[go: up one dir, main page]

WO2018193785A1 - 海底資源採掘システム - Google Patents

海底資源採掘システム Download PDF

Info

Publication number
WO2018193785A1
WO2018193785A1 PCT/JP2018/011401 JP2018011401W WO2018193785A1 WO 2018193785 A1 WO2018193785 A1 WO 2018193785A1 JP 2018011401 W JP2018011401 W JP 2018011401W WO 2018193785 A1 WO2018193785 A1 WO 2018193785A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining
base
submarine
seabed
arm
Prior art date
Application number
PCT/JP2018/011401
Other languages
English (en)
French (fr)
Inventor
清 菊川
康介 菊川
Original Assignee
清 菊川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清 菊川 filed Critical 清 菊川
Publication of WO2018193785A1 publication Critical patent/WO2018193785A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for

Definitions

  • the present invention relates to a submarine resource mining system.
  • Prior Literature 1 discloses a seabed mineral mining system.
  • the mining system described in the document includes a seabed moving device having a grinding tool capable of grinding the surface of a seabed deposit.
  • the seabed moving device grinds the surface of the seabed deposit by an open grinding tool while moving the seabed by receiving electric power and a control signal from a supply source on the sea surface side.
  • the ground product produced by grinding is classified by classifying means so as not to exceed a predetermined size, and the classified ground product is transported to the sea.
  • the submarine auxiliary mining machine is a non-wireless remote control explorer (ROV) or a roped explorer operated by an umbilical cable connected to the sea surface.
  • ROV remote control explorer
  • the submarine auxiliary mining machine is operated on the sea floor alone, the mining machine is controlled, but the bottom of the sea surface during operation is uneven, and it is difficult to control the posture and the operation of the mining machine falls over. Stabilize.
  • many devices such as expansion of mining machines, submarine bulk mining machines, submarine mining machines (GM), and stock pile systems are distributed in the seabed. There are too many problems.
  • the present invention has been made paying attention to such problems, and is a method for increasing investment and operating efficiency by concentrating distributed devices and enabling a wide range of mining to be performed simultaneously. is there.
  • a base is provided at the center of the submarine resource mining system, and a plurality of mining devices are attached to the arm system arranged radially from the base. It is an object of the present invention to provide a movable / fixed submarine resource mining device by a cabled remote control method using an umbilical cable.
  • the first aspect of the present invention provides: In mining submarine resources, (1) A base that forms the center of a submarine resource mining device, and a plurality of long bases that are provided radially from the base and that are movable vertically and horizontally with a plurality of mining devices and transfer devices, and with support legs. Arm system, (2) an umbilical connection that receives power and control signals from a source on the surface of the sea; (3) Transfer means for transferring mined seabed resources to the offshore seafloor resource storage and loading platform; (4) A driving device and a control device for each of the above devices are provided.
  • the second aspect of the present invention is: As movable / fixed in the submarine resource mining system, a type (a) provided with an endless track device on the base of the submarine resource mining device, a tension tether type that suspends the base of the submarine resource mining device from the sea ( b), a mold (c) in which the base of the submarine resource mining apparatus is a large diameter steel pipe and the lower part of the large diameter steel pipe is embedded in the sea floor, or the upper and lower radials provided above the base of the submarine resource mining apparatus and A mold (d) supported and fixed by a plurality of base support legs that can be stretched or a mold (e) appropriately combined with any of the above-mentioned molds (a), (b), (c), (d) (e ).
  • the third aspect of the present invention is:
  • the arm system is composed of a plurality of long main arms provided radially with a support leg and an auxiliary arm movably attached below the main arm, which are arranged radially from the base of the submarine resource mining device. Is characterized in that the mining device and the transfer device are attached, and the transfer device is attached to the main arm.
  • the fourth aspect of the present invention is:
  • the base is provided with a crushing device, a classifying device, a temporary storage place, and an in-base transfer device for mined seabed resources.
  • a tent-type shielding device in which an elliptical annular body into which a fluid is press-fitted is attached to the upper and lower peripheral edges of a trapezoidal tent film covering the entire arm system and the mining device.
  • the sixth aspect of the present invention is: To the top of the tent-type shielding device attached with ring-shaped annular bodies into which fluid is injected into the upper and lower peripheral edges of the trapezoidal tent membrane body, such as classified mud generated when mining seabed resources It discharges from the discharge pipe extended from the base, sinks and stabilizes.
  • the operation is a searchable type and a single umbilical cable to the seabed is used. Troubles involving control and cables can be avoided.
  • the mining machine By placing the mining machine under the arm system that is arranged radially from the base, limit the attitude and mining area of the mining machine, simplify the function and maintenance of the mining machine, stabilize the operation, collapse, etc. Can be prevented.
  • the arm system makes it possible to widen the mining area with the base being stable and fixed, reduce the movement of the seabed resource mining equipment, increase the efficiency of the operation, and reduce the mining leakage. (4) Since the mining efficiency is high, the mining cost can be kept low.
  • Mining resources can cope with any state of lump, slurry, gas.
