[go: up one dir, main page]

WO2018185907A1 - 固体レーザー装置、剥離装置及び可撓性表示装置の製造方法 - Google Patents

固体レーザー装置、剥離装置及び可撓性表示装置の製造方法 Download PDF

Info

Publication number
WO2018185907A1
WO2018185907A1 PCT/JP2017/014357 JP2017014357W WO2018185907A1 WO 2018185907 A1 WO2018185907 A1 WO 2018185907A1 JP 2017014357 W JP2017014357 W JP 2017014357W WO 2018185907 A1 WO2018185907 A1 WO 2018185907A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state laser
laser
lens
lenses
Prior art date
Application number
PCT/JP2017/014357
Other languages
English (en)
French (fr)
Inventor
菅 勝行
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2017/014357 priority Critical patent/WO2018185907A1/ja
Publication of WO2018185907A1 publication Critical patent/WO2018185907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range

Definitions

  • the present invention relates to a solid-state laser device, a peeling device using a solid-state laser, and a method for manufacturing a flexible display device (flexible display device) using the solid-state laser device.
  • an organic EL display device equipped with an organic EL (Electroluminescence) display element can realize low power consumption, thinning, and high image quality. Has attracted a lot of attention as an excellent display.
  • a display device that does not need to have a backlight such as an organic EL display device or a display device having a reflective liquid crystal display element, can be bent freely. There is a high demand for conversion.
  • FIG. 6 is a diagram for explaining a Lazer Lift Off process (also referred to as an LLO process) necessary for manufacturing a highly reliable flexible organic EL display device.
  • LLO process Lazer Lift Off process
  • a PI layer 102 (resin layer) made of, for example, polyimide resin is laminated on one surface 101a of the glass substrate 101 (non-flexible substrate).
  • a moisture-proof layer 103 is laminated on the PI layer 102
  • a TFT array layer 104 including a thin film transistor element (TFT element) and an insulating film is formed on the moisture-proof layer 103
  • the TFT array layer 104 is formed on the TFT array layer 104.
  • a first electrode (not shown) was formed in a pattern corresponding to each pixel using a metal film of the same layer, and a terminal portion (not shown) was formed.
  • any one of the red light emitting organic EL element 105R, the green light emitting organic EL element 105G, and the blue light emitting organic EL element 105B is formed (second step), and the red light emitting organic EL element is formed.
  • a sealing film 106 is formed so as to cover 105R, the green light-emitting organic EL element 105G, and the blue light-emitting organic EL element 105B.
  • each of the red light emitting organic EL element 105R, the green light emitting organic EL element 105G, and the blue light emitting organic EL element 105B is not illustrated, for example, a hole injection layer, a hole transport layer, a light emitting layer of each color, an electron It is a laminated body of a transport layer, an electron injection layer, and a second electrode.
  • a laser beam is irradiated from the glass substrate 101 side to cause ablation at the interface between the PI layer 102 and the glass substrate 101. It peeled from 102 (3rd process).
  • the back film 111 is PI bonded via an adhesive layer (not shown) provided on one surface 111 a of the back film 111 which is a flexible substrate. Affixed to the layer 102 to complete the flexible organic EL display device (fourth step).
  • a manufacturing process of a thin film transistor element (TFT element), a red light emitting organic EL element 105R, and a green light emitting process which are relatively high temperature manufacturing processes. Since the manufacturing process of the organic EL element 105G and the blue light-emitting organic EL element 105B can be performed on the glass substrate 101, a highly reliable flexible organic EL display device can be realized.
  • TFT element thin film transistor element
  • red light emitting organic EL element 105R red light emitting organic EL element 105R
  • a green light emitting process which are relatively high temperature manufacturing processes. Since the manufacturing process of the organic EL element 105G and the blue light-emitting organic EL element 105B can be performed on the glass substrate 101, a highly reliable flexible organic EL display device can be realized.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2015-194642 (published on November 5, 2015)
  • an excimer laser having a typical oscillation wavelength of XeCl: 308 nm and XeF: 351 nm is generated by using a mixed gas such as a rare gas or halogen.
  • a mixed gas such as a rare gas or halogen.
  • excimer Laser has been used, but excimer lasers have problems in terms of increase in maintenance cost and operating rate because gas exchange and chamber cleaning work are required periodically.
  • a solid laser such as a YAG laser (Nd: YAG laser) containing Nd 3+ ions has no concern about gas deterioration, and therefore, more uniform laser light irradiation can be performed without maintenance. Solid lasers are drawing attention.
  • each of laser beams from two different laser oscillation units is passed through each of two different optical systems (for example, an optical system including a cylindrical lens, a homogenizer, and a condenser lens).
  • an optical system including a cylindrical lens, a homogenizer, and a condenser lens.
  • Patent Document 1 in the case of a laser apparatus having a different optical system for each laser oscillation unit, it is necessary to provide as many optical systems as the number of laser oscillation units. But it is also disadvantageous in terms of cost. In particular, when a solid-state laser having a small output is used, it is necessary to increase the number of laser oscillation units used, which is further disadvantageous in terms of the size and cost of the laser device.
  • FIG. 7 shows a schematic configuration of a solid-state laser device 120 that irradiates the PI layer 102 on the glass substrate 101 with each of the laser beams from the plurality of solid-state laser oscillation units S1, S2, S3, and S4 superimposed on the same optical path.
  • FIG. 7 shows a schematic configuration of a solid-state laser device 120 that irradiates the PI layer 102 on the glass substrate 101 with each of the laser beams from the plurality of solid-state laser oscillation units S1, S2, S3, and S4 superimposed on the same optical path.
  • the solid-state laser device 120 includes four solid-state laser oscillation units S1, S2, S3, and S4 that individually emit laser beams, and thin-film polarizers D1, D2, D3, and D4, Polarization rotating elements (for example, ⁇ / 2 plates) f1, f2, and f3, beam expanders L1 and L2, a homogenizer H, a reflection mirror D5, and a condenser lens L3 are provided.
  • solid-state laser oscillation units S1, S2, S3, and S4 that individually emit laser beams
  • thin-film polarizers D1, D2, D3, and D4 Polarization rotating elements (for example, ⁇ / 2 plates) f1, f2, and f3, beam expanders L1 and L2, a homogenizer H, a reflection mirror D5, and a condenser lens L3 are provided.
  • Thin film polarizers D1, D2, D3, and D4 are polarizers that reflect incident P-polarized light and transmit incident S-polarized light.
  • the polarization rotation elements f1, f2, and f3 emit the incident S-polarized light as it is, and the incident P-polarized light is converted into the S-polarized light and emitted.
  • the laser light emitted from the solid-state laser oscillating unit S1 is reflected by the thin film polarizer D1, and the laser light including only the P-polarized light passes through the polarization rotating element f1 to become a laser light including only the S-polarized light.
  • the laser light emitted from the solid-state laser oscillating unit S2 is reflected by the thin film polarizer D2, and the laser light including only the P-polarized light passes through the polarization rotating element f2 to become laser light including only the S-polarized light. After passing through the thin film polarizers D3 and D4 and one polarization rotation element f3, they are guided to the beam expanders L1 and L2.
  • the laser beam emitted from the solid-state laser oscillating unit S3 is reflected by the thin film polarizer D3, and the laser beam including only the P-polarized light passes through the polarization rotating element f3 to become a laser beam including only the S-polarized light.
  • the light After passing through the thin film polarizer D4, the light is guided to the beam expanders L1 and L2.
  • the laser light emitted from the solid-state laser oscillating unit S4 is reflected by the thin film polarizer D4, and the laser light including only P-polarized light is guided to the beam expanders L1 and L2.
  • the beam expanders L1 and L2 are lenses for expanding the incident laser light in a line shape in the major axis direction
  • the homogenizer H is a lens for improving the uniformity of the incident laser light
  • the reflecting mirror D5 Is a mirror that guides the incident laser light to the condensing lens L3.
  • the condensing lens L3 irradiates the PI layer 102 on the glass substrate 101 with the incident laser light as laser light having a predetermined shape. It is a lens.
  • each of the laser beams from the plurality of solid-state laser oscillation units S1, S2, S3, and S4 passes through the same optical path and then the PI layer on the glass substrate 101.
  • Thin film polarizers D1, D2, D3, and D4, beam expanders L1 and L2, a homogenizer H, a reflection mirror D5, and a condensing lens L3 are disposed so as to be able to irradiate 102.
  • each of the laser beams from the plurality of solid-state laser oscillation units S1, S2, S3, and S4 is superimposed on the same optical path and is incident on the beam expanders L1 and L2 as one beam.
  • thin film polarizers D1, D2, D3, and D4 are arranged.
  • the minor axis direction is focused on a Gaussian beam of 20 to 30 ⁇ m, so the homogenizer does not act on the minor axis direction. Apply the homogenizer only in the direction.
  • FIG. 8A is a diagram for explaining an LLO process using an excimer laser
  • FIG. 8B is a diagram for explaining an LLO process using the solid-state laser device 120 shown in FIG. FIG.
  • the output of the excimer laser is large, so the width in the short axis direction of the laser beam, which is the width in the horizontal direction in the figure.
  • the irradiation region R1 of the laser beam can be secured relatively wide, and the top flat can be made by using a homogenizer in the minor axis direction. Even if it exists, the influence by dust and scratches is not great, and the lower limit value of the irradiation energy necessary for peeling the PI layer 102 on the glass substrate 101 can be easily secured.
  • the output of the solid-state laser is small. Since the width in the minor axis direction of a certain laser beam can be ensured only up to about 30 ⁇ m and the irradiation region R1 of the laser beam cannot be secured widely, the following problems arise.
  • FIG. 9 is a diagram for explaining problems in the LLO process using the solid-state laser device 120 illustrated in FIG.
  • the width of the laser beam emitted from the condensing lens L3 of the solid-state laser device 120 is as narrow as about 30 ⁇ m (see FIG. 8B). Since a homogenizer is not used in the minor axis direction, the beam is simply a Gaussian beam obtained by condensing the beam with a lens.
  • the present invention has been made in view of the above-described problems, and even when a solid-state laser having a small width in the minor axis direction of a laser beam is used, the size of the device is increased and the cost of the device is increased. In addition, it is possible to secure a wide margin for dust and scratches on the non-flexible substrate and to improve the yield in the Lazer Lift Off process (LLO process), a peeling apparatus, and flexibility It is an object of the present invention to provide a method for manufacturing a flexible display device that can improve the yield of the display device.
