[go: up one dir, main page]

WO2018179911A1 - Force sensor - Google Patents

Force sensor Download PDF

Info

Publication number
WO2018179911A1
WO2018179911A1 PCT/JP2018/004682 JP2018004682W WO2018179911A1 WO 2018179911 A1 WO2018179911 A1 WO 2018179911A1 JP 2018004682 W JP2018004682 W JP 2018004682W WO 2018179911 A1 WO2018179911 A1 WO 2018179911A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive
force sensor
sensitive members
operation member
Prior art date
Application number
PCT/JP2018/004682
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 邦生
高井 大輔
和人 大下
元 志方
俊季 中村
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2018179911A1 publication Critical patent/WO2018179911A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/162Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors

Definitions

  • the present invention relates to a force sensor capable of detecting a load applied by an operation on an operation member.
  • the load detection device described in Patent Document 1 is disposed on the upper surface side of the load sensor, a load sensor having a protruding pressure receiving portion, a case for storing the load sensor with the pressure receiving portion facing the upper surface side, and a load. And an elastic body that receives and presses the load sensor in the height direction. Thereby, it is said that it is possible to provide a load detection device that can realize good handling properties and miniaturization and has good sensor sensitivity.
  • an object of the present invention is to provide a force sensor that can detect the direction, magnitude, range, distribution, and the like of an applied load.
  • a force sensor is fixed on a base material and the base material at predetermined intervals, and outputs a predetermined output according to an applied load.
  • a plurality of pressure-sensitive members to be performed and an operation member having a contact area in contact with the plurality of pressure-sensitive members are provided, and a load is applied to the plurality of pressure-sensitive members according to an operation on the operation member.
  • the state of the load applied to the operation member can be detected.
  • the force sensor according to the embodiment of the present invention may include a calculation unit that detects a state of a load applied to the operation member based on output information from a plurality of pressure-sensitive members.
  • each of the plurality of pressure-sensitive members may include a plurality of strain detection elements.
  • the plurality of strain detection elements may be arranged symmetrically with respect to the plane center of the pressure-sensitive member.
  • each pressure-sensitive member is arranged so as to be symmetric with respect to the plane center of the base material, and each pressure-sensitive member is symmetric with respect to the plane center.
  • Four strain sensing elements may be provided.
  • the operation member may be attached to the base material so as to cover the plurality of pressure sensitive members.
  • the load applied by the operation on the operation member can be detected by a plurality of pressure-sensitive members, the state of the load applied in a complicated manner can be detected.
  • the operation member may have elasticity.
  • a force sensor that can detect the state of the direction, magnitude, range, distribution, etc. of the load applied to the operation member.
  • FIG. 1 is a side view showing the configuration of the force sensor 10 according to the present embodiment
  • FIG. 2 is a plan view showing the configuration of the force sensor 10
  • FIG. 3 is a functional block diagram of the force sensor 10.
  • 4A and 4B are diagrams showing application examples of the force sensor 10.
  • the operation member 12 is virtually shown by a broken line in FIG. 1 and omitted in FIG.
  • XYZ coordinates are shown as reference coordinates.
  • the Z direction is the upward direction
  • the XY plane is a plane orthogonal to the Z direction.
  • the state viewed along the Z direction may be referred to as a plan view.
  • the force sensor 10 As shown in FIG. 1 or 2, the force sensor 10 according to the present embodiment includes a base material 11, four pressure-sensitive members 20, 30, 40, 50 arranged on the base material 11, and these The operation member 12 is mounted on the base material 11 so as to cover the pressure sensitive member.
  • the pressure sensitive member In the present embodiment, four examples of the pressure sensitive member are shown, but the number of pressure sensitive members is two, three. The number and arrangement may be arbitrarily set according to the specifications of the force sensor.
  • the base material 11 is, for example, a circuit board, and an integrated circuit constituting the calculation unit 61 and the control unit 62 shown in FIG. 3 and wirings connected to the integrated circuit are arranged.
  • the control unit 62 has an interface unit.
  • the control unit 62 gives the calculation result of the calculation unit 61 to the external display device 63 for display.
  • the operation member 12 is made of an elastic material, for example, synthetic rubber such as urethane rubber or silicone rubber, and the upper portions of the operation bodies 25, 35, 45, 55 of the four pressure-sensitive members 20, 30, 40, 50. Are arranged so as to cover from above the Z direction, and preferably the end portion 12a in the XY plane direction is fixed to the base material 11 by adhesion.
  • the operation member 12 has an inner surface 12b, the operation body 25 of the first pressure-sensitive member 20, the operation body 35 of the second pressure-sensitive member 30, the operation body 45 of the third pressure-sensitive member 40, and the fourth sensitivity.
  • a contact region that contacts the operating body 55 of the pressure member 50 is configured.
  • the operation member 12 constitutes an epidermis F1 of a finger F of a human body model as shown in FIG. 4A, for example.
  • the base material 11 and the four pressure-sensitive members 20, 30, 40, 50 fixed on the base material 11 are arranged inside the finger F.
  • an operation member 112 having the configuration shown in FIG. 4B can be used.
  • the operation member 112 includes an operation main body 112a and an arm portion 112b extending downward from the operation main body 112a, and both the operation main body 112a and the arm portion 112b are made of a hard material, for example, metal.
  • two pressure-sensitive members 120 and 130 are disposed on the substrate 111, and between the operating body 125 of the first pressure-sensitive member 120 and the operating body 135 of the second pressure-sensitive member 130.
  • the arm portion 112b of the operation member 112 is disposed.
  • the base 111 and the two pressure-sensitive members 120 and 130 have the same configuration as the base 11 and the four pressure-sensitive members 20 to 50 shown in FIG. 2, respectively.
  • the side surface 112 c of the arm portion 112 b constitutes a contact area in contact with the operation bodies 125 and 135 of the two pressure sensitive members 120 and 130.
  • the arm portion 112b is inclined with respect to the Z direction together with the operation main body 112a, and accordingly, the operation bodies 125 and 135 are inclined.
  • each of the four pressure-sensitive members 20, 30, 40, 50 has support bases 22, 32, 42, 52 each having a square outer shape in plan view, and the outer edges thereof are bonded to each other by bonding. It is fixed to the material 11.
  • the four pressure-sensitive members 20, 30, 40, 50 are arranged symmetrically with respect to the center 11 c of the plane of the base material 11 at regular intervals. More specifically, the first pressure-sensitive member 20 and the second pressure-sensitive member 30, the second pressure-sensitive member 30 and the third pressure-sensitive member 40, the third pressure-sensitive member 40 and the fourth pressure-sensitive member.
  • the pressure member 50 and the fourth pressure-sensitive member 50 and the first pressure-sensitive member 20 are arranged on the base material 11 so as to be separated from each other with a distance L in both the X direction and the Y direction. Has been. Further, in the Y direction, the first pressure sensitive member 20 and the third pressure sensitive member 40 are disposed so as to have a distance of 2L, and in the X direction, the second pressure sensitive member 30 and the fourth pressure sensitive member. 50 is also arranged at a distance of 2L.
  • the distance L can be arbitrarily set according to the application and specifications.
  • FIG. 5 is a perspective view showing a configuration of the first pressure-sensitive member 20
  • FIG. 6 is a circuit diagram of a strain detection element included in the first pressure-sensitive member 20
  • FIG. 7 is a plan view showing the configuration of the four pressure-sensitive members 20, 30, 40, 50.
  • the first pressure-sensitive member 20 has a support base 22 made of synthetic resin.
  • the support base 22 is integrally formed with a plus X deforming portion 23a and a minus X deforming portion 23b extending in the X direction and a plus Y deforming portion 24a and a minus Y deforming portion 24b extending in the Y direction.
  • An operation body 25 that protrudes concentrically upward is integrally provided at the center of the plane of the support base 22.
  • the operating body 25 is disposed at the center of the plus X deforming portion 23a and the minus X deforming portion 23b and the center of the plus Y deforming portion 24a and the minus Y deforming portion 24b.
  • the operating direction and the operating force correspond to the operating direction.
  • the plus X deforming portion 23a, the minus X deforming portion 23b, the plus Y deforming portion 24a, and the minus Y deforming portion 24b are bent.
  • a plus X strain sensor 26a is attached to the upper surface of the plus X deformation portion 23a, and a minus X strain sensor 26b is attached to the upper surface of the minus X deformation portion 23b.
  • a plus Y strain sensor 27a is attached to the upper surface of the plus Y deformation portion 24a, and a minus Y strain sensor 27b is attached to the upper surface of the minus Y deformation portion 24b.
  • These strain sensors 26 a, 26 b, 27 a, 27 b are arranged symmetrically with respect to the operating body 25 located at the plane center of the support base 22.
  • strain sensors 26a, 26b, 27a, and 27b may be attached to the lower surfaces of the deformable portions 23a, 23b, 24a, and 24b, respectively.
  • the strain sensors 26a, 26b, 27a, and 27b are strain detection elements that detect strain and deflection generated in the deformed portions 23a, 23b, 24a, and 24b, respectively, and are formed as resistance films. As shown in FIG. 6, the strain sensors 26a, 26b, 27a, and 27b are connected to each other to form a bridge circuit.
  • the plus X deforming portion 23a and the minus X deforming are made according to the pressing direction and the pressing force. Deflection occurs in the portion 23b, the plus Y deformation portion 24a, and the minus Y deformation portion 24b, and the resistance values of the respective strain sensors 26a, 26b, 27a, and 27b change. Further, even when the operating body 25 is pressed downward, the deformation portions 23a, 23b, 24a, and 24b are deflected according to the pressing force, and the distortion sensors 26a, 26b, 27a, and 27b are deformed. The resistance value changes. In accordance with such a change in resistance value, an X operation output and a Y operation output are obtained from the bridge circuit shown in FIG.
  • the X operation output and the Y operation output obtained in response to changes in the resistance values of the strain sensors 26 a, 26 b, 27 a, 27 b of the first pressure-sensitive member 20 are given to the calculation unit 61.
  • an X operation output and a Y operation output corresponding to a change in the resistance value of the strain sensor in each of the pressure sensitive members 30, 40, 50 are also given to the calculation unit 61.
  • the calculation unit 61 detects the state of the load applied to the operation member 12 based on output information given from the four pressure sensitive members 20, 30, 40, 50.
  • the support base 32 of the second pressure-sensitive member 30 has a plus X strain sensor 26a, a minus X strain sensor 26b, and a plus Y strain sensor 27a in the first pressure sensitive member 20.
  • a plus X distortion sensor 36a, a minus X distortion sensor 36b, a plus Y distortion sensor 37a, and a minus Y distortion sensor 37b are attached.
  • a plus X strain sensor 46a, a minus X strain sensor 46b, a plus Y strain sensor 47a, and a minus Y strain sensor 47b are attached to the support base 42 of the third pressure-sensitive member 40.
  • a plus X strain sensor 56a, a minus X strain sensor 56b, a plus Y strain sensor 57a, and a minus Y strain sensor 57b are attached to the support base 52 of the pressure sensitive member 50.
  • the force sensor 10 having the above-described configuration can detect the situation such as the direction, size, range, and distribution of the load applied by an external force as shown in FIGS. 8A to 8E, for example.
  • 8A to 8E are side views corresponding to FIG. 1, showing the direction of the external force applied to the force sensor 10, and the illustration of the operation member 12 is omitted.
  • FIG. 8A to FIG. 8E show some examples, and it is possible to detect other loads, for example, the situation of the load due to the combined force of the external forces shown in FIG. 8A to FIG. 8E. 8A to 8E, it is assumed that the force sensor 10 is mounted so that the Z direction is along the vertical direction.
  • the mounting direction of the force sensor 10 is not limited to this. It is not limited.
  • a downward force D1 acts on all of the four pressure-sensitive members 20, 30, 40, and 50, and each has a distortion.
  • a change occurs in the resistance value in the sensor.
  • a force D2 along the X direction acts as a horizontal force.
  • changes in resistance values of the plus X strain sensors and minus X strain sensors of the four pressure-sensitive members 20, 30, 40, and 50 are superimposed.
  • the calculation unit 61 can detect the situation such as the direction, magnitude, range, and distribution of the load applied to the operation member 12.
  • FIG. 8B two forces D3 and D4 along the positive direction and the negative direction in the X direction are shown as forces from both the left and right directions.
  • an operation of pinching the operation member 12 from the left-right direction is assumed.
  • the resistance values of all of the four pressure-sensitive members 20, 30, 40, and 50 plus and minus X strain sensors change. Based on the change in resistance value generated in each strain sensor, the calculation unit 61 can detect the state of the direction, magnitude, range, distribution, etc. of the load applied to the operation member 12.
  • FIG. 8C two forces D5 and D6 along the negative direction and the positive direction in the X direction are shown as forces along the left and right directions.
  • an operation of expanding the operation member 12 in the left-right direction is assumed.
  • the resistance values of all of the four pressure-sensitive members 20, 30, 40, and 50 plus and minus X strain sensors change. Based on the change in resistance value generated in each strain sensor, the calculation unit 61 can detect the state of the direction, magnitude, range, distribution, etc. of the load applied to the operation member 12.
  • FIG. 8D shows a force D7 that rotates in a plane parallel to the XY plane.
  • an operation of twisting the operation member 12 about the vertical axis is assumed.
  • an operation is assumed in which a rotational force is applied to the operation member 12 so that a pressing force is applied to the pressure-sensitive members 20, 30, 40, and 50 in order.
  • the resistance values change in order in all the strain sensors of the four pressure-sensitive members 20, 30, 40, and 50.
  • the calculation unit 61 can detect the situation such as the direction, magnitude, range, and distribution of the load applied to the operation member 12.
  • FIG. 8E shows forces D8, D9, and D10 in different directions.
  • an operation of pushing the operation member 12 while twisting, an operation of giving different movements by a plurality of fingers, and the like are assumed.
  • the resistance value is changed in all the strain sensors of the four pressure-sensitive members 20, 30, 40, and 50.
  • the calculation unit 61 can detect the situation such as the direction, magnitude, range, and distribution of the load applied to the operation member 12.
  • each pressure-sensitive member 20, 30, 40, 50 are arranged so as to be symmetric with respect to the plane center 11c of the base material 11, and each of the pressure-sensitive members has four strains so as to be symmetric with respect to the plane center.
  • a sensing element is provided.
  • the operation member 12 Since the operation member 12 is mounted on the base material 11 so as to cover the four pressure-sensitive members 20, 30, 40, 50, the load applied by the operation on the operation member 12 can be detected by the four pressure-sensitive members. Therefore, it is possible to detect the condition of the load applied in a complicated manner.
  • the operation member 12 has elasticity, so that it is possible to accurately detect the state of the applied load while giving a realistic feel to the operator.
  • each pressure-sensitive member has a pair of strain sensors arranged in the X direction and the Y direction, but a pair of strain sensors is disposed only in one direction, and the strain sensor in the other direction. May be omitted.
  • a pair of strain sensors may be arranged on each pressure-sensitive member so as to surround the planar center 11 c of the base material 11.
  • a pair of strain sensors may be arranged on each pressure-sensitive member along the direction toward the planar center 11 c of the base material 11.
  • FIG. 11 is a circuit diagram of a strain detection element provided in the first pressure-sensitive member in the second modification of the embodiment.
  • the X operation output and the Y operation output are obtained from the bridge circuit shown in FIG. 6, but in addition to this, a Z operation output can also be obtained, whereby a load along the Z direction can be obtained. It is possible to detect a more detailed situation including
  • a changeover switch SW for switching to one of two states S1 and S2 is provided between the combined resistor 29 and the Vcc power supply.
  • the changeover switch SW is in the state S1
  • the Vcc power supply and the combined resistor 29 are directly connected.
  • the changeover switch SW is in the state S2 by switching, the Vcc power supply and the combined resistor 29 are connected via the fixed resistor 28.
  • the changeover switch SW and the fixed resistor 28 are provided on the substrate 11, and a Z operation output is obtained from between the fixed resistor 28 and the combined resistor 29.
  • the changeover switch SW is controlled by the control unit 62, and the two states S1 and S2 are switched at regular intervals. Or you may switch by operation of an operator.
  • the four strain sensors 26a, 26b, 27a, and 27b extend (or contract) in the same manner, so that the combined resistance 29 is large. Become. Therefore, in the state S2, a change occurs in the Z operation output taken out between the fixed resistor 28 and the combined resistor 29. Based on this output information, the state in the Z direction applied to the operation member 12 is calculated in the calculation unit 61. Detected. On the other hand, the X operation output and the Y operation output are obtained during the period of the state S1. By sequentially switching between the two states S1 and S2 and obtaining the Z operation output, the X operation output, and the Y operation output, it is possible to capture the state of the load applied to the operation member 12 in three dimensions.
  • the operation unit 61 monitors the X operation output and the Y output, and the state S2 is set. Further, the Z operation output is monitored by the calculation unit 61.
  • it may be used while being fixed in the state S1, or may be used while being fixed in the state S2.
  • the force sensor according to the embodiment of the present invention is useful in that it can detect the situation such as the direction, magnitude, range, distribution, and the like of the load applied to the operation member.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Switches With Compound Operations (AREA)

Abstract

[Problem] To provide a force sensor that is able to detect conditions such as direction, magnitude, range, and distribution of a load having been applied. [Solution] The present invention is provided with: a base material; a plurality of pressure sensitive members that are fixed so as to be apart from each other at a predetermined interval on the base material and that perform predetermined output in accordance with an applied load; and an operation member that has a contact area in contact with the plurality of pressure sensitive members, wherein a load is applied to the plurality of pressure sensitive members in accordance with an operation on the operation member. In addition, a calculation unit that detects conditions of the load applied to the operation member on the basis of output information from the plurality of pressure sensitive members is provided.

Description

力覚センサForce sensor
 本発明は、操作部材に対する操作によって加えられた荷重を検知可能な力覚センサに関する。 The present invention relates to a force sensor capable of detecting a load applied by an operation on an operation member.
 例えば特許文献1に記載の荷重検出装置は、突起状の受圧部を有する荷重センサと、受圧部を上面側に向けて荷重センサを収納するケースと、荷重センサの上面側に配置され、荷重を受けて荷重センサを高さ方向に押圧する弾性体とを有している。これにより、良好なハンドリング性と小型化を実現でき、良好なセンサ感度を備えた荷重検出装置を提供できるとしている。 For example, the load detection device described in Patent Document 1 is disposed on the upper surface side of the load sensor, a load sensor having a protruding pressure receiving portion, a case for storing the load sensor with the pressure receiving portion facing the upper surface side, and a load. And an elastic body that receives and presses the load sensor in the height direction. Thereby, it is said that it is possible to provide a load detection device that can realize good handling properties and miniaturization and has good sensor sensitivity.
特開2015-161531号公報Japanese Patent Laying-Open No. 2015-161531
 しかしながら、特許文献1に記載の荷重検出装置では、荷重センサによって高さ方向における押圧力を検出することはできるものの、弾性体に対して加えられた荷重の向き、範囲、分布などの状況を検出することはできなかった。よって、この荷重検出装置を、例えば、遠隔操作される構造体に組み込んだとしても、この構造体に加えられる荷重の状況が明らかでないため、この検出結果に基づいて行う感触伝達は細かさに欠け、リアルな感触を再現することは困難であった。 However, in the load detection device described in Patent Document 1, although the pressing force in the height direction can be detected by the load sensor, the situation such as the direction, range, and distribution of the load applied to the elastic body is detected. I couldn't. Therefore, even if this load detection device is incorporated in a remotely operated structure, for example, the state of the load applied to this structure is not clear, and the touch transmission performed based on this detection result lacks detail. It was difficult to reproduce the realistic feel.
 そこで本発明は、加えられた荷重の向き、大きさ、範囲、分布などの状況を検知できる力覚センサを提供することを1つの目的とする。 Therefore, an object of the present invention is to provide a force sensor that can detect the direction, magnitude, range, distribution, and the like of an applied load.
 上記課題を解決するために、本発明の一実施形態における力覚センサは、基材と、基材上において互いに所定の間隔をおいて固定されており、加わった荷重に応じて所定の出力を行う複数の感圧部材と、複数の感圧部材に接触する接触領域を有する操作部材とを備え、操作部材に対する操作に応じて複数の感圧部材に荷重が加えられる。 In order to solve the above problems, a force sensor according to an embodiment of the present invention is fixed on a base material and the base material at predetermined intervals, and outputs a predetermined output according to an applied load. A plurality of pressure-sensitive members to be performed and an operation member having a contact area in contact with the plurality of pressure-sensitive members are provided, and a load is applied to the plurality of pressure-sensitive members according to an operation on the operation member.
 この場合、操作部材に加えられた荷重の状況を検知することができる。 In this case, the state of the load applied to the operation member can be detected.
 本発明の一実施形態における力覚センサにおいて、複数の感圧部材からの出力情報に基づいて操作部材へ加わった荷重の状況を検知する演算部を備えてもよい。 The force sensor according to the embodiment of the present invention may include a calculation unit that detects a state of a load applied to the operation member based on output information from a plurality of pressure-sensitive members.
 この場合、操作部材に加えられた荷重の向き、大きさ、範囲、分布などの状況を正確に算出することができる。 In this case, it is possible to accurately calculate the situation such as the direction, size, range and distribution of the load applied to the operation member.
 本発明の一実施形態における力覚センサにおいて、複数の感圧部材は、それぞれ、複数の歪み検知素子を備えてもよい。 In the force sensor according to the embodiment of the present invention, each of the plurality of pressure-sensitive members may include a plurality of strain detection elements.
 この場合、感圧部材ごとに、複数の方向で生じた歪みの大きさを検知できるため、操作部材に加えられた荷重の状況を精密に算出することが可能となる。 In this case, since the magnitude of distortion generated in a plurality of directions can be detected for each pressure-sensitive member, it is possible to accurately calculate the state of the load applied to the operation member.
 本発明の一実施形態における力覚センサにおいて、複数の感圧部材のそれぞれにおいて、複数の歪み検知素子は、感圧部材の平面中心に関して対称に配置されていてもよい。 In the force sensor according to the embodiment of the present invention, in each of the plurality of pressure-sensitive members, the plurality of strain detection elements may be arranged symmetrically with respect to the plane center of the pressure-sensitive member.
 この場合、各感圧部材で生じた歪みを精度良く検知できるため、力覚センサとしての検知精度を高めることができる。 In this case, since the distortion generated in each pressure-sensitive member can be detected with high accuracy, the detection accuracy as a force sensor can be increased.
 本発明の一実施形態における力覚センサにおいて、複数の感圧部材は、基材の平面中心に関して対称となるように4つ配置され、それぞれの感圧部材は、その平面中心に関して対称となるように配置された4つの歪み検知素子を備えてもよい。 In the force sensor according to one embodiment of the present invention, four pressure-sensitive members are arranged so as to be symmetric with respect to the plane center of the base material, and each pressure-sensitive member is symmetric with respect to the plane center. Four strain sensing elements may be provided.
 この場合、各感圧部材において、基材の平面座標上の歪みの分布を算出できるため、これらに基づいて操作部材に加わった荷重を精度良く演算することが可能となる。 In this case, since the distribution of strain on the plane coordinates of the base material can be calculated in each pressure-sensitive member, the load applied to the operation member can be accurately calculated based on these.
 本発明の一実施形態における力覚センサにおいて、操作部材は複数の感圧部材を覆うように基材に装着されてもよい。 In the force sensor in one embodiment of the present invention, the operation member may be attached to the base material so as to cover the plurality of pressure sensitive members.
 この場合、操作部材に対する操作によって加わる荷重を複数の感圧部材で検知できるため、複雑に加えられた荷重の状況を検知することができる。 In this case, since the load applied by the operation on the operation member can be detected by a plurality of pressure-sensitive members, the state of the load applied in a complicated manner can be detected.
 本発明の一実施形態における力覚センサにおいて、操作部材は弾性を有してもよい。 In the force sensor according to the embodiment of the present invention, the operation member may have elasticity.
 この場合、操作者にリアルな感触を与えつつ、加えられた荷重の状況を精度良く検知することができる。 In this case, it is possible to accurately detect the state of the applied load while giving a realistic feel to the operator.
 本発明の一実施形態によると、操作部材に加えられた荷重の向き、大きさ、範囲、分布などの状況を検知できる力覚センサを提供することができる。 According to one embodiment of the present invention, it is possible to provide a force sensor that can detect the state of the direction, magnitude, range, distribution, etc. of the load applied to the operation member.
本発明の実施形態に係る力覚センサの構成を示す側面図である。It is a side view which shows the structure of the force sensor which concerns on embodiment of this invention. 本発明の実施形態に係る力覚センサの構成を示す平面図である。It is a top view which shows the structure of the force sensor which concerns on embodiment of this invention. 本発明の実施形態に係る力覚センサの機能ブロック図である。It is a functional block diagram of a force sensor concerning an embodiment of the present invention. 力覚センサの適用例を示す図である。It is a figure which shows the example of application of a force sensor. 力覚センサの適用例を示す図である。It is a figure which shows the example of application of a force sensor. 本発明の実施形態における第1の感圧部材の構成を示す斜視図である。It is a perspective view which shows the structure of the 1st pressure sensitive member in embodiment of this invention. 本発明の実施形態における第1の感圧部材が備える歪み検知素子の回路図である。It is a circuit diagram of the distortion detection element with which the 1st pressure sensitive member in the embodiment of the present invention is provided. 本発明の実施形態における4つの感圧部材の構成を示す平面図である。It is a top view which shows the structure of the four pressure sensitive members in embodiment of this invention. 力覚センサに加えられた外力の方向を示す図である。It is a figure which shows the direction of the external force applied to the force sensor. 力覚センサに加えられた外力の方向を示す図である。It is a figure which shows the direction of the external force applied to the force sensor. 力覚センサに加えられた外力の方向を示す図である。It is a figure which shows the direction of the external force applied to the force sensor. 力覚センサに加えられた外力の方向を示す図である。It is a figure which shows the direction of the external force applied to the force sensor. 力覚センサに加えられた外力の方向を示す図である。It is a figure which shows the direction of the external force applied to the force sensor. 実施形態の第1変形例における4つの感圧部材の構成を示す平面図である。It is a top view which shows the structure of the four pressure sensitive members in the 1st modification of embodiment. 実施形態の第1変形例における4つの感圧部材の構成を示す平面図である。It is a top view which shows the structure of the four pressure sensitive members in the 1st modification of embodiment. 実施形態の第2変形例における第1の感圧部材が備える歪み検知素子の回路図である。It is a circuit diagram of the distortion detection element with which the 1st pressure sensitive member in the 2nd modification of an embodiment is provided.
 以下、本発明の一実施形態に係る力覚センサについて図面を参照しつつ詳しく説明する。 Hereinafter, a force sensor according to an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は本実施形態に係る力覚センサ10の構成を示す側面図、図2は力覚センサ10の構成を示す平面図、図3は力覚センサ10の機能ブロック図である。図4A及び図4Bは力覚センサ10の適用例を示す図である。操作部材12は、図1においては破線で仮想的に示し、図2では省略している。各図には、基準座標としてX-Y-Z座標が示されている。Z方向は上方向であり、X-Y面はZ方向に直交する面である。以下の説明において、Z方向に沿って見た状態を平面視ということがある。 FIG. 1 is a side view showing the configuration of the force sensor 10 according to the present embodiment, FIG. 2 is a plan view showing the configuration of the force sensor 10, and FIG. 3 is a functional block diagram of the force sensor 10. 4A and 4B are diagrams showing application examples of the force sensor 10. The operation member 12 is virtually shown by a broken line in FIG. 1 and omitted in FIG. In each figure, XYZ coordinates are shown as reference coordinates. The Z direction is the upward direction, and the XY plane is a plane orthogonal to the Z direction. In the following description, the state viewed along the Z direction may be referred to as a plan view.
 図1又は図2に示すように、本実施形態に係る力覚センサ10は、基材11と、基材11上に配置された4つの感圧部材20、30、40、50と、これらの感圧部材を覆うように基材11に装着された操作部材12とを備える
 なお、本実施形態では、感圧部材が4つの例を示しているが、感圧部材の数は2つ、3つ、又は、5つ以上でもよく、その数と配置は、力覚センサの仕様等に応じて任意に設定できる。
As shown in FIG. 1 or 2, the force sensor 10 according to the present embodiment includes a base material 11, four pressure- sensitive members 20, 30, 40, 50 arranged on the base material 11, and these The operation member 12 is mounted on the base material 11 so as to cover the pressure sensitive member. In the present embodiment, four examples of the pressure sensitive member are shown, but the number of pressure sensitive members is two, three. The number and arrangement may be arbitrarily set according to the specifications of the force sensor.
 基材11は例えば回路基板であり、図3に示す演算部61と制御部62を構成する集積回路、この集積回路に接続される配線等が配置されている。制御部62はインターフェース部を有しており、例えば演算部61による演算結果を外部の表示装置63へ与えて表示させる。 The base material 11 is, for example, a circuit board, and an integrated circuit constituting the calculation unit 61 and the control unit 62 shown in FIG. 3 and wirings connected to the integrated circuit are arranged. The control unit 62 has an interface unit. For example, the control unit 62 gives the calculation result of the calculation unit 61 to the external display device 63 for display.
 操作部材12は、弾性を有する材料、例えば、ウレタンゴム、シリコーンゴムなどの合成ゴムからなり、4つの感圧部材20、30、40、50のそれぞれの操作体25、35、45、55の上部をZ方向上側から覆うように配置されており、好ましくは、X-Y面方向の端部12aが基材11に対して接着によって固定されている。操作部材12は、その内面12bが、第1の感圧部材20の操作体25、第2の感圧部材30の操作体35、第3の感圧部材40の操作体45、第4の感圧部材50の操作体55に接触する接触領域を構成する。 The operation member 12 is made of an elastic material, for example, synthetic rubber such as urethane rubber or silicone rubber, and the upper portions of the operation bodies 25, 35, 45, 55 of the four pressure- sensitive members 20, 30, 40, 50. Are arranged so as to cover from above the Z direction, and preferably the end portion 12a in the XY plane direction is fixed to the base material 11 by adhesion. The operation member 12 has an inner surface 12b, the operation body 25 of the first pressure-sensitive member 20, the operation body 35 of the second pressure-sensitive member 30, the operation body 45 of the third pressure-sensitive member 40, and the fourth sensitivity. A contact region that contacts the operating body 55 of the pressure member 50 is configured.
 操作部材12は、例えば図4Aに示すような人体モデルの指Fの表皮F1を構成する。この構成においては、基材11や、基材11上に固定された4つの感圧部材20、30、40、50は、指Fの内部に配置される。 The operation member 12 constitutes an epidermis F1 of a finger F of a human body model as shown in FIG. 4A, for example. In this configuration, the base material 11 and the four pressure- sensitive members 20, 30, 40, 50 fixed on the base material 11 are arranged inside the finger F.
 また、図1に示す操作部材12に代えて、図4Bに示す構成の操作部材112を用いることも可能である。この操作部材112は、操作本体112aと、操作本体112aから下方に延びる腕部112bとを備え、操作本体112aと腕部112bのいずれも硬性材料、例えば金属で構成する。一方、基材111上には2つの感圧部材120、130が配置されており、第1の感圧部材120の操作体125と、第2の感圧部材130の操作体135との間に操作部材112の腕部112bが配置される。ここで、基材111と2つの感圧部材120、130は、それぞれ、図2に示す、基材11と4つの感圧部材20~50と同様の構成を備える。操作部材112において、腕部112bの側面112cは、2つの感圧部材120、130のそれぞれの操作体125、135に接触する接触領域を構成する。このような構成において、操作本体112aに外力が加わると、腕部112bは操作本体112aとともにZ方向に対して傾き、これにともなって操作体125、135が傾斜する。 Further, instead of the operation member 12 shown in FIG. 1, an operation member 112 having the configuration shown in FIG. 4B can be used. The operation member 112 includes an operation main body 112a and an arm portion 112b extending downward from the operation main body 112a, and both the operation main body 112a and the arm portion 112b are made of a hard material, for example, metal. On the other hand, two pressure- sensitive members 120 and 130 are disposed on the substrate 111, and between the operating body 125 of the first pressure-sensitive member 120 and the operating body 135 of the second pressure-sensitive member 130. The arm portion 112b of the operation member 112 is disposed. Here, the base 111 and the two pressure- sensitive members 120 and 130 have the same configuration as the base 11 and the four pressure-sensitive members 20 to 50 shown in FIG. 2, respectively. In the operation member 112, the side surface 112 c of the arm portion 112 b constitutes a contact area in contact with the operation bodies 125 and 135 of the two pressure sensitive members 120 and 130. In such a configuration, when an external force is applied to the operation main body 112a, the arm portion 112b is inclined with respect to the Z direction together with the operation main body 112a, and accordingly, the operation bodies 125 and 135 are inclined.
 図2に示すように、4つの感圧部材20、30、40、50は、平面視正方形の外形形状を有する支持台22、32、42、52をそれぞれ有し、その外縁部が接着によって基材11に固定されている。4つの感圧部材20、30、40、50は一定の間隔で、基材11の平面の中心11cに関して対称に配置されている。より具体的には、第1の感圧部材20と第2の感圧部材30、第2の感圧部材30と第3の感圧部材40、第3の感圧部材40と第4の感圧部材50、及び、第4の感圧部材50と第1の感圧部材20は、それぞれ、X方向及びY方向の両方において、距離Lをおいて互いに離間するように基材11上に配置されている。また、Y方向において、第1の感圧部材20と第3の感圧部材40は、距離2Lをおくように配置され、X方向において、第2の感圧部材30と第4の感圧部材50も距離2Lをおいて配置されている。 As shown in FIG. 2, each of the four pressure- sensitive members 20, 30, 40, 50 has support bases 22, 32, 42, 52 each having a square outer shape in plan view, and the outer edges thereof are bonded to each other by bonding. It is fixed to the material 11. The four pressure- sensitive members 20, 30, 40, 50 are arranged symmetrically with respect to the center 11 c of the plane of the base material 11 at regular intervals. More specifically, the first pressure-sensitive member 20 and the second pressure-sensitive member 30, the second pressure-sensitive member 30 and the third pressure-sensitive member 40, the third pressure-sensitive member 40 and the fourth pressure-sensitive member. The pressure member 50 and the fourth pressure-sensitive member 50 and the first pressure-sensitive member 20 are arranged on the base material 11 so as to be separated from each other with a distance L in both the X direction and the Y direction. Has been. Further, in the Y direction, the first pressure sensitive member 20 and the third pressure sensitive member 40 are disposed so as to have a distance of 2L, and in the X direction, the second pressure sensitive member 30 and the fourth pressure sensitive member. 50 is also arranged at a distance of 2L.