  • mining of methane hydrate is carried out in bulk (crystal) and can be transferred to the sea in bulk, so that mining costs can be reduced.
  • seawater pollution at the time of mining and seawater pollution at the time of discharge of unnecessary materials after classification can be suppressed to a low level. Such effects can be expected.
  • 1 is a schematic perspective view of an embodiment of the entire seabed resource mining system of the present invention.
  • 1 is a schematic view of a movable / fixed embodiment of a submarine resource mining system of the present invention. It is a schematic diagram of one embodiment of an arm system and a mining device of a submarine resource mining device of the present invention. It is a mining area
  • the apparatus is arranged radially from the base 2, the suspension cable 22 connecting the base 2 and the work ship 8, the umbilical cable 24, the transfer device 25, and the base 2.
  • a plurality of long arm systems 3 and 4 having support legs 32, a mining device 5 attached to the arm systems 3 and 4, and transfer devices 34 and 42 are provided.
  • the re-crushing 231 and the classifier 232, the temporary storage 234 of the resources, the transfer device 233, and the drive device 235 and the control device 236 of each device are common.
  • the submarine resource mining device 1 is suspended from the offshore work ship 8 during suspending or moving, and is connected to the cable connection portion 22, the umbilical connection portion 24, and the transfer for transferring to the offshore subsea resource storage and loading platform 8.
  • Platform 25 and the like are provided.
  • the arm systems 3 and 4 are composed of a main arm 3 and an auxiliary arm 4, and the mining device 5 is attached to the auxiliary arm 4 and has a feature that a mining area can be widened and deeply mined.
  • a semi-submersible platform having an automatic ship position holding device is preferable in consideration of the influence of the rough sea in winter on the seabed resource mining device 1 and the depth.
  • the seabed resources mining apparatus 1 When starting to mine seabed resources, the seabed resources mining apparatus 1 is suspended from the workboat 8 on the sea and installed on the seabed. At the same time, a transfer device 9 from the transfer platform 25 to the offshore seafloor resource storage and loading platform 8 (using the already disclosed technology of Japanese Unexamined Patent Application Publication No. 2016-204875, Patent Registration No. 6030785, Patent Application 2016-2222059, etc.), The umbilical cable 24 and, if necessary, the pressurized water and the like are integrated, and the suspension cable 22 or the chain 22 is tied to the base upper portion 2 and suspended. When the weight load of the submarine resource mining device 1 is large, the suspension cable 22 or the chain 22 is also connected to the main arm 3.
  • the submarine resource mining system can cope with any conditions such as marine weather conditions, sea depth, seabed formation, and resource conditions (lumps, mud) as long as it is a surface type submarine resource.
  • the transfer to the sea has the characteristics that the mined materials are collected on the base and can cope with any state of mass classification, slurry, and gas.
  • the outline of the movable / fixed embodiment of the seabed resource mining apparatus 1 will be described according to the form with reference to FIG.
  • it is a surface type submarine resource, it corresponds to any state of the weather condition of the sea area, the depth, the formation of the seabed, and the state of the resource (lump, mud). It has features for moving and fixing the table 2 and shows an outline thereof.
  • the schematic diagram is easy to understand, and the display of auxiliary arms and mining equipment is omitted.
  • Fig. 2-a is a type (a) with an endless track device 26 at the bottom of the base 2, suitable for mining where the mining resources are shallow and the ground is hard, Is suitable. Naturally, it is fixed at the mining site during the operation of resource mining, and after mining, the endless track device 26 is driven to move by itself.
  • Fig. 2-b is a method that enables the seabed resource mining device 1 to be operated in a stable state even if it is a soft formation with a lot of mud etc. in the seabed. It is a tension tether type (b) that suspends the submarine resource mining device 1. In the softer formation, the heavy submarine resource mining device 1 has a risk of subsidence or collapse, and is suitable for mining the surface methane hydrate on the Japan Sea side where the formation is weak or the rare earth in the Pacific Ocean.
  • Fig. 2-c is a mold (c) in which the lower part of the base 2 is driven or buried in the sea bottom as a method for stabilizing the seabed resource mining device 1 when the sea bottom is soft. Stabilize the base 2 by subsidizing the base 2, arm systems 3 and 4, and mining equipment 5 by using a toothed edge (diameter 5 to 20 meters, length 10 to 50 meters). Plan.
  • the base 2 is further submerged and fixed by driving high-pressure water into the tip of the large-diameter steel pipe with a nozzle or by applying vibration or the like to the large-diameter steel pipe. It is suitable for surface layer type methane hydrate on the Sea of Japan side where mud is contained in the seabed and is soft and the resource-containing layer is 100 meters thick.
  • FIG. 2D shows a type (d) of the submarine resource mining apparatus 1 in which a plurality of vertically and telescopic base support legs 21 provided on the upper circumference of, for example, a large diameter steel pipe are supported and fixed to the sea floor. Stabilize. Since there are also a plurality of arm systems 3 and 4 arranged radially from the base 2, the base support legs 21 are preferably arranged between the arm systems 3 and 4 in consideration of workability.
  • the outline is an arm system 3 and 4 which is arranged radially from the base 2 and can be moved up and down and to the left and right.
  • the main arm main arm, main arm revolving body 31, main arm hoisting rope 33, main arm support) Leg 32
  • auxiliary arm 4 auxiliary arm 4, auxiliary arm revolving unit 41
  • the main arm 3 is divided into 3 to 5 on the circumference of the side wall of the base 2 and is attached to a revolving body 31 fixed to the side wall.
  • the main arm 3 is an auxiliary that is movable under the main arm 3.
  • Install the arm 4, Mining device 5 (mining machine 51, crusher 52) and transfer devices 34 and 42 are attached to the auxiliary arm.
  • the transfer devices 34 and 42 attached to the main arm 3 and the auxiliary arm 4 may be a belt type, a bucket type, a pipe type using water pressure or the like, depending on the contents of the mining resource and the normal state.
  • the structure of the arm depends on the state of the seabed and the state of the resources (lump, mud), but the main arm length 3 is preferably 20-100 meters because it takes a large mining area and is fixed by the main arm support leg 32.
  • the auxiliary arm length 4 that places importance on mobility is preferably 5 to 20 meters.
  • the auxiliary arm 4 and the mining device are brought close to the base side 2 of the main arm 3, and the base 2 with the main arm 3 wound up is suspended from the work ship 8 and installed on the seabed. To do.
  • the auxiliary arm 4 and the mining device 5 are moved to the mining site below the main arm 3. That is, the weight load on the main arm 3 is small, and the arm tip 3 is supported by the arm support leg 32, so that the weight load can be minimized.
  • the movable area of the auxiliary arm 4 can be at all angles below the main arm 3.
  • the movable region may be 180 degrees in the longitudinal direction.
  • the mining equipment 5 is introduced according to the contents of the mining mineral resources, for example, (Technical Paper) Development of a submarine thermal ore mining elemental technology testing machine (Mitsubishi Heavy Industries Technical Report Vol.50 No.2 Special issue on ships and oceans).
  • a mining machine such as a drum cutter may be attached to the auxiliary arm 4.
  • a crusher which uses an impact force 52 is also attached.
  • FIG. 4 shows the movable region of the arm.
  • Base 2 When the submarine resource mining system 1 is installed on the seabed, a plurality of locations for fixing the rope 22 are provided at the top of the base 2 and connected to form the backbone of a device that hangs and descends from the work ship 8. (2) A plurality of arm systems 3 and 4 which are provided with a plurality of mining devices 5 and a transfer device 34 and which can be moved vertically and horizontally are mounted on the outer periphery.
  • the mined seabed resources are crushed 231, classification 232, in-table transport 233, temporary storage 234, umbilical connection unit 24 that receives power and control signals from a source on the sea surface, if necessary,
  • Each device has a driving device 235, controls each device 236, (4)
  • Each device is not special and varies depending on the content of the mineral resource to be mined, so that various explanations are omitted.
  • FIG. 6 a schematic diagram of pollution countermeasures and light specific gravity resource mining by the submarine resource mining system will be described. Due to the turbidity of seawater caused by open-type seabed deposits, there are concerns over deterioration in mining efficiency and environmental problems.For example, crabs live on the seabed on the Sea of Japan side, and in the mining of surface methane hydrate, Problems have been raised about mud contamination. Therefore, FIG. 6 shows a tent in which an elliptical annular body in which a fluid is press-fitted into the upper and lower peripheral edges of the trapezoidal shielding film body is attached to each of the arm systems 3 and 4 radially arranged from the base 2.
  • the shielding film 62 is sized to cover the arm systems 3 and 4 close to the bottom of the sea, and the specific gravity of the shielding film 62 and the tube 61 so as to form a trapezoid when seawater flows into the annular tube at the bottom of the sea. Is heavier than the specific gravity of seawater of about 1.5 to 2.0.
  • the construction of the tent type shielding device 6 is prepared when the submarine resource mining device 1 is on the sea, that is, the upper part of the gable of the trapezoidal tent is attached to the entire length of the main arm 3 in the longitudinal direction and the other parts are bundled
  • the arm systems 3 and 4 are lowered, and the tent (shielding film) 62 is expanded, the bundled part is released and seawater is injected into the tube 61.
  • the expanded tent (shielding film) 62 has a heavy specific gravity of the tube material constituting it, so that the main arm 3 is automatically covered with the gable portion at the top.
  • the tent-type shielding device 6 can extract such light specific gravity mining resources.
  • a hose or the like is used from the upper part of the base side 2 of the extended tent (shielding film) 62.
  • a system for sucking and introducing the base 2 may be provided.
  • the countermeasure method is a ring shape in which unnecessary substances such as mud classified in the base 2 are pressed into the upper and lower peripheral edges of the trapezoidal tent film body 73 provided at the discharge location through the discharge pipe 71. Is released to the upper part of the tent of the tent-type shielding device 7 (reference patent registration No. 6006442 and No. 5296914 is applied) to which the annular body 72 is attached. It escapes from the hole 74 by natural pressure.
  • the shape of the tent-type shielding device 7 is circular, and the size of the shielding film 73 depends on the amount of unwanted materials generated, but the diameter is 30 to 100 meters and the height is about 15 to 60 meters.
  • the tube 72 should have a specific gravity lighter than 1.0, and the tube 72 used in the lower portion should have a heavy specific gravity of about 1.5 to 2.
  • the tent-type shielding device 7 is set up by being lowered to the seabed in a folded state, and seawater is pressed into the tube 72 and expanded.
  • the seawater press-fitting pump can be attached to the tent-type shielding device 7, but the tent-type shielding device 7 is connected to the base 2 and the discharge pipe 71, and is performed from the base 2 of the submarine resource mining device 1.
  • there is also a method in which the unneeded material is transferred to the offshore seabed resource storage and loading platform 8 and solidified and dumped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

【課題】海底資源採掘システム 【解決手段】海底資源を採掘するに於いて、海底資源採掘システムの中心を成す基台と、基台から放射状に配され、複数の採掘装置および移送装置を備えた上下、左右に可動する複数のアームシステムと、海面上の供給源から電力および制御信号を受け取るアンビリカル接続部と、採掘された海底資源を、海上の海底資源貯蔵積出しプラットフォームへ移送する移送用手段と、前記各装置の駆動装置および制御装置とを備えたことを特徴とする可動・固定型の海底資源採掘システム。

Description

海底資源採掘システム
 本発明は、海底資源の採掘システムに関する。
 海底資源中には、メタンハイドレート・レアアースなどの有用金属が存在していることが各種調査で明らかにされ、そうした資源の採掘方法や採掘システムも種々提案されている(例えば特許文献1参照)。
 海底資源を深海底から洋上へ移送する方法については連続バケット法,流体ドレッジ法等、種々の方法が提案されているが、採掘については確たる方法が無い現状にある。
 本発明は、海底の表層部に存在しているメタンハイドレート等の資源の採掘装置に関する。
 先行文献1には、海底鉱物の採掘システムが開示されている。同文献記載の採掘システムは海底鉱床の表面を研削可能な研削ツールを有する海底移動装置を備える。海底移動装置は、海面側の供給源から電力および制御信号を受けて海底を移動しつつ、開放型の研削ツールにより海底鉱床の表面を研削する。研削によって生産された研削物は、分級手段によって所定のサイズを超えないように分級され、分級された研削物を海上まで運搬する。
特開2013-528726号公報
 しかしながら、海上の採鉱母船や架設配置用母船と、海底の海底補助採掘機の操業バランスや資本投資効率を考えると、海底の海底補助採掘能力が少ない。
 また、特許文献1記載において、海底補助採掘機は無索式遠隔操作探査機(ROV)であるか、または海面まで連結されたアンビリカルケーブルによって操作される有索式探査機によると記述されているが、深海に於ける無索式遠隔操作探査機での運用は現在の技術では難しく、また、有索式探査機では海底補助採掘機を複数台に増設して採掘効率を高めるにしても、他のアンビリカルケーブルと絡むなどの問題がある。
 更にまた、海底補助採掘機単独で海底で操業するに、採掘機がコントロールされているとは言え、操業時の海底面は凹凸があり姿勢制御が難しく、採掘機が転倒するなどの操業の不安定さが付きまとう。
 その上、採掘機の増設、海底バルク採掘機、海底集鉱機(GM)、及びストックパイルシステムなど多くの装置が分散状態で海底にあり、そのコントロールや装置の移動等を考えると実現には問題が多すぎる。
 そこで、本発明は、このような問題点に着目してなされたものであって、分散された装置を集中させ、広範囲の採掘を同時に実施可能にすることで、投資・稼働効率を高める方法である。
 その方法として、海底資源採掘システムの中心に基台を設け、該基台から放射状に配されたアームシステムに複数台の採掘装置を取り付け、稼働時の姿勢・採掘操作は、全て海上からの1本のアンビリカルケーブルによる有索式遠隔操作方法による可動・固定型の海底資源採掘装置を提供することを課題とする。
 上記課題を解決するために、本発明の第1の態様は、
 海底資源を採掘するに於いて、
(1)海底資源採掘装置の中心を成す基台と、基台から放射状に配され、複数の採掘装置および移送装置を備えた上下、左右に可動する、支持脚を備えた複数の長尺のアームシステムと、
(2)海面上の供給源から電力および制御信号を受け取るアンビリカル接続部と
(3)採掘された海底資源を、海上の海底資源貯蔵積出しプラットフォームへ移送する移送用手段と
(4)前記各装置の駆動装置および制御装置
 を備えたことを特徴とする。
 本発明の第2の態様は、
 前記海底資源採掘システムに於ける可動・固定としては、海底資源採掘装置の基台に無限軌道装置を備えた型(a)、前記海底資源採掘装置の基台を海上から吊り下げる緊張繋留型(b)、前記海底資源採掘装置の基台を大径鋼管として該大径鋼管の下部を海底に埋設する型(c)、または、前記海底資源採掘装置の基台上部に放射状に設けた上下及び伸縮自在の複数本の基台支持脚により支持固定させた型(d)、または、前記(a)、(b)、(c)、(d) の型のいずれかを適宜組み合わせた型(e)で構成したことを特徴とする。
 本発明の第3の態様は、
 前記アームシステムは、前記海底資源採掘装置の基台から放射状に配され、支持脚を備えた複数の長尺の主アームと、主アーム下を移動可能に取り付けた補助アームとからなり、補助アームには前記採掘装置および移送装置が、主アームには移送装置が取り付けられたことを特徴とする。
 本発明の第4の態様は、
前記基台には、採掘された海底資源の破砕装置、分級装置、一時保管場、基台内移送装置が設けられたことを特徴とする。
 本発明の第5の態様は、
前記アームシステムおよび前記採掘装置の全体をカバーする台形状のテント膜体の上部および下部の周縁に流体を圧入した長円状の環状体を取り付けたテント型遮蔽装置を備えたことを特徴とする。
 本発明の第6の態様は、
 海底資源の採掘時に発生する泥等の分級された不要物を、台形状のテント膜体の上部および下部の周縁に流体を圧入したリング状の環状体を取り付けたテント型遮蔽装置の頂部へ、前記基台から伸ばした排出管より放出し、沈下、安定させることを特徴とする。
 上述のように、本発明によれば、
(1)基台を中心とした海底資源採掘システムとすることで、複数台の採掘機が同時作業をしても、操作を有索式として海底へのアンビリカルケーブルを1本化し、的確な装置制御とケーブルが絡むトラブルを回避できる。
(2)採掘機を基台から放射状に配したアームシステム下に配置することにより、採掘機の姿勢・採掘領域を制限し、採掘機の機能・メンテの単純化、操業の安定化、倒壊等の防止が可能となる。
(3)アームシステムにより、基台を安定・固定した状態で採掘領域を広く取ることが可能となり、海底資源採掘装置の移動を少なく、操業の効率化が図れる、また、採掘漏れを少なくできる。
(4)採掘効率が高いことから、採掘コストを低く抑えることが可能となる。
(5)採掘資源が塊・スラリー・気体の如何なる状態にも対応できる。
  例えば、メタンハイドレートの採掘は、塊状(結晶)で行い、海上への移送も塊状で可能で、採掘コストの低減を図れる。
(6)テント型遮蔽膜により、採掘時の海水汚濁、および分級後の不要物の放出時の海水汚濁についても低く抑えることができる。
等の効果が期待できる。
本発明の海底資源採掘システム全体の一実施形態の概略斜視図である。 本発明の海底資源採掘システムの可動・固定の実施形態の概略図である。 本発明の海底資源採掘装置のアームシステムと採掘装置の一実施形態の概要図である。 本発明の一実施形態の採掘領域例図である。 本発明の海底資源採掘装置の基台内の一実施形態の概略図である。 本発明の採掘時の泥等による汚濁対策、および軽比重の資源採掘の概略図である。 本発明の採掘後の不要物対策の概略図である。
 以下、本発明の実施の形態を図1~図7に基づいて説明する。
 以下に示す実施形態は本発明の技術思想を具体化するための海底資源採掘システムを例示するものであって、本発明をこれらに特定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態のものにも等しく適応し得るものである。
 図1により、本発明の可動・固定型の海底資源採掘システムの全体構成の概要について説明する。
 斜視図にあるように、装置は、中心を成す基台2、基台2と作業船8間を繋ぐ吊り下げ用索22・アンビリカルケーブル24・移送装置25、基台2から放射状に配され、支持脚32を備えた複数の長尺のアームシステム3・4と該アームシステム3・4に取り付けられた採掘装置5と移送装置34・42からなる特徴を持つ。
 基台内2には採掘資源の内容や状態によるが、必要により再破砕231・分級機232、資源の一時保管234、移送装置233と、共通のものとして各装置の駆動装置235や制御装置236が、
 基台2上部には海底資源採掘装置1を海上の作業船8から吊り下げや移動時に結わえるための索接続部22、アンビリカル接続部24、海上の海底資源貯蔵積出しプラットフォーム8へ移送するための移送用プラットフォーム25などが設けられている。
 アームシステム3・4は主アーム3と補助アーム4からなり、採掘装置5は補助アーム4に取り付けられ、採掘領域を広く、深く採掘できる特徴を持つ。
 作業船8は、例えば日本海でのメタンハイドレートの採掘であれば、冬季の荒海による海底資源採掘装置1への影響等や深度を考えると自動船位保持装置を持つ半潜水型プラットフォームが好ましい。
 海底資源の採掘を始めるときは、前記海底資源採掘装置1を海上の作業船8から吊り下げて海底に設置する。
 同時に、移送用プラットフォーム25から海上の海底資源貯蔵積出しプラットフォーム8への移送装置9(既に公開された技術の特開2016-204875、特許登録No.6030785、特許出願2016-222059他を使用する)、アンビリカルケーブル24、必要により加圧水他を一体にして吊り下げ用索22またはチェーン22を基部上部2に結わえて吊り下げる。
 海底資源採掘装置1の重量負荷が大きいときは、主アーム3にも吊り下げ用索22またはチェーン22を結わえて行う。
 本発明による海底資源採掘システムは、表層型の海底資源であれば、海上の気象状況、海の深度、海底の地層状態、資源の状態(塊、泥状)の如何なる状態にも対応でき、また、海上への移送は、採掘物を基台に集約し、塊の分級、スラリー、気体の如何なる状態にも対応できる特徴を有する。
 次に図2により、海底資源採掘装置1の可動・固定の実施形態の概略を形態別に説明する。
 本発明は、表層型の海底資源であれば、海域の気象状況、深度、海底の地層状態、資源の状態(塊、泥状)の如何なる状態にも対応するため、海底資源採掘装置1の基台2を可動・固定するための特徴を有しており、その概要を示している。
 また、概略図を分かりやすく、補助アームや採掘装置の表示は省略している。
 図2-aは、基台2の下部に無限軌道装置26を備えた型(a)となっており、 採掘資源が表層の浅く、地盤が固い場所の採掘に向き、太平洋のマンガン塊等に適している。
 当然、資源採掘の操業時には採掘場所に固定され、採掘後は無限軌道装置26を駆動させて自力移動できる特徴を持つ。
 図2-bは、海底地層に泥等が多い軟弱な地層であっても海底資源採掘装置1を安定した状態で操業を可能とする方法で、海上の作業船8は半潜水型プラットフォームとし、海底資源採掘装置1を吊り下げる緊張繋留型(b)となっている。
 軟弱な地層では重量ある海底資源採掘装置1では装置の沈下や倒壊のリスクがあり、地層が軟弱な日本海側の表層型メタンハイドレートや太平洋のレアアースの採掘に適している。
 図2-cは、海底が軟弱地の場合に、海底資源採掘装置1を安定させる方法として海底に基台2の下部を打ち込む又は埋設する型(c)で、基台2とする大径鋼管(径5~20メートル、長10~50メートル)の先端をギザギザの歯切りとするなどで、基台2やアームシステム3・4や採掘装置5の自重による沈下等で基台2の安定化を図る。
 採掘後、更に下層の採掘を行う場合は、大径鋼管の先端にノズルにより高圧水を打ち込む、または大径鋼管に振動等を加えることで、基台2を更に沈下させ固定する。
 海底に泥等が含まれ軟弱で、資源含有層が100メートルと厚い日本海側の表層型メタンハイドレート等に適している。
 図2-dは、海底資源採掘装置1の、例えば大径鋼管の上部円周上に設けた上下及び伸縮自在の複数本の基台支持脚21を海底に支持固定させた型(d)により安定化を図る。
 基台2からは放射状に配された複数のアームシステム3・4もあることから、作業性を考慮すると基台支持脚21の配置は複数のアームシステム3・4間とするのが良い。
 次に図3により、採掘方法の概要について説明する。
 概要は、基台2から放射状に配された上下、左右に可動可能なアームシステム3・4で、主アーム(主アーム、主アーム旋回体部31、主アーム巻上用索33、主アーム支持脚32)と補助アーム4(補助アーム4、補助アーム旋回体部41)からなり、
 主アーム3は基台2の側壁の円周上を3~5に分割して、該側壁に固定された旋回体部31に取り付けられ、前記主アーム3に主アーム3下を移動可能の補助アーム4を取り付け、
 補助アームには、採掘装置5(採掘機51、破砕機52)および移送装置34・42が取り付けられている。
 主アーム3、補助アーム4に取り付ける移送装置34・42は、採掘資源の内容、常態にもよるが、ベルト式、バケット式や水圧等を利用するパイプ式などがある。
 アームの構造は、海底の地層状態、資源の状態(塊、泥状)によるが、主アーム長3は採掘領域を広くとり、主アーム支持脚32によって固定するため20~100メートルが好ましく、また、機動性を重視する補助アーム長4は5~20メートルが好ましい。
 アーム長が長尺によるアームおよび載荷重量の負荷の問題については、一般的な地上の重量物を搬送するクレーンとは異なり、海中での浮力、主アーム3の設置や採掘稼働時の使用状況を考えると以下のことから小負荷であり、ついては、主アーム3の長尺化と構造を簡単にすることができる。
(1)設置のときは、補助アーム4と採掘装置を主アーム3の基台側2に寄せ、且つ、主アーム3を巻き上げ状態にした基台2を作業船8から吊り下げて海底に設置する。
(2)設置した後、主アーム3先端を水平近辺まで下ろし、主アーム支持脚32で安定させる。
(3)次に、補助アーム4および採掘装置5を主アーム下3の採掘場所へ移動させる。
 すなわち、主アーム3への重量負荷を小さく、且つ、アーム先端3はアーム支持脚32で支えられ、重量負荷を最小に抑えられることから、長尺アームとすることを可能とした。
 次に、補助アーム4の可動領域は、主アーム3下全角度可能であることが好ましいが、採掘機51の操作安定性等を考えると、主アーム3の下側に取り付けし、主アーム3長手方向に180度の可動領域としても良い。
 次に、採掘装置5は採掘する鉱物資源の内容による、例えば、(技術論文)海底熱鉱床採掘要素技術試験機の開発(三菱重工技報Vol.50 No.2船舶・海洋特集)などに紹介されているドラムカッターなどの採掘機を補助アーム4に取り付ければ良い。
 また、採掘効率を上げるために、1本の主アームに複数の補助アーム4と採掘機51を取り付けることも可能であり、必要により破砕機(含む衝撃力を使用するもの)52も取り付けられる。
 次に図4では、アームの可動領域を示している。
 主アーム3を取り付ける旋回体部31の位置を、基台2から2~5メートル伸ばした場所に設けることで、可動領域を広く取れ、採掘漏れを少なく、旋回も容易となる。
 また、主アーム数は、採掘効率の面から3~5台が最適であるが、海底資源採掘装置1が稼働中の基台2に及ぼす重量バランス、すなわち、基台2が一番安定した状態で稼働するには放射状に均等に4台の設置が良い。
 次に図5により、海底資源採掘装置1の基台2について説明する。
 基台2の主たる目的は、
(1)海底資源採掘システム1を海底に設置するとき、基台2の上部に索22を固定する個所を複数設けて結わえ、作業船8から吊り下げ降下させる装置の基幹となるもので、
(2)複数の採掘装置5および移送装置34を備えた上下、左右に移動可能な複数のアームシステム3・4を外周上に取り付け、
(3)基台内には、採掘された海底資源を、必要により破砕231、分級232、台内移送233、一時保管234、海面上の供給源から電力および制御信号を受け取るアンビリカル接続部24、各装置の駆動装置235を有し、各装置を制御236し、
(4)採掘された海底資源を海上の海底資源貯蔵積出しプラットフォーム8へ移送する移送手段9、を備えた設備である。
 なお、各装置は特別なものではなく、また、採掘する鉱物資源の内容によっても異なり多種になることから、特段の説明は省略する。
 次に図6により、海底資源採掘システムの泥等による汚濁対策および軽比重の資源の採掘の概略図について説明する。
 開放型による海底鉱床の採掘による海水の混濁により、採掘作業効率の悪化や環境上の問題が懸念され、例えば日本海側の海底にはカニが生息しており、表層型メタンハイドレートの採掘では泥汚染について問題提起されている。
 そこで、図6は、基台2から放射状に配されたアームシステム3・4毎に、台形状の遮蔽膜体の上部および下部の周縁に流体を圧入した長円状の環状体を取り付けたテント(参照特許登録No.6006442、No.5296914を応用)の底面を海底面近くまで被せ、採掘により舞い上がった泥等をテント下の海底に沈下・安定させるテント型汚濁対策装置6を示したものである。
 遮蔽膜62は、各アームシステム3・4を海底面近くまでカバーする大きさのものとし、海底で環状体のチューブに海水を流入したとき台形を形成するように遮蔽膜62およびチューブ61の比重は1.5~2.0程度の海水比重より重いものを使用する。
 テント型遮蔽装置6の設営は、海底資源採掘装置1が海上にあるときに準備、すなわち主アーム3全長に台形状のテントの切妻上部を長手方向に結着させ、他の部分は束ねた状態におき、海底資源採掘装置1が海底に設置され、各アームシステム3・4が降ろされて、テント(遮蔽膜)62を展張する時は、束ねた部分を解放してチューブ61に海水を圧入する。
 展張されたテント(遮蔽膜)62は、構成するチューブ材料の比重が重いことで、切妻部を頂部に主アーム3が自動的にカバーされる。
 また、例えばメタンハイドレートなどの軽比重の採掘資源を、開放型で採掘するときは、採掘によって、それまで付着していた泥等その他の物質から分離して浮遊することが生じる。
 前記テント型遮蔽装置6は、このような軽比重の採掘資源を採取可能であり、この場合、図示していないが、展張したテント(遮蔽膜)62の基台側2上部から、ホース等で吸引して基台内2へ導入するシステムを設けると良い。
 次に図7により、海底資源の採掘と同時に発生した泥等の分級された不要物対策について説明する。
 対策の方法は、基台内2で分級された泥等の不要物を、排出管71を通して、放出場所に設けた台形状のテント膜体73の上部および下部の周縁に流体を圧入したリング状の環状体72を取り付けたテント型遮蔽装置7(参照 特許登録No.6006442、No.5296914を応用)のテント内上部に放出し、沈下、安定させ、海水は側面遮蔽膜73の複数の海水排出孔74から自然圧により逃す。
 テント型遮蔽装置7の形状は円形とし、遮蔽膜73のサイズは、不要物の発生量等によるが、直径は30~100メートル、高さ15~60メートル程度で、テント型遮蔽装置7上部のチューブ72は比重が1.0より軽いもの、下部に使用するチューブ72は比重が1.5~2程度の重いものが良い。
 テント型遮蔽装置7の設営は、折りたたんだ状態で海底に降ろし、チューブ72に海水を圧入して展張する。
 海水の圧入ポンプは、テント型遮蔽装置7に付帯することもできるが、テント型遮蔽装置7は基台2と排出管71とが連結されており、海底資源採掘装置1の基台2から行う方法もある。採掘終了後は作業船に吊り上げて移動する。
 他の方法として、前記不要物を海上の海底資源貯蔵積出しプラットフォーム8へ移送し、固形化して投棄する方法もある。
    1 海底資源採掘装置
    2 基台
   21 基台支持脚
  211 基台支持脚巻上用索・チェーン
   22 海底資源採掘装置吊り下げ用索・チェーン
  231 粉砕機
  232 分級機
  233 基台内移送装置
  234 保管設備
  235 各装置の駆動部
  236 制御装置
   24 アンビリカルケーブル・接続部
   25 移送プラットフォーム
   26 無限軌道装置
    3 主アーム
   31 主アーム旋回体部
   32 主アーム支持脚
   33 主アーム巻上用索・チェーン
   34 移送装置
    4 補助アーム
   41 補助アーム旋回体部
   42 移送装置
    5 採掘装置
   51 採掘機
   52 破砕機
    6 テント型遮蔽装置
   61 環状体・チューブ
   62 遮蔽膜
    7 テント型遮蔽装置
   71 排出管
   72 環状体・チューブ
   73 遮蔽膜
   74 海水排出孔
    8 作業船(海底資源貯蔵積出しプラットフォーム)
    9 海底~海上移送設備
   SL 海上
   SB 海底

Claims (6)

  1. 海底資源を採掘するに於いて、
    (1)海底資源採掘装置の中心を成す基台と、基台から放射状に配され、複数の採掘装置および移送装置を備えた上下、左右に可動する、支持脚を備えた複数の長尺のアームシステムと、
     (2)海面上の供給源から電力および制御信号を受け取るアンビリカル接続部と
    (3)採掘された海底資源を、海上の海底資源貯蔵積出しプラットフォームへ移送する移送用手段と
    (4)前記各装置の駆動装置および制御装置
    を備えたことを特徴とする可動・固定型の海底資源採掘システム
  2. 前記海底資源採掘システムに於ける可動・固定としては、海底資源採掘装置の基台に無限軌道装置を備えた型(a)、前記海底資源採掘装置の基台を海上から吊り下げる緊張繋留型(b)、前記海底資源採掘装置の基台を大径鋼管として該大径鋼管の下部を海底に埋設する型
    (c)、または、前記海底資源採掘装置の基台上部に放射状に設けた上下及び伸縮自在の複数本の基台支持脚により支持固定させた型(d)、または、前記(a)、(b)、(c)、(d) の型のいずれかを適宜組み合わせた型(e)で構成したことを特徴とする請求項1に記載の海底資源採掘システム。
  3. 前記アームシステムは、前記海底資源採掘装置の基台から放射状に配され、支持脚を備えた複数の長尺の主アームと、主アーム下を移動可能に取り付けた補助アームとからなり、補助アームには前記採掘装置および移送装置が、主アームには移送装置が取り付けられたことを特徴とする請求項1又は請求項2に記載の海底資源採掘システム。
  4. 前記基台には、採掘された海底資源の破砕装置、分級装置、一時保管場、基台内移送装置が設けられたことを特徴とする請求項1~3のいずれかに記載の海底資源採掘システム。
  5. 前記アームシステムおよび前記採掘装置の全体をカバーする台形状のテント膜体の上部および下部の周縁に流体を圧入した長円状の環状体を取り付けたテント型遮蔽装置を備えたことを特徴とする請求項1~4のいずれかに記載の海底資源採掘システム。
  6.  海底資源の採掘時に発生する泥等の分級された不要物を、台形状のテント膜体の上部および下部の周縁に流体を圧入したリング状の環状体を取り付けたテント型遮蔽装置の頂部へ前記基台から伸ばした排出管より放出し、沈下、安定させることを特徴とする請求項1~5のいずれかに記載の海底資源採掘システム。
PCT/JP2018/011401 2017-04-18 2018-03-22 海底資源採掘システム WO2018193785A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-081803 2017-04-18
JP2017081803A JP6201094B1 (ja) 2017-04-18 2017-04-18 海底資源採掘システム

Publications (1)

Publication Number Publication Date
WO2018193785A1 true WO2018193785A1 (ja) 2018-10-25

Family

ID=59895769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011401 WO2018193785A1 (ja) 2017-04-18 2018-03-22 海底資源採掘システム

Country Status (2)

Country Link
JP (1) JP6201094B1 (ja)
WO (1) WO2018193785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134613A (ja) * 2020-02-28 2021-09-13 古河機械金属株式会社 海底鉱床採鉱装置および海底鉱床の採鉱方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201902911YA (en) * 2019-04-01 2020-11-27 Keppel Marine & Deepwater Tech Pte Ltd Apparatus and method for seabed resources collection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142319A1 (ja) * 2010-05-10 2011-11-17 三菱重工業株式会社 水中採鉱機用カッターヘッド、水中採鉱機及び水中採鉱システム
JP2012202108A (ja) * 2011-03-25 2012-10-22 Mitsui Eng & Shipbuild Co Ltd 海底鉱物資源採鉱システム及びその制御方法
JP2016000930A (ja) * 2014-06-12 2016-01-07 東亜建設工業株式会社 水底地盤掘削装置および水底地盤掘削システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142319A1 (ja) * 2010-05-10 2011-11-17 三菱重工業株式会社 水中採鉱機用カッターヘッド、水中採鉱機及び水中採鉱システム
JP2012202108A (ja) * 2011-03-25 2012-10-22 Mitsui Eng & Shipbuild Co Ltd 海底鉱物資源採鉱システム及びその制御方法
JP2016000930A (ja) * 2014-06-12 2016-01-07 東亜建設工業株式会社 水底地盤掘削装置および水底地盤掘削システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134613A (ja) * 2020-02-28 2021-09-13 古河機械金属株式会社 海底鉱床採鉱装置および海底鉱床の採鉱方法
JP7340189B2 (ja) 2020-02-28 2023-09-07 古河機械金属株式会社 海底鉱床採鉱装置および海底鉱床の採鉱方法

Also Published As

Publication number Publication date
JP2018178601A (ja) 2018-11-15
JP6201094B1 (ja) 2017-09-20

Similar Documents

Publication Publication Date Title
US9879402B2 (en) Disconnectable method and system for seafloor mining
CN103228530B (zh) 浮体结构物作业系统、浮体结构物、作业船及浮体结构物的作业方法
US8282316B2 (en) Method and assembly for installing oilfield equipment at the water bottom
AU2009294382B2 (en) Method of locating a subsea structure for deployment
CN105235839A (zh) 自浮式海床基观测平台
CN101035708A (zh) 近海船舶系泊和升降器入舱系统
JP2003529689A (ja) 海中浚渫方法及び装置
CN105366005A (zh) 一种系泊锚腿的更换方法
EP3072804B1 (en) A method of installing a buoy at an anchoring location
WO2014130320A1 (en) Floatable subsea platform (fsp)
WO2018193785A1 (ja) 海底資源採掘システム
AU2011215983B2 (en) Rigless intervention
US8181589B2 (en) Gravity anchor
US4085781A (en) Materials delivery system for offshore terminal and the like
US4798500A (en) Method of launching long pipelines
KR20170055631A (ko) 침몰 선박을 인양하는 방법
US20120037063A1 (en) Subsea collection and containment system for hydrocarbon emissions.
JP2005239022A (ja) 浮体連結作業方法
KR102095380B1 (ko) 해양구조물의 계류라인 설치장치 및 해양구조물의 계류라인 설치방법
JPH0860645A (ja) 水中構造物の建造方法
KR101555957B1 (ko) 매설된 해저케이블의 복구방법
KR101628574B1 (ko) 석션 원리를 이용한 탈부착 가능한 석션 무어링 장치와 그 분리 및 설치 방법
CN221118448U (zh) 移动式模块化海上边际油田收割机
Chatzigiannakou et al. Mooring types of point absorbing wave energy converters
KR20120053984A (ko) 수력 터빈 엔진을 침강시키기 위한 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787102

Country of ref document: EP

Kind code of ref document: A1