  • LLO process Lazer Lift Off process
  • a solid-state laser device of the present invention is a solid-state laser device including a plurality of solid-state laser oscillation units and a plurality of lenses, and includes a plurality of solid-state laser oscillation units.
  • Each of the emitted laser lights is incident on the first lens in the plurality of lenses through a plurality of different optical paths, and the laser light emitted from the first lens is the first in the plurality of lenses. It is characterized by being incident on the irradiation object from a plurality of directions through two lenses.
  • each of the laser beams emitted from the plurality of solid-state laser oscillation units is incident on the first lens through a plurality of different optical paths, the width of the laser beam in the minor axis direction Even when a small solid laser is used, it is possible to suppress an increase in the size of the device and an increase in the cost of the device.
  • each of the laser beams emitted from the plurality of solid-state laser oscillation units is emitted from the first lens by being incident on the first lens through a plurality of different optical paths. Since the emitted laser light is incident on the irradiation object from a plurality of directions via the second lens among the plurality of lenses, a wide margin for dust and scratches on the non-flexible substrate is ensured. Thus, a solid-state laser device capable of improving the yield in the Lazer ⁇ ⁇ ⁇ ⁇ Lift Off process (LLO process) can be realized.
  • LLO process Lazer ⁇ ⁇ ⁇ ⁇ Lift Off process
  • the peeling device of the present invention is a peeling device including a plurality of solid laser oscillation units and a plurality of lenses, and is emitted from the plurality of solid laser oscillation units.
  • Each of the laser beams is incident on the first lens in the plurality of lenses through a plurality of different optical paths, and the laser beam emitted from the first lens is the second lens in the plurality of lenses.
  • the resin layer formed on one surface of the non-flexible substrate, and the display element formed on the resin layer in a plurality of directions The inflexible substrate is peeled off from the resin layer.
  • each of the laser beams emitted from the plurality of solid-state laser oscillation units is emitted from the first lens by being incident on the first lens through a plurality of different optical paths.
  • Laser light passes through the second lens among the plurality of lenses, Incoming from a plurality of directions into the inflexible substrate in the inflexible substrate, the resin layer formed on one surface of the inflexible substrate, and the display element formed on the resin layer. Therefore, a wide margin for dust and scratches on the non-flexible substrate can be ensured, and a peeling apparatus that can improve the yield in the Laser Lift Off process (LLO process) can be realized.
  • LLO process Laser Lift Off process
  • a method for manufacturing a flexible display device of the present invention includes a first step of forming a resin layer on one surface of a non-flexible substrate, and a display element on the resin layer.
  • the method of manufacturing a flexible display device includes a plurality of solid-state laser oscillation units and a plurality of solid-state laser oscillation units in the third step.
  • Each of the laser beams emitted from the plurality of solid-state laser oscillation units is incident on a first lens among the plurality of lenses through a plurality of different optical paths, and from the first lens.
  • the emitted laser beam is used as the second lens in the plurality of lenses. Through, it is characterized in that is incident from a plurality of directions to the non-flexible substrate.
  • a flexible display device manufacturing method can be realized.
  • the present invention even when a solid-state laser having a small width in the minor axis direction of a laser beam is used, an increase in the size of the device and an increase in the cost of the device can be suppressed, and non-flexibility can be achieved.
  • the margin for dust and scratches on the conductive substrate can be secured widely, and the yield of the solid laser device, peeling device, and flexible display device that can improve the yield in the Lazer Lift Off process (LLO process) can be improved.
  • a flexible display device manufacturing method can be provided.
  • FIG. It is a figure which shows schematic structure of the solid-state laser apparatus of Embodiment 1.
  • FIG. It is a figure for demonstrating the reason which can improve the yield in a LLO process when the solid-state laser apparatus shown in FIG. 1 is used.
  • 6 is a diagram for explaining a method for driving a solid-state laser oscillation unit provided in the solid-state laser device of Embodiment 2.
  • FIG. It is a figure for demonstrating the schematic structure of the solid-state laser apparatus of Embodiment 3, and its drive method.
  • FIGS. 1 to 5 Embodiments of the present invention will be described with reference to FIGS. 1 to 5 as follows.
  • components having the same functions as those described in the specific embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • Embodiment 1 A first embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 shows that laser beams from a plurality of solid-state laser oscillators S1, S2, S3, and S4 are incident on one condenser lens L3 through a plurality of different optical paths without overlapping each other.
  • the laser beam emitted from the condenser lens L3 is incident on the glass substrate 101 (irradiation target) from a plurality of directions, so that the PI layer 102 on the glass substrate 101 is irradiated with the laser beam.
  • the solid-state laser device 1 is a peeling device using a solid-state laser.
  • the plurality of solid-state laser oscillation units S1, S2, S3, and S4 are portions that emit solid-state laser light such as a YAG laser (Nd: YAG laser) including Nd 3+ ions.
  • the solid-state laser device 1 includes four solid-state laser oscillation units S1, S2, S3, and S4 that individually emit laser beams, thin film polarizers D1, D2, D3, and D4, Polarization rotating elements (for example, ⁇ / 2 plates) f1, f2, and f3, beam expanders L1 and L2, a homogenizer H, a reflection mirror D5, and a condenser lens L3 are provided.
  • solid-state laser oscillation units S1, S2, S3, and S4 that individually emit laser beams
  • thin film polarizers D1, D2, D3, and D4 Polarization rotating elements (for example, ⁇ / 2 plates) f1, f2, and f3, beam expanders L1 and L2, a homogenizer H, a reflection mirror D5, and a condenser lens L3 are provided.
  • Thin film polarizers D1, D2, D3, and D4 are polarizers that reflect incident P-polarized light and transmit incident S-polarized light.
  • the polarization rotation elements f1, f2, and f3 emit the incident S-polarized light as it is, and the incident P-polarized light is converted into the S-polarized light and emitted.
  • the laser light emitted from the solid-state laser oscillating unit S1 is reflected by the thin film polarizer D1, and the laser light including only the P-polarized light passes through the polarization rotating element f1 to become a laser light including only the S-polarized light.
  • the laser light emitted from the solid-state laser oscillating unit S2 is reflected by the thin film polarizer D2, and the laser light including only the P-polarized light passes through the polarization rotating element f2 to become laser light including only the S-polarized light.
  • the light After passing through the thin film polarizers D3 and D4 and one polarization rotation element f3, the light is guided to the beam expander L1.
  • the laser beam emitted from the solid-state laser oscillating unit S3 is reflected by the thin film polarizer D3, and the laser beam including only the P-polarized light passes through the polarization rotating element f3 to become a laser beam including only the S-polarized light. After passing through the thin film polarizer D4, it is guided to the beam expander L1.
  • the laser light emitted from the solid-state laser oscillation unit S4 is reflected by the thin film polarizer D4, and the laser light including only P-polarized light is guided to the beam expander L1.
  • the beam expanders L1 and L2 are lenses for expanding the incident laser light in a line shape in the major axis direction
  • the homogenizer H is a lens for improving the uniformity of the incident laser light
  • the reflecting mirror D5 Is a mirror that guides the incident laser light to the condensing lens L3.
  • the condensing lens L3 irradiates the PI layer 102 on the glass substrate 101 with the incident laser light as laser light having a predetermined shape. It is a lens.
  • laser beams from a plurality of solid-state laser oscillation units S 1, S 2, S 3, S 4 are not overlapped on one optical path, and a plurality of different optical paths ( In the present embodiment, the light beams are incident on one beam expander L1 and L2 through four different optical paths.
  • a plurality of solid-state laser oscillation units S1, S2, S3, and S4 and thin film polarizers D1, D2, D3, and D4 are arranged as follows.
  • the laser light emitted from the solid-state laser oscillation unit S1 and reflected by the thin film polarizer D1 is then passed through the thin film polarizers D2, D3, and D4 and the three polarization rotation elements f1, f2, and f3.
  • the thin film polarizers D3 and D4 and the two polarization rotation elements f2 and f2 Solid laser oscillation units S1 and S2 and thin film polarizers D1 and D2 are arranged so that the optical paths of the second optical path passing through f3 do not overlap.
  • the solid-state laser oscillation part S3 and the thin film polarizer D3 are arranged so that the optical paths of the third optical path passing through and do not overlap with each other.
  • the laser light of the first optical path, the laser light of the second optical path, the laser light of the third optical path, and the laser light of the fourth optical path emitted from the solid-state laser oscillation unit S4 and reflected by the thin film polarizer D4.
  • the solid-state laser oscillation part S4 and the thin film polarizer D4 are arranged so that their optical paths do not overlap.
  • the plurality of optical paths different from each other means optical paths that do not overlap each other spatially between the solid-state laser oscillation units S1, S2, S3, and S4 and the beam expander L1 (first lens).
  • the beam expander L1 is also referred to as a first lens, and the condenser lens L3 is also referred to as a second lens.
  • the laser light incident on the beam expanders L1 and L2 through a plurality of different optical paths is incident on the condenser lens L3 via the homogenizer H and the reflection mirror D5.
  • the laser light emitted from the condenser lens L3 is incident on the glass substrate 101 from a plurality of directions, so that the PI layer 102 on the glass substrate 101 can be irradiated with the laser light.
  • the laser beams emitted from the solid laser oscillation units S1, S2, S3, and S4 are emitted at the same time, but are not limited thereto.
  • FIG. 2 is a diagram for explaining the reason why the yield in the LLO process can be improved when the solid-state laser device 1 shown in FIG. 1 is used.
  • the laser light emitted from the condensing lens L ⁇ b> 3 of the solid-state laser device 1 is incident on the glass substrate 101 from a plurality of directions, so that it is on the glass substrate 101.
  • the PI layer 102 can be irradiated with laser light.
  • a flexible display device manufacturing method that can improve the yield of the flexible display device can be realized.
  • Embodiment 2 of the present invention will be described based on FIGS. 3 and 4.
  • laser light does not start to be emitted simultaneously from each of the plurality of solid laser oscillation units S1 ′, S2 ′, S3 ′, and S4 ′, but the laser light is emitted from the solid laser oscillation unit S1 ′
  • the solid laser oscillator S2 ′, the solid laser oscillator S3 ′, and the solid laser oscillator S4 ′ start to be emitted in this order, and the solid laser oscillator S1 ′, the solid laser oscillator S2 ′, the solid laser oscillator S3 ′, and the solid laser oscillator.
  • FIG. 3 is a diagram for explaining the emission order of the laser beams in the solid laser oscillation units S1 ′, S2 ′, S3 ′, and S4 ′ provided in the solid state laser device 10.
  • FIG. 4 is a diagram for explaining the order of stopping the emission of laser light in the solid-state laser oscillation units S1 ', S2', S3 ', and S4' provided in the solid-state laser device 10.
  • the laser beam is a solid-state laser oscillation unit.
  • S1 ′, solid laser oscillating unit S2 ′, solid laser oscillating unit S3 ′, and solid laser oscillating unit S4 ′ are emitted in this order at regular intervals.
  • the laser beam is a solid-state laser.
  • the emission is stopped at regular intervals in the order of the oscillator S1 ′, the solid laser oscillator S2 ′, the solid laser oscillator S3 ′, and the solid laser oscillator S4 ′.
  • the solid laser oscillation units S1 ′, S2 ′, S3 ′, and S4 ′ when stopping the emission of the laser light from the solid laser oscillation units S1 ′, S2 ′, S3 ′, and S4 ′, the solid laser oscillation units S1 ′, S2 ′, S3 ′, and S4 ′ are stopped.
  • the solid-state laser oscillators S1 ′, S2 ′, S3 ′, and S4 ′ are used by using a shutter unit (not shown) that is an open / close unit that can block or pass the emitted laser light.
  • the emission of laser light from is stopped, the present invention is not limited to this.
  • the solid-state laser oscillation unit S 1 Interference of laser light emitted from “• S2”, S3 ′, and S4 ′ can be suppressed.
  • the effective pulse width (irradiation time) can be changed by shifting the irradiation time of the laser light, the margin of the LLO process can be adjusted and the yield can be improved.
  • the laser light is started to be emitted at regular intervals, and is constant. Although the emission is stopped at intervals, laser light may be emitted from the solid laser oscillation units S1 ′, S2 ′, S3 ′, and S4 ′ in different periods.
  • Embodiment 3 of the present invention will be described with reference to FIG.
  • This embodiment is different from the first and second embodiments in that the outputs of the solid laser oscillation units S1 ′′, S2 ′′, S3 ′′, and S4 ′′ provided in the solid state laser device 20 are different. Others are as described in the first and second embodiments.
  • members having the same functions as those shown in the drawings of Embodiments 1 and 2 are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 5 is a diagram showing a schematic configuration of the solid-state laser device 20.
  • the outputs of the solid laser oscillation units S1 ′′, S2 ′′, S3 ′′, and S4 ′′ included in the solid state laser device 20 are output from the solid laser oscillation unit S1 ′′.
  • the solid laser oscillation unit S2 ′′, the solid laser oscillation unit S3 ′′, and the solid laser oscillation unit S4 ′′ become smaller in this order.
  • the output of the solid-state laser oscillation unit S1 ′′ is set larger than that of the solid-state laser oscillation units S2 ′′, S3 ′′, S4 ′′.
  • the output of the solid laser oscillator S2 ′′ is set to be weaker than the output of the solid laser oscillator S1 ′′ and larger than the outputs of the solid laser oscillators S3 ′′ and S4 ′′.
  • the output of the oscillating unit S3 ′′ is set to be weaker than the outputs of the solid laser oscillating units S1 ′′ and S2 ′′ and larger than the output of the solid laser oscillating unit S4 ′′.
  • the output of the solid-state laser oscillation unit S4 ′′ is output from the solid-state laser oscillation unit S1 ′′, S2 ′′. It was set weaker than the output of S3 ′′.
  • the solid-state laser device 20 it is possible to flexibly change the pulse shape of the laser applied to the resin layer, so that it is possible to adjust the margin of the LLO process and improve the yield.
  • the flexible display device (flexible display device) according to the present embodiment is not particularly limited as long as it is a display panel having a flexible and bendable optical element.
  • the optical element includes an optical element whose luminance and transmittance are controlled by current and an optical element whose luminance and transmittance are controlled by voltage.
  • an optical element for current control an organic EL (Electro Luminescence) display provided with an OLED (Organic Light Emitting Diode), or an EL display QLED such as an inorganic EL display provided with an inorganic light emitting diode (Quantum)
  • QLED displays equipped with dot-light-emitting diodes There are QLED displays equipped with dot-light-emitting diodes.
  • the voltage control optical element include a liquid crystal display element.
  • a solid-state laser device is a solid-state laser device including a plurality of solid-state laser oscillation units and a plurality of lenses, and laser light emitted from the plurality of solid-state laser oscillation units. Are incident on the first lens of the plurality of lenses through a plurality of different optical paths, and the laser light emitted from the first lens passes through the second lens of the plurality of lenses. It is characterized by being incident on the irradiation object from a plurality of directions.
  • each of the laser beams emitted from the plurality of solid-state laser oscillation units is incident on the first lens through a plurality of different optical paths, the width of the laser beam in the minor axis direction Even when a small solid laser is used, it is possible to suppress an increase in the size of the device and an increase in the cost of the device.
  • each of the laser beams emitted from the plurality of solid-state laser oscillation units is emitted from the first lens by being incident on the first lens through a plurality of different optical paths. Since the emitted laser light is incident on the irradiation object from a plurality of directions via the second lens among the plurality of lenses, a wide margin for dust and scratches on the non-flexible substrate is ensured. Thus, a solid-state laser device capable of improving the yield in the Lazer ⁇ ⁇ ⁇ ⁇ Lift Off process (LLO process) can be realized.
  • LLO process Lazer ⁇ ⁇ ⁇ ⁇ Lift Off process
  • the first lens is a beam expander and the second lens is a condenser lens.
  • a solid-state laser device that emits line-shaped laser light can be realized.
  • a solid-state laser device is one of the plurality of lenses according to aspect 1 or 2 described above, and a third lens is provided between the first lens and the second lens. It is preferable that a homogenizer is provided.
  • the solid-state laser device is the solid-state laser device according to any one of the aspects 1 to 3, wherein the plurality of different optical paths includes at least a first optical path and a second optical path. Two thin film polarizers and a polarization rotation element are provided, and one thin film polarizer of the two thin film polarizers may be provided in the second optical path.
  • each of the laser beams emitted from the plurality of solid-state laser oscillation units may be emitted simultaneously.
  • a solid-state laser device capable of irradiating a large energy density can be realized.
  • the solid-state laser device according to Aspect 6 of the present invention is the solid-state laser device according to any one of Aspects 1 to 4, wherein each of the laser beams emitted from the plurality of solid-state laser oscillation units starts and ends emission at different timings. At the same time, the end order of the emission of the laser light may be the start order of the emission of the laser light.
  • a solid-state laser device capable of arbitrarily controlling the pulse width of the laser can be realized.
  • the laser beams emitted from the plurality of solid-state laser oscillation units may have different emission periods.
  • a solid-state laser device capable of arbitrarily controlling the pulse width of the laser can be realized.
  • the solid-state laser device according to aspect 8 of the present invention is the solid-state laser device according to aspect 4, in which the output of the first solid-state laser oscillation unit that emits laser light to the first optical path is the second solid-state laser oscillation unit. It is preferable that the output is larger than the output of the second solid-state laser oscillating unit that emits laser light to the optical path.
  • a solid-state laser device capable of arbitrarily controlling the pulse shape of the laser light can be realized.
  • a peeling apparatus is a peeling apparatus including a plurality of solid laser oscillation units and a plurality of lenses, each of the laser beams emitted from the plurality of solid laser oscillation units. Is incident on the first lens in the plurality of lenses through a plurality of different optical paths, and the laser light emitted from the first lens is non-transmitted via the second lens in the plurality of lenses.
  • the flexible substrate, the resin layer formed on one surface of the non-flexible substrate, and the display element formed on the resin layer are incident on the non-flexible substrate from a plurality of directions, and A peeling apparatus for peeling the non-flexible substrate from a resin layer.
  • each of the laser beams emitted from the plurality of solid-state laser oscillation units is emitted from the first lens by being incident on the first lens through a plurality of different optical paths.
  • Laser light passes through the second lens among the plurality of lenses, Incoming from a plurality of directions into the inflexible substrate in the inflexible substrate, the resin layer formed on one surface of the inflexible substrate, and the display element formed on the resin layer. Therefore, a wide margin for dust and scratches on the non-flexible substrate can be ensured, and a peeling apparatus that can improve the yield in the Laser Lift Off process (LLO process) can be realized.
  • LLO process Laser Lift Off process
  • a method for manufacturing a flexible display device includes a first step of forming a resin layer on one surface of a non-flexible substrate, and a second step of forming a display element on the resin layer.
  • a fourth step of attaching a flexible substrate to the flexible display device wherein the third step includes a plurality of solid-state laser oscillation units and a plurality of lenses.
  • Each of the laser beams emitted from the plurality of solid-state laser oscillation units is incident on the first lens among the plurality of lenses through a plurality of different optical paths, and is emitted from the first lens. Through the second lens of the plurality of lenses. It is characterized in that the non-flexible substrate is made incident from a plurality of directions.
  • a flexible display device manufacturing method can be realized.
  • the resin layer may be a polyimide resin.
  • the display element according to the tenth or eleventh aspect may be a reflective liquid crystal display element.
  • the yield of the flexible reflective liquid crystal display device can be improved.
  • the display element may be an organic EL display element.
  • the yield of the flexible organic EL display device can be improved.
  • the present invention can be used for a laser device and a method for manufacturing a flexible display device using the laser device.
  • Solid-state laser device 10 Solid laser device (peeling device) 20 Solid laser device (peeling device) S1 to S4 Solid laser oscillator S1 ′ to S4 ′ Solid laser oscillator S1 ′′ to S4 ′′ Solid laser oscillators f1, f2 and f3 Polarization rotating elements D1 to D4 Thin film polarizer L1 Beam expander (first lens) L2 Beam expander H Homogenizer L3 Condensing lens (second lens) D5 Reflective mirror 101 Glass substrate 102 PI layer (Polyimide resin)

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

複数個の固体レーザー発振部(S1・S2・S3・S4)から出射されたレーザー光の各々は、互いに異なる複数の光路で、ビームエキスパンダー(L1)に入射され、ビームエキスパンダー(L1)から出射されたレーザー光は、集光レンズ(L3)を介して、照射対象物であるガラス基板(101)に複数の方向から入射される。

Description

固体レーザー装置、剥離装置及び可撓性表示装置の製造方法
 本発明は、固体レーザー装置と、固体レーザーを用いた剥離装置と、固体レーザー装置を用いた可撓性表示装置(フレキシブル表示装置)の製造方法とに関するものである。
 近年、さまざまなフラットパネルディスプレイが開発されており、特に、有機EL(Electro luminescence)表示素子を備えた有機EL表示装置は、低消費電力化、薄型化および高画質化などを実現できる点から、優れたディスプレイとして高い注目を浴びている。
 そして、このような有機EL表示装置や反射型の液晶表示素子を備えた表示装置などのように、バックライトを備える必要がない表示装置については、自由に曲げることができるように、フレキシブル表示装置化への要求が高い。
 図6は、信頼性の高いフレキシブル有機EL表示装置を製造するために必要なLazer Lift Off工程(LLO工程ともいう)を説明するための図である。
 図6の(a)に図示されているように、先ず、ガラス基板101(非可撓性基板)の一方側の面101a上に、例えば、ポリイミド樹脂からなるPI層102(樹脂層)を積層し(第1工程)、PI層102上に防湿層103を積層し、防湿層103上に薄膜トランジスタ素子(TFT素子)及び絶縁膜からなるTFTアレイ層104を形成し、TFTアレイ層104上には、同一層の金属膜を用いて、第1電極(図示せず)を個々の画素に対応してパターン形成するとともに、端子部(図示せず)を形成した。そして、上記第1電極の上には、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bの何れかが形成されており(第2工程)、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bを覆うように封止膜106が形成されている。
 なお、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bの各々は、例えば、図示してないが、正孔注入層、正孔輸送層、各色の発光層、電子輸送層、電子注入層及び第2の電極の積層体である。
 その後、図6の(b)に図示されているように、ガラス基板101側からレーザー光を照射することで、PI層102とガラス基板101との界面でアブレーションを起こし、ガラス基板101をPI層102から剥離した(第3工程)。
 続いて、図6の(c)に図示されているように、フレキシブル基板である裏面フィルム111の一方側の面111aに設けられえた接着層(図示せず)を介して、裏面フィルム111をPI層102に貼り付けて、フレキシブル有機EL表示装置を完成した(第4工程)。
 以上のように、LLO工程を用いて製造されたフレキシブル有機EL表示装置の場合、比較的高温の製造工程である、薄膜トランジスタ素子(TFT素子)の製造工程と、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bの製造工程とを、ガラス基板101上で行うことができるので、信頼性の高いフレキシブル有機EL表示装置を実現できる。
日本国公開特許公報「特開2015‐194642号」公報(2015年11月5日公開)
 図6に図示したLLO工程におけるレーザー光の照射には、希ガスやハロゲンなどの混合ガスを用いてレーザー光を発生させ、その代表的な発振波長がXeCl:308nm、XeF:351nmであるエキシマレーザー(Excimer Laser)が使用されていたが、エキシマレーザーでは、定期的にガス交換やチャンバークリーンイング作業が必要であるため、メンテナンスコストの増加や稼働率に問題があった。近年、例えば、Nd3+イオンを含むYAGレーザー(Nd:YAGレーザー)などの固体レーザーは、ガスの劣化の心配がないため、より均一なレーザー光の照射が、メンテナンスフリーで可能であることから、固体レーザーが注目されている。
 特許文献1には、LLO工程において、2つの異なるレーザー発振部からのレーザー光の各々を、2つの異なる光学系(例えば、シリンドリカルレンズ、ホモジナイザー及び集光レンズを含む光学系)の各々を介して、異なる方向から同一基板の同一の領域に入射させることについて記載されている。
 しかしながら、特許文献1に開示されているように、レーザー発振部ごとに異なる光学系を備えたレーザー装置の場合、レーザー発振部の個数分の光学系を備える必要があるので、レーザー装置のサイズ面でもコスト面でも不利である。特に、その出力が小さい固体レーザーを用いる場合には、レーザー発振部の使用個数を増やす必要があるので、レーザー装置のサイズ面やコスト面でさらに不利になってしまう。
 図7は、複数個の固体レーザー発振部S1・S2・S3・S4からのレーザー光の各々を同一の光路に重ねてガラス基板101上のPI層102に照射する固体レーザー装置120の概略構成を示す図である。
 図7に図示されているように、固体レーザー装置120は、個別にレーザー光を出射する4つの固体レーザー発振部S1・S2・S3・S4と、薄膜偏光子D1・D2・D3・D4と、偏光回転素子(例えば、λ/2板)f1・f2・f3と、ビームエキスパンダーL1・L2と、ホモジナイザーHと、反射ミラーD5と、集光レンズL3とを備えている。
 薄膜偏光子D1・D2・D3・D4は、入射されたP偏光は反射し、入射されたS偏光は透過させる偏光子である。
 偏光回転素子f1・f2・f3は、入射されたS偏光はそのまま出射し、入射されたP偏光はS偏光に変えて出射する。
 固体レーザー発振部S1から出射されたレーザー光は、薄膜偏光子D1によって、P偏光のみを含むレーザー光は反射され、偏光回転素子f1を通過することによって、S偏光のみを含むレーザー光となり、その後、薄膜偏光子D2・D3・D4と、2つの偏光回転素子f2・f3とを通過した後、ビームエキスパンダーL1・L2に導かれる。
 固体レーザー発振部S2から出射されたレーザー光は、薄膜偏光子D2によって、P偏光のみを含むレーザー光は反射され、偏光回転素子f2を通過することによって、S偏光のみを含むレーザー光となり、その後、薄膜偏光子D3・D4と、1つの偏光回転素子f3とを通過した後、ビームエキスパンダーL1・L2に導かれる。
 固体レーザー発振部S3から出射されたレーザー光は、薄膜偏光子D3によって、P偏光のみを含むレーザー光は反射され、偏光回転素子f3を通過することによって、S偏光のみを含むレーザー光となり、その後、薄膜偏光子D4を通過した後、ビームエキスパンダーL1・L2に導かれる。
 固体レーザー発振部S4から出射されたレーザー光は、薄膜偏光子D4によって、P偏光のみを含むレーザー光は反射され、ビームエキスパンダーL1・L2に導かれる。
 なお、ビームエキスパンダーL1・L2は、入射されたレーザー光を長軸方向にライン状に広げるためのレンズであり、ホモジナイザーHは、入射されたレーザー光の均一性を高めるレンズであり、反射ミラーD5は、入射されたレーザー光を集光レンズL3に導くミラーであり、集光レンズL3は、入射されたレーザー光を所定形状のレーザー光として、ガラス基板101上のPI層102に照射するためのレンズである。
 固体レーザー装置120においては、図示されているように、複数個の固体レーザー発振部S1・S2・S3・S4からのレーザー光の各々が、同一の光路を経由した後にガラス基板101上のPI層102に照射できるように、薄膜偏光子D1・D2・D3・D4と、ビームエキスパンダーL1・L2と、ホモジナイザーHと、反射ミラーD5と、集光レンズL3とが配置されている。
 すなわち、固体レーザー装置120においては、複数個の固体レーザー発振部S1・S2・S3・S4からのレーザー光の各々は、同一の光路に重ねられて、一つのビームとしてビームエキスパンダーL1・L2に入射されるように、薄膜偏光子D1・D2・D3・D4が配置されている。
 また、固体レーザーでは、エキシマレーザー程大きなレーザー出力が得られないため、短軸方向は20~30μmのガウシアンビームに集光されるため、短軸方向に対してはホモジナイザーは作用させず、長軸方向にのみホモジナイザーを作用させる。
 図8の(a)は、エキシマレーザーを用いたLLO工程を説明するための図であり、図8の(b)は、図7に図示した固体レーザー装置120を用いたLLO工程を説明するための図である。
 図8の(a)に図示されているように、エキシマレーザーを用いたLLO工程においては、エキシマレーザーはその出力が大きいので、図中の左右方向の幅であるレーザー光の短軸方向の幅を0.4mm程度まで確保することができ、レーザー光の照射領域R1を比較的広く確保でき、短軸方向にもホモジナイザーを用いて、トップフラットにできることから、ガラス基板101上にゴミや傷があったとしても、ゴミや傷による影響は大きくなく、ガラス基板101上のPI層102を剥離するのに必要な照射エネルギーの下限値を容易に確保することができる。
 しかしながら、エキシマレーザーは、ガスレーザーであるため、メンテナンスコストが高いということと、短軸方向にもホモジナイザーが使用されているため、光学系が高価になるという問題がある。
 一方、図8の(b)に図示されているように、図7に図示した固体レーザー装置120を用いたLLO工程においては、固体レーザーはその出力が小さいので、図中の左右方向の幅であるレーザー光の短軸方向の幅を30μm程度までしか確保することができず、レーザー光の照射領域R1を広く確保することができないので、以下の問題が生じる。
 図9は、図7に図示した固体レーザー装置120を用いたLLO工程における問題点を説明するための図である。
 図9の(a)に図示されているように、固体レーザー装置120の集光レンズL3から出射されるレーザー光の短軸方向の幅は、30μm程度と狭く(図8の(b)参照)、短軸方向にホモジナイザーを使用していないため、単純にビームをレンズで集光したガウシアンビームとなっている。
 したがって、ガラス基板101上にゴミや傷があった場合、このゴミや傷の影響を大きく受け、図9の(b)に図示されているように、ゴミや傷がある領域においては、レーザー光の照射エネルギーが、ガラス基板101上のPI層102を剥離するのに必要な照射エネルギーの下限値よりも下回ってしまい、ガラス基板101とPI層102とを剥離できない領域が生じてしまう問題がある。
 本発明は、上記の問題点に鑑みてなされたものであり、レーザー光の短軸方向の幅が小さい固体レーザーを用いた場合でも、装置のサイズが大きくなったり、装置のコストが高くなることを抑制するとともに、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できる固体レーザー装置と、剥離装置と、可撓性表示装置の歩留まりを向上できる可撓性表示装置の製造方法とを提供することを目的とする。
 本発明の固体レーザー装置は、上記の課題を解決するために、複数個の固体レーザー発振部と、複数個のレンズとを備えた固体レーザー装置であって、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、照射対象物に複数の方向から入射されることを特徴としている。
 上記構成によれば、上記複数個の固体レーザー発振部から出射されたレーザー光の各々を、互いに異なる複数の光路で、上記第1レンズに入射させているので、レーザー光の短軸方向の幅が小さい固体レーザーを用いた場合でも、装置のサイズが大きくなったり、装置のコストが高くなることを抑制できる。
 また、上記構成によれば、上記複数個の固体レーザー発振部から出射されたレーザー光の各々を、互いに異なる複数の光路で、上記第1レンズに入射させたことにより、上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、照射対象物に複数の方向から入射されるので、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できる固体レーザー装置を実現できる。
 本発明の剥離装置は、上記の課題を解決するために、複数個の固体レーザー発振部と、複数個のレンズとを備えた剥離装置であって、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、非可撓性基板と上記非可撓性基板の一方側の面に形成された樹脂層と上記樹脂層上に形成された表示素子とにおける上記非可撓性基板に複数の方向から入射され、上記樹脂層から上記非可撓性基板を剥離することを特徴としている。
 上記構成によれば、上記複数個の固体レーザー発振部から出射されたレーザー光の各々を、互いに異なる複数の光路で、上記第1レンズに入射させたことにより、上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、
非可撓性基板と上記非可撓性基板の一方側の面に形成された樹脂層と上記樹脂層上に形成された表示素子とにおける上記非可撓性基板に複数の方向から入射されるので、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できる剥離装置を実現できる。
 本発明の可撓性表示装置の製造方法は、上記の課題を解決するために、非可撓性基板の一方側の面に樹脂層を形成する第1工程と、上記樹脂層上に表示素子を形成する第2工程と、上記非可撓性基板側からレーザー光を照射して、上記樹脂層から上記非可撓性基板を剥離する第3工程と、上記樹脂層における上記非可撓性基板を剥離した面に可撓性基板を貼り付ける第4工程と、を含む可撓性表示装置の製造方法であって、上記第3工程においては、複数個の固体レーザー発振部と、複数個のレンズとを備え、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、上記第1レンズから出射されたレーザー光を、上記複数個のレンズ中の第2レンズを介して、上記非可撓性基板に複数の方向から入射させることを特徴としている。
 上記方法によれば、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できるので、可撓性表示装置の歩留まりを向上できる可撓性表示装置の製造方法を実現できる。
 本発明の一態様によれば、レーザー光の短軸方向の幅が小さい固体レーザーを用いた場合でも、装置のサイズが大きくなったり、装置のコストが高くなることを抑制するとともに、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できる固体レーザー装置と、剥離装置と、可撓性表示装置の歩留まりを向上できる可撓性表示装置の製造方法とを提供できる。
実施形態1の固体レーザー装置の概略構成を示す図である。 図1に図示した固体レーザー装置を用いた場合、LLO工程における歩留まりを向上できる理由を説明するための図である。 実施形態2の固体レーザー装置の概略構成及び実施形態2の固体レーザー装置に備えられた固体レーザー発振部の駆動方法を説明するための図である。 実施形態2の固体レーザー装置に備えられた固体レーザー発振部の駆動方法を説明するための図である。 実施形態3の固体レーザー装置の概略構成及びその駆動方法を説明するための図である。 信頼性の高いフレキシブル有機EL表示装置を製造するために必要なLazer Lift Off工程を説明するための図である。 複数個の固体レーザー発振部からのレーザー光の各々を同一の光路に重ねてガラス基板上のPI層に照射する固体レーザー装置の概略構成を示す図である。 (a)は、エキシマレーザーを用いたLLO工程を説明するための図であり、(b)は、図7に図示した固体レーザー装置を用いたLLO工程を説明するための図である。 図7に図示した固体レーザー装置を用いたLLO工程における問題点を説明するための図である。
 本発明の実施の形態について図1から図5に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
 〔実施形態1〕
 図1及び図2に基づき、本発明の実施形態1について説明する。
 図1は、複数個の固体レーザー発振部S1・S2・S3・S4からのレーザー光の各々を、一つの光路に重ねないで、互いに異なる複数の光路で一つの集光レンズL3に入射させ、集光レンズL3から出射されたレーザー光は、ガラス基板101(照射対象物)に複数の方向から入射されることで、ガラス基板101上のPI層102にレーザー光を照射する固体レーザー装置1の概略構成を示す図である。
 なお、固体レーザー装置1は、固体レーザーを用いた剥離装置である。
 複数個の固体レーザー発振部S1・S2・S3・S4は、例えば、Nd3+イオンを含むYAGレーザー(Nd:YAGレーザー)などの固体レーザー光を出射する部分である。
 図1に図示されているように、固体レーザー装置1は、個別にレーザー光を出射する4つの固体レーザー発振部S1・S2・S3・S4と、薄膜偏光子D1・D2・D3・D4と、偏光回転素子(例えば、λ/2板)f1・f2・f3と、ビームエキスパンダーL1・L2と、ホモジナイザーHと、反射ミラーD5と、集光レンズL3とを備えている。
 薄膜偏光子D1・D2・D3・D4は、入射されたP偏光は反射し、入射されたS偏光は透過させる偏光子である。
 偏光回転素子f1・f2・f3は、入射されたS偏光はそのまま出射し、入射されたP偏光はS偏光に変えて出射する。
 固体レーザー発振部S1から出射されたレーザー光は、薄膜偏光子D1によって、P偏光のみを含むレーザー光は反射され、偏光回転素子f1を通過することによって、S偏光のみを含むレーザー光となり、その後、薄膜偏光子D2・D3・D4と、2つの第2偏光回転素子f2・f3とを通過した後、ビームエキスパンダーL1に導かれる。
 固体レーザー発振部S2から出射されたレーザー光は、薄膜偏光子D2によって、P偏光のみを含むレーザー光は反射され、偏光回転素子f2を通過することによって、S偏光のみを含むレーザー光となり、その後、薄膜偏光子D3・D4と、1つの偏光回転素子f3とを通過した後、ビームエキスパンダーL1に導かれる。
 固体レーザー発振部S3から出射されたレーザー光は、薄膜偏光子D3によって、P偏光のみを含むレーザー光は反射され、偏光回転素子f3を通過することによって、S偏光のみを含むレーザー光となり、その後、薄膜偏光子D4を通過した後、ビームエキスパンダーL1に導かれる。
 固体レーザー発振部S4から出射されたレーザー光は、薄膜偏光子D4によって、P偏光のみを含むレーザー光は反射され、ビームエキスパンダーL1に導かれる。
 なお、ビームエキスパンダーL1・L2は、入射されたレーザー光を長軸方向にライン状に広げるためのレンズであり、ホモジナイザーHは、入射されたレーザー光の均一性を高めるレンズであり、反射ミラーD5は、入射されたレーザー光を集光レンズL3に導くミラーであり、集光レンズL3は、入射されたレーザー光を所定形状のレーザー光として、ガラス基板101上のPI層102に照射するためのレンズである。
 固体レーザー装置1においては、図示されているように、複数個の固体レーザー発振部S1・S2・S3・S4からのレーザー光の各々を、一つの光路に重ねないで、互いに異なる複数の光路(本実施形態においては互いに異なる4つの光路)で一つのビームエキスパンダーL1・L2に入射させている。
 このように、複数個の固体レーザー発振部S1・S2・S3・S4からのレーザー光の各々を、一つの光路に重ねないで、互いに異なる複数の光路で一つのビームエキスパンダーL1に入射させるため、複数個の固体レーザー発振部S1・S2・S3・S4と、薄膜偏光子D1・D2・D3・D4とを以下のような配置としている。
 固体レーザー発振部S1から出射され、薄膜偏光子D1で反射された後、薄膜偏光子D2・D3・D4と、3つの偏光回転素子f1・f2・f3とを通過するレーザー光を、第1光路のレーザー光とした場合、上記第1光路のレーザー光と、固体レーザー発振部S2から出射され、薄膜偏光子D2で反射された後、薄膜偏光子D3・D4と、2つの偏光回転素子f2・f3とを通過する第2光路のレーザー光とは、その光路が重ならないように、固体レーザー発振部S1・S2と、薄膜偏光子D1・D2とが配置されている。
 また、上記第1光路のレーザー光及び上記第2光路のレーザー光と、固体レーザー発振部S3から出射され、薄膜偏光子D3で反射された後、薄膜偏光子D4と、1つの偏光回転素子f3とを通過する第3光路のレーザー光とは、その光路が重ならないように、固体レーザー発振部S3と、薄膜偏光子D3とが配置されている。
 さらに、上記第1光路のレーザー光、上記第2光路のレーザー光及び上記第3光路のレーザー光と、固体レーザー発振部S4から出射され、薄膜偏光子D4で反射された第4光路のレーザー光とは、その光路が重ならないように、固体レーザー発振部S4と、薄膜偏光子D4とが配置されている。
 なお、互いに異なる複数の光路とは、固体レーザー発振部S1・S2・S3・S4からビームエキスパンダーL1(第1レンズ)までの間で空間的に互いに重ならない光路を意味する。
 また、ビームエキスパンダーL1を第1レンズとも称し、集光レンズL3を第2レンズとも称する。
 図示されているように、互いに異なる複数の光路で一つのビームエキスパンダーL1・L2に入射されたレーザー光は、ホモジナイザーHと、反射ミラーD5とを介して、集光レンズL3に入射される。
 そして、集光レンズL3から出射されたレーザー光は、ガラス基板101に複数の方向から入射されることで、ガラス基板101上のPI層102にレーザー光を照射することができる。
 なお、本実施形態においては、固体レーザー発振部S1・S2・S3・S4から出射された各々のレーザー光は、同時に出射されたものであるが、これに限定されることはない。
 図2は、図1に図示した固体レーザー装置1を用いた場合、LLO工程における歩留まりを向上できる理由を説明するための図である。
 図2の(a)に図示されているように、固体レーザー装置1の集光レンズL3から出射されるレーザー光は、ガラス基板101に複数の方向から入射されることで、ガラス基板101上のPI層102にレーザー光を照射することができる。
 したがって、ガラス基板101上にゴミや傷があった場合、このゴミや傷の影響を大きく受けることなく、図2の(b)に図示されているように、ゴミや傷がある領域においても、レーザー光の照射エネルギーが、ガラス基板101上のPI層102を剥離するのに必要な照射エネルギーの下限値より上回り、ガラス基板101とPI層102とを剥離できない領域が生じてしまうのを抑制できる。
 以上のように、レーザー光の短軸方向の幅が小さい固体レーザーを用いた場合でも、装置のサイズが大きくなったり、装置のコストが高くなることを抑制するとともに、ガラス基板上のゴミや傷に対するマージンを広く確保することができ、LLO工程における歩留まりを向上できる固体レーザー装置1を実現できる。
 また、LLO工程を含む可撓性表示装置の製造方法においては、固体レーザー装置1を用いることにより、ガラス基板上のゴミや傷に対するマージンを広く確保することができ、LLO工程における歩留まりを向上できるので、可撓性表示装置の歩留まりを向上できる可撓性表示装置の製造方法を実現できる。
 〔実施形態2〕
 次に、図3及び図4に基づき、本発明の実施形態2について説明する。本実施形態においては、複数個の固体レーザー発振部S1’・S2’・S3’・S4’の各々から、レーザー光が同時に出射され始めるのではなく、レーザー光は、固体レーザー発振部S1’、固体レーザー発振部S2’、固体レーザー発振部S3’、固体レーザー発振部S4’の順に出射され始め、固体レーザー発振部S1’、固体レーザー発振部S2’、固体レーザー発振部S3’、固体レーザー発振部S4’の順にその出射が止まる点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図3は、固体レーザー装置10に備えられた固体レーザー発振部S1’・S2’・S3’・S4’におけるレーザー光の出射順を説明するための図である。
 図4は、固体レーザー装置10に備えられた固体レーザー発振部S1’・S2’・S3’・S4’におけるレーザー光の出射を止める順を説明するための図である。
 図3の(a)、図3の(b)、図3の(c)及び図3の(d)に図示されているように、固体レーザー装置10においては、レーザー光は、固体レーザー発振部S1’、固体レーザー発振部S2’、固体レーザー発振部S3’、固体レーザー発振部S4’の順に、一定間隔をあけて、出射され始める。
 そして、図4の(a)、図4の(b)、図4の(c)及び図4の(d)に図示されているように、固体レーザー装置10においては、レーザー光は、固体レーザー発振部S1’、固体レーザー発振部S2’、固体レーザー発振部S3’、固体レーザー発振部S4’の順に、一定間隔をあけて、その出射を止める。
 なお、本実施形態においては、固体レーザー発振部S1’・S2’・S3’・S4’からのレーザー光の出射を止める際には、固体レーザー発振部S1’・S2’・S3’・S4’の駆動を止めるのではなく、出射されるレーザー光を遮断または通すことができる開閉部であるシャッター部(図示せず)を用いて、固体レーザー発振部S1’・S2’・S3’・S4’からのレーザー光の出射を止めたが、これに限定されることはない。
 以上のように、固体レーザー装置10においては、固体レーザー発振部S1’・S2’・S3’・S4’の全てにおいて、レーザー光を同時に出射する期間を減らすことができるので、固体レーザー発振部S1’・S2’・S3’・S4’から出射されるレーザー光の干渉を抑制できる。また、レーザー光が照射される時間をずらすことによって、実行的なパルス幅(照射時間)を変えることができるため、LLO処理のマージンを調整し、歩留まりを改善することが可能となる。
 本実施形態においては、LLO工程におけるレーザー光の照射のタクトタイムを考慮し、図3及び図4に図示されているように、レーザー光を、一定間隔をあけて、出射され始めるようにし、一定間隔をあけて、その出射を止めるようにしたが、固体レーザー発振部S1’・S2’・S3’・S4’の各々から互いに異なる期間にレーザー光を出射させてもよい。
 〔実施形態3〕
 次に、図5に基づき、本発明の実施形態3について説明する。本実施形態においては、固体レーザー装置20に備えられた固体レーザー発振部S1’’・S2’’・S3’’・S4’’の各々の出力が異なる点において、実施形態1及び2とは異なり、その他については実施形態1及び2において説明したとおりである。説明の便宜上、実施形態1及び2の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図5は、固体レーザー装置20の概略構成を示す図である。
 図5に図示されているように、固体レーザー装置20に備えられた固体レーザー発振部S1’’・S2’’・S3’’・S4’’の各々の出力は、固体レーザー発振部S1’’、固体レーザー発振部S2’’、固体レーザー発振部S3’’、固体レーザー発振部S4’’の順に小さくなる。
 固体レーザー発振部S1’’から出射されたレーザー光は、薄膜偏光子D2・D3・D4と、3つの偏光回転素子f1・f2・f3とを通過するので、これらの部材に吸収されるレーザー光の量が最も大きいため、固体レーザー発振部S1’’の出力を固体レーザー発振部S2’’・S3’’・S4’’より大きく設定した。
 固体レーザー発振部S2’’から出射されたレーザー光は、薄膜偏光子D3・D4と、2つの偏光回転素子f2・f3とを通過するので、これらの部材に吸収されるレーザー光の量を考慮し、固体レーザー発振部S2’’の出力は、固体レーザー発振部S1’’の出力よりは弱く、固体レーザー発振部S3’’・S4’’の出力よりは大きく設定した。
 固体レーザー発振部S3’’から出射されたレーザー光は、薄膜偏光子D4と、1つの偏光回転素子f3とを通過するので、これらの部材に吸収されるレーザー光の量を考慮し、固体レーザー発振部S3’’の出力は、固体レーザー発振部S1’’・S2’’の出力よりは弱く、固体レーザー発振部S4’’の出力よりは大きく設定した。
 固体レーザー発振部S4’’から出射されたレーザー光は、薄膜偏光子D4によって反射のみされることから、固体レーザー発振部S4’’の出力は、固体レーザー発振部S1’’・S2’’・S3’’の出力よりは弱く設定した。
 固体レーザー装置20によれば、樹脂層に照射するレーザーのパルス形状を柔軟に変化させることが可能となるため、LLO処理のマージンを調整し、歩留まりを改善することが可能となる。
 本実施形態にかかる可撓性表示装置(フレキシブル表示装置)は、柔軟性を有し、屈曲可能な光学素子を備えた表示パネルであれば、特に限定されるものではない。上記光学素子は、電流によって輝度や透過率が制御される光学素子と、電圧によって輝度や透過率が制御される光学素子とがある。電流制御の光学素子としては、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイ、又は無機発光ダイオードを備えた無機ELディスプレイ等のELディスプレイQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等がある。また、電圧制御の光学素子としては、液晶表示素子等がある。
 〔まとめ〕
 本発明の態様1に係る固体レーザー装置は、複数個の固体レーザー発振部と、複数個のレンズとを備えた固体レーザー装置であって、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、照射対象物に複数の方向から入射されることを特徴としている。
 上記構成によれば、上記複数個の固体レーザー発振部から出射されたレーザー光の各々を、互いに異なる複数の光路で、上記第1レンズに入射させているので、レーザー光の短軸方向の幅が小さい固体レーザーを用いた場合でも、装置のサイズが大きくなったり、装置のコストが高くなることを抑制できる。
 また、上記構成によれば、上記複数個の固体レーザー発振部から出射されたレーザー光の各々を、互いに異なる複数の光路で、上記第1レンズに入射させたことにより、上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、照射対象物に複数の方向から入射されるので、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できる固体レーザー装置を実現できる。
 本発明の態様2に係る固体レーザー装置は、上記態様1において、上記第1レンズはビームエキスパンダーであり、上記第2レンズは集光レンズであることが好ましい。
 上記構成によれば、ライン形状のレーザー光を出射する固体レーザー装置を実現できる。
 本発明の態様3に係る固体レーザー装置は、上記態様1または2において、上記複数個のレンズ中の一つであり、上記第1レンズと上記第2レンズとの間には、第3レンズとして、ホモジナイザーが備えられていることが好ましい。
 上記構成によれば、より均一なレーザー光を出射する固体レーザー装置を実現できる。
 本発明の態様4に係る固体レーザー装置は、上記態様1から3の何れかにおいて、上記互いに異なる複数の光路は、少なくとも第1光路と第2光路とを含み、上記第1光路には、2つの薄膜偏光子と、偏光回転素子とが備えられており、上記第2光路には、上記2つの薄膜偏光子中の1つの薄膜偏光子が備えられていてもよい。
 上記構成によれば、レーザー光の短軸方向の幅が小さい固体レーザーを用いた場合でも、装置のサイズが大きくなったり、装置のコストが高くなることを抑制するとともに、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できる固体レーザー装置を実現できる。
 本発明の態様5に係る固体レーザー装置は、上記態様1から4の何れかにおいて、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、同時に出射されてもよい。
 上記構成によれば、大きなエネルギー密度を照射できる固体レーザー装置を実現できる。
 本発明の態様6に係る固体レーザー装置は、上記態様1から4の何れかにおいて、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、それぞれ異なるタイミングで出射を開始及び終了するとともに、上記レーザー光の各々の出射の終了順は、上記レーザー光の各々の出射の開始順であってもよい。
 上記構成によれば、レーザーのパルス幅を任意に制御できる固体レーザー装置を実現できる。
 本発明の態様7に係る固体レーザー装置は、上記態様1から4の何れかにおいて、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、出射期間が互いに異なっていてもよい。
 上記構成によれば、レーザーのパルス幅を任意に制御できる固体レーザー装置を実現できる。
 本発明の態様8に係る固体レーザー装置は、上記態様4において、上記複数個の固体レーザー発振部中、上記第1光路にレーザー光を出射する第1固体レーザー発振部の出力は、上記第2光路にレーザー光を出射する第2固体レーザー発振部の出力より大きいことが好ましい。
 上記構成によれば、レーザー光のパルス形状を任意に制御できる固体レーザー装置を実現できる。
 本発明の態様9に係る剥離装置は、複数個の固体レーザー発振部と、複数個のレンズとを備えた剥離装置であって、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、非可撓性基板と上記非可撓性基板の一方側の面に形成された樹脂層と上記樹脂層上に形成された表示素子とにおける上記非可撓性基板に複数の方向から入射され、上記樹脂層から上記非可撓性基板を剥離することを特徴とする剥離装置。
 上記構成によれば、上記複数個の固体レーザー発振部から出射されたレーザー光の各々を、互いに異なる複数の光路で、上記第1レンズに入射させたことにより、上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、
非可撓性基板と上記非可撓性基板の一方側の面に形成された樹脂層と上記樹脂層上に形成された表示素子とにおける上記非可撓性基板に複数の方向から入射されるので、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できる剥離装置を実現できる。
 本発明の態様10に係る可撓性表示装置の製造方法は、非可撓性基板の一方側の面に樹脂層を形成する第1工程と、上記樹脂層上に表示素子を形成する第2工程と、上記非可撓性基板側からレーザー光を照射して、上記樹脂層から上記非可撓性基板を剥離する第3工程と、上記樹脂層における上記非可撓性基板を剥離した面に可撓性基板を貼り付ける第4工程と、を含む可撓性表示装置の製造方法であって、上記第3工程においては、複数個の固体レーザー発振部と、複数個のレンズとを備え、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、上記第1レンズから出射されたレーザー光を、上記複数個のレンズ中の第2レンズを介して、上記非可撓性基板に複数の方向から入射させることを特徴としている。
 上記方法によれば、非可撓性基板上のゴミや傷に対するマージンを広く確保することができ、Lazer Lift Off工程(LLO工程)における歩留まりを向上できるので、可撓性表示装置の歩留まりを向上できる可撓性表示装置の製造方法を実現できる。
 本発明の態様11に係る可撓性表示装置の製造方法は、上記態様10において、上記樹脂層は、ポリイミド樹脂であってもよい。
 上記方法によれば、上記ポリイミド樹脂から上記非可撓性基板を剥離する際の歩留まりを向上できる。
 本発明の態様12に係る可撓性表示装置の製造方法は、上記態様10または11において、上記表示素子は、反射型の液晶表示素子であってもよい。
 上記方法によれば、可撓性反射型液晶表示装置の歩留まりを向上できる。
 本発明の態様13に係る可撓性表示装置の製造方法は、上記態様10または11において、上記表示素子は、有機EL表示素子であってもよい。
 上記方法によれば、可撓性有機EL表示装置の歩留まりを向上できる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、レーザー装置と、レーザー装置を用いたフレキシブル表示装置の製造方法とに利用することができる。
 1         固体レーザー装置(剥離装置)
 10        固体レーザー装置(剥離装置)
 20        固体レーザー装置(剥離装置)
 S1~S4     固体レーザー発振部
 S1’~S4’   固体レーザー発振部
 S1’’~S4’’ 固体レーザー発振部
 f1、f2、f3  偏光回転素子
 D1~D4     薄膜偏光子
 L1        ビームエキスパンダー(第1レンズ)
 L2        ビームエキスパンダー
 H         ホモジナイザー
 L3        集光レンズ(第2レンズ)
 D5        反射ミラー
 101       ガラス基板
 102       PI層(ポリイミド樹脂)

Claims (13)

  1.  複数個の固体レーザー発振部と、複数個のレンズとを備えた固体レーザー装置であって、
     上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、
     上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、照射対象物に複数の方向から入射されることを特徴とする固体レーザー装置。
  2.  上記第1レンズはビームエキスパンダーであり、
     上記第2レンズは集光レンズであることを特徴とする請求項1に記載の固体レーザー装置。
  3.  上記複数個のレンズ中の一つであり、
     上記第1レンズと上記第2レンズとの間には、第3レンズとして、ホモジナイザーが備えられていることを特徴とする請求項1または2に記載の固体レーザー装置。
  4.  上記互いに異なる複数の光路は、少なくとも第1光路と第2光路とを含み、
     上記第1光路には、2つの薄膜偏光子と、偏光回転素子とが備えられており、
     上記第2光路には、上記2つの薄膜偏光子中の1つの薄膜偏光子が備えられていることを特徴とする請求項1から3の何れか1項に記載の固体レーザー装置。
  5.  上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、同時に出射されることを特徴とする請求項1から4の何れか1項に記載の固体レーザー装置。
  6.  上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、それぞれ異なるタイミングで出射を開始及び終了するとともに、
     上記レーザー光の各々の出射の終了順は、上記レーザー光の各々の出射の開始順であることを特徴とする請求項1から4の何れか1項に記載の固体レーザー装置。
  7.  上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、出射期間が互いに異なることを特徴とする請求項1から4の何れか1項に記載の固体レーザー装置。
  8.  上記複数個の固体レーザー発振部中、上記第1光路にレーザー光を出射する第1固体レーザー発振部の出力は、上記第2光路にレーザー光を出射する第2固体レーザー発振部の出力より大きいことを特徴とする請求項4に記載の固体レーザー装置。
  9.  複数個の固体レーザー発振部と、複数個のレンズとを備えた剥離装置であって、
     上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、
     上記第1レンズから出射されたレーザー光は、上記複数個のレンズ中の第2レンズを介して、非可撓性基板と上記非可撓性基板の一方側の面に形成された樹脂層と上記樹脂層上に形成された表示素子とにおける上記非可撓性基板に複数の方向から入射され、上記樹脂層から上記非可撓性基板を剥離することを特徴とする剥離装置。
  10.  非可撓性基板の一方側の面に樹脂層を形成する第1工程と、
     上記樹脂層上に表示素子を形成する第2工程と、
     上記非可撓性基板側からレーザー光を照射して、上記樹脂層から上記非可撓性基板を剥離する第3工程と、
     上記樹脂層における上記非可撓性基板を剥離した面に可撓性基板を貼り付ける第4工程と、を含む可撓性表示装置の製造方法であって、
     上記第3工程においては、複数個の固体レーザー発振部と、複数個のレンズとを備え、上記複数個の固体レーザー発振部から出射されたレーザー光の各々は、互いに異なる複数の光路で、上記複数個のレンズ中の第1レンズに入射され、上記第1レンズから出射されたレーザー光を、上記複数個のレンズ中の第2レンズを介して、上記非可撓性基板に複数の方向から入射させることを特徴とする可撓性表示装置の製造方法。
  11.  上記樹脂層は、ポリイミド樹脂であることを特徴とする請求項10に記載の可撓性表示装置の製造方法。
  12.  上記表示素子は、反射型の液晶表示素子であることを特徴とする請求項10または11に記載の可撓性表示装置の製造方法。
  13.  上記表示素子は、有機EL表示素子であることを特徴とする請求項10または11に記載の可撓性表示装置の製造方法。
PCT/JP2017/014357 2017-04-06 2017-04-06 固体レーザー装置、剥離装置及び可撓性表示装置の製造方法 WO2018185907A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014357 WO2018185907A1 (ja) 2017-04-06 2017-04-06 固体レーザー装置、剥離装置及び可撓性表示装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014357 WO2018185907A1 (ja) 2017-04-06 2017-04-06 固体レーザー装置、剥離装置及び可撓性表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2018185907A1 true WO2018185907A1 (ja) 2018-10-11

Family

ID=63712216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014357 WO2018185907A1 (ja) 2017-04-06 2017-04-06 固体レーザー装置、剥離装置及び可撓性表示装置の製造方法

Country Status (1)

Country Link
WO (1) WO2018185907A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207088A (ja) * 1985-03-12 1986-09-13 Nippon Hoso Kyokai <Nhk> レ−ザ出力合成装置
JPH0260179A (ja) * 1988-08-26 1990-02-28 Fuji Photo Film Co Ltd 合波用レーザ光源装置
JP2010263063A (ja) * 2009-05-07 2010-11-18 Sumitomo Heavy Ind Ltd レーザ照射装置
JP2015072956A (ja) * 2013-10-02 2015-04-16 株式会社島津製作所 発光装置
JP2015194642A (ja) * 2014-03-31 2015-11-05 株式会社東芝 フレキシブルデバイスの製造方法及び装置
US20150333471A1 (en) * 2014-03-25 2015-11-19 Kla-Tencor Corporation High Power Broadband Light Source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207088A (ja) * 1985-03-12 1986-09-13 Nippon Hoso Kyokai <Nhk> レ−ザ出力合成装置
JPH0260179A (ja) * 1988-08-26 1990-02-28 Fuji Photo Film Co Ltd 合波用レーザ光源装置
JP2010263063A (ja) * 2009-05-07 2010-11-18 Sumitomo Heavy Ind Ltd レーザ照射装置
JP2015072956A (ja) * 2013-10-02 2015-04-16 株式会社島津製作所 発光装置
US20150333471A1 (en) * 2014-03-25 2015-11-19 Kla-Tencor Corporation High Power Broadband Light Source
JP2015194642A (ja) * 2014-03-31 2015-11-05 株式会社東芝 フレキシブルデバイスの製造方法及び装置

Similar Documents

Publication Publication Date Title
US10967457B2 (en) Laser beam irradiation apparatus and method of manufacturing organic light-emitting display device by using the same
US9933694B2 (en) Projector and control method thereof using rotation information for a phosphor disc
US9276212B2 (en) Method of cutting flexible display device and method of fabricating flexible display device using the same
JP4600178B2 (ja) 素子の転写方法及び素子の転写装置
US11992896B2 (en) Laser irradiation apparatus, laser irradiation method, and semiconductor device manufacturing method
JP2005317439A (ja) 表示パネル及び表示装置
WO2019082359A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP2009104841A (ja) 封止装置、封止方法、電子デバイス、および電子デバイスの製造方法
US10026930B2 (en) Method of manufacturing display apparatus
CN101303969B (zh) 照射设备、半导体制造设备与方法和显示装置制造方法
JP6670425B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
US9460922B1 (en) Laser annealing apparatus and a method for manufacturing a display apparatus using the laser annealing apparatus
JP6674593B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
WO2018185907A1 (ja) 固体レーザー装置、剥離装置及び可撓性表示装置の製造方法
JP5744640B2 (ja) 液晶パネルの輝点欠陥黒化方法
KR102729423B1 (ko) 레이저 장치
JP2006091671A (ja) 液晶ディスプレイの欠陥画素修正方法及び欠陥画素修正装置
KR20120106402A (ko) 폴리곤 스캐너를 이용한 유기 발광 다이오드 제조용 레이저 열전사 장치
US8699002B2 (en) Laser irradiation device and method of manufacturing organic light emitting diode display device using the same
WO2021005798A1 (ja) フレキシブル発光デバイスの製造方法及び支持基板
US12438030B2 (en) Apparatus for transferring light-emitting diode chip
JP4453406B2 (ja) 表示パネル及び表示装置
JP2009277478A (ja) 表示装置
US20220246460A1 (en) Apparatus for transferring light-emitting diode chip
KR101024069B1 (ko) 유기 전계 발광 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP