, a keyboard) or a remote controller, for example. The output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like. The user interface 603 is controlled by the CPU 601.
 無線通信インタフェース604は、無線によって通信装置600の外部(たとえば送信機210)との間で通信を行う通信インタフェースである。無線通信インタフェース604は、CPU601により制御される。 The wireless communication interface 604 is a communication interface that performs communication with the outside of the communication device 600 (for example, the transmitter 210) wirelessly. The wireless communication interface 604 is controlled by the CPU 601.
 図4に示したアンテナ401、RF受信部402、RF送信部410およびアンテナ411はたとえば無線通信インタフェース604に含まれる。図4に示した受信データ信号処理部403、受信データ信号バッファ404およびACK/NACK信号生成部405は、たとえばCPU601および無線通信インタフェース604の少なくともいずれかにより実現することができる。受信パイロット信号処理部406、無線区間特性評価部407、制御信号生成部408および受信制御信号処理部409は、たとえばCPU601および無線通信インタフェース604の少なくともいずれかにより実現することができる。 The antenna 401, the RF receiving unit 402, the RF transmitting unit 410, and the antenna 411 illustrated in FIG. 4 are included in the wireless communication interface 604, for example. The reception data signal processing unit 403, the reception data signal buffer 404, and the ACK / NACK signal generation unit 405 illustrated in FIG. 4 can be realized by at least one of the CPU 601 and the wireless communication interface 604, for example. Reception pilot signal processing section 406, wireless section characteristic evaluation section 407, control signal generation section 408, and reception control signal processing section 409 can be realized by at least one of CPU 601 and wireless communication interface 604, for example.
(実施の形態1にかかる送信機によるダイバシティ送信(Nmax=2))
 図7は、実施の形態1にかかる送信機によるダイバシティ送信の一例(Nmax=2)を示す図である。図7において、横軸は時間を示し、縦軸は周波数を示す。また、図7においては、送信機210が受信機220へのデータ信号を時間的に連続して送信する回数(連続自動送信数Nmax)が2回である場合について説明する。
(Diversity transmission by the transmitter according to the first embodiment (Nmax = 2))
FIG. 7 is a diagram of an example of diversity transmission (Nmax = 2) by the transmitter according to the first embodiment. In FIG. 7, the horizontal axis indicates time, and the vertical axis indicates frequency. FIG. 7 illustrates a case where the number of times that the transmitter 210 continuously transmits the data signal to the receiver 220 (continuous automatic transmission number Nmax) is two.
 送信機210は、たとえば、受信機220に対するデータ信号711,712,721,722を無線送信する。データ信号711,712,721,722は、いずれも同じデータを示すデータ信号である。 Transmitter 210 wirelessly transmits data signals 711, 712, 721, 722 to receiver 220, for example. The data signals 711, 712, 721, 722 are data signals indicating the same data.
 データ信号711,712は、同じ時間t1において送信されるデータ信号である。データ信号721,722は、同じ時間t2において送信されるデータ信号である。データ信号711,721は、基準の周波数f_1により送信されるデータ信号である。基準の周波数f_1は、送信機210から受信機220へのデータ信号の送信に用いる周波数であり、たとえば送信機210から受信機220へ無線制御信号により通知される。データ信号712は、基準の周波数f_1との間の周波数間隔がFである周波数f_2により送信されるデータ信号である。データ信号722は、基準の周波数f_1との間の周波数間隔がF1である周波数f_3により送信されるデータ信号である。 Data signals 711 and 712 are data signals transmitted at the same time t1. Data signals 721 and 722 are data signals transmitted at the same time t2. Data signals 711 and 721 are data signals transmitted at the reference frequency f_1. The reference frequency f_1 is a frequency used for transmitting a data signal from the transmitter 210 to the receiver 220, and is notified from the transmitter 210 to the receiver 220 by a radio control signal, for example. The data signal 712 is a data signal transmitted at a frequency f_2 whose frequency interval with the reference frequency f_1 is F. The data signal 722 is a data signal transmitted at a frequency f_3 having a frequency interval F1 from the reference frequency f_1.
 すなわち、周波数間隔Fは、基準の周波数f_1と周波数f_2との間の間隔である(F=f_1-f_2)。また、周波数間隔F1は、基準の周波数f_1と周波数f_3との間の間隔である(F=f_1-f_3)。また、周波数間隔Fと周波数間隔F1と間の差をΔFとする(F1=F+ΔF)。ΔFは、0より小さい値、または0より大きい値である(ΔF<0 or ΔF>0)。 That is, the frequency interval F is an interval between the reference frequency f_1 and the frequency f_2 (F = f_1−f_2). The frequency interval F1 is an interval between the reference frequency f_1 and the frequency f_3 (F = f_1−f_3). The difference between the frequency interval F and the frequency interval F1 is ΔF (F1 = F + ΔF). ΔF is a value smaller than 0 or larger than 0 (ΔF <0 or ΔF> 0).
 また、データ信号711,712が送信される時間t1と、データ信号721,722が送信される時間t2と、の間の時間間隔をT2とする。時間間隔T2は、たとえば許容される伝送遅延量(一例としては1[ms])に対して十分に小さい値とする。このように、時間ダイバシティおよび周波数ダイバシティの組み合わせに加えて、さらに周波数間隔ダイバシティを使用することで、さらにダイバシティ効果を向上させることができる。このため、たとえば伝送遅延を小さくするために時間間隔T2を小さくすることにより低下するダイバシティ効果を周波数間隔ダイバシティによって補うことができる。 Suppose that the time interval between the time t1 when the data signals 711 and 712 are transmitted and the time t2 when the data signals 721 and 722 are transmitted is T2. The time interval T2 is set to a sufficiently small value with respect to an allowable transmission delay amount (for example, 1 [ms]). Thus, in addition to the combination of time diversity and frequency diversity, the diversity effect can be further improved by using frequency interval diversity. For this reason, for example, the diversity effect which is reduced by reducing the time interval T2 in order to reduce the transmission delay can be compensated by the frequency interval diversity.
 受信機220は、データ信号711,712,721,722の少なくともいずれかに基づいて元のデータを復号するダイバシティ受信を行う。たとえば、受信機220は、データの復号に成功するまで、データ信号711,712,721,722の順に復号処理を行う。または、データ信号711,712を合成して復号処理を行い、復号に失敗した場合はデータ信号721,722を合成して復号処理を行ってもよい。または、受信機220は、データ信号711,712,721,722を合成して復号処理を行ってもよい。ただし、データ信号711,712,721,722に基づく受信機220によるダイバシティ受信はこれらに限らず各種のダイバシティ受信とすることができる。 The receiver 220 performs diversity reception that decodes the original data based on at least one of the data signals 711, 712, 721, and 722. For example, the receiver 220 performs the decoding process in the order of the data signals 711, 712, 721, 722 until the data is successfully decoded. Alternatively, the data signals 711 and 712 may be combined to perform decoding processing, and if decoding fails, the data signals 721 and 722 may be combined to perform decoding processing. Alternatively, the receiver 220 may perform decoding processing by combining the data signals 711, 712, 721, 722. However, the diversity reception by the receiver 220 based on the data signals 711, 712, 721, 722 is not limited to these and can be various diversity receptions.
 また、送信機210は、たとえば、基準の周波数f_1を受信機220に通知しておき、F1、T2、Nmax、FおよびΔFなどの制御情報を、基準の周波数f_1により送信する。受信機220は、送信機210から通知された周波数f_1に基づいて、周波数f_1により送信されるデータ信号711を受信するとともに、周波数f_1により送信されるF1、T2、Nmax、FおよびΔFなどの制御情報を受信することができる。 Further, for example, the transmitter 210 notifies the receiver 220 of the reference frequency f_1, and transmits control information such as F1, T2, Nmax, F, and ΔF using the reference frequency f_1. The receiver 220 receives the data signal 711 transmitted at the frequency f_1 based on the frequency f_1 notified from the transmitter 210, and controls F1, T2, Nmax, F, and ΔF transmitted at the frequency f_1. Information can be received.
 そして、受信機220は、受信した制御情報に含まれるFに基づいて、データ信号711と周波数がFだけ離れたデータ信号712を受信する。また、受信機220は、受信した制御情報に含まれるNmaxに基づいて、データ信号711,712よりT2だけ遅れて送信されるデータ信号721を受信する。また、受信機220は、受信した制御情報に含まれるF1に基づいて、データ信号721と周波数がF1だけ離れたデータ信号722を受信する。 Then, the receiver 220 receives the data signal 712 whose frequency is separated from the data signal 711 by F based on F included in the received control information. The receiver 220 receives a data signal 721 that is transmitted with a delay of T2 from the data signals 711 and 712, based on Nmax included in the received control information. Further, the receiver 220 receives a data signal 722 having a frequency separated from the data signal 721 by F1 based on F1 included in the received control information.
(実施の形態1にかかる低遅延伝送システムによる処理)
 図8は、実施の形態1にかかる低遅延伝送システムによる処理の一例を示すシーケンス図である。実施の形態1にかかる低遅延伝送システム200の送信機210(たとえば基地局)および受信機220(たとえば端末)においては、たとえば図8に示す各ステップが実行される。図8に示す送信機210と受信機220との間の双方向の通信は、たとえばFDDまたはTDDにより実行される。FDDはFrequency Division Duplex(周波数分割複信)の略である。TDDはTime Division Duplex(時分割複信)の略である。
(Processing by the low-delay transmission system according to the first embodiment)
FIG. 8 is a sequence diagram illustrating an example of processing by the low-delay transmission system according to the first embodiment. In the transmitter 210 (for example, base station) and the receiver 220 (for example, terminal) of the low-delay transmission system 200 according to the first embodiment, for example, the steps shown in FIG. 8 are executed. Bidirectional communication between the transmitter 210 and the receiver 220 shown in FIG. 8 is performed by, for example, FDD or TDD. FDD is an abbreviation for Frequency Division Duplex. TDD is an abbreviation for Time Division Duplex.
 まず、送信機210が、パイロット信号を受信機220へ無線送信する(ステップS801)。また、送信機210は、ステップS801の後も継続してパイロット信号を受信機220へ無線送信する。つぎに、受信機220が、ステップS801により受信したパイロット信号の測定結果に基づくCQI、FおよびΔFを決定する(ステップS802)。FおよびΔFの決定方法については後述する(たとえば図11,図12参照)。 First, the transmitter 210 wirelessly transmits a pilot signal to the receiver 220 (step S801). Further, transmitter 210 continues to transmit the pilot signal to receiver 220 wirelessly after step S801. Next, the receiver 220 determines CQI, F, and ΔF based on the measurement result of the pilot signal received in step S801 (step S802). A method for determining F and ΔF will be described later (see, for example, FIGS. 11 and 12).
 つぎに、受信機220が、ステップS802により決定したCQI、FおよびΔFを示す各情報を送信機210へ送信する(ステップS803)。ステップS803による送信は、たとえば受信機220から送信機210へのRRC(Radio Resource Control:無線リソース制御)メッセージやLayer-1またはLayer-2制御信号を用いて実行することができる。 Next, the receiver 220 transmits information indicating CQI, F, and ΔF determined in step S802 to the transmitter 210 (step S803). The transmission in step S803 can be executed using, for example, an RRC (Radio Resource Control) message from the receiver 220 to the transmitter 210 or a Layer-1 or Layer-2 control signal.
 つぎに、送信機210が、F1、T2およびNmax(連続自動送信数)を決定する(ステップS804)。たとえば、送信機210は、ステップS803により受信した情報が示すFおよびΔFに基づいて、F1=F+ΔFによりF1を算出する。また、送信機210は、たとえばステップS803により受信したCQIと、CQIごとにT2およびNmaxの組み合わせが対応付けられた対応情報と、に基づいてT2およびNmaxを決定する。または、送信機210は、受信機220の通信種別等に基づいてT2やNmaxを決定してもよい。図8に示す例ではNmaxとして2が決定されたとする。 Next, the transmitter 210 determines F1, T2, and Nmax (the number of continuous automatic transmissions) (step S804). For example, the transmitter 210 calculates F1 by F1 = F + ΔF based on F and ΔF indicated by the information received in step S803. For example, transmitter 210 determines T2 and Nmax based on the CQI received in step S803 and the correspondence information in which the combination of T2 and Nmax is associated with each CQI. Alternatively, the transmitter 210 may determine T2 and Nmax based on the communication type of the receiver 220 and the like. In the example shown in FIG. 8, it is assumed that 2 is determined as Nmax.
 つぎに、送信機210が、ステップS804により決定したF1、T2およびNmaxと、FおよびΔFと、を示す各情報を受信機220へ送信する(ステップS805)。なお、送信機210は、ステップS805においてFおよびΔFを示す各情報については送信しなくてもよい。ステップS805による送信は、たとえば送信機210から受信機220へのRRCメッセージやLayer-1またはLayer-2制御信号を用いて実行することができる。つぎに、送信機210において、受信機220へ送信すべき新規のデータが発生したとする(ステップS806)。 Next, the transmitter 210 transmits information indicating F1, T2, and Nmax, F, and ΔF determined in step S804 to the receiver 220 (step S805). Note that the transmitter 210 may not transmit the information indicating F and ΔF in step S805. The transmission in step S805 can be executed using, for example, an RRC message from the transmitter 210 to the receiver 220 or a Layer-1 or Layer-2 control signal. Next, it is assumed that new data to be transmitted to the receiver 220 is generated in the transmitter 210 (step S806).
 つぎに、送信機210が、ステップS806において発生したデータに対しチャネルコーディング等の処理を施し生成されたデータ信号、および制御信号を受信機220へ無線送信する(ステップS807)。ステップS807において、送信機210は、ステップS803により受信した情報が示すFを用いて、基準の周波数f_1と、周波数f_1との間の周波数間隔がFである周波数f_2と、においてデータ信号を送信する(周波数間隔F)。また、送信機210は、制御信号については、たとえば基準の周波数f_1により受信機220へ送信する。 Next, the transmitter 210 wirelessly transmits the data signal generated by performing processing such as channel coding to the data generated in step S806 and the control signal to the receiver 220 (step S807). In step S807, the transmitter 210 transmits a data signal using the F indicated by the information received in step S803 at the reference frequency f_1 and the frequency f_2 whose frequency interval between the frequencies f_1 is F. (Frequency interval F). Further, the transmitter 210 transmits the control signal to the receiver 220 using the reference frequency f_1, for example.
 また、ステップS807によって送信される制御信号には、たとえばステップS807によって送信されるデータ信号を復号するためのMCS値等の情報が含まれる。これに対して、受信機220は、ステップS802により決定したF、またはステップS803により受信した情報が示すFを用いて、ステップS807において周波数間隔Fで送信されたデータ信号を受信する。また、受信機220は、受信した制御信号に含まれるMCS値に基づいて、受信したデータ信号の復号を行う。 Also, the control signal transmitted in step S807 includes information such as an MCS value for decoding the data signal transmitted in step S807, for example. On the other hand, the receiver 220 receives the data signal transmitted at the frequency interval F in step S807 using F determined in step S802 or F indicated by the information received in step S803. In addition, the receiver 220 decodes the received data signal based on the MCS value included in the received control signal.
 つぎに、送信機210が、ステップS807による無線送信から連続送信間隔T2だけ経過したタイミングで、ステップS807により無線送信したデータ信号および制御信号を受信機220へ再送する(ステップS808)。ステップS808において、送信機210は、ステップS803により受信した情報が示すFおよびΔFに基づくF1=F+ΔFを用いて、基準の周波数f_1と、周波数f_3と、においてデータ信号を送信する(周波数間隔F1)。周波数f_3は、周波数f_1との間の周波数間隔がF1である周波数である。また、送信機210は、制御信号については、たとえば基準の周波数f_1により受信機220へ送信する。これに対して、受信機220は、ステップS802により決定したFおよびΔF、またはステップS803により受信した情報が示すFおよびΔFから算出したF1(=F+ΔF)を用いて、周波数間隔F1で送信されたデータ信号を受信する。また、受信機220は、受信した制御信号に含まれるMCS値に基づいて、受信したデータ信号の復号を行う。 Next, the transmitter 210 retransmits the data signal and the control signal wirelessly transmitted in step S807 to the receiver 220 at the timing when the continuous transmission interval T2 has elapsed from the wireless transmission in step S807 (step S808). In step S808, the transmitter 210 transmits a data signal at the reference frequency f_1 and frequency f_3 using F1 = F + ΔF based on F and ΔF indicated by the information received in step S803 (frequency interval F1). . The frequency f_3 is a frequency whose frequency interval with the frequency f_1 is F1. Further, the transmitter 210 transmits the control signal to the receiver 220 using the reference frequency f_1, for example. On the other hand, the receiver 220 is transmitted at the frequency interval F1 using F and ΔF determined in step S802 or F1 (= F + ΔF) calculated from F and ΔF indicated by the information received in step S803. Receive data signals. In addition, the receiver 220 decodes the received data signal based on the MCS value included in the received control signal.
 つぎに、受信機220が、ステップS807,S808によるデータ信号の受信結果に応じた応答信号(ACKまたはNACK)を送信機210へ無線送信する(ステップS809)。また、受信機220は、ステップS801より後に送信機210から受信したパイロット信号の測定結果に基づくFおよびΔFを決定する(ステップS810)。ステップS810によるFおよびΔFの決定は、たとえばステップS802によるFおよびΔFの決定と同様である。 Next, the receiver 220 wirelessly transmits a response signal (ACK or NACK) corresponding to the reception result of the data signal in steps S807 and S808 to the transmitter 210 (step S809). Further, receiver 220 determines F and ΔF based on the measurement result of the pilot signal received from transmitter 210 after step S801 (step S810). The determination of F and ΔF in step S810 is the same as the determination of F and ΔF in step S802, for example.
 つぎに、受信機220は、ステップS810により決定したFおよびΔFを示す各情報を送信機210へ送信する(ステップS811)。ステップS811による各情報の送信は、たとえば受信機220から送信機210へのRRCメッセージを用いて実行することができる。 Next, the receiver 220 transmits each piece of information indicating F and ΔF determined in step S810 to the transmitter 210 (step S811). Transmission of each information by step S811 can be performed using the RRC message from the receiver 220 to the transmitter 210, for example.
 つぎに、送信機210において、受信機220へ送信すべき新規のデータまたは再送のデータが発生したとする(ステップS812)。たとえば、ステップS809において受信機220から送信機210へNACKが送信されていた場合は、ステップS812において再送のデータが発生する。また、ステップS809において受信機220から送信機210へACKが送信されており、受信機220へ送信すべき新規のデータが送信機210へ入力された場合はステップS812において新規のデータが発生する。 Next, it is assumed that new data or retransmission data to be transmitted to the receiver 220 is generated in the transmitter 210 (step S812). For example, if NACK is transmitted from the receiver 220 to the transmitter 210 in step S809, retransmission data is generated in step S812. If ACK is transmitted from the receiver 220 to the transmitter 210 in step S809 and new data to be transmitted to the receiver 220 is input to the transmitter 210, new data is generated in step S812.
 ステップS813~S815は、ステップS807~S809と同様である。ただし、ステップS813において、送信機210は、ステップS811において受信した情報が示すFを用いてデータ信号の送信を行う。また、ステップS814において、送信機210は、ステップS811において受信した情報が示すFおよびΔFに基づくF1=F+ΔFを用いてデータ信号の送信を行う。 Steps S813 to S815 are the same as steps S807 to S809. However, in step S813, the transmitter 210 transmits a data signal using F indicated by the information received in step S811. In step S814, the transmitter 210 transmits a data signal using F1 = F + ΔF based on F and ΔF indicated by the information received in step S811.
 なお、受信機220は、ステップS810においてFを決定しなくてもよい。この場合に、受信機220は、ステップS811においてFを示す情報を送信しなくてもよい。この場合は、送信機210は、ステップS803において受信した情報が示すFと、ステップS811において受信した情報が示すΔFと、を用いてステップS813,S814のデータ信号の送信を行う。 Note that the receiver 220 does not have to determine F in step S810. In this case, the receiver 220 may not transmit information indicating F in step S811. In this case, the transmitter 210 transmits the data signal in steps S813 and S814 using F indicated by the information received in step S803 and ΔF indicated by the information received in step S811.
(実施の形態1にかかる送信機による処理)
 図9は、実施の形態1にかかる送信機による処理の一例を示すフローチャートである。実施の形態1にかかる送信機210は、たとえば図9に示す各ステップを実行する。まず、送信機210は、パイロット信号の送信を開始する(ステップS901)。ステップS901は、たとえばパイロット信号生成部306がパイロット信号を生成して多重部308a,308bへ出力することにより実行される。
(Processing by the transmitter according to the first embodiment)
FIG. 9 is a flowchart of an example of processing performed by the transmitter according to the first embodiment. The transmitter 210 according to the first embodiment executes, for example, each step shown in FIG. First, the transmitter 210 starts transmitting a pilot signal (step S901). Step S901 is executed, for example, when the pilot signal generation unit 306 generates a pilot signal and outputs the pilot signal to the multiplexing units 308a and 308b.
 つぎに、送信機210は、受信機220からCQI、FおよびΔFを示す各情報を受信する(ステップS902)。ステップS902は、たとえば受信制御信号処理部303が受信した制御信号を監視することにより実行される。 Next, the transmitter 210 receives information indicating CQI, F, and ΔF from the receiver 220 (step S902). Step S902 is executed by monitoring the control signal received by the reception control signal processing unit 303, for example.
 つぎに、送信機210は、F1、T2およびNmax(連続自動送信数)を決定し、決定したF1、T2およびNmaxを示す情報を受信機220へ送信する(ステップS903)。ステップS903は、たとえば送信制御部304および制御信号生成部307により実行される。たとえば、送信制御部304は、ステップS902により受信された各情報が示すFおよびΔFに基づいてF1(=F+ΔF)を決定する。また、送信制御部304は、たとえばステップS902により受信されたCQIに基づいてT2およびNmaxを決定する。制御信号生成部307は、送信制御部304により決定されたF1、T2およびNmaxを含む制御信号を多重部308a,308bへ出力する。 Next, the transmitter 210 determines F1, T2, and Nmax (the number of continuous automatic transmissions), and transmits information indicating the determined F1, T2, and Nmax to the receiver 220 (step S903). Step S903 is executed by the transmission control unit 304 and the control signal generation unit 307, for example. For example, the transmission control unit 304 determines F1 (= F + ΔF) based on F and ΔF indicated by each piece of information received in step S902. Further, transmission control section 304 determines T2 and Nmax based on the CQI received in step S902, for example. Control signal generating section 307 outputs a control signal including F1, T2, and Nmax determined by transmission control section 304 to multiplexing sections 308a and 308b.
 つぎに、送信機210は、受信機220へ送信すべきデータが発生したか否かを判断し(ステップS904)、受信機220へ送信すべきデータが発生するまで待つ(ステップS904:Noのループ)。ステップS904は、たとえば送信制御部304がデータ信号生成部305へ入力されるデータ信号を監視することにより実行される。 Next, the transmitter 210 determines whether or not data to be transmitted to the receiver 220 is generated (step S904), and waits until data to be transmitted to the receiver 220 is generated (step S904: No loop). ). Step S904 is executed, for example, when the transmission control unit 304 monitors the data signal input to the data signal generation unit 305.
 ステップS904において、受信機220へ送信すべきデータが発生すると(ステップS904:Yes)、送信機210は、Nを“0”に設定する(ステップS905)。Nは送信機210のメモリ(たとえばメモリ502)に記憶される情報である。ステップS905は、たとえば送信制御部304により実行される。 In step S904, when data to be transmitted to the receiver 220 is generated (step S904: Yes), the transmitter 210 sets N to “0” (step S905). N is information stored in a memory (eg, the memory 502) of the transmitter 210. Step S905 is executed by the transmission control unit 304, for example.
 つぎに、送信機210は、データ信号および制御信号を受信機220へ送信する(ステップS906)。ステップS906は、たとえば送信制御部304、データ信号生成部305および制御信号生成部307により実行される。つぎに、送信機210は、Nをインクリメント(N=N+1)する(ステップS907)。ステップS907は、たとえば送信制御部304により実行される。つぎに、送信機210は、Nが、ステップS903により決定したNmaxに達したか否かを判断する(ステップS908)。ステップS908は、たとえば送信制御部304により実行される。 Next, the transmitter 210 transmits a data signal and a control signal to the receiver 220 (step S906). Step S906 is executed by, for example, the transmission control unit 304, the data signal generation unit 305, and the control signal generation unit 307. Next, the transmitter 210 increments N (N = N + 1) (step S907). Step S907 is executed by the transmission control unit 304, for example. Next, the transmitter 210 determines whether or not N has reached Nmax determined in step S903 (step S908). Step S908 is executed by the transmission control unit 304, for example.
 ステップS908において、NがNmaxに達していない場合(ステップS908:No)は、送信機210は、ステップS906へ戻り、データ信号および制御信号を受信機220へ再送する。このとき、送信機210は、前回のステップS906によるデータ信号および制御信号の送信から、ステップS903により決定したT2だけ時間間隔を空けてデータ信号および制御信号を受信機220へ再送する。 In step S908, when N has not reached Nmax (step S908: No), the transmitter 210 returns to step S906 and retransmits the data signal and the control signal to the receiver 220. At this time, transmitter 210 retransmits the data signal and the control signal to receiver 220 with a time interval of T2 determined in step S903 from the previous transmission of the data signal and control signal in step S906.
 ステップS908において、NがNmaxに達した場合(ステップS908:Yes)は、送信機210は、受信機220から、ステップS906により送信したデータ信号に対するACKまたはNACKを受信する(ステップS909)。ステップS909は、たとえば受信制御信号処理部303が受信した制御信号を監視することにより実行される。 In step S908, when N reaches Nmax (step S908: Yes), the transmitter 210 receives an ACK or NACK for the data signal transmitted in step S906 from the receiver 220 (step S909). Step S909 is executed by monitoring the control signal received by the reception control signal processing unit 303, for example.
 つぎに、送信機210は、ステップS909により受信した応答信号がACKであったか否かを判断する(ステップS910)。ステップS910は、たとえば送信制御部304により実行される。ACKでなかった場合(ステップS910:No)は、送信機210は、ステップS905へ移行する。ACKであった場合(ステップS910:Yes)は、送信機210は、ステップS904へ移行する。 Next, the transmitter 210 determines whether or not the response signal received in step S909 is ACK (step S910). Step S910 is executed by, for example, the transmission control unit 304. When it is not ACK (step S910: No), the transmitter 210 moves to step S905. When it is ACK (step S910: Yes), the transmitter 210 moves to step S904.
(実施の形態1にかかる受信機による処理)
 図10は、実施の形態1にかかる受信機による処理の一例を示すフローチャートである。実施の形態1にかかる受信機220は、たとえば図10に示す各ステップを実行する。まず、受信機220は、送信機210からのパイロット信号の受信および測定を行う(ステップS1001)。ステップS1001は、たとえば受信パイロット信号処理部406および無線区間特性評価部407により実行される。
(Processing by the receiver according to the first embodiment)
FIG. 10 is a flowchart of an example of processing performed by the receiver according to the first embodiment. The receiver 220 according to the first embodiment executes, for example, each step shown in FIG. First, the receiver 220 receives and measures a pilot signal from the transmitter 210 (step S1001). Step S1001 is executed by, for example, reception pilot signal processing section 406 and radio section characteristic evaluation section 407.
 つぎに、受信機220は、ステップS1001によるパイロット信号の測定結果に基づいて、CQI、FおよびΔFを決定し、決定したCQI、FおよびΔFを示す各情報を送信機210へ送信する(ステップS1002)。ステップS1002は、たとえば無線区間特性評価部407および制御信号生成部408により実行される。たとえば、無線区間特性評価部407は、パイロット信号の測定結果に基づいて、CQI、FおよびΔFを決定し、決定したCQI、FおよびΔFを制御信号生成部408へ出力する。制御信号生成部408は、無線区間特性評価部407から出力されたCQI、FおよびΔFを含む制御信号を生成し、生成した制御信号をRF送信部410へ出力する。 Next, receiver 220 determines CQI, F, and ΔF based on the measurement result of the pilot signal in step S1001, and transmits information indicating the determined CQI, F, and ΔF to transmitter 210 (step S1002). ). Step S1002 is executed by, for example, the wireless section characteristic evaluation unit 407 and the control signal generation unit 408. For example, radio section characteristic evaluation unit 407 determines CQI, F, and ΔF based on the measurement result of the pilot signal, and outputs the determined CQI, F, and ΔF to control signal generation unit 408. The control signal generation unit 408 generates a control signal including CQI, F, and ΔF output from the wireless section characteristic evaluation unit 407, and outputs the generated control signal to the RF transmission unit 410.
 つぎに、受信機220は、F1、T2、Nmax、FおよびΔFを示す各情報を送信機210から受信する(ステップS1003)。ステップS1003は、たとえば無線区間特性評価部407が受信した制御信号を監視することにより実行される。つぎに、受信機220は、送信機210からの受信信号のモニタを開始する(ステップS1004)。ステップS1004は、たとえば受信データ信号処理部403および受信制御信号処理部409がRF受信部402から出力される信号の監視を開始することにより実行される。 Next, the receiver 220 receives information indicating F1, T2, Nmax, F, and ΔF from the transmitter 210 (step S1003). Step S1003 is executed, for example, by monitoring the control signal received by the wireless section characteristic evaluation unit 407. Next, the receiver 220 starts monitoring the received signal from the transmitter 210 (step S1004). Step S1004 is executed, for example, when the reception data signal processing unit 403 and the reception control signal processing unit 409 start monitoring the signal output from the RF reception unit 402.
 つぎに、受信機220は、NおよびAを“0”に設定する(ステップS1005)。NおよびAは、たとえば受信機220のメモリ(たとえばメモリ602)に記憶される情報である。ステップS1005は、たとえば受信データ信号処理部403により実行される。つぎに、受信機220は、ステップS1004により開始したモニタの結果に基づいて、送信機210からの受信データがあるか否かを判断し(ステップS1006)。受信データがあると判断するまで待つ(ステップS1006:Noのループ)。ステップS1006は、受信データ信号処理部403および受信制御信号処理部409の少なくともいずれかにより実行される。 Next, the receiver 220 sets N and A to “0” (step S1005). N and A are information stored in a memory (eg, memory 602) of receiver 220, for example. Step S1005 is executed by the received data signal processing unit 403, for example. Next, the receiver 220 determines whether there is received data from the transmitter 210 based on the monitoring result started in step S1004 (step S1006). Wait until it is determined that there is received data (step S1006: No loop). Step S1006 is executed by at least one of the reception data signal processing unit 403 and the reception control signal processing unit 409.
 ステップS1006において、受信データがあると判断すると(ステップS1006:Yes)、受信機220は、Nをインクリメント(N=N+1)する(ステップS1007)。ステップS1007は、受信データ信号処理部403により実行される。 If it is determined in step S1006 that there is received data (step S1006: Yes), the receiver 220 increments N (N = N + 1) (step S1007). Step S1007 is executed by the received data signal processing unit 403.
 つぎに、受信機220は、ステップS1006においてあると判断した送信機210からの受信データを復号する(ステップS1008)。ステップS1008は、たとえば受信データ信号処理部403が受信制御信号処理部409からのMCS値に基づく復号処理を行うことにより実行される。 Next, the receiver 220 decodes the received data from the transmitter 210 determined to be present in step S1006 (step S1008). Step S1008 is executed, for example, when the reception data signal processing unit 403 performs a decoding process based on the MCS value from the reception control signal processing unit 409.
 つぎに、受信機220は、ステップS1008による受信データの復号が成功したか否かを判断する(ステップS1009)。ステップS1009は、たとえば受信データ信号処理部403により実行される。復号が成功した場合(ステップS1009:Yes)は、受信機220は、Aを“1”に設定する(ステップS1010)。ステップS1010は、たとえば受信データ信号処理部403により実行される。 Next, the receiver 220 determines whether or not the received data has been successfully decoded in step S1008 (step S1009). Step S1009 is executed by the received data signal processing unit 403, for example. If the decoding is successful (step S1009: Yes), the receiver 220 sets A to “1” (step S1010). Step S1010 is executed by received data signal processing section 403, for example.
 つぎに、受信機220は、Nが、ステップS1003において送信機210から受信したNmaxに達したか否かを判断する(ステップS1011)。ステップS1011は、たとえば受信データ信号処理部403により実行される。NがNmaxに達していない場合(ステップS1011:No)は、受信機220は、ステップS1006へ移行する。NがNmaxに達した場合(ステップS1011:Yes)は、受信機220は、Aが“1”であるか否かを判断する(ステップS1012)。ステップS1011は、たとえば受信データ信号処理部403により実行される。 Next, the receiver 220 determines whether or not N has reached Nmax received from the transmitter 210 in step S1003 (step S1011). Step S1011 is executed by the received data signal processing unit 403, for example. If N has not reached Nmax (step S1011: No), the receiver 220 proceeds to step S1006. If N has reached Nmax (step S1011: Yes), the receiver 220 determines whether A is “1” (step S1012). Step S1011 is executed by the received data signal processing unit 403, for example.
 ステップS1012において、Aが“1”である場合(ステップS1012:Yes)は、受信機220は、ACKを送信機210へ送信し(ステップS1013)、ステップS1001へ移行する。ステップS1013は、たとえばACK/NACK信号生成部405により実行される。Aが“1”でない場合(ステップS1012:No)は、受信機220は、NACKを送信機210へ送信し(ステップS1014)、ステップS1001へ移行する。ステップS1014は、たとえばACK/NACK信号生成部405により実行される。 In step S1012, when A is “1” (step S1012: Yes), the receiver 220 transmits ACK to the transmitter 210 (step S1013), and proceeds to step S1001. Step S1013 is executed by the ACK / NACK signal generation unit 405, for example. When A is not “1” (step S1012: No), the receiver 220 transmits a NACK to the transmitter 210 (step S1014), and proceeds to step S1001. Step S1014 is executed by the ACK / NACK signal generation unit 405, for example.
 ステップS1009において、復号が成功していない場合(ステップS1009:No)は、受信機220は、Nが1より大きいか否かを判断する(ステップS1015)。ステップS1015は、たとえば受信データ信号処理部403により実行される。Nが1より大きくない場合(ステップS1015:No)は、直前の受信データは初回送信のデータであると判断することができる。この場合は、受信機220は、直前の受信データを受信データ信号バッファ404(バッファ)に保存し(ステップS1016)、ステップS1011へ移行する。ステップS1016は、たとえば受信データ信号処理部403により実行される。 In step S1009, when decoding is not successful (step S1009: No), the receiver 220 determines whether N is greater than 1 (step S1015). Step S1015 is executed by received data signal processing section 403, for example. When N is not larger than 1 (step S1015: No), it can be determined that the immediately preceding received data is the first transmission data. In this case, the receiver 220 stores the previous received data in the received data signal buffer 404 (buffer) (step S1016), and proceeds to step S1011. Step S1016 is executed by received data signal processing section 403, for example.
 ステップS1015において、Nが1より大きい場合(ステップS1015:Yes)は、直前の受信データは再送データであると判断することができる。この場合は、受信機220は、直前の受信データと、受信データ信号バッファ404のデータ(バッファ内データ)を合成して復号する(ステップS1017)。ステップS1017は、たとえば受信データ信号処理部403により実行される。 In step S1015, if N is greater than 1 (step S1015: Yes), it can be determined that the immediately preceding received data is retransmission data. In this case, the receiver 220 synthesizes and decodes the immediately previous received data and the data (data in the buffer) in the received data signal buffer 404 (step S1017). Step S1017 is executed by received data signal processing section 403, for example.
 つぎに、受信機220は、ステップS1017による復号が成功したか否かを判断する(ステップS1018)。ステップS1018は、たとえば受信データ信号処理部403により実行される。復号が成功していない場合(ステップS1018:No)は、受信機220は、ステップS1011へ移行する。復号が成功した場合(ステップS1018:Yes)は、受信機220は、Aを“1”に設定し(ステップS1019)、ステップS1011へ移行する。ステップS1019は、たとえば受信データ信号処理部403により実行される。 Next, the receiver 220 determines whether or not the decoding in step S1017 is successful (step S1018). Step S1018 is executed by received data signal processing section 403, for example. When the decoding is not successful (step S1018: No), the receiver 220 proceeds to step S1011. When the decoding is successful (step S1018: Yes), the receiver 220 sets A to “1” (step S1019), and proceeds to step S1011. Step S1019 is executed by received data signal processing section 403, for example.
(実施の形態1にかかる受信機によるFおよびΔFの決定)
 図11および図12は、実施の形態1にかかる受信機によるFおよびΔFの決定の一例を示す図である。図11において、横軸は時間を示し、縦軸は受信機220における受信電力を示す。遅延波1101~1104は、送信機210から受信機220へ送信されるパイロット信号における、受信機220が受信する遅延波を示す。受信機220は、たとえば、遅延波1101~1104の測定結果に基づいて、パイロット信号の時間領域での分散特性を取得する。
(Determination of F and ΔF by the receiver according to the first embodiment)
FIG. 11 and FIG. 12 are diagrams illustrating an example of determination of F and ΔF by the receiver according to the first embodiment. In FIG. 11, the horizontal axis represents time, and the vertical axis represents received power at the receiver 220. Delay waves 1101 to 1104 indicate delay waves received by the receiver 220 in pilot signals transmitted from the transmitter 210 to the receiver 220. For example, the receiver 220 acquires the dispersion characteristics of the pilot signal in the time domain based on the measurement results of the delay waves 1101 to 1104.
 図12において、横軸は周波数を示し、縦軸は受信機220における受信電力を示す。周波数分散特性1200は、送信機210から受信機220へ送信されるパイロット信号の周波数領域での分散特性である。受信機220は、図11に示した遅延波1101~1104の測定結果に基づいて取得したパイロット信号の時間領域での分散特性をフーリエ変換することにより周波数分散特性1200を得ることができる。 12, the horizontal axis indicates the frequency, and the vertical axis indicates the received power at the receiver 220. The frequency dispersion characteristic 1200 is a dispersion characteristic in the frequency domain of a pilot signal transmitted from the transmitter 210 to the receiver 220. The receiver 220 can obtain the frequency dispersion characteristic 1200 by Fourier-transforming the dispersion characteristic in the time domain of the pilot signal acquired based on the measurement results of the delay waves 1101 to 1104 shown in FIG.
 また、受信機220は、周波数分散特性1200における複数のコヒーレント帯域1211~1214,…を検出する。そして、受信機220は、コヒーレント帯域1211~1214,…の帯域幅、すなわちコヒーレント帯域幅(Coherent Bandwidth)の平均値および偏差を算出する。また、受信機220は、算出したコヒーレント帯域幅の平均値および偏差に基づいてFおよびΔFを決定する。 Further, the receiver 220 detects a plurality of coherent bands 1211 to 1214 in the frequency dispersion characteristic 1200. Then, the receiver 220 calculates the bandwidth of the coherent bandwidths 1211-1124,..., That is, the average value and deviation of the coherent bandwidth (Coherent Bandwidth). In addition, the receiver 220 determines F and ΔF based on the calculated average value and deviation of the coherent bandwidth.
 図11,図12に示したように、受信機220は、たとえば、送信機210から受信したパイロット信号のコヒーレント帯域幅に基づいてFおよびΔFを決定する。たとえば、受信機220は、受信したパイロット信号の遅延波1101~1104の受信電力の周波数分散特性1200から算出した、送信機210からのパイロット信号のコヒーレント帯域幅の平均値および偏差に基づいてFおよびΔFを決定する。これにより、周波数間隔ダイバシティの効果が大きくなるFおよびΔFを決定することができる。 11 and 12, the receiver 220 determines F and ΔF based on the coherent bandwidth of the pilot signal received from the transmitter 210, for example. For example, the receiver 220 may calculate F and F based on the average value and deviation of the coherent bandwidth of the pilot signal from the transmitter 210 calculated from the frequency dispersion characteristic 1200 of the received power of the delayed waves 1101 to 1104 of the received pilot signal. ΔF is determined. Thereby, F and ΔF that increase the effect of frequency interval diversity can be determined.
 このように、実施の形態1によれば、時間t1において、周波数間隔Fを互いに有する周波数f_1および周波数f_2のそれぞれにより同じデータ信号を送信することができる。また、時間t2においても、周波数間隔F1=F+ΔFを互いに有する周波数f_1および周波数f_3のそれぞれにより同じデータ信号を送信することができる。これにより、周波数ダイバシティ、時間ダイバシティおよび周波数間隔ダイバシティの各ダイバシティ効果により第2無線装置120における受信特性(たとえばBER)を向上させることができる。 Thus, according to the first embodiment, at time t1, the same data signal can be transmitted by each of the frequency f_1 and the frequency f_2 having the frequency interval F. Also at time t2, it is possible to transmit the same data signal at each of frequency f_1 and frequency f_3 having the frequency interval F1 = F + ΔF. Thereby, the receiving characteristic (for example, BER) in the 2nd radio | wireless apparatus 120 can be improved by each diversity effect of a frequency diversity, a time diversity, and a frequency space | interval diversity.
 また、たとえば伝送遅延を小さくするために時間t1および時間t2の間隔(T2)を小さくしても、時間ダイバシティの効果の低下を周波数間隔ダイバシティにより補うことができる。これにより、受信特性の低下を抑制しつつ伝送遅延を低減することができる。このため、たとえばURLLCで求められる信頼性および遅延量の要件を満たす無線システムを実現することができる。 Further, for example, even if the interval (T2) between the time t1 and the time t2 is reduced in order to reduce the transmission delay, the decrease in the effect of time diversity can be compensated for by the frequency interval diversity. Thereby, it is possible to reduce transmission delay while suppressing deterioration of reception characteristics. For this reason, for example, it is possible to realize a wireless system that satisfies the requirements of reliability and delay amount required by URLLC.
(実施の形態1にかかる送信機によるダイバシティ送信(Nmax=3))
 図13は、実施の形態1にかかる送信機によるダイバシティ送信の一例(Nmax=3)を示す図である。図13において、横軸は時間を示し、縦軸は周波数を示す。また、図13においては、送信機210が受信機220へのデータ信号を時間的に連続して送信する回数(連続自動送信数Nmax)が3回である場合について説明する。
(Diversity transmission by the transmitter according to the first embodiment (Nmax = 3))
FIG. 13 is a diagram illustrating an example of diversity transmission (Nmax = 3) by the transmitter according to the first embodiment. In FIG. 13, the horizontal axis indicates time, and the vertical axis indicates frequency. FIG. 13 illustrates a case where the number of times that the transmitter 210 continuously transmits the data signal to the receiver 220 (continuous automatic transmission number Nmax) is three.
 送信機210は、たとえば、受信機220に対するデータ信号1311,1312,1321,1322,1331,1332を無線送信する。データ信号1311,1312,1321,1322,1331,1332は、いずれも同じデータを示すデータ信号である。 The transmitter 210 wirelessly transmits data signals 1311, 1312, 1321, 1322, 1331, and 1332 to the receiver 220, for example. Data signals 1311, 1312, 1321, 1322, 1331, and 1332 are all data signals indicating the same data.
 データ信号1311,1312は、互いに同じ時間t1において送信されるデータ信号である。データ信号1321,1322は、互いに同じ時間t2において送信されるデータ信号である。データ信号1331,1332は、互いに同じ時間t3において送信されるデータ信号である。データ信号1311,1321,1331は、基準の周波数f_1により送信されるデータ信号である。データ信号1312は、基準の周波数f_1との間の周波数間隔がFである周波数f_2により送信されるデータ信号である。データ信号1322,1332は、基準の周波数f_1との間の周波数間隔がF1である周波数f_3により送信されるデータ信号である。 Data signals 1311 and 1312 are data signals transmitted at the same time t1. Data signals 1321 and 1322 are data signals transmitted at the same time t2. Data signals 1331 and 1332 are data signals transmitted at the same time t3. Data signals 1311, 1321, and 1331 are data signals transmitted at the reference frequency f_1. The data signal 1312 is a data signal transmitted at a frequency f_2 whose frequency interval with the reference frequency f_1 is F. Data signals 1322 and 1332 are data signals transmitted at a frequency f_3 having a frequency interval F1 from the reference frequency f_1.
 また、データ信号1311,1312が送信される時間t1と、データ信号1321,1322が送信される時間t2と、データ信号1331,1332が送信される時間t3と、の間の各時間間隔をT2とする。この場合に、時間間隔T2×2は、たとえば許容される伝送遅延量(一例としては1[ms])に対して十分に小さい値とする。 Also, each time interval between the time t1 when the data signals 1311 and 1312 are transmitted, the time t2 when the data signals 1321 and 1322 are transmitted, and the time t3 when the data signals 1331 and 1332 are transmitted is T2. To do. In this case, the time interval T2 × 2 is set to a sufficiently small value with respect to, for example, an allowable transmission delay amount (for example, 1 [ms]).
 図13に示す例のように、同一のデータ信号を3回送信する時間ダイバシティを使用してもよい。図13に示す例では、データ信号1321,1322の間の周波数間隔と、データ信号1331,1332の間の周波数間隔と、を同じF1としたが、このような構成に限らない。たとえば、データ信号1331,1332の間の周波数間隔を、データ信号1311,1312の周波数間隔と同じFとしてもよい。また、データ信号1331,1332の間の周波数間隔を、FともF1とも異なるF2としてもよい。 As in the example shown in FIG. 13, time diversity in which the same data signal is transmitted three times may be used. In the example illustrated in FIG. 13, the frequency interval between the data signals 1321 and 1322 and the frequency interval between the data signals 1331 and 1332 are the same F1, but the configuration is not limited thereto. For example, the frequency interval between the data signals 1331 and 1332 may be the same F as the frequency interval of the data signals 1311 and 1312. Further, the frequency interval between the data signals 1331 and 1332 may be F2 which is different from F and F1.
 また、送信機210が同一のデータ信号を送信する回数は2回(たとえば図7参照)や3回(たとえば図13参照)に限らず、2以上の任意の回数とすることができる。ただし、送信機210による同一のデータ信号の複数回の送信の時間間隔の合計は、たとえば許容される伝送遅延量(一例としては1[ms])に対して十分に小さい値とする。 Also, the number of times that the transmitter 210 transmits the same data signal is not limited to two times (for example, see FIG. 7) or three times (for example, see FIG. 13), and can be any number of two or more. However, the sum of the time intervals of the transmission of the same data signal by the transmitter 210 a plurality of times is set to a sufficiently small value with respect to an allowable transmission delay amount (for example, 1 [ms]).
(実施の形態2)
 実施の形態2について、実施の形態1と異なる部分について説明する。実施の形態1においては受信機220がFおよびΔFを決定する構成について説明したが、実施の形態2においては送信機210がFおよびΔFを決定する構成について説明する。
(Embodiment 2)
In the second embodiment, parts different from the first embodiment will be described. Although the configuration in which receiver 220 determines F and ΔF has been described in Embodiment 1, the configuration in which transmitter 210 determines F and ΔF will be described in Embodiment 2.
(実施の形態2にかかる低遅延伝送システムによる処理)
 図14は、実施の形態2にかかる低遅延伝送システムによる処理の一例を示すシーケンス図である。実施の形態2にかかる低遅延伝送システム200の送信機210(たとえば基地局)および受信機220(たとえば端末)においては、たとえば図14に示す各ステップが実行される。
(Processing by the low-delay transmission system according to the second embodiment)
FIG. 14 is a sequence diagram illustrating an example of processing by the low-delay transmission system according to the second embodiment. In the transmitter 210 (for example, a base station) and the receiver 220 (for example, a terminal) of the low-delay transmission system 200 according to the second embodiment, for example, each step shown in FIG. 14 is executed.
 図14に示す送信機210と受信機220との間の双方向の通信は、たとえばTDDにより実行される。この場合に、送信機210から受信機220への無線信号の送信と、受信機220から送信機210への無線信号の送信には同一の周波数が使用される。したがって、送信機210は、受信機220からのパイロット信号の測定結果に基づいて、送信機210からのパイロット信号の受信機220における受信品質を推定可能である。 The bidirectional communication between the transmitter 210 and the receiver 220 shown in FIG. 14 is executed by, for example, TDD. In this case, the same frequency is used for transmission of a radio signal from the transmitter 210 to the receiver 220 and transmission of a radio signal from the receiver 220 to the transmitter 210. Therefore, the transmitter 210 can estimate the reception quality of the pilot signal from the transmitter 210 at the receiver 220 based on the measurement result of the pilot signal from the receiver 220.
 まず、受信機220が、パイロット信号を送信機210へ無線送信する(ステップS1401)。また、受信機220は、ステップS1401の後も継続してパイロット信号を送信機210へ無線送信する。つぎに、送信機210が、ステップS1401により受信したパイロット信号の測定結果に基づくF1、T2、Nmax、FおよびΔFを決定する(ステップS1402)。送信機210によるパイロット信号の測定結果に基づくFおよびΔFの決定方法は、たとえば、上述した受信機220によるパイロット信号の測定結果に基づくFおよびΔFの決定方法と同様である。また、送信機210は、決定したFおよびΔFに基づいて、F1=F+ΔFによりF1を算出する。送信機210によるT2およびNmaxの決定方法は、たとえば、上述した受信機220によるT2およびNmaxの決定方法と同様である。図14に示す例ではNmaxとして2が決定されたとする。 First, the receiver 220 wirelessly transmits a pilot signal to the transmitter 210 (step S1401). Receiver 220 continues to transmit the pilot signal to transmitter 210 continuously after step S1401. Next, the transmitter 210 determines F1, T2, Nmax, F, and ΔF based on the measurement result of the pilot signal received in step S1401 (step S1402). The determination method of F and ΔF based on the measurement result of the pilot signal by the transmitter 210 is the same as the determination method of F and ΔF based on the measurement result of the pilot signal by the receiver 220 described above, for example. Further, based on the determined F and ΔF, the transmitter 210 calculates F1 by F1 = F + ΔF. The method for determining T2 and Nmax by transmitter 210 is the same as the method for determining T2 and Nmax by receiver 220 described above, for example. In the example shown in FIG. 14, it is assumed that 2 is determined as Nmax.
 つぎに、送信機210が、ステップS1402により決定したF1、T2、Nmax、FおよびΔFを示す各情報を受信機220へ送信する(ステップS1403)。ステップS1403による送信は、たとえば送信機210から受信機220へのRRCメッセージを用いて実行することができる。なお、上述したようにF1=F+ΔFであるため、送信機210は、F1、FおよびΔFのうちいずれかを示す情報については受信機220へ送信しなくてもよい。 Next, the transmitter 210 transmits information indicating F1, T2, Nmax, F, and ΔF determined in step S1402 to the receiver 220 (step S1403). The transmission in step S1403 can be executed using, for example, an RRC message from the transmitter 210 to the receiver 220. As described above, since F1 = F + ΔF, the transmitter 210 may not transmit information indicating any one of F1, F, and ΔF to the receiver 220.
 図14に示すステップS1404~S1407は、図8に示したステップS806~S809と同様である。ただし、ステップS1405において、送信機210は、ステップS1402により決定したFを用いて、基準の周波数f_1と、周波数f_1との間の周波数間隔がFである周波数f_2と、においてデータ信号を送信する(周波数間隔F)。これに対して、受信機220は、ステップS1403により受信した情報が示すFを用いて、周波数間隔Fで送信されたデータ信号を受信する。 Steps S1404 to S1407 shown in FIG. 14 are the same as steps S806 to S809 shown in FIG. However, in step S1405, the transmitter 210 transmits a data signal using the F determined in step S1402 at the reference frequency f_1 and the frequency f_2 whose frequency interval between the frequencies f_1 is F ( Frequency interval F). On the other hand, the receiver 220 receives the data signal transmitted at the frequency interval F using F indicated by the information received in step S1403.
 また、ステップS1406において、送信機210は、ステップS1402により決定したFおよびΔFに基づくF1=F+ΔFを用いて、基準の周波数f_1と、周波数f_3と、においてデータ信号を送信する(周波数間隔F1)。これに対して、受信機220は、ステップS1403により受信した情報が示すFおよびΔFから算出したF1(=F+ΔF)、またはステップS1403により受信した情報が示すF1を用いて、周波数間隔F1で送信されたデータ信号を受信する。 In step S1406, transmitter 210 transmits a data signal at reference frequency f_1 and frequency f_3 using F1 = F + ΔF based on F and ΔF determined in step S1402 (frequency interval F1). On the other hand, the receiver 220 is transmitted at the frequency interval F1 using F1 (= F + ΔF) calculated from F and ΔF indicated by the information received at step S1403 or F1 indicated by the information received at step S1403. Receive data signals.
 図14に示すステップS1408~S1411は、図8に示したステップS812~S815と同様である。 Steps S1408 to S1411 shown in FIG. 14 are the same as steps S812 to S815 shown in FIG.
 また、ステップS1407の後に、送信機210は、ステップS1401より後に受信機220から受信したパイロット信号の測定結果に基づくFおよびΔFを新たに決定してもよい。このFおよびΔFの決定は、たとえばステップS1402によるFおよびΔFの決定と同様である。この場合に、送信機210は、ステップS1409,S1410において、新たに決定したFおよびΔFを用いてデータ信号の送信を行う。 Further, after step S1407, the transmitter 210 may newly determine F and ΔF based on the measurement result of the pilot signal received from the receiver 220 after step S1401. The determination of F and ΔF is the same as the determination of F and ΔF in step S1402, for example. In this case, the transmitter 210 transmits a data signal using F and ΔF newly determined in steps S1409 and S1410.
 また、ステップS1407の後に、送信機210は、ステップS1401より後に受信機220から受信したパイロット信号の測定結果に基づくΔFを新たに決定してもよい。このΔFの決定は、たとえばステップS1402によるΔFの決定と同様である。この場合に、送信機210は、ステップS1409,S1410において、ステップS1402により決定したFと、新たに決定したΔFと、を用いてデータ信号の送信を行う。 Further, after step S1407, the transmitter 210 may newly determine ΔF based on the measurement result of the pilot signal received from the receiver 220 after step S1401. This determination of ΔF is the same as the determination of ΔF in step S1402, for example. In this case, the transmitter 210 transmits a data signal using F determined in step S1402 and the newly determined ΔF in steps S1409 and S1410.
(実施の形態2にかかる送信機による処理)
 図15は、実施の形態2にかかる送信機による処理の一例を示すフローチャートである。実施の形態2にかかる送信機210は、たとえば図15に示す各ステップを実行する。まず、送信機210は、受信機220からのパイロット信号の受信および測定を行う(ステップS1501)。つぎに、送信機210は、ステップS1501によるパイロット信号の測定結果に基づいて、F1、T2、Nmax、FおよびΔFを決定し、決定したF1、T2、Nmax、FおよびΔFを示す各情報を受信機220へ送信する(ステップS1502)。
(Processing by the transmitter according to the second embodiment)
FIG. 15 is a flowchart of an example of processing performed by the transmitter according to the second embodiment. The transmitter 210 according to the second embodiment executes, for example, each step illustrated in FIG. First, the transmitter 210 receives and measures a pilot signal from the receiver 220 (step S1501). Next, transmitter 210 determines F1, T2, Nmax, F and ΔF based on the measurement result of the pilot signal in step S1501, and receives each information indicating the determined F1, T2, Nmax, F and ΔF. It transmits to the machine 220 (step S1502).
 図15に示すステップS1503~S1509は、図9に示したステップS904~S910と同様である。ただし、ステップS1507において、送信機210は、Nが、ステップS1502により決定したNmaxに達したか否かを判断する。 Steps S1503 to S1509 shown in FIG. 15 are the same as steps S904 to S910 shown in FIG. However, in step S1507, the transmitter 210 determines whether N has reached Nmax determined in step S1502.
(実施の形態2にかかる受信機による処理)
 図16は、実施の形態2にかかる受信機による処理の一例を示すフローチャートである。実施の形態2にかかる受信機220は、たとえば図16に示す各ステップを実行する。まず、受信機220は、送信機210へのパイロット信号の送信を開始する(ステップS1601)。図16に示すステップS1602~S1618は、図10に示したステップS1003~S1019と同様である。
(Processing by the receiver according to the second embodiment)
FIG. 16 is a flowchart of an example of processing performed by the receiver according to the second embodiment. The receiver 220 according to the second embodiment executes, for example, each step illustrated in FIG. First, the receiver 220 starts transmitting a pilot signal to the transmitter 210 (step S1601). Steps S1602 to S1618 shown in FIG. 16 are the same as steps S1003 to S1019 shown in FIG.
 このように、実施の形態2によれば、送信機210がFおよびΔFを決定する構成においても、実施の形態1と同様に、受信特性の低下を抑制しつつ伝送遅延を低減することができる。 Thus, according to the second embodiment, even in the configuration in which transmitter 210 determines F and ΔF, similarly to the first embodiment, it is possible to reduce the transmission delay while suppressing the deterioration of the reception characteristics. .
 以上説明したように、無線装置、無線システムおよび処理方法によれば、受信特性の低下を抑制しつつ伝送遅延を低減することができる。 As described above, according to the wireless device, the wireless system, and the processing method, it is possible to reduce transmission delay while suppressing deterioration of reception characteristics.
 たとえば、ある無線区間の特性の変動要因が複数の異なる種類の原因(たとえばドップラーシフト、時間長が長い遅延波の存在、マルチパス等)である場合に、異なる種類のダイバシティ送信方式を組み合わせると、無線区間の特性の変動に対する耐性が高くなる。このため、無線信号の送信の安定度が高まる。 For example, when the variation factors of the characteristics of a certain radio section are a plurality of different types of causes (for example, Doppler shift, presence of a delayed wave with a long time length, multipath, etc.), combining different types of diversity transmission methods, The resistance to fluctuations in the characteristics of the radio section is increased. For this reason, the stability of transmission of a radio signal increases.
 たとえば、市街地のようなマルチパスが多い環境では、周波数領域での無線受信特性の変動が大きくなる。これは、異なる経路で伝送されたマルチパスを受信機が受信する際に、マルチパス間の位相差により振幅の変化が発生し、位相差の影響のあらわれ方が周波数により異なるためである。マルチパス間の位相差による振幅の変化は、たとえば逆相合成受信だと振幅が打ち消し合うことなどにより発生する。また、マルチパスが多いほど、周波数領域での無線受信特性の変動が複雑になる。 For example, in an environment with many multipaths such as an urban area, fluctuations in radio reception characteristics in the frequency domain become large. This is because when a receiver receives multipaths transmitted through different paths, amplitude changes due to phase differences between the multipaths, and the effect of the phase differences appears depending on the frequency. The change in the amplitude due to the phase difference between the multipaths is caused by, for example, canceling out the amplitudes in the case of reverse-phase synthesis reception. In addition, as the number of multipaths increases, the variation in radio reception characteristics in the frequency domain becomes more complicated.
 このような環境では、周波数ダイバシティの効果が大きくなる。しかし、送信に使用される複数の周波数において同時に特性(たとえば受信機での受信振幅)が悪くなる場合がある。このため、たとえば、周波数ダイバシティに、時間領域にダイバシティ性をもたせる時間ダイバシティを組み合わせることが考えられる。たとえば、基地局と自動車との間の無線通信は、ドップラーシフトおよびマルチパスの両方の影響を強く受ける。このため、たとえば、基地局と自動車との間の無線通信に、周波数ダイバシティおよび時間ダイバシティの組み合わせを適用することで大きなダイバシティ利得を得られる。 In such an environment, the effect of frequency diversity is increased. However, the characteristics (for example, reception amplitude at the receiver) may deteriorate at the same time at a plurality of frequencies used for transmission. For this reason, for example, it is conceivable to combine frequency diversity with time diversity that provides diversity in the time domain. For example, wireless communication between a base station and an automobile is strongly affected by both Doppler shift and multipath. For this reason, for example, a large diversity gain can be obtained by applying a combination of frequency diversity and time diversity to wireless communication between a base station and an automobile.
 しかしながら、時間ダイバシティによる送信では、無線信号の伝送遅延が大きくなるため、低遅延伝送が要求される用途への適用には向かない。一方、時間ダイバシティにおいて無線信号を送信する時間間隔を短くすると、伝送遅延は低減されるがダイバシティ利得が低減してしまうという問題がある。 However, transmission by time diversity is not suitable for application where low-delay transmission is required because the transmission delay of a radio signal increases. On the other hand, if the time interval for transmitting a radio signal is shortened in time diversity, there is a problem in that although transmission delay is reduced, diversity gain is reduced.
 これに対して、上述した各実施の形態によれば、周波数ダイバシティによりデータ信号を連続送信(時間ダイバシティ送信)する際に、たとえば1回目の送信と2回目の送信で周波数間隔を変える。これにより、周波数間隔にダイバシティ性を持たせ、ダイバシティ利得を大きくすることができる。したがって、時間ダイバシティにおいて無線信号を送信する時間間隔を短くしても、ダイバシティ利得の低減を抑制することができる。このため、受信特性の低下を抑制しつつ伝送遅延を低減することができる。 On the other hand, according to each embodiment described above, when data signals are continuously transmitted by frequency diversity (time diversity transmission), for example, the frequency interval is changed between the first transmission and the second transmission. Thereby, diversity can be given to the frequency interval, and diversity gain can be increased. Therefore, even if the time interval for transmitting radio signals in time diversity is shortened, the reduction in diversity gain can be suppressed. For this reason, it is possible to reduce transmission delay while suppressing deterioration of reception characteristics.
 100 無線システム
 110 第1無線装置
 111 送信部
 112,122 制御部
 120 第2無線装置
 121 受信部
 200 低遅延伝送システム
 210 送信機
 220 受信機
 301,310,401,411 アンテナ
 302,402 RF受信部
 303,409 受信制御信号処理部
 304 送信制御部
 305 データ信号生成部
 306 パイロット信号生成部
 307,408 制御信号生成部
 308a,308b,308c 多重部
 309,410 RF送信部
 311 再送制御部
 403 受信データ信号処理部
 404 受信データ信号バッファ
 405 ACK/NACK信号生成部
 406 受信パイロット信号処理部
 407 無線区間特性評価部
 500,600 通信装置
 501,601 CPU
 502,602 メモリ
 503,604 無線通信インタフェース
 504 有線通信インタフェース
 509,609 バス
 603 ユーザインタフェース
 711,712,721,722,1311,1312,1321,1322,1331,1332 データ信号
 1101~1104 遅延波
 1200 周波数分散特性
 1211~1214,… コヒーレント帯域
DESCRIPTION OF SYMBOLS 100 Radio system 110 1st radio | wireless apparatus 111 Transmitter 112,122 Control part 120 2nd radio | wireless apparatus 121 Receiver 200 Low-delay transmission system 210 Transmitter 220 Receiver 301,310,401,411 Antenna 302,402 RF receiver 303 , 409 Reception control signal processing section 304 Transmission control section 305 Data signal generation section 306 Pilot signal generation section 307, 408 Control signal generation section 308a, 308b, 308c Multiplexing section 309, 410 RF transmission section 311 Retransmission control section 403 Reception data signal processing Unit 404 reception data signal buffer 405 ACK / NACK signal generation unit 406 reception pilot signal processing unit 407 radio section characteristic evaluation unit 500,600 communication device 501 601 CPU
502, 602 Memory 503, 604 Wireless communication interface 504 Wired communication interface 509, 609 Bus 603 User interface 711, 712, 721, 722, 1311, 1312, 1321, 1322, 1331, 1332 Data signal 1101-1104 Delay wave 1200 Frequency dispersion Characteristics 1211-1214 ... Coherent bandwidth

Claims (10)

  1.  他の無線装置へのデータ信号を送信可能な送信部と、
     前記送信部に対して、第1時間において、第1間隔を互いに有する第1周波数および第2周波数のそれぞれにより前記データ信号を送信させ、前記第1時間と異なる第2時間において、前記第1間隔と異なる第2間隔を互いに有する第3周波数および第4周波数のそれぞれにより前記データ信号を送信させる制御部と、
     を備えることを特徴とする無線装置。
    A transmitter capable of transmitting a data signal to another wireless device;
    The transmitting unit transmits the data signal at each of a first frequency and a second frequency having a first interval in a first time, and the first interval in a second time different from the first time. A control unit for transmitting the data signal at each of a third frequency and a fourth frequency having a second interval different from each other;
    A wireless device comprising:
  2.  前記制御部は、前記送信部に対して、前記第1周波数、前記第2周波数、前記第3周波数および前記第4周波数を特定可能な情報を前記他の無線装置へ送信させることを特徴とする請求項1に記載の無線装置。 The control unit causes the transmission unit to transmit information capable of specifying the first frequency, the second frequency, the third frequency, and the fourth frequency to the other wireless device. The wireless device according to claim 1.
  3.  前記第3周波数は、前記第1周波数と同じ周波数であり、
     前記制御部は、前記送信部に対して、前記第1周波数を示す情報と、前記第1間隔を示す情報と、前記第2間隔を示す情報または前記第1間隔および前記第2間隔の間の差分を示す情報と、を前記他の無線装置へ送信させる、
     ことを特徴とする請求項1または2に記載の無線装置。
    The third frequency is the same frequency as the first frequency,
    The control unit, for the transmission unit, information indicating the first frequency, information indicating the first interval, information indicating the second interval or between the first interval and the second interval Transmitting information indicating the difference to the other wireless device,
    The wireless device according to claim 1, wherein the wireless device is a wireless device.
  4.  前記制御部は、前記送信部に対して、前記第1時間および前記第2時間を特定可能な情報を前記他の無線装置へ送信させることを特徴とする請求項1~3のいずれか一つに記載の無線装置。 4. The control unit according to claim 1, wherein the control unit causes the transmission unit to transmit information capable of specifying the first time and the second time to the other radio device. A wireless device according to 1.
  5.  前記第1間隔および前記第2間隔は、前記他の無線装置が自装置から受信した無線信号のコヒーレント帯域幅に基づく各間隔であることを特徴とする請求項1~4のいずれか一つに記載の無線装置。 The first interval and the second interval are each interval based on a coherent bandwidth of a radio signal received by the other radio device from its own device. The wireless device described.
  6.  前記第1間隔および前記第2間隔は、前記他の無線装置が自装置から受信した無線信号の遅延波の受信電力の周波数領域での分散特性から算出された前記無線信号のコヒーレント帯域幅の平均値および偏差に基づく各間隔であることを特徴とする請求項5に記載の無線装置。 The first interval and the second interval are averages of coherent bandwidths of the radio signals calculated from dispersion characteristics in the frequency domain of the received power of delayed waves of radio signals received from the other devices by the other radio devices. The radio apparatus according to claim 5, wherein each interval is based on a value and a deviation.
  7.  他の無線装置からのデータ信号を受信可能な受信部と、
     前記受信部に対して、第1時間において、第1間隔を互いに有する第1周波数および第2周波数のそれぞれにより送信される前記データ信号を受信させ、前記第1時間と異なる第2時間において、前記第1間隔と異なる第2間隔を互いに有する第3周波数および第4周波数のそれぞれにより送信される前記データ信号を受信させる制御部と、
     を備えることを特徴とする無線装置。
    A receiver capable of receiving data signals from other wireless devices;
    In the first time, the receiving unit receives the data signal transmitted by each of the first frequency and the second frequency having a first interval, and in the second time different from the first time, A control unit for receiving the data signal transmitted by each of the third frequency and the fourth frequency having a second interval different from the first interval;
    A wireless device comprising:
  8.  他の無線装置へのデータ信号を送信可能な第1無線装置であって、第1時間において、第1間隔を互いに有する第1周波数および第2周波数のそれぞれにより前記データ信号を送信し、前記第1時間と異なる第2時間において、前記第1間隔と異なる第2間隔を互いに有する第3周波数および第4周波数のそれぞれにより前記データ信号を送信する第1無線装置と、
     前記第1無線装置からの前記データ信号を受信可能な第2無線装置であって、前記第1時間において、前記第1周波数および前記第2周波数のそれぞれにより送信される前記データ信号を受信し、前記第2時間において、前記第3周波数および前記第4周波数のそれぞれにより送信される前記データ信号を受信する第2無線装置と、
     を含むことを特徴とする無線システム。
    A first wireless device capable of transmitting a data signal to another wireless device, wherein the data signal is transmitted at each of a first frequency and a second frequency having a first interval in a first time, A first wireless device for transmitting the data signal at each of a third frequency and a fourth frequency having a second interval different from the first interval at a second time different from one hour;
    A second wireless device capable of receiving the data signal from the first wireless device, receiving the data signal transmitted at each of the first frequency and the second frequency in the first time; A second wireless device for receiving the data signal transmitted at each of the third frequency and the fourth frequency at the second time;
    A wireless system comprising:
  9.  他の無線装置へのデータ信号を送信可能な無線装置が、
     第1時間において、第1間隔を互いに有する第1周波数および第2周波数のそれぞれにより前記データ信号を送信し、
     前記第1時間と異なる第2時間において、前記第1間隔と異なる第2間隔を互いに有する第3周波数および第4周波数のそれぞれにより前記データ信号を送信する、
     ことを特徴とする処理方法。
    A wireless device capable of transmitting data signals to other wireless devices
    Transmitting the data signal at each of a first frequency and a second frequency having a first interval with each other at a first time;
    Transmitting the data signal at each of a third frequency and a fourth frequency having a second interval different from the first interval in a second time different from the first time;
    A processing method characterized by the above.
  10.  他の無線装置からのデータ信号を受信可能な無線装置が、
     第1時間において、第1間隔を互いに有する第1周波数および第2周波数のそれぞれにより送信される前記データ信号を受信し、
     前記第1時間と異なる第2時間において、前記第1間隔と異なる第2間隔を互いに有する第3周波数および第4周波数のそれぞれにより送信される前記データ信号を受信する、
     ことを特徴とする処理方法。
    A wireless device capable of receiving data signals from other wireless devices
    Receiving the data signal transmitted at each of a first frequency and a second frequency having a first interval with each other at a first time;
    Receiving the data signal transmitted at each of a third frequency and a fourth frequency having a second interval different from the first interval at a second time different from the first time;
    A processing method characterized by the above.
PCT/JP2017/013838 2017-03-31 2017-03-31 Wireless device, wireless system, and processing method WO2018179433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013838 WO2018179433A1 (en) 2017-03-31 2017-03-31 Wireless device, wireless system, and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013838 WO2018179433A1 (en) 2017-03-31 2017-03-31 Wireless device, wireless system, and processing method

Publications (1)

Publication Number Publication Date
WO2018179433A1 true WO2018179433A1 (en) 2018-10-04

Family

ID=63677965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013838 WO2018179433A1 (en) 2017-03-31 2017-03-31 Wireless device, wireless system, and processing method

Country Status (1)

Country Link
WO (1) WO2018179433A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311359A (en) * 2005-04-28 2006-11-09 Ntt Docomo Inc Apparatus for generating wireless parameter group, transmitter and receiver
JP2008211752A (en) * 2007-01-31 2008-09-11 Toshiba Corp Wireless communication system
JP2009542136A (en) * 2006-06-29 2009-11-26 パナソニック株式会社 Efficient paging mechanism with scalable bandwidth allocation
JP2010093857A (en) * 2005-11-04 2010-04-22 Panasonic Corp Base station apparatus and mobile station apparatus in multicarrier communication
JP2010531091A (en) * 2007-06-13 2010-09-16 エルジー エレクトロニクス インコーポレイティド Transmission of spread signals in communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311359A (en) * 2005-04-28 2006-11-09 Ntt Docomo Inc Apparatus for generating wireless parameter group, transmitter and receiver
JP2010093857A (en) * 2005-11-04 2010-04-22 Panasonic Corp Base station apparatus and mobile station apparatus in multicarrier communication
JP2009542136A (en) * 2006-06-29 2009-11-26 パナソニック株式会社 Efficient paging mechanism with scalable bandwidth allocation
JP2008211752A (en) * 2007-01-31 2008-09-11 Toshiba Corp Wireless communication system
JP2010531091A (en) * 2007-06-13 2010-09-16 エルジー エレクトロニクス インコーポレイティド Transmission of spread signals in communication systems

Similar Documents

Publication Publication Date Title
JP6745741B2 (en) Apparatus and method for adaptive beamforming in wireless communication system
US20180049042A1 (en) Beam management in beamforming systems
JP6861780B2 (en) Wireless network nodes, wireless devices, and how they are performed
JP5522257B2 (en) Communication setting method, wireless base station
AU2021200786B2 (en) Method and apparatus for regulating communication parameters
CN104718712B (en) Method and apparatus for system access in a system using beamforming
KR101913988B1 (en) Channel estimation enhancements
KR101956195B1 (en) Method and apparatus to transmit/receive physical channels supporting inter-enb carrier aggregation in communication systems
WO2017012434A1 (en) Beam update method and apparatus
US10912094B2 (en) Beam matching method and apparatus
CN107889222A (en) Method for transmitting signals, terminal device, the network equipment and communication system
CN113015182A (en) Method for determining DC position, terminal equipment and network equipment
US20110013719A1 (en) Weighting factor reporting method in a mimo mobile communications system, and base station and user apparatus that are suitable for use in the method
US20130294388A1 (en) Method for wireless data transmission, communication system, wireless terminal apparatus and wireless base station apparatus
WO2018127780A1 (en) Controllable beam management accuracy
JP5732267B2 (en) COMMUNICATION SYSTEM, BASE STATION, AND COMMUNICATION CONTROL METHOD
WO2018179433A1 (en) Wireless device, wireless system, and processing method
KR20180057463A (en) Method and apparatus for adjusting bandwidth of a terminal
KR20120055552A (en) Methods and apparatus for wireless communication
WO2018179434A1 (en) Wireless device, wireless system, and processing method
JP6450607B2 (en) Communication terminal and communication method thereof
KR101922706B1 (en) Apparatus and method for determining modulation and coding scheme of terminal
WO2010134188A1 (en) Adaptive modulation control method, communication system and relay device
WO2022151415A1 (en) Method and device for sending uplink control channel
JP4800438B2 (en) Base station apparatus and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP