[go: up one dir, main page]

WO2018181669A1 - Composite particles and production method for composite particles - Google Patents

Composite particles and production method for composite particles Download PDF

Info

Publication number
WO2018181669A1
WO2018181669A1 PCT/JP2018/013128 JP2018013128W WO2018181669A1 WO 2018181669 A1 WO2018181669 A1 WO 2018181669A1 JP 2018013128 W JP2018013128 W JP 2018013128W WO 2018181669 A1 WO2018181669 A1 WO 2018181669A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
particle
organic
composite
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/013128
Other languages
French (fr)
Japanese (ja)
Inventor
彩 岡田
隆伸 唯木
洋幸 森兼
慶祐 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DNP Fine Chemicals Co Ltd
Original Assignee
DNP Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DNP Fine Chemicals Co Ltd filed Critical DNP Fine Chemicals Co Ltd
Publication of WO2018181669A1 publication Critical patent/WO2018181669A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates

Definitions

  • the present invention relates to composite particles and composite particle manufacturing methods.
  • organic particles containing organic substances have been widely used as toner components for printing presses, components contained in scattering agents added to films, and the like. Recently, organic particles containing semiconductor particles (so-called quantum dots) containing cadmium and selenium have been studied.
  • Patent Document 1 proposes organic particles having silica particles attached to the surface. Specifically, in Patent Document 1, stress is applied to silica particles having a primary particle volume average particle size of 200 nm or less and having a predetermined functional group, and organic particles larger than the volume average particle size of the silica particles. Silica-coated organic particles obtained by mixing while adding and adhering the silica particles to the surface of the organic particles are disclosed. Patent Document 1 describes that the above adhesion is performed by applying stress between organic particles and silica particles by stirring and the like. Patent Document 1 describes that the agitation is performed by high-speed rotation capable of applying a stress greater than the force that plastically deforms the surface of the organic particles between the particles.
  • the present invention has been made in view of the above problems. That is, the present invention provides a composite particle that includes a coating layer containing an inorganic substance on the surface of the organic particle, and that can improve heat resistance and the like, provides a composition containing the composite particle, Provided is a composite particle manufacturing method for manufacturing the composite particles while avoiding destruction.
  • the composite particles of the present invention are characterized in that they have organic particles and a coating layer that covers the surface of the organic particles, and the coating layer includes a polymer of metal alkoxide.
  • composition of the present invention includes the composite particles of the present invention.
  • the composite particle manufacturing method of the present invention includes an inorganic particle preparation step in which metal alkoxide is polymerized to prepare inorganic particles, and a coating step in which the inorganic particles are deposited around the organic particles to form a coating layer. It is characterized by.
  • the composite particles of the present invention are provided with a coating layer configured to have a metal alkoxide polymer on the surface of the organic particles, heat resistance and the like can be improved as compared with the case where the coating layer is not provided.
  • the composition of this invention the outstanding property which enjoyed the effect of the composite particle of this invention is shown. Moreover, according to the manufacturing method of this invention, the composite particle provided with the coating layer containing an inorganic particle can be manufactured, avoiding a deformation
  • FIG. 2 is an electron micrograph obtained by observing the peripheral surface of the composite particles of Example 1.
  • FIG. 2 is an electron micrograph of the cut surface of the composite particle of Example 1 observed.
  • 4 is an electron micrograph of the cut surface of organic particles A of Comparative Example 1 observed.
  • 6 is an electron micrograph of the peripheral surface of Example 5 observed.
  • FIG. 1 is a schematic view showing an embodiment of the composite particle 100 of the present invention, and a part of the coating layer 20 is not shown for explaining the organic particle 10.
  • FIG. 2 is a conceptual diagram of the inorganic particles 30 in the composite particle 100 and shows the inorganic particles 30 that are hydrolyzed polycondensation products of tetraethoxysilane.
  • the composite particle 100 of the present invention has an organic particle 10 and a coating layer 20 that covers the surface of the organic particle 10.
  • the coating layer 20 is configured to have a metal alkoxide polymer.
  • the preferable numerical range of this invention may be shown suitably.
  • a preferable range, a more preferable range, and a particularly preferable range regarding the upper limit and the lower limit of the numerical range can be determined from all combinations of the upper limit and the lower limit.
  • the average particle diameter of the organic particles 10 or the inorganic particles 30 is 100 particles randomly selected from a microscopic observation photograph taken in a scanning electron microscope observation (magnification about 50,000 times). It means an arithmetic average value calculated by actually measuring the particle diameter and using the obtained actual measurement value. The average particle diameter of Examples described later was also obtained in the same manner.
  • the coating layer is configured by including a metal alkoxide polymer, and the coating layer 20 can be provided without depending on physical stress.
  • the coating layer 20 includes a plurality of inorganic particles 30 composed of a polymer of metal alkoxide.
  • the purpose of the present invention is to provide composite particles whose heat resistance and the like can be improved by providing a coating layer containing an inorganic substance around the organic particles. Therefore, the coating layer in the present invention is a deposition layer formed by depositing a particulate inorganic material, a coating layer formed by forming a non-particulate inorganic material into a film, or a part of which is composed of a particulate inorganic material and another part. Includes an embodiment composed of a non-particulate inorganic substance.
  • the coating layer 20 contains particulate inorganic substances (that is, inorganic particles) is determined based on observation at a magnification of about 50,000 times using a scanning electron microscope, or determined from the method for manufacturing the composite particles 100. Is possible.
  • the coating layer 20 in the composite particle 100 manufactured by a manufacturing method using a Stover method to be described later is presumed that the coating layer 20 contains a particulate inorganic substance regardless of observation with a scanning electron microscope.
  • the inorganic substance here contains both the compound which consists only of an inorganic component, or the compound which mainly consists of an inorganic component including an organic component.
  • the composite particle 100 will be described in detail.
  • the description regarding the inorganic substance which comprises the inorganic particle 30 in the following can be referred as description of the inorganic substance contained in the coating layer formed into a film suitably.
  • the constituent components of the coating layer 20 are mainly inorganic particles 30.
  • the above constituent components may contain other components other than the inorganic particles 30 without departing from the gist of the present invention.
  • the constituent component being mainly the inorganic particles 30 means that the inorganic particles 30 are 50% by mass or more when the coating layer 20 at the time of drying is 100% by mass.
  • the inorganic particles 30 described above are preferably 70% by mass or more, and more preferably 90% by mass or more.
  • the coating layer 20 can be substantially composed of only the inorganic particles 30.
  • the coating layer 20 may be a single layer or may be configured in multiple layers.
  • the multi-layer coating layer 20 is configured by laminating two or more layers on the peripheral surface of the organic particle 10.
  • the multilayer here includes a case where the critical plane between adjacent layers is clear and a case where the critical plane is unclear.
  • a multilayer coating layer 20 in which the same number of layers as the number of times of the coating process are stacked can be configured.
  • the thickness of the cover layer 20 can be significantly increased by being configured in multiple layers. As a result, the heat resistance and the like of the composite particle 100 can be significantly improved.
  • the coating layer 20 is comprised from the inorganic particle 30, The average particle diameter of the inorganic particle 30 which comprises one layer in the coating layer 20, and said one layer
  • the aspect from which the average particle diameter of the inorganic particle 30 which comprises another adjacent layer differs is mentioned.
  • the adhesion between the one layer and the other layer is improved.
  • the coating layer 20 has one layer and another layer adjacent to the side opposite to the organic particle 10 of the one layer, and the average particle diameter of the inorganic particles 30 constituting the one layer.
  • an aspect larger than the average particle diameter of the inorganic particles 30 constituting the other layer is more preferable.
  • the other layer constituted by the relatively small particle size inorganic particles 30 is laminated on the outer periphery of the one layer constituted by the relatively large particle size inorganic particles 30. Therefore, it is possible to fill the gaps between the large-sized particles exposed on the outer surface side of the one layer with the small-sized inorganic particles 30. As a result, a dense coating layer 20 is formed.
  • the method for making the average particle diameter of the inorganic particles 30 different for each layer is not particularly limited. For example, it can be carried out by changing any coating conditions such as the concentration of the material used, the number of stirring, the stirring speed, or the temperature for each repeated coating process.
  • the adjacent layer may be comprised from the same kind of material, and may be comprised from a different material.
  • being composed of different materials means that the compositions of materials constituting one layer and another layer adjacent thereto are different from each other.
  • the constituent component of the inorganic particles 30 is mainly a polymer of metal alkoxide.
  • other components other than the polymer of a metal alkoxide may be included.
  • that the constituent component is mainly a polymer of metal alkoxide means that the metal alkoxide is 50% by mass or more when the inorganic particles 30 at the time of drying are 100% by mass.
  • the metal alkoxide described above is preferably 70% by mass or more, and more preferably 90% by mass or more.
  • the metal alkoxide is a compound represented by the general formula M (OR) n or a modified product thereof.
  • M is a metal
  • n is an oxidation number of M
  • R is an alkyl group.
  • the metal represented by M include silicon, magnesium, germanium, vanadium, and the like.
  • the polymer of the metal alkoxide is a compound obtained by polymerizing the metal alkoxide, and the polymerization method is not particularly limited.
  • the compound constituting the inorganic particles 30 of the present invention is preferably a polycondensate of metal alkoxide, and a polycondensate of hydrolyzate of metal alkoxide. It is more preferable that Metal alkoxide causes steric hindrance due to its structure. Therefore, the metal alkoxide may have low reactivity of the condensation polymerization reaction. In such a case, it is preferable to first produce a hydrolyzate of metal alkoxide and then subject the hydrolyzate to a condensation polymerization reaction.
  • a polymer of a metal alkoxide having a high density and three-dimensional polymerization and high heat resistance can be obtained.
  • a three-dimensional polymer of metal alkoxide is preferable as a constituent component of the inorganic particles 30. Compared with a linear polymer, the three-dimensional polymer can easily obtain the inorganic particles 30 having a nano-sized particle diameter and can easily form the coating layer 20.
  • the metal alkoxide examples include, but are not limited to, alkoxysilane, alkoxymagnesium, alkoxygermanium, alkoxyvanadium, and the like.
  • alkoxysilane is preferable as a material for the polymer constituting the inorganic particles 30 of the present invention.
  • the metal alkoxides can easily form inorganic particles 30 having a nano-size particle size and made of a three-dimensionally bonded polymer. Therefore, the alkoxysilane can constitute a desirable coating layer 20. For example, by performing the Stover method, it is possible to produce inorganic particles 30 that are nano-sized and have a relatively uniform particle size from alkoxysilane.
  • alkoxysilane tetraethoxysilane or tetramethoxysilane is preferable.
  • hydrolytic condensation polymers inorganic particles 30 having a nano-sized particle size and made of a three-dimensionally bonded polymer can be satisfactorily constituted.
  • Tetraethoxysilane and tetramethoxysilane are generally known to be difficult to polycondensate due to steric hindrance.
  • Stover method a compound preferable as the inorganic particle 30 in the present invention can be easily produced. The Stover method will be described later.
  • particles obtained by hydrolytic condensation polymerization of tetraethoxysilane are constituted by three-dimensional bonds including a bond of Si—O—Si as shown in FIG.
  • the average particle diameter of the inorganic particles 30 is not particularly limited.
  • the lower limit of the average particle diameter of the inorganic particles 30 is preferably 3 nm or more, more preferably 5 nm or more, and further preferably 10 nm or more. preferable.
  • the upper limit of the average particle size of the inorganic particles 30 is preferably 150 nm or less, more preferably 120 nm or less, and further preferably 90 nm or less.
  • the nano-sized inorganic particles 30 in the above range are suitable for forming the coating layer 20 by covering the surface of the organic particles 10 having an average particle diameter of about 0.01 ⁇ m to 30 ⁇ m without any gap.
  • the coating amount of the coating layer 20 is not particularly limited. In terms of significantly improving the heat resistance and the like of the composite particle 100, when the composite particle 100 is 100% by mass, the mass of the coating layer 20 is preferably 10% by mass to 70% by mass, and 20% by mass. It is more preferable that the content is not less than 60% and not more than 60% by mass. When the coating amount of the coating layer 20 is equal to or greater than the above numerical range, a remarkable improvement effect such as heat resistance is easily obtained. Moreover, when the coating amount is equal to or less than the upper limit of the above numerical range, the original function and effect of the organic particles 10 are easily exhibited satisfactorily.
  • the mass ratio of the coating layer 20 to the composite particle 100 described above is that the mass W1 of the composite particle 100 is measured, and then the composite particle 100 is subjected to a thermogravimetric / differential thermal measurement test (simultaneous differential thermal-thermogravimetric measurement; TG-DTA). ), The mass W2 of the residue after the end of combustion is measured, and the percentage (%) of W2 with respect to W1 is calculated.
  • the organic particle 10 is a granular compound mainly composed of an arbitrary organic substance.
  • the composite particles 100 of the present invention include the coating layer 20, so that the heat resistance and the like are improved compared to the organic particles 10 alone.
  • the organic particle 10 in the present invention includes any form of a particle substantially made only of an organic substance or a particle mainly containing an organic substance and containing an inorganic substance.
  • the organic substance includes a polymerizable organic compound, an already polymerized organic compound, a polymerizable organic substance that is a mixture thereof, and a non-polymerizable organic substance mainly composed of a non-polymerizable organic compound.
  • the organic particles 10 are configured to include a (meth) acrylic resin.
  • the (meth) acrylic resin is an example of a polymerizable organic material.
  • Organic particles 10 composed of (meth) acrylic resins are used in a wide range of technical fields. Since the composite particles 100 in which the coating layer 20 is provided on the organic particles 10 made of (meth) acrylic resin can be improved in heat resistance and the like, it can be used in more severe use environments and new technical fields.
  • (meth) acrylic resin means acrylic resin or methacrylic resin, and (meth) acrylate means acrylate or methacrylate.
  • the acrylic resin or the methacrylic resin is a polymer obtained by polymerization using one or more of (meth) acrylate monofunctional monomer, bifunctional monomer, or polyfunctional monomer.
  • a bifunctional or polyfunctional (meth) acrylic-type monomer is contained as a material which comprises the organic particle 10 is preferable.
  • the inorganic particles 30 are easily deposited on the surface of the organic particles 10. Thereby, the coating layer 20 that sufficiently contributes to improvement in heat resistance and the like is easily formed.
  • the term “depositing the inorganic particles 30 on the surface of the organic particles 10” means that the inorganic particles 30 having an average particle size smaller than the average particle size of the organic particles 10 are physically collided with the surface of the organic particles 10. It means that it adheres regardless of the stress.
  • the adhesion can be realized by a chemical bond between the organic particles 10 and the inorganic particles 30 or an intermolecular attractive force, a chemical bond between the inorganic particles 30 or an intermolecular attractive force, or a combination thereof.
  • Examples of the monofunctional (meth) acrylic monomer include stearyl (meth) acrylate, isobornyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (meth) acrylate.
  • Examples of the bifunctional (meth) acrylic monomer include di (meth) acrylates such as tricyclodecane dimethanol di (meth) acrylate or polypropylene glycol di (meth) acrylate.
  • the polyfunctional (meth) acrylate monomer is a (meth) acrylate monomer containing three or more functional groups, and the number of functional groups depends on the stress caused by the collision. From the viewpoint of good deposition, it is preferably trifunctional or higher, more preferably tetrafunctional or higher.
  • the polyfunctional (meth) acrylate resin include polyester acrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and the like.
  • the organic particles 10 preferably contain a compound having a polar group.
  • the polar group means a reactive group capable of imparting polarity to the organic particles 10.
  • the reactive group include an electron-withdrawing group such as a carboxyl group or an electron-donating group such as an amino group.
  • the organic particle 10 containing a compound having a polar group is, for example, an embodiment in which a compound having an arbitrary polar group is bonded to a base resin constituting the organic particle 10 or a compound having a polar group inside the organic particle 10 Including an embodiment in which is simply buried.
  • the polar group includes a state before being bonded to another reactive group, or a state in which the polar group is bonded to another reactive group.
  • Examples of the compound having a polar group include carboxylic acid-containing acrylates such as carboxy-polycaprolactone monoacrylate, epoxy group-containing acrylates such as glycidyl methacrylate, and hydroxyl group-containing acrylates such as 4-hydroxybutyl acrylate.
  • carboxylic acid-containing acrylates such as carboxy-polycaprolactone monoacrylate
  • epoxy group-containing acrylates such as glycidyl methacrylate
  • hydroxyl group-containing acrylates such as 4-hydroxybutyl acrylate.
  • a carboxylic acid-containing acrylate is preferable as the compound having a polar group.
  • a silane coupling agent can be exemplified.
  • the silane coupling agent has two or more different reactive groups in the molecule. Therefore, the silane coupling agent binds to the compound constituting the organic particle 10 in one reactive group and binds to the inorganic substance constituting the coating layer 20 in the other reactive group.
  • the coating layer 20 can be favorably formed on the outer periphery of the organic particle 10. That is, since the organic particles 10 contain a silane coupling agent, the organic particles 10 and the inorganic particles 30 are chemically bonded sufficiently by the silane coupling agent. As a result, the coating layer 20 is formed satisfactorily.
  • the silane coupling agent means a compound containing silane and having two types of functional groups having different reactivity in one molecule.
  • the silane coupling agent include a first functional group that can be chemically bonded to an inorganic material (for example, methoxy group or ethoxy group) and a second functional group that can be chemically bonded to an organic material (for example, vinyl group, epoxy).
  • a group having an amino group, an amino group, a (meth) acryl group, a styryl group, or a mercapto group) are preferable.
  • a silane coupling agent having a (meth) acryl group as one functional group is suitable.
  • silane coupling agent examples include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane.
  • Methacrylic silane coupling agent with methacrylic group Acrylic silane coupling agent with acrylic group such as 3-acryloxypropyltrimethoxysilane; Vinyl-based silane with vinyl group such as vinyltrimethoxysilane or vinyltriethoxysilane Coupling agent; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glyci Epoxy-based silane coupling agents having an epoxy group such as xylpropylmethyldiethoxysilane or 3-glycidoxypropyltriethoxysilane; styryl-based silane coupling agents having a styryl group such as p-styryltrimethoxysilane; N -2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N
  • a vinyl silane coupling agent containing a double bond in the functional group a styryl silane coupling agent, and a methacrylic silane coupling agent.
  • an acrylic silane coupling agent is preferable, and a methacrylic silane coupling agent or an acrylic silane coupling agent is more preferable.
  • the organic particles 10 are made of an organic material such as a (meth) acrylic resin as described above, but may optionally contain other materials.
  • the other materials include various additives for producing the organic particles 10 or functional materials for imparting a specific function to the organic particles 10. That is, this invention includes the aspect in which the organic particle 10 contains a functional material.
  • the functional material for imparting a specific function to the organic particles 10 is contained, and the coating layer 20 is provided on the surface of the organic particles 10, whereby the heat resistance of the organic particles 10 to which the specific functions are imparted. Etc. are improved.
  • the organic substance itself that constitutes the organic particles 10 has an aspect in which only a functional material is supported, an aspect in which the organic substance itself is expected to have some function, or some function in relation to the organic substance and the functional material. Any of the modes to be exhibited may be used.
  • the functional material for imparting a specific function to the organic particles 10 is not particularly limited.
  • the functional material include a semiconductor material such as an organic semiconductor material or an inorganic semiconductor material, a metal or metal oxide such as a zirconia material, a silica material or an alumina material, a conductive material such as an organic conductive material or a metal conductive material, Examples include ultraviolet absorbers (UVA) and cellulose nanofibers (CNF).
  • UVA ultraviolet absorbers
  • CNF cellulose nanofibers
  • the functional material is contained in the organic particles 10 in the composite particle 100. It is preferable. This is because the effect of improving the heat resistance of the functional material itself is substantially exhibited.
  • the shape, content, or size of the functional material is not particularly limited as long as it is contained in the organic particles. Examples of the shape of the functional material include, but are not limited to, a particle shape, a powder shape, and a fiber shape.
  • the functional material contained in the organic particles 10 include a particulate semiconductor material (hereinafter referred to as semiconductor particles).
  • the organic particles 10 may include one or more semiconductor particles.
  • semiconductor particles refers to a particulate material having semiconductor properties.
  • the semiconductor particles include so-called quantum dots (also referred to as Quantum dots; QD), which are fluorescent fine particles having a nano-size particle size.
  • QD Quantum dots
  • a quantum dot is a material with excellent color rendering properties that emits bright fluorescence having a specific wavelength depending on the particle diameter when an excitation wavelength such as ultraviolet rays is applied.
  • quantum dots have been tried to be used in the field of luminescent materials in the technical field of display devices and the like.
  • the quantum dots are generally fine particles having a particle size of several nm, and there is a possibility that aggregation occurs when the quantum dots are filled into the carrier as they are.
  • the aggregation of quantum dots can be avoided with the fluorescent composite particles 100 in which the coating layer 20 is provided on the organic particles 10 containing one or more quantum dots.
  • the fluorescent composite particles 100 described above can provide a fluorescent material having an excellent effect that can withstand repeated ultraviolet irradiation and heating.
  • the fluorescent composite particle 100 can increase the lifetime of the quantum dots.
  • the fluorescent composite particle 100 described above is suitable as a fluorescent material used in a display device.
  • the fluorescent composite particle 100 can be used in other technical fields (for example, using a fluorescent probe in a living body), and the above-described excellent effects can be desirably exhibited in each technical field.
  • the average particle diameter of the organic particles 10 is not particularly limited, but is preferably 0.01 ⁇ m or more and 30 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size is a suitable size as organic particles used in various technical fields from the viewpoints of form retention, ease of production, dispersibility when added to any material, and the like. It is particularly preferable that the average particle size of the inorganic particles 30 deposited on the surface of the organic particles 10 having the average particle size in the above range is in the numerical range described above.
  • the inorganic particles 30 having an average particle diameter in the above range are easily deposited on the peripheral surface of the organic particles 10 having the average particle diameter, and can easily form the coating layer 20 that can cover substantially the entire peripheral surface.
  • the average particle diameter of the organic particles 10 is 0.01 ⁇ m or more and 30 ⁇ m or less, and the average film thickness of the coating layer 20 is 5 nm or more and 400 nm or less, which is a preferable example in this embodiment.