 ここで、距離Lは用途、仕様などに応じて任意に設定できる。 Here, the distance L can be arbitrarily set according to the application and specifications.
 図5と図6を参照して感圧部材の構成について説明する。図5は、第1の感圧部材20の構成を示す斜視図、図6は、第1の感圧部材20が備える歪み検知素子の回路図である。図7は、4つの感圧部材20、30、40、50の構成を示す平面図である。 The configuration of the pressure-sensitive member will be described with reference to FIGS. FIG. 5 is a perspective view showing a configuration of the first pressure-sensitive member 20, and FIG. 6 is a circuit diagram of a strain detection element included in the first pressure-sensitive member 20. FIG. 7 is a plan view showing the configuration of the four pressure- sensitive members 20, 30, 40, 50.
 ここで、4つの感圧部材20、30、40、50は互いに同一の構成を有するため、第1の感圧部材20のみについて説明し、ほかの感圧部材30、40、50の詳細な説明は省略する。 Here, since the four pressure- sensitive members 20, 30, 40, and 50 have the same configuration, only the first pressure-sensitive member 20 will be described, and the detailed description of the other pressure- sensitive members 30, 40, and 50 will be described. Is omitted.
 第1の感圧部材20は、合成樹脂で形成された支持台22を有している。この支持台22には、X方向に延びるプラスX変形部23a及びマイナスX変形部23bと、Y方向に延びるプラスY変形部24a及びマイナスY変形部24bとが一体に形成されている。支持台22の平面中心には、同心状に上向きに突出する操作体25が一体に設けられている。この操作体25は、プラスX変形部23a及びマイナスX変形部23bの中心であり、かつ、プラスY変形部24a及びマイナスY変形部24bの中心となる位置に配置されている。 The first pressure-sensitive member 20 has a support base 22 made of synthetic resin. The support base 22 is integrally formed with a plus X deforming portion 23a and a minus X deforming portion 23b extending in the X direction and a plus Y deforming portion 24a and a minus Y deforming portion 24b extending in the Y direction. An operation body 25 that protrudes concentrically upward is integrally provided at the center of the plane of the support base 22. The operating body 25 is disposed at the center of the plus X deforming portion 23a and the minus X deforming portion 23b and the center of the plus Y deforming portion 24a and the minus Y deforming portion 24b.
 指などによって操作部材12が操作されたときに、操作部材12の内面12bに接触した操作体25に対して、操作力に対応する荷重が加えられると、その操作方向と操作力に対応して、プラスX変形部23a、マイナスX変形部23b、プラスY変形部24a、及び、マイナスY変形部24bに撓みが発生する。 When a load corresponding to the operating force is applied to the operating body 25 that is in contact with the inner surface 12b of the operating member 12 when the operating member 12 is operated with a finger or the like, the operating direction and the operating force correspond to the operating direction. The plus X deforming portion 23a, the minus X deforming portion 23b, the plus Y deforming portion 24a, and the minus Y deforming portion 24b are bent.
 図5に示すように、支持台22には、プラスX変形部23aの上表面にプラスX歪みセンサ26aが取り付けられ、マイナスX変形部23bの上表面にマイナスX歪みセンサ26bが取り付けられている。また、プラスY変形部24aの上表面にプラスY歪みセンサ27aが、マイナスY変形部24bの上表面にマイナスY歪みセンサ27bが取り付けられている。これらの歪みセンサ26a、26b、27a、27bは、支持台22の平面中心に位置する操作体25に関して互いに対称に配置されている。 As shown in FIG. 5, in the support base 22, a plus X strain sensor 26a is attached to the upper surface of the plus X deformation portion 23a, and a minus X strain sensor 26b is attached to the upper surface of the minus X deformation portion 23b. . Further, a plus Y strain sensor 27a is attached to the upper surface of the plus Y deformation portion 24a, and a minus Y strain sensor 27b is attached to the upper surface of the minus Y deformation portion 24b. These strain sensors 26 a, 26 b, 27 a, 27 b are arranged symmetrically with respect to the operating body 25 located at the plane center of the support base 22.
 なお、歪みセンサ26a、26b、27a、27bは、変形部23a、23b、24a、24bの下表面にそれぞれ取り付けられていてもよい。 Note that the strain sensors 26a, 26b, 27a, and 27b may be attached to the lower surfaces of the deformable portions 23a, 23b, 24a, and 24b, respectively.
 歪みセンサ26a、26b、27a、27bは、それぞれが設けられた変形部23a、23b、24a、24bで生じた歪みや撓みを検知する歪み検知素子であり、抵抗膜として形成される。図6に示すように、歪みセンサ26a、26b、27a、27bは互いに接続され、ブリッジ回路が構成される。 The strain sensors 26a, 26b, 27a, and 27b are strain detection elements that detect strain and deflection generated in the deformed portions 23a, 23b, 24a, and 24b, respectively, and are formed as resistance films. As shown in FIG. 6, the strain sensors 26a, 26b, 27a, and 27b are connected to each other to form a bridge circuit.
 操作体25が、図5に示すθx方向もしくはθy方向、又は、これら以外の向きに倒れるように押圧されると、その押圧方向及び押圧する力に応じて、プラスX変形部23a、マイナスX変形部23b、プラスY変形部24a、及び、マイナスY変形部24bに撓みが発生し、それぞれの歪みセンサ26a、26b、27a、27bの抵抗値が変化する。また、操作体25が、下方向に押圧されたときも、押圧する力に応じて、変形部23a、23b、24a、24bに撓みが発生し、それぞれの歪みセンサ26a、26b、27a、27bの抵抗値が変化する。このような抵抗値の変化に応じて、図6に示すブリッジ回路からX操作出力及びY操作出力が得られる。 When the operating body 25 is pressed so as to fall in the θx direction or the θy direction shown in FIG. 5 or other directions, the plus X deforming portion 23a and the minus X deforming are made according to the pressing direction and the pressing force. Deflection occurs in the portion 23b, the plus Y deformation portion 24a, and the minus Y deformation portion 24b, and the resistance values of the respective strain sensors 26a, 26b, 27a, and 27b change. Further, even when the operating body 25 is pressed downward, the deformation portions 23a, 23b, 24a, and 24b are deflected according to the pressing force, and the distortion sensors 26a, 26b, 27a, and 27b are deformed. The resistance value changes. In accordance with such a change in resistance value, an X operation output and a Y operation output are obtained from the bridge circuit shown in FIG.
 第1の感圧部材20の歪みセンサ26a、26b、27a、27bの抵抗値の変化に対応して得られる、X操作出力とY操作出力は、演算部61に与えられる。これと同様に、感圧部材30、40、50のそれぞれにおける歪みセンサの抵抗値の変化に対応する、X操作出力とY操作出力も、演算部61に与えられる。演算部61は、4つの感圧部材20、30、40、50から与えられた出力情報に基づいて、操作部材12へ加わった荷重の状況を検知する。 The X operation output and the Y operation output obtained in response to changes in the resistance values of the strain sensors 26 a, 26 b, 27 a, 27 b of the first pressure-sensitive member 20 are given to the calculation unit 61. Similarly, an X operation output and a Y operation output corresponding to a change in the resistance value of the strain sensor in each of the pressure sensitive members 30, 40, 50 are also given to the calculation unit 61. The calculation unit 61 detects the state of the load applied to the operation member 12 based on output information given from the four pressure sensitive members 20, 30, 40, 50.
 ここで、図7に示すように、第2の感圧部材30の支持台32には、第1の感圧部材20における、プラスX歪みセンサ26a、マイナスX歪みセンサ26b、プラスY歪みセンサ27a、及び、マイナスY歪みセンサ27bと同様に、プラスX歪みセンサ36a、マイナスX歪みセンサ36b、プラスY歪みセンサ37a、及び、マイナスY歪みセンサ37bが取り付けられている。これと同様に、第3の感圧部材40の支持台42には、プラスX歪みセンサ46a、マイナスX歪みセンサ46b、プラスY歪みセンサ47a、及び、マイナスY歪みセンサ47bが取り付けられ、第4の感圧部材50の支持台52には、プラスX歪みセンサ56a、マイナスX歪みセンサ56b、プラスY歪みセンサ57a、及び、マイナスY歪みセンサ57bが取り付けられている。 Here, as shown in FIG. 7, the support base 32 of the second pressure-sensitive member 30 has a plus X strain sensor 26a, a minus X strain sensor 26b, and a plus Y strain sensor 27a in the first pressure sensitive member 20. Similarly to the minus Y distortion sensor 27b, a plus X distortion sensor 36a, a minus X distortion sensor 36b, a plus Y distortion sensor 37a, and a minus Y distortion sensor 37b are attached. Similarly, a plus X strain sensor 46a, a minus X strain sensor 46b, a plus Y strain sensor 47a, and a minus Y strain sensor 47b are attached to the support base 42 of the third pressure-sensitive member 40. A plus X strain sensor 56a, a minus X strain sensor 56b, a plus Y strain sensor 57a, and a minus Y strain sensor 57b are attached to the support base 52 of the pressure sensitive member 50.