  • the organic particles 10 can sufficiently exhibit their original functions, Heat resistance etc. can be improved favorably.
  • the average film thickness of the coating layer 20 described above is obtained by observing the cut surfaces of five randomly selected composite particles 100 in a scanning electron micrograph (magnification 50,000 times), and covering each composite particle 100 with a coating. In the layer 20, three points are selected at equal intervals in the circumferential direction, the thickness is measured, and an average value obtained by arithmetically averaging all the measured values is indicated.
  • the composite particle manufacturing method of the present invention (hereinafter also referred to as the manufacturing method of the present invention) will be described.
  • the production method of the present invention described below is a preferred embodiment of the production method of the composite particles of the present invention.
  • the production method of the composite particles includes a part of the following contents. May be changed as appropriate, or additional steps may be performed.
  • composite particles including a coating layer containing inorganic particles can be produced.
  • a composite particle including a coating layer formed by forming an inorganic substance whose particle shape is not specified around an organic particle can be produced by a production method including a general sol-gel method. It is.
  • a production method including a general sol-gel method including a general sol-gel method.
  • the manufacturing method of the present invention includes an inorganic particle preparation step and a coating step.
  • the inorganic particle preparation step is a step of preparing inorganic particles by polymerizing metal alkoxide.
  • the coating step is a step of forming a coating layer by depositing the inorganic particles produced in the inorganic particle production step around the organic particles.
  • the production method of the present invention can produce composite particles comprising organic particles coated with an inorganic substance without deforming or destroying the shape of the organic particles that serve as the core. Below, the aspect also including the organic particle preparation process which produces the organic particle used in a coating process is demonstrated.
  • the organic particles are prepared by a conventionally known method (for example, suspension polymerization or emulsion polymerization) capable of producing organic particles having a desired average particle diameter.
  • a conventionally known method for example, suspension polymerization or emulsion polymerization
  • an organic particle production step for producing organic particles by suspension polymerization Is preferably implemented. More specifically, in the organic particle preparation step, an organic material such as an acrylic monomer is added to water or an aqueous solvent, suspended by mechanical stirring to form suspended particles, and heat energy or light energy is added. As a result, the organic material constituting the suspended particles is polymerized to produce organic particles.
  • the stirring conditions during suspension may be appropriately determined with reference to a known suspension polymerization method.
  • the stirring may be performed at a rotational speed of 2000 rpm to 20000 rpm for 1 minute to 1 hour.
  • stirring may be performed so that suspended particles can be dispersed in water or an aqueous solvent.
  • the stirring is desirably about 100 rpm to 500 rpm.
  • a polymerization initiator such as a radical generator or a suspension stabilizer such as polyvinyl alcohol may be added together with the organic material.
  • suspension polymerization may be performed using a mixed liquid containing the arbitrary material and an organic material for constituting the organic particle.
  • maintained the said arbitrary material inside can be prepared.
  • the method for imparting a polar group to the organic particles 10 is not particularly limited.
  • organic particles containing a compound having a polar group by suspension polymerization using a monomer and a compound having a polar group constituting the organic particle 10 are used. It can be easily manufactured.
  • organic particle 10 and suspension polymerization by using the monomer and the silane coupling agent that constitute the organic particle 10 and suspension polymerization, one reactive group of the silane coupling agent and the monomer are combined with each other, and another reaction of the silane coupling agent is performed.
  • Organic particles 10 having a group (polar group) can be easily produced.
  • the inorganic particle production step is performed by appropriately selecting from known methods capable of producing particles having a desired average particle diameter.
  • the inorganic particle preparation step includes implementation of a sol-gel method.
  • the sol-gel method in the present embodiment means a method for producing inorganic particles by using a metal alkoxide solution, hydrolyzing and polycondensing the metal alkoxide. By carrying out the sol-gel method, inorganic particles having a metal alkoxide polymer having an average particle size of nano-size and a relatively uniform particle size can be easily produced.
  • the inorganic particle preparation step and the coating step are performed in the presence of organic particles
  • the reaction is performed at a temperature lower than the temperature at which the organic particles are burned or decomposed.
  • Particles can be prepared and composite particles can be manufactured in a series of steps.
  • the Stover method is preferably performed in the inorganic particle manufacturing step.
  • the Stover method is a kind of the sol-gel method described above, and a method for hydrolyzing an alkoxysilane in a large amount of a basic solvent and then subjecting it to condensation polymerization to provide a particulate condensation polymer. Point to. More specifically, for example, tetraethoxysilane is added to a basic solvent to which ethanol or the like is added, and gently stirred at a rotation speed of 100 rpm to 1500 rpm for 2 hours to 48 hours. At this time, the mixture is preferably stirred at a liquid temperature of 25 ° C. or lower.
  • the outermost peripheral speed is preferably in the range of 0.1 m / s to 10 m / s.
  • a magnetic stirrer or the like may be used and gently stirred.
  • the hydrolysis reaction of the following formula 1 occurs, and the reaction is promoted, whereby all the alkoxy groups of tetraethoxysilane are hydrolyzed, and finally Si (OH) 4 is obtained.
  • the stirring is further continued, as shown in the following formula 2, a polycondensation reaction occurs between two molecules of Si (OH) 4 , and this is accelerated to obtain a hydrolytic polycondensation product of alkoxysilane.
  • Alkoxysilane can be hydrolyzed in an acidic solvent and then subjected to polycondensation, but according to this, the obtained hydrolytic polycondensate has a structure close to a straight chain.
  • the obtained hydrolytic polycondensate has a structure close to a straight chain.
  • the inorganic particles are preferably composed of a polymer that has become three-dimensional. Therefore, it is preferable to carry out the Stover method in which the reaction is promoted in a basic solvent in the inorganic particle preparation step.
  • the coating step is carried out by gently stirring a mixed liquid in which the organic particles produced in the organic particle production step and the inorganic particles produced in the inorganic particle production step are added to an arbitrary liquid.
  • the stirring condition of the mixed liquid is appropriately determined within a range in which there is no fear that the organic particles and the inorganic particles collide and at least one of the shapes is deformed.
  • the above mixed solution may be stirred at a rotation speed of 100 rpm to 1500 rpm in a range of 2 hours to 48 hours, preferably at a liquid temperature of 25 ° C.
  • the agitation time described above is a substantially agitating time, and may be continuously agitated for a predetermined time or may be agitated intermittently.
  • arbitrary liquid alcohol, such as ethanol, is mentioned, for example.
  • the above arbitrary liquid in the coating step may be an alcohol and a basic solvent in the inorganic particle production step.
  • organic particles containing a compound having a polar group As described above, when it is desired to form a coating layer more satisfactorily under mild stirring conditions, it is preferable to use organic particles containing a compound having a polar group. This is because the inorganic particles can be favorably deposited on the surface of the organic particles.
  • the coating layer formed on the surface of the organic particles by performing the coating process preferably has a large thickness from the viewpoint of improving heat resistance and the like. In other words, it is preferable that the amount of inorganic particles deposited on the organic particles is large.
  • a method of repeating the coating step a plurality of times can be mentioned. That is, using a mixed solution containing inorganic particles at an appropriate concentration, a coating step is performed to produce composite particles, and the composite particles are taken out from the reaction vessel in which the coating step has been performed. And the liquid mixture with which the taken-out said composite particle and the inorganic particle produced in the said inorganic particle preparation process or the inorganic particle preparation raw material were added is stirred like the above.
  • the coating step is repeated in this way, composite particles in which a coating layer in which inorganic particles are densely deposited are formed in multiple layers can be produced.
  • the number of repetitions of the coating step is not particularly limited.
  • the thickness of the coating layer can be increased efficiently by performing the coating step in the range of 2 to 10 times.
  • it is also effective to sufficiently increase the concentration of alkoxysilane or basic catalyst used as the inorganic particle raw material used in the coating step.
  • the coating process includes a first coating process and a second coating process.
  • the first coating step is a step in which a mixed liquid containing the inorganic particles and the organic particles is added to a reaction vessel and stirred to produce composite particles including a single coating layer.
  • An inorganic particle production raw material may be used instead of the inorganic particles, and the inorganic particle production process and the coating process may be performed continuously.
  • the second coating step after completion of the first coating step, the composite particles having a single layer coating layer are taken out from the reaction vessel in the first coating step, and then the single layer coating layer is placed in the reaction vessel in the second coating step.
  • the composite particles taken out from the reaction layer may be dried as necessary, and then added to the reaction vessel in the second coating step.
  • the reaction tanks in the first coating step and the second coating step may be used together or may be different.
  • the reactor is also used, after the first coating process is completed, drain the used mixed solution used in the first coating process from the reaction tank and add a new mixed solution for the second coating process. Or it is good to add a necessary material to the said used liquid mixture, and to adjust for a 2nd coating process.
  • the coating conditions and the materials used may be the same or different.
  • the average particle diameter of the inorganic particles constituting the first layer formed in the first coating step and the second coating step are formed. It is possible to make the average particle diameter of the inorganic particles constituting the second layer different.
  • the first coating process and the second coating process have been described for the coating process that is repeated a plurality of times, but the third coating process, the fourth coating process, and any number of coating processes may be repeated. it can.
  • Each coating process after the third coating process can be carried out in the same manner as the second coating process except that the composite particles having a multilayer coating layer are taken out from the reaction vessel in the immediately preceding coating process.
  • composite particles having a coating layer of inorganic particles on the surface of the organic particles can be produced.
  • the produced composite particles may be isolated by appropriately performing a centrifugation step, a washing step, and the like.
  • the order in which the organic particle production process, the inorganic particle production process, and the coating process described above are performed is not particularly limited. Each process may be implemented independently, may be implemented continuously, and may overlap with the process in which a part of process is followed.
  • the inorganic particle preparation step and the coating step may be carried out continuously. Thereby, the manufacturing method of the present invention can shorten the manufacturing process.
  • organic particles prepared in advance and an alcohol such as ethanol having a small carbon number are mixed, and then ammonia water or the like.
  • the basic solvent is added and stirred, and alkoxysilane such as tetraethoxysilane is further added and stirred under predetermined conditions.
  • an inorganic particle preparation process is carried out in which hydrolysis and polycondensation of alkoxysilane proceeds, and a coating process in which the prepared inorganic particles are deposited on the surface of the organic particles is continuously executed. can do.
  • Such an embodiment can efficiently produce composite particles.
  • the production method of the present invention may prepare inorganic particles and organic particles obtained by polymerizing metal alkoxide, for example, by purchasing a commercially available product.
  • the production method of the present invention includes a method for producing composite particles, characterized in that, using these, a coating step is performed in which the inorganic particles are deposited around the organic particles to form a coating layer.
  • organic particles and inorganic particles are added to an appropriate liquid (for example, alcohol such as ethanol), a basic solvent or an acidic solvent is added as appropriate, and the stirring conditions shown in the coating step described above are used. It is carried out by stirring.
  • the present invention includes a composition comprising the composite particle of the present invention described above.
  • the composition of the present invention includes organic particles and a composite particle that includes a coating layer that covers the surface of the organic particle, and the coating layer includes a metal alkoxide polymer. Therefore, the composition of the present invention can avoid impairing the function of the organic particles even when environmental conditions such as heat are severe during production or use.
  • compositions other than the said composite particle are not limited at all.
  • the composition of the present invention includes a composite particle composition substantially composed of the composite particles and a solvent for suspending the composite particles, a resin composition mainly comprising any resin material including the composite particles, It includes various embodiments such as a composition including composite particles and an arbitrary inorganic material, or a composite composition including the above composite particles, an arbitrary resin material, and an arbitrary inorganic material.
  • specific examples of the composition include inks, adhesives, paints, and the like that appropriately include necessary components.
  • the composition can be filmed on any substrate.
  • the composite particles contained in the composition are less likely to impair the function of the organic particles contained in the composition as compared with the conventional one.
  • the organic particles A, the organic particles B, and the organic particles C used in each of the examples and the comparative examples are composed of 500 ml separable flasks containing the materials shown in Table 1 and 300 parts by mass of a 1.5% by mass aqueous polyvinyl alcohol solution. To 7000 rpm, 10 minutes, 25 ° C., immerse the suspension in a 90 ° C. water bath and heat polymerize with stirring at 250 rpm for 4 hours to produce particles, which are filtered and washed with water It was prepared by doing.
  • Example 1 0.1 g of organic particles A was added to 50 ml of ethanol to prepare an organic particle mixed solution. Add 0.6 ml of 28% ammonia water to the above organic particle mixture and use a magnetic stirrer (manufactured by Ishii Science Equipment Co., Ltd., Super Stirrer MS-2) to set the degree of stirring to medium for 25 minutes for 25 minutes. Stirred at 0 ° C. to obtain a stirrer. To the agitated material, 0.3 ml of tetraethoxysilane (TEOS) was added as a metal alkoxide. And it stirred using the same magnetic stirrer as the above on the conditions of 25 degreeC for 24 hours.
  • TEOS tetraethoxysilane
  • Example 2 A composite particle was produced under the same conditions as in Example 1 except that the inorganic particle production process, the coating process, and the filtration process were set as one set, and this was repeated 5 times.
  • Example 3 A composite particle was produced under the same conditions as in Example 1 except that the addition amount of 28% ammonia water and tetraethoxysilane was increased five times that in Example 1, and this was designated as Example 3.
  • Example 4 A composite particle was produced under the same conditions as in Example 1 except that the organic particle used was changed to the organic particle B, and this was designated as Example 4.
  • Example 5 A composite particle was produced under the same conditions as in Example 4 except that the addition amounts of 28% ammonia water and tetraethoxysilane were increased five times as much as in Example 4. This was designated as Example 5.
  • Example 6 A composite particle was produced under the same conditions as in Example 1 except that the organic particle used was changed to the organic particle C, and this was designated as Example 6.
  • Example 7 Composite particles were produced under the same conditions as in Example 6 except that the addition amounts of 28% ammonia water and tetraethoxysilane were increased five times as much as in Example 6. This was designated as Example 7.
  • Example 2 Example 3, Example 5, and Example 7, many particulate matters were confirmed on the peripheral surface.
  • Example 1 Example 4, Example 6, and Comparative Example 1, Comparative Example 2, and Comparative Example 3
  • no particulate matter was confirmed on the peripheral surface, or a very small number of particulate matter was confirmed. . Therefore, regarding Example 2, Example 3, Example 5, and Example 7 in which a large number of particulate matters were confirmed, the particle diameters of the particulate matters were measured and the average particle diameter was determined.
  • the average particle diameter was obtained by measuring the particle diameters of 100 randomly selected particles in an electron micrograph and calculating the arithmetic average.
  • Example 4 in which a very small number of particulate matter was confirmed on the peripheral surface, the particle size of the particulate matter was measured.
  • the average particle diameter of the particulate matter of each Example obtained by the above measurement and the lower limit value and the upper limit value of the actually measured values are shown in Table 2 (for Example 4, only the lower limit value and the upper limit value).
  • Example 4 In the electron microscope observation (magnification of 50,000 times), the particulate matter constituting the coating layer on the peripheral surfaces of Example 1, Example 6, Comparative Example 1, Comparative Example 2, and Comparative Example 3 was not confirmed. In Example 4, although minute particulate matter (measured value of 10 nm or more and 30 nm or less) was observed sparsely on the peripheral surface, it was not enough to cover the peripheral surface. As an example of the example in which no particulate matter was observed on the peripheral surface, a microscopic observation photograph of the appearance of Example 1 is shown in FIG.
  • Example 1 Example 4, Example 6, Comparative Example 1, Comparative Example 2, and Comparative Example 3
  • FIG. 4A the cut surface photograph of Example 1
  • FIG. 4B the photograph of Comparative Example 1 (organic particles A)
  • a whitish layer that substantially circulates around the outer edge of the cut surface of the center particle (that is, organic particle) was observed in the cut surfaces of Example 1, Example 4, and Example 6.
  • Example 1 On the other hand, in the observation of the cut surfaces of Comparative Example 1, Comparative Example 2, and Comparative Example 3 with an electron microscope, no whitish layer as described above was observed on the outer edge of the cut surface.
  • Example 1 Example 4, and Example 6, the coating layer was formed on the peripheral surface of the organic particles used, and the percentage of the residual material described later was higher than that of the target comparative example. Since the ratio increased, it was confirmed that the coating layer which consists of an inorganic substance was formed in the surrounding surface of an organic particle. In addition, since these examples were formed by the Stover method, it was inferred that such a coating layer was a film-like layer in which inorganic fine particles having a very small particle size were deposited on the surface of organic particles. .
  • Example 2 In the electron microscope observation (magnification of 50,000 times), in Example 2, Example 3, Example 5, and Example 7, the particulate matter is densely concentrated on the entire surface of the composite particle, whereby a coating layer is formed. It was observed that In Example 2, Example 3, Example 5, and Example 7, a plurality of polycondensates of hydrolyzed particulate metal alkoxide are formed by the Stover method, and these are deposited on the peripheral surface of the organic particles. It was inferred that it was provided with a coated layer. A photograph of Example 5 is shown in FIG. 5 as an example of appearance observation of an example in which a large number of particulates are deposited on the peripheral surface.
  • Heat-resistant peak temperature The peak temperature of the exothermic peak indicating the end of combustion shown in the DTA curve obtained in the combustion test described above was defined as the heat resistant peak temperature. The higher the heat-resistant peak temperature indicating the end of combustion, the higher the heat resistance. In the DTA curve in this example, a slightly smaller exothermic peak appeared in the temperature range from the latter half of 400 ° C. to less than 600 ° C. after the appearance of the maximum exothermic peak. In the present invention, the heat-resistant peak temperature was measured by setting a slightly small exothermic peak appearing after the maximum exothermic peak as a peak representing the end of combustion.
  • Example 1 As shown in Table 2, it was confirmed that the coating layer was formed in the surface of the organic particle from the result of the percentage of a residue in all the Examples. More specifically, after completion of the combustion test, Example 1, Example 2, and Example 3 in which a coating layer was formed on organic particles A were significantly different from Comparative Example 1 using only organic particles A. The residual amount was confirmed and it was confirmed that the coating layer comprised with the inorganic substance was formed. Similarly, compared to Comparative Example 2 using only organic particles B, Examples 4 and 5 in which a coating layer was formed on organic particles B, and Comparative Example 3 using only organic particles C were organic. In Examples 6 and 7 in which the coating layer was formed on the particles C, a significant residual amount was confirmed after the combustion test.
  • Example 1 the coating process was performed once, and the combustion substance residual ratio was 1%, whereas in Example 2 in which the coating process was performed five times, the amount of residuals was more than five times that of Example 1. The ratio is shown. From this, it was confirmed that the formation efficiency of the coating layer was improved by using the composite particles in which the coating layer made of inorganic particles was formed and further repeating the coating process. Although Comparative Examples 2 and 3 do not have a coating layer, the silica component (SiO 2 in the silane coupling agent contained in the organic particle B or the organic particle C in the measurement of the percentage (%) of the residue. ) Remained unburned, so it was assumed that a significant value was shown.
  • the silica component SiO 2 in the silane coupling agent contained in the organic particle B or the organic particle C in the measurement of the percentage (%) of the residue.
  • Example 6 showed a similar heat-resistant peak temperature to Example 7 although the amount of the basic catalyst used was small. This is because Example 6 and Example 7 use organic particles C containing a large amount of a silane coupling agent, so that the binding efficiency between the organic particles C and the inorganic material is good, and the basic catalyst is relative. Even in Example 6 with a small amount, it was presumed that the coating layer was sufficiently formed.
  • Example 4 and Example 6 are referred to for Example 1, and Example 5 and Example 7 are referred to for Example 2). Thereby, the effectiveness of including the silane coupling agent in the organic particles was confirmed.
  • the coating layer is formed by depositing fine inorganic particles on the surface of the organic particles regardless of physical stress by the composite particle manufacturing method of the present invention.
  • the composite particles having a coating layer composed of a plurality of inorganic particles on the surface of the organic particles have improved heat resistance.
  • the above embodiment includes the following technical idea.
  • an inorganic particle production step of polymerizing metal alkoxide to produce inorganic particles comprising: (16) The method for producing composite particles according to (15), wherein the inorganic particle production step includes implementation of a sol-gel method.
  • the metal alkoxide is an alkoxysilane, The method for producing composite particles according to the above (15) or (16), wherein the inorganic particle production step includes a Stover method.
  • the coating step includes a first coating step and a second coating step,
  • the first coating step is a step of adding composite liquid containing the inorganic particles and the organic particles to a reaction vessel and stirring to produce composite particles including a single-layer coating layer.
  • the composite particles including the single-layer coating layer are taken out from the reaction tank, and the single-layer composite particles and the inorganic particles or the inorganic particles are prepared in the reaction tank.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Silicon Compounds (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are composite particles that are each provided with a coating layer that is formed on the surface of an organic particle and that contains inorganic particles, and that can have improved heat resistance, etc. Also, provided is a composite particle production method for producing the composite particles while avoiding deformation or breaking of the organic particles. Composite particles (100) each have an organic particle (10) and a coating layer (20) which covers the surface of the organic particle (10), wherein the coating layer (20) is formed by having included therein a polymer of a metal alkoxide. The method for producing the composite particles comprises an inorganic particle production step for polymerizing the metal alkoxide to produce inorganic particles, and a coating step for depositing the inorganic particles around each organic particle to form a coating layer.

Description

複合粒子および複合粒子製造方法Composite particle and composite particle manufacturing method

 本発明は、複合粒子および複合粒子製造方法に関する。 The present invention relates to composite particles and composite particle manufacturing methods.

 従来、有機物を含む有機粒子は、印刷機等のトナー成分、フィルムに添加される散乱剤に含まれる成分等として広汎に利用されている。昨今は、カドミウムやセレンを含む半導体粒子(所謂、量子ドット)を含有する有機粒子の研究もなされている。 Conventionally, organic particles containing organic substances have been widely used as toner components for printing presses, components contained in scattering agents added to films, and the like. Recently, organic particles containing semiconductor particles (so-called quantum dots) containing cadmium and selenium have been studied.

 また、他の有機粒子の例として、特許文献1には、表面にシリカ粒子を付着させた有機粒子が提案されている。具体的には、特許文献1には、一次粒子の体積平均粒径が200nm以下であり所定の官能基を有するシリカ粒子と、上記シリカ粒子の体積平均粒径よりも大きい有機粒子とに応力を加えながら混合し、上記有機粒子の表面に上記シリカ粒子を付着させてなるシリカ被覆有機粒子が開示されている。特許文献1には、上記付着は、攪拌等を行い、有機粒子とシリカ粒子との間に応力を加えることで実施されることが説明されている。また特許文献1には、上記撹拌は、有機粒子の表面を塑性変形させる力以上の応力を上述する粒子間に加えることが可能な高速回転により実施されることが説明されている。 Further, as an example of other organic particles, Patent Document 1 proposes organic particles having silica particles attached to the surface. Specifically, in Patent Document 1, stress is applied to silica particles having a primary particle volume average particle size of 200 nm or less and having a predetermined functional group, and organic particles larger than the volume average particle size of the silica particles. Silica-coated organic particles obtained by mixing while adding and adhering the silica particles to the surface of the organic particles are disclosed. Patent Document 1 describes that the above adhesion is performed by applying stress between organic particles and silica particles by stirring and the like. Patent Document 1 describes that the agitation is performed by high-speed rotation capable of applying a stress greater than the force that plastically deforms the surface of the organic particles between the particles.

特開2016-124729号公報Japanese Unexamined Patent Publication No. 2016-124729

 ところで、一般的に有機粒子は、製造や取り扱性が容易である反面、無機粒子に比べて耐熱性、耐久性、および耐酸性等(以下、耐熱性等ともいう)の点で改善の余地があった。上述する特許文献1の開示によれば、有機粒子の表面に無機物を付着させることで、被覆前に比べて当該粒子の耐熱性等の向上が期待される。しかしかかる場合、有機粒子の形態が変化し得る程度に、その有機粒子の表面にシリカ粒子を衝突させて付着させるため、有機粒子の一部が破壊する虞があった。 By the way, in general, organic particles are easy to manufacture and handle, but there is room for improvement in terms of heat resistance, durability, and acid resistance (hereinafter also referred to as heat resistance) compared to inorganic particles. was there. According to the disclosure of Patent Document 1 described above, an improvement in heat resistance and the like of the particles is expected by attaching an inorganic substance to the surface of the organic particles as compared to before coating. However, in such a case, the silica particles collide with and adhere to the surface of the organic particles to such an extent that the form of the organic particles can be changed.

 本発明は、上記課題を鑑みなされたものである。即ち、本発明は、有機粒子の表面に、無機物を含む被覆層を備え、耐熱性等が向上し得る複合粒子を提供し、上記複合粒子を含む組成物を提供し、また有機粒子の変形や破壊を回避しつつ上記複合粒子を製造する複合粒子製造方法を提供する。 The present invention has been made in view of the above problems. That is, the present invention provides a composite particle that includes a coating layer containing an inorganic substance on the surface of the organic particle, and that can improve heat resistance and the like, provides a composition containing the composite particle, Provided is a composite particle manufacturing method for manufacturing the composite particles while avoiding destruction.

 本発明の複合粒子は、有機粒子と、上記有機粒子の表面を覆う被覆層を有し、上記被覆層が、金属アルコキシドの重合物を有して構成されていることを特徴とする。 The composite particles of the present invention are characterized in that they have organic particles and a coating layer that covers the surface of the organic particles, and the coating layer includes a polymer of metal alkoxide.

 本発明の組成物は、本発明の複合粒子を含むことを特徴とする。 The composition of the present invention includes the composite particles of the present invention.

 また本発明の複合粒子製造方法は、金属アルコキシドを重合し無機粒子を作製する無機粒子作製工程と、上記無機粒子を有機粒子の周囲に堆積させて被覆層を形成する被覆工程と、を備えることを特徴とする。 Moreover, the composite particle manufacturing method of the present invention includes an inorganic particle preparation step in which metal alkoxide is polymerized to prepare inorganic particles, and a coating step in which the inorganic particles are deposited around the organic particles to form a coating layer. It is characterized by.

 本発明の複合粒子は、有機粒子の表面に、金属アルコキシドの重合物を有して構成されている被覆層を備えるため、被覆層を備えない場合に比べ耐熱性等が向上し得る。 Since the composite particles of the present invention are provided with a coating layer configured to have a metal alkoxide polymer on the surface of the organic particles, heat resistance and the like can be improved as compared with the case where the coating layer is not provided.

 本発明の組成物によれば、本発明の複合粒子の効果を享受した優れた性質を示す。
 また、本発明の製造方法によれば、有機粒子の変形や破壊を回避しつつ無機粒子を含む被覆層を備えた複合粒子を製造することができる。
According to the composition of this invention, the outstanding property which enjoyed the effect of the composite particle of this invention is shown.
Moreover, according to the manufacturing method of this invention, the composite particle provided with the coating layer containing an inorganic particle can be manufactured, avoiding a deformation | transformation and destruction of an organic particle.

本発明の複合粒子の模式図である。It is a schematic diagram of the composite particle of this invention. 本発明の複合粒子における無機粒子の概念図である。It is a conceptual diagram of the inorganic particle in the composite particle of this invention. 実施例1の複合粒子の周面を観察した電子顕微鏡写真である。2 is an electron micrograph obtained by observing the peripheral surface of the composite particles of Example 1. FIG. 実施例1の複合粒子の切断面を観察した電子顕微鏡写真である。2 is an electron micrograph of the cut surface of the composite particle of Example 1 observed. 比較例1の有機粒子Aの切断面を観察した電子顕微鏡写真である。4 is an electron micrograph of the cut surface of organic particles A of Comparative Example 1 observed. 実施例5の周面を観察した電子顕微鏡写真である。6 is an electron micrograph of the peripheral surface of Example 5 observed.

[複合粒子]
 以下に、本発明の複合粒子100について図1、図2を用いて説明する。図1は、本発明の複合粒子100の一実施形態を示す模式図であり、有機粒子10の説明のため、被覆層20の一部を図示省略している。図2は、複合粒子100における無機粒子30の概念図であり、テトラエトキシシランの加水分解縮重合物である無機粒子30を示している。本発明の複合粒子100は、有機粒子10と、有機粒子10の表面を覆う被覆層20を有している。被覆層20は、金属アルコキシドの重合物を有して構成されている。複合粒子100は、被覆層20を備えることで、被覆層20を有しない有機粒子10に比べて、耐熱性等が向上し得る。
 尚、以下の説明において、適宜、本発明の好ましい数値範囲を示す場合がある。この場合に、数値範囲の上限および下限に関する好ましい範囲、より好ましい範囲、特に好ましい範囲は、上限および下限のすべての組み合わせから決定することができる。
 また本発明に関し、有機粒子10または無機粒子30の平均粒径は、走査型電子顕微鏡観察(倍率5万倍程度)において撮影された顕微鏡観察写真より、無作為に選択された100個の粒子の粒径を実測し、得られた実測値を用いて算出された算術平均値を意味する。後述する実施例の平均粒径も同様に求めた。
[Composite particles]
Below, the composite particle 100 of this invention is demonstrated using FIG. 1, FIG. FIG. 1 is a schematic view showing an embodiment of the composite particle 100 of the present invention, and a part of the coating layer 20 is not shown for explaining the organic particle 10. FIG. 2 is a conceptual diagram of the inorganic particles 30 in the composite particle 100 and shows the inorganic particles 30 that are hydrolyzed polycondensation products of tetraethoxysilane. The composite particle 100 of the present invention has an organic particle 10 and a coating layer 20 that covers the surface of the organic particle 10. The coating layer 20 is configured to have a metal alkoxide polymer. When the composite particle 100 includes the coating layer 20, heat resistance and the like can be improved as compared to the organic particle 10 that does not have the coating layer 20.
In addition, in the following description, the preferable numerical range of this invention may be shown suitably. In this case, a preferable range, a more preferable range, and a particularly preferable range regarding the upper limit and the lower limit of the numerical range can be determined from all combinations of the upper limit and the lower limit.
In the present invention, the average particle diameter of the organic particles 10 or the inorganic particles 30 is 100 particles randomly selected from a microscopic observation photograph taken in a scanning electron microscope observation (magnification about 50,000 times). It means an arithmetic average value calculated by actually measuring the particle diameter and using the obtained actual measurement value. The average particle diameter of Examples described later was also obtained in the same manner.

 従来技術では、表面に無機粒子が被覆された有機粒子に関し、上述する従来技術1のように応力で有機粒子表面にシリカ粒子を埋め込むように付着させることが開示されるにすぎなかった。これに対し、本発明は、金属アルコキシドの重合物を有して被覆層が構成されており、物理的な応力に拠らず被覆層20を設けることを可能とした。 In the prior art, regarding organic particles whose surfaces are coated with inorganic particles, it has only been disclosed that silica particles are attached to the surface of organic particles by stress as in the above-described prior art 1. In contrast, according to the present invention, the coating layer is configured by including a metal alkoxide polymer, and the coating layer 20 can be provided without depending on physical stress.

 以下における説明では、被覆層20が、金属アルコキシドの重合物から構成された無機粒子30を複数含む態様を例に説明する。ただしこれは本発明を何ら限定するものではない。本発明は、有機粒子の周囲に無機物を含む被覆層を設けることにより、耐熱性等が向上し得る複合粒子を提供することを趣旨とする。したがって、本発明における被覆層は、粒子状の無機物が堆積してなる堆積層、非粒子状の無機物が膜化してなる被覆層、または一部が粒子状の無機物から構成されるとともに他の部分が非粒子状の無機物から構成される態様を包含する。被覆層20に粒子状の無機物(即ち、無機粒子)が含まれるか否かは、走査型電子顕微鏡を用い倍率5万倍程度の観察に基づいて判断し、または複合粒子100の製造方法から判断することが可能である。たとえば、後述するストーバー法を用いた製造方法により製造した複合粒子100における被覆層20は、走査型電子顕微鏡の観察に依らず被覆層20に粒子状の無機物が含まれるものと推察される。尚、ここでいう無機物とは、無機成分のみからなる化合物、または有機成分を含み主として無機成分からなる化合物のいずれも含む。
 以下に、複合粒子100を詳細に説明する。以下における無機粒子30を構成する無機物に関する説明は、適宜、膜化してなる被覆層に含まれる無機物の説明として参照することができる。
In the following description, an example in which the coating layer 20 includes a plurality of inorganic particles 30 composed of a polymer of metal alkoxide will be described. However, this does not limit the present invention in any way. The purpose of the present invention is to provide composite particles whose heat resistance and the like can be improved by providing a coating layer containing an inorganic substance around the organic particles. Therefore, the coating layer in the present invention is a deposition layer formed by depositing a particulate inorganic material, a coating layer formed by forming a non-particulate inorganic material into a film, or a part of which is composed of a particulate inorganic material and another part. Includes an embodiment composed of a non-particulate inorganic substance. Whether or not the coating layer 20 contains particulate inorganic substances (that is, inorganic particles) is determined based on observation at a magnification of about 50,000 times using a scanning electron microscope, or determined from the method for manufacturing the composite particles 100. Is possible. For example, the coating layer 20 in the composite particle 100 manufactured by a manufacturing method using a Stover method to be described later is presumed that the coating layer 20 contains a particulate inorganic substance regardless of observation with a scanning electron microscope. In addition, the inorganic substance here contains both the compound which consists only of an inorganic component, or the compound which mainly consists of an inorganic component including an organic component.
Hereinafter, the composite particle 100 will be described in detail. The description regarding the inorganic substance which comprises the inorganic particle 30 in the following can be referred as description of the inorganic substance contained in the coating layer formed into a film suitably.

(被覆層)
 被覆層20の構成成分は、主として無機粒子30である。ただし、上記構成成分は、本発明の主旨を逸脱しない範囲において無機粒子30以外のその他の成分を含んでいてもよい。ここで、構成成分が主として無機粒子30であるとは、乾燥時における被覆層20を100質量%とした場合、無機粒子30が50質量%以上であることを意味する。耐熱性等の向上の観点からは、上述する無機粒子30は、70質量%以上であることが好ましく、90質量%以上であることがより好ましい。後述する本発明の複合粒子製造方法によれば、被覆層20を、実質的に無機粒子30のみから構成することも可能である。
(Coating layer)
The constituent components of the coating layer 20 are mainly inorganic particles 30. However, the above constituent components may contain other components other than the inorganic particles 30 without departing from the gist of the present invention. Here, the constituent component being mainly the inorganic particles 30 means that the inorganic particles 30 are 50% by mass or more when the coating layer 20 at the time of drying is 100% by mass. From the viewpoint of improving heat resistance and the like, the inorganic particles 30 described above are preferably 70% by mass or more, and more preferably 90% by mass or more. According to the composite particle manufacturing method of the present invention, which will be described later, the coating layer 20 can be substantially composed of only the inorganic particles 30.

 被覆層20は単層であってもよいし、多層に構成されていてもよい。
 多層である被覆層20とは、有機粒子10の周面に2以上の層が積層されて構成される。ここでいう多層は、隣り合う層同士の臨界面が明確である場合、および不明確である場合を含む。たとえば、被覆層20を作製する被覆工程を複数回行うことで、被覆工程の実施の回数と同数の層が積層された多層の被覆層20を構成することができる。覆層20は、多層に構成されることで有意にその厚みが増大され得る。その結果、複合粒子100の耐熱性等の向上が顕著に図られ得る。
 多層の被覆層20に関する好ましい態様の一つとして、被覆層20が無機粒子30より構成されており、被覆層20における一の層を構成する無機粒子30の平均粒径と、上記一の層に隣り合う他の層を構成する無機粒子30の平均粒径が異なる態様が挙げられる。上記態様では、上記一の層と上記他の層との密着性の向上が図られる。かかる観点では、被覆層20が、一の層と、上記一の層の有機粒子10と反対側に隣接する他の層とを有し、上記一の層を構成する無機粒子30の平均粒径が、上記他の層を構成する無機粒子30の平均粒径より大きい態様がより好ましい。かかる態様によれば、相対的に大粒径の無機粒子30によって構成された上記一の層の外周に、相対的に小粒径の無機粒子30によって構成された他の層が積層される。そのため、上記一の層の外面側に露出する当該大粒径の粒子間の隙間を小粒径の無機粒子30で埋めることが可能である。この結果、密な被覆層20が構成される。尚、無機粒子30から構成される多層の被覆層20において、層ごとに無機粒子30の平均粒径を異ならしめる方法は特に限定されない。たとえば繰り返される被覆工程ごとに、用いられる材料の濃度、撹拌数、撹拌速度、または温度などの任意の被覆条件を変更することにより実施可能である。
 また、多層である被覆層20において、隣り合う層は、同種の材料から構成されていてもよいし、異なる材料から構成されていてもよい。ここで異なる材料から構成されるとは、一の層とこれに隣り合う他の層とを構成する材料の組成が互いに異なることを意味する。
The coating layer 20 may be a single layer or may be configured in multiple layers.
The multi-layer coating layer 20 is configured by laminating two or more layers on the peripheral surface of the organic particle 10. The multilayer here includes a case where the critical plane between adjacent layers is clear and a case where the critical plane is unclear. For example, by performing the coating process for producing the coating layer 20 a plurality of times, a multilayer coating layer 20 in which the same number of layers as the number of times of the coating process are stacked can be configured. The thickness of the cover layer 20 can be significantly increased by being configured in multiple layers. As a result, the heat resistance and the like of the composite particle 100 can be significantly improved.
As one of the preferable aspects regarding the multilayer coating layer 20, the coating layer 20 is comprised from the inorganic particle 30, The average particle diameter of the inorganic particle 30 which comprises one layer in the coating layer 20, and said one layer The aspect from which the average particle diameter of the inorganic particle 30 which comprises another adjacent layer differs is mentioned. In the above aspect, the adhesion between the one layer and the other layer is improved. From such a viewpoint, the coating layer 20 has one layer and another layer adjacent to the side opposite to the organic particle 10 of the one layer, and the average particle diameter of the inorganic particles 30 constituting the one layer. However, an aspect larger than the average particle diameter of the inorganic particles 30 constituting the other layer is more preferable. According to this aspect, the other layer constituted by the relatively small particle size inorganic particles 30 is laminated on the outer periphery of the one layer constituted by the relatively large particle size inorganic particles 30. Therefore, it is possible to fill the gaps between the large-sized particles exposed on the outer surface side of the one layer with the small-sized inorganic particles 30. As a result, a dense coating layer 20 is formed. In addition, in the multilayer coating layer 20 composed of the inorganic particles 30, the method for making the average particle diameter of the inorganic particles 30 different for each layer is not particularly limited. For example, it can be carried out by changing any coating conditions such as the concentration of the material used, the number of stirring, the stirring speed, or the temperature for each repeated coating process.
Moreover, in the coating layer 20 which is a multilayer, the adjacent layer may be comprised from the same kind of material, and may be comprised from a different material. Here, being composed of different materials means that the compositions of materials constituting one layer and another layer adjacent thereto are different from each other.

 無機粒子30の構成成分は、主として金属アルコキシドの重合物である。ただし、本発明の主旨を逸脱しない範囲において、金属アルコキシドの重合物以外のその他の成分を含んでいてもよい。ここで、構成成分が主として金属アルコキシドの重合物であるとは、乾燥時における無機粒子30を100質量%とした場合、金属アルコキシドが、50質量%以上であることを意味する。被覆層20の良好な形成という観点からは、上述する金属アルコキシドは、70質量%以上であることが好ましく、90質量%以上であることがより好ましい。 The constituent component of the inorganic particles 30 is mainly a polymer of metal alkoxide. However, in the range which does not deviate from the main point of this invention, other components other than the polymer of a metal alkoxide may be included. Here, that the constituent component is mainly a polymer of metal alkoxide means that the metal alkoxide is 50% by mass or more when the inorganic particles 30 at the time of drying are 100% by mass. From the viewpoint of satisfactory formation of the coating layer 20, the metal alkoxide described above is preferably 70% by mass or more, and more preferably 90% by mass or more.

 本発明において、金属アルコキシドは、一般式M(OR)nで表される化合物またはその変性物である。ここで、Mは金属、nはMの酸化数、Rはアルキル基である。Mで表される金属の例としては、ケイ素、マグネシウム、ゲルマニウム、またはバナジウム等を挙げることができる。 In the present invention, the metal alkoxide is a compound represented by the general formula M (OR) n or a modified product thereof. Here, M is a metal, n is an oxidation number of M, and R is an alkyl group. Examples of the metal represented by M include silicon, magnesium, germanium, vanadium, and the like.

 上記金属アルコキシドの重合物は、上記金属アルコキシドが重合してなる化合物であり、重合方法は、特に限定されない。耐熱性等の向上効果が良好に得られ易いという観点から、本発明の無機粒子30を構成する化合物は、金属アルコキシドの縮重合物であることが好ましく、金属アルコキシドの加水分解物の縮重合物であることがより好ましい。金属アルコキシドは、自身の構造により立体障害を起こす。そのため金属アルコキシドは、縮重合反応の反応性が低い場合がある。そのような場合に、まず金属アルコキシドの加水分解物を生成し、次いで当該加水分解物を縮重合反応させるとよい。これにより高い密度で三次元重合し耐熱性等が高い金属アルコキシドの重合物が得られ得る。金属アルコキシドの三次元重合物は、無機粒子30の構成成分として好ましい。三次元重合物は、直鎖状の重合物に比べ、ナノサイズの粒径の無機粒子30を得やすく、被覆層20を構成し易い。 The polymer of the metal alkoxide is a compound obtained by polymerizing the metal alkoxide, and the polymerization method is not particularly limited. From the viewpoint of easily obtaining good effects such as heat resistance, the compound constituting the inorganic particles 30 of the present invention is preferably a polycondensate of metal alkoxide, and a polycondensate of hydrolyzate of metal alkoxide. It is more preferable that Metal alkoxide causes steric hindrance due to its structure. Therefore, the metal alkoxide may have low reactivity of the condensation polymerization reaction. In such a case, it is preferable to first produce a hydrolyzate of metal alkoxide and then subject the hydrolyzate to a condensation polymerization reaction. Thereby, a polymer of a metal alkoxide having a high density and three-dimensional polymerization and high heat resistance can be obtained. A three-dimensional polymer of metal alkoxide is preferable as a constituent component of the inorganic particles 30. Compared with a linear polymer, the three-dimensional polymer can easily obtain the inorganic particles 30 having a nano-sized particle diameter and can easily form the coating layer 20.

 金属アルコキシドの例としては、たとえば、アルコキシシラン、アルコキシマグネシウム、アルコキシゲルマニウム、またはアルコキシバナジウム等を挙げることができるが、これに限定されない。中でも、金属アルコキシドとして、アルコキシシランは、本発明の無機粒子30を構成する重合物の材料として好ましい。アルコキシシランは、金属アルコキシドの中でも、ナノサイズの粒径であって三次元結合の重合物からなる無機粒子30を構成することが容易である。そのため、アルコキシシランは、望ましい被覆層20を構成可能である。たとえば、ストーバー法の実施により、アルコキシシランからナノサイズであって、比較的粒径が揃った無機粒子30を作製することができる。 Examples of the metal alkoxide include, but are not limited to, alkoxysilane, alkoxymagnesium, alkoxygermanium, alkoxyvanadium, and the like. Among these, as the metal alkoxide, alkoxysilane is preferable as a material for the polymer constituting the inorganic particles 30 of the present invention. Among the metal alkoxides, alkoxysilanes can easily form inorganic particles 30 having a nano-size particle size and made of a three-dimensionally bonded polymer. Therefore, the alkoxysilane can constitute a desirable coating layer 20. For example, by performing the Stover method, it is possible to produce inorganic particles 30 that are nano-sized and have a relatively uniform particle size from alkoxysilane.

 上記アルコキシシランとしては、テトラエトキシシランまたはテトラメトキシシランが好ましい。これらの加水分解縮重合物であれば、ナノサイズの粒径であって三次元結合の重合物からなる無機粒子30を良好に構成することができる。 As the alkoxysilane, tetraethoxysilane or tetramethoxysilane is preferable. With these hydrolytic condensation polymers, inorganic particles 30 having a nano-sized particle size and made of a three-dimensionally bonded polymer can be satisfactorily constituted.

 テトラエトキシシランおよびテトラメトキシシランは、一般的には立体障害により縮重合し難いことが知られる。しかし、所謂ストーバー法を実施することで、本発明における無機粒子30として好ましい化合物を容易に作製することができる。ストーバー法については、後述する。 Tetraethoxysilane and tetramethoxysilane are generally known to be difficult to polycondensate due to steric hindrance. However, by performing the so-called Stover method, a compound preferable as the inorganic particle 30 in the present invention can be easily produced. The Stover method will be described later.

 例えばテトラエトキシシランを加水分解縮重合してなる粒子は、図2に示すように、Si-O-Siなる結合を含み三次元結合して構成される。 For example, particles obtained by hydrolytic condensation polymerization of tetraethoxysilane are constituted by three-dimensional bonds including a bond of Si—O—Si as shown in FIG.

 無機粒子30の平均粒径は特に限定されないが、たとえば、無機粒子30の平均粒径の下限は、3nm以上であることが好ましく、5nm以上であることがより好ましく、10nm以上であることがさらに好ましい。また無機粒子30の平均粒径の上限は、150nm以下であることが好ましく、120nm以下であることがより好ましく、90nm以下であることがさらに好ましい。上記範囲であるナノサイズの無機粒子30は、0.01μmから30μm程度の平均粒径の有機粒子10の表面を隙間なく覆って、被覆層20を構成することに適している。 The average particle diameter of the inorganic particles 30 is not particularly limited. For example, the lower limit of the average particle diameter of the inorganic particles 30 is preferably 3 nm or more, more preferably 5 nm or more, and further preferably 10 nm or more. preferable. Further, the upper limit of the average particle size of the inorganic particles 30 is preferably 150 nm or less, more preferably 120 nm or less, and further preferably 90 nm or less. The nano-sized inorganic particles 30 in the above range are suitable for forming the coating layer 20 by covering the surface of the organic particles 10 having an average particle diameter of about 0.01 μm to 30 μm without any gap.

 被覆層20の被覆量は特に限定されない。複合粒子100の耐熱性等を有意に向上させるという観点では、複合粒子100を100質量%とした場合、被覆層20の質量が、10質量%以上70質量%以下であることが好ましく、20質量%以上60質量%以下であることがより好ましい。被覆層20の被覆量が上記数値範囲以上である場合には、顕著な耐熱性等の向上効果が得られやすい。また当該被覆量が上記数値範囲の上限以下である場合には、有機粒子10の有する本来の作用効果が良好に発揮され易い。尚、上述する複合粒子100に対する被覆層20の質量比は、複合粒子100の質量W1を測定し、次いで複合粒子100を熱重量/示差熱測定試験(示差熱-熱重量同時測定;TG-DTA)に供し、燃焼終了後の残存物の質量W2を測定し、W1に対するW2の百分率(%)を算出して求めたものでる。 The coating amount of the coating layer 20 is not particularly limited. In terms of significantly improving the heat resistance and the like of the composite particle 100, when the composite particle 100 is 100% by mass, the mass of the coating layer 20 is preferably 10% by mass to 70% by mass, and 20% by mass. It is more preferable that the content is not less than 60% and not more than 60% by mass. When the coating amount of the coating layer 20 is equal to or greater than the above numerical range, a remarkable improvement effect such as heat resistance is easily obtained. Moreover, when the coating amount is equal to or less than the upper limit of the above numerical range, the original function and effect of the organic particles 10 are easily exhibited satisfactorily. The mass ratio of the coating layer 20 to the composite particle 100 described above is that the mass W1 of the composite particle 100 is measured, and then the composite particle 100 is subjected to a thermogravimetric / differential thermal measurement test (simultaneous differential thermal-thermogravimetric measurement; TG-DTA). ), The mass W2 of the residue after the end of combustion is measured, and the percentage (%) of W2 with respect to W1 is calculated.

(有機粒子)
 次に有機粒子10について説明する。有機粒子10は、任意の有機物を主体として構成される粒状の化合物である。有機粒子10は、無機物に比べて耐熱性等が充分でない場合があるが、本発明の複合粒子100は、被覆層20を備えるため、有機粒子10単体に比べ耐熱性等が改善される。尚、本発明における有機粒子10は、実質的に有機物のみからなる粒子、または有機物を主体とし無機物を含む粒子のいずれの態様も含む。尚、本発明に関し有機物とは、重合性の有機化合物、既に重合した有機化合物、またはこれらの混合である重合性有機物、および非重合性の有機化合物を主体とする非重合性有機物を包含する。
(Organic particles)
Next, the organic particles 10 will be described. The organic particle 10 is a granular compound mainly composed of an arbitrary organic substance. Although the organic particles 10 may not have sufficient heat resistance or the like as compared with the inorganic material, the composite particles 100 of the present invention include the coating layer 20, so that the heat resistance and the like are improved compared to the organic particles 10 alone. In addition, the organic particle 10 in the present invention includes any form of a particle substantially made only of an organic substance or a particle mainly containing an organic substance and containing an inorganic substance. In the present invention, the organic substance includes a polymerizable organic compound, an already polymerized organic compound, a polymerizable organic substance that is a mixture thereof, and a non-polymerizable organic substance mainly composed of a non-polymerizable organic compound.

 たとえば有機粒子10は、(メタ)アクリル系樹脂を含んで構成される。(メタ)アクリル系樹脂は、重合性有機物の一例である。(メタ)アクリル系樹脂から構成される有機粒子10は、幅広い技術分野において用いられている。(メタ)アクリル系樹脂から構成される有機粒子10に被覆層20を設けた複合粒子100は、耐熱性等が改善され得るため、より厳しい使用環境や新しい技術分野に用いることが可能である。尚、本明細書において、(メタ)アクリル系樹脂とは、アクリル系樹脂又はメタクリル系樹脂を意味し、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。 For example, the organic particles 10 are configured to include a (meth) acrylic resin. The (meth) acrylic resin is an example of a polymerizable organic material. Organic particles 10 composed of (meth) acrylic resins are used in a wide range of technical fields. Since the composite particles 100 in which the coating layer 20 is provided on the organic particles 10 made of (meth) acrylic resin can be improved in heat resistance and the like, it can be used in more severe use environments and new technical fields. In the present specification, (meth) acrylic resin means acrylic resin or methacrylic resin, and (meth) acrylate means acrylate or methacrylate.

 上記アクリル系樹脂または上記メタクリル系樹脂は、(メタ)アクリレート系の単官能モノマー、2官能モノマー、または多官能モノマーのいずれか、または2以上を用いて重合された重合物である。中でも、有機粒子10を構成する材料として、2官能または多官能の(メタ)アクリル系モノマーが含まれる態様が好ましい。上記態様は、無機粒子30を有機粒子10の表面に堆積させ易い。これにより耐熱性等の向上に充分に寄与する被覆層20が形成され易い。尚、本発明に関し、無機粒子30を有機粒子10の表面に堆積させるとは、有機粒子10の平均粒径より小さい平均粒径の無機粒子30を、有機粒子10の表面に衝突などの物理的な応力によらず付着させることを意味する。上記付着は、有機粒子10と無機粒子30との化学的な結合若しくは分子間引力、無機粒子30同士の化学的な結合若しくは分子間引力、またはこれらの組み合わせで実現可能である。 The acrylic resin or the methacrylic resin is a polymer obtained by polymerization using one or more of (meth) acrylate monofunctional monomer, bifunctional monomer, or polyfunctional monomer. Especially, the aspect in which a bifunctional or polyfunctional (meth) acrylic-type monomer is contained as a material which comprises the organic particle 10 is preferable. In the above aspect, the inorganic particles 30 are easily deposited on the surface of the organic particles 10. Thereby, the coating layer 20 that sufficiently contributes to improvement in heat resistance and the like is easily formed. In the present invention, the term “depositing the inorganic particles 30 on the surface of the organic particles 10” means that the inorganic particles 30 having an average particle size smaller than the average particle size of the organic particles 10 are physically collided with the surface of the organic particles 10. It means that it adheres regardless of the stress. The adhesion can be realized by a chemical bond between the organic particles 10 and the inorganic particles 30 or an intermolecular attractive force, a chemical bond between the inorganic particles 30 or an intermolecular attractive force, or a combination thereof.

 上記単官能の(メタ)アクリル系モノマーとしては、ステアリル(メタ)アクリレート、イソボニル(メタ)アクリレート、ラウリル(メタ)アクリレート、又はトリデシル(メタ)アクリレートなどが例示される。
 上記2官能の(メタ)アクリル系モノマーとしては、たとえば、トリシクロデカンジメタノールジ(メタ)アクリレート又はポリプロピレングリコールジ(メタ)アクリレート等のジ(メタ)アクリレート類が例示される。
Examples of the monofunctional (meth) acrylic monomer include stearyl (meth) acrylate, isobornyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (meth) acrylate.
Examples of the bifunctional (meth) acrylic monomer include di (meth) acrylates such as tricyclodecane dimethanol di (meth) acrylate or polypropylene glycol di (meth) acrylate.

 上記多官能(メタ)アクリレート系モノマーは、官能基を3つ以上含む(メタ)アクリレート系モノマーであり、官能基の数は、衝突による応力に拠らず無機粒子30を有機粒子10の表面に良好に堆積させるという観点からは、3官能以上であることが好ましく、4官能以上であることがより好ましい。上記多官能(メタ)アクリレート系樹脂の例としては、たとえば、ポリエステルアクリレート、ジペンタエリスリトールペンタアクリレート、またはジペンタエリスリトールヘキサアクリレート等が例示される。 The polyfunctional (meth) acrylate monomer is a (meth) acrylate monomer containing three or more functional groups, and the number of functional groups depends on the stress caused by the collision. From the viewpoint of good deposition, it is preferably trifunctional or higher, more preferably tetrafunctional or higher. Examples of the polyfunctional (meth) acrylate resin include polyester acrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and the like.

 無機粒子30を有機粒子10の表面に堆積させて良好に被覆層20を構成させ易いという観点からは、有機粒子10は、極性基を備える化合物を含むことが好ましい。ここで極性基とは、有機粒子10に極性を付与可能な反応基のことを意味する。上記反応基としては、カルボキシル基などの電子吸引基、またはアミノ基などの電子供与基が含まれる。極性基を備える化合物を含む有機粒子10は、たとえば、有機粒子10を構成する基材樹脂に任意の極性基を備える化合物が結合している態様、または有機粒子10の内部に極性基を有する化合物が単に埋まっている態様を含む。また複合粒子100において極性基とは、他の反応基と結合する前の状態のもの、または他の反応基と結合した状態のものを含む。 From the viewpoint of easily depositing the inorganic particles 30 on the surface of the organic particles 10 to easily form the coating layer 20, the organic particles 10 preferably contain a compound having a polar group. Here, the polar group means a reactive group capable of imparting polarity to the organic particles 10. Examples of the reactive group include an electron-withdrawing group such as a carboxyl group or an electron-donating group such as an amino group. The organic particle 10 containing a compound having a polar group is, for example, an embodiment in which a compound having an arbitrary polar group is bonded to a base resin constituting the organic particle 10 or a compound having a polar group inside the organic particle 10 Including an embodiment in which is simply buried. In the composite particle 100, the polar group includes a state before being bonded to another reactive group, or a state in which the polar group is bonded to another reactive group.

 極性基を備える化合物としては、たとえば、カルボキシ-ポリカプロラクトンモノアクリレートなどのカルボン酸含有アクリレート、グリシジルメタクリレートなどのエポキシ基含有アクリレート、または4-ヒドロキシブチルアクリレートなどの水酸基含有アクリレートなどが例示される。中でも後述するストーバー法において、無機粒子30とカルボキシル基とを良好に結合させて被覆層20を構成することができるという観点からは、極性基を備える化合物として、カルボン酸含有アクリレートが好ましい。 Examples of the compound having a polar group include carboxylic acid-containing acrylates such as carboxy-polycaprolactone monoacrylate, epoxy group-containing acrylates such as glycidyl methacrylate, and hydroxyl group-containing acrylates such as 4-hydroxybutyl acrylate. Among these, from the viewpoint that the coating layer 20 can be formed by satisfactorily bonding the inorganic particles 30 and the carboxyl group in the Stover method described later, a carboxylic acid-containing acrylate is preferable as the compound having a polar group.

 上述する極性基を備える化合物の好ましい態様として、シランカップリング剤を挙げることができる。シランカップリング剤は、分子中に異なった2以上の反応基を有している。そのため、シランカップリング剤は、1つの反応基において有機粒子10を構成する化合物と結合するとともに、他の反応基において被覆層20を構成する無機物と結合する。上記結合により、有機粒子10の外周に良好に被覆層20が形成され得る。即ち、有機粒子10がシランカップリング剤を含んでいることによって、有機粒子10と無機粒子30とが上記シランカップリング剤によって化学的に充分に結合する。この結果、被覆層20が良好に形成される。ここで、シランカップリング剤とは、シランを含み、かつ1つの分子中に反応性の異なる2種類の官能基を持っている化合物のことを意味する。上記シランカップリング剤としては、無機材料と化学結合可能である第一の官能基(例えばメトキシ基またはエトキシ基等)および有機材料と化学結合可能である第二の官能基(たとえばビニル基、エポキシ基、アミノ基、(メタ)アクリル基、スチリル基、またはメルカプト基等)を備えるものが好ましい。中でも、有機粒子10を構成するモノマーと同種の官能基を有するシランカップリング剤が選択されることが好ましい。例えば、有機粒子10を構成するために用いるモノマーが(メタ)アクリレート系モノマーである場合には、一方の官能基として(メタ)アクリル基を有するシランカップリング剤が好適である。 As a preferred embodiment of the compound having a polar group described above, a silane coupling agent can be exemplified. The silane coupling agent has two or more different reactive groups in the molecule. Therefore, the silane coupling agent binds to the compound constituting the organic particle 10 in one reactive group and binds to the inorganic substance constituting the coating layer 20 in the other reactive group. By the bonding, the coating layer 20 can be favorably formed on the outer periphery of the organic particle 10. That is, since the organic particles 10 contain a silane coupling agent, the organic particles 10 and the inorganic particles 30 are chemically bonded sufficiently by the silane coupling agent. As a result, the coating layer 20 is formed satisfactorily. Here, the silane coupling agent means a compound containing silane and having two types of functional groups having different reactivity in one molecule. Examples of the silane coupling agent include a first functional group that can be chemically bonded to an inorganic material (for example, methoxy group or ethoxy group) and a second functional group that can be chemically bonded to an organic material (for example, vinyl group, epoxy). And a group having an amino group, an amino group, a (meth) acryl group, a styryl group, or a mercapto group) are preferable. Among these, it is preferable to select a silane coupling agent having the same functional group as that of the monomer constituting the organic particles 10. For example, when the monomer used to constitute the organic particles 10 is a (meth) acrylate monomer, a silane coupling agent having a (meth) acryl group as one functional group is suitable.

 上記シランカップリング剤の具体例としては、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、若しくは3-メタクリロキシプロピルトリエトキシシラン等のメタクリル基を備えるメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン等のアクリル基を備えるアクリル系シランカップリング剤;ビニルトリメトキシシラン若しくはビニルトリエトキシシラン等のビニル基を備えるビニル系シランカップリング剤;2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、若しくは3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を備えるエポキシ系シランカップリング剤;p-スチリルトリメトキシシラン等のスチリル基を備えるスチリル系シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1、3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン若しくはN-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩等のアミノ基を備えるアミノ系シランカップリング剤;または、3-メルカプトプロピルメチルジメトキシシラン、若しくは3-メルカプトプロピルトリメトキシシラン等のメルカプト基を備えるメルカプト系シランカップリング剤等が例示される。
 上述するシランカップリング剤において、有機粒子10と良好に結合し易いという観点からは、官能基に二重結合を含むビニル系シランカップリング剤、スチリル系シランカップリング剤、メタクリル系シランカップリング剤、またはアクリル系シランカップリング剤が好ましく、中でもメタクリル系シランカップリング剤、またはアクリル系シランカップリング剤がより好ましい。
Specific examples of the silane coupling agent include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane. Methacrylic silane coupling agent with methacrylic group; Acrylic silane coupling agent with acrylic group such as 3-acryloxypropyltrimethoxysilane; Vinyl-based silane with vinyl group such as vinyltrimethoxysilane or vinyltriethoxysilane Coupling agent; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glyci Epoxy-based silane coupling agents having an epoxy group such as xylpropylmethyldiethoxysilane or 3-glycidoxypropyltriethoxysilane; styryl-based silane coupling agents having a styryl group such as p-styryltrimethoxysilane; N -2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3 -Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane or N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane Amino groups such as hydrochloride Amino-based silane coupling agent comprising; or 3-mercaptopropyl methyl dimethoxy silane, or 3-mercaptopropyltrimethoxysilane mercapto silane coupling agent comprising a mercapto group such as and the like.
In the silane coupling agent described above, from the viewpoint of easy bonding with the organic particles 10, a vinyl silane coupling agent containing a double bond in the functional group, a styryl silane coupling agent, and a methacrylic silane coupling agent. Or, an acrylic silane coupling agent is preferable, and a methacrylic silane coupling agent or an acrylic silane coupling agent is more preferable.

 有機粒子10は、上述のとおり(メタ)アクリル系樹脂などの有機物から構成されるが、任意で他の材料を含んでいてもよい。上記他の材料としては、有機粒子10を作製するための種々の添加剤、または有機粒子10に特定の機能を付与するための機能性材料などが挙げられる。即ち、本発明は、有機粒子10が、機能性材料を含む態様を包含する。
 有機粒子10に特定の機能を付与するための機能性材料が含有され、かつ、その有機粒子10の表面に被覆層20が設けられることで、特定の機能が付与された有機粒子10の耐熱性等が向上する。この場合、有機粒子10を構成する有機物自体は、もっぱら機能性材料を担持するに過ぎない態様、有機物自体にも何らかの機能が期待される態様、または有機物と機能性材料との関連で何らかの機能が発揮される態様のいずれであってもよい。
The organic particles 10 are made of an organic material such as a (meth) acrylic resin as described above, but may optionally contain other materials. Examples of the other materials include various additives for producing the organic particles 10 or functional materials for imparting a specific function to the organic particles 10. That is, this invention includes the aspect in which the organic particle 10 contains a functional material.
The functional material for imparting a specific function to the organic particles 10 is contained, and the coating layer 20 is provided on the surface of the organic particles 10, whereby the heat resistance of the organic particles 10 to which the specific functions are imparted. Etc. are improved. In this case, the organic substance itself that constitutes the organic particles 10 has an aspect in which only a functional material is supported, an aspect in which the organic substance itself is expected to have some function, or some function in relation to the organic substance and the functional material. Any of the modes to be exhibited may be used.

 ここでいう有機粒子10に特定の機能を付与するための機能性材料とは、特に限定されない。上記機能性材料としては、たとえば有機半導体材料若しくは無機半導体材料などの半導体材料、ジルコニア材料、シリカ材料若しくはアルミナ材料などの金属または金属酸化物、有機導電性材料若しくは金属導電性材料などの導電材料、紫外線吸収剤(UVA)、またはセルロースナノファイバー(CNF)などが例示される。なかでも上記機能性材料が、比較的、耐熱性が低い材料である場合、あるいは、使用環境において高温が予定される場合などは、複合粒子100における有機粒子10に上記機能性材料が含有されることが好ましい。上記機能性材料自体の耐熱性向上の効果が実質的に発揮されるからである。上記機能性材料は、有機粒子に含有される範囲において、形状、含有量または寸法などは特に限定されない。機能性材料の形状としては、たとえば粒子状、粉末状または繊維状などが挙げられるが、これに限定されない。 Here, the functional material for imparting a specific function to the organic particles 10 is not particularly limited. Examples of the functional material include a semiconductor material such as an organic semiconductor material or an inorganic semiconductor material, a metal or metal oxide such as a zirconia material, a silica material or an alumina material, a conductive material such as an organic conductive material or a metal conductive material, Examples include ultraviolet absorbers (UVA) and cellulose nanofibers (CNF). In particular, when the functional material is a material with relatively low heat resistance, or when a high temperature is expected in the use environment, the functional material is contained in the organic particles 10 in the composite particle 100. It is preferable. This is because the effect of improving the heat resistance of the functional material itself is substantially exhibited. The shape, content, or size of the functional material is not particularly limited as long as it is contained in the organic particles. Examples of the shape of the functional material include, but are not limited to, a particle shape, a powder shape, and a fiber shape.

 有機粒子10に含まれる機能性材料の例としては、粒子状の半導体材料(以下、半導体粒子と称呼する)が挙げられる。たとえば、有機粒子10は半導体粒子を1個または2個以上含んでいてもよい。
 ここでいう半導体粒子とは、半導体の性質を備える粒子状の材料を指す。上記半導体粒子としては、所謂、量子ドット(Quantum dot;QDとも称する)と呼ばれる粒径がナノサイズの蛍光性の微粒子を含む。量子ドットは、紫外線などの励起波長を与えると、粒径により異なる特定波長の明るい蛍光を発する、演色性に優れた材料である。近年、量子ドットは、表示デバイス等の技術分野における発光材料等の分野で利用が試みられている。量子ドットは、数nmの粒径の微粒子であることが一般的であり、量子ドットをそのまま担持体に充填すると凝集が発生する虞がある。これに対し、1個または2個以上の量子ドットを含有する有機粒子10に被覆層20が設けられてなる蛍光性の複合粒子100であれば、量子ドットの凝集を回避することができる。加えて複合粒子100は耐熱性に優れるため、上述する蛍光性の複合粒子100は、繰り返しの紫外線照射や加熱に耐え得る優れた効果を有する蛍光材料を提供することが可能である。上記蛍光性の複合粒子100は、量子ドットの寿命を増大させ得る。上述する蛍光性の複合粒子100は、表示デバイスに用いられる蛍光材料として好適である。しかし蛍光性の複合粒子100は、これ以外の技術分野における利用(例えば生体内における蛍光プローブの利用)も可能であり、上記優れた効果は各技術分野で望ましく発揮され得る。
Examples of the functional material contained in the organic particles 10 include a particulate semiconductor material (hereinafter referred to as semiconductor particles). For example, the organic particles 10 may include one or more semiconductor particles.
The term “semiconductor particles” as used herein refers to a particulate material having semiconductor properties. The semiconductor particles include so-called quantum dots (also referred to as Quantum dots; QD), which are fluorescent fine particles having a nano-size particle size. A quantum dot is a material with excellent color rendering properties that emits bright fluorescence having a specific wavelength depending on the particle diameter when an excitation wavelength such as ultraviolet rays is applied. In recent years, quantum dots have been tried to be used in the field of luminescent materials in the technical field of display devices and the like. The quantum dots are generally fine particles having a particle size of several nm, and there is a possibility that aggregation occurs when the quantum dots are filled into the carrier as they are. On the other hand, the aggregation of quantum dots can be avoided with the fluorescent composite particles 100 in which the coating layer 20 is provided on the organic particles 10 containing one or more quantum dots. In addition, since the composite particles 100 are excellent in heat resistance, the fluorescent composite particles 100 described above can provide a fluorescent material having an excellent effect that can withstand repeated ultraviolet irradiation and heating. The fluorescent composite particle 100 can increase the lifetime of the quantum dots. The fluorescent composite particle 100 described above is suitable as a fluorescent material used in a display device. However, the fluorescent composite particle 100 can be used in other technical fields (for example, using a fluorescent probe in a living body), and the above-described excellent effects can be desirably exhibited in each technical field.

 有機粒子10の平均粒径は特に限定されないが、たとえば0.01μm以上30μm以下であることが好ましく0.5μm以上10μm以下であることがより好ましい。かかる平均粒径は、種々の技術分野において用いられている有機粒子として、形態保持性、製造容易性または任意の材料に添加されたときの分散性等の観点から、好適なサイズである。上記範囲の平均粒径を示す有機粒子10の表面に堆積させる無機粒子30の平均粒径が、上述する数値範囲であることは、特に好ましい。上記範囲の平均粒径である無機粒子30は、上記平均粒径の有機粒子10の周面に密に堆積して当該周面の略全体を被覆可能な被覆層20を形成し易い。 The average particle diameter of the organic particles 10 is not particularly limited, but is preferably 0.01 μm or more and 30 μm or less, and more preferably 0.5 μm or more and 10 μm or less. The average particle size is a suitable size as organic particles used in various technical fields from the viewpoints of form retention, ease of production, dispersibility when added to any material, and the like. It is particularly preferable that the average particle size of the inorganic particles 30 deposited on the surface of the organic particles 10 having the average particle size in the above range is in the numerical range described above. The inorganic particles 30 having an average particle diameter in the above range are easily deposited on the peripheral surface of the organic particles 10 having the average particle diameter, and can easily form the coating layer 20 that can cover substantially the entire peripheral surface.

 また複合粒子100において、有機粒子10の平均粒径が0.01μm以上30μm以下であり、被覆層20の平均膜厚が5nm以上400nm以下であることは本実施態様における好ましい例である。適度な範囲の平均粒径を示す有機粒子10の周面を上記数値範囲の膜厚を示す無機物である被覆層20で被覆することによって、有機粒子10の本来の機能を充分に発揮させつつ、耐熱性等を良好に向上させることができる。尚、上述する被覆層20の平均膜厚は、無作為に選択された5個の複合粒子100の切断面を走査型電子顕微鏡写真(倍率5万倍)において観察し、各複合粒子100の被覆層20において、周方向に等間隔で3ヶ所選択して厚みを実測し、全ての実測値を算術平均して求めた平均値を指す。 In the composite particle 100, the average particle diameter of the organic particles 10 is 0.01 μm or more and 30 μm or less, and the average film thickness of the coating layer 20 is 5 nm or more and 400 nm or less, which is a preferable example in this embodiment. By covering the peripheral surface of the organic particles 10 exhibiting an average particle size in an appropriate range with the coating layer 20 that is an inorganic material having a film thickness in the numerical range, the organic particles 10 can sufficiently exhibit their original functions, Heat resistance etc. can be improved favorably. In addition, the average film thickness of the coating layer 20 described above is obtained by observing the cut surfaces of five randomly selected composite particles 100 in a scanning electron micrograph (magnification 50,000 times), and covering each composite particle 100 with a coating. In the layer 20, three points are selected at equal intervals in the circumferential direction, the thickness is measured, and an average value obtained by arithmetically averaging all the measured values is indicated.

[複合粒子製造方法]
 次に本発明の複合粒子製造方法(以下、本発明の製造方法ともいう)について説明する。以下に説明する本発明の製造方法は、本発明の複合粒子の製造方法の好ましい態様であるが、本発明の主旨を逸脱しない範囲において、複合粒子の製造方法は、以下に示す内容の一部を適宜変更し、あるいは追加の工程を実施してもよい。以下に示す本発明の製造方法によれば、無機粒子を含む被覆層を備える複合粒子を作製することができる。本発明の複合粒子の異なる製造方法として、一般的なゾルゲル法の実施工程を含む製造方法により、有機粒子の周囲に粒子形状が特定されない無機物が膜化してなる被覆層を備える複合粒子を作製可能である。尚、本発明の複合粒子、およびこれを構成する各材料等については、上述する複合粒子100に関する説明を参照することができるため、以下の説明では適宜割愛する。
[Composite particle production method]
Next, the composite particle manufacturing method of the present invention (hereinafter also referred to as the manufacturing method of the present invention) will be described. The production method of the present invention described below is a preferred embodiment of the production method of the composite particles of the present invention. However, within the scope not departing from the gist of the present invention, the production method of the composite particles includes a part of the following contents. May be changed as appropriate, or additional steps may be performed. According to the production method of the present invention described below, composite particles including a coating layer containing inorganic particles can be produced. As a different production method of the composite particle of the present invention, a composite particle including a coating layer formed by forming an inorganic substance whose particle shape is not specified around an organic particle can be produced by a production method including a general sol-gel method. It is. In addition, about the composite particle of this invention and each material which comprises this, since the description regarding the composite particle 100 mentioned above can be referred, it omits suitably in the following description.

 本発明の製造方法は、無機粒子作製工程と、被覆工程とを備える。無機粒子作製工程は、金属アルコキシドを重合し無機粒子を作製する工程である。また被覆工程は、無機粒子作製工程で作製された無機粒子を有機粒子の周囲に堆積させて被覆層を形成する工程である。本発明の製造方法は、コアとなる有機粒子の形状を変形させ、または破壊することなく、無機物で被覆された有機粒子を備える複合粒子を製造可能である。以下に、被覆工程において用いられる有機粒子を作製する有機粒子作製工程も含めた態様について説明する。 The manufacturing method of the present invention includes an inorganic particle preparation step and a coating step. The inorganic particle preparation step is a step of preparing inorganic particles by polymerizing metal alkoxide. The coating step is a step of forming a coating layer by depositing the inorganic particles produced in the inorganic particle production step around the organic particles. The production method of the present invention can produce composite particles comprising organic particles coated with an inorganic substance without deforming or destroying the shape of the organic particles that serve as the core. Below, the aspect also including the organic particle preparation process which produces the organic particle used in a coating process is demonstrated.

(有機粒子作製工程)
 有機粒子作製工程において、有機粒子は、所望の平均粒径の有機粒子を作製可能な従来公知の方法(例えば懸濁重合または乳化重合等)にて調製される。所望の平均粒径範囲の有機粒子を調製し易く、また必要に応じて量子ドット等の任意材料を粒子内部に含有させ易い等の観点から、懸濁重合により有機粒子を作製する有機粒子作製工程が好ましく実施される。
 より具体的には、有機粒子作製工程は、アクリルモノマー等の有機材料を水または水性溶媒中に添加し、機械的に撹拌して懸濁し懸濁粒子を形成し、熱エネルギーや光エネルギーを付加することによって当該懸濁粒子を構成する有機材料を重合させて有機粒子を作製する。懸濁時における撹拌条件は、公知の懸濁重合方法を参考に適宜決定してよいが、たとえば2000rpm以上20000rpm以下の回転数で、1分以上1時間以下程度、撹拌するとよい。重合反応時には水または水性溶媒中にて懸濁粒子が分散状態を保てるように攪拌しておくとよい。この攪拌は100rpm以上500rpm以下程度が望ましい。必要に応じて、有機材料とともに、ラジカル発生剤等の重合開始剤やポリビニルアルコール等の懸濁安定剤等が添加されるとよい。量子ドットなどの所望の機能を発揮する任意材料を含有する有機粒子を調製する場合、任意材料と有機粒子を構成するための有機材料とを含有する混合液を用い懸濁重合するとよい。これにより当該任意材料を内部に保持した有機粒子を調製することができる。たとえば、量子ドットを含有する有機粒子を懸濁重合により調製する場合、混合液に添加する量子ドットの量を調製することで、量子ドットが1個、または複数個含有された有機粒子を調製可能である。
(Organic particle production process)
In the organic particle production step, the organic particles are prepared by a conventionally known method (for example, suspension polymerization or emulsion polymerization) capable of producing organic particles having a desired average particle diameter. From the viewpoint that it is easy to prepare organic particles having a desired average particle size range, and to easily include an optional material such as a quantum dot inside the particles as needed, an organic particle production step for producing organic particles by suspension polymerization Is preferably implemented.
More specifically, in the organic particle preparation step, an organic material such as an acrylic monomer is added to water or an aqueous solvent, suspended by mechanical stirring to form suspended particles, and heat energy or light energy is added. As a result, the organic material constituting the suspended particles is polymerized to produce organic particles. The stirring conditions during suspension may be appropriately determined with reference to a known suspension polymerization method. For example, the stirring may be performed at a rotational speed of 2000 rpm to 20000 rpm for 1 minute to 1 hour. During the polymerization reaction, stirring may be performed so that suspended particles can be dispersed in water or an aqueous solvent. The stirring is desirably about 100 rpm to 500 rpm. If necessary, a polymerization initiator such as a radical generator or a suspension stabilizer such as polyvinyl alcohol may be added together with the organic material. When preparing an organic particle containing an arbitrary material that exhibits a desired function such as a quantum dot, suspension polymerization may be performed using a mixed liquid containing the arbitrary material and an organic material for constituting the organic particle. Thereby, the organic particle which hold | maintained the said arbitrary material inside can be prepared. For example, when preparing organic particles containing quantum dots by suspension polymerization, it is possible to prepare organic particles containing one or more quantum dots by adjusting the amount of quantum dots added to the mixture. It is.

 有機粒子10に極性基を付与する方法は特に限定されないが、たとえば、有機粒子10を構成するモノマーおよび極性基を備える化合物を用い、懸濁重合することで極性基を備える化合物を含む有機粒子を容易に作製することができる。 The method for imparting a polar group to the organic particles 10 is not particularly limited. For example, organic particles containing a compound having a polar group by suspension polymerization using a monomer and a compound having a polar group constituting the organic particle 10 are used. It can be easily manufactured.

 たとえば、有機粒子10を構成するモノマーおよびシランカップリング剤を用い、懸濁重合することで、シランカップリング剤の一つの反応基と上記モノマーとが結合するとともに、シランカップリング剤の他の反応基(極性基)を備える有機粒子10を容易に作製することができる。 For example, by using the monomer and the silane coupling agent that constitute the organic particle 10 and suspension polymerization, one reactive group of the silane coupling agent and the monomer are combined with each other, and another reaction of the silane coupling agent is performed. Organic particles 10 having a group (polar group) can be easily produced.

 尚、本発明の製造方法において、上述する有機粒子作製工程を実施する替りに、市販の有機粒子を適宜準備し、後述する被覆工程に用いてもよい。 In addition, in the manufacturing method of this invention, instead of implementing the organic particle preparation process mentioned above, you may prepare commercially available organic particle suitably and may use it for the coating process mentioned later.

(無機粒子作製工程)
 無機粒子作製工程は、所望の平均粒径の粒子を作製可能な公知の方法から適宜選択して実施される。たとえば無機粒子作製工程は、ゾルゲル法の実施を含むことが好ましい。本実施形態におけるゾルゲル法とは、金属アルコキシドの溶液を用い、当該金属アルコキシドの加水分解、重縮合を行い、無機粒子を作製する方法を意味する。ゾルゲル法の実施により、金属アルコキシドの重合物であって、平均粒径がナノサイズであり、かつ粒径が比較的揃った無機粒子を容易に作製できる。また、後述するとおり、有機粒子の存在下で、無機粒子作製工程および被覆工程を実施する場合に、ゾルゲル法であれば、当該有機粒子が燃焼し、または分解する温度未満で反応をさせて無機粒子を調製することができ、複合粒子の製造を一連の工程で実施することが可能である。
(Inorganic particle production process)
The inorganic particle production step is performed by appropriately selecting from known methods capable of producing particles having a desired average particle diameter. For example, it is preferable that the inorganic particle preparation step includes implementation of a sol-gel method. The sol-gel method in the present embodiment means a method for producing inorganic particles by using a metal alkoxide solution, hydrolyzing and polycondensing the metal alkoxide. By carrying out the sol-gel method, inorganic particles having a metal alkoxide polymer having an average particle size of nano-size and a relatively uniform particle size can be easily produced. Further, as will be described later, when the inorganic particle preparation step and the coating step are performed in the presence of organic particles, if the sol-gel method is used, the reaction is performed at a temperature lower than the temperature at which the organic particles are burned or decomposed. Particles can be prepared and composite particles can be manufactured in a series of steps.

 たとえば、金属アルコキシドが、アルコキシシランである場合、無機粒子作製工程において、ストーバー法を実施することが好ましい。本発明において、ストーバー法とは上述するゾルゲル法の一種であり、多量の塩基性溶媒中において、アルコキシシランを加水分解し、次いで縮重合させることで、粒子状の縮重合物を提供する方法を指す。より具体的には、例えばエタノール等を加えた塩基性溶媒中にテトラエトキシシランを添加し、100rpm以上1500rpm以下の回転数で、2時間以上48時間以下の範囲で、緩やかに撹拌する。この際、好ましくは25℃以下の液温で撹拌する。上記回転速度に関し、最外周速度は、0.1m/s以上10m/s以下の範囲であることが好ましい。たとえばマグネチックスターラー等を使用し、緩やかに撹拌するとよい。これにより、下記式1の加水分解反応が生じ、当該反応が促進されることで、テトラエトキシシシランのアルコキシ基が全て加水分解され、最終的にSi(OH)4が得られる。さらに撹拌が持続されることで、下記式2のとおり、2分子のSi(OH)4の間で縮重合反応が生じ、これが促進されてアルコキシシランの加水分解縮重合物が得られる。 For example, when the metal alkoxide is alkoxysilane, the Stover method is preferably performed in the inorganic particle manufacturing step. In the present invention, the Stover method is a kind of the sol-gel method described above, and a method for hydrolyzing an alkoxysilane in a large amount of a basic solvent and then subjecting it to condensation polymerization to provide a particulate condensation polymer. Point to. More specifically, for example, tetraethoxysilane is added to a basic solvent to which ethanol or the like is added, and gently stirred at a rotation speed of 100 rpm to 1500 rpm for 2 hours to 48 hours. At this time, the mixture is preferably stirred at a liquid temperature of 25 ° C. or lower. Regarding the rotational speed, the outermost peripheral speed is preferably in the range of 0.1 m / s to 10 m / s. For example, a magnetic stirrer or the like may be used and gently stirred. Thereby, the hydrolysis reaction of the following formula 1 occurs, and the reaction is promoted, whereby all the alkoxy groups of tetraethoxysilane are hydrolyzed, and finally Si (OH) 4 is obtained. When the stirring is further continued, as shown in the following formula 2, a polycondensation reaction occurs between two molecules of Si (OH) 4 , and this is accelerated to obtain a hydrolytic polycondensation product of alkoxysilane.

[化1]
nSi(OC254n2
 →nSi(OH)(OC253n25OH(式1)
[Chemical 1]
n Si (OC 2 H 5 ) 4 + n H 2 0
n Si (OH) (OC 2 H 5 ) 3 + n C 2 H 5 OH (Formula 1)

[化2]
Si(OH)4+Si(OH)4→(OH)3Si-O-Si(OH)3(式2)
[Chemical formula 2]
Si (OH) 4 + Si (OH) 4 → (OH) 3 Si—O—Si (OH) 3 (Formula 2)

 アルコキシシランを、酸性溶媒中で加水分解し、次いで縮重合させることもできるが、これによれば、得られる加水分解縮重合物が、直鎖状に近い構造となる。一方、塩基性溶媒下において、アルコキシシランを加水分解および縮重合をさせることで、密度が高く三次元化の進んだ重合物が得られる。無機粒子により被覆層を構成し、これによりコアとなる有機粒子の耐熱性等を向上させるという観点からは、無機粒子は、三次元化が進んだ重合物から構成されることが好ましい。したがって、無機粒子作製工程において、塩基性溶媒下において反応を促進させる上記ストーバー法を実施することは好ましい。 Alkoxysilane can be hydrolyzed in an acidic solvent and then subjected to polycondensation, but according to this, the obtained hydrolytic polycondensate has a structure close to a straight chain. On the other hand, by hydrolyzing and polycondensating alkoxysilane in a basic solvent, a polymer with high density and advanced three-dimensionality can be obtained. From the viewpoint of forming the coating layer with inorganic particles and thereby improving the heat resistance and the like of the organic particles serving as the core, the inorganic particles are preferably composed of a polymer that has become three-dimensional. Therefore, it is preferable to carry out the Stover method in which the reaction is promoted in a basic solvent in the inorganic particle preparation step.

(被覆工程)
 被覆工程は、任意の液体に、有機粒子作製工程において作製された有機粒子と、無機粒子作製工程において作製された無機粒子とが添加された混合液を緩やかに撹拌することで実施される。被覆工程の実施により、有機粒子の形状を変形させることなく、当該有機粒子の表面に無機粒子を堆積させ、有機粒子を無機粒子で被覆することが可能である。上記混合液の撹拌条件は、有機粒子と無機粒子とが衝突して、少なくともいずれか一方の形状が変形する等の虞のない範囲で適宜決定される。たとえば、上記混合液を、100rpm以上1500rpm以下の回転数で、2時間以上48時間以下の範囲で、好ましくは25℃以下の液温で撹拌するとよい。上述する撹拌時間は実質的に撹拌している時間であって、所定の時間、連続して撹拌してもよいし、断続的に撹拌してもよい。上記任意の液体としては、たとえば、エタノール等のアルコールが挙げられる。無機粒子作製工程から連続して被覆工程を実施する場合には、被覆工程における上記任意の液体は、無機粒子作製工程におけるアルコールおよび塩基性溶媒であってよい。
(Coating process)
The coating step is carried out by gently stirring a mixed liquid in which the organic particles produced in the organic particle production step and the inorganic particles produced in the inorganic particle production step are added to an arbitrary liquid. By carrying out the coating step, it is possible to deposit inorganic particles on the surface of the organic particles without deforming the shape of the organic particles and to coat the organic particles with the inorganic particles. The stirring condition of the mixed liquid is appropriately determined within a range in which there is no fear that the organic particles and the inorganic particles collide and at least one of the shapes is deformed. For example, the above mixed solution may be stirred at a rotation speed of 100 rpm to 1500 rpm in a range of 2 hours to 48 hours, preferably at a liquid temperature of 25 ° C. or less. The agitation time described above is a substantially agitating time, and may be continuously agitated for a predetermined time or may be agitated intermittently. As said arbitrary liquid, alcohol, such as ethanol, is mentioned, for example. In the case where the coating step is carried out continuously from the inorganic particle production step, the above arbitrary liquid in the coating step may be an alcohol and a basic solvent in the inorganic particle production step.

 上述のとおり緩やかな撹拌条件下で、より良好に被覆層を形成したい場合には、極成基を備える化合物を含む有機粒子を用いるとよい。これによって、有機粒子の表面に無機粒子を良好に堆積させ得るからである。 As described above, when it is desired to form a coating layer more satisfactorily under mild stirring conditions, it is preferable to use organic particles containing a compound having a polar group. This is because the inorganic particles can be favorably deposited on the surface of the organic particles.

 被覆工程の実施によって有機粒子の表面に形成される被覆層は、耐熱性等の向上の観点から、厚みが大きいほうが好ましい。換言すると、有機粒子に堆積された無機粒子の量は多い方が好ましい。被覆層の厚みを増大させる望ましい方法として、被覆工程を複数回繰り返す方法が挙げられる。即ち、適度な濃度の無機粒子を含む混合液を用い、被覆工程を実施して複合粒子を製造し、上記被覆工程が実施された反応槽から複合粒子を取り出す。そして取り出された上記複合粒子と、上記無機粒子作製工程において作製された無機粒子または無機粒子作製原料とが添加された混合液を、上述と同様に撹拌する。このように被覆工程を繰り返した場合、無機粒子が密に堆積した被覆層が多層に構成された複合粒子を製造することができる。被覆工程の繰り返し回数は特に限定されないが、たとえば、2回以上10回以下の範囲で実施することで、効率よく、被覆層の厚みを増大させることが可能である。また、被覆層の厚みを増大させる異なる方法としては、被覆工程において用いられる無機粒子原料となるアルコキシシラン濃度や塩基性触媒濃度を充分に高くすることも有効である。 The coating layer formed on the surface of the organic particles by performing the coating process preferably has a large thickness from the viewpoint of improving heat resistance and the like. In other words, it is preferable that the amount of inorganic particles deposited on the organic particles is large. As a desirable method for increasing the thickness of the coating layer, a method of repeating the coating step a plurality of times can be mentioned. That is, using a mixed solution containing inorganic particles at an appropriate concentration, a coating step is performed to produce composite particles, and the composite particles are taken out from the reaction vessel in which the coating step has been performed. And the liquid mixture with which the taken-out said composite particle and the inorganic particle produced in the said inorganic particle preparation process or the inorganic particle preparation raw material were added is stirred like the above. When the coating step is repeated in this way, composite particles in which a coating layer in which inorganic particles are densely deposited are formed in multiple layers can be produced. The number of repetitions of the coating step is not particularly limited. For example, the thickness of the coating layer can be increased efficiently by performing the coating step in the range of 2 to 10 times. Further, as a different method for increasing the thickness of the coating layer, it is also effective to sufficiently increase the concentration of alkoxysilane or basic catalyst used as the inorganic particle raw material used in the coating step.

 即ち、被覆工程が繰り返される本発明の製造方法に関し、より具体的には、上記被覆工程は、第一被覆工程と、第二被覆工程を備える。
 第一被覆工程は、反応槽に上記無機粒子と上記有機粒子とを含む混合液を添加し撹拌して単層の被覆層を備える複合粒子を作製する工程である。上記無機粒子の替りに無機粒子作製原料を用い、無機粒子作製工程と被覆工程とを連続して行ってもよい。
 第二被覆工程は、第一被覆工程終了後、上記第一被覆工程における反応槽から単層の被覆層を備える複合粒子を取り出し、次いで、第二被覆工程における反応槽に上記単層の被覆層を備える複合粒子と無機粒子(または無機粒子作製原料)とを含む混合液を添加し撹拌して多層の被覆層を備える複合粒子を作製する工程である。第一被覆工程終了後、反応層から取り出された複合粒子を、必要に応じて乾燥し、その後に第二被覆工程の反応槽に添加してもよい。
 第一被覆工程および第二被覆工程における反応槽は、兼用してもよいし異ならしめてもよい。反応槽を兼用する場合には、第一被覆工程終了後、当該反応槽から第一被覆工程に用いられた使用済みの混合液を排出させ、第二被覆工程用に新たな混合液等を添加するか、あるいは、上記使用済みの混合液に必要な材料を追加し、第二被覆工程用に調整するとよい。
 第一被覆工程と第二被覆工程とは、被覆条件および用いる材料を同じにしてもよいし、異ならしめてもよい。第一被覆工程と第二被覆工程とにおける被覆条件等を変更することで、第一被覆工程によって形成される第一の層を構成する無機粒子の平均粒径と、第二被覆工程によって形成される第二の層を構成する無機粒子の平均粒径とを、異ならしめることが可能である。
 尚、上述では、複数回繰り返される被覆工程について、第一被覆工程および第二被覆工程について説明したが、さらに第三被覆工程、第四被覆工程、と任意の回数の被覆工程を繰り返し行うことができる。第三被覆工程以降の各被覆工程は、直前の被覆工程における反応槽から多層の被覆層を備える複合粒子を取り出すこと以外は、上記第二被覆工程と同様に実施することができる。
That is, regarding the manufacturing method of the present invention in which the coating process is repeated, more specifically, the coating process includes a first coating process and a second coating process.
The first coating step is a step in which a mixed liquid containing the inorganic particles and the organic particles is added to a reaction vessel and stirred to produce composite particles including a single coating layer. An inorganic particle production raw material may be used instead of the inorganic particles, and the inorganic particle production process and the coating process may be performed continuously.
In the second coating step, after completion of the first coating step, the composite particles having a single layer coating layer are taken out from the reaction vessel in the first coating step, and then the single layer coating layer is placed in the reaction vessel in the second coating step. Is a step of adding a mixed liquid containing composite particles and inorganic particles (or inorganic particle production raw materials) and stirring them to produce composite particles having a multilayer coating layer. After completion of the first coating step, the composite particles taken out from the reaction layer may be dried as necessary, and then added to the reaction vessel in the second coating step.
The reaction tanks in the first coating step and the second coating step may be used together or may be different. When the reactor is also used, after the first coating process is completed, drain the used mixed solution used in the first coating process from the reaction tank and add a new mixed solution for the second coating process. Or it is good to add a necessary material to the said used liquid mixture, and to adjust for a 2nd coating process.
In the first coating step and the second coating step, the coating conditions and the materials used may be the same or different. By changing the coating conditions in the first coating step and the second coating step, the average particle diameter of the inorganic particles constituting the first layer formed in the first coating step and the second coating step are formed. It is possible to make the average particle diameter of the inorganic particles constituting the second layer different.
In the above description, the first coating process and the second coating process have been described for the coating process that is repeated a plurality of times, but the third coating process, the fourth coating process, and any number of coating processes may be repeated. it can. Each coating process after the third coating process can be carried out in the same manner as the second coating process except that the composite particles having a multilayer coating layer are taken out from the reaction vessel in the immediately preceding coating process.

 上記被覆工程により、有機粒子の表面に、無機粒子の被覆層を有する複合粒子を製造することができる。被覆工程後、適宜、遠心分離工程、洗浄工程等を実施して、製造された複合粒子を単離するとよい。 By the coating step, composite particles having a coating layer of inorganic particles on the surface of the organic particles can be produced. After the coating step, the produced composite particles may be isolated by appropriately performing a centrifugation step, a washing step, and the like.

 本発明の製造方法において、上述する有機粒子作製工程、無機粒子作製工程、および被覆工程の実施の順番は特に限定されない。各工程は、独立に実施されてもよいし、連続して実施されてもよいし、工程の一部が前後する工程と重複してもよい。無機粒子作製工程と被覆工程を同一液相にて連続的に実施することで、無機粒子作製工程および被覆工程を連続して実施してもよい。これにより本発明の製造方法は、製造工程の短縮化が図られる。 In the production method of the present invention, the order in which the organic particle production process, the inorganic particle production process, and the coating process described above are performed is not particularly limited. Each process may be implemented independently, may be implemented continuously, and may overlap with the process in which a part of process is followed. By carrying out the inorganic particle preparation step and the coating step continuously in the same liquid phase, the inorganic particle preparation step and the coating step may be carried out continuously. Thereby, the manufacturing method of the present invention can shorten the manufacturing process.

 本発明の製造方法のより具体的な工程として、たとえば、予め準備された有機粒子とエタノール等の炭素数の小さいアルコール(好ましくは炭素数3以下のアルコール)とを混合し、次いで、アンモニア水等の塩基性溶媒を添加して撹拌し、さらにテトラエトキシシラン等のアルコキシシランを添加して、所定条件で撹拌するとよい。これにより、有機粒子存在下において、アルコキシシランの加水分解、縮重合を進行させる無機粒子作製工程を実施するとともに、作製された無機粒子を上記有機粒子の表面に堆積させる被覆工程を連続して実施することができる。かかる態様は、効率よく複合粒子を製造することができる。 As a more specific step of the production method of the present invention, for example, organic particles prepared in advance and an alcohol such as ethanol having a small carbon number (preferably an alcohol having 3 or less carbon atoms) are mixed, and then ammonia water or the like. The basic solvent is added and stirred, and alkoxysilane such as tetraethoxysilane is further added and stirred under predetermined conditions. As a result, in the presence of organic particles, an inorganic particle preparation process is carried out in which hydrolysis and polycondensation of alkoxysilane proceeds, and a coating process in which the prepared inorganic particles are deposited on the surface of the organic particles is continuously executed. can do. Such an embodiment can efficiently produce composite particles.

 本発明の製造方法は、異なる態様として、例えば市販品を購入する等して、金属アルコキシドを重合してなる無機粒子、および有機粒子を予め準備してもよい。本発明の製造方法は、これらを用いて、上記無機粒子を上記有機粒子の周囲に堆積させて被覆層を形成する被覆工程を実施することを特徴とする複合粒子の製造方法を包含する。かかる態様は、たとえば、有機粒子および無機粒子を適当な液体(例えばエタノールなどのアルコール等)に添加し、適宜、塩基性溶媒または酸性溶媒をさらに添加し、上述する被覆工程において示す撹拌条件にて撹拌することで、実施される。 As a different aspect, the production method of the present invention may prepare inorganic particles and organic particles obtained by polymerizing metal alkoxide, for example, by purchasing a commercially available product. The production method of the present invention includes a method for producing composite particles, characterized in that, using these, a coating step is performed in which the inorganic particles are deposited around the organic particles to form a coating layer. In such an embodiment, for example, organic particles and inorganic particles are added to an appropriate liquid (for example, alcohol such as ethanol), a basic solvent or an acidic solvent is added as appropriate, and the stirring conditions shown in the coating step described above are used. It is carried out by stirring.

 上述する本発明の製造方法によれば、コアとなる有機粒子の変形や破壊を回避しつつ無機粒子を含む被覆層を備える複合粒子を提供することができる。 According to the production method of the present invention described above, it is possible to provide composite particles including a coating layer containing inorganic particles while avoiding deformation and destruction of organic particles serving as a core.

[組成物]
 本発明は、上述する本発明の複合粒子を含む組成物を包含する。本発明の組成物は、有機粒子と、有機粒子の表面を覆う被覆層を有し、当該被覆層が、金属アルコキシドの重合物を有して構成されている複合粒子を含む。そのため、本発明の組成物は、製造時または使用時等における熱などの環境条件が厳しい場合にも、上記有機粒子の機能を損なうことが回避され得る。
[Composition]
The present invention includes a composition comprising the composite particle of the present invention described above. The composition of the present invention includes organic particles and a composite particle that includes a coating layer that covers the surface of the organic particle, and the coating layer includes a metal alkoxide polymer. Therefore, the composition of the present invention can avoid impairing the function of the organic particles even when environmental conditions such as heat are severe during production or use.

 本発明の組成物としては、上記複合粒子以外の組成は何ら限定されない。たとえば、本発明の組成物は、実質的に上記複合粒子とこれを懸濁させるための溶剤とからなる複合粒子組成物、上記複合粒子を含み任意の樹脂材料を主体とする樹脂組成物、上記複合粒子と任意の無機材料を含む組成物、または上記複合粒子と、任意の樹脂材料および任意の無機材料とを含む複合組成物等の種々の態様を含む。
 組成物の使用の態様からいえば、上記組成物の具体例として、適宜必要な成分を含むインキ、接着剤、塗料等が挙げられる。たとえば、上述のような態様において、組成物は任意の基材上で膜化され得る。本発明によれば、膜化された組成物が厳しい熱環境等に晒された場合でも、当該組成物中に含まれる複合粒子は、これに含まれる有機粒子の機能を従来に比べて損ない難く、また当該有機粒子の使用寿命を長期化することが可能である。
As a composition of this invention, compositions other than the said composite particle are not limited at all. For example, the composition of the present invention includes a composite particle composition substantially composed of the composite particles and a solvent for suspending the composite particles, a resin composition mainly comprising any resin material including the composite particles, It includes various embodiments such as a composition including composite particles and an arbitrary inorganic material, or a composite composition including the above composite particles, an arbitrary resin material, and an arbitrary inorganic material.
Speaking from the mode of use of the composition, specific examples of the composition include inks, adhesives, paints, and the like that appropriately include necessary components. For example, in embodiments as described above, the composition can be filmed on any substrate. According to the present invention, even when the filmed composition is exposed to a severe thermal environment or the like, the composite particles contained in the composition are less likely to impair the function of the organic particles contained in the composition as compared with the conventional one. In addition, it is possible to extend the service life of the organic particles.

 以下に本発明の実施例について説明する。各実施例および比較例に使用する有機粒子A、有機粒子B、および有機粒子Cは、表1に示す材料を、1.5質量%のポリビニルアルコール水溶液300質量部が入った500mlのセパラブルフラスコに添加し、7000rpm、10分、25℃の条件で懸濁し、90℃のウォーターバスに懸濁液を浸し250rpmで4時間攪拌しながら熱重合させて粒子を作製し、これをろ過、水洗浄することで調製した。 Examples of the present invention will be described below. The organic particles A, the organic particles B, and the organic particles C used in each of the examples and the comparative examples are composed of 500 ml separable flasks containing the materials shown in Table 1 and 300 parts by mass of a 1.5% by mass aqueous polyvinyl alcohol solution. To 7000 rpm, 10 minutes, 25 ° C., immerse the suspension in a 90 ° C. water bath and heat polymerize with stirring at 250 rpm for 4 hours to produce particles, which are filtered and washed with water It was prepared by doing.

(実施例1)
 エタノール50mlに対し有機粒子Aを0.1g添加し、有機粒子混合液を準備した。上記有機粒子混合液に28%アンモニア水を0.6ml添加して、マグネチックスターラー(株式会社石井理科機器製作所製、スーパースターラー MS-2)を用い撹拌度合いを中程度に設定して45分間25℃で撹拌し、撹拌物を得た。上記撹拌物に、金属アルコキシドとして、テトラエトキシシラン(TEOS)0.3mlを添加した。そして、さらに24時間25℃の条件で、上述と同様のマグネチックスターラーを用いて撹拌した。これによりテトラエトキシシランの加水分解縮重合反応を行いテトラアルコキシシランの加水分解縮重合物である微粒子を作製する(無機粒子作製工程;ストーバー法)とともに、当該微粒子を有機粒子Aの表面に堆積させて複合粒子を調製した(被覆工程)。その後、10分、15000rpmの条件で遠心分離した後、撹拌物を5μmメンブレンでろ過して複合粒子を取り出し、ネオエタノール(大伸化学株式会社製)で洗浄して60℃で真空乾燥させた。これにより得られた複合粒子を実施例1とした。
Example 1
0.1 g of organic particles A was added to 50 ml of ethanol to prepare an organic particle mixed solution. Add 0.6 ml of 28% ammonia water to the above organic particle mixture and use a magnetic stirrer (manufactured by Ishii Science Equipment Co., Ltd., Super Stirrer MS-2) to set the degree of stirring to medium for 25 minutes for 25 minutes. Stirred at 0 ° C. to obtain a stirrer. To the agitated material, 0.3 ml of tetraethoxysilane (TEOS) was added as a metal alkoxide. And it stirred using the same magnetic stirrer as the above on the conditions of 25 degreeC for 24 hours. As a result, hydrolytic condensation polymerization of tetraethoxysilane is performed to produce fine particles which are hydrolyzed polycondensation products of tetraalkoxysilane (inorganic particle production step; Stover method), and the fine particles are deposited on the surface of organic particles A. Thus, composite particles were prepared (coating process). Then, after centrifuging at 15000 rpm for 10 minutes, the stirred product was filtered through a 5 μm membrane to take out composite particles, washed with neoethanol (manufactured by Daishin Chemical Co., Ltd.), and vacuum dried at 60 ° C. The composite particle thus obtained was designated as Example 1.

(実施例2)
 無機粒子作製工程、被覆工程およびろ過の工程を1セットとし、これを5回繰り返したこと以外は、実施例1と同様の条件で複合粒子を作製し、これを実施例2とした。
(Example 2)
A composite particle was produced under the same conditions as in Example 1 except that the inorganic particle production process, the coating process, and the filtration process were set as one set, and this was repeated 5 times.

(実施例3)
 28%アンモニア水およびテトラエトキシシランの添加量を実施例1の5倍に増加したこと以外は、実施例1と同様の条件で複合粒子を作製し、これを実施例3とした。
(Example 3)
A composite particle was produced under the same conditions as in Example 1 except that the addition amount of 28% ammonia water and tetraethoxysilane was increased five times that in Example 1, and this was designated as Example 3.

(実施例4)
 用いた有機粒子を有機粒子Bに変更したこと以外は、実施例1と同様の条件で複合粒子を作製し、これを実施例4とした。
Example 4
A composite particle was produced under the same conditions as in Example 1 except that the organic particle used was changed to the organic particle B, and this was designated as Example 4.

(実施例5)
 28%アンモニア水およびテトラエトキシシランの添加量を実施例4の5倍に増加したこと以外は、実施例4と同様の条件で複合粒子を作製し、これを実施例5とした。
(Example 5)
A composite particle was produced under the same conditions as in Example 4 except that the addition amounts of 28% ammonia water and tetraethoxysilane were increased five times as much as in Example 4. This was designated as Example 5.

(実施例6)
 用いた有機粒子を有機粒子Cに変更したこと以外は、実施例1と同様の条件で複合粒子を作製し、これを実施例6とした。
(Example 6)
A composite particle was produced under the same conditions as in Example 1 except that the organic particle used was changed to the organic particle C, and this was designated as Example 6.

(実施例7)
 28%アンモニア水およびテトラエトキシシランの添加量を実施例6の5倍に増加したこと以外は、実施例6と同様の条件で複合粒子を作製し、これを実施例7とした。
(Example 7)
Composite particles were produced under the same conditions as in Example 6 except that the addition amounts of 28% ammonia water and tetraethoxysilane were increased five times as much as in Example 6. This was designated as Example 7.

(比較例1~3)
 有機粒子A、有機粒子B、および有機粒子Cをそれぞれ比較例1、比較例2、および比較例3として用いた。
(Comparative Examples 1 to 3)
Organic particles A, organic particles B, and organic particles C were used as Comparative Example 1, Comparative Example 2, and Comparative Example 3, respectively.

 上述のとおり得た各実施例および各比較例について、以下のとおり電子顕微鏡観察および評価を行った。評価結果はいずれも表2に示す。尚、表2中に示される矢印は、値が左記と同じであることを示している。 Each Example and each Comparative Example obtained as described above were observed with an electron microscope and evaluated as follows. The evaluation results are shown in Table 2. Note that the arrows shown in Table 2 indicate that the values are the same as those on the left.

 [電子顕微鏡観察]
 走査型電子顕微鏡を用いて各実施例および各比較例の電子顕微鏡写真を撮影し、外観および必要に応じて切断面を観察した。かかる観察により被覆層形成評価を行った。また有機粒子の平均粒径および複合粒子の表面に存在する粒子状物の平均粒径の測定を以下のとおり行った。
[Electron microscope observation]
An electron micrograph of each example and each comparative example was taken using a scanning electron microscope, and the appearance and the cut surface were observed as necessary. The coating layer formation evaluation was performed by such observation. The average particle size of the organic particles and the average particle size of the particulates present on the surface of the composite particles were measured as follows.

(被覆層形成評価)
 各実施例および各比較例の粒子の外観を、走査型電子顕微鏡(倍率5万倍)にて観察した。また当該粒子の外観において周面に粒子状物の堆積が確認されなかったものについては、当該粒子を切断し、走査型電子顕微鏡(倍率2万倍)にて切断面の観察を行った。そして実施例および比較例における被覆層形成の有無を以下のとおり行った。具体的には、下記(A)または下記(B)に該当する場合には、表面に被覆層が存在すると判断し、下記(C)に該当する場合には、被覆層が存在しないと判断した。
(A)粒子の表面に細かい粒子が多数堆積してなる被覆層が観察された・・・・・・有
(B)粒子の切断面の外縁に中心の粒子とは区別される層が観察された・・・・・・有
(C)粒子の切断面の外縁に中心の粒子とは区別される層が観察されなかった・・・無
(Coating layer formation evaluation)
The appearance of the particles of each Example and each Comparative Example was observed with a scanning electron microscope (magnification 50,000 times). In addition, regarding the appearance of the particles in which the accumulation of particulate matter was not confirmed on the peripheral surface, the particles were cut, and the cut surface was observed with a scanning electron microscope (magnification 20,000 times). And the presence or absence of the coating layer formation in an Example and a comparative example was performed as follows. Specifically, when it corresponds to the following (A) or (B) below, it is judged that the coating layer exists on the surface, and when it corresponds to the following (C), it was judged that the coating layer does not exist. .
(A) A coating layer in which a large number of fine particles were deposited on the surface of the particle was observed .... (B) A layer distinct from the central particle was observed on the outer edge of the cut surface of the particle.・ ・ ・ ・ ・ Yes (C) No layer distinct from the central particle was observed on the outer edge of the cut surface of the particle.

(有機粒子の平均粒径の測定)
 走査型電子顕微鏡(倍率5万倍)を用いて有機粒子A、有機粒子B、および有機粒子Cの電子顕微鏡観察を行い、粒径を実測して平均値を求めた。有機粒子A、有機粒子B、および有機粒子Cそれぞれの平均粒径並びに実測値の下限値および上限値を表2に示す。尚、上記粒径の実測値および平均粒径に関し、比較例1は有機粒子Aに相当し、比較例2は有機粒子Bに相当し、比較例3は有機粒子Cに相当する。
(Measurement of average particle size of organic particles)
The organic particles A, the organic particles B, and the organic particles C were observed with an electron microscope using a scanning electron microscope (magnification of 50,000 times), the particle diameter was measured, and an average value was obtained. Table 2 shows the average particle diameters of the organic particles A, the organic particles B, and the organic particles C, and the lower limit value and the upper limit value of the actually measured values. In addition, regarding the measured value and average particle diameter of the particle size, Comparative Example 1 corresponds to organic particle A, Comparative Example 2 corresponds to organic particle B, and Comparative Example 3 corresponds to organic particle C.

(実施例および比較例の周面における粒子状物の平均粒径の測定)
 上記電子顕微鏡観察により、実施例および比較例について周面を観察した。その結果、実施例2、実施例3、実施例5、実施例7は、周面に多数の粒子状物が確認された。一方、実施例1、実施例4、実施例6および比較例1、比較例2、比較例3は、周面に粒子状物が確認されなかったか、またはごく少数の粒子状物が確認された。
 そこで多数の粒子状物が確認された実施例2、実施例3、実施例5、実施例7に関し、当該粒子状物の粒径を実測し平均粒径を求めた。上記平均粒径は、電子顕微鏡写真において無作為に選択した100個の粒子状物の粒径を実測し、算術平均を行い求めた。加えて、周面にごく少数の粒子状物が確認された実施例4に関し、当該粒子状物の粒径を実測した。
 上記測定により得られた各実施例の粒子状物の平均粒径並びに実測値の下限値および上限値を表2に示す(実施例4については下限値および上限値のみ)。
(Measurement of average particle size of particulate matter on peripheral surfaces of Examples and Comparative Examples)
The peripheral surface was observed about the Example and the comparative example by the said electron microscope observation. As a result, in Example 2, Example 3, Example 5, and Example 7, many particulate matters were confirmed on the peripheral surface. On the other hand, in Example 1, Example 4, Example 6, and Comparative Example 1, Comparative Example 2, and Comparative Example 3, no particulate matter was confirmed on the peripheral surface, or a very small number of particulate matter was confirmed. .
Therefore, regarding Example 2, Example 3, Example 5, and Example 7 in which a large number of particulate matters were confirmed, the particle diameters of the particulate matters were measured and the average particle diameter was determined. The average particle diameter was obtained by measuring the particle diameters of 100 randomly selected particles in an electron micrograph and calculating the arithmetic average. In addition, regarding Example 4 in which a very small number of particulate matter was confirmed on the peripheral surface, the particle size of the particulate matter was measured.
The average particle diameter of the particulate matter of each Example obtained by the above measurement and the lower limit value and the upper limit value of the actually measured values are shown in Table 2 (for Example 4, only the lower limit value and the upper limit value).

(全体観察)
 上記電子顕微鏡観察(倍率5万倍)において、実施例1、実施例6、および比較例1、比較例2、比較例3の周面に被覆層を構成する粒子状物は確認されなかった。また、実施例4は、周面においてまばらに微小の粒子状物(実測値10nm以上30nm以下)が観察されたものの、周面を被覆する程度ではなかった。尚、周面に粒子状物が観察されなかった実施例の例として、実施例1の外観の顕微鏡観察写真を図3として示す。
 次に、実施例1、実施例4、実施例6および比較例1、比較例2、比較例3(即ち、有機粒子A、有機粒子B、有機粒子C)の複合粒子を切断し、切断面の走査型電子顕微鏡観察(倍率2万倍)を行った。切断面写真の例として、実施例1の切断面写真を図4Aとして示し、比較例1(有機粒子A)の写真を図4Bとして示した。
 かかる観察により、実施例1、実施例4、実施例6の切断面において、いずれも中心の粒子(即ち有機粒子)の切断面の外縁を略周回する白っぽい層が観察された。これに対し、比較例1、比較例2、比較例3の切断面の電子顕微鏡観察では切断面の外縁に上述のような白っぽい層は確認されなかった。実施例1、実施例4、実施例6は、用いられた有機粒子の周面に被覆層が形成されたこと、および後述する残存物の百分率%において、対象となる比較例よりも残存物の割合が増えたことから有機粒子の周面に無機物よりなる被覆層が形成されたことが確認された。またこれらの実施例がストーバー法により形成されたことから、かかる被覆層は、粒径が非常に小さい無機系の微粒子が有機粒子の表面に堆積してなる膜様の層であると推察された。
(Overall observation)
In the electron microscope observation (magnification of 50,000 times), the particulate matter constituting the coating layer on the peripheral surfaces of Example 1, Example 6, Comparative Example 1, Comparative Example 2, and Comparative Example 3 was not confirmed. In Example 4, although minute particulate matter (measured value of 10 nm or more and 30 nm or less) was observed sparsely on the peripheral surface, it was not enough to cover the peripheral surface. As an example of the example in which no particulate matter was observed on the peripheral surface, a microscopic observation photograph of the appearance of Example 1 is shown in FIG.
Next, the composite particles of Example 1, Example 4, Example 6, Comparative Example 1, Comparative Example 2, and Comparative Example 3 (that is, organic particles A, organic particles B, and organic particles C) were cut, and the cut surface Were observed with a scanning electron microscope (magnification: 20,000 times). As an example of the cut surface photograph, the cut surface photograph of Example 1 is shown as FIG. 4A, and the photograph of Comparative Example 1 (organic particles A) is shown as FIG. 4B.
As a result of the observation, a whitish layer that substantially circulates around the outer edge of the cut surface of the center particle (that is, organic particle) was observed in the cut surfaces of Example 1, Example 4, and Example 6. On the other hand, in the observation of the cut surfaces of Comparative Example 1, Comparative Example 2, and Comparative Example 3 with an electron microscope, no whitish layer as described above was observed on the outer edge of the cut surface. In Example 1, Example 4, and Example 6, the coating layer was formed on the peripheral surface of the organic particles used, and the percentage of the residual material described later was higher than that of the target comparative example. Since the ratio increased, it was confirmed that the coating layer which consists of an inorganic substance was formed in the surrounding surface of an organic particle. In addition, since these examples were formed by the Stover method, it was inferred that such a coating layer was a film-like layer in which inorganic fine particles having a very small particle size were deposited on the surface of organic particles. .

 上記電子顕微鏡観察(倍率5万倍)において、実施例2、実施例3、実施例5、実施例7は、粒子状物が複合粒子の表面全体に密集し、これにより被覆層が形成されていることが観察された。実施例2、実施例3、実施例5、実施例7では、ストーバー法により粒子状の金属アルコキシドの加水分解物の縮重合物が複数形成され、これらが有機粒子の周面に堆積して構成された被覆層を備えるものと推察された。周面に多数の粒子状物が堆積した実施例の外観観察の例として図5に実施例5の写真を示す。 In the electron microscope observation (magnification of 50,000 times), in Example 2, Example 3, Example 5, and Example 7, the particulate matter is densely concentrated on the entire surface of the composite particle, whereby a coating layer is formed. It was observed that In Example 2, Example 3, Example 5, and Example 7, a plurality of polycondensates of hydrolyzed particulate metal alkoxide are formed by the Stover method, and these are deposited on the peripheral surface of the organic particles. It was inferred that it was provided with a coated layer. A photograph of Example 5 is shown in FIG. 5 as an example of appearance observation of an example in which a large number of particulates are deposited on the peripheral surface.

(残存物の百分率%)
 各実施例および各比較例を燃焼試験(熱重量/示差熱測定試験)に供した。上記試験は熱重量/示差熱同時分析装置(型名:TG8120、株式会社リガク製)を用い、大気雰囲気下、10℃/分の昇温速度で室温から600℃まで加熱した後、600℃で30分間加熱し、残存物の質量W2(g)を測定した。そして、燃焼前のサンプル質量W1(g)に対する残存物の質量W2(g)の割合(百分率%)を算出した。
(Percentage of residue%)
Each example and each comparative example were subjected to a combustion test (thermogravimetric / differential heat measurement test). In the above test, a thermogravimetric / differential thermal analyzer (model name: TG8120, manufactured by Rigaku Corporation) was used and heated from room temperature to 600 ° C. at a heating rate of 10 ° C./min in an air atmosphere, and then at 600 ° C. After heating for 30 minutes, the mass W2 (g) of the residue was measured. And the ratio (percentage%) of the mass W2 (g) of the residue with respect to the sample mass W1 (g) before combustion was calculated.

(耐熱ピーク温度)
 上述する燃焼試験において得られたDTA曲線に示された、燃焼の終了を示す発熱ピークのピーク温度を耐熱ピーク温度とした。燃焼終了を表す耐熱ピーク温度が高いほど、耐熱性が高いと評価する。尚、本実施例におけるDTA曲線では、最大発熱ピークの出現の後に、400℃後半から600℃未満程度の温度領域においてやや小さい発熱ピークが出現した。本発明に関しては、この最大発熱ピーク後に出現するやや小さい発熱ピークを、燃焼終了を表すピークとし、上記耐熱ピーク温度を測定した。
(Heat-resistant peak temperature)
The peak temperature of the exothermic peak indicating the end of combustion shown in the DTA curve obtained in the combustion test described above was defined as the heat resistant peak temperature. The higher the heat-resistant peak temperature indicating the end of combustion, the higher the heat resistance. In the DTA curve in this example, a slightly smaller exothermic peak appeared in the temperature range from the latter half of 400 ° C. to less than 600 ° C. after the appearance of the maximum exothermic peak. In the present invention, the heat-resistant peak temperature was measured by setting a slightly small exothermic peak appearing after the maximum exothermic peak as a peak representing the end of combustion.

 表2に示すとおり、実施例はいずれも、残存物の百分率の結果より有機粒子の表面に、被覆層が形成されたことが確認された。
 より具体的には、燃焼試験終了後において、有機粒子Aのみを用いた比較例1に対し、有機粒子Aに被覆層が形成された実施例1、実施例2、実施例3は、有意な残存物量が確認され、無機物により構成された被覆層が形成されたことが確認された。
 また同様に、有機粒子Bのみを用いた比較例2に対し、有機粒子Bに被覆層が形成された実施例4、実施例5、および有機粒子Cのみを用いた比較例3に対し、有機粒子Cに被覆層が形成された実施例6、実施例7も、燃焼試験後において有意な残存物量が確認された。
 実施例1は、被覆工程を1度行い、燃焼物残存比率が1%であったのに対し、被覆工程を5回行った実施例2は、実施例1の5倍を超える量の残存物比率が示された。このことから、無機粒子からなる被覆層が形成された複合粒子を用い、さらに被覆工程を繰り返すことで、被覆層の形成効率が向上することが確認された。
 尚、比較例2、3は、被覆層を有していないが、残存物の百分率(%)の測定において、有機粒子Bまたは有機粒子Cに含まれるシランカップリング剤中のシリカ成分(SiO2)が燃え残ったため、有意な値が示されたものと推察された。
As shown in Table 2, it was confirmed that the coating layer was formed in the surface of the organic particle from the result of the percentage of a residue in all the Examples.
More specifically, after completion of the combustion test, Example 1, Example 2, and Example 3 in which a coating layer was formed on organic particles A were significantly different from Comparative Example 1 using only organic particles A. The residual amount was confirmed and it was confirmed that the coating layer comprised with the inorganic substance was formed.
Similarly, compared to Comparative Example 2 using only organic particles B, Examples 4 and 5 in which a coating layer was formed on organic particles B, and Comparative Example 3 using only organic particles C were organic. In Examples 6 and 7 in which the coating layer was formed on the particles C, a significant residual amount was confirmed after the combustion test.
In Example 1, the coating process was performed once, and the combustion substance residual ratio was 1%, whereas in Example 2 in which the coating process was performed five times, the amount of residuals was more than five times that of Example 1. The ratio is shown. From this, it was confirmed that the formation efficiency of the coating layer was improved by using the composite particles in which the coating layer made of inorganic particles was formed and further repeating the coating process.
Although Comparative Examples 2 and 3 do not have a coating layer, the silica component (SiO 2 in the silane coupling agent contained in the organic particle B or the organic particle C in the measurement of the percentage (%) of the residue. ) Remained unburned, so it was assumed that a significant value was shown.

 実施例6は、実施例7に対し、塩基性触媒の使用量が少ないにも関わらず、同程度の耐熱ピーク温度を示した。これは、実施例6、実施例7が、シランカップリング剤を多く含む有機粒子Cを用いているため、有機粒子Cと、無機材料との結合効率が良好であり、塩基性触媒が相対的に少ない実施例6においても、充分に被覆層が形成されたものと推察された。 Example 6 showed a similar heat-resistant peak temperature to Example 7 although the amount of the basic catalyst used was small. This is because Example 6 and Example 7 use organic particles C containing a large amount of a silane coupling agent, so that the binding efficiency between the organic particles C and the inorganic material is good, and the basic catalyst is relative. Even in Example 6 with a small amount, it was presumed that the coating layer was sufficiently formed.

 各実施例の耐熱ピーク温度と、残存物の百分率との結果から、残存物の百分率の値が大きいほど、耐熱ピーク温度が高い傾向にあり、複合粒子において被覆層を備えることにより耐熱性が向上することが確認された。 From the results of the heat-resistant peak temperature of each example and the percentage of the residue, the larger the percentage value of the residue, the higher the heat-resistant peak temperature tends to be, and the heat resistance is improved by providing the composite particle with a coating layer. Confirmed to do.

 実施例1、実施例2、実施例3に対し、シランカップリング剤が含有された有機粒子B、Cを用いた実施例4、実施例5、実施例6、実施例7は、耐熱ピーク温度が高い傾向(具体的には、実施例1に対し、実施例4、実施例6が参照され、また実施例2に対し、実施例5、実施例7が参照される)にあった。これにより、有機粒子にシランカップリング剤を含有させることの有効性が確認された。 In contrast to Example 1, Example 2, and Example 3, Example 4, Example 5, Example 6, and Example 7 using organic particles B and C containing a silane coupling agent are heat resistant peak temperatures. (Specifically, Example 4 and Example 6 are referred to for Example 1, and Example 5 and Example 7 are referred to for Example 2). Thereby, the effectiveness of including the silane coupling agent in the organic particles was confirmed.

 以上の結果より、本発明の複合粒子製造方法により、物理的な応力によらずに有機粒子の表面に微細な無機粒子を堆積させて被覆層を形成することが確認された。また有機粒子の表面に複数の無機粒子からなる被覆層を備える複合粒子は、耐熱性が上がることが確認された。 From the above results, it was confirmed that the coating layer is formed by depositing fine inorganic particles on the surface of the organic particles regardless of physical stress by the composite particle manufacturing method of the present invention. In addition, it was confirmed that the composite particles having a coating layer composed of a plurality of inorganic particles on the surface of the organic particles have improved heat resistance.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 上記実施形態は、以下の技術思想を包含するものである。
(1)有機粒子と、前記有機粒子の表面を覆う被覆層を有し、
前記被覆層が、金属アルコキシドの重合物を有して構成されていることを特徴とする複合粒子。
(2)前記金属アルコキシドの重合物は、金属アルコキシド、または金属アルコキシドの加水分解物の縮重合物である上記(1)に記載の複合粒子。
(3)前記金属アルコキシドが、アルコキシシランである上記(1)または(2)に記載の複合粒子。
(4)前記アルコキシシランが、テトラエトキシシランまたはテトラメトキシシランである上記(3)に記載の複合粒子。
(5)前記有機粒子が、(メタ)アクリル系樹脂を含む上記(1)から(4)のいずれか一項に記載の複合粒子。
(6)前記有機粒子が、極性基を備える化合物を含む上記(1)から(5)のいずれか一項に記載の複合粒子。
(7)上記化合物が、シランカップリング剤を含む上記(6)に記載の複合粒子。
(8)前記有機粒子が、機能性材料を含有する上記(1)から(7)のいずれか一項に記載の複合粒子。
(9)前記機能性材料が半導体粒子であり、
前記有機粒子が、前記半導体粒子を1個または2個以上含む請求項8に記載の複合粒子。
(10)前記被覆層が、前記金属アルコキシドの重合物から構成された無機粒子を複数含む上記(1)から(9)のいずれか一項に記載の複合粒子。
(11)前記有機粒子の平均粒径が0.01μm以上30μm以下であり、前記無機粒子の平均粒径が3nm以上150nm以下である上記(10)に記載の複合粒子。
(12)前記有機粒子の平均粒径が0.01μm以上30μm以下であり、前記被覆層の平均膜厚が5nm以上400nm以下である上記(1)から(11)のいずれか一項に記載の複合粒子。
(13)前記被覆層が、多層に構成されている上記(1)から(12)のいずれか一項に記載の複合粒子。
(14)上記(1)から(13)のいずれか一項に記載の複合粒子を含むことを特徴とする組成物。
(15)金属アルコキシドを重合し無機粒子を作製する無機粒子作製工程と、
前記無機粒子を有機粒子の周囲に堆積させて被覆層を形成する被覆工程と、
を備えることを特徴とする複合粒子製造方法。
(16)前記無機粒子作製工程が、ゾルゲル法の実施を含む上記(15)に記載の複合粒子製造方法。
(17)前記金属アルコキシドが、アルコキシシランであり、
前記無機粒子作製工程が、ストーバー法の実施を含む上記(15)または(16)に記載の複合粒子製造方法。
(18)懸濁重合により前記有機粒子を作製する有機粒子作製工程を含む上記(15)から(17)のいずれか一項に記載の複合粒子製造方法。
(19)前記無機粒子作製工程と前記被覆工程を同一液相にて連続的に実施する上記(15)から(18)のいずれか一項に記載の複合粒子製造方法。
(20)前記被覆工程が、第一被覆工程と、第二被覆工程とを備え、
前記第一被覆工程は、反応槽に前記無機粒子と、前記有機粒子とを含む混合液を添加し撹拌して単層の被覆層を備える複合粒子を作製する工程であり、
前記第二被覆工程は、前記第一被覆工程終了後、前記反応槽から前記単層の被覆層を備える複合粒子を取り出し、反応槽に前記単層の複合粒子と前記無機粒子または前記無機粒子作製原料とを含む混合液を添加し撹拌して多層の被覆層を備える複合粒子を作製する工程である上記(15)から(19)のいずれか一項に記載の複合粒子製造方法。
The above embodiment includes the following technical idea.
(1) having organic particles and a coating layer covering the surface of the organic particles;
The composite particle, wherein the coating layer includes a polymer of a metal alkoxide.
(2) The composite particle according to (1), wherein the metal alkoxide polymer is a condensation polymer of metal alkoxide or a hydrolyzate of metal alkoxide.
(3) The composite particle according to (1) or (2), wherein the metal alkoxide is alkoxysilane.
(4) The composite particle according to (3), wherein the alkoxysilane is tetraethoxysilane or tetramethoxysilane.
(5) The composite particle according to any one of (1) to (4), wherein the organic particle includes a (meth) acrylic resin.
(6) The composite particle according to any one of (1) to (5), wherein the organic particle includes a compound having a polar group.
(7) The composite particle according to (6), wherein the compound includes a silane coupling agent.
(8) The composite particle according to any one of (1) to (7), wherein the organic particle contains a functional material.
(9) The functional material is a semiconductor particle,
The composite particles according to claim 8, wherein the organic particles include one or more of the semiconductor particles.
(10) The composite particle according to any one of (1) to (9), wherein the coating layer includes a plurality of inorganic particles composed of a polymer of the metal alkoxide.
(11) The composite particles according to (10), wherein the average particle diameter of the organic particles is 0.01 μm or more and 30 μm or less, and the average particle diameter of the inorganic particles is 3 nm or more and 150 nm or less.
(12) The average particle diameter of the organic particles is 0.01 μm or more and 30 μm or less, and the average film thickness of the coating layer is 5 nm or more and 400 nm or less, according to any one of (1) to (11) above. Composite particles.
(13) The composite particle according to any one of (1) to (12), wherein the coating layer is configured in multiple layers.
(14) A composition comprising the composite particles according to any one of (1) to (13) above.
(15) an inorganic particle production step of polymerizing metal alkoxide to produce inorganic particles;
A coating step of depositing the inorganic particles around the organic particles to form a coating layer;
A method for producing composite particles, comprising:
(16) The method for producing composite particles according to (15), wherein the inorganic particle production step includes implementation of a sol-gel method.
(17) The metal alkoxide is an alkoxysilane,
The method for producing composite particles according to the above (15) or (16), wherein the inorganic particle production step includes a Stover method.
(18) The method for producing composite particles according to any one of (15) to (17), including an organic particle production step of producing the organic particles by suspension polymerization.
(19) The method for producing composite particles according to any one of (15) to (18), wherein the inorganic particle preparation step and the coating step are continuously performed in the same liquid phase.
(20) The coating step includes a first coating step and a second coating step,
The first coating step is a step of adding composite liquid containing the inorganic particles and the organic particles to a reaction vessel and stirring to produce composite particles including a single-layer coating layer.
In the second coating step, after completion of the first coating step, the composite particles including the single-layer coating layer are taken out from the reaction tank, and the single-layer composite particles and the inorganic particles or the inorganic particles are prepared in the reaction tank. The method for producing composite particles according to any one of (15) to (19), wherein the mixed solution containing a raw material is added and stirred to produce composite particles having a multilayer coating layer.

10・・・有機粒子
20・・・被覆層
30・・・無機粒子
100・・・複合粒子
                                                                                

 
DESCRIPTION OF SYMBOLS 10 ... Organic particle 20 ... Coating layer 30 ... Inorganic particle 100 ... Composite particle

Claims (18)

有機粒子と、前記有機粒子の表面を覆う被覆層を有し、
前記被覆層が、金属アルコキシドの重合物を有して構成されていることを特徴とする複合粒子。
Organic particles and a coating layer covering the surface of the organic particles,
The composite particle, wherein the coating layer includes a polymer of a metal alkoxide.
前記金属アルコキシドの重合物は、金属アルコキシド、または金属アルコキシドの加水分解物の縮重合物である請求項1に記載の複合粒子。 The composite particle according to claim 1, wherein the polymer of the metal alkoxide is a condensation polymer of metal alkoxide or a hydrolyzate of metal alkoxide. 前記金属アルコキシドが、アルコキシシランである請求項1または2に記載の複合粒子。 The composite particle according to claim 1, wherein the metal alkoxide is alkoxysilane. 前記アルコキシシランが、テトラエトキシシランまたはテトラメトキシシランである請求項3に記載の複合粒子。 The composite particle according to claim 3, wherein the alkoxysilane is tetraethoxysilane or tetramethoxysilane. 前記有機粒子が、(メタ)アクリル系樹脂を含む請求項1から4のいずれか一項に記載の複合粒子。 The composite particle according to any one of claims 1 to 4, wherein the organic particle contains a (meth) acrylic resin. 前記有機粒子が、極性基を備える化合物を含む請求項1から5のいずれか一項に記載の複合粒子。 The composite particle according to claim 1, wherein the organic particle includes a compound having a polar group. 上記化合物が、シランカップリング剤を含む請求項6に記載の複合粒子。 The composite particle according to claim 6, wherein the compound contains a silane coupling agent. 前記有機粒子が、機能性材料を含有する請求項1から7のいずれか一項に記載の複合粒子。 The composite particles according to claim 1, wherein the organic particles contain a functional material. 前記機能性材料が半導体粒子であり、
前記有機粒子が、前記半導体粒子を1個または2個以上含む請求項8に記載の複合粒子。
The functional material is a semiconductor particle;
The composite particles according to claim 8, wherein the organic particles include one or more of the semiconductor particles.
前記被覆層が、前記金属アルコキシドの重合物から構成された無機粒子を複数含む請求項1から9のいずれか一項に記載の複合粒子。 The composite particle according to any one of claims 1 to 9, wherein the coating layer includes a plurality of inorganic particles composed of a polymer of the metal alkoxide. 前記有機粒子の平均粒径が0.01μm以上30μm以下であり、前記無機粒子の平均粒径が3nm以上150nm以下である請求項10に記載の複合粒子。 11. The composite particle according to claim 10, wherein the average particle diameter of the organic particles is 0.01 μm or more and 30 μm or less, and the average particle diameter of the inorganic particles is 3 nm or more and 150 nm or less. 前記有機粒子の平均粒径が0.01μm以上30μm以下であり、前記被覆層の平均膜厚が5nm以上400nm以下である請求項1から11のいずれか一項に記載の複合粒子。 12. The composite particle according to claim 1, wherein an average particle diameter of the organic particles is 0.01 μm or more and 30 μm or less, and an average film thickness of the coating layer is 5 nm or more and 400 nm or less. 請求項1から12のいずれか一項に記載の複合粒子を含むことを特徴とする組成物。 A composition comprising the composite particles according to any one of claims 1 to 12. 金属アルコキシドを重合し無機粒子を作製する無機粒子作製工程と、
前記無機粒子を有機粒子の周囲に堆積させて被覆層を形成する被覆工程と、
を備えることを特徴とする複合粒子製造方法。
An inorganic particle production step of polymerizing metal alkoxide to produce inorganic particles;
A coating step of depositing the inorganic particles around the organic particles to form a coating layer;
A method for producing composite particles, comprising:
前記無機粒子作製工程が、ゾルゲル法の実施を含む請求項14に記載の複合粒子製造方法。 The composite particle manufacturing method according to claim 14, wherein the inorganic particle manufacturing step includes implementation of a sol-gel method. 前記金属アルコキシドが、アルコキシシランであり、
前記無機粒子作製工程が、ストーバー法の実施を含む請求項14または15に記載の複合粒子製造方法。
The metal alkoxide is alkoxysilane;
The composite particle manufacturing method according to claim 14 or 15, wherein the inorganic particle manufacturing step includes a Stover method.
懸濁重合により前記有機粒子を作製する有機粒子作製工程を含む請求項14から16のいずれか一項に記載の複合粒子製造方法。 The method for producing composite particles according to any one of claims 14 to 16, further comprising an organic particle production step of producing the organic particles by suspension polymerization. 前記無機粒子作製工程と前記被覆工程を同一液相にて連続的に実施する請求項14から17のいずれか一項に記載の複合粒子製造方法。

 
 
The composite particle manufacturing method according to any one of claims 14 to 17, wherein the inorganic particle preparation step and the coating step are continuously performed in the same liquid phase.


PCT/JP2018/013128 2017-03-31 2018-03-29 Composite particles and production method for composite particles Ceased WO2018181669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071637 2017-03-31
JP2017071637A JP2018172531A (en) 2017-03-31 2017-03-31 Composite particle, and production method of composite particle

Publications (1)

Publication Number Publication Date
WO2018181669A1 true WO2018181669A1 (en) 2018-10-04

Family

ID=63676098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013128 Ceased WO2018181669A1 (en) 2017-03-31 2018-03-29 Composite particles and production method for composite particles

Country Status (3)

Country Link
JP (1) JP2018172531A (en)
TW (1) TW201903027A (en)
WO (1) WO2018181669A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210654A (en) * 1985-07-08 1987-01-19 Fuji Photo Film Co Ltd Toner and its production
JP2008174430A (en) * 2007-01-22 2008-07-31 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles, production method thereof, and toner external additive for developing electrostatic image using the same
JP2012149190A (en) * 2011-01-20 2012-08-09 Fuji Xerox Co Ltd Resin particle, and method for manufacturing the same
WO2015185023A2 (en) * 2014-06-05 2015-12-10 上海交通大学 Carrier particle and preparation method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210654A (en) * 1985-07-08 1987-01-19 Fuji Photo Film Co Ltd Toner and its production
JP2008174430A (en) * 2007-01-22 2008-07-31 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles, production method thereof, and toner external additive for developing electrostatic image using the same
JP2012149190A (en) * 2011-01-20 2012-08-09 Fuji Xerox Co Ltd Resin particle, and method for manufacturing the same
WO2015185023A2 (en) * 2014-06-05 2015-12-10 上海交通大学 Carrier particle and preparation method therefor

Also Published As

Publication number Publication date
TW201903027A (en) 2019-01-16
JP2018172531A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
Qian et al. A novel approach to raspberry-like particles for superhydrophobic materials
JP5321469B2 (en) Powder and production method thereof
JP5563303B2 (en) Mesostructured coatings for the aircraft and aerospace industry
TWI518190B (en) Core - shell type nano - particles and its manufacturing method
JP5531232B2 (en) Polymer-coated inorganic fine particles and method for producing the same
US20060105170A1 (en) Magnetic particle and process for preparation
KR20110003535A (en) Superhydrophobic powder, superhydrophobic structures and their manufacturing method
CN109609114A (en) A kind of optimized treatment method of fluorescence quantum
JP2011174067A (en) Gold colored metallic pigment including manganese oxide nanoparticle layer
Zhao et al. A high-adhesion binding strategy for silica nanoparticle-based superhydrophobic coatings
CN102756125B (en) Method for fabricating nanohybrids, the nanohybrids
CN110540765A (en) A kind of preparation method of wear-resistant super-amphiphobic coating based on titanium dioxide/silica composite nanoparticles
JP2010001555A (en) Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them
JP5692892B2 (en) Coating film and water-based organic / inorganic composite composition
WO2018181669A1 (en) Composite particles and production method for composite particles
Contreras et al. Superhydrophobic Polypropylene Surfaces Prepared with T i O 2 Nanoparticles Functionalized by Dendritic Polymers
JP4469002B2 (en) Structure coated with superhydrophobic nanostructure composite and its production method
JP2009057263A (en) Nanostructural complex coating type structure and method of manufacturing the same
CN116254013B (en) A multifunctional graphene self-assembled film and its preparation method
JP2011127201A (en) Coated metal powder, powder magnetic core and their production methods
JP7168973B2 (en) Modified silver sintered structure and its manufacturing method
JP2012036313A (en) Method for producing inorganic oxide particle and anisotropic electrically conductive adhesive using inorganic oxide particle obtained by the production method
CN1298791C (en) Superparamagnetic Fe3O4 nanometer particle with synthetic polymer modification from one-step method
JP2011225694A (en) Water-in-oil type emulsion using super hydrophobic powder as dispersant and method for producing the same
Shibata et al. Preparation of various Janus composite particles with two components differently combined

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777076

Country of ref document: EP

Kind code of ref document: A1