 以上の構成の力覚センサ10では、例えば図8A~図8Eに示すような外力によって加えられた荷重の向き、大きさ、範囲、分布などの状況を検知することができる。ここで、図8A~図8Eは図1に対応する側面図であり、力覚センサ10に加えられた外力の方向を示す図であり、操作部材12の図示は省略している。図8A~図8Eに示すのは一部の例であり、これ以外の荷重、例えば、図8A~図8Eに示す外力が組み合わさった力による荷重の状況も検知することができる。また、図8A~図8Eについての以下の説明では、Z方向が鉛直方向に沿うように力覚センサ10を載置した場合を想定して述べるが、力覚センサ10の載置方向はこれに限定されない。 The force sensor 10 having the above-described configuration can detect the situation such as the direction, size, range, and distribution of the load applied by an external force as shown in FIGS. 8A to 8E, for example. 8A to 8E are side views corresponding to FIG. 1, showing the direction of the external force applied to the force sensor 10, and the illustration of the operation member 12 is omitted. FIG. 8A to FIG. 8E show some examples, and it is possible to detect other loads, for example, the situation of the load due to the combined force of the external forces shown in FIG. 8A to FIG. 8E. 8A to 8E, it is assumed that the force sensor 10 is mounted so that the Z direction is along the vertical direction. However, the mounting direction of the force sensor 10 is not limited to this. It is not limited.
 まず、図8Aに示すように、操作部材12を上方向から下向きに押したときは、4つの感圧部材20、30、40、50のすべてに下向きの力D1が作用し、それぞれが有する歪みセンサにおいて抵抗値に変化が生じる。また、操作部材12を上方向と左方向から押しつぶそうとするような操作が行われると、前記力D1に加えて、水平方向の力としてX方向に沿った力D2が作用する。この場合には力D2によって、4つの感圧部材20、30、40、50のプラスX歪みセンサとマイナスX歪みセンサの抵抗値の変化が重畳される。
  このようにして各歪みセンサに生じた抵抗値の変化に基づいて、演算部61は操作部材12へ加わった荷重の向き、大きさ、範囲、分布などの状況を検知することができる。
First, as shown in FIG. 8A, when the operation member 12 is pushed downward from the upper direction, a downward force D1 acts on all of the four pressure- sensitive members 20, 30, 40, and 50, and each has a distortion. A change occurs in the resistance value in the sensor. Further, when an operation is performed to squeeze the operation member 12 from the upper direction and the left direction, in addition to the force D1, a force D2 along the X direction acts as a horizontal force. In this case, due to the force D2, changes in resistance values of the plus X strain sensors and minus X strain sensors of the four pressure- sensitive members 20, 30, 40, and 50 are superimposed.
Thus, based on the change of the resistance value generated in each strain sensor, the calculation unit 61 can detect the situation such as the direction, magnitude, range, and distribution of the load applied to the operation member 12.
 図8Bでは、左右両方向からの力として、X方向のプラス方向とマイナス方向に沿った2つの力D3、D4が示されている。このような外力が加わるようなケースとしては、操作部材12を左右方向からつまむような動作が想定される。このような力D3、D4が同時に加わるような操作が行われたとき、4つの感圧部材20、30、40、50のプラスX歪みセンサ及びマイナスX歪みセンサのすべてにおいて抵抗値に変化が生じ、各歪みセンサに生じた抵抗値変化に基づいて、演算部61は操作部材12へ加わった荷重の向き、大きさ、範囲、分布などの状況を検知することができる。 In FIG. 8B, two forces D3 and D4 along the positive direction and the negative direction in the X direction are shown as forces from both the left and right directions. As a case where such an external force is applied, an operation of pinching the operation member 12 from the left-right direction is assumed. When such an operation that simultaneously applies the forces D3 and D4 is performed, the resistance values of all of the four pressure- sensitive members 20, 30, 40, and 50 plus and minus X strain sensors change. Based on the change in resistance value generated in each strain sensor, the calculation unit 61 can detect the state of the direction, magnitude, range, distribution, etc. of the load applied to the operation member 12.
 図8Cでは、左右両方向に沿った力として、X方向のマイナス方向とプラス方向に沿った2つの力D5、D6が示されている。このような外力が加わるようなケースとしては、操作部材12を左右方向に広げるような動作が想定される。このような力D5、D6が同時に加わるような操作が行われたとき、4つの感圧部材20、30、40、50のプラスX歪みセンサ及びマイナスX歪みセンサのすべてにおいて抵抗値に変化が生じ、各歪みセンサに生じた抵抗値変化に基づいて、演算部61は操作部材12へ加わった荷重の向き、大きさ、範囲、分布などの状況を検知することができる。 In FIG. 8C, two forces D5 and D6 along the negative direction and the positive direction in the X direction are shown as forces along the left and right directions. As a case where such an external force is applied, an operation of expanding the operation member 12 in the left-right direction is assumed. When such an operation that simultaneously applies the forces D5 and D6 is performed, the resistance values of all of the four pressure- sensitive members 20, 30, 40, and 50 plus and minus X strain sensors change. Based on the change in resistance value generated in each strain sensor, the calculation unit 61 can detect the state of the direction, magnitude, range, distribution, etc. of the load applied to the operation member 12.
 図8Dでは、X-Y面に平行な面内で回転する力D7が示されている。このような外力が加わるようなケースとしては、操作部材12を、鉛直軸を中心にひねるような動作が想定される。または、操作部材12に対して感圧部材20、30、40、50に順に押圧力が作用するような回転力が与えられる動作が想定される。このような力D7が加わるような操作が行われたとき、4つの感圧部材20、30、40、50のすべての歪みセンサにおいて順に抵抗値に変化が生じる。このようにして各歪みセンサに生じた抵抗値の変化に基づいて、演算部61は操作部材12へ加わった荷重の向き、大きさ、範囲、分布などの状況を検知することができる。 FIG. 8D shows a force D7 that rotates in a plane parallel to the XY plane. As a case where such an external force is applied, an operation of twisting the operation member 12 about the vertical axis is assumed. Alternatively, an operation is assumed in which a rotational force is applied to the operation member 12 so that a pressing force is applied to the pressure- sensitive members 20, 30, 40, and 50 in order. When such an operation to apply the force D7 is performed, the resistance values change in order in all the strain sensors of the four pressure- sensitive members 20, 30, 40, and 50. Thus, based on the change of the resistance value generated in each strain sensor, the calculation unit 61 can detect the situation such as the direction, magnitude, range, and distribution of the load applied to the operation member 12.
 図8Eでは、互いに異なる方向の力D8、D9、D10が示されている。このような外力が加わるようなケースとしては、操作部材12に対して、ひねりながら押す動作や、複数の指で異なる動きを与える動作などが想定される。このような力D8~D10が同時に加わるような操作が行われたとき、4つの感圧部材20、30、40、50のすべての歪みセンサにおいて抵抗値に変化が生じる。このようにして各歪みセンサに生じた抵抗値の変化に基づいて、演算部61は操作部材12へ加わった荷重の向き、大きさ、範囲、分布などの状況を検知することができる。 FIG. 8E shows forces D8, D9, and D10 in different directions. As a case where such an external force is applied, an operation of pushing the operation member 12 while twisting, an operation of giving different movements by a plurality of fingers, and the like are assumed. When such an operation in which the forces D8 to D10 are simultaneously applied is performed, the resistance value is changed in all the strain sensors of the four pressure- sensitive members 20, 30, 40, and 50. Thus, based on the change of the resistance value generated in each strain sensor, the calculation unit 61 can detect the situation such as the direction, magnitude, range, and distribution of the load applied to the operation member 12.
 以上のように構成されたことから、上記実施形態によれば、操作部材12に加えられた荷重の向き、大きさ、範囲、分布などの状況を精度良く検知することができる。 Since it is configured as described above, according to the above-described embodiment, it is possible to accurately detect the state, such as the direction, size, range, and distribution of the load applied to the operation member 12.
 また、基材11の平面中心11cに関して対称となるように4つの感圧部材20、30、40、50を配置し、それぞれの感圧部材において、その平面中心に関して対称となるように4つの歪み検知素子を設けている。このため、各感圧部材において、基材11の平面座標上の歪みの分布を算出できるため、これらに基づいて操作部材12に加わった荷重を精度良く演算することが可能となる。 Further, four pressure- sensitive members 20, 30, 40, 50 are arranged so as to be symmetric with respect to the plane center 11c of the base material 11, and each of the pressure-sensitive members has four strains so as to be symmetric with respect to the plane center. A sensing element is provided. For this reason, in each pressure-sensitive member, since the distribution of the distortion on the plane coordinate of the base material 11 can be calculated, the load applied to the operation member 12 can be accurately calculated based on these.
 4つの感圧部材20、30、40、50を覆うように、操作部材12を基材11に装着しているため、操作部材12に対する操作によって加わる荷重を4つの感圧部材で検知できるようになることから、複雑に加えられた荷重の状況を検知することができる。 Since the operation member 12 is mounted on the base material 11 so as to cover the four pressure- sensitive members 20, 30, 40, 50, the load applied by the operation on the operation member 12 can be detected by the four pressure-sensitive members. Therefore, it is possible to detect the condition of the load applied in a complicated manner.
 操作部材12が弾性を有することにより、操作者にリアルな感触を与えつつ、加えられた荷重の状況を精度良く検知することができる。 The operation member 12 has elasticity, so that it is possible to accurately detect the state of the applied load while giving a realistic feel to the operator.
 以下に上記実施形態の変形例について説明する。 Hereinafter, modifications of the above embodiment will be described.
 図9と図10は、上記実施形態の第1変形例における4つの感圧部材の構成を示す平面図である。上記実施形態では、各感圧部材において、X方向とY方向に1対ずつの歪みセンサを配置していたが、一方の方向のみに一対の歪みセンサを配置して、他方の方向の歪みセンサを省略してもよい。例えば、図9に示すように、基材11の平面中心11cを囲むように、それぞれの感圧部材に一対の歪みセンサを配置してもよい。また、図10に示すように、基材11の平面中心11cに向かう方向に沿って、それぞれの感圧部材に一対の歪みセンサを配置してもよい。このような構成により、少ない点数の歪みセンサで、操作部材12に加えられた荷重の状況を検知することができる。 9 and 10 are plan views showing the configuration of the four pressure-sensitive members in the first modification of the above embodiment. In the above embodiment, each pressure-sensitive member has a pair of strain sensors arranged in the X direction and the Y direction, but a pair of strain sensors is disposed only in one direction, and the strain sensor in the other direction. May be omitted. For example, as shown in FIG. 9, a pair of strain sensors may be arranged on each pressure-sensitive member so as to surround the planar center 11 c of the base material 11. Further, as shown in FIG. 10, a pair of strain sensors may be arranged on each pressure-sensitive member along the direction toward the planar center 11 c of the base material 11. With such a configuration, it is possible to detect the state of the load applied to the operation member 12 with a few strain sensors.
 図11は、上記実施形態の第2変形例における第1の感圧部材が備える歪み検知素子の回路図である。上記実施形態では、図6に示すブリッジ回路からX操作出力とY操作出力を得ていたが、これに加えてZ操作出力を得るようにすることもでき、これにより、Z方向に沿った荷重を含めて、より詳細な状況を検知することが可能となる。 FIG. 11 is a circuit diagram of a strain detection element provided in the first pressure-sensitive member in the second modification of the embodiment. In the above embodiment, the X operation output and the Y operation output are obtained from the bridge circuit shown in FIG. 6, but in addition to this, a Z operation output can also be obtained, whereby a load along the Z direction can be obtained. It is possible to detect a more detailed situation including
 図11に示す例では、図6と同様に4つの歪みセンサ26a、26b、27a、27bが互いに接続され、ブリッジ回路が構成されており、このブリッジ回路全体として合成抵抗29が構成される。この合成抵抗29とVcc電源の間には、2つの状態S1、S2のいずれか一方に切り替えるための切り替えスイッチSWが設けられる。切り替えスイッチSWが状態S1であるときは、Vcc電源と合成抵抗29は直接接続され、切り替えによって状態S2になったときは、Vcc電源と合成抵抗29は固定抵抗28を介して接続される。切り替えスイッチSWと固定抵抗28は基材11上に設けられ、固定抵抗28と合成抵抗29との間からZ操作出力が得られる。切り替えスイッチSWは制御部62によって制御され、一定時間ごとに2つの状態S1、S2が切り替えられる。または、操作者の操作によって切り替えてもよい。 In the example shown in FIG. 11, four strain sensors 26a, 26b, 27a, and 27b are connected to each other to form a bridge circuit as in FIG. 6, and a combined resistor 29 is formed as the entire bridge circuit. A changeover switch SW for switching to one of two states S1 and S2 is provided between the combined resistor 29 and the Vcc power supply. When the changeover switch SW is in the state S1, the Vcc power supply and the combined resistor 29 are directly connected. When the changeover switch SW is in the state S2 by switching, the Vcc power supply and the combined resistor 29 are connected via the fixed resistor 28. The changeover switch SW and the fixed resistor 28 are provided on the substrate 11, and a Z operation output is obtained from between the fixed resistor 28 and the combined resistor 29. The changeover switch SW is controlled by the control unit 62, and the two states S1 and S2 are switched at regular intervals. Or you may switch by operation of an operator.
 この第2変形例においては、例えば操作体25がZ方向に沿って押し下げられた場合、4つの歪みセンサ26a、26b、27a、27bが同じように伸び(または縮む)ため、合成抵抗29が大きくなる。したがって、状態S2においては、固定抵抗28と合成抵抗29の間から取り出されるZ操作出力に変化が生じ、この出力情報に基づいて、演算部61において、操作部材12へ加わったZ方向の状況が検知される。一方、状態S1にしている期間ではX操作出力とY操作出力が得られる。2つの状態S1、S2を順次切り替えて、Z操作出力と、X操作出力及びY操作出力とを得ることにより、操作部材12に加えられた荷重の状況を3次元で捉えることが可能となる。 In the second modification, for example, when the operating body 25 is pushed down along the Z direction, the four strain sensors 26a, 26b, 27a, and 27b extend (or contract) in the same manner, so that the combined resistance 29 is large. Become. Therefore, in the state S2, a change occurs in the Z operation output taken out between the fixed resistor 28 and the combined resistor 29. Based on this output information, the state in the Z direction applied to the operation member 12 is calculated in the calculation unit 61. Detected. On the other hand, the X operation output and the Y operation output are obtained during the period of the state S1. By sequentially switching between the two states S1 and S2 and obtaining the Z operation output, the X operation output, and the Y operation output, it is possible to capture the state of the load applied to the operation member 12 in three dimensions.
 実際の測定では、2つの状態S1、S2が所定周期で繰り返され、状態S1が設定されているときに、演算部61でX操作出力とY出力を監視され、状態S2が設定されているときに、演算部61でZ操作出力が監視される。 In actual measurement, when two states S1 and S2 are repeated at a predetermined cycle and the state S1 is set, the operation unit 61 monitors the X operation output and the Y output, and the state S2 is set. Further, the Z operation output is monitored by the calculation unit 61.
 または使用用途に応じて、状態S1で固定したまま使用してもよいし、状態S2で固定したまま使用してもよい。 Or, depending on the usage, it may be used while being fixed in the state S1, or may be used while being fixed in the state S2.
 本発明について上記実施形態及び変形例を参照しつつ説明したが、本発明は上記実施形態及び変形例に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。 Although the present invention has been described with reference to the above-described embodiments and modifications, the present invention is not limited to the above-described embodiments and modifications, and improvements or modifications can be made within the scope of the purpose of the improvement or the idea of the present invention. Is possible.
 以上のように、本発明の一実施形態に係る力覚センサは、操作部材に加えられた荷重の向き、大きさ、範囲、分布などの状況を検知できる点で有用である。 As described above, the force sensor according to the embodiment of the present invention is useful in that it can detect the situation such as the direction, magnitude, range, distribution, and the like of the load applied to the operation member.
 本出願は、2017年3月25日に日本国特許庁に出願された特願2017-060241に基づくものであり、その出願を優先権主張するものであり、その出願の全ての内容を参照することにより包含するものである。 This application is based on Japanese Patent Application No. 2017-060241 filed with the Japan Patent Office on March 25, 2017, claims priority, and refers to the entire contents of that application. It is included.
 10  力覚センサ
 11  基材
 11c 平面中心
 12  操作部材
 12b 内面(接触領域)
 20  第1の感圧部材
 22、32、42、52  支持台
 23a プラスX変形部
 23b マイナスX変形部
 24a プラスY変形部
 24b マイナスY変形部
 25、35、45、55  操作体
 26a、36a、46a、56a プラスX歪みセンサ
 26b、36b、46b、56b マイナスX歪みセンサ
 27a、37a、47a、57a プラスY歪みセンサ
 27b、37b、47b、57b マイナスY歪みセンサ
 30  第2の感圧部材
 40  第3の感圧部材
 50  第4の感圧部材
 61  演算部
 62  制御部
 63  表示装置
 111 基材
 112 操作部材
 112a 操作本体
 112b 腕部
 112c 側面
 120  第1の感圧部材
 125、135  操作体
 130  第2の感圧部材
DESCRIPTION OF SYMBOLS 10 Force sensor 11 Base material 11c Plane center 12 Operation member 12b Inner surface (contact area)
20 First pressure- sensitive member 22, 32, 42, 52 Support base 23a Plus X deformed portion 23b Minus X deformed portion 24a Plus Y deformed portion 24b Minus Y deformed portion 25, 35, 45, 55 Operating body 26a, 36a, 46a 56a Plus X strain sensor 26b, 36b, 46b, 56b Minus X strain sensor 27a, 37a, 47a, 57a Plus Y strain sensor 27b, 37b, 47b, 57b Minus Y strain sensor 30 Second pressure sensitive member 40 Third Pressure sensing member 50 Fourth pressure sensing member 61 Calculation unit 62 Control unit 63 Display device 111 Substrate 112 Operation member 112a Operation body 112b Arm portion 112c Side surface 120 First pressure sensing member 125, 135 Operation body 130 Second sense Pressure member

Claims (7)

  1.  基材と、
     前記基材上において互いに所定の間隔をおいて固定されており、加わった荷重に応じて所定の出力を行う複数の感圧部材と、
     前記複数の感圧部材に接触する接触領域を有する操作部材とを備え、
     前記操作部材に対する操作に応じて前記複数の感圧部材に前記荷重が加えられることを特徴とする力覚センサ。
    A substrate;
    A plurality of pressure-sensitive members that are fixed at a predetermined interval on the base material and that perform a predetermined output according to an applied load;
    An operation member having a contact region that contacts the plurality of pressure sensitive members,
    The force sensor, wherein the load is applied to the plurality of pressure-sensitive members in accordance with an operation on the operation member.
  2.  前記複数の感圧部材からの出力情報に基づいて前記操作部材へ加わった荷重の状況を検知する演算部を備える請求項1に記載の力覚センサ。 The force sensor according to claim 1, further comprising a calculation unit that detects a state of a load applied to the operation member based on output information from the plurality of pressure-sensitive members.
  3.  前記複数の感圧部材は、それぞれ、複数の歪み検知素子を備える請求項2に記載の力覚センサ。 The force sensor according to claim 2, wherein each of the plurality of pressure-sensitive members includes a plurality of strain detection elements.
  4.  前記複数の感圧部材のそれぞれにおいて、前記複数の歪み検知素子は、前記感圧部材の平面中心に関して対称に配置されている請求項3に記載の力覚センサ。 The force sensor according to claim 3, wherein in each of the plurality of pressure-sensitive members, the plurality of strain detection elements are arranged symmetrically with respect to a planar center of the pressure-sensitive member.
  5.  前記複数の感圧部材は、前記基材の平面中心に関して対称となるように4つ配置され、それぞれの感圧部材は、その平面中心に関して対称となるように配置された4つの歪み検知素子を備える請求項1から請求項4のいずれか1項に記載の力覚センサ。 The plurality of pressure-sensitive members are arranged so as to be symmetric with respect to the plane center of the base material, and each of the pressure-sensitive members has four strain sensing elements arranged so as to be symmetric with respect to the plane center. The force sensor according to any one of claims 1 to 4, further comprising:
  6.  前記操作部材は前記複数の感圧部材を覆うように前記基材に装着される請求項1から請求項5のいずれか1項に記載の力覚センサ。 The force sensor according to any one of claims 1 to 5, wherein the operation member is attached to the base so as to cover the plurality of pressure-sensitive members.
  7.  前記操作部材は弾性を有する請求項6に記載の力覚センサ。 The force sensor according to claim 6, wherein the operation member has elasticity.
PCT/JP2018/004682 2017-03-25 2018-02-09 Force sensor WO2018179911A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-060241 2017-03-25
JP2017060241A JP2020091097A (en) 2017-03-25 2017-03-25 Force sensor

Publications (1)

Publication Number Publication Date
WO2018179911A1 true WO2018179911A1 (en) 2018-10-04

Family

ID=63675153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004682 WO2018179911A1 (en) 2017-03-25 2018-02-09 Force sensor

Country Status (2)

Country Link
JP (1) JP2020091097A (en)
WO (1) WO2018179911A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110181A1 (en) * 2018-11-26 2020-06-04 国立大学法人東京大学 Multi-axis tactile sensor
JP2020109366A (en) * 2019-01-04 2020-07-16 カシオ計算機株式会社 Strain measuring device, strain measuring method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7592957B2 (en) 2020-12-24 2024-12-03 ミネベアミツミ株式会社 Sensor chip, force sensor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245717A (en) * 2003-02-14 2004-09-02 Toshiba Electronic Engineering Corp Touch sensor, gripping robot
JP2005214850A (en) * 2004-01-30 2005-08-11 Doshisha Load measuring method and shoe with load sensor
US20060059997A1 (en) * 2004-09-02 2006-03-23 Jong-Ho Kim Input/output wires for tactile sensor using tri-axial force sensors
JP2006275979A (en) * 2005-03-30 2006-10-12 National Institute Of Information & Communication Technology Sensor element, sensor device, object movement control device, object discrimination device
JP2010127921A (en) * 2008-12-01 2010-06-10 Kochi Univ Of Technology Moving type floor reaction force measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245717A (en) * 2003-02-14 2004-09-02 Toshiba Electronic Engineering Corp Touch sensor, gripping robot
JP2005214850A (en) * 2004-01-30 2005-08-11 Doshisha Load measuring method and shoe with load sensor
US20060059997A1 (en) * 2004-09-02 2006-03-23 Jong-Ho Kim Input/output wires for tactile sensor using tri-axial force sensors
JP2006275979A (en) * 2005-03-30 2006-10-12 National Institute Of Information & Communication Technology Sensor element, sensor device, object movement control device, object discrimination device
JP2010127921A (en) * 2008-12-01 2010-06-10 Kochi Univ Of Technology Moving type floor reaction force measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110181A1 (en) * 2018-11-26 2020-06-04 国立大学法人東京大学 Multi-axis tactile sensor
JPWO2020110181A1 (en) * 2018-11-26 2021-09-27 国立大学法人 東京大学 Multi-axis tactile sensor
JP2022191485A (en) * 2018-11-26 2022-12-27 国立大学法人 東京大学 Multi-axis tactile sensor
US11761837B2 (en) 2018-11-26 2023-09-19 The University Of Tokyo Multi-axial tactile sensor
JP7396731B2 (en) 2018-11-26 2023-12-12 国立大学法人 東京大学 Multi-axis tactile sensor
JP2020109366A (en) * 2019-01-04 2020-07-16 カシオ計算機株式会社 Strain measuring device, strain measuring method and program
JP7200679B2 (en) 2019-01-04 2023-01-10 カシオ計算機株式会社 Strain positioning device, strain measurement method

Also Published As

Publication number Publication date
JP2020091097A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
TWI408036B (en) Sheet-like touch sensor system
US10088937B2 (en) Touch input device including a moment compensated bending sensor for load measurement on platform supported by bending beams
EP1621859B1 (en) Force-detecting device
US6886415B1 (en) Tactile sensor and gripping robot using the same
WO2018179911A1 (en) Force sensor
JP2019002905A (en) Tactile force sense sensor, method for manufacturing the same and detection method using tactile force sense sensor
JP6344928B2 (en) Load sensor system
JPH0448597B2 (en)
CN107735659A (en) Force sensor
JP2018185346A (en) Strain gauge
KR100924768B1 (en) Tactile sensor and input device including same, input sensing method using same
JP5443603B2 (en) Press input device
JP2001311671A (en) Force-detecting element and force sensor using the same
US8887583B2 (en) Manipulated position detection device
JP4230241B2 (en) Touch sensor, gripping robot
KR101347180B1 (en) Touch panel based on pressing force
WO2018180346A1 (en) Force sensor
JP2011232165A (en) Movement detection sensor and calibration method thereof
JP2013131040A (en) Input device
JPS63113326A (en) Tactile sensation sensor
JP6514945B2 (en) Pressure distribution sensor, input device, electronic device, sensor chip
JP4399545B2 (en) Tactile sensor and multi-point tactile sensor
KR100695652B1 (en) Foot sensor input device of walking robot using ball joint
JP2022113357A (en) Tactile sensor device and robot hand device using the same
JP2015090331A (en) Dynamic quantity measuring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP