[go: up one dir, main page]

WO2018198222A1 - Exposure apparatus, exposure method, and method for manufacturing device - Google Patents

Exposure apparatus, exposure method, and method for manufacturing device Download PDF

Info

Publication number
WO2018198222A1
WO2018198222A1 PCT/JP2017/016524 JP2017016524W WO2018198222A1 WO 2018198222 A1 WO2018198222 A1 WO 2018198222A1 JP 2017016524 W JP2017016524 W JP 2017016524W WO 2018198222 A1 WO2018198222 A1 WO 2018198222A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
exposure apparatus
beam optical
coil
electron beam
Prior art date
Application number
PCT/JP2017/016524
Other languages
French (fr)
Japanese (ja)
Inventor
山本 篤史
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2017/016524 priority Critical patent/WO2018198222A1/en
Priority to TW107108377A priority patent/TW201907233A/en
Publication of WO2018198222A1 publication Critical patent/WO2018198222A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to the technical field of, for example, an exposure apparatus that irradiates an object with a charged particle beam, an exposure method that uses the exposure apparatus, and a device manufacturing method that manufactures a device using the exposure method.
  • an exposure apparatus using a charged particle beam for example, an electron beam
  • a spot smaller than the resolution limit of an exposure apparatus that uses ultraviolet light as exposure light is formed with a charged particle beam, and the spot is moved relative to an object such as a substrate.
  • An exposure apparatus for exposing a substrate is described.
  • the charged particle beam may be affected by the remaining magnetic field.
  • a beam optical system capable of irradiating an object with a charged particle beam and a first characteristic having a first characteristic with respect to a space between the beam optical system and the object.
  • a first magnetic field generator capable of generating a magnetic field of the first and a second magnetic field having a second characteristic different from the first characteristic can be generated in a space between the beam optical system and the object. Second magnetic field generator.
  • the object is exposed using the first aspect of the exposure apparatus of the present invention described above.
  • a first aspect of the device manufacturing method of the present invention is a device manufacturing method including a lithography process, and in the lithography process, the object is exposed by the first aspect of the exposure method of the present invention described above.
  • FIG. 1 is a perspective view showing the appearance of the exposure apparatus.
  • FIG. 2 is a perspective view showing the external appearance of the electron beam irradiation apparatus and the stage apparatus provided in the exposure apparatus.
  • FIG. 3 is a cross-sectional view showing a cross section of the electron beam irradiation apparatus and the stage apparatus provided in the exposure apparatus.
  • FIG. 4 is a cross-sectional view showing a cross section of the electron beam optical system (a cross section including the optical axis of the electron beam optical system).
  • FIG. 5A is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator, and
  • FIG. 5B is a magnetic field shown in FIG. FIG.
  • FIG. 5C is a cross-sectional view showing a partial cross section of the magnetic field generator (specifically, a cross section taken along the XZ plane).
  • FIG. 5D is a one-point perspective view showing a part of the magnetic field generator shown in FIG.
  • FIG. 6A to FIG. 6C is a cross-sectional view showing a part of the magnetic field generated by the magnetic field generator.
  • FIG. 7 is a cross-sectional view schematically showing the internal leakage magnetic field.
  • FIG. 8 is a cross-sectional view schematically showing an external leakage magnetic field.
  • FIG. 9 is a cross-sectional view showing a propagation path of an electron beam affected by a leakage magnetic field.
  • FIG. 10A is a cross-sectional view showing the relationship between the internal leakage magnetic field and the cancellation magnetic field.
  • FIG. 10B is a cross-sectional view showing the internal leakage magnetic field affected by the canceling magnetic field.
  • FIG. 11A is a cross-sectional view showing the relationship between the external leakage magnetic field and the cancellation magnetic field.
  • FIG. 11B is a cross-sectional view showing an external leakage magnetic field affected by the canceling magnetic field.
  • FIG. 12A to FIG. 12C is a cross-sectional view showing a part of a magnetic field generated by a magnetic field generator including a plurality of coils.
  • FIG. 13A to 13C is a cross-sectional view showing a part of a magnetic field generated by a magnetic field generator including a plurality of coils.
  • FIG. 14 is a cross-sectional view showing a cross section of the electron beam irradiation apparatus and the stage apparatus included in the exposure apparatus of the first modification.
  • FIG. 15A is a cross-sectional view showing a partial cross-section (specifically, a cross-section along the YZ plane) of the magnetic field generator of the first modification, and FIG. It is a top view which shows an upper surface.
  • FIG. 16 is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator of the second modification.
  • FIG. 17 is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator of the third modification.
  • FIG. 18 is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator of the fourth modified example.
  • FIG. 19A and FIG. 19B is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator of the fifth modification.
  • FIG. 20A to FIG. 20C is a cross-sectional view showing a part of the magnetic field generated by the magnetic field generator of the fifth modification.
  • FIG. 20A to FIG. 20C is a cross-sectional view showing a part of the magnetic field generated by the magnetic field generator of the fifth modification.
  • FIG. 21 is a cross-sectional view showing a cross section of an electron beam irradiation apparatus and a stage apparatus included in the exposure apparatus of the sixth modified example.
  • FIG. 22 is a cross-sectional view showing a cross section of an electron beam irradiation apparatus and a stage apparatus included in the exposure apparatus of the seventh modified example.
  • FIG. 23 is a plan view showing irradiation positions (irradiation areas) of a plurality of electron beams and arrangement positions of a plurality of electron beam optical systems on the wafer.
  • FIG. 24A is a cross-sectional view showing a correspondence relationship between a plurality of magnetic field generators and a plurality of electron beam optical systems in the seventh modification on the YZ plane, and FIG. 24B is a seventh modification.
  • FIG. 25A is a cross-sectional view showing a correspondence relationship between the plurality of magnetic field generators and the plurality of electron beam optical systems in the eighth modification on the YZ plane
  • FIG. 25B is the eighth modification. It is a top view which shows the corresponding relationship of the some magnetic field generator and several electron beam optical system in an example on XY plane.
  • FIG. 26 is a flowchart showing the flow of the device manufacturing method.
  • an exposure apparatus that is, an electron beam exposure apparatus
  • EX that is, an electron beam exposure apparatus
  • the exposure apparatus EX may expose the wafer W so as to draw a pattern on the wafer W with the electron beam EB, or expose the wafer W so as to transfer the pattern of the minute mask onto the wafer W with the electron beam EB. Also good.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, in the vertical direction).
  • the Z-axis direction is also a direction parallel to an optical axis AX of an electron beam optical system 12 described later provided in the exposure apparatus EX.
  • the rotation directions around the X axis, the Y axis, and the Z axis are referred to as a ⁇ X direction, a ⁇ Y direction, and a ⁇ Z direction, respectively.
  • FIG. 1 is a perspective view showing the appearance of the exposure apparatus EX.
  • FIG. 2 is a perspective view showing the appearance of the electron beam irradiation apparatus 1 and the stage apparatus 2 provided in the exposure apparatus EX.
  • FIG. 3 is a cross-sectional view showing cross sections of the electron beam irradiation apparatus 1 and the stage apparatus 2 provided in the exposure apparatus EX.
  • the exposure apparatus EX includes an electron beam irradiation apparatus 1, a stage apparatus 2, and a control apparatus 3 (however, the control apparatus 3 is not shown in FIGS. 2 and 3). ing.
  • the electron beam irradiation apparatus 1 can irradiate the wafer W held by the stage apparatus 2 with the electron beam EB.
  • the stage device 2 is movable while holding the wafer W.
  • the control device 3 controls the operation of the exposure apparatus EX.
  • the wafer W is a semiconductor substrate coated with an electron beam resist (or any photosensitive agent or sensitive material).
  • the wafer W is, for example, a disk-shaped substrate having a diameter of 300 mm and a thickness of 700 ⁇ m to 800 ⁇ m.
  • the wafer W may be a substrate of an arbitrary shape having an arbitrary size.
  • a plurality of rectangular shot areas S exposed by an electron beam EB irradiated by an electron beam optical system 12 (described later) provided in the exposure apparatus EX can be set. For example, when the size of one shot area S is 26 mm ⁇ 33 mm, about 100 shot areas S can be set on the wafer W.
  • a shot area S that is partially missing may be set.
  • a part of the electron beam irradiation apparatus 1 is disposed in the exposure chamber Ca.
  • a lower end portion of a lens barrel 11 described later in the electron beam irradiation apparatus 1 (that is, a part of the electron beam irradiation apparatus 1 located on the stage device 2 side) is an exposure chamber.
  • the entire stage apparatus 2 is disposed in the exposure chamber Ca.
  • the entire electron beam irradiation apparatus 1 may be disposed in the exposure chamber Ca.
  • the electron beam irradiation apparatus 1 includes a cylindrical lens barrel 11.
  • the space inside the lens barrel 11 becomes a vacuum space during the period when the electron beam EB is irradiated.
  • the space inside the lens barrel 11 is connected to the chamber space Caz in the exposure chamber Ca via the lower open end of the lens barrel 11 (that is, an opening through which the electron beam EB can pass). The For this reason, the space inside the lens barrel 11 becomes a vacuum space as the chamber space Caz is exhausted.
  • the electron beam irradiation apparatus 1 includes a metrology frame 13 for supporting the lens barrel 11 from below.
  • the metrology frame 13 includes an annular plate member in which three convex portions are formed on the outer peripheral portion at intervals of a central angle of 120 degrees.
  • the lowermost end portion of the lens barrel 11 is a small diameter portion having a smaller diameter than the upper portion above the lowermost end portion of the lens barrel 11.
  • a boundary portion between the lowermost end portion of the lens barrel 11 and the upper portion of the lens barrel 11 is a stepped portion. This lowermost end is inserted into the circular opening of the metrology frame 13. Further, the bottom surface of the step portion contacts the upper surface of the metrology frame 13. As a result, the lens barrel 11 is supported from below by the metrology frame 13.
  • the electron beam irradiation apparatus 1 further includes three suspension support mechanisms 14 for supporting the metrology frame 13.
  • the metrology frame 13 is suspended and supported from the outer frame frame F (see FIG. 3) via three suspension support mechanisms 14 each having a lower end connected to the three convex portions described above.
  • Each suspension support mechanism 14 includes a wire 14 a having one end connected to the metrology frame 13 and a passive vibration-proof pad 14 b connecting the other end of the wire 14 a and the outer frame F.
  • the anti-vibration pad 14b includes, for example, at least one of an air damper and a coil spring. For this reason, the vibration-proof pad 14b prevents the vibration of the outer frame F from being transmitted to the metrology frame 13 (and the lens barrel 11).
  • a part of the electron beam irradiation apparatus 1 is disposed in the exposure chamber Ca.
  • the metrology frame 13 corresponds to a part of the electron beam irradiation apparatus 1 arranged in the exposure chamber Ca.
  • a part of the lens barrel 11 also corresponds to a part of the electron beam irradiation apparatus 1 disposed in the exposure chamber Ca.
  • an opening Cao is formed on the upper surface of the exposure chamber Ca as shown in FIG. That is, the exposure chamber Ca includes an annular (or frame-like) flange portion Caf for defining the opening Cao as a part of the partition wall of the exposure chamber Ca.
  • the connecting portion 4 is an annular (or frame-shaped) plate 41 disposed on the upper surface of the flange portion Caf, and an annular (or a frame) connecting the plate 41 and the metrology frame 13 so as to surround the lens barrel 11 (or A frame-like) bellows 42.
  • the outer peripheral portion of the lower surface of the plate 41 is connected to the upper surface of the flange portion Caf over the entire periphery.
  • the upper part of the bellows 42 is connected to the inner peripheral part of the lower surface of the plate 41 over the entire circumference.
  • the lower part of the bellows 42 is connected to the upper surface of the metrology frame 13 over the entire circumference. For this reason, the airtightness of the space surrounded by the exposure chamber Ca, the plate 41, the bellows 42, the metrology frame 13 and the lens barrel 11 is ensured. That is, the exposure chamber Ca, the plate 41, the bellows 42, the metrology frame 13 and the lens barrel 11 form a vacuum space in which the stage device 2 (particularly, the wafer W held by the stage device 2) is accommodated. Further, the bellows 42 prevents the vibration of the exposure chamber Ca (in particular, the vibration in the Z-axis direction) from being transmitted to the metrology frame 13 (and the lens barrel 11).
  • the electron beam irradiation apparatus 1 further includes an electron beam optical system (in other words, an optical system column) 12 in the lens barrel 11.
  • the electron beam optical system 12 can irradiate the electron beam EB. Note that the specific structure of the electron beam optical system 12 will be described later in detail (see FIG. 4), and thus the description thereof is omitted here.
  • the stage device 2 is disposed below the electron beam irradiation device 1 (that is, on the ⁇ Z side).
  • the stage device 2 includes a surface plate 21 and a stage 22.
  • the surface plate 21 is disposed on the bottom surface of the exposure chamber Ca.
  • the stage 22 is disposed on the surface plate 21.
  • an anti-vibration device (not shown) for preventing the vibration of the surface plate 21 from being transmitted to the stage 22 is installed.
  • the stage 22 can hold the wafer W. Accordingly, the wafer W is exposed by the electron beam EB irradiated by the electron beam irradiation apparatus 1 while being held on the stage 22.
  • the stage 22 can move along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction while holding the wafer W under the control of the control device 3. .
  • the stage apparatus 2 includes a stage drive system 23 (see FIG. 4).
  • the stage drive system 23 moves the stage 22 using, for example, an arbitrary motor (for example, a linear motor).
  • the stage apparatus 2 includes a position measuring device 24 for measuring the position of the stage 22.
  • the position measuring device 24 includes, for example, at least one of an encoder and a laser interferometer.
  • the stage drive system 23 and the position measuring device 24 are not shown in FIGS. 1 and 2, but are shown only in FIG.
  • FIG. 3 shows a cross section of the exposure apparatus EX, the cross section of the stage drive system 23 and the position measuring device 24 may not be shown.
  • the exposure apparatus EX further includes a magnetic field generator 5.
  • the magnetic field generator 5 is disposed on the stage device 2. In the example shown in FIG. 3, the magnetic field generator 5 is embedded in the stage 22.
  • the magnetic field generator 5 is disposed below the wafer W (that is, on the ⁇ Z side of the wafer W).
  • the magnetic field generator 5 is disposed below the holding region 221 in the stage 22 where the wafer W can be held.
  • the “position below X” is not only a position immediately below X (that is, a position at least partially overlapping with X along the Z-axis direction), but also along the Z-axis direction. It also includes a position on the ⁇ Z side of X at least partially without overlapping X.
  • the “position above X” is not only a position immediately above X (that is, a position at least partially overlapping with X along the Z-axis direction), but also along the Z-axis direction. In addition, it includes at least a portion on the + Z side of X, although it does not overlap at least partially with X.
  • the magnetic field generator 5 can generate a magnetic field.
  • the magnetic field generator 5 can generate a magnetic field at least in a space SP between the electron beam optical system 12 and the stage apparatus 2 (or the wafer W).
  • the structure of the magnetic field generator 5 will be described in detail later (refer to FIG. 5), and the description thereof is omitted here.
  • FIG. 4 is a cross-sectional view showing a cross section of the electron beam optical system 12 (a cross section including the optical axis AX of the electron beam optical system 12).
  • the electron beam optical system 12 includes a cylindrical casing 121 (in other words, a column cell) that is disposed in the lens barrel 11 and can shield an electromagnetic field.
  • the electron beam optical system 12 further includes a beam optical device 122 in the housing 121.
  • the beam optical device 122 may include, for example, an electron gun capable of emitting an electron beam EB.
  • the beam optical device 122 may include, for example, a shaping device that can shape the electron beam EB (for example, a shaping diaphragm that is a plate in which an opening having an arbitrary shape is formed, an electromagnetic lens, or the like).
  • the beam optical device 122 may include, for example, an objective lens (for example, an electromagnetic lens) that can image the electron beam EB on the surface of the wafer W at a predetermined reduction magnification.
  • the beam optical device 122 includes, for example, a deflector that can deflect the electron beam EB (for example, an electromagnetic deflector that can change the electron beam EB using a magnetic field, or a static that can change the electron beam EB using an electric field).
  • An electric deflector may be included.
  • the beam optical device 122 for example, rotates the amount of the image (that is, the position in the ⁇ Z direction) of the image formed on the predetermined optical surface (for example, the optical surface intersecting the optical path of the electron beam EB) by the electron beam EB.
  • the beam optical device 122 is, for example, a detection device that can detect an alignment mark or the like formed on the wafer W in order to perform alignment of the wafer W (for example, semiconductor-type reflected electrons using a pn junction or pin junction semiconductor). Detection device).
  • a lower end portion (that is, an end portion on the ⁇ Z side) 1211 of the housing 121 is opened to irradiate the electron beam EB. Accordingly, the electron beam optical system 12 irradiates the electron beam EB from the lower end portion 1211 of the housing 121 toward the outside of the housing 121 (that is, outside the electron beam optical system 12). As a result, the electron beam EB is applied to the wafer W positioned below the electron beam optical system 12.
  • the electron beam optical system 12 may not include the housing 121.
  • the lens barrel 11 may be used as the housing 121. That is, the lens barrel 11 may have the function of the housing 121.
  • FIG. 5A is a cross-sectional view showing a part of a cross section (specifically, a cross section along the YZ plane) of the magnetic field generator 5 together with the electron beam optical system 12, the stage 22, and the wafer W.
  • FIG. 5B is a one-point perspective view showing a part of the magnetic field generator 5 shown in FIG.
  • FIG. 5C is a cross-sectional view showing a partial cross section (specifically, a cross section along the XZ plane) of the magnetic field generator 5 together with the electron beam optical system 12, the stage 22, and the wafer W.
  • FIG. 5D is a one-point perspective view showing a part of the magnetic field generator 5 shown in FIG.
  • the magnetic field generator 5 includes a coil 51Z, a coil 52Y, and a coil 52X.
  • Each of the coils 51 ⁇ / b> Z, 52 ⁇ / b> Y, and 52 ⁇ / b> X can generate a magnetic field with respect to the space SP between the electron beam optical system 12 and the stage apparatus 2.
  • the electron beam optical system 12 includes the housing 121.
  • the space SP between the electron beam optical system 12 and the stage apparatus 2 is substantially the same as the space between the casing 121 (particularly, the lower end portion 1211 of the casing 121) and the stage apparatus 2. is there.
  • the electron beam EB propagates through the space SP between the electron beam optical system 12 and the stage apparatus 2 and is irradiated from the electron beam optical system 12 onto the wafer W. Therefore, the space SP is substantially the same as a space including a propagation path of the electron beam EB (that is, a path through which the electron beam EB propagates from the electron beam optical system 12 to the wafer W).
  • the coil 51Z includes a coil 511Z and a coil 512Z.
  • Each of the coils 511Z and 512Z is a winding wound on the XY plane.
  • Each of the coils 511Z and 512Z has a circular shape, but may have other shapes (for example, an ellipse, a rectangle, or a polygon).
  • the radius of the coil 511Z is the same as the radius of the coil 512Z.
  • the central axes of the coils 511Z and 512Z are parallel to the Z axis.
  • the coils 511Z and 512Z are arranged coaxially.
  • the coils 511Z and 512Z are arranged so as to be aligned along the Z-axis direction.
  • the coil 511Z is separated from the coil 512Z by a first predetermined distance along the Z axis.
  • the first predetermined distance is, for example, the size of each radius of the coils 511Z and 512Z.
  • the coil 51Z including the coils 511Z and 512Z is a Helmholtz type coil.
  • the coil 52Y includes a coil 521Y and a coil 522Y.
  • Each of the coils 521Y and 522Y is a winding wound on the XZ plane.
  • Each of the coils 521Y and 522Y has a circular shape, but may have other shapes (for example, an ellipse, a rectangle, or a polygon).
  • the radius of the coil 521Y is the same as the radius of the coil 522Y.
  • the central axes of the coils 521Y and 522Y intersect the central axes of the coils 511Z and 512Z. In the example shown in FIGS.
  • the central axes of the coils 521Y and 522Y are orthogonal to the central axes of the coils 511Z and 512Z. Therefore, the central axes of the coils 521Y and 522Y are parallel to the Y axis (in other words, parallel to the XY plane).
  • Coils 521Y and 522Y are arranged coaxially. The coils 521Y and 522Y are arranged so as to be aligned along the Y-axis direction. The coil 521Y is separated from the coil 522Y by a second predetermined distance along the Y axis. The second predetermined distance is, for example, the size of each radius of the coils 521Y and 522Y.
  • the coil 52Y including the coils 521Y and 522Y is a Helmholtz-type coil.
  • the coil 52X includes a coil 521X and a coil 522X.
  • Each of the coils 521X and 522X is a winding wound on the YZ plane.
  • Each of the coils 521X and 522X has a circular shape, but may have other shapes (for example, an ellipse, a rectangle, or a polygon).
  • the radius of the coil 521X is the same as the radius of the coil 522X.
  • the central axes of the coils 521X and 522X intersect the central axes of the coils 511Z and 512Z. In the example shown in FIGS.
  • the central axes of the coils 521X and 522X are orthogonal to the central axes of the coils 511Z and 512Z. Further, the respective central axes of the coils 521X and 522X intersect the respective central axes of the coils 521Y and 522Y. In the example shown in FIGS. 5A to 5D, the central axes of the coils 521X and 522X are orthogonal to the central axes of the coils 521Y and 522Y. Accordingly, the central axes of the coils 521X and 522X are parallel to the X axis (in other words, parallel to the XY plane). Coils 521X and 522X are arranged coaxially.
  • the coils 521X and 522X are arranged so as to be aligned along the X-axis direction.
  • the coil 521X is separated from the coil 522X by a third predetermined distance along the X axis.
  • the third predetermined distance is, for example, the size of each radius of the coils 521X and 522X.
  • the coil 52X including the coils 521X and 522X is a Helmholtz type coil.
  • the first drive current that can be adjusted under the control of the control device 3 is supplied to the coil 51Z.
  • the coil 51Z can generate a magnetic field according to the first drive current.
  • the coil 51Z can generate a magnetic field in the direction along the central axis of the coils 511Z and 512Z (that is, the Z axis) inside the coils 511Z and 512Z. is there.
  • the coil 51Z can generate a magnetic field that can be defined by magnetic lines of force along the Z axis inside the coils 511Z and 512Z. This magnetic field also extends to the space SP between the electron beam optical system 12 and the stage device 2.
  • the coil 51Z is mainly used to generate a magnetic field in the Z-axis direction in the space SP. More specifically, since the space SP is located above the coil 51Z, the coil 51Z generates a magnetic field that spreads radially from the central axis of the coils 511Z and 512Z toward the ⁇ Z side along the Z axis. Can occur. Thereby, the internal leakage magnetic field formed in the space SP as shown in FIG. 7 can be drawn in the ⁇ Z direction, and the influence of the magnetic field formed in the space SP can be reduced.
  • the direction of the first drive current flowing through the coils 511Z and 512Z is reversed, and a magnetic field that spreads radially from the central axis of the coils 511Z and 512Z toward the + Z side along the Z axis is generated in the space SP. It is also possible to suppress the generation of a leakage magnetic field from.
  • the second drive current that can be adjusted under the control of the control device 3 is supplied to the coil 52Y.
  • the coil 52Y can generate a magnetic field according to the second drive current.
  • the coil 52Y can generate a magnetic field in the direction along the central axis (that is, the Y axis) of the coils 521Y and 522Y inside the coils 521Y and 522Y. is there.
  • the coil 52Y can generate a magnetic field that can be defined by magnetic lines of force along the Y axis inside the coils 521Y and 522Y. This magnetic field also extends to the space SP between the electron beam optical system 12 and the stage device 2.
  • the coil 52Y is used to generate a magnetic field in the space SP mainly in the direction intersecting the Z axis (mainly in the Y axis direction). That is, the coil 52Y is used to generate a magnetic field in a direction different from the magnetic field generated by the coil 51Z. More specifically, the coil 52Y is used to generate a magnetic field in a direction orthogonal (or intersecting) with the direction of the magnetic field generated by the coil 51Z.
  • the second drive current is supplied so that the magnetic lines of force are directed rightward in the figure, but the direction of flow through the coils 521Y and 522Y is reversed so that the magnetic lines of force are directed leftward in the figure. May be.
  • the third drive current that can be adjusted under the control of the control device 3 is supplied to the coil 52X.
  • the coil 52X can generate a magnetic field according to the third drive current.
  • the coil 52X can generate a magnetic field in the direction along the central axis (that is, the X axis) of the coils 521X and 522X inside the coils 521X and 522X. is there.
  • the coil 52X can generate a magnetic field that can be defined by magnetic lines of force along the X axis inside the coils 521X and 522X. This magnetic field also extends to the space SP between the electron beam optical system 12 and the stage device 2.
  • the coil 52X is used to generate a magnetic field in the space SP mainly in the direction intersecting the Z axis (mainly in the X axis direction). That is, the coil 52X is used to generate a magnetic field in a direction different from the magnetic field generated by each of the coil 51Z and the coil 52Y. More specifically, the coil 52X is used to generate a magnetic field in a direction orthogonal to (or intersecting with) the direction of the magnetic field generated by the coil 51Z and the direction of the magnetic field generated by the coil 52Y.
  • the second drive current is supplied so that the magnetic lines of force are directed rightward in the figure, but the direction of flow through the coils 521X and 522X is reversed so that the magnetic lines of force are directed leftward in the figure. May be.
  • the magnetic field generated in the space SP is adjusted by appropriately combining the direction and magnitude of each magnetic field generated by the coil 52Z, the coil 52Y, and the coil 52X, or a method of supplying a driving current to each coil. It becomes possible to do.
  • At least a part of the magnetic field generated by the magnetic field generator 5 is a space SP between the electron beam optical system 12 and the wafer W among the magnetic fields generated inside the electron beam optical system 12 (that is, of the electron beam optical system 12). It is used to adjust the magnetic field leaking to the outside. Specifically, at least a part of the magnetic field generated by the magnetic field generator 5 adjusts the magnetic field leaked from the inside of the electron beam optical system 12 into the space SP, and the electrons caused by the leaked magnetic field. Used to suppress the influence on the beam EB. Therefore, the magnetic field generator 5 generates a magnetic field that can suppress the influence of the magnetic field leaking from the inside of the electron beam optical system 12 into the space SP.
  • At least a part of the magnetic field generated by the magnetic field generator 5 is used to adjust the magnetic field leaked into the space SP among the magnetic fields generated outside the electron beam optical system 12. Specifically, at least a part of the magnetic field generated by the magnetic field generator 5 adjusts the magnetic field leaked from the outside of the electron beam optical system 12 to the space SP, and the electrons caused by the leaked magnetic field. Used to suppress the influence on the beam EB. Accordingly, the magnetic field generator 5 generates a magnetic field capable of suppressing the influence of the magnetic field leaking from the outside of the electron beam optical system 12 into the space SP.
  • a magnetic field leaking from the inside of the electron beam optical system 12 into the space SP (that is, a magnetic field that affects the space SP) is referred to as an “internal leakage magnetic field”.
  • a magnetic field leaking from the outside of the electron beam optical system 12 into the space SP (that is, a magnetic field generated outside the electron beam optical system 12 that affects the space SP) is referred to as an “external leakage magnetic field”.
  • the internal leakage magnetic field and the external leakage magnetic field are collectively referred to as “leakage magnetic field”.
  • a magnetic field generated by the magnetic field generator 5 (that is, a magnetic field generated by each of the coils 51Z, 52Y, and 52X) is referred to as a “cancel magnetic field”.
  • a specific example of the magnetic field adjustment operation for adjusting the internal leakage magnetic field and the external leakage magnetic field using the cancellation magnetic field will be further described.
  • the electron beam optical system 12 includes a beam controller capable of generating a magnetic field for controlling the electron beam EB as at least a part of the beam optical device 122.
  • the electron beam optical system 12 includes an electromagnetic lens, a deflector, and the like as a beam controller.
  • the beam controller normally generates a magnetic field in the casing 121 to control the electron beam EB.
  • the housing 121 is made of a material having a relatively high magnetic permeability. That is, the housing 121 shields the magnetic field (in other words, the lines of magnetic force) generated by the beam controller inside the housing 121.
  • the lower end portion 1221 of the housing 121 is opened to irradiate the electron beam EB. Therefore, the magnetic field generated by the beam controller inside the housing 121 is difficult to leak to the outside through the housing 121, but may leak to the outside through the open end of the lower end portion 1211 of the housing 121. is there.
  • the magnetic field generated by the beam controller inside the housing 121 passes through the open end of the lower end portion 1211 of the housing 121.
  • a movable object for example, a wafer W mounted on the stage 22
  • a gap that is, a space SP
  • the magnetic field generated by the beam controller inside the casing 121 leaks out of the casing 121 through this gap.
  • FIG. 7 shows the strength of the internal leakage magnetic field (that is, the density of the magnetic field lines) for convenience in addition to the magnetic field lines of the internal leakage magnetic field.
  • the internal leakage magnetic field is mainly from the open end of the lower end portion 1211 of the casing 121 to the ⁇ Z side as shown in FIG. It becomes a magnetic field in a direction spreading radially.
  • the “direction of the magnetic field” in the present embodiment means the direction of the magnetic field lines constituting the magnetic field (in other words, capable of expressing the magnetic field). Therefore, “a magnetic field in one direction” means “a magnetic field composed of magnetic field lines along one direction (in other words, expressible)”.
  • an internal leakage magnetic field having an intensity gradient along the XY plane remains in the space SP between the electron beam optical system 12 and the wafer W.
  • an internal leakage magnetic field in which the direction of the magnetic lines of force intersects the Z-axis direction (that is, the direction of the optical axis AX) remains in the space SP.
  • an internal leakage magnetic field in which the direction of the magnetic force lines is not aligned in the Z-axis direction remains in the space SP.
  • the exposure apparatus EX includes, as a magnetic field generation source, an apparatus disposed outside the electron beam optical system 12 (that is, an apparatus different from the above-described beam controller included in the electron beam optical system 12).
  • the exposure apparatus EX includes a stage drive system 23 for moving the stage 22.
  • the stage drive system 23 includes a motor as described above. Since the motor includes a coil and a magnet, the stage drive system 23 including such a motor can be a magnetic field generation source.
  • a magnetic field generation source not only inside the exposure apparatus EX but also outside the exposure apparatus EX.
  • a coater / developer for applying an electron beam resist to the wafer W and developing the exposed wafer W is disposed.
  • the coater / developer also includes a stage that is movable while holding the wafer W. For this reason, the coater / developer also has a motor for moving the stage. Therefore, the coater / developer can be a magnetic field generation source.
  • the earth itself can be a magnetic field generation source.
  • Such an influence of the magnetic field generated by the magnetic field generation source outside the electron beam optical system 12 may reach the space SP between the electron beam optical system 12 and the wafer W.
  • the exposure apparatus EX includes a magnetic shield for shielding a magnetic field generated by an external magnetic field generation source
  • all the magnetic fields generated by the external magnetic field generation source are reliably shielded by the magnetic shield.
  • some structure for example, the exposure chamber Ca
  • all the magnetic fields generated by the external magnetic field generation source are related to the structure. It is not always possible to be shielded reliably by. As a result, the influence of the magnetic field generated by the external magnetic field generation source may reach the space SP.
  • FIG. 8 conveniently shows the strength of the external leakage magnetic field (that is, the density of the magnetic field lines) in addition to the magnetic field lines of the external leakage magnetic field.
  • An electron beam optical system 12 capable of shielding a magnetic field from an external magnetic field generation source is somewhat close to the space SP above the space SP where the external leakage magnetic field is generated (that is, on the + Z side).
  • a stage device 2 capable of shielding a magnetic field from an external magnetic field generation source to some extent is present close to the space SP.
  • the magnetic field from an external magnetic field generation source can be shielded somewhat, and close to the space SP.
  • the external leakage magnetic field is mainly a magnetic field in a direction intersecting the Z axis.
  • an external leakage magnetic field having an intensity gradient along the XY plane remains in the space SP between the electron beam optical system 12 and the wafer W.
  • an external leakage magnetic field in which the direction of the magnetic lines of force intersects the Z-axis direction (that is, the direction of the optical axis AX) remains in the space SP.
  • the amount of inclination of the electron beam EB relative to the optical axis AX (that is, the Z-axis direction) is proportional to the magnetic flux of the magnetic field in the space in which the electron beam EB propagates. Therefore, if the leakage magnetic field remains in the space on the wafer W, the incident angle of the electron beam EB to the surface of the wafer W is not zero as shown in FIG. Electromagnetic beam EB may enter obliquely). As a result, as shown in FIG. 9, the position of the irradiation area EA of the electron beam EB on the wafer W is shifted. For this reason, there is a possibility that the desired position on the wafer W cannot be irradiated with the electron beam EB. As a result, the exposure accuracy by the electron beam EB may be deteriorated.
  • the control device 3 of the present embodiment suppresses the influence of the leakage magnetic field by performing a magnetic field adjustment operation for adjusting the leakage magnetic field using the cancellation magnetic field generated by the magnetic field generator 5. Specifically, the control device 3 performs the magnetic field adjustment operation, thereby suppressing the tilt of the electron beam EB (specifically, the tilt with respect to the optical axis AX) due to the influence of the leakage magnetic field, and the positional deviation of the irradiation area EA. Suppress.
  • the details of the magnetic field adjustment operation will be further described.
  • FIG. 10A is a cross-sectional view showing the relationship between the internal leakage magnetic field and the cancellation magnetic field.
  • FIG. 10B is a cross-sectional view showing the internal leakage magnetic field affected by the canceling magnetic field.
  • the influence of the internal leakage magnetic field is mainly suppressed by the cancellation magnetic field generated by the coil 51Z. That is, the influence of the internal leakage magnetic field is suppressed mainly by the cancellation magnetic field generated by the coil 51Z acting on the internal leakage magnetic field.
  • the coil 51Z mainly generates a cancel magnetic field in the Z-axis direction in the space SP.
  • the cancel magnetic field generated by the coil 51Z is referred to as “cancel magnetic field BZ”.
  • the coil 51Z generates a cancel magnetic field BZ that can act on the internal leakage magnetic field so that the direction of the internal leakage magnetic field is aligned with the Z-axis direction.
  • the coil 51Z acts on the internal leakage magnetic field (that is, adjusts the internal leakage magnetic field) to allow the magnetic field in the Z-axis direction to remain in the space SP, while the magnetic field in the direction crossing the Z-axis is in the space.
  • a cancel magnetic field BZ that is not allowed to remain in the SP is generated.
  • the coil 51Z may generate a cancel magnetic field BZ that allows the magnetic field in the direction intersecting the Z axis to remain so small that exposure accuracy is hardly deteriorated.
  • the control device 3 supplies a first drive current capable of generating such a cancel magnetic field BZ to the coil 51Z.
  • the direction of the internal leakage magnetic field affected by the cancellation magnetic field BZ is aligned with the Z-axis direction.
  • a magnetic field in the Z-axis direction remains in the space SP due to the cancellation magnetic field BZ acting on the internal leakage magnetic field.
  • the magnetic field in the direction intersecting the Z axis due to the internal leakage magnetic field does not remain in the space SP. For this reason, the internal leakage magnetic field in which the intensity gradient exists along the XY plane does not remain in the space SP.
  • this state is substantially in the XY plane because the strength of the remaining magnetic field is very small. It can be equated with a state in which the internal leakage magnetic field in which there is a gradient of intensity along the gradient (in particular, a gradient large enough to affect the exposure accuracy) does not remain in the space SP. Accordingly, there is no position shift of the irradiation area EA of the electron beam EB on the wafer W due to the internal leakage magnetic field. For this reason, the deterioration of the exposure accuracy due to the internal leakage magnetic field is appropriately suppressed.
  • FIG. 11A is a cross-sectional view showing the relationship between the external leakage magnetic field and the cancellation magnetic field.
  • FIG. 11B is a cross-sectional view showing an external leakage magnetic field affected by the canceling magnetic field.
  • the influence of the external leakage magnetic field is mainly suppressed by the cancellation magnetic field generated by the coil 52Y and the coil 52X. That is, the influence of the external leakage magnetic field is suppressed mainly by the cancellation magnetic field generated by the coils 52Y and 52X acting on the external leakage magnetic field.
  • the coil 52Y generates a cancel magnetic field in the space SP mainly in a direction intersecting the Z axis (mainly in the Y axis direction).
  • the coil 52X also generates a canceling magnetic field in the space SP mainly in the direction intersecting the Z axis (mainly in the X axis direction).
  • the cancel magnetic field generated by the coil 52Y is referred to as “cancel magnetic field BY”, and the cancel magnetic field generated by the coil 52X is referred to as “cancel magnetic field BX”.
  • the coil 52Y generates a cancel magnetic field BY that can cancel the external leakage magnetic field in cooperation with the cancel magnetic field BX generated by the coil 52X.
  • the coil 52X generates a cancel magnetic field BX that can cancel the external leakage magnetic field by acting as the cancel magnetic field BY generated by the coil 52Y.
  • the operation to cancel the external leakage magnetic field corresponds to the operation to make the intensity of the external leakage magnetic field substantially zero.
  • the state where the intensity of the external leakage magnetic field becomes substantially zero is not only the state where the intensity of the external leakage magnetic field becomes completely zero, but hardly deteriorates the exposure accuracy by the electron beam EB (or exposure). It may also include a state in which an external leakage magnetic field with a minute intensity remains so small that the accuracy deterioration amount can be ignored.
  • the cancel magnetic field obtained by combining the cancel magnetic fields BY and BX (hereinafter referred to as “composite cancel magnetic field BXY”) is a magnetic field having characteristics different from those of the external leakage magnetic field.
  • the composite cancellation magnetic field BXY has, for example, the same magnetic flux distribution as that of the external leakage magnetic field and has a direction opposite to the direction of the external leakage magnetic field (that is, configures the external leakage magnetic field).
  • a magnetic field (consisting of magnetic field lines in a direction opposite to the direction of the magnetic field lines).
  • the control device 3 supplies the second and third drive currents capable of generating such cancel magnetic fields BY and BX to the coils 52Y and 52X, respectively.
  • the external leakage magnetic field is canceled as shown in FIG.
  • this state substantially intersects the Z axis because the strength of the remaining external leakage magnetic field is very small. This can be regarded as the state in which the external leakage magnetic field in the direction does not remain in the space SP.
  • the exposure apparatus EX can irradiate a desired position on the wafer W with the electron beam EB without being affected by the leakage magnetic field or regardless of the influence of the leakage magnetic field. As a result, deterioration of exposure accuracy due to the electron beam EB is appropriately suppressed.
  • the magnetic field generator 5 is embedded in the stage 22. However, at least a part of the magnetic field generator 5 may be exposed from the stage 22. For example, at least a part of the magnetic field generator 5 may be exposed to the holding region 221 from the stage 22. Alternatively, at least a part of the magnetic field generator 5 may be arranged on a member different from the stage 22 in the stage device 2. For example, at least a part of the magnetic field generator 5 may be disposed on the surface plate 21. Alternatively, at least a part of the magnetic field generator 5 may be disposed on a member different from the stage device 2.
  • At least a part of the magnetic field generator 5 is a transfer member (for example, a shuttle) capable of holding the wafer W in order to transfer the wafer W between the exposure apparatus EX and another apparatus or in the exposure apparatus EX. It may be arranged.
  • at least a part of the magnetic field generator 5 may be disposed on the bottom surface (or bottom wall) or side surface (or side wall) of the exposure chamber Ca.
  • at least a part of the magnetic field generator 5 may be disposed at an arbitrary position below the wafer W.
  • the coil 51Z may be a coil different from the Helmholtz type coil.
  • the coil 51Z may be any coil as long as the direction of the internal leakage magnetic field can be aligned with the Z-axis direction.
  • the shape, structure, arrangement position, and the like of the coil 51Z are not limited to the above-described specific examples.
  • the magnetic field generator 5 may include an arbitrary magnetic field generator for generating a canceling magnetic field capable of aligning the direction of the internal leakage magnetic field in the Z-axis direction in addition to or instead of the coil 51Z. .
  • the coil 52Y may be a coil different from the Helmholtz type coil.
  • the coil 52Y may be any coil as long as it can cancel the external leakage magnetic field.
  • the cancel magnetic field BY generated by the coil 52Y can cooperate with the cancel magnetic field BX to cancel the external leakage magnetic field
  • the shape, structure, arrangement position, and the like of the coil 52Y are not limited to the specific examples described above. .
  • the coil 52X may be a coil different from the Helmholtz type coil.
  • the coil 52X may be any coil as long as the external leakage magnetic field can be canceled.
  • the shape, structure, arrangement position, and the like of the coil 52X are not limited to the specific examples described above. .
  • the magnetic field generator 5 may include either one of the coils 52Y and 52X, but may not include any one of the coils 52Y and 52X.
  • the magnetic field generator 5 may include a coil for generating a canceling magnetic field that can cancel the external leakage magnetic field in addition to or instead of at least one of the coils 52Y and 52X.
  • the magnetic field generator 5 may include an arbitrary magnetic field generator for generating a cancel magnetic field capable of canceling the external leakage magnetic field in addition to or instead of at least one of the coils 52Y and 52X. .
  • the coil 51Z may generate a cancel magnetic field BZ in at least a part of a period in which the space SP (or the propagation path of the electron beam EB, hereinafter the same in this paragraph) is located immediately above the coil 51Z.
  • the coil 51Z may generate the cancel magnetic field BZ during at least a part of the period in which the electron beam optical system 12 is located immediately above the coil 51Z.
  • the coil 52Y may also generate the cancel magnetic field BY in at least a part of the period in which the space SP is located immediately above the coil 52Y, similarly to the coil 51Z.
  • the coil 52X may generate the cancel magnetic field BX in at least a part of the period in which the space SP is located immediately above the coil 52X.
  • the coil 51Z has a canceling magnetic field in at least a part of a period in which the space SP (or the propagation path of the electron beam EB, hereinafter the same in this paragraph) is located at the first specific position affected by the canceling magnetic field BZ generated by the coil 51Z.
  • BZ may be generated.
  • the coil 51Z may generate the cancel magnetic field BZ in at least a part of the period in which the electron beam optical system 12 is located at the first specific position or immediately above the first specific position.
  • the coil 52Y may generate the cancel magnetic field BY in at least a part of the period in which the space SP is located at the second specific position where the influence of the cancel magnetic field BY generated by the coil 52Y is affected, similarly to the coil 51Z.
  • the coil 52X may generate the cancel magnetic field BX in at least a part of the period in which the space SP is located at the third specific position affected by the cancel magnetic field BX generated by the coil 52X.
  • the magnetic field generator 5 cancels in different spaces on the wafer W (spaces that do not overlap or partially overlap each other).
  • a plurality of coils 51Z capable of generating the magnetic field BZ may be included. In this case, during a period in which the space SP is located at a certain position on the wafer W, at least one coil 51Z capable of generating the cancel magnetic field BZ in the space SP among the plurality of coils 51Z generates the cancel magnetic field BZ. May be.
  • the coil 51Z capable of generating the canceling magnetic field BZ in the space SP located at a certain position on the wafer W is typically the coil 51Z located immediately below the electron beam optical system 12.
  • At least one coil 51Z located immediately below the electron beam optical system 12 among the plurality of coils 51Z may generate the cancel magnetic field BZ.
  • the coil 51Z-1 when the coil 51Z located immediately below the electron beam optical system 12 is the coil 51Z-1, the coil 51Z-1 may generate the cancel magnetic field BZ.
  • the coil 51Z located immediately below the electron beam optical system 12 is changed from the coil 51Z-1 to the coil 51Z-2 with the movement of the stage 22, as shown in FIG. -2 may generate a canceling magnetic field BZ.
  • the coil 51Z located immediately below the electron beam optical system 12 is changed from the coil 51Z-2 to the coil 51Z-3 in accordance with the movement of the stage 22, as shown in FIG.
  • the cancel magnetic field BZ is generated from all of the coils 51Z-1 to 51Z-3, and the magnitude relationship of the cancel magnetic field BZ generated from each coil is changed according to the relative position between the stage 22 and the electron beam optical system 12. You may do it.
  • the magnetic field generator 5 includes a plurality of coils 52Y that can generate cancel magnetic fields BY in different spaces on the wafer W, respectively. You may go out.
  • at least one coil 52Y capable of generating the cancel magnetic field BY in the space SP among the plurality of coils 52Y generates the cancel magnetic field BY. May be.
  • the coil 52Y-1 may generate the cancel magnetic field BY.
  • the magnetic field generator 5 may include a plurality of coils 52X capable of generating canceling magnetic fields BX in different spaces on the wafer W, respectively.
  • the cancellation magnetic field BZ that suppresses the influence of the internal leakage magnetic field and the cancellation magnetic fields BY and BX that suppress the influence of the external leakage magnetic field can be distinguished mainly from the direction of the magnetic field. That is, the magnetic field generator 5 can generate a cancel magnetic field in the first direction that can suppress the influence of the internal leakage magnetic field and a cancel magnetic field in the second direction that can suppress the influence of the external leakage magnetic field.
  • the cancel magnetic field BZ and the cancel magnetic fields BY and BX may be distinguishable from arbitrary characteristics (for example, strength, magnetic flux density, polarity, etc.) different from the direction of the magnetic field.
  • the magnetic field generator 5 has a cancel magnetic field having a first characteristic capable of suppressing the influence of the internal leakage magnetic field, and a second characteristic capable of suppressing the influence of the external leakage magnetic field ( ⁇ first characteristic). It is possible to generate a cancellation magnetic field having
  • the exposure apparatus EXa of the first modification differs from the above-described exposure apparatus EX in which the magnetic field generator 5 is disposed below the wafer W in that the magnetic field generator 5 is disposed above the wafer W. .
  • the other components included in the exposure apparatus EXa of the first modification are the same as the other components included in the exposure apparatus EX described above. Therefore, hereinafter, the arrangement position of the magnetic field generator 5 in the first modification will be described with reference to FIGS. 14 and 15.
  • FIG. 14 is a cross-sectional view showing a cross section (a cross section including the optical axis AX) of the electron beam irradiation apparatus 1 and the stage apparatus 2 provided in the exposure apparatus EXa of the first modification.
  • FIG. 15A is a cross-sectional view showing a partial cross-section (specifically, a cross-section along the YZ plane) of the magnetic field generator 5 of the first modification, and
  • FIG. It is a top view which shows the upper surface of the support member 6a by which the magnetic field generator 5 of a modification is arrange
  • the exposure apparatus EXa includes a support member 6a.
  • the support member 6a is disposed in a vacuum space below the electron beam optical system 12 (that is, on the ⁇ Z side and on the emission side of the electron beam EB) and above the stage device 2 (that is, on the + Z side).
  • the That is, the support member 6 a is disposed between the electron beam optical system 12 and the stage apparatus 2.
  • the support member 6a is disposed above the wafer W. At least a part of the support member 6a may be disposed in a space SP between the electron beam optical system 12 and the stage apparatus 2 (or the wafer W).
  • the support member 6a is supported in a state of being suspended from the metrology frame 13 via the attachment member 61a.
  • the support member 6a is strong enough to maintain a predetermined flatness while being suspended by the attachment member 61a.
  • the support member 6a is a member for supporting the magnetic field generator 5 (in other words, the magnetic field generator 5 is disposed).
  • the support member 6a is a plate-like member.
  • the support member 6a is a member whose shape on the XY plane is a rectangle (for example, a square).
  • the support member 6a may be a member whose shape on the XY plane is an arbitrary shape (for example, a circle, an ellipse, or a rectangle).
  • an opening 62a penetrating the support member 6a along the Z-axis direction is formed.
  • the shape of the opening 62a on the XY plane is circular, but may be other shapes (for example, a rectangle or the like).
  • the size of the opening 62a on the XY plane is larger than the size of the region on the wafer W irradiated with the electron beam EB (that is, the irradiation region EA).
  • the support member 6 a is aligned with the electron beam optical system 12 so that the opening 62 a is disposed on the optical axis AX of the electron beam optical system 12. For this reason, the electron beam EB emitted from the electron beam optical system 12 is irradiated to the irradiation area EA on the wafer W after passing through the opening 62a.
  • the magnetic field generator 5 is disposed on the support member 6a.
  • a magnetic field generator 5 is embedded in the support member 6a.
  • the coil 51Z is arranged so that the optical axis AX coincides with the central axis of each of the coils 511Z and 512Z (or the optical axis AX passes through the inside of each of the coils 511Z and 512Z). That is, the coils 511Z and 512Z are arranged around the opening 62a so as to surround the opening 62a.
  • the coil 52Y is disposed so that the optical axis AX passes between the coil 521Y and the coil 522Y. That is, the coils 521Y and 522Y are arranged around the opening 62a so as to sandwich the opening 62a.
  • the coil 52X is arranged so that the optical axis AX passes between the coil 521X and the coil 522X. That is, the coils 521X and 522X are arranged around the opening 62a so as to sandwich the opening 62a.
  • the exposure apparatus EXa of the first modification Even with the exposure apparatus EXa of the first modification, it is possible to appropriately enjoy the effects that can be enjoyed by the exposure apparatus EX described above.
  • the first modification even if the stage 22 moves, the positional relationship between the magnetic field generator 5 and the space SP (or the propagation path of the electron beam EB) does not change. For this reason, even when the stage 22 moves, the magnetic field generator 5 can generate a cancel magnetic field in the space SP. Therefore, even when the stage 22 moves, the deterioration of exposure accuracy due to the leakage magnetic field is appropriately suppressed.
  • the magnetic field generator 5 is embedded in the support member 6a. However, at least a part of the magnetic field generator 5 may be exposed from the support member 6a. Alternatively, at least a part of the magnetic field generator 5 may be disposed on a member different from the support member 6a. For example, at least a part of the magnetic field generator 5 may be disposed in the metrology frame 13. For example, at least a part of the magnetic field generator 5 may be disposed on the upper surface (or upper wall) or side surface (or side wall) of the exposure chamber Ca. Alternatively, at least a part of the magnetic field generator 5 may be disposed at an arbitrary position above the wafer W. Alternatively, at least a part of the magnetic field generator 5 may be arranged at an arbitrary position on the XY plane where the wafer W is located.
  • the shape of the support member 6a described above is an example. Therefore, the support member 6a may have an arbitrary shape that can support the magnetic field generator 54 and does not shield the electron beam EB (in other words, not positioned on the propagation path of the electron beam EB). .
  • the exposure apparatus EXb of the second modified example mainly suppresses the influence of the external leakage magnetic field while the coil 51Z for mainly suppressing the influence of the internal leakage magnetic field is disposed on the support member 6a.
  • the coils 52Y and 52X for this purpose are arranged on the stage 22.
  • the coil 52X is omitted in FIG.
  • Other components included in the exposure apparatus EXb of the second modification are the same as other components included in the exposure apparatus EXa of the first modification described above. Even with the exposure apparatus EXb of the second modification, it is possible to appropriately enjoy the effects that can be enjoyed by the exposure apparatus EX described above.
  • an exposure apparatus EXc of the third modification will be described with reference to FIG.
  • the coils 52Y and 52X for mainly suppressing the influence of the external leakage magnetic field are disposed on the support member 6a, while the influence of the internal leakage magnetic field is mainly provided. It differs from the exposure apparatus EXa of the first modified example described above in that the coil 51Z for suppression is disposed on the stage 22.
  • the coil 52X is omitted in FIG.
  • Other components included in the exposure apparatus EXc of the third modification are the same as other components included in the exposure apparatus EXa of the first modification described above. Even with such an exposure apparatus EXc of the third modification, it is possible to appropriately enjoy the effects that the above-described exposure apparatus EX can enjoy.
  • the exposure apparatus EX of the fourth modification example is that the coil 51Z, the coil 52Y, and the coil 52X are physically (or electrically) integrated, so that the coil 51Z and the coil 51X are integrated. This is different from the above-described exposure apparatus EX in which 52Y and the coil 52X are physically (or electrically) separated.
  • the magnetic field generator 5d of the fourth modified example is composed of a series of windings.
  • a part of the series of windings constituting the magnetic field generator 5d is mainly used as a coil portion (that is, the coil 51Z) capable of generating a canceling magnetic field for suppressing the influence of the internal leakage magnetic field.
  • Another part of the series of windings constituting the magnetic field generator 5d is used as a coil portion (that is, coils 52Y and 52X) that can generate a canceling magnetic field for mainly suppressing the influence of the external leakage magnetic field.
  • the other one of the coil 51Z, the coil 52Y and the coil 52X may be separated.
  • the coil 51Z, the coil 52Y, and a part of the coil 52X may be integrated while the other part of the coil 51Z, the coil 52Y, and the coil 52X may be separated.
  • an exposure apparatus EXe of a fifth modified example will be described with reference to FIGS. 19 (a) to 19 (b) and FIGS. 20 (a) to 20 (c). To do. As shown in FIGS. 19 (a) to 19 (b), the exposure apparatus EXe of the fifth modified example replaces the magnetic field generator 5 including the coil 51Z, the coil 52Y, and the coil 52X with a magnet 53Z, a magnet 54Y, and The exposure apparatus EX is different from the above-described exposure apparatus EX in that it includes a magnetic field generator 5e including a magnet 54X. Other components included in the exposure apparatus EXe of the fifth modification are the same as other components included in the exposure apparatus EX described above.
  • the magnet 53Z can generate a magnetic field similar to the cancel magnetic field BZ generated by the coil 51Z as a cancel magnetic field. For this reason, the magnet 53Z is arranged so that the two magnetic poles included in the magnet 53Z are aligned along the Z-axis.
  • the magnet 54Y can generate a magnetic field similar to the cancel magnetic field BY generated by the coil 52Y described above as a cancel magnetic field. For this reason, the magnet 54Y is disposed such that two magnetic poles included in the magnet 54Y are aligned along the Y axis.
  • the magnet 54X can generate a magnetic field similar to the cancel magnetic field BX generated by the coil 52X described above as a cancel magnetic field. For this reason, the magnet 54X is arranged so that the two magnetic poles included in the magnet 54X are aligned along the X axis.
  • the magnetic field generator 5e may include a magnetic field adjustment mechanism for adjusting the characteristics (for example, direction and intensity) of the cancel magnetic field generated by the magnet 53Z.
  • the magnetic field generator 5e may include a temperature adjustment mechanism that can adjust the temperature of the magnet 53Z as the magnetic field adjustment mechanism.
  • the temperature adjustment mechanism can suppress the influence of the internal leakage magnetic field under the control of the control device 3 (specifically, as described above, the direction of the internal leakage magnetic field is aligned with the Z-axis direction).
  • the temperature of the magnet 53Z may be adjusted so that the magnet 53Z generates a simple canceling magnetic field.
  • the magnetic field generator 5e may include a magnetic field adjustment mechanism for adjusting the characteristics of the cancel magnetic field generated by the magnet 54Y.
  • the magnetic field generator 5e may include a magnetic field adjustment mechanism for adjusting the characteristics of the cancel magnetic field generated by the magnet 54X.
  • the temperature adjustment mechanism may be provided for cooling at least one of the coil 51Z, the coil 52Y, and the coil 52X in the other embodiments and modifications.
  • an exposure apparatus EXf of a sixth modification will be described with reference to FIG.
  • the exposure apparatus EXf of the sixth modified example is different from the above-described exposure apparatus EX in that it includes a magnetic field sensor 7f.
  • the other components included in the exposure apparatus EXf of the sixth modification are the same as the other components included in the exposure apparatus EX described above.
  • the magnetic field sensor 7f can measure a magnetic field (including a leakage magnetic field) in at least a part of the space SP between the electron beam optical system 12 and the wafer W.
  • the control device 3 can cancel the influence of the leakage magnetic field measured by the magnetic sensor 7f (or the leakage magnetic field in the space SP calculated from the measurement result of the magnetic field sensor 7f) based on the measurement result of the magnetic field sensor 7f.
  • the magnetic field generator 5 is controlled so as to generate a magnetic field. For this reason, the exposure apparatus EXf of the sixth modification can suppress the influence of the leakage magnetic field based on the actual measurement result of the leakage magnetic field, while enjoying the same effect as that which can be enjoyed by the exposure apparatus EX described above. Therefore, the influence of the leakage magnetic field can be suppressed more appropriately.
  • the control device 3 can suppress the influence of the estimated leakage magnetic field based on the estimation result of the leakage magnetic field in addition to or instead of the measurement result of the magnetic field sensor 7f (that is, the actual measurement result of the leakage magnetic field).
  • the magnetic field generator 5 may be controlled so as to generate a cancel magnetic field.
  • the control device 3 may estimate the leakage magnetic field.
  • the control device 3 may estimate the leakage magnetic field based on the operation state of the beam controller (for example, the above-described electromagnetic lens or deflector) included in the electron beam optical system 12 that is a generation source of the leakage magnetic field. Good.
  • the control device 3 generates a leakage magnetic field based on a drive current supplied to the beam controller for driving the beam controller included in the electron beam optical system 12 that is a generation source of the leakage magnetic field. It may be estimated.
  • the control device 3 may estimate the leakage magnetic field by learning the state of the leakage magnetic field based on the measurement result of the past magnetic field sensor 7f.
  • the control device 3 may accumulate the measurement results of the past magnetic field sensor 7f, and may estimate the leakage magnetic field by performing data mining or mathematical analysis prediction on the accumulated measurement results.
  • control device 3 may control the magnetic field generator 5 so as to generate a cancellation magnetic field that can suppress the influence of the leakage magnetic field without estimating the leakage magnetic field.
  • the control device 3 generates a cancel magnetic field that can suppress the influence of the leakage magnetic field based on the operation state of the beam controller included in the electron beam optical system 12 that is a generation source of the leakage magnetic field. May be controlled.
  • the control device 3 may control the magnetic field generator 5 based on the measurement result of the past magnetic field sensor 7f so as to generate a cancel magnetic field that can suppress the influence of the leakage magnetic field.
  • the control device 3 generates a cancel magnetic field that can suppress the influence of the leak magnetic field by learning the leak magnetic field under a situation in which the magnetic field generator 5 is actually generating the cancel magnetic field by machine learning or the like.
  • the magnetic field generator 5 may be controlled.
  • the control device 3 accumulates the measurement results of the past magnetic field sensor 7f, and can suppress the influence of the leakage magnetic field by performing data mining and mathematical analysis prediction on the accumulated measurement results.
  • the magnetic field generator 5 may be controlled so as to generate a canceling magnetic field.
  • the control device 3 generates a cancel magnetic field that can suppress the influence of the leakage magnetic field by performing data mining and mathematical analysis prediction on the operation parameters of the exposure apparatus EXf that can affect the cancel magnetic field.
  • the magnetic field generator 5 may be controlled.
  • the positional relationship between the magnetic field generator 5 and the space SP varies with the movement of the stage 22. For this reason, as the stage 22 moves, the influence of the cancellation magnetic field generated by the magnetic field generator 5 on the space SP also varies.
  • the canceling magnetic field is always constant (that is, a magnetic field that does not vary with the movement of the stage 22)
  • the canceling magnetic field appropriately affects the influence of the internal leakage magnetic field and the external leakage magnetic field generated in the space SP. There is a possibility that it cannot be suppressed.
  • the control device 3 may control the magnetic field generator 5 so as to generate a cancel magnetic field that can suppress the influence of the leakage magnetic field in accordance with the movement of the stage 22.
  • control device 3 may adjust the cancel magnetic field in accordance with the movement of the stage 22.
  • the control device 3 when the influence of the internal leakage magnetic field and the external leakage magnetic field generated in the space SP can be appropriately suppressed by the cancellation magnetic field without changing the cancellation magnetic field, the control device 3 generates the magnetic field in accordance with the movement of the stage 22.
  • the device 5 may not be controlled.
  • the exposure apparatus EXg according to the seventh modification has a single electron beam EB emitted from the electron beam irradiation apparatus 1 in that the electron beam irradiation apparatus 1g can irradiate a plurality of electron beams EB. This is different from the above-described exposure apparatus EX that can be irradiated. Furthermore, the exposure apparatus EXg of the seventh modification is different from the above-described exposure apparatus EX including the single magnetic field generator 5 in that it includes a plurality of magnetic field generators 5.
  • the other components included in the exposure apparatus EXg of the seventh modification are the same as the other components included in the exposure apparatus EX described above.
  • the electron beam irradiation apparatus 1g includes a plurality of electron beam optical systems 12.
  • the plurality of electron beam optical systems 12 are installed so as to have a predetermined positional relationship in the XY plane.
  • the plurality of electron beam optical systems 12 are arranged in a matrix in the XY plane.
  • the plurality of electron beam optical systems 12 may be arranged in an array (that is, in a line) in the XY plane.
  • the electron beam irradiation apparatus 1g may include a surface emission type electron beam source having an electron emission unit that emits the plurality of electron beams EB as the beam optical device 122. Good.
  • FIG. 23 is a plan view showing on the wafer W the irradiation positions (that is, the irradiation areas EA) of the plurality of electron beams EB and the arrangement positions of the plurality of electron beam optical systems 12. As shown in FIG.
  • the electron beam irradiation apparatus 1g can simultaneously irradiate a plurality of electron beams EB to a plurality of irradiation areas EA set on a plurality of shot areas S on the wafer W, respectively. . That is, the plurality of electron beam optical systems 12 can simultaneously irradiate the plurality of electron beams EB to the plurality of irradiation areas EA respectively set on the plurality of shot areas S on the wafer W. If the electron beam irradiation apparatus 1g irradiates the electron beam EB while moving the wafer W relative to the irradiation area EA, a plurality of shot areas S on the wafer W are exposed in parallel. As a result, a pattern smaller than the resolution limit of the exposure apparatus of the comparative example that exposes the wafer with ultraviolet light is formed in each shot region S with a relatively high throughput.
  • the number of shot regions S is not limited to the number shown in FIG.
  • FIG. 24A is a cross-sectional view showing a correspondence relationship between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 on the YZ plane in the seventh modification.
  • FIG. 24B is a plan view showing a correspondence relationship between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 on the XY plane in the seventh modification.
  • the exposure apparatus EXf includes N electron beam optical systems 12, it is assumed that the exposure apparatus EXf includes N magnetic field generators 5. Thereafter, the N electron beam optical systems 12 are referred to as an electron beam optical system 12 1 , an electron beam optical system 12 2 , an electron beam optical system 12 3 ,..., An electron beam optical system 12 N-1 and an electron beam optical system. 12 N to distinguish from each other.
  • the exposure apparatus EX includes a magnetic field generator 5 1 corresponding to the electron beam optical system 12 1, and the magnetic field generator 5 2 corresponding to the electron beam optical system 12 2, a magnetic field corresponding to the electron beam optical system 12 3 a generator 5 3, ..., and a magnetic field generator 5 N-1 corresponding to the electron beam optical system 12 N-1, and a magnetic field generator 5 N corresponding to the electron beam optical system 12 N.
  • the exposure apparatus EXf is not limited to being provided with the N magnetic field generators 5.
  • the magnetic field generator 5 k (where, k is an integer satisfying 1 ⁇ k ⁇ N) includes a coil 51Z k, and the coil 52Y k, coils 52X k .
  • the coil 52X k is not shown.
  • Structure of coil 51Z k is identical to the structure of the coil 51Z as described above
  • the structure of the coil 52Y k is identical to the structure of the coil 52Y as described above
  • the structure of the coil 52X k is the same as the structure of the coil 52X as described above .
  • the magnetic field generator 5 k is capable of generating cancellation magnetic field in a space SP k between the primary electron beam optical system 12 k and the wafer W corresponding to the magnetic field generator 5 k.
  • the magnetic field generator 5 1 can generate a cancellation magnetic field in a space SP 1 between the primary electron beam optical system 12 1 and the wafer W corresponding to the magnetic field generator 5 1.
  • the magnetic field generator 5 2 is capable of generating cancellation magnetic field in a space SP 2 between the one electron beam optical system 12 2 and the wafer W corresponding to the magnetic field generator 5 2.
  • the coil 51Z k can generate a cancel magnetic field BZ in the space SP k .
  • Coil 51Z k is primarily a cancellation magnetic field BZ in order to suppress the influence of the internal leakage magnetic field leaking to the space SP k from the interior of the electron beam optical system 12 k can be generated.
  • the coil 51Z k is capable of generating canceling magnetic field BZ capable to align the direction of the internal leakage magnetic field leaking to the space SP k in Z-axis direction.
  • the coil 52Y k can generate a cancel magnetic field BY in the space SP k .
  • the coil 52Y k is aligned with respect to the electron beam optical system 12 k Good.
  • Coil 52Y k is primarily a cancellation magnetic field BY for suppressing the influence of an external leakage magnetic field leaking to the space SP k from the outside of the electron beam optical system 12 k can be generated.
  • the coil 52Y k in cooperation with the cancel magnetic field BX coil 52X k occurs, it is possible to generate a cancellation magnetic field BY capable of canceling the external leakage magnetic field leaking to the space SP k.
  • the coil 52X k can generate a cancel magnetic field BX in the space SP k .
  • coil 52X k can mainly generate a cancel magnetic field BX for suppressing the influence of the external leakage magnetic field leaking from the outside of the electron beam optical system 12k to the space SP k .
  • the coil 52X k in cooperation with the cancel magnetic field BY the coil 52Y k occurs, it is possible to generate a cancellation magnetic field BX capable of canceling the external leakage magnetic field leaking to the space SP k.
  • the external leakage magnetic field leaking from the outside of the electron beam optical system 12 k to the space SP k is added to the electron beam optical system 12 k in addition to the external leakage magnetic field described above with reference to FIG. other electron beam optical system 12 other than (that is, from the electron beam optical system 12 1 from the electron beam optical system 12 k-1 and the electron beam optical system 12 k + 1 electron beam optical system 12 N) leaking into the space SP k from the interior of the Including the magnetic field.
  • the coil 52Y k and 52X k is leaking from the electron beam optical system 12 1 from the electron beam optical system 12 k-1 and the electron beam optical system 12 k + 1 to the space SP k from the interior of the electron beam optical system 12 N
  • a cancel magnetic field that can suppress the influence of an external leakage magnetic field including a magnetic field is generated.
  • the coils 52Y 1 and 52X 1 generates a cancellation magnetic field that can suppress the influence of external leakage magnetic field including a magnetic field leaked to the space SP 1 from the electron beam optical system 12 2 from the interior of the electron beam optical system 12 N .
  • the coils 52Y 2 and 52X 2 suppress the influence of an external leakage magnetic field including a magnetic field leaking from the electron beam optical system 12 1 and the electron beam optical system 12 3 into the space SP 2 from the inside of the electron beam optical system 12 N. Generate possible canceling magnetic field.
  • Such an exposure apparatus EXg of the seventh modified example does not receive the influence of the leakage magnetic field generated accompanying the irradiation of the plurality of electron beams EB or regardless of the influence of the leakage magnetic field, A desired position on the wafer W can be irradiated. As a result, deterioration of exposure accuracy due to the plurality of electron beams EB is appropriately suppressed. That is, even when the exposure apparatus EXg irradiates a plurality of electron beams EB, the effects that can be enjoyed by the exposure apparatus EX can be appropriately enjoyed.
  • the two magnetic field generators 5 adjacent to each other on the XY plane may cancel each other because the directions of the magnetic fields generated from the coils 52Y and the coils 52X are opposite to each other.
  • Two adjacent magnetic field generators 5 on the XY plane may share at least a part of the coil 51Z, the coil 52Y, and the coil 52X. That is, the two magnetic field generators 5 adjacent on the XY plane may include coils that can be shared with each other. In other words, at least a part of the coil 51Z, the coil 52Y, and the coil 52X included in the two magnetic field generators 5 adjacent to each other on the XY plane may be integrated. That is, the coil contained in common with two adjacent magnetic field generators 5 may be arrange
  • the two magnetic field generators 5 adjacent along the X axis may share at least a part of the two coils 52X adjacent along the X axis.
  • a coil shared by the two magnetic field generators 5 adjacent to each other along the X axis may be arranged. Specifically, in the example shown in FIG. 24 (b) from FIG.
  • the magnetic field generator 5 1 utilizing and magnetic field generator 5 4 as a coil 522X may be arranged a single coil to be used as a coil 521X.
  • the two magnetic field generators 5 adjacent along the Y axis may share at least a part of the two coils 52Y adjacent along the Y axis.
  • a coil shared by two magnetic field generators 5 adjacent to each other along the Y axis may be disposed. Specifically, in the example shown in FIG. 24 (b) from FIG.
  • the magnetic field generator 5 1 and the magnetic field generator 5 2 utilized is as the coil 522Y may be arranged a single coil to be used as a coil 521Y.
  • an exposure apparatus EXh according to an eighth modification will be described.
  • one magnetic field generator 5 is associated with one electron beam optical system 12 in that one magnetic field generator 5 is associated with two or more adjacent electron beam optical systems 12.
  • Other components included in the exposure apparatus EXh according to the eighth modification are the same as those included in the exposure apparatus EXg according to the seventh modification described above.
  • the correspondence between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 will be described with reference to FIGS. 25 (a) to 25 (b).
  • FIG. 25A is a cross-sectional view showing the correspondence relationship between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 on the YZ plane in the eighth modification.
  • FIG. 25B is a plan view showing a correspondence relationship between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 on the XY plane in the eighth modification.
  • one magnetic field generator 5 is associated with four adjacent electron beam optical systems 12 in a 2 ⁇ 2 matrix arrangement pattern on the XY plane.
  • one magnetic field generator 5 may be associated with three or less or five or more electron beam optical systems 12.
  • the exposure apparatus EXf are N electron beam optical system 12 (that is, from the electron beam optical system 12 1 electron beam optical system 12 N) shall have a.
  • the arrangement order of the N electron beam optical systems 12 in the eighth modified example on the XY plane is N electron beam optical systems 12 in the seventh modified example.
  • the order of arrangement on the XY plane is different.
  • the exposure apparatus EX the magnetic field generator corresponding to the magnetic field generator 5 p1 corresponding of four electron beam optical system 12 1 adjacent to 12 4, the four electron beam optical system 12 5 adjacent to 12 8 5 p2 ...
  • a magnetic field generator 5 pn corresponding to the electron beam optical system 12 N from four adjacent electron beam optical systems 12 N-3 (where n is an integer equal to or greater than N / 4). ing. However, at least one of the magnetic field generators 5 p1 to 5 pn may correspond to three or less electron beam optical systems 12.
  • the magnetic field generator 5 pm (where, m is 1 integer satisfying ⁇ k ⁇ n) includes a coil 51Z pm, the coil 52Y pm, coils 52X pm .
  • the coil 52X pm is not shown in FIG.
  • Structure of coil 51Z pm is identical to the structure of the coil 51Z as described above
  • the structure of the coil 52Y pm is identical to the structure of the coil 52Y as described above
  • the structure of the coil 52X pm is the same as the structure of the coil 52X as described above .
  • the coils 511Z and 512Z are included in the coil 51Z pm, in the XY plane, and has a size that can contain the optical axis AX of the four electron beam optical system 12 corresponding to the coil 51Z pm.
  • the coils 521Y and 522Y included in the coil 52Y pm have a size capable of sandwiching the optical axes AX of the four electron beam optical systems 12 corresponding to the coils 52Y pm on the XY plane.
  • the magnetic field generator 5 pm can generate a cancel magnetic field in the space SP pm including the space SP between each of the four electron beam optical systems 12 corresponding to the magnetic field generator 5 pm and the wafer W.
  • the magnetic field generator 5 P1 includes a space SP 1 between the electron beam optical system 12 1 and the wafer W, a space SP 2 between the electron beam optical system 12 2 and the wafer W, and an electron beam optical system 12 3 . It is possible to generate a cancellation magnetic field in a space SP P1 containing space SP 4 between the space SP 3 and the electron beam optical system 12 4 and the wafer W between the wafer W.
  • the magnetic field generator 5 P2 is space SP 5 between electron beam optical system 12 5 and the wafer W, a space SP 6, the electron beam optical system 12 7 between the electron beam optical system 12 6 and the wafer W it is possible to generate a cancellation magnetic field in a space SP P2 containing space SP 8 between the space SP 7 and the electron beam optical system 12 8 and the wafer W between the wafer W.
  • the coil 51Z pm can generate a cancel magnetic field BZ in the space SP pm .
  • the coil 51Z pm is connected to the coil 51Z pm so that the optical axes AX of the four electron beam optical systems 12 corresponding to the coils 51Z pm pass through the inner sides of the coils 511Z and 512Z included in the coil 51Z pm.
  • the coil 51Z pm can mainly generate a cancel magnetic field BZ for suppressing the influence of the internal leakage magnetic field leaking from the inside of the four electron beam optical systems 12 corresponding to the coil 51Z pm to the space SP pm . That is, the coil 51Z pm can generate a cancel magnetic field BZ that can align the direction of the internal leakage magnetic field leaking into the space SP pm in the Z-axis direction.
  • the coil 52Y pm can generate a cancel magnetic field BY in the space SP pm .
  • the coil 52Y pm is, corresponding to the coil 52Y pm
  • the four electron beam optical systems 12 may be aligned.
  • the coil 52Y pm can mainly generate a cancel magnetic field BY for suppressing the influence of the external leakage magnetic field leaking from the outside of the four electron beam optical systems 12 corresponding to the coil 52Y pm to the space SP pm .
  • the coil 52Y pm in cooperation with the cancel magnetic field BX coil 52X pm occurs, it is possible to generate a cancellation magnetic field BY capable of canceling the external leakage magnetic field leaking to the space SP pm.
  • the coil 52X pm can generate a cancel magnetic field BX in the space SP pm .
  • the coil 52X pm is, corresponding to the coil 52X pm
  • the four electron beam optical systems 12 may be aligned.
  • the coil 52X pm can mainly generate a cancel magnetic field BY for suppressing the influence of the external leakage magnetic field leaking from the outside of the four electron beam optical systems 12 corresponding to the coil 52X pm to the space SP pm .
  • the coil 52X pm in cooperation with the cancel magnetic field BY the coil 52Y pm occurs, it is possible to generate a cancellation magnetic field BX capable of canceling the external leakage magnetic field leaking to the space SP pm.
  • the external leakage magnetic field leaking from the outside of the four electron beam optical systems 12 into the space SP pm is not limited to the external leakage magnetic field described above with reference to FIG.
  • a magnetic field leaking into the space SP pm from the inside of the electron beam optical system 12 other than the system 12 is also included.
  • the coils 52Y pm and 52X pm have an external magnetic field that leaks into the space SP pm from the inside of the electron beam optical system 12 other than the four electron beam optical systems 12 corresponding to the coils 52Y pm and 52X pm.
  • a cancel magnetic field that can suppress the influence of the leakage magnetic field is generated.
  • the coil 52Y p1 and 52X p1 generates a cancellation magnetic field that can suppress the influence of external leakage magnetic field including a magnetic field leaked to the space SP p1 from the electron beam optical system 12 5 from the interior of the electron beam optical system 12 N .
  • the coil 52Y p2 and 52X p2 includes a magnetic field leaked to the space SP p2 from the electron beam optical system 12 1 from the electron beam optical system 12 4, and the electron beam optical system 12 9 from the interior of the electron beam optical system 12 N A cancel magnetic field that can suppress the influence of an external leakage magnetic field is generated.
  • Such an exposure apparatus EXh of the eighth modified example does not receive the influence of the leakage magnetic field generated accompanying irradiation of the plurality of electron beams EB or regardless of the influence of the leakage magnetic field, A desired position on the wafer W can be irradiated. As a result, deterioration of exposure accuracy due to the plurality of electron beams EB is appropriately suppressed. That is, even when the exposure apparatus EXh irradiates a plurality of electron beams EB, the effects that can be enjoyed by the exposure apparatus EX described above can be appropriately enjoyed.
  • the exposure apparatus EX is an exposure apparatus that exposes the wafer W by irradiating the wafer W with the electron beam EB.
  • the exposure apparatus EX may be an exposure apparatus that exposes the wafer W by irradiating the wafer W with an arbitrary charged particle beam (for example, an ion beam) different from the electron beam EB.
  • the exposure apparatus EX is a single beam type exposure apparatus in which the electron beam optical system 12 draws or transfers a pattern on the wafer W using a single electron beam EB.
  • the exposure apparatus EX may be a variable shaping type exposure apparatus that shapes the cross section of the electron beam EB irradiated to the wafer W by the electron beam optical system 12 into a variable size rectangle.
  • the exposure apparatus EX may be a point beam type exposure apparatus in which the electron beam optical system 12 irradiates the wafer W with a spot-shaped electron beam EB.
  • the exposure apparatus EX may be a stencil mask type exposure apparatus in which the electron beam optical system 12 shapes the electron beam EB into a desired shape using a stencil mask in which a beam passage hole having a desired shape is formed.
  • the exposure apparatus EX may be a multi-beam type exposure apparatus in which the electron beam optical system 12 draws or transfers a pattern on the wafer W using a plurality of electron beams.
  • the exposure apparatus EX generates a plurality of electron beams via a blanking aperture array having a plurality of openings, and individually turns on / off the plurality of electron beams according to the drawing pattern, thereby drawing the pattern on the wafer W.
  • An exposure apparatus may be used.
  • the exposure apparatus EX may be an exposure apparatus that includes a surface emission type electron beam source having a plurality of electron emission portions from which the electron beam optical system 12 emits a plurality of electron beams.
  • the exposure apparatus EX may be a batch transfer type exposure apparatus that collectively transfers a pattern of one semiconductor chip or a plurality of semiconductor chip patterns from a mask to the wafer W.
  • the exposure apparatus EX may be a split transfer type exposure apparatus capable of performing exposure with higher throughput than the batch transfer type.
  • the division transfer type exposure apparatus divides a pattern to be transferred onto the wafer W into a plurality of small areas smaller than the size corresponding to one shot area S on the mask, and the plurality of small area patterns are formed on the wafer W. Transcript.
  • an electron beam EB is irradiated to a certain area of a mask having a pattern of one semiconductor chip, and an image of the pattern in the area irradiated with the electron beam EB is projected with a projection lens.
  • a reduction transfer type exposure apparatus that performs reduction transfer.
  • the exposure apparatus EX may be a scanning stepper.
  • the exposure apparatus EX may be a stationary exposure apparatus such as a stepper.
  • the exposure apparatus EX may be a step-and-stitch type reduction projection exposure apparatus that synthesizes at least a part of one shot area S and at least a part of another shot area S.
  • the exposure target of the exposure apparatus EX is a semiconductor substrate (that is, the wafer W) for manufacturing a semiconductor device.
  • the exposure target of the exposure apparatus EX may be an arbitrary substrate (or an arbitrary object).
  • the exposure apparatus EX may be an exposure apparatus for manufacturing an organic EL, a thin film magnetic head, an image sensor (CCD or the like), a micromachine, or a DNA chip.
  • the exposure apparatus EX may be an exposure apparatus for drawing a mask pattern on a square glass plate or a silicon wafer.
  • a device such as a semiconductor device may be manufactured through the steps shown in FIG.
  • the steps for manufacturing the device are step S201 for designing the function and performance of the device, step S202 for generating an exposure pattern based on the function and performance design (that is, an exposure pattern by the electron beam EB), and a substrate of the device.
  • Step S203 for manufacturing the wafer W Step S204 for exposing the wafer W using the electron beam EB corresponding to the generated exposure pattern and developing the exposed wafer W, device assembly processing (dicing processing, bonding processing, package processing)
  • Step S205 including a processing process such as the above and step S206 for inspecting a device may be included.
  • EX exposure apparatus W wafer EB electron beam EA irradiation area S shot area 1 electron beam irradiation apparatus 11 barrel 12 electron beam optical system 13 metrology frame 2 stage apparatus 21 surface plate 22 stage 3 control apparatus 5 magnetic field generator 51Z, 511Z, 512Z Coil 52Y, 521Y, 522Y Coil 52X, 521X, 522X Coil 53Z, 54Y, 54X Magnet 6a Support member 7f Magnetic field sensor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

This exposure apparatus EX is provided with: a beam optical system (12) that is capable of irradiating an object (W) with a charged particle beam (EB (AX)); first magnetic field generating apparatuses (51Z) that generate a magnetic field having a first characteristic in a space (SP) between the beam optical system (12) and the object (W); and second magnetic field generating apparatuses (52X, 52Y) that generate a magnetic field having a second characteristic in the space between the beam optical system (12) and the object (W).

Description

露光装置、露光方法、及び、デバイス製造方法Exposure apparatus, exposure method, and device manufacturing method
 本発明は、例えば、荷電粒子ビームを物体に照射する露光装置、露光装置を用いる露光方法、及び、露光方法を用いてデバイスを製造するデバイス製造方法の技術分野に関する。 The present invention relates to the technical field of, for example, an exposure apparatus that irradiates an object with a charged particle beam, an exposure method that uses the exposure apparatus, and a device manufacturing method that manufactures a device using the exposure method.
 半導体素子等のデバイスを製造するためのリソグラフィ工程で使用される露光装置として、荷電粒子ビーム(例えば、電子ビーム)を露光ビームとして用いる露光装置が提案されている。例えば、特許文献1には、紫外光を露光光として用いる露光装置の解像限界よりも小さいスポットを荷電粒子ビームで形成し、当該スポットを基板等の物体に対して相対的に移動させることで基板を露光する露光装置が記載されている。 As an exposure apparatus used in a lithography process for manufacturing a device such as a semiconductor element, an exposure apparatus using a charged particle beam (for example, an electron beam) as an exposure beam has been proposed. For example, in Patent Document 1, a spot smaller than the resolution limit of an exposure apparatus that uses ultraviolet light as exposure light is formed with a charged particle beam, and the spot is moved relative to an object such as a substrate. An exposure apparatus for exposing a substrate is described.
 このような露光装置では、不要な磁場が基板等の物体上の空間に残留してしまうと、荷電粒子ビームが、残留した磁場に影響を受ける可能性がある。 In such an exposure apparatus, if an unnecessary magnetic field remains in a space on an object such as a substrate, the charged particle beam may be affected by the remaining magnetic field.
米国特許出願公開第2016/0133438号明細書US Patent Application Publication No. 2016/0133438
 本発明の露光装置の第1の態様は、荷電粒子ビームを物体に照射可能なビーム光学系と、前記ビーム光学系と前記物体との間の空間に対して、第1の特性を有する第1の磁場を発生可能な第1磁場発生装置と、前記ビーム光学系と前記物体との間の空間に対して、前記第1の特性とは異なる第2の特性を有する第2の磁場を発生可能な第2磁場発生装置とを備える。 According to a first aspect of the exposure apparatus of the present invention, a beam optical system capable of irradiating an object with a charged particle beam and a first characteristic having a first characteristic with respect to a space between the beam optical system and the object. A first magnetic field generator capable of generating a magnetic field of the first and a second magnetic field having a second characteristic different from the first characteristic can be generated in a space between the beam optical system and the object. Second magnetic field generator.
 本発明の露光方法の第1の態様は、上述した本発明の露光装置の第1の態様を用いて前記物体を露光する。 In the first aspect of the exposure method of the present invention, the object is exposed using the first aspect of the exposure apparatus of the present invention described above.
 本発明のデバイス製造方法の第1の態様は、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程では、上述した本発明の露光方法の第1の態様により前記物体に対する露光が行われる。 A first aspect of the device manufacturing method of the present invention is a device manufacturing method including a lithography process, and in the lithography process, the object is exposed by the first aspect of the exposure method of the present invention described above.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments to be described below.
図1は、露光装置の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the exposure apparatus. 図2は、露光装置が備える電子ビーム照射装置及びステージ装置の外観を示す斜視図である。FIG. 2 is a perspective view showing the external appearance of the electron beam irradiation apparatus and the stage apparatus provided in the exposure apparatus. 図3は、露光装置が備える電子ビーム照射装置及びステージ装置の断面を示す断面図である。FIG. 3 is a cross-sectional view showing a cross section of the electron beam irradiation apparatus and the stage apparatus provided in the exposure apparatus. 図4は、電子ビーム光学系の断面(電子ビーム光学系の光軸を含む断面)を示す断面図である。FIG. 4 is a cross-sectional view showing a cross section of the electron beam optical system (a cross section including the optical axis of the electron beam optical system). 図5(a)は、磁場発生器の一部の断面(具体的には、YZ平面に沿った断面)を示す断面図であり、図5(b)は、図5(a)に示す磁場発生器の一部を示す一点透視図であり、図5(c)は、磁場発生器の一部の断面(具体的には、XZ平面に沿った断面)を示す断面図であり、図5(d)は、図5(c)に示す磁場発生器の一部を示す一点透視図である。FIG. 5A is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator, and FIG. 5B is a magnetic field shown in FIG. FIG. 5C is a cross-sectional view showing a partial cross section of the magnetic field generator (specifically, a cross section taken along the XZ plane). FIG. 5D is a one-point perspective view showing a part of the magnetic field generator shown in FIG. 図6(a)から図6(c)の夫々は、磁場発生器が発生する磁場の一部を示す断面図である。Each of FIG. 6A to FIG. 6C is a cross-sectional view showing a part of the magnetic field generated by the magnetic field generator. 図7は、内部漏れ磁場を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing the internal leakage magnetic field. 図8は、外部漏れ磁場を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an external leakage magnetic field. 図9は、漏れ磁場の影響を受ける電子ビームの伝搬経路を示す断面図である。FIG. 9 is a cross-sectional view showing a propagation path of an electron beam affected by a leakage magnetic field. 図10(a)は、内部漏れ磁場とキャンセル磁場との関係を示す断面図である。図10(b)は、キャンセル磁場の影響を受けた内部漏れ磁場を示す断面図である。FIG. 10A is a cross-sectional view showing the relationship between the internal leakage magnetic field and the cancellation magnetic field. FIG. 10B is a cross-sectional view showing the internal leakage magnetic field affected by the canceling magnetic field. 図11(a)は、外部漏れ磁場とキャンセル磁場との関係を示す断面図である。図11(b)は、キャンセル磁場の影響を受けた外部漏れ磁場を示す断面図である。FIG. 11A is a cross-sectional view showing the relationship between the external leakage magnetic field and the cancellation magnetic field. FIG. 11B is a cross-sectional view showing an external leakage magnetic field affected by the canceling magnetic field. 図12(a)から図12(c)の夫々は、複数のコイルを備える磁場発生器が発生する磁場の一部を示す断面図である。Each of FIG. 12A to FIG. 12C is a cross-sectional view showing a part of a magnetic field generated by a magnetic field generator including a plurality of coils. 図13(a)から図13(c)の夫々は、複数のコイルを備える磁場発生器が発生する磁場の一部を示す断面図である。Each of FIGS. 13A to 13C is a cross-sectional view showing a part of a magnetic field generated by a magnetic field generator including a plurality of coils. 図14は、第1変形例の露光装置が備える電子ビーム照射装置及びステージ装置の断面を示す断面図である。FIG. 14 is a cross-sectional view showing a cross section of the electron beam irradiation apparatus and the stage apparatus included in the exposure apparatus of the first modification. 図15(a)は、第1変形例の磁場発生器の一部の断面(具体的には、YZ平面に沿った断面)を示す断面図であり、図15(b)は、支持部材の上面を示す平面図である。FIG. 15A is a cross-sectional view showing a partial cross-section (specifically, a cross-section along the YZ plane) of the magnetic field generator of the first modification, and FIG. It is a top view which shows an upper surface. 図16は、第2変形例の磁場発生器の一部の断面(具体的には、YZ平面に沿った断面)を示す断面図である。FIG. 16 is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator of the second modification. 図17は、第3変形例の磁場発生器の一部の断面(具体的には、YZ平面に沿った断面)を示す断面図である。FIG. 17 is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator of the third modification. 図18は、第4変形例の磁場発生器の一部の断面(具体的には、YZ平面に沿った断面)を示す断面図である。FIG. 18 is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator of the fourth modified example. 図19(a)及び図19(b)の夫々は、第5変形例の磁場発生器の一部の断面(具体的には、YZ平面に沿った断面)を示す断面図である。Each of FIG. 19A and FIG. 19B is a cross-sectional view showing a partial cross section (specifically, a cross section along the YZ plane) of the magnetic field generator of the fifth modification. 図20(a)から図20(c)の夫々は、第5変形例の磁場発生器が発生する磁場の一部を示す断面図である。Each of FIG. 20A to FIG. 20C is a cross-sectional view showing a part of the magnetic field generated by the magnetic field generator of the fifth modification. 図21は、第6変形例の露光装置が備える電子ビーム照射装置及びステージ装置の断面を示す断面図である。FIG. 21 is a cross-sectional view showing a cross section of an electron beam irradiation apparatus and a stage apparatus included in the exposure apparatus of the sixth modified example. 図22は、第7変形例の露光装置が備える電子ビーム照射装置及びステージ装置の断面を示す断面図である。FIG. 22 is a cross-sectional view showing a cross section of an electron beam irradiation apparatus and a stage apparatus included in the exposure apparatus of the seventh modified example. 図23は、複数の電子ビームの照射位置(照射領域)及び複数の電子ビーム光学系の配置位置をウェハ上で示す平面図である。FIG. 23 is a plan view showing irradiation positions (irradiation areas) of a plurality of electron beams and arrangement positions of a plurality of electron beam optical systems on the wafer. 図24(a)は、第7変形例における複数の磁場発生器と複数の電子ビーム光学系との対応関係を、YZ平面上で示す断面図であり、図24(b)は、第7変形例における複数の磁場発生器と複数の電子ビーム光学系との対応関係を、XY平面上で示す平面図である。FIG. 24A is a cross-sectional view showing a correspondence relationship between a plurality of magnetic field generators and a plurality of electron beam optical systems in the seventh modification on the YZ plane, and FIG. 24B is a seventh modification. It is a top view which shows the corresponding relationship of the some magnetic field generator and several electron beam optical system in an example on XY plane. 図25(a)は、第8変形例における複数の磁場発生器と複数の電子ビーム光学系との対応関係を、YZ平面上で示す断面図であり、図25(b)は、第8変形例における複数の磁場発生器と複数の電子ビーム光学系との対応関係を、XY平面上で示す平面図である。FIG. 25A is a cross-sectional view showing a correspondence relationship between the plurality of magnetic field generators and the plurality of electron beam optical systems in the eighth modification on the YZ plane, and FIG. 25B is the eighth modification. It is a top view which shows the corresponding relationship of the some magnetic field generator and several electron beam optical system in an example on XY plane. 図26は、デバイス製造方法の流れを示すフローチャートである。FIG. 26 is a flowchart showing the flow of the device manufacturing method.
 以下、図面を参照しながら、露光装置、露光方法、及び、デバイス製造方法の実施形態について説明する。以下では、電子ビームEBをウェハWに照射して当該ウェハWを露光する露光装置(つまり、電子ビーム露光装置)EXを用いて、露光装置、露光方法、及び、デバイス製造方法の実施形態を説明する。露光装置EXは、電子ビームEBでウェハWにパターンを描画するようにウェハWを露光してもよいし、微小マスクのパターンを電子ビームEBでウェハWに転写するようにウェハWを露光してもよい。 Hereinafter, embodiments of an exposure apparatus, an exposure method, and a device manufacturing method will be described with reference to the drawings. Hereinafter, embodiments of an exposure apparatus, an exposure method, and a device manufacturing method will be described using an exposure apparatus (that is, an electron beam exposure apparatus) EX that irradiates the wafer W with the electron beam EB to expose the wafer W. To do. The exposure apparatus EX may expose the wafer W so as to draw a pattern on the wafer W with the electron beam EB, or expose the wafer W so as to transfer the pattern of the minute mask onto the wafer W with the electron beam EB. Also good.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、露光装置EXを構成する構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。尚、Z軸方向は、露光装置EXが備える後述の電子ビーム光学系12の光軸AXに平行な方向でもある。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。 Also, in the following description, the positional relationship of the components constituting the exposure apparatus EX will be described using an XYZ orthogonal coordinate system defined by mutually orthogonal X, Y, and Z axes. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, in the vertical direction). Note that the Z-axis direction is also a direction parallel to an optical axis AX of an electron beam optical system 12 described later provided in the exposure apparatus EX. Further, the rotation directions around the X axis, the Y axis, and the Z axis (in other words, the tilt direction) are referred to as a θX direction, a θY direction, and a θZ direction, respectively.
 (1)露光装置EXの構造
 はじめに、図1から図5を参照しながら、露光装置EXの構造について説明する。
(1) Structure of the exposure apparatus EX First, the structure of the exposure apparatus EX will be described with reference to FIGS.
 (1-1)露光装置EXの全体構造
 まず、図1から図3を参照しながら、露光装置EXの全体構造について説明する。図1は、露光装置EXの外観を示す斜視図である。図2は、露光装置EXが備える電子ビーム照射装置1及びステージ装置2の外観を示す斜視図である。図3は、露光装置EXが備える電子ビーム照射装置1及びステージ装置2の断面を示す断面図である。
(1-1) Overall Structure of Exposure Apparatus EX First, the overall structure of the exposure apparatus EX will be described with reference to FIGS. FIG. 1 is a perspective view showing the appearance of the exposure apparatus EX. FIG. 2 is a perspective view showing the appearance of the electron beam irradiation apparatus 1 and the stage apparatus 2 provided in the exposure apparatus EX. FIG. 3 is a cross-sectional view showing cross sections of the electron beam irradiation apparatus 1 and the stage apparatus 2 provided in the exposure apparatus EX.
 図1から図3に示すように、露光装置EXは、電子ビーム照射装置1と、ステージ装置2と、制御装置3(但し、図2及び図3では、制御装置3は不図示)とを備えている。電子ビーム照射装置1は、ステージ装置2が保持するウェハWに対して電子ビームEBを照射可能である。ステージ装置2は、ウェハWを保持しながら移動可能である。制御装置3は、露光装置EXの動作を制御する。 As shown in FIGS. 1 to 3, the exposure apparatus EX includes an electron beam irradiation apparatus 1, a stage apparatus 2, and a control apparatus 3 (however, the control apparatus 3 is not shown in FIGS. 2 and 3). ing. The electron beam irradiation apparatus 1 can irradiate the wafer W held by the stage apparatus 2 with the electron beam EB. The stage device 2 is movable while holding the wafer W. The control device 3 controls the operation of the exposure apparatus EX.
 ウェハWは、電子線レジスト(或いは、任意の感光剤又は感応材)が塗布された半導体基板である。ウェハWは、例えば、直径が300mmであり、厚さが700μmから800μmとなる円板状の基板である。但し、ウェハWは、任意のサイズを有する任意の形状の基板であってもよい。ウェハW上には、露光装置EXが備える後述の電子ビーム光学系12が照射する電子ビームEBによって露光される複数の矩形状のショット領域Sが設定可能である。例えば、1つのショット領域Sのサイズが26mm×33mmである場合には、ウェハW上には、約100個のショット領域Sが設定可能である。尚、ウェハW上には、一部が欠けたショット領域Sが設定されていてもよい。 The wafer W is a semiconductor substrate coated with an electron beam resist (or any photosensitive agent or sensitive material). The wafer W is, for example, a disk-shaped substrate having a diameter of 300 mm and a thickness of 700 μm to 800 μm. However, the wafer W may be a substrate of an arbitrary shape having an arbitrary size. On the wafer W, a plurality of rectangular shot areas S exposed by an electron beam EB irradiated by an electron beam optical system 12 (described later) provided in the exposure apparatus EX can be set. For example, when the size of one shot area S is 26 mm × 33 mm, about 100 shot areas S can be set on the wafer W. On the wafer W, a shot area S that is partially missing may be set.
 電子ビーム照射装置1の一部は、露光チャンバCa内に配置されている。図1及び図3に示す例では、電子ビーム照射装置1のうち後述する鏡筒11の下端部(つまり、電子ビーム照射装置1のうちのステージ装置2側に位置する一部)が、露光チャンバCa内に配置されている。更に、ステージ装置2の全体が、露光チャンバCa内に配置されている。但し、電子ビーム照射装置1の全体が露光チャンバCa内に配置されていてもよい。 A part of the electron beam irradiation apparatus 1 is disposed in the exposure chamber Ca. In the example shown in FIGS. 1 and 3, a lower end portion of a lens barrel 11 described later in the electron beam irradiation apparatus 1 (that is, a part of the electron beam irradiation apparatus 1 located on the stage device 2 side) is an exposure chamber. Arranged in Ca. Further, the entire stage apparatus 2 is disposed in the exposure chamber Ca. However, the entire electron beam irradiation apparatus 1 may be disposed in the exposure chamber Ca.
 電子ビーム照射装置1は、円筒状の鏡筒11を備える。鏡筒11の内部の空間は、電子ビームEBが照射される期間中は、真空空間となる。具体的には、鏡筒11の内部の空間は、鏡筒11の下側の開放端(つまり、電子ビームEBが通過可能な開口)を介して、露光チャンバCa内のチャンバ空間Cazと連結される。このため、鏡筒11の内部の空間は、チャンバ空間Cazの排気に伴って真空空間となる。 The electron beam irradiation apparatus 1 includes a cylindrical lens barrel 11. The space inside the lens barrel 11 becomes a vacuum space during the period when the electron beam EB is irradiated. Specifically, the space inside the lens barrel 11 is connected to the chamber space Caz in the exposure chamber Ca via the lower open end of the lens barrel 11 (that is, an opening through which the electron beam EB can pass). The For this reason, the space inside the lens barrel 11 becomes a vacuum space as the chamber space Caz is exhausted.
 更に、電子ビーム照射装置1は、鏡筒11を下方から支持するためのメトロロジーフレーム13を備えている。メトロロジーフレーム13は、図2に示すように、外周部に中心角120度の間隔で3つの凸部が形成された円環状の板部材を含む。鏡筒11の最下端部は、鏡筒11の最下端部よりも上方にある上方部よりも直径が小さい小径部となっている。鏡筒11の最下端部と鏡筒11の上方部との間の境界部分は、段部となっている。この最下端部がメトロロジーフレーム13の円形の開口内に挿入される。更に、段部の底面がメトロロジーフレーム13の上面に接触する。その結果、鏡筒11がメトロロジーフレーム13によって下方から支持される。 Furthermore, the electron beam irradiation apparatus 1 includes a metrology frame 13 for supporting the lens barrel 11 from below. As shown in FIG. 2, the metrology frame 13 includes an annular plate member in which three convex portions are formed on the outer peripheral portion at intervals of a central angle of 120 degrees. The lowermost end portion of the lens barrel 11 is a small diameter portion having a smaller diameter than the upper portion above the lowermost end portion of the lens barrel 11. A boundary portion between the lowermost end portion of the lens barrel 11 and the upper portion of the lens barrel 11 is a stepped portion. This lowermost end is inserted into the circular opening of the metrology frame 13. Further, the bottom surface of the step portion contacts the upper surface of the metrology frame 13. As a result, the lens barrel 11 is supported from below by the metrology frame 13.
 電子ビーム照射装置1は、更に、メトロロジーフレーム13を支持するための3つの吊り下げ支持機構14を備えている。メトロロジーフレーム13は、上述した3つの凸部に下端が夫々接続された3つの吊り下げ支持機構14を介して、外枠フレームF(図3参照)から吊り下げ支持されている。各吊り下げ支持機構14は、一端がメトロロジーフレーム13に接続されるワイヤ14aと、ワイヤ14aの他端と外枠フレームFとを接続する受動型の防振パッド14bとを備える。防振パッド14bは、例えば、エアダンパ及びコイルばねの少なくとも一方を含む。このため、防振パッド14bによって、外枠フレームFの振動のメトロロジーフレーム13(更には、鏡筒11)への伝達が防止される。 The electron beam irradiation apparatus 1 further includes three suspension support mechanisms 14 for supporting the metrology frame 13. The metrology frame 13 is suspended and supported from the outer frame frame F (see FIG. 3) via three suspension support mechanisms 14 each having a lower end connected to the three convex portions described above. Each suspension support mechanism 14 includes a wire 14 a having one end connected to the metrology frame 13 and a passive vibration-proof pad 14 b connecting the other end of the wire 14 a and the outer frame F. The anti-vibration pad 14b includes, for example, at least one of an air damper and a coil spring. For this reason, the vibration-proof pad 14b prevents the vibration of the outer frame F from being transmitted to the metrology frame 13 (and the lens barrel 11).
 上述したように、電子ビーム照射装置1の一部は、露光チャンバCa内に配置されている。メトロロジーフレーム13は、露光チャンバCa内に配置される電子ビーム照射装置1の一部に相当する。更に、鏡筒11の一部(具体的には、下端部)もまた、露光チャンバCa内に配置される電子ビーム照射装置1の一部に相当する。鏡筒11の一部及びメトロロジーフレーム13を露光チャンバCa内に配置するために、図3に示すように、露光チャンバCaの上面には、開口Caoが形成されている。つまり、露光チャンバCaは、開口Caoを規定するための環状の(或いは、枠状の)フランジ部Cafを、露光チャンバCaの隔壁の一部として備えている。鏡筒11の一部及びメトロロジーフレーム13は、開口Caoを介して、露光チャンバCaの内部に挿入される。更に、フランジ部Cafとメトロロジーフレーム13とは、環状の(或いは、枠状の)接続部4を介して接続(言い換えれば、連結)されている。接続部4は、フランジ部Cafの上面に配置された環状の(或いは、枠状の)プレート41と、鏡筒11を取り囲むようにプレート41とメトロロジーフレーム13とを連結する環状の(或いは、枠状の)ベローズ42とを備えている。プレート41の下面の外周部は、全周にわたってフランジ部Cafの上面に接続されている。ベローズ42の上部は、全周に亘ってプレート41の下面の内周部に接続されている。ベローズ42の下部は、全周に亘ってメトロロジーフレーム13の上面に接続されている。このため、露光チャンバCa、プレート41、ベローズ42、メトロロジーフレーム13及び鏡筒11によって囲まれた空間の気密性が確保される。つまり、露光チャンバCa、プレート41、ベローズ42、メトロロジーフレーム13及び鏡筒11によって、ステージ装置2(特に、ステージ装置2が保持するウェハW)が収容される真空空間が形成される。更に、ベローズ42によって、露光チャンバCaの振動(特に、Z軸方向の振動)のメトロロジーフレーム13(更には、鏡筒11)への伝達が防止される。 As described above, a part of the electron beam irradiation apparatus 1 is disposed in the exposure chamber Ca. The metrology frame 13 corresponds to a part of the electron beam irradiation apparatus 1 arranged in the exposure chamber Ca. Furthermore, a part of the lens barrel 11 (specifically, a lower end part) also corresponds to a part of the electron beam irradiation apparatus 1 disposed in the exposure chamber Ca. In order to arrange a part of the lens barrel 11 and the metrology frame 13 in the exposure chamber Ca, an opening Cao is formed on the upper surface of the exposure chamber Ca as shown in FIG. That is, the exposure chamber Ca includes an annular (or frame-like) flange portion Caf for defining the opening Cao as a part of the partition wall of the exposure chamber Ca. A part of the lens barrel 11 and the metrology frame 13 are inserted into the exposure chamber Ca through the opening Cao. Further, the flange portion Caf and the metrology frame 13 are connected (in other words, linked) via an annular (or frame-like) connection portion 4. The connecting portion 4 is an annular (or frame-shaped) plate 41 disposed on the upper surface of the flange portion Caf, and an annular (or a frame) connecting the plate 41 and the metrology frame 13 so as to surround the lens barrel 11 (or A frame-like) bellows 42. The outer peripheral portion of the lower surface of the plate 41 is connected to the upper surface of the flange portion Caf over the entire periphery. The upper part of the bellows 42 is connected to the inner peripheral part of the lower surface of the plate 41 over the entire circumference. The lower part of the bellows 42 is connected to the upper surface of the metrology frame 13 over the entire circumference. For this reason, the airtightness of the space surrounded by the exposure chamber Ca, the plate 41, the bellows 42, the metrology frame 13 and the lens barrel 11 is ensured. That is, the exposure chamber Ca, the plate 41, the bellows 42, the metrology frame 13 and the lens barrel 11 form a vacuum space in which the stage device 2 (particularly, the wafer W held by the stage device 2) is accommodated. Further, the bellows 42 prevents the vibration of the exposure chamber Ca (in particular, the vibration in the Z-axis direction) from being transmitted to the metrology frame 13 (and the lens barrel 11).
 電子ビーム照射装置1は、更に、電子ビーム光学系(言い換えれば、光学系カラム)12を鏡筒11内に備える。電子ビーム光学系12は、電子ビームEBを照射可能である。尚、電子ビーム光学系12の具体的な構造については、後に詳述する(図4参照)ため、ここでの説明を省略する。 The electron beam irradiation apparatus 1 further includes an electron beam optical system (in other words, an optical system column) 12 in the lens barrel 11. The electron beam optical system 12 can irradiate the electron beam EB. Note that the specific structure of the electron beam optical system 12 will be described later in detail (see FIG. 4), and thus the description thereof is omitted here.
 ステージ装置2は、電子ビーム照射装置1の下方(つまり、-Z側)に配置される。ステージ装置2は、定盤21と、ステージ22とを備える。定盤21は、露光チャンバCaの底面上に配置される。ステージ22は、定盤21上に配置される。ステージ22と定盤21との間には、定盤21の振動のステージ22への伝達を防止するための不図示の防振装置が設置されている。ステージ22は、ウェハWを保持可能である。従って、ウェハWは、ステージ22に保持された状態で、電子ビーム照射装置1が照射する電子ビームEBによって露光される。 The stage device 2 is disposed below the electron beam irradiation device 1 (that is, on the −Z side). The stage device 2 includes a surface plate 21 and a stage 22. The surface plate 21 is disposed on the bottom surface of the exposure chamber Ca. The stage 22 is disposed on the surface plate 21. Between the stage 22 and the surface plate 21, an anti-vibration device (not shown) for preventing the vibration of the surface plate 21 from being transmitted to the stage 22 is installed. The stage 22 can hold the wafer W. Accordingly, the wafer W is exposed by the electron beam EB irradiated by the electron beam irradiation apparatus 1 while being held on the stage 22.
 ステージ22は、制御装置3の制御下で、ウェハWを保持したまま、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動可能である。ステージ22を移動させるために、ステージ装置2は、ステージ駆動系23(図4参照)を備えている。ステージ駆動系23は、例えば、任意のモータ(例えば、リニアモータ等)を用いて、ステージ22を移動させる。更に、ステージ装置2は、ステージ22の位置を計測するため位置計測器24を備えている。位置計測器24は、例えば、エンコーダ及びレーザ干渉計のうちの少なくとも一方を含む。尚、図面の簡略化のために、ステージ駆動系23及び位置計測器24は、図1及び図2には記載することなく、図3のみに記載されている。図3は露光装置EXの断面を示しているが、ステージ駆動系23及び位置計測器24については断面を示していなくてもよい。 The stage 22 can move along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction while holding the wafer W under the control of the control device 3. . In order to move the stage 22, the stage apparatus 2 includes a stage drive system 23 (see FIG. 4). The stage drive system 23 moves the stage 22 using, for example, an arbitrary motor (for example, a linear motor). Furthermore, the stage apparatus 2 includes a position measuring device 24 for measuring the position of the stage 22. The position measuring device 24 includes, for example, at least one of an encoder and a laser interferometer. For simplification of the drawing, the stage drive system 23 and the position measuring device 24 are not shown in FIGS. 1 and 2, but are shown only in FIG. Although FIG. 3 shows a cross section of the exposure apparatus EX, the cross section of the stage drive system 23 and the position measuring device 24 may not be shown.
 露光装置EXは、更に、磁場発生器5を備えている。磁場発生器5は、ステージ装置2に配置されている。図3に示す例では、磁場発生器5は、ステージ22に埋め込まれている。磁場発生器5は、ウェハWの下方(つまり、ウェハWの-Z側)に配置されている。磁場発生器5は、ステージ22のうちウェハWを保持可能な保持領域221の下方に配置されている。尚、本実施形態では、「Xの下方の位置」とは、Xの直下の位置(つまり、Z軸方向に沿ってXと少なくとも部分的に重なる位置)のみならず、Z軸方向に沿ってXと少なくとも部分的に重ならないがXよりも-Z側の位置をも含む。同様に、本実施形態では、「Xの上方の位置」とは、Xの直上の位置(つまり、Z軸方向に沿ってXと少なくとも部分的に重なる位置)のみならず、Z軸方向に沿ってXと少なくとも部分的に重ならないがXよりも+Z側の位置をも含む。 The exposure apparatus EX further includes a magnetic field generator 5. The magnetic field generator 5 is disposed on the stage device 2. In the example shown in FIG. 3, the magnetic field generator 5 is embedded in the stage 22. The magnetic field generator 5 is disposed below the wafer W (that is, on the −Z side of the wafer W). The magnetic field generator 5 is disposed below the holding region 221 in the stage 22 where the wafer W can be held. In the present embodiment, the “position below X” is not only a position immediately below X (that is, a position at least partially overlapping with X along the Z-axis direction), but also along the Z-axis direction. It also includes a position on the −Z side of X at least partially without overlapping X. Similarly, in the present embodiment, the “position above X” is not only a position immediately above X (that is, a position at least partially overlapping with X along the Z-axis direction), but also along the Z-axis direction. In addition, it includes at least a portion on the + Z side of X, although it does not overlap at least partially with X.
 磁場発生器5は、磁場を発生可能である。磁場発生器5は、少なくとも電子ビーム光学系12とステージ装置2(或いは、ウェハW)との間の空間SPに対して磁場を発生可能である。尚、磁場発生器5の構造については、後に詳述するため(図5参照)、ここでの説明を省略する。 The magnetic field generator 5 can generate a magnetic field. The magnetic field generator 5 can generate a magnetic field at least in a space SP between the electron beam optical system 12 and the stage apparatus 2 (or the wafer W). The structure of the magnetic field generator 5 will be described in detail later (refer to FIG. 5), and the description thereof is omitted here.
 (1-2)電子ビーム光学系12の構造
 続いて、図4を参照しながら、電子ビーム光学系12の構造について更に詳細に説明する。図4は、電子ビーム光学系12の断面(電子ビーム光学系12の光軸AXを含む断面)を示す断面図である。
(1-2) Structure of Electron Beam Optical System 12 Next, the structure of the electron beam optical system 12 will be described in more detail with reference to FIG. FIG. 4 is a cross-sectional view showing a cross section of the electron beam optical system 12 (a cross section including the optical axis AX of the electron beam optical system 12).
 図4に示すように、電子ビーム光学系12は、鏡筒11内に配置される、電磁場を遮蔽可能な円筒状の筐体(言い換えれば、カラムセル)121を備えている。電子ビーム光学系12は、更に、筐体121内に、ビーム光学装置122を備えている。ビーム光学装置122は、例えば、電子ビームEBを放出可能な電子銃を含んでいてもよい。ビーム光学装置122は、例えば、電子ビームEBを成形可能な成形装置(例えば、任意の形状の開口が形成された板である成形絞りや、電磁レンズ等)を含んでいてもよい。ビーム光学装置122は、例えば、電子ビームEBを所定の縮小倍率でウェハWの表面に結像可能な対物レンズ(例えば、電磁レンズ等)を含んでいてもよい。ビーム光学装置122は、例えば、電子ビームEBを偏向可能な偏向器(例えば、磁場を利用して電子ビームEBを変更可能な電磁偏向器や、電場を利用して電子ビームEBを変更可能な静電偏向器)を含んでいてもよい。ビーム光学装置122は、例えば、電子ビームEBが所定の光学面(例えば、電子ビームEBの光路に交差する光学面)上に形成する像の回転量(つまり、θZ方向の位置)、当該像の倍率、及び、結像位置に対応する焦点位置のいずれか一つを調整可能な調整器(例えば、電磁レンズ等)を含んでいてもよい。ビーム光学装置122は、例えば、ウェハWのアライメントを行うために、ウェハW上に形成されたアライメントマーク等を検出可能な検出装置(例えば、pn接合やpin接合の半導体を使用した半導体形反射電子検出装置)を含んでいてもよい。 As shown in FIG. 4, the electron beam optical system 12 includes a cylindrical casing 121 (in other words, a column cell) that is disposed in the lens barrel 11 and can shield an electromagnetic field. The electron beam optical system 12 further includes a beam optical device 122 in the housing 121. The beam optical device 122 may include, for example, an electron gun capable of emitting an electron beam EB. The beam optical device 122 may include, for example, a shaping device that can shape the electron beam EB (for example, a shaping diaphragm that is a plate in which an opening having an arbitrary shape is formed, an electromagnetic lens, or the like). The beam optical device 122 may include, for example, an objective lens (for example, an electromagnetic lens) that can image the electron beam EB on the surface of the wafer W at a predetermined reduction magnification. The beam optical device 122 includes, for example, a deflector that can deflect the electron beam EB (for example, an electromagnetic deflector that can change the electron beam EB using a magnetic field, or a static that can change the electron beam EB using an electric field). An electric deflector) may be included. The beam optical device 122, for example, rotates the amount of the image (that is, the position in the θZ direction) of the image formed on the predetermined optical surface (for example, the optical surface intersecting the optical path of the electron beam EB) by the electron beam EB. An adjuster (for example, an electromagnetic lens or the like) that can adjust any one of the magnification and the focal position corresponding to the imaging position may be included. The beam optical device 122 is, for example, a detection device that can detect an alignment mark or the like formed on the wafer W in order to perform alignment of the wafer W (for example, semiconductor-type reflected electrons using a pn junction or pin junction semiconductor). Detection device).
 筐体121の下端部(つまり、-Z側の端部)1211は、電子ビームEBを照射するために開放されている。従って、電子ビーム光学系12は、筐体121の下端部1211から筐体121の外部(つまり、電子ビーム光学系12の外部)に向かって電子ビームEBを照射する。その結果、電子ビームEBは、電子ビーム光学系12の下方に位置するウェハWに照射される。 A lower end portion (that is, an end portion on the −Z side) 1211 of the housing 121 is opened to irradiate the electron beam EB. Accordingly, the electron beam optical system 12 irradiates the electron beam EB from the lower end portion 1211 of the housing 121 toward the outside of the housing 121 (that is, outside the electron beam optical system 12). As a result, the electron beam EB is applied to the wafer W positioned below the electron beam optical system 12.
 尚、電子ビーム光学系12は、筐体121を備えていなくてもよい。この場合、鏡筒11が筐体121として用いられてもよい。つまり、鏡筒11が、筐体121の機能を有していてもよい。 Note that the electron beam optical system 12 may not include the housing 121. In this case, the lens barrel 11 may be used as the housing 121. That is, the lens barrel 11 may have the function of the housing 121.
 (1-3)磁場発生器5の構造
 続いて、図5(a)から図5(d)を参照しながら、磁場発生器5の構造について更に詳細に説明する。図5(a)は、磁場発生器5の一部の断面(具体的には、YZ平面に沿った断面)を、電子ビーム光学系12、ステージ22及びウェハWと共に示す断面図である。図5(b)は、図5(a)に示す磁場発生器5の一部を示す一点透視図である。図5(c)は、磁場発生器5の一部の断面(具体的には、XZ平面に沿った断面)を、電子ビーム光学系12、ステージ22及びウェハWと共に示す断面図である。図5(d)は、図5(c)に示す磁場発生器5の一部を示す一点透視図である。
(1-3) Structure of Magnetic Field Generator 5 Next, the structure of the magnetic field generator 5 will be described in more detail with reference to FIGS. 5 (a) to 5 (d). FIG. 5A is a cross-sectional view showing a part of a cross section (specifically, a cross section along the YZ plane) of the magnetic field generator 5 together with the electron beam optical system 12, the stage 22, and the wafer W. FIG. FIG. 5B is a one-point perspective view showing a part of the magnetic field generator 5 shown in FIG. FIG. 5C is a cross-sectional view showing a partial cross section (specifically, a cross section along the XZ plane) of the magnetic field generator 5 together with the electron beam optical system 12, the stage 22, and the wafer W. FIG. 5D is a one-point perspective view showing a part of the magnetic field generator 5 shown in FIG.
 図5(a)から図5(d)に示すように、磁場発生器5は、コイル51Zと、コイル52Yと、コイル52Xとを含む。コイル51Z、52Y及び52Xの夫々は、電子ビーム光学系12とステージ装置2との間の空間SPに対して磁場を発生可能である。尚、上述したように、電子ビーム光学系12は、筐体121を備えている。このため、電子ビーム光学系12とステージ装置2との間の空間SPは、筐体121(特に、筐体121の下端部1211)とステージ装置2との間の空間と実質的には同一である。更に、上述したように、電子ビームEBは、電子ビーム光学系12とステージ装置2との間の空間SPを伝搬して電子ビーム光学系12からウェハWに照射される。このため、空間SPは、電子ビームEBの伝搬経路(つまり、電子ビームEBが電子ビーム光学系12からウェハWに至るまでに伝搬する経路)を含む空間と実質的には同一である。 As shown in FIGS. 5A to 5D, the magnetic field generator 5 includes a coil 51Z, a coil 52Y, and a coil 52X. Each of the coils 51 </ b> Z, 52 </ b> Y, and 52 </ b> X can generate a magnetic field with respect to the space SP between the electron beam optical system 12 and the stage apparatus 2. As described above, the electron beam optical system 12 includes the housing 121. For this reason, the space SP between the electron beam optical system 12 and the stage apparatus 2 is substantially the same as the space between the casing 121 (particularly, the lower end portion 1211 of the casing 121) and the stage apparatus 2. is there. Furthermore, as described above, the electron beam EB propagates through the space SP between the electron beam optical system 12 and the stage apparatus 2 and is irradiated from the electron beam optical system 12 onto the wafer W. Therefore, the space SP is substantially the same as a space including a propagation path of the electron beam EB (that is, a path through which the electron beam EB propagates from the electron beam optical system 12 to the wafer W).
 コイル51Zは、コイル511Zとコイル512Zとを含む。コイル511Z及び512Zの夫々は、XY平面上で巻かれた巻き線である。コイル511Z及び512Zの夫々の形状は円形であるが、その他の形状(例えば、楕円形や矩形や多角形)であってもよい。コイル511Zの半径は、コイル512Zの半径と同一である。コイル511Z及び512Zの夫々の中心軸は、Z軸に平行である。コイル511Z及び512Zは、同軸に配置される。コイル511Z及び512Zは、Z軸方向に沿って並ぶように配列される。コイル511Zは、Z軸に沿って、コイル512Zから第1所定距離だけ離れている。第1所定距離は、例えば、コイル511Z及び512Zの夫々の半径のサイズであり、この場合、コイル511Z及び512Zを含むコイル51Zは、ヘルムホルツ型のコイルである。 The coil 51Z includes a coil 511Z and a coil 512Z. Each of the coils 511Z and 512Z is a winding wound on the XY plane. Each of the coils 511Z and 512Z has a circular shape, but may have other shapes (for example, an ellipse, a rectangle, or a polygon). The radius of the coil 511Z is the same as the radius of the coil 512Z. The central axes of the coils 511Z and 512Z are parallel to the Z axis. The coils 511Z and 512Z are arranged coaxially. The coils 511Z and 512Z are arranged so as to be aligned along the Z-axis direction. The coil 511Z is separated from the coil 512Z by a first predetermined distance along the Z axis. The first predetermined distance is, for example, the size of each radius of the coils 511Z and 512Z. In this case, the coil 51Z including the coils 511Z and 512Z is a Helmholtz type coil.
 コイル52Yは、コイル521Yとコイル522Yとを含む。コイル521Y及び522Yの夫々は、XZ平面上で巻かれた巻き線である。コイル521Y及び522Yの夫々の形状は円形であるが、その他の形状(例えば、楕円形や矩形や多角形)であってもよい。コイル521Yの半径は、コイル522Yの半径と同一である。コイル521Y及び522Yの夫々の中心軸は、コイル511Z及び512Zの夫々の中心軸に交差する。図5(a)から図5(b)に示す例では、コイル521Y及び522Yの夫々の中心軸は、コイル511Z及び512Zの夫々の中心軸に直交する。従って、コイル521Y及び522Yの夫々の中心軸は、Y軸に平行である(言い換えれば、XY平面に平行である)。コイル521Y及び522Yは、同軸に配置される。コイル521Y及び522Yは、Y軸方向に沿って並ぶように配列される。コイル521Yは、Y軸に沿って、コイル522Yから第2所定距離だけ離れている。第2所定距離は、例えば、コイル521Y及び522Yの夫々の半径のサイズであり、この場合、コイル521Y及び522Yを含むコイル52Yは、ヘルムホルツ型のコイルである。 The coil 52Y includes a coil 521Y and a coil 522Y. Each of the coils 521Y and 522Y is a winding wound on the XZ plane. Each of the coils 521Y and 522Y has a circular shape, but may have other shapes (for example, an ellipse, a rectangle, or a polygon). The radius of the coil 521Y is the same as the radius of the coil 522Y. The central axes of the coils 521Y and 522Y intersect the central axes of the coils 511Z and 512Z. In the example shown in FIGS. 5A to 5B, the central axes of the coils 521Y and 522Y are orthogonal to the central axes of the coils 511Z and 512Z. Therefore, the central axes of the coils 521Y and 522Y are parallel to the Y axis (in other words, parallel to the XY plane). Coils 521Y and 522Y are arranged coaxially. The coils 521Y and 522Y are arranged so as to be aligned along the Y-axis direction. The coil 521Y is separated from the coil 522Y by a second predetermined distance along the Y axis. The second predetermined distance is, for example, the size of each radius of the coils 521Y and 522Y. In this case, the coil 52Y including the coils 521Y and 522Y is a Helmholtz-type coil.
 コイル52Xは、コイル521Xとコイル522Xとを含む。コイル521X及び522Xの夫々は、YZ平面上で巻かれた巻き線である。コイル521X及び522Xの夫々の形状は円形であるが、その他の形状(例えば、楕円形や矩形や多角形)であってもよい。コイル521Xの半径は、コイル522Xの半径と同一である。コイル521X及び522Xの夫々の中心軸は、コイル511Z及び512Zの夫々の中心軸に交差する。図5(c)から図5(d)に示す例では、コイル521X及び522Xの夫々の中心軸は、コイル511Z及び512Zの夫々の中心軸に直交する。更に、コイル521X及び522Xの夫々の中心軸は、コイル521Y及び522Yの夫々の中心軸に交差する。図5(a)から図5(d)に示す例では、コイル521X及び522Xの夫々の中心軸は、コイル521Y及び522Yの夫々の中心軸に直交する。従って、コイル521X及び522Xの夫々の中心軸は、X軸に平行である(言い換えれば、XY平面に平行である)。コイル521X及び522Xは、同軸に配置される。コイル521X及び522Xは、X軸方向に沿って並ぶように配列される。コイル521Xは、X軸に沿って、コイル522Xから第3所定距離だけ離れている。第3所定距離は、例えば、コイル521X及び522Xの夫々の半径のサイズであり、この場合、コイル521X及び522Xを含むコイル52Xは、ヘルムホルツ型のコイルである。 The coil 52X includes a coil 521X and a coil 522X. Each of the coils 521X and 522X is a winding wound on the YZ plane. Each of the coils 521X and 522X has a circular shape, but may have other shapes (for example, an ellipse, a rectangle, or a polygon). The radius of the coil 521X is the same as the radius of the coil 522X. The central axes of the coils 521X and 522X intersect the central axes of the coils 511Z and 512Z. In the example shown in FIGS. 5C to 5D, the central axes of the coils 521X and 522X are orthogonal to the central axes of the coils 511Z and 512Z. Further, the respective central axes of the coils 521X and 522X intersect the respective central axes of the coils 521Y and 522Y. In the example shown in FIGS. 5A to 5D, the central axes of the coils 521X and 522X are orthogonal to the central axes of the coils 521Y and 522Y. Accordingly, the central axes of the coils 521X and 522X are parallel to the X axis (in other words, parallel to the XY plane). Coils 521X and 522X are arranged coaxially. The coils 521X and 522X are arranged so as to be aligned along the X-axis direction. The coil 521X is separated from the coil 522X by a third predetermined distance along the X axis. The third predetermined distance is, for example, the size of each radius of the coils 521X and 522X. In this case, the coil 52X including the coils 521X and 522X is a Helmholtz type coil.
 コイル51Zには、制御装置3の制御下で調整可能な第1駆動電流が供給される。その結果、コイル51Zは、第1駆動電流に応じた磁場を発生可能である。具体的には、図6(a)に示すように、コイル51Zは、コイル511Z及び512Zの内側に、コイル511Z及び512Zの中心軸(つまり、Z軸)に沿った方向の磁場を発生可能である。言い換えれば、コイル51Zは、コイル511Z及び512Zの内側に、Z軸に沿った磁力線によって規定可能な磁場を発生可能である。この磁場は、電子ビーム光学系12とステージ装置2との間の空間SPにも及ぶ。従って、コイル51Zは、主としてZ軸方向の磁場を空間SPに発生させるために用いられる。より具体的には、空間SPがコイル51Zの上方に位置しているため、コイル51Zは、コイル511Z及び512Zの中心軸からZ軸に沿って-Z側に向かって放射状に広がる磁場を空間SPに発生可能である。これにより、図7に示すような空間SPに形成された内部漏れ磁場を-Z方向に引き込むことができ、空間SPに形成された磁場の影響を低減できる。なお、コイル511Z、512Zに流す第1駆動電流の向きを逆にして、コイル511Z及び512Zの中心軸からZ軸に沿って+Z側に向かって放射状に広がる磁場を空間SPに発生させて、カラムからの漏れ磁場の発生を抑え込むようにしてもよい。 The first drive current that can be adjusted under the control of the control device 3 is supplied to the coil 51Z. As a result, the coil 51Z can generate a magnetic field according to the first drive current. Specifically, as shown in FIG. 6A, the coil 51Z can generate a magnetic field in the direction along the central axis of the coils 511Z and 512Z (that is, the Z axis) inside the coils 511Z and 512Z. is there. In other words, the coil 51Z can generate a magnetic field that can be defined by magnetic lines of force along the Z axis inside the coils 511Z and 512Z. This magnetic field also extends to the space SP between the electron beam optical system 12 and the stage device 2. Therefore, the coil 51Z is mainly used to generate a magnetic field in the Z-axis direction in the space SP. More specifically, since the space SP is located above the coil 51Z, the coil 51Z generates a magnetic field that spreads radially from the central axis of the coils 511Z and 512Z toward the −Z side along the Z axis. Can occur. Thereby, the internal leakage magnetic field formed in the space SP as shown in FIG. 7 can be drawn in the −Z direction, and the influence of the magnetic field formed in the space SP can be reduced. The direction of the first drive current flowing through the coils 511Z and 512Z is reversed, and a magnetic field that spreads radially from the central axis of the coils 511Z and 512Z toward the + Z side along the Z axis is generated in the space SP. It is also possible to suppress the generation of a leakage magnetic field from.
 コイル52Yには、制御装置3の制御下で調整可能な第2駆動電流が供給される。その結果、コイル52Yは、第2駆動電流に応じた磁場を発生可能である。具体的には、図6(b)に示すように、コイル52Yは、コイル521Y及び522Yの内側に、コイル521Y及び522Yの中心軸(つまり、Y軸)に沿った方向の磁場を発生可能である。言い換えれば、コイル52Yは、コイル521Y及び522Yの内側に、Y軸に沿った磁力線によって規定可能な磁場を発生可能である。この磁場は、電子ビーム光学系12とステージ装置2との間の空間SPにも及ぶ。従って、コイル52Yは、主としてZ軸に交差する方向の(主として、Y軸方向の)磁場を空間SPに発生させるために用いられる。つまり、コイル52Yは、コイル51Zが発生する磁場とは異なる方向の磁場を発生させるために用いられる。より具体的には、コイル52Yは、コイル51Zが発生する磁場の方向に直交する(或いは、交差する)方向の磁場を発生させるために用いられる。尚、図6(b)では、磁力線が図中右向きとなるように第2駆動電流が供給されているが、コイル521Y及び522Yを流れる向きを逆にして、磁力線が図中左向きとなるようにしてもよい。 The second drive current that can be adjusted under the control of the control device 3 is supplied to the coil 52Y. As a result, the coil 52Y can generate a magnetic field according to the second drive current. Specifically, as shown in FIG. 6B, the coil 52Y can generate a magnetic field in the direction along the central axis (that is, the Y axis) of the coils 521Y and 522Y inside the coils 521Y and 522Y. is there. In other words, the coil 52Y can generate a magnetic field that can be defined by magnetic lines of force along the Y axis inside the coils 521Y and 522Y. This magnetic field also extends to the space SP between the electron beam optical system 12 and the stage device 2. Therefore, the coil 52Y is used to generate a magnetic field in the space SP mainly in the direction intersecting the Z axis (mainly in the Y axis direction). That is, the coil 52Y is used to generate a magnetic field in a direction different from the magnetic field generated by the coil 51Z. More specifically, the coil 52Y is used to generate a magnetic field in a direction orthogonal (or intersecting) with the direction of the magnetic field generated by the coil 51Z. In FIG. 6B, the second drive current is supplied so that the magnetic lines of force are directed rightward in the figure, but the direction of flow through the coils 521Y and 522Y is reversed so that the magnetic lines of force are directed leftward in the figure. May be.
 コイル52Xには、制御装置3の制御下で調整可能な第3駆動電流が供給される。その結果、コイル52Xは、第3駆動電流に応じた磁場を発生可能である。具体的には、図6(c)に示すように、コイル52Xは、コイル521X及び522Xの内側に、コイル521X及び522Xの中心軸(つまり、X軸)に沿った方向の磁場を発生可能である。言い換えれば、コイル52Xは、コイル521X及び522Xの内側に、X軸に沿った磁力線によって規定可能な磁場を発生可能である。この磁場は、電子ビーム光学系12とステージ装置2との間の空間SPにも及ぶ。従って、コイル52Xは、主としてZ軸に交差する方向の(主として、X軸方向の)磁場を空間SPに発生させるために用いられる。つまり、コイル52Xは、コイル51Z及びコイル52Yの夫々が発生する磁場とは異なる方向の磁場を発生させるために用いられる。より具体的には、コイル52Xは、コイル51Zが発生する磁場の方向及びコイル52Yが発生する磁場の方向の夫々に直交する(或いは、交差する)方向の磁場を発生させるために用いられる。尚、図6(c)では、磁力線が図中右向きとなるように第2駆動電流が供給されているが、コイル521X及び522Xを流れる向きを逆にして、磁力線が図中左向きとなるようにしてもよい。 The third drive current that can be adjusted under the control of the control device 3 is supplied to the coil 52X. As a result, the coil 52X can generate a magnetic field according to the third drive current. Specifically, as shown in FIG. 6C, the coil 52X can generate a magnetic field in the direction along the central axis (that is, the X axis) of the coils 521X and 522X inside the coils 521X and 522X. is there. In other words, the coil 52X can generate a magnetic field that can be defined by magnetic lines of force along the X axis inside the coils 521X and 522X. This magnetic field also extends to the space SP between the electron beam optical system 12 and the stage device 2. Therefore, the coil 52X is used to generate a magnetic field in the space SP mainly in the direction intersecting the Z axis (mainly in the X axis direction). That is, the coil 52X is used to generate a magnetic field in a direction different from the magnetic field generated by each of the coil 51Z and the coil 52Y. More specifically, the coil 52X is used to generate a magnetic field in a direction orthogonal to (or intersecting with) the direction of the magnetic field generated by the coil 51Z and the direction of the magnetic field generated by the coil 52Y. In FIG. 6C, the second drive current is supplied so that the magnetic lines of force are directed rightward in the figure, but the direction of flow through the coils 521X and 522X is reversed so that the magnetic lines of force are directed leftward in the figure. May be.
 そして、上述のコイル52Z、コイル52Y、及びコイル52Xで発生させる各磁場の向きや大きさ、或いは各コイルへの駆動電流の供給方法等を適宜組み合わせることで、空間SP内に発生させる磁場を調整することが可能となる。 Then, the magnetic field generated in the space SP is adjusted by appropriately combining the direction and magnitude of each magnetic field generated by the coil 52Z, the coil 52Y, and the coil 52X, or a method of supplying a driving current to each coil. It becomes possible to do.
 磁場発生器5が発生した磁場の少なくとも一部は、電子ビーム光学系12の内部で発生した磁場のうち電子ビーム光学系12とウェハWとの間の空間SP(つまり、電子ビーム光学系12の外部)に漏れ出てきた磁場を調整するために用いられる。具体的には、磁場発生器5が発生した磁場の少なくとも一部は、電子ビーム光学系12の内部から空間SPに漏れ出てきた磁場を調整して、当該漏れ出てきた磁場に起因した電子ビームEBへの影響を抑制するために用いられる。従って、磁場発生器5は、電子ビーム光学系12の内部から空間SPに漏れ出てきた磁場の影響を抑制可能な磁場を発生する。 At least a part of the magnetic field generated by the magnetic field generator 5 is a space SP between the electron beam optical system 12 and the wafer W among the magnetic fields generated inside the electron beam optical system 12 (that is, of the electron beam optical system 12). It is used to adjust the magnetic field leaking to the outside. Specifically, at least a part of the magnetic field generated by the magnetic field generator 5 adjusts the magnetic field leaked from the inside of the electron beam optical system 12 into the space SP, and the electrons caused by the leaked magnetic field. Used to suppress the influence on the beam EB. Therefore, the magnetic field generator 5 generates a magnetic field that can suppress the influence of the magnetic field leaking from the inside of the electron beam optical system 12 into the space SP.
 更に、磁場発生器5が発生した磁場の少なくとも一部は、電子ビーム光学系12の外部で発生した磁場のうち空間SPに漏れ出てきた磁場を調整するために用いられる。具体的には、磁場発生器5が発生した磁場の少なくとも一部は、電子ビーム光学系12の外部から空間SPに漏れ出てきた磁場を調整して、当該漏れ出てきた磁場に起因した電子ビームEBへの影響を抑制するために用いられる。従って、磁場発生器5は、電子ビーム光学系12の外部から空間SPに漏れ出てきた磁場の影響を抑制可能な磁場を発生する。 Furthermore, at least a part of the magnetic field generated by the magnetic field generator 5 is used to adjust the magnetic field leaked into the space SP among the magnetic fields generated outside the electron beam optical system 12. Specifically, at least a part of the magnetic field generated by the magnetic field generator 5 adjusts the magnetic field leaked from the outside of the electron beam optical system 12 to the space SP, and the electrons caused by the leaked magnetic field. Used to suppress the influence on the beam EB. Accordingly, the magnetic field generator 5 generates a magnetic field capable of suppressing the influence of the magnetic field leaking from the outside of the electron beam optical system 12 into the space SP.
 以下、説明の便宜上、電子ビーム光学系12の内部から空間SPに漏れ出てきた磁場(つまり、空間SPに影響が及ぶ磁場)を、“内部漏れ磁場”と称する。電子ビーム光学系12の外部から空間SPに漏れ出てきた磁場(つまり、電子ビーム光学系12の外部で発生した磁場のうち空間SPに影響が及ぶ磁場)を、“外部漏れ磁場”と称する。但し、内部漏れ磁場及び外部漏れ磁場を区別して使用する必要性がない場面では、内部漏れ磁場及び外部漏れ磁場をまとめて“漏れ磁場”と称する。また、磁場発生器5が発生した磁場(つまり、コイル51Z、52Y及び52Xの夫々が発生した磁場)を、“キャンセル磁場”と称する。以下、キャンセル磁場を用いて内部漏れ磁場及び外部漏れ磁場を調整するための磁場調整動作の具体例について更に説明を進める。 Hereinafter, for convenience of explanation, a magnetic field leaking from the inside of the electron beam optical system 12 into the space SP (that is, a magnetic field that affects the space SP) is referred to as an “internal leakage magnetic field”. A magnetic field leaking from the outside of the electron beam optical system 12 into the space SP (that is, a magnetic field generated outside the electron beam optical system 12 that affects the space SP) is referred to as an “external leakage magnetic field”. However, in a scene where it is not necessary to distinguish between the internal leakage magnetic field and the external leakage magnetic field, the internal leakage magnetic field and the external leakage magnetic field are collectively referred to as “leakage magnetic field”. A magnetic field generated by the magnetic field generator 5 (that is, a magnetic field generated by each of the coils 51Z, 52Y, and 52X) is referred to as a “cancel magnetic field”. Hereinafter, a specific example of the magnetic field adjustment operation for adjusting the internal leakage magnetic field and the external leakage magnetic field using the cancellation magnetic field will be further described.
 (2)磁場調整動作について
 (2-1)内部漏れ磁場及び外部漏れ磁場
 まず、磁場制御動作の説明の前提として、内部漏れ磁場及び外部漏れ磁場について順に説明する。
(2) Magnetic field adjustment operation
(2-1) Internal leakage magnetic field and external leakage magnetic field First, the internal leakage magnetic field and the external leakage magnetic field will be described in order as a premise of the description of the magnetic field control operation.
 (2-1-1)内部漏れ磁場
 図7を参照しながら、内部漏れ磁場について説明する。上述したように、電子ビーム光学系12は、ビーム光学装置122の少なくとも一部として、電子ビームEBを制御するための磁場を発生可能なビーム制御器を備えている。例えば、電子ビーム光学系12は、ビーム制御器として、電磁レンズや偏向器等を備えている。
(2-1-1) Internal Leakage Magnetic Field The internal leakage magnetic field will be described with reference to FIG. As described above, the electron beam optical system 12 includes a beam controller capable of generating a magnetic field for controlling the electron beam EB as at least a part of the beam optical device 122. For example, the electron beam optical system 12 includes an electromagnetic lens, a deflector, and the like as a beam controller.
 ビーム制御器は、通常は、筐体121内に磁場を発生して、電子ビームEBを制御する。通常、筐体121は、相対的に高い透磁率を有する材料から構成される。つまり、筐体121は、筐体121の内部でビーム制御器が発生した磁場(言い換えれば、磁力線)を遮蔽する。一方で、上述したように、筐体121の下端部1221は、電子ビームEBを照射するために開放されている。従って、筐体121の内部でビーム制御器が発生した磁場は、筐体121を介して外部に漏れ難いが、筐体121の下端部1211の開放端を介して外部に漏れていく可能性がある。ここで、仮に筐体121の下端部1211の開放端が物体によって遮蔽されれば、筐体121の内部でビーム制御器が発生した磁場は、筐体121の下端部1211の開放端を介して外部に漏れにくくなるはずである。しかしながら、筐体121の下方には、移動可能な物体(例えば、ステージ22に搭載されたウェハW)が配置されることがある。この場合には、筐体121の下端部1211とウェハWとの間には、ウェハWのスムーズな移動を実現するために隙間(つまり、空間SP)が確保される。このため、この隙間を介して、筐体121の内部でビーム制御器が発生した磁場が、筐体121の外部に漏れ出してしまう。その結果、図7に示すように、電子ビーム光学系12とウェハWとの間の空間SPに、電子ビーム光学系12の内部から電子ビーム光学系12の外部に漏れた内部漏れ磁場が発生してしまう。尚、図7は、内部漏れ磁場の磁力線に加えて、内部漏れ磁場の強度(つまり、磁力線の密度)を便宜的に示している。 The beam controller normally generates a magnetic field in the casing 121 to control the electron beam EB. Usually, the housing 121 is made of a material having a relatively high magnetic permeability. That is, the housing 121 shields the magnetic field (in other words, the lines of magnetic force) generated by the beam controller inside the housing 121. On the other hand, as described above, the lower end portion 1221 of the housing 121 is opened to irradiate the electron beam EB. Therefore, the magnetic field generated by the beam controller inside the housing 121 is difficult to leak to the outside through the housing 121, but may leak to the outside through the open end of the lower end portion 1211 of the housing 121. is there. Here, if the open end of the lower end portion 1211 of the housing 121 is shielded by an object, the magnetic field generated by the beam controller inside the housing 121 passes through the open end of the lower end portion 1211 of the housing 121. Should be difficult to leak outside. However, a movable object (for example, a wafer W mounted on the stage 22) may be disposed below the housing 121. In this case, a gap (that is, a space SP) is secured between the lower end portion 1211 of the housing 121 and the wafer W in order to realize a smooth movement of the wafer W. For this reason, the magnetic field generated by the beam controller inside the casing 121 leaks out of the casing 121 through this gap. As a result, an internal leakage magnetic field leaking from the inside of the electron beam optical system 12 to the outside of the electron beam optical system 12 is generated in the space SP between the electron beam optical system 12 and the wafer W, as shown in FIG. End up. FIG. 7 shows the strength of the internal leakage magnetic field (that is, the density of the magnetic field lines) for convenience in addition to the magnetic field lines of the internal leakage magnetic field.
 筐体121の下端部1211の開放端が-Z側を向いていることから、内部漏れ磁場は、主として、図7に示すように、筐体121の下端部1211の開放端から-Z側に向かって放射状に広がる方向の磁場となる。尚、本実施形態における「磁場の方向」は、磁場を構成する(言い換えれば、磁場を表現可能な)磁力線の方向を意味する。従って、「一の方向の磁場」とは、「一の方向に沿った磁力線によって構成される(言い換えれば、表現可能な)磁場」を意味する。 Since the open end of the lower end portion 1211 of the casing 121 faces the −Z side, the internal leakage magnetic field is mainly from the open end of the lower end portion 1211 of the casing 121 to the −Z side as shown in FIG. It becomes a magnetic field in a direction spreading radially. Note that the “direction of the magnetic field” in the present embodiment means the direction of the magnetic field lines constituting the magnetic field (in other words, capable of expressing the magnetic field). Therefore, “a magnetic field in one direction” means “a magnetic field composed of magnetic field lines along one direction (in other words, expressible)”.
 その結果、電子ビーム光学系12とウェハWとの間の空間SPには、XY平面に沿って強度の勾配が存在する内部漏れ磁場が残留してしまう。言い換えれば、空間SPには、磁力線の方向がZ軸方向(つまり、光軸AXの方向)に交差する内部漏れ磁場が残留してしまう。更に言い換えれば、空間SPには、磁力線の方向がZ軸方向に揃っていない内部漏れ磁場が残留してしまう。 As a result, an internal leakage magnetic field having an intensity gradient along the XY plane remains in the space SP between the electron beam optical system 12 and the wafer W. In other words, an internal leakage magnetic field in which the direction of the magnetic lines of force intersects the Z-axis direction (that is, the direction of the optical axis AX) remains in the space SP. In other words, an internal leakage magnetic field in which the direction of the magnetic force lines is not aligned in the Z-axis direction remains in the space SP.
 (2-1-2)外部漏れ磁場
 続いて、図8を参照しながら、外部漏れ磁場について説明する。露光装置EXは、磁場発生源として、電子ビーム光学系12の外部に配置される装置(つまり、電子ビーム光学系12が備える上述のビーム制御器とは異なる装置)を備えている。例えば、露光装置EXは、ステージ22を移動させるためのステージ駆動系23を備えている。ステージ駆動系23は、上述したようにモータを備えている。モータがコイル及び磁石を備えていることから、このようなモータを備えるステージ駆動系23は、磁場発生源となり得る。
(2-1-2) External Leakage Magnetic Field Next, the external leakage magnetic field will be described with reference to FIG. The exposure apparatus EX includes, as a magnetic field generation source, an apparatus disposed outside the electron beam optical system 12 (that is, an apparatus different from the above-described beam controller included in the electron beam optical system 12). For example, the exposure apparatus EX includes a stage drive system 23 for moving the stage 22. The stage drive system 23 includes a motor as described above. Since the motor includes a coil and a magnet, the stage drive system 23 including such a motor can be a magnetic field generation source.
 露光装置EXの内部のみならず、露光装置EXの外部にも磁場発生源が存在する可能性がある。例えば、露光装置EXが設置される工場内には、ウェハWに電子線レジストを塗布し且つ露光されたウェハWを現像するためのコータ・デベロッパが配置される。コータ・デベロッパもまた、ウェハWを保持しながら移動可能なステージを備えている。このため、コータ・デベロッパもまた、ステージを移動させるためのモータ等を備えている。従って、コータ・デベロッパは、磁場発生源となり得る。或いは、地磁気が存在することを考慮すれば、地球そのものも、磁場発生源となり得る。 There may be a magnetic field generation source not only inside the exposure apparatus EX but also outside the exposure apparatus EX. For example, in a factory where the exposure apparatus EX is installed, a coater / developer for applying an electron beam resist to the wafer W and developing the exposed wafer W is disposed. The coater / developer also includes a stage that is movable while holding the wafer W. For this reason, the coater / developer also has a motor for moving the stage. Therefore, the coater / developer can be a magnetic field generation source. Or, considering the existence of geomagnetism, the earth itself can be a magnetic field generation source.
 このような電子ビーム光学系12の外部の磁場発生源が発生した磁場の影響は、電子ビーム光学系12とウェハWとの間の空間SPにまで及ぶ可能性がある。例えば、外部の磁場発生源が発生した磁場を遮蔽するための磁気シールドを露光装置EXが備えていたとしても、外部の磁場発生源が発生した磁場の全てが磁気シールドによって確実に遮蔽されるとは限らない。或いは、例えば、空間SPと外部の磁場発生源との間に何らかの構造物(例えば、露光チャンバCa等)が存在していたとしても、外部の磁場発生源が発生した磁場の全てが当該構造物によって確実に遮蔽されるとは限らない。その結果、外部の磁場発生源が発生した磁場の影響は、空間SPにまで及ぶ可能性がある。その結果、図8に示すように、空間SPに、電子ビーム光学系12の外部の磁場発生源から空間SPに漏れた外部漏れ磁場が発生してしまう。尚、図8は、外部漏れ磁場の磁力線に加えて、外部漏れ磁場の強度(つまり、磁力線の密度)を便宜的に示している。 Such an influence of the magnetic field generated by the magnetic field generation source outside the electron beam optical system 12 may reach the space SP between the electron beam optical system 12 and the wafer W. For example, even if the exposure apparatus EX includes a magnetic shield for shielding a magnetic field generated by an external magnetic field generation source, all the magnetic fields generated by the external magnetic field generation source are reliably shielded by the magnetic shield. Is not limited. Alternatively, for example, even if some structure (for example, the exposure chamber Ca) exists between the space SP and the external magnetic field generation source, all the magnetic fields generated by the external magnetic field generation source are related to the structure. It is not always possible to be shielded reliably by. As a result, the influence of the magnetic field generated by the external magnetic field generation source may reach the space SP. As a result, as shown in FIG. 8, an external leakage magnetic field leaking from the magnetic field generation source outside the electron beam optical system 12 to the space SP is generated in the space SP. FIG. 8 conveniently shows the strength of the external leakage magnetic field (that is, the density of the magnetic field lines) in addition to the magnetic field lines of the external leakage magnetic field.
 外部漏れ磁場が発生する空間SPの上方(つまり、+Z側)には、外部の磁場発生源からの磁場を多少なりとも遮蔽可能な電子ビーム光学系12が空間SPに近接して存在する。空間SPの下方(つまり、-Z側)には、外部の磁場発生源からの磁場を多少なりとも遮蔽可能なステージ装置2が空間SPに近接して存在する。一方で、空間SPの側方(つまり、+X側、-X側、+Y側及び-Y側)には、外部の磁場発生源からの磁場を多少なりとも遮蔽可能であって且つ空間SPに近接している構造物が存在しない。このため、外部漏れ磁場は、図8に示すように、主として、Z軸に交差する方向の磁場となる。 An electron beam optical system 12 capable of shielding a magnetic field from an external magnetic field generation source is somewhat close to the space SP above the space SP where the external leakage magnetic field is generated (that is, on the + Z side). Below the space SP (that is, on the −Z side), a stage device 2 capable of shielding a magnetic field from an external magnetic field generation source to some extent is present close to the space SP. On the other hand, on the side of the space SP (that is, on the + X side, -X side, + Y side, and -Y side), the magnetic field from an external magnetic field generation source can be shielded somewhat, and close to the space SP. There is no structure. For this reason, as shown in FIG. 8, the external leakage magnetic field is mainly a magnetic field in a direction intersecting the Z axis.
 その結果、電子ビーム光学系12とウェハWとの間の空間SPには、XY平面に沿って強度の勾配が存在する外部漏れ磁場が残留してしまう。言い換えれば、空間SPには、磁力線の方向がZ軸方向(つまり、光軸AXの方向)に交差する外部漏れ磁場が残留してしまう。 As a result, an external leakage magnetic field having an intensity gradient along the XY plane remains in the space SP between the electron beam optical system 12 and the wafer W. In other words, an external leakage magnetic field in which the direction of the magnetic lines of force intersects the Z-axis direction (that is, the direction of the optical axis AX) remains in the space SP.
 (2-1-3)内部漏れ磁場及び外部漏れ磁場の影響
 漏れ磁場(特に、XY平面に沿って強度の勾配が存在したり、磁力線の方向がZ軸に交差したりする漏れ磁場)が残留するウェハW上の空間に対して光軸AXに平行に伝搬する電子ビームEBが入射すると、電子ビームEBは、漏れ磁場の影響を受けて、電子ビーム光学系12の光軸AX(つまり、Z軸方向)に対して傾くように伝搬する可能性がある。更に、光軸AX(つまり、Z軸方向)に対する電子ビームEBの傾き量は、電子ビームEBが伝搬する空間の磁場の磁束に比例する。従って、漏れ磁場がウェハW上の空間に残留していると、図9に示すように、ウェハWの表面に対する電子ビームEBの入射角度がゼロでなくなってしまう(つまり、ウェハWの表面に対して電磁ビームEBが斜入射する)可能性がある。その結果、図9に示すように、ウェハW上での電子ビームEBの照射領域EAの位置ずれが生ずる。このため、電子ビームEBをウェハW上の所望位置に照射することができなくなってしまう可能性がある。その結果、電子ビームEBによる露光精度が悪化してしまう可能性がある。
(2-1-3) Influence of internal leakage magnetic field and external leakage magnetic field Leakage magnetic field (especially leakage magnetic field in which a gradient of intensity exists along the XY plane or the direction of the magnetic field line intersects the Z axis) remains. When an electron beam EB propagating parallel to the optical axis AX is incident on the space on the wafer W to be irradiated, the electron beam EB is affected by the leakage magnetic field, and the optical axis AX of the electron beam optical system 12 (that is, Z There is a possibility of propagating so as to be inclined with respect to the axial direction. Furthermore, the amount of inclination of the electron beam EB relative to the optical axis AX (that is, the Z-axis direction) is proportional to the magnetic flux of the magnetic field in the space in which the electron beam EB propagates. Therefore, if the leakage magnetic field remains in the space on the wafer W, the incident angle of the electron beam EB to the surface of the wafer W is not zero as shown in FIG. Electromagnetic beam EB may enter obliquely). As a result, as shown in FIG. 9, the position of the irradiation area EA of the electron beam EB on the wafer W is shifted. For this reason, there is a possibility that the desired position on the wafer W cannot be irradiated with the electron beam EB. As a result, the exposure accuracy by the electron beam EB may be deteriorated.
 本実施形態の制御装置3は、磁場発生器5が発生するキャンセル磁場を用いて漏れ磁場を調整する磁場調整動作を行うことで、漏れ磁場の影響を抑制する。具体的には、制御装置3は、磁場調整動作を行うことで、漏れ磁場の影響による電子ビームEBの傾き(具体的には、光軸AXに対する傾き)を抑制して照射領域EAの位置ずれを抑制する。以下、磁場調整動作の詳細について更に説明を進める。 The control device 3 of the present embodiment suppresses the influence of the leakage magnetic field by performing a magnetic field adjustment operation for adjusting the leakage magnetic field using the cancellation magnetic field generated by the magnetic field generator 5. Specifically, the control device 3 performs the magnetic field adjustment operation, thereby suppressing the tilt of the electron beam EB (specifically, the tilt with respect to the optical axis AX) due to the influence of the leakage magnetic field, and the positional deviation of the irradiation area EA. Suppress. Hereinafter, the details of the magnetic field adjustment operation will be further described.
 (2-2)内部漏れ磁場の影響を抑制する磁場調整動作について
 はじめに、図10(a)から図10(b)を参照しながら、内部漏れ磁場の影響を抑制する磁場調整動作について説明する。図10(a)は、内部漏れ磁場とキャンセル磁場との関係を示す断面図である。図10(b)は、キャンセル磁場の影響を受けた内部漏れ磁場を示す断面図である。
(2-2) Magnetic field adjustment operation for suppressing the influence of the internal leakage magnetic field First, the magnetic field adjustment operation for suppressing the influence of the internal leakage magnetic field will be described with reference to FIGS. 10 (a) to 10 (b). FIG. 10A is a cross-sectional view showing the relationship between the internal leakage magnetic field and the cancellation magnetic field. FIG. 10B is a cross-sectional view showing the internal leakage magnetic field affected by the canceling magnetic field.
 本実施形態では、内部漏れ磁場の影響は、主としてコイル51Zが発生するキャンセル磁場によって抑制される。つまり、内部漏れ磁場の影響は、主としてコイル51Zが発生するキャンセル磁場が内部漏れ磁場に作用することで抑制される。具体的には、図10(a)に示すように、コイル51Zは、主としてZ軸方向のキャンセル磁場を空間SPに発生する。以降、説明の便宜上、コイル51Zが発生したキャンセル磁場を、“キャンセル磁場BZ”と称する。コイル51Zは、内部漏れ磁場の方向をZ軸方向に揃えるように内部漏れ磁場に作用することが可能なキャンセル磁場BZを発生する。コイル51Zは、内部漏れ磁場に作用して(つまり、内部漏れ磁場を調整して)、Z軸方向の磁場が空間SPに残留することを許容する一方でZ軸に交差する方向の磁場が空間SPに残留することを許容しないキャンセル磁場BZを発生する。但し、Z軸に交差する方向の磁場が残留していたとしても、その磁場の強度が微小である場合には、電子ビームEBによる露光精度が当該残留した磁場によって殆ど悪化しない(或いは、無視できる程度にしか悪化しない)。このため、コイル51Zは、Z軸に交差する方向の磁場が、露光精度が殆ど悪化しないほどに微小に残留することを許容するキャンセル磁場BZを発生してもよい。 In the present embodiment, the influence of the internal leakage magnetic field is mainly suppressed by the cancellation magnetic field generated by the coil 51Z. That is, the influence of the internal leakage magnetic field is suppressed mainly by the cancellation magnetic field generated by the coil 51Z acting on the internal leakage magnetic field. Specifically, as shown in FIG. 10A, the coil 51Z mainly generates a cancel magnetic field in the Z-axis direction in the space SP. Hereinafter, for convenience of explanation, the cancel magnetic field generated by the coil 51Z is referred to as “cancel magnetic field BZ”. The coil 51Z generates a cancel magnetic field BZ that can act on the internal leakage magnetic field so that the direction of the internal leakage magnetic field is aligned with the Z-axis direction. The coil 51Z acts on the internal leakage magnetic field (that is, adjusts the internal leakage magnetic field) to allow the magnetic field in the Z-axis direction to remain in the space SP, while the magnetic field in the direction crossing the Z-axis is in the space. A cancel magnetic field BZ that is not allowed to remain in the SP is generated. However, even if the magnetic field in the direction crossing the Z axis remains, if the intensity of the magnetic field is very small, the exposure accuracy by the electron beam EB is hardly deteriorated by the remaining magnetic field (or can be ignored). Only worse to the extent). For this reason, the coil 51Z may generate a cancel magnetic field BZ that allows the magnetic field in the direction intersecting the Z axis to remain so small that exposure accuracy is hardly deteriorated.
 制御装置3は、このようなキャンセル磁場BZを発生可能な第1駆動電流をコイル51Zに供給する。その結果、図10(b)に示すように、キャンセル磁場BZの影響を受けた内部漏れ磁場の方向は、Z軸方向に揃う。言い換えれば、内部漏れ磁場にキャンセル磁場BZが作用することで、空間SPには、Z軸方向の磁場が残留する。その結果、空間SPには、内部漏れ磁場に起因したZ軸に交差する方向の磁場が残留しない。このため、XY平面に沿って強度の勾配が存在する内部漏れ磁場が空間SPに残留することはない。或いは、内部漏れ磁場に起因したZ軸に交差する方向の磁場が残留していたとしても、残留している磁場の強度が微小であるがゆえに、この状態は、実質的には、XY平面に沿って強度の勾配(特に、露光精度に影響を与えてしまうほどに大きな勾配)が存在する内部漏れ磁場が空間SPに残留していない状態と同一視できる。従って、内部漏れ磁場に起因してウェハW上での電子ビームEBの照射領域EAの位置ずれが生ずることはない。このため、内部漏れ磁場に起因した露光精度の悪化が適切に抑制される。 The control device 3 supplies a first drive current capable of generating such a cancel magnetic field BZ to the coil 51Z. As a result, as shown in FIG. 10B, the direction of the internal leakage magnetic field affected by the cancellation magnetic field BZ is aligned with the Z-axis direction. In other words, a magnetic field in the Z-axis direction remains in the space SP due to the cancellation magnetic field BZ acting on the internal leakage magnetic field. As a result, the magnetic field in the direction intersecting the Z axis due to the internal leakage magnetic field does not remain in the space SP. For this reason, the internal leakage magnetic field in which the intensity gradient exists along the XY plane does not remain in the space SP. Alternatively, even if a magnetic field in the direction crossing the Z-axis due to the internal leakage magnetic field remains, this state is substantially in the XY plane because the strength of the remaining magnetic field is very small. It can be equated with a state in which the internal leakage magnetic field in which there is a gradient of intensity along the gradient (in particular, a gradient large enough to affect the exposure accuracy) does not remain in the space SP. Accordingly, there is no position shift of the irradiation area EA of the electron beam EB on the wafer W due to the internal leakage magnetic field. For this reason, the deterioration of the exposure accuracy due to the internal leakage magnetic field is appropriately suppressed.
 (2-3)外部漏れ磁場の影響を抑制する磁場調整動作について
 続いて、図11(a)から図11(b)を参照しながら、外部漏れ磁場の影響を抑制する磁場調整動作について説明する。図11(a)は、外部漏れ磁場とキャンセル磁場との関係を示す断面図である。図11(b)は、キャンセル磁場の影響を受けた外部漏れ磁場を示す断面図である。
(2-3) Magnetic field adjustment operation for suppressing the influence of the external leakage magnetic field Next, the magnetic field adjustment operation for suppressing the influence of the external leakage magnetic field will be described with reference to FIGS. 11 (a) to 11 (b). . FIG. 11A is a cross-sectional view showing the relationship between the external leakage magnetic field and the cancellation magnetic field. FIG. 11B is a cross-sectional view showing an external leakage magnetic field affected by the canceling magnetic field.
 本実施形態では、外部漏れ磁場の影響は、主としてコイル52Y及びコイル52Xが発生するキャンセル磁場によって抑制される。つまり、外部漏れ磁場の影響は、主としてコイル52Y及び52Xが発生するキャンセル磁場が外部漏れ磁場に作用することで抑制される。具体的には、図11(a)に示すように、コイル52Yは、主としてZ軸に交差する方向(主として、Y軸方向)のキャンセル磁場を空間SPに発生する。図面の簡略化のために図示しないものの、コイル52Xもまた、主としてZ軸に交差する方向(主として、X軸方向)のキャンセル磁場を空間SPに発生する。以降、説明の便宜上、コイル52Yが発生したキャンセル磁場を、“キャンセル磁場BY”と称し、コイル52Xが発生したキャンセル磁場を、“キャンセル磁場BX”と称する。コイル52Yは、コイル52Xが発生するキャンセル磁場BXと協働して外部漏れ磁場を相殺することが可能なキャンセル磁場BYを発生する。コイル52Xは、コイル52Yが発生するキャンセル磁場BYと挙動して外部漏れ磁場を相殺することが可能なキャンセル磁場BXを発生する。 In the present embodiment, the influence of the external leakage magnetic field is mainly suppressed by the cancellation magnetic field generated by the coil 52Y and the coil 52X. That is, the influence of the external leakage magnetic field is suppressed mainly by the cancellation magnetic field generated by the coils 52Y and 52X acting on the external leakage magnetic field. Specifically, as shown in FIG. 11A, the coil 52Y generates a cancel magnetic field in the space SP mainly in a direction intersecting the Z axis (mainly in the Y axis direction). Although not shown in order to simplify the drawing, the coil 52X also generates a canceling magnetic field in the space SP mainly in the direction intersecting the Z axis (mainly in the X axis direction). Hereinafter, for convenience of explanation, the cancel magnetic field generated by the coil 52Y is referred to as “cancel magnetic field BY”, and the cancel magnetic field generated by the coil 52X is referred to as “cancel magnetic field BX”. The coil 52Y generates a cancel magnetic field BY that can cancel the external leakage magnetic field in cooperation with the cancel magnetic field BX generated by the coil 52X. The coil 52X generates a cancel magnetic field BX that can cancel the external leakage magnetic field by acting as the cancel magnetic field BY generated by the coil 52Y.
 外部漏れ磁場を相殺する動作は、外部漏れ磁場の強度を略ゼロにする動作に相当する。尚、ここでいう「外部漏れ磁場の強度が略ゼロになる」状態は、外部漏れ磁場の強度が完全にゼロになる状態のみならず、電子ビームEBによる露光精度を殆ど悪化させない(或いは、露光精度の悪化量が無視できる)程度に微小な強度の外部漏れ磁場が残留している状態をも含み得る。この場合、キャンセル磁場BY及びBXを合成することで得られるキャンセル磁場(以降、“合成キャンセル磁場BXY”と称する)は、外部漏れ磁場の特性とは異なる特性を有する磁場である。具体的には、合成キャンセル磁場BXYは、例えば、外部漏れ磁場の磁束分布と同じ磁束分布を有し、且つ、外部漏れ磁場の方向とは逆の方向を有する(つまり、外部漏れ磁場を構成する磁力線の方向とは逆向きの方向の磁力線から構成される)磁場である。 動作 The operation to cancel the external leakage magnetic field corresponds to the operation to make the intensity of the external leakage magnetic field substantially zero. Note that the state where the intensity of the external leakage magnetic field becomes substantially zero here is not only the state where the intensity of the external leakage magnetic field becomes completely zero, but hardly deteriorates the exposure accuracy by the electron beam EB (or exposure). It may also include a state in which an external leakage magnetic field with a minute intensity remains so small that the accuracy deterioration amount can be ignored. In this case, the cancel magnetic field obtained by combining the cancel magnetic fields BY and BX (hereinafter referred to as “composite cancel magnetic field BXY”) is a magnetic field having characteristics different from those of the external leakage magnetic field. Specifically, the composite cancellation magnetic field BXY has, for example, the same magnetic flux distribution as that of the external leakage magnetic field and has a direction opposite to the direction of the external leakage magnetic field (that is, configures the external leakage magnetic field). A magnetic field (consisting of magnetic field lines in a direction opposite to the direction of the magnetic field lines).
 制御装置3は、このようなキャンセル磁場BY及びBXを発生可能な第2及び第3駆動電流をコイル52Y及び52Xに夫々供給する。その結果、図11(b)に示すように、外部漏れ磁場が相殺される。このため、Z軸に交差する方向の外部漏れ磁場が空間SPに残留することはない。或いは、Z軸に交差する方向の外部漏れ磁場が残留していたとしても、残留している外部漏れ磁場の強度が微小であるがゆえに、この状態は、実質的には、Z軸に交差する方向の外部漏れ磁場が空間SPに残留していない状態と同一視できる。従って、外部漏れ磁場に起因してウェハW上での電子ビームEBの照射領域EAの位置ずれが生ずることはない。このため、外部漏れ磁場に起因した露光精度の悪化が適切に抑制される。 The control device 3 supplies the second and third drive currents capable of generating such cancel magnetic fields BY and BX to the coils 52Y and 52X, respectively. As a result, the external leakage magnetic field is canceled as shown in FIG. For this reason, the external leakage magnetic field in the direction intersecting the Z axis does not remain in the space SP. Alternatively, even if the external leakage magnetic field in the direction intersecting the Z axis remains, this state substantially intersects the Z axis because the strength of the remaining external leakage magnetic field is very small. This can be regarded as the state in which the external leakage magnetic field in the direction does not remain in the space SP. Accordingly, there is no position shift of the irradiation area EA of the electron beam EB on the wafer W due to the external leakage magnetic field. For this reason, the deterioration of the exposure accuracy due to the external leakage magnetic field is appropriately suppressed.
 以上説明した磁場調整動作により、露光装置EXは、漏れ磁場の影響を受けることなく又は漏れ磁場の影響に関わらず、電子ビームEBをウェハW上の所望位置に照射することができる。その結果、電子ビームEBによる露光精度の悪化が適切に抑制される。 By the magnetic field adjustment operation described above, the exposure apparatus EX can irradiate a desired position on the wafer W with the electron beam EB without being affected by the leakage magnetic field or regardless of the influence of the leakage magnetic field. As a result, deterioration of exposure accuracy due to the electron beam EB is appropriately suppressed.
 尚、上述した説明では、磁場発生器5がステージ22に埋め込まれている。しかしながら、磁場発生器5の少なくとも一部がステージ22から露出していてもよい。例えば、磁場発生器5の少なくとも一部がステージ22から保持領域221に露出していてもよい。或いは、磁場発生器5の少なくとも一部は、ステージ装置2のうちステージ22とは異なる部材に配置されていてもよい。例えば、磁場発生器5の少なくとも一部は、定盤21に配置されていてもよい。或いは、磁場発生器5の少なくとも一部は、ステージ装置2とは異なる部材に配置されていてもよい。例えば、磁場発生器5の少なくとも一部は、露光装置EXと他の装置との間で又は露光装置EX内でウェハWを搬送するためにウェハWを保持可能な搬送部材(例えば、シャトル)に配置されていてもよい。例えば、磁場発生器5の少なくとも一部は、露光チャンバCaの底面(或いは、底壁)又は側面(或いは、側壁)に配置されていてもよい。或いは、磁場発生器5の少なくとも一部は、ウェハWの下方の任意の位置に配置されていてもよい。 In the above description, the magnetic field generator 5 is embedded in the stage 22. However, at least a part of the magnetic field generator 5 may be exposed from the stage 22. For example, at least a part of the magnetic field generator 5 may be exposed to the holding region 221 from the stage 22. Alternatively, at least a part of the magnetic field generator 5 may be arranged on a member different from the stage 22 in the stage device 2. For example, at least a part of the magnetic field generator 5 may be disposed on the surface plate 21. Alternatively, at least a part of the magnetic field generator 5 may be disposed on a member different from the stage device 2. For example, at least a part of the magnetic field generator 5 is a transfer member (for example, a shuttle) capable of holding the wafer W in order to transfer the wafer W between the exposure apparatus EX and another apparatus or in the exposure apparatus EX. It may be arranged. For example, at least a part of the magnetic field generator 5 may be disposed on the bottom surface (or bottom wall) or side surface (or side wall) of the exposure chamber Ca. Alternatively, at least a part of the magnetic field generator 5 may be disposed at an arbitrary position below the wafer W.
 コイル51Zは、ヘルムホルツ型のコイルとは異なるコイルであってもよい。コイル51Zは、内部漏れ磁場の方向をZ軸方向に揃えることができる限りは、どのようなコイルであってもよい。例えば、コイル51Zが発生したキャンセル磁場BZが内部漏れ磁場の方向をZ軸方向に揃えることができる限りは、コイル51Zの形状、構造及び配置位置等は、上述した具体例に限定されない。或いは、磁場発生器5は、コイル51Zに加えて又は代えて、内部漏れ磁場の方向をZ軸方向に揃えることが可能なキャンセル磁場を発生するための任意の磁場発生器を備えていてもよい。 The coil 51Z may be a coil different from the Helmholtz type coil. The coil 51Z may be any coil as long as the direction of the internal leakage magnetic field can be aligned with the Z-axis direction. For example, as long as the cancel magnetic field BZ generated by the coil 51Z can align the direction of the internal leakage magnetic field in the Z-axis direction, the shape, structure, arrangement position, and the like of the coil 51Z are not limited to the above-described specific examples. Alternatively, the magnetic field generator 5 may include an arbitrary magnetic field generator for generating a canceling magnetic field capable of aligning the direction of the internal leakage magnetic field in the Z-axis direction in addition to or instead of the coil 51Z. .
 コイル52Yは、ヘルムホルツ型のコイルとは異なるコイルであってもよい。コイル52Yは、外部漏れ磁場を相殺することができる限りは、どのようなコイルであってもよい。例えば、コイル52Yが発生したキャンセル磁場BYがキャンセル磁場BXと協働して外部漏れ磁場を相殺することができる限りは、コイル52Yの形状、構造及び配置位置等は、上述した具体例に限定されない。 The coil 52Y may be a coil different from the Helmholtz type coil. The coil 52Y may be any coil as long as it can cancel the external leakage magnetic field. For example, as long as the cancel magnetic field BY generated by the coil 52Y can cooperate with the cancel magnetic field BX to cancel the external leakage magnetic field, the shape, structure, arrangement position, and the like of the coil 52Y are not limited to the specific examples described above. .
 コイル52Xは、ヘルムホルツ型のコイルとは異なるコイルであってもよい。コイル52Xは、外部漏れ磁場を相殺することができる限りは、どのようなコイルであってもよい。例えば、コイル52Xが発生したキャンセル磁場BXがキャンセル磁場BYと協働して外部漏れ磁場を相殺することができる限りは、コイル52Xの形状、構造及び配置位置等は、上述した具体例に限定されない。 The coil 52X may be a coil different from the Helmholtz type coil. The coil 52X may be any coil as long as the external leakage magnetic field can be canceled. For example, as long as the cancellation magnetic field BX generated by the coil 52X can cancel the external leakage magnetic field in cooperation with the cancellation magnetic field BY, the shape, structure, arrangement position, and the like of the coil 52X are not limited to the specific examples described above. .
 磁場発生器5は、コイル52Y及び52Xのいずれか一方を備えている一方で、コイル52Y及び52Xのいずれか他方を備えていなくてもよい。磁場発生器5は、コイル52Y及び52Xの少なくとも一方に加えて又は代えて、外部漏れ磁場を相殺することが可能なキャンセル磁場を発生するためのコイルを備えていてもよい。或いは、磁場発生器5は、コイル52Y及び52Xの少なくとも一方に加えて又は代えて、外部漏れ磁場を相殺することが可能なキャンセル磁場を発生するための任意の磁場発生器を備えていてもよい。 The magnetic field generator 5 may include either one of the coils 52Y and 52X, but may not include any one of the coils 52Y and 52X. The magnetic field generator 5 may include a coil for generating a canceling magnetic field that can cancel the external leakage magnetic field in addition to or instead of at least one of the coils 52Y and 52X. Alternatively, the magnetic field generator 5 may include an arbitrary magnetic field generator for generating a cancel magnetic field capable of canceling the external leakage magnetic field in addition to or instead of at least one of the coils 52Y and 52X. .
 コイル51Zは、コイル51Zの直上に空間SP(或いは、電子ビームEBの伝搬経路、以下この段落において同じ)が位置する期間の少なくとも一部においてキャンセル磁場BZを発生させてもよい。例えば、コイル51Zは、コイル51Zの直上に電子ビーム光学系12が位置する期間の少なくとも一部においてキャンセル磁場BZを発生させてもよい。その結果、ステージ22の移動に伴って磁場発生器5と空間SPとの間の位置関係が変動する場合においても、コイル51Zは、空間SPにキャンセル磁場BZを発生可能である。このため、ステージ22の移動に伴って磁場発生器5と空間SPとの間の位置関係が変動する場合においても、漏れ磁場に起因した露光精度の悪化が適切に抑制される。尚、コイル52Yもまた、コイル51Zと同様に、コイル52Yの直上に空間SPが位置する期間の少なくとも一部においてキャンセル磁場BYを発生させてもよい。コイル52Xもまた、コイル51Zと同様に、コイル52Xの直上に空間SPが位置する期間の少なくとも一部においてキャンセル磁場BXを発生させてもよい。 The coil 51Z may generate a cancel magnetic field BZ in at least a part of a period in which the space SP (or the propagation path of the electron beam EB, hereinafter the same in this paragraph) is located immediately above the coil 51Z. For example, the coil 51Z may generate the cancel magnetic field BZ during at least a part of the period in which the electron beam optical system 12 is located immediately above the coil 51Z. As a result, even when the positional relationship between the magnetic field generator 5 and the space SP varies with the movement of the stage 22, the coil 51Z can generate a cancel magnetic field BZ in the space SP. For this reason, even when the positional relationship between the magnetic field generator 5 and the space SP fluctuates with the movement of the stage 22, deterioration of exposure accuracy due to the leakage magnetic field is appropriately suppressed. Note that the coil 52Y may also generate the cancel magnetic field BY in at least a part of the period in which the space SP is located immediately above the coil 52Y, similarly to the coil 51Z. Similarly to the coil 51Z, the coil 52X may generate the cancel magnetic field BX in at least a part of the period in which the space SP is located immediately above the coil 52X.
 コイル51Zは、コイル51Zが発生したキャンセル磁場BZの影響が及ぶ第1特定位置に空間SP(或いは、電子ビームEBの伝搬経路、以下この段落において同じ)が位置する期間の少なくとも一部においてキャンセル磁場BZを発生させてもよい。例えば、コイル51Zは、第1特定位置に又は第1特定位置の直上に電子ビーム光学系12が位置する期間の少なくとも一部においてキャンセル磁場BZを発生させてもよい。その結果、ステージ22の移動に伴って磁場発生器5と空間SPとの間の位置関係が変動する場合においても、コイル51Zは、空間SPにキャンセル磁場BZを発生可能である。このため、ステージ22の移動に伴って磁場発生器5と空間SPとの間の位置関係が変動する場合においても、漏れ磁場に起因した露光精度の悪化が適切に抑制される。尚、コイル52Yもまた、コイル51Zと同様に、コイル52Yが発生したキャンセル磁場BYの影響が及ぶ第2特定位置に空間SPが位置する期間の少なくとも一部においてキャンセル磁場BYを発生させてもよい。コイル52Xもまた、コイル51Zと同様に、コイル52Xが発生したキャンセル磁場BXの影響が及ぶ第3特定位置に空間SPが位置する期間の少なくとも一部においてキャンセル磁場BXを発生させてもよい。 The coil 51Z has a canceling magnetic field in at least a part of a period in which the space SP (or the propagation path of the electron beam EB, hereinafter the same in this paragraph) is located at the first specific position affected by the canceling magnetic field BZ generated by the coil 51Z. BZ may be generated. For example, the coil 51Z may generate the cancel magnetic field BZ in at least a part of the period in which the electron beam optical system 12 is located at the first specific position or immediately above the first specific position. As a result, even when the positional relationship between the magnetic field generator 5 and the space SP varies with the movement of the stage 22, the coil 51Z can generate a cancel magnetic field BZ in the space SP. For this reason, even when the positional relationship between the magnetic field generator 5 and the space SP fluctuates with the movement of the stage 22, deterioration of exposure accuracy due to the leakage magnetic field is appropriately suppressed. Note that the coil 52Y may generate the cancel magnetic field BY in at least a part of the period in which the space SP is located at the second specific position where the influence of the cancel magnetic field BY generated by the coil 52Y is affected, similarly to the coil 51Z. . Similarly to the coil 51Z, the coil 52X may generate the cancel magnetic field BX in at least a part of the period in which the space SP is located at the third specific position affected by the cancel magnetic field BX generated by the coil 52X.
 ステージ22の移動に伴って磁場発生器5と空間SP(或いは、電子ビームEBの伝播経路、以下この段落において同じ)との間の位置関係が変動する場合には、ウェハW上での空間SPの相対的な位置がステージ22の移動に伴って変動する。従って、コイル51Zが発生するキャンセル磁場BZの特性によっては、コイル51Zは、ウェハW上のある一の位置に空間SPが位置する期間中は当該空間SPに対してキャンセル磁場BZを発生可能である一方で、ウェハW上の他の位置に空間SPが位置する期間中は当該空間SPに対してキャンセル磁場BZを発生できない可能性がある。そこで、図12(a)から図12(c)に示すように、磁場発生器5は、ウェハW上の異なる複数の空間(互いに重複しない又は部分的に重複している複数の空間)にキャンセル磁場BZを夫々発生可能な複数のコイル51Zを含んでいてもよい。この場合、ウェハW上のある位置に空間SPが位置する期間中には、複数のコイル51Zのうち当該空間SPにキャンセル磁場BZを発生可能な少なくとも一つのコイル51Zが、キャンセル磁場BZを発生させてもよい。ウェハW上のある位置に位置している空間SPにキャンセル磁場BZを発生可能なコイル51Zは、典型的には、電子ビーム光学系12の直下に位置するコイル51Zである。このため、複数のコイル51Zのうち電子ビーム光学系12の直下に位置する少なくとも一つのコイル51Zが、キャンセル磁場BZを発生させてもよい。例えば、図12(a)に示すように、電子ビーム光学系12の直下に位置するコイル51Zがコイル51Z-1である場合には、コイル51Z-1がキャンセル磁場BZを発生させてもよい。その後、ステージ22の移動に伴って電子ビーム光学系12の直下に位置するコイル51Zがコイル51Z-1からコイル51Z-2に変わった場合には、図12(b)に示すように、コイル51Z-2がキャンセル磁場BZを発生させてもよい。その後、ステージ22の移動に伴って電子ビーム光学系12の直下に位置するコイル51Zがコイル51Z-2からコイル51Z-3に変わった場合には、図12(c)に示すように、コイル51Z-3がキャンセル磁場BZを発生させてもよい。また、コイル51Z-1からコイル51Z-3の全てからキャンセル磁場BZを発生させつつ、ステージ22と電子ビーム光学系12の相対位置に応じて、各コイルから発生するキャンセル磁場BZの大小関係を変えるようにしてもよい。 When the positional relationship between the magnetic field generator 5 and the space SP (or the propagation path of the electron beam EB, hereinafter the same in this paragraph) varies with the movement of the stage 22, the space SP on the wafer W is changed. The relative position of fluctuates as the stage 22 moves. Therefore, depending on the characteristics of the cancel magnetic field BZ generated by the coil 51Z, the coil 51Z can generate the cancel magnetic field BZ for the space SP during the period in which the space SP is located at a certain position on the wafer W. On the other hand, during the period in which the space SP is located at another position on the wafer W, there is a possibility that the cancel magnetic field BZ cannot be generated for the space SP. Therefore, as shown in FIG. 12A to FIG. 12C, the magnetic field generator 5 cancels in different spaces on the wafer W (spaces that do not overlap or partially overlap each other). A plurality of coils 51Z capable of generating the magnetic field BZ may be included. In this case, during a period in which the space SP is located at a certain position on the wafer W, at least one coil 51Z capable of generating the cancel magnetic field BZ in the space SP among the plurality of coils 51Z generates the cancel magnetic field BZ. May be. The coil 51Z capable of generating the canceling magnetic field BZ in the space SP located at a certain position on the wafer W is typically the coil 51Z located immediately below the electron beam optical system 12. For this reason, at least one coil 51Z located immediately below the electron beam optical system 12 among the plurality of coils 51Z may generate the cancel magnetic field BZ. For example, as shown in FIG. 12A, when the coil 51Z located immediately below the electron beam optical system 12 is the coil 51Z-1, the coil 51Z-1 may generate the cancel magnetic field BZ. Thereafter, when the coil 51Z located immediately below the electron beam optical system 12 is changed from the coil 51Z-1 to the coil 51Z-2 with the movement of the stage 22, as shown in FIG. -2 may generate a canceling magnetic field BZ. Thereafter, when the coil 51Z located immediately below the electron beam optical system 12 is changed from the coil 51Z-2 to the coil 51Z-3 in accordance with the movement of the stage 22, as shown in FIG. -3 may generate a canceling magnetic field BZ. In addition, the cancel magnetic field BZ is generated from all of the coils 51Z-1 to 51Z-3, and the magnitude relationship of the cancel magnetic field BZ generated from each coil is changed according to the relative position between the stage 22 and the electron beam optical system 12. You may do it.
 同様の理由から、図13(a)から図13(c)に示すように、磁場発生器5は、ウェハW上の異なる複数の空間にキャンセル磁場BYを夫々発生可能な複数のコイル52Yを含んでいてもよい。この場合、ウェハW上のある位置に空間SPが位置する期間中には、複数のコイル52Yのうち当該空間SPにキャンセル磁場BYを発生可能な少なくとも一つのコイル52Yが、キャンセル磁場BYを発生させてもよい。例えば、図13(a)に示すように、電子ビーム光学系12の直下に位置するコイル52Yがコイル52Y-1である場合には、コイル52Y-1がキャンセル磁場BYを発生させてもよい。その後、ステージ22の移動に伴って電子ビーム光学系12の直下に位置するコイル52Yがコイル52Y-1からコイル52Y-2に変わった場合には、図13(b)に示すように、コイル52Y-2がキャンセル磁場BYを発生させてもよい。その後、ステージ22の移動に伴って電子ビーム光学系12の直下に位置するコイル52Yがコイル52Y-2からコイル52Y-3に変わった場合には、図13(c)に示すように、コイル52Y-3がキャンセル磁場BYを発生させてもよい。説明の簡略化のために図示しないものの、同様の理由から、磁場発生器5は、ウェハW上の異なる複数の空間にキャンセル磁場BXを夫々発生可能な複数のコイル52Xを含んでいてもよい。 For the same reason, as shown in FIGS. 13A to 13C, the magnetic field generator 5 includes a plurality of coils 52Y that can generate cancel magnetic fields BY in different spaces on the wafer W, respectively. You may go out. In this case, during a period in which the space SP is located at a certain position on the wafer W, at least one coil 52Y capable of generating the cancel magnetic field BY in the space SP among the plurality of coils 52Y generates the cancel magnetic field BY. May be. For example, as shown in FIG. 13A, when the coil 52Y located immediately below the electron beam optical system 12 is the coil 52Y-1, the coil 52Y-1 may generate the cancel magnetic field BY. Thereafter, when the coil 52Y positioned immediately below the electron beam optical system 12 is changed from the coil 52Y-1 to the coil 52Y-2 with the movement of the stage 22, as shown in FIG. -2 may generate a cancel magnetic field BY. Thereafter, when the coil 52Y positioned immediately below the electron beam optical system 12 is changed from the coil 52Y-2 to the coil 52Y-3 with the movement of the stage 22, as shown in FIG. -3 may generate a cancel magnetic field BY. Although not shown for simplification of explanation, for the same reason, the magnetic field generator 5 may include a plurality of coils 52X capable of generating canceling magnetic fields BX in different spaces on the wafer W, respectively.
 上述した説明では、内部漏れ磁場の影響を抑制するキャンセル磁場BZと外部漏れ磁場の影響を抑制するキャンセル磁場BY及びBXとは、主として磁場の方向から区別可能である。つまり、磁場発生器5は、内部漏れ磁場の影響を抑制可能な第1の方向のキャンセル磁場と、外部漏れ磁場の影響を抑制可能な第2の方向のキャンセル磁場とを発生可能である。しかしながら、キャンセル磁場BZとキャンセル磁場BY及びBXとは、磁場の方向とは異なる任意の特性(例えば、強度や、磁束密度や、極性等)から区別可能であってもよい。逆に言えば、磁場発生器5は、内部漏れ磁場の影響を抑制可能な第1の特性を有するキャンセル磁場と、外部漏れ磁場の影響を抑制可能な第2の特性(≠第1の特性)を有するキャンセル磁場とを発生可能であってもよい。 In the above description, the cancellation magnetic field BZ that suppresses the influence of the internal leakage magnetic field and the cancellation magnetic fields BY and BX that suppress the influence of the external leakage magnetic field can be distinguished mainly from the direction of the magnetic field. That is, the magnetic field generator 5 can generate a cancel magnetic field in the first direction that can suppress the influence of the internal leakage magnetic field and a cancel magnetic field in the second direction that can suppress the influence of the external leakage magnetic field. However, the cancel magnetic field BZ and the cancel magnetic fields BY and BX may be distinguishable from arbitrary characteristics (for example, strength, magnetic flux density, polarity, etc.) different from the direction of the magnetic field. In other words, the magnetic field generator 5 has a cancel magnetic field having a first characteristic capable of suppressing the influence of the internal leakage magnetic field, and a second characteristic capable of suppressing the influence of the external leakage magnetic field (≠ first characteristic). It is possible to generate a cancellation magnetic field having
 (3)変形例
 続いて、露光装置EXの変形例について説明する。尚、上述した露光装置EXが備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明を省略する。
(3) Modified Example Next, a modified example of the exposure apparatus EX will be described. Note that the same reference numerals are assigned to the same components as those of the exposure apparatus EX described above, and a detailed description thereof will be omitted.
 (3-1)第1変形例
 まず、第1変形例の露光装置EXaについて説明する。第1変形例の露光装置EXaは、磁場発生器5がウェハWの上方に配置されるという点において、磁場発生器5がウェハWの下方に配置される上述した露光装置EXとは異なっている。第1変形例の露光装置EXaが備えるその他の構成要素は、上述した露光装置EXが備えるその他の構成要素と同一である。従って、以下では、図14及び図15を参照しながら、第1変形例における磁場発生器5の配置位置について説明する。図14は、第1変形例の露光装置EXaが備える電子ビーム照射装置1及びステージ装置2の断面(光軸AXを含む断面)を示す断面図である。図15(a)は、第1変形例の磁場発生器5の一部の断面(具体的には、YZ平面に沿った断面)を示す断面図であり、図15(b)は、第1変形例の磁場発生器5が配置される支持部材6aの上面を示す平面図である。
(3-1) First Modification First, an exposure apparatus EXa of a first modification will be described. The exposure apparatus EXa of the first modification differs from the above-described exposure apparatus EX in which the magnetic field generator 5 is disposed below the wafer W in that the magnetic field generator 5 is disposed above the wafer W. . The other components included in the exposure apparatus EXa of the first modification are the same as the other components included in the exposure apparatus EX described above. Therefore, hereinafter, the arrangement position of the magnetic field generator 5 in the first modification will be described with reference to FIGS. 14 and 15. FIG. 14 is a cross-sectional view showing a cross section (a cross section including the optical axis AX) of the electron beam irradiation apparatus 1 and the stage apparatus 2 provided in the exposure apparatus EXa of the first modification. FIG. 15A is a cross-sectional view showing a partial cross-section (specifically, a cross-section along the YZ plane) of the magnetic field generator 5 of the first modification, and FIG. It is a top view which shows the upper surface of the support member 6a by which the magnetic field generator 5 of a modification is arrange | positioned.
 図14から図15(b)に示すように、露光装置EXaは、支持部材6aを備えている。支持部材6aは、電子ビーム光学系12の下方(つまり、-Z側であり、電子ビームEBの射出側)で、且つ、ステージ装置2の上方(つまり、+Z側)の真空空間内に配置される。つまり、支持部材6aは、電子ビーム光学系12とステージ装置2との間に配置される。ステージ装置2がウェハWを保持している場合には、支持部材6aは、ウェハWの上方に配置される。支持部材6aの少なくとも一部は、電子ビーム光学系12とステージ装置2(或いは、ウェハW)との間の空間SPに配置されていてもよい。支持部材6aは、取付部材61aを介して、メトロロジーフレーム13から吊り下げられた状態で支持されている。支持部材6aは、取付部材61aによって吊り下げられた状態で所定の平面度を維持できる程度の強度を有している。支持部材6aは、磁場発生器5を支持するための(言い換えれば、磁場発生器5が配置される)部材である。 As shown in FIGS. 14 to 15B, the exposure apparatus EXa includes a support member 6a. The support member 6a is disposed in a vacuum space below the electron beam optical system 12 (that is, on the −Z side and on the emission side of the electron beam EB) and above the stage device 2 (that is, on the + Z side). The That is, the support member 6 a is disposed between the electron beam optical system 12 and the stage apparatus 2. When the stage apparatus 2 holds the wafer W, the support member 6a is disposed above the wafer W. At least a part of the support member 6a may be disposed in a space SP between the electron beam optical system 12 and the stage apparatus 2 (or the wafer W). The support member 6a is supported in a state of being suspended from the metrology frame 13 via the attachment member 61a. The support member 6a is strong enough to maintain a predetermined flatness while being suspended by the attachment member 61a. The support member 6a is a member for supporting the magnetic field generator 5 (in other words, the magnetic field generator 5 is disposed).
 支持部材6aは、板状の部材である。支持部材6aは、XY平面上における形状が矩形(例えば、正方形)となる部材である。但し、支持部材6aは、XY平面上における形状が任意の形状(例えば、円形や、楕円形や、長方形等)となる部材であってもよい。 The support member 6a is a plate-like member. The support member 6a is a member whose shape on the XY plane is a rectangle (for example, a square). However, the support member 6a may be a member whose shape on the XY plane is an arbitrary shape (for example, a circle, an ellipse, or a rectangle).
 支持部材6aの中心部には、支持部材6aをZ軸方向に沿って貫通する開口62aが形成されている。XY平面上における開口62aの形状は、円形であるが、その他の形状(例えば、矩形等)であってもよい。XY平面上における開口62aのサイズは、電子ビームEBが照射されるウェハW上の領域(つまり、照射領域EA)のサイズよりも大きい。支持部材6aは、開口62aが電子ビーム光学系12の光軸AX上に配置されるように、電子ビーム光学系12に対して位置合わせされている。このため、電子ビーム光学系12から射出された電子ビームEBは、開口62aを通過した後に、ウェハW上の照射領域EAに照射される。 At the center of the support member 6a, an opening 62a penetrating the support member 6a along the Z-axis direction is formed. The shape of the opening 62a on the XY plane is circular, but may be other shapes (for example, a rectangle or the like). The size of the opening 62a on the XY plane is larger than the size of the region on the wafer W irradiated with the electron beam EB (that is, the irradiation region EA). The support member 6 a is aligned with the electron beam optical system 12 so that the opening 62 a is disposed on the optical axis AX of the electron beam optical system 12. For this reason, the electron beam EB emitted from the electron beam optical system 12 is irradiated to the irradiation area EA on the wafer W after passing through the opening 62a.
 支持部材6aには、磁場発生器5が配置されている。支持部材6aには、磁場発生器5が埋め込まれている。コイル51Zは、光軸AXがコイル511Z及び512Zの夫々の中心軸と一致するように(或いは、光軸AXがコイル511Z及び512Zの夫々の内側を通過するように)配置される。つまり、コイル511Z及び512Zは、開口62aを取り囲むように開口62aの周囲に配置される。コイル52Yは、コイル521Yとコイル522Yとの間を光軸AXが通過するように配置される。つまり、コイル521Y及び522Yは、開口62aを挟み込むように開口62aの周囲に配置される。図面の簡略化のために図示しないものの、コイル52Xは、コイル521Xとコイル522Xとの間を光軸AXが通過するように配置される。つまり、コイル521X及び522Xは、開口62aを挟み込むように開口62aの周囲に配置される。 The magnetic field generator 5 is disposed on the support member 6a. A magnetic field generator 5 is embedded in the support member 6a. The coil 51Z is arranged so that the optical axis AX coincides with the central axis of each of the coils 511Z and 512Z (or the optical axis AX passes through the inside of each of the coils 511Z and 512Z). That is, the coils 511Z and 512Z are arranged around the opening 62a so as to surround the opening 62a. The coil 52Y is disposed so that the optical axis AX passes between the coil 521Y and the coil 522Y. That is, the coils 521Y and 522Y are arranged around the opening 62a so as to sandwich the opening 62a. Although not shown for simplification of the drawing, the coil 52X is arranged so that the optical axis AX passes between the coil 521X and the coil 522X. That is, the coils 521X and 522X are arranged around the opening 62a so as to sandwich the opening 62a.
 このような第1変形例の露光装置EXaであっても、上述した露光装置EXが享受可能な効果を適切に享受可能である。加えて、第1変形例では、ステージ22が移動したとしても、磁場発生器5と空間SP(或いは、電子ビームEBの伝搬経路)との間の位置関係が変動することはない。このため、ステージ22が移動する場合であっても、磁場発生器5は、空間SPにキャンセル磁場を発生可能である。従って、ステージ22が移動する場合であっても、漏れ磁場に起因した露光精度の悪化が適切に抑制される。 Even with the exposure apparatus EXa of the first modification, it is possible to appropriately enjoy the effects that can be enjoyed by the exposure apparatus EX described above. In addition, in the first modification, even if the stage 22 moves, the positional relationship between the magnetic field generator 5 and the space SP (or the propagation path of the electron beam EB) does not change. For this reason, even when the stage 22 moves, the magnetic field generator 5 can generate a cancel magnetic field in the space SP. Therefore, even when the stage 22 moves, the deterioration of exposure accuracy due to the leakage magnetic field is appropriately suppressed.
 尚、上述した説明では、磁場発生器5が支持部材6aに埋め込まれている。しかしながら、磁場発生器5の少なくとも一部が支持部材6aから露出していてもよい。或いは、磁場発生器5の少なくとも一部は、支持部材6aとは異なる部材に配置されていてもよい。例えば、磁場発生器5の少なくとも一部は、メトロロジーフレーム13に配置されていてもよい。例えば、磁場発生器5の少なくとも一部は、露光チャンバCaの上面(或いは、上壁)又は側面(或いは、側壁)に配置されていてもよい。或いは、磁場発生器5の少なくとも一部は、ウェハWの上方の任意の位置に配置されていてもよい。或いは、磁場発生器5の少なくとも一部は、ウェハWが位置するXY平面上の任意の位置に配置されていてもよい。 In the above description, the magnetic field generator 5 is embedded in the support member 6a. However, at least a part of the magnetic field generator 5 may be exposed from the support member 6a. Alternatively, at least a part of the magnetic field generator 5 may be disposed on a member different from the support member 6a. For example, at least a part of the magnetic field generator 5 may be disposed in the metrology frame 13. For example, at least a part of the magnetic field generator 5 may be disposed on the upper surface (or upper wall) or side surface (or side wall) of the exposure chamber Ca. Alternatively, at least a part of the magnetic field generator 5 may be disposed at an arbitrary position above the wafer W. Alternatively, at least a part of the magnetic field generator 5 may be arranged at an arbitrary position on the XY plane where the wafer W is located.
 上述した支持部材6aの形状は一例である。このため、支持部材6aは、磁場発生器54を支持可能であって且つ電子ビームEBを遮蔽しない(言い換えれば、電子ビームEBの伝搬経路上に位置しない)任意の形状を有していてもよい。 The shape of the support member 6a described above is an example. Therefore, the support member 6a may have an arbitrary shape that can support the magnetic field generator 54 and does not shield the electron beam EB (in other words, not positioned on the propagation path of the electron beam EB). .
 (3-2)第2変形例
 続いて、図16を参照しながら、第2変形例の露光装置EXbについて説明する。図16に示すように、第2変形例の露光装置EXbは、主として内部漏れ磁場の影響を抑制するためのコイル51Zが支持部材6aに配置される一方で、主として外部漏れ磁場の影響を抑制するためのコイル52Y及び52Xがステージ22に配置されるという点において、上述した第1変形例の露光装置EXaとは異なっている。但し、図面の簡略化のために、図16ではコイル52Xが省略されている。第2変形例の露光装置EXbが備えるその他の構成要素は、上述した第1変形例の露光装置EXaが備えるその他の構成要素と同一である。このような第2変形例の露光装置EXbであっても、上述した露光装置EXが享受可能な効果を適切に享受可能である。
(3-2) Second Modification Next, an exposure apparatus EXb of the second modification will be described with reference to FIG. As shown in FIG. 16, the exposure apparatus EXb of the second modified example mainly suppresses the influence of the external leakage magnetic field while the coil 51Z for mainly suppressing the influence of the internal leakage magnetic field is disposed on the support member 6a. This is different from the exposure apparatus EXa of the first modified example described above in that the coils 52Y and 52X for this purpose are arranged on the stage 22. However, in order to simplify the drawing, the coil 52X is omitted in FIG. Other components included in the exposure apparatus EXb of the second modification are the same as other components included in the exposure apparatus EXa of the first modification described above. Even with the exposure apparatus EXb of the second modification, it is possible to appropriately enjoy the effects that can be enjoyed by the exposure apparatus EX described above.
 (3-3)第3変形例
 続いて、図17を参照しながら、第3変形例の露光装置EXcについて説明する。図17に示すように、第3変形例の露光装置EXcは、主として外部漏れ磁場の影響を抑制するためのコイル52Y及び52Xが支持部材6aに配置される一方で、主として内部漏れ磁場の影響を抑制するためのコイル51Zがステージ22に配置されるという点において、上述した第1変形例の露光装置EXaとは異なっている。但し、図面の簡略化のために、図16ではコイル52Xが省略されている。第3変形例の露光装置EXcが備えるその他の構成要素は、上述した第1変形例の露光装置EXaが備えるその他の構成要素と同一である。このような第3変形例の露光装置EXcであっても、上述した露光装置EXが享受可能な効果を適切に享受可能である。
(3-3) Third Modification Next, an exposure apparatus EXc of the third modification will be described with reference to FIG. As shown in FIG. 17, in the exposure apparatus EXc of the third modified example, the coils 52Y and 52X for mainly suppressing the influence of the external leakage magnetic field are disposed on the support member 6a, while the influence of the internal leakage magnetic field is mainly provided. It differs from the exposure apparatus EXa of the first modified example described above in that the coil 51Z for suppression is disposed on the stage 22. However, in order to simplify the drawing, the coil 52X is omitted in FIG. Other components included in the exposure apparatus EXc of the third modification are the same as other components included in the exposure apparatus EXa of the first modification described above. Even with such an exposure apparatus EXc of the third modification, it is possible to appropriately enjoy the effects that the above-described exposure apparatus EX can enjoy.
 (3-4)第4変形例
 続いて、図18を参照しながら、第4変形例の露光装置EXdについて説明する。図18に示すように、第4変形例の露光装置EXは、コイル51Zとコイル52Yとコイル52Xとが物理的に(或いは、電気的に)一体化されているという点で、コイル51Zとコイル52Yとコイル52Xとが物理的に(或いは、電気的に)分離している上述した露光装置EXとは異なっている。具体的には、第4変形例の磁場発生器5dは、一連の巻き線から構成されている。磁場発生器5dを構成する一連の巻き線のうちの一部が、主として内部漏れ磁場の影響を抑制するためのキャンセル磁場を発生可能なコイル部分(つまり、コイル51Z)として用いられる。磁場発生器5dを構成する一連の巻き線の他の一部が、主として外部漏れ磁場の影響を抑制するためのキャンセル磁場を発生可能なコイル部分(つまり、コイル52Y及び52X)として用いられる。このような第4変形例の露光装置EXdであっても、上述した露光装置EXが享受可能な効果を適切に享受可能である。
(3-4) Fourth Modification Next, an exposure apparatus EXd of the fourth modification will be described with reference to FIG. As shown in FIG. 18, the exposure apparatus EX of the fourth modification example is that the coil 51Z, the coil 52Y, and the coil 52X are physically (or electrically) integrated, so that the coil 51Z and the coil 51X are integrated. This is different from the above-described exposure apparatus EX in which 52Y and the coil 52X are physically (or electrically) separated. Specifically, the magnetic field generator 5d of the fourth modified example is composed of a series of windings. A part of the series of windings constituting the magnetic field generator 5d is mainly used as a coil portion (that is, the coil 51Z) capable of generating a canceling magnetic field for suppressing the influence of the internal leakage magnetic field. Another part of the series of windings constituting the magnetic field generator 5d is used as a coil portion (that is, coils 52Y and 52X) that can generate a canceling magnetic field for mainly suppressing the influence of the external leakage magnetic field. Even with the exposure apparatus EXd of the fourth modified example, it is possible to appropriately enjoy the effects that the exposure apparatus EX described above can enjoy.
 尚、コイル51Z、コイル52Y及びコイル52Xの二つが一体化されている一方で、コイル51Z、コイル52Y及びコイル52Xの他の一つが分離されていてもよい。コイル51Z、コイル52Y及びコイル52Xの一部が一体化されている一方で、コイル51Z、コイル52Y及びコイル52Xの他の一部が分離されていてもよい。 Incidentally, while the two of the coil 51Z, the coil 52Y and the coil 52X are integrated, the other one of the coil 51Z, the coil 52Y and the coil 52X may be separated. The coil 51Z, the coil 52Y, and a part of the coil 52X may be integrated while the other part of the coil 51Z, the coil 52Y, and the coil 52X may be separated.
 (3-5)第5変形例
 続いて、図19(a)から図19(b)及び図20(a)から図20(c)を参照しながら、第5変形例の露光装置EXeについて説明する。図19(a)から図19(b)に示すように、第5変形例の露光装置EXeは、コイル51Z、コイル52Y及びコイル52Xを備える磁場発生器5に代えて、磁石53Z、磁石54Y及び磁石54Xを備える磁場発生器5eを備えているという点において、上述した露光装置EXとは異なっている。第5変形例の露光装置EXeが備えるその他の構成要素は、上述した露光装置EXが備えるその他の構成要素と同一である。
(3-5) Fifth Modified Example Next, an exposure apparatus EXe of a fifth modified example will be described with reference to FIGS. 19 (a) to 19 (b) and FIGS. 20 (a) to 20 (c). To do. As shown in FIGS. 19 (a) to 19 (b), the exposure apparatus EXe of the fifth modified example replaces the magnetic field generator 5 including the coil 51Z, the coil 52Y, and the coil 52X with a magnet 53Z, a magnet 54Y, and The exposure apparatus EX is different from the above-described exposure apparatus EX in that it includes a magnetic field generator 5e including a magnet 54X. Other components included in the exposure apparatus EXe of the fifth modification are the same as other components included in the exposure apparatus EX described above.
 磁石53Zは、図20(a)に示すように、上述したコイル51Zが発生するキャンセル磁場BZと同様の磁場を、キャンセル磁場として発生可能である。このため、磁石53Zは、磁石53Zが備える2つの磁極がZ軸に沿って並ぶように配置される。磁石54Yは、図20(b)に示すように、上述したコイル52Yが発生するキャンセル磁場BYと同様の磁場を、キャンセル磁場として発生可能である。このため、磁石54Yは、磁石54Yが備える2つの磁極がY軸に沿って並ぶように配置される。磁石54Xは、図20(c)に示すように、上述したコイル52Xが発生するキャンセル磁場BXと同様の磁場を、キャンセル磁場として発生可能である。このため、磁石54Xは、磁石54Xが備える2つの磁極がX軸に沿って並ぶように配置される。 As shown in FIG. 20A, the magnet 53Z can generate a magnetic field similar to the cancel magnetic field BZ generated by the coil 51Z as a cancel magnetic field. For this reason, the magnet 53Z is arranged so that the two magnetic poles included in the magnet 53Z are aligned along the Z-axis. As shown in FIG. 20B, the magnet 54Y can generate a magnetic field similar to the cancel magnetic field BY generated by the coil 52Y described above as a cancel magnetic field. For this reason, the magnet 54Y is disposed such that two magnetic poles included in the magnet 54Y are aligned along the Y axis. As shown in FIG. 20C, the magnet 54X can generate a magnetic field similar to the cancel magnetic field BX generated by the coil 52X described above as a cancel magnetic field. For this reason, the magnet 54X is arranged so that the two magnetic poles included in the magnet 54X are aligned along the X axis.
 このような第5変形例の露光装置EXeであっても、上述した露光装置EXが享受可能な効果を適切に享受可能である。 Even with the exposure apparatus EXe of the fifth modified example, it is possible to appropriately enjoy the effects that the exposure apparatus EX described above can enjoy.
 尚、磁場発生器5eは、磁石53Zが発生するキャンセル磁場の特性(例えば、方向や強度等)を調整するための磁場調整機構を備えていてもよい。例えば、磁石は、温度によって磁場の強度が変動するという性質を有している。このため、磁場発生器5eは、磁石53Zの温度を調整可能な温度調整機構を、磁場調整機構として備えていてもよい。この場合、温度調整機構は、制御装置3の制御下で、内部漏れ磁場の影響を抑制する(具体的には、上述したように、内部漏れ磁場の方向をZ軸方向に揃える)ことが可能なキャンセル磁場を磁石53Zが発生するように、磁石53Zの温度を調整してもよい。その結果、コイル51Zに代えて磁石53Zを備える第5変形例の露光装置EXeにおいても、内部漏れ磁場の影響がより一層適切に抑制可能である。同様の理由から、磁場発生器5eは、磁石54Yが発生するキャンセル磁場の特性を調整するための磁場調整機構を備えていてもよい。磁場発生器5eは、磁石54Xが発生するキャンセル磁場の特性を調整するための磁場調整機構を備えていてもよい。尚、温度調整機構は、他の実施形態や変形例に対しても、コイル51Z、コイル52Y、及びコイル52Xの少なくとも1つのコイルの冷却のために設けられてもよい。 Note that the magnetic field generator 5e may include a magnetic field adjustment mechanism for adjusting the characteristics (for example, direction and intensity) of the cancel magnetic field generated by the magnet 53Z. For example, magnets have the property that the strength of the magnetic field varies with temperature. For this reason, the magnetic field generator 5e may include a temperature adjustment mechanism that can adjust the temperature of the magnet 53Z as the magnetic field adjustment mechanism. In this case, the temperature adjustment mechanism can suppress the influence of the internal leakage magnetic field under the control of the control device 3 (specifically, as described above, the direction of the internal leakage magnetic field is aligned with the Z-axis direction). The temperature of the magnet 53Z may be adjusted so that the magnet 53Z generates a simple canceling magnetic field. As a result, the influence of the internal leakage magnetic field can be further appropriately suppressed in the exposure apparatus EXe of the fifth modified example including the magnet 53Z instead of the coil 51Z. For the same reason, the magnetic field generator 5e may include a magnetic field adjustment mechanism for adjusting the characteristics of the cancel magnetic field generated by the magnet 54Y. The magnetic field generator 5e may include a magnetic field adjustment mechanism for adjusting the characteristics of the cancel magnetic field generated by the magnet 54X. Note that the temperature adjustment mechanism may be provided for cooling at least one of the coil 51Z, the coil 52Y, and the coil 52X in the other embodiments and modifications.
 (3-6)第6変形例
 続いて、図21を参照しながら、第6変形例の露光装置EXfについて説明する。図21に示すように、第6変形例の露光装置EXfは、磁場センサ7fを備えているという点において、上述した露光装置EXとは異なっている。第6変形例の露光装置EXfが備えるその他の構成要素は、上述した露光装置EXが備えるその他の構成要素と同一である。
(3-6) Sixth Modification Next, an exposure apparatus EXf of a sixth modification will be described with reference to FIG. As shown in FIG. 21, the exposure apparatus EXf of the sixth modified example is different from the above-described exposure apparatus EX in that it includes a magnetic field sensor 7f. The other components included in the exposure apparatus EXf of the sixth modification are the same as the other components included in the exposure apparatus EX described above.
 磁場センサ7fは、電子ビーム光学系12とウェハWとの間の空間SPの少なくとも一部における磁場(漏れ磁場を含む)を計測可能である。制御装置3は、磁場センサ7fの計測結果に基づいて、磁気センサ7fが計測した漏れ磁場(或いは、磁場センサ7fの計測結果から算出される、空間SPにおける漏れ磁場)の影響を抑制可能なキャンセル磁場を発生するように、磁場発生器5を制御する。このため、第6変形例の露光装置EXfは、上述した露光装置EXが享受可能な効果と同様の効果を享受しつつも、漏れ磁場の実際の計測結果に基づいて漏れ磁場の影響を抑制可能なキャンセル磁場を発生させることができるがゆえに、漏れ磁場の影響をより適切に抑制することができる。 The magnetic field sensor 7f can measure a magnetic field (including a leakage magnetic field) in at least a part of the space SP between the electron beam optical system 12 and the wafer W. The control device 3 can cancel the influence of the leakage magnetic field measured by the magnetic sensor 7f (or the leakage magnetic field in the space SP calculated from the measurement result of the magnetic field sensor 7f) based on the measurement result of the magnetic field sensor 7f. The magnetic field generator 5 is controlled so as to generate a magnetic field. For this reason, the exposure apparatus EXf of the sixth modification can suppress the influence of the leakage magnetic field based on the actual measurement result of the leakage magnetic field, while enjoying the same effect as that which can be enjoyed by the exposure apparatus EX described above. Therefore, the influence of the leakage magnetic field can be suppressed more appropriately.
 尚、制御装置3は、磁場センサ7fの計測結果(つまり、漏れ磁場の実際の計測結果)に加えて又は代えて、漏れ磁場の推定結果に基づいて、推定した漏れ磁場の影響を抑制可能なキャンセル磁場を発生するように磁場発生器5を制御してもよい。この場合、制御装置3は、漏れ磁場を推定してもよい。例えば、制御装置3は、漏れ磁場の発生源となる電子ビーム光学系12が備えるビーム制御器(例えば、上述した電磁レンズや偏向器等)の動作状態に基づいて、漏れ磁場を推定してもよい。より具体的には、制御装置3は、漏れ磁場の発生源となる電子ビーム光学系12が備えるビーム制御器を駆動するために当該ビーム制御器に供給される駆動電流に基づいて、漏れ磁場を推定してもよい。制御装置3は、過去の磁場センサ7fの計測結果に基づいて漏れ磁場の状態を学習することで、漏れ磁場を推定してもよい。制御装置3は、過去の磁場センサ7fの計測結果を蓄積しておくと共に、当該蓄積した計測結果を対象にデータマイニングや数理的な分析予測を行うことで、漏れ磁場を推定してもよい。 The control device 3 can suppress the influence of the estimated leakage magnetic field based on the estimation result of the leakage magnetic field in addition to or instead of the measurement result of the magnetic field sensor 7f (that is, the actual measurement result of the leakage magnetic field). The magnetic field generator 5 may be controlled so as to generate a cancel magnetic field. In this case, the control device 3 may estimate the leakage magnetic field. For example, the control device 3 may estimate the leakage magnetic field based on the operation state of the beam controller (for example, the above-described electromagnetic lens or deflector) included in the electron beam optical system 12 that is a generation source of the leakage magnetic field. Good. More specifically, the control device 3 generates a leakage magnetic field based on a drive current supplied to the beam controller for driving the beam controller included in the electron beam optical system 12 that is a generation source of the leakage magnetic field. It may be estimated. The control device 3 may estimate the leakage magnetic field by learning the state of the leakage magnetic field based on the measurement result of the past magnetic field sensor 7f. The control device 3 may accumulate the measurement results of the past magnetic field sensor 7f, and may estimate the leakage magnetic field by performing data mining or mathematical analysis prediction on the accumulated measurement results.
 或いは、制御装置3は、漏れ磁場を推定することなく、漏れ磁場の影響を抑制可能なキャンセル磁場を発生するように磁場発生器5を制御してもよい。例えば、制御装置3は、漏れ磁場の発生源となる電子ビーム光学系12が備えるビーム制御器の動作状態に基づいて、漏れ磁場の影響を抑制可能なキャンセル磁場を発生するように磁場発生器5を制御してもよい。例えば、制御装置3は、過去の磁場センサ7fの計測結果に基づいて、漏れ磁場の影響を抑制可能なキャンセル磁場を発生するように磁場発生器5を制御してもよい。制御装置3は、磁場発生器5が実際にキャンセル磁場を発生している状況下での漏れ磁場を機械学習等で学習することで、漏れ磁場の影響を抑制可能なキャンセル磁場を発生するように磁場発生器5を制御してもよい。例えば、制御装置3は、過去の磁場センサ7fの計測結果を蓄積しておくと共に、当該蓄積した計測結果を対象にデータマイニングや数理的な分析予測を行うことで、漏れ磁場の影響を抑制可能なキャンセル磁場を発生するように磁場発生器5を制御してもよい。例えば、制御装置3は、キャンセル磁場に影響を与え得る露光装置EXfの動作パラメータを対象にデータマイニングや数理的な分析予測を行うことで、漏れ磁場の影響を抑制可能なキャンセル磁場を発生するように磁場発生器5を制御してもよい。 Alternatively, the control device 3 may control the magnetic field generator 5 so as to generate a cancellation magnetic field that can suppress the influence of the leakage magnetic field without estimating the leakage magnetic field. For example, the control device 3 generates a cancel magnetic field that can suppress the influence of the leakage magnetic field based on the operation state of the beam controller included in the electron beam optical system 12 that is a generation source of the leakage magnetic field. May be controlled. For example, the control device 3 may control the magnetic field generator 5 based on the measurement result of the past magnetic field sensor 7f so as to generate a cancel magnetic field that can suppress the influence of the leakage magnetic field. The control device 3 generates a cancel magnetic field that can suppress the influence of the leak magnetic field by learning the leak magnetic field under a situation in which the magnetic field generator 5 is actually generating the cancel magnetic field by machine learning or the like. The magnetic field generator 5 may be controlled. For example, the control device 3 accumulates the measurement results of the past magnetic field sensor 7f, and can suppress the influence of the leakage magnetic field by performing data mining and mathematical analysis prediction on the accumulated measurement results. The magnetic field generator 5 may be controlled so as to generate a canceling magnetic field. For example, the control device 3 generates a cancel magnetic field that can suppress the influence of the leakage magnetic field by performing data mining and mathematical analysis prediction on the operation parameters of the exposure apparatus EXf that can affect the cancel magnetic field. Alternatively, the magnetic field generator 5 may be controlled.
 また、上述したように、磁場発生器5と空間SPとの間の位置関係は、ステージ22の移動に伴って変動する。このため、ステージ22の移動に伴って、磁場発生器5が発生したキャンセル磁場が空間SPに及ぼす影響も変動する。その結果、キャンセル磁場が常に一定(つまり、ステージ22の移動に合わせて変動しない磁場)である場合には、当該キャンセル磁場は、空間SPに発生する内部漏れ磁場及び外部漏れ磁場の影響を適切に抑制できない可能性がある。このため、制御装置3は、ステージ22の移動に合わせて、漏れ磁場の影響を抑制可能なキャンセル磁場を発生するように磁場発生器5を制御してもよい。つまり、制御装置3は、ステージ22の移動に合わせてキャンセル磁場を調整してもよい。もちろん、キャンセル磁場を変動させなくても空間SPに発生する内部漏れ磁場及び外部漏れ磁場の影響がキャンセル磁場によって適切に抑制できる場合には、制御装置3は、ステージ22の移動に合わせて磁場発生器5を制御しなくてもよい。 Further, as described above, the positional relationship between the magnetic field generator 5 and the space SP varies with the movement of the stage 22. For this reason, as the stage 22 moves, the influence of the cancellation magnetic field generated by the magnetic field generator 5 on the space SP also varies. As a result, when the canceling magnetic field is always constant (that is, a magnetic field that does not vary with the movement of the stage 22), the canceling magnetic field appropriately affects the influence of the internal leakage magnetic field and the external leakage magnetic field generated in the space SP. There is a possibility that it cannot be suppressed. For this reason, the control device 3 may control the magnetic field generator 5 so as to generate a cancel magnetic field that can suppress the influence of the leakage magnetic field in accordance with the movement of the stage 22. That is, the control device 3 may adjust the cancel magnetic field in accordance with the movement of the stage 22. Of course, when the influence of the internal leakage magnetic field and the external leakage magnetic field generated in the space SP can be appropriately suppressed by the cancellation magnetic field without changing the cancellation magnetic field, the control device 3 generates the magnetic field in accordance with the movement of the stage 22. The device 5 may not be controlled.
 (3-7)第7変形例
 続いて、図22を参照しながら、第7変形例の露光装置EXgについて説明する。図22に示すように、第7変形例の露光装置EXgは、電子ビーム照射装置1gが複数の電子ビームEBを照射可能であるという点において、電子ビーム照射装置1が単一の電子ビームEBを照射可能である上述した露光装置EXとは異なっている。更に、第7変形例の露光装置EXgは、複数の磁場発生器5を備えているという点において、単一の磁場発生器5を備えている上述した露光装置EXとは異なっている。第7変形例の露光装置EXgが備えるその他の構成要素は、上述した露光装置EXが備えるその他の構成要素と同一である。
(3-7) Seventh Modification Next, an exposure apparatus EXg of the seventh modification will be described with reference to FIG. As shown in FIG. 22, the exposure apparatus EXg according to the seventh modification has a single electron beam EB emitted from the electron beam irradiation apparatus 1 in that the electron beam irradiation apparatus 1g can irradiate a plurality of electron beams EB. This is different from the above-described exposure apparatus EX that can be irradiated. Furthermore, the exposure apparatus EXg of the seventh modification is different from the above-described exposure apparatus EX including the single magnetic field generator 5 in that it includes a plurality of magnetic field generators 5. The other components included in the exposure apparatus EXg of the seventh modification are the same as the other components included in the exposure apparatus EX described above.
 複数の電子ビームEBを照射するために、電子ビーム照射装置1gは、複数の電子ビーム光学系12を備えている。この場合、複数の電子ビーム光学系12は、XY平面内において所定の位置関係を有するように設置される。例えば、複数の電子ビーム光学系12は、XY平面内においてマトリクス状に配置される。或いは、複数の電子ビーム光学系12は、XY平面内においてアレイ状に(つまり、一列に)配置されてもよい。但し、複数の電子ビームEBを照射するために、電子ビーム照射装置1gは、ビーム光学装置122として、複数の電子ビームEBを射出する電子放出部を有する面放出型電子ビーム源を備えていてもよい。 In order to irradiate a plurality of electron beams EB, the electron beam irradiation apparatus 1g includes a plurality of electron beam optical systems 12. In this case, the plurality of electron beam optical systems 12 are installed so as to have a predetermined positional relationship in the XY plane. For example, the plurality of electron beam optical systems 12 are arranged in a matrix in the XY plane. Alternatively, the plurality of electron beam optical systems 12 may be arranged in an array (that is, in a line) in the XY plane. However, in order to irradiate the plurality of electron beams EB, the electron beam irradiation apparatus 1g may include a surface emission type electron beam source having an electron emission unit that emits the plurality of electron beams EB as the beam optical device 122. Good.
 第7変形例では、複数の電子ビームEBの照射が並列して行われる。複数の電子ビームEBは、ウェハW上の複数のショット領域Sに1対1で対応するように照射される。図23は、複数の電子ビームEBの照射位置(つまり、照射領域EA)及び複数の電子ビーム光学系12の配置位置をウェハW上で示す平面図である。図23に示すように、電子ビーム照射装置1gは、ウェハW上の複数のショット領域S上に夫々設定される複数の照射領域EAに対して、複数の電子ビームEBを夫々同時に照射可能である。つまり、複数の電子ビーム光学系12は、ウェハW上の複数のショット領域S上に夫々設定される複数の照射領域EAに対して、複数の電子ビームEBを夫々同時に照射可能である。このような照射領域EAに対してウェハWを相対的に移動させながら、電子ビーム照射装置1gが電子ビームEBを照射すれば、ウェハW上の複数のショット領域Sが並列して露光される。その結果、各ショット領域Sに、紫外光でウェハを露光する比較例の露光装置の解像限界よりも小さいパターンが、相対的に高いスループットで形成される。尚、ショット領域Sの数は図23に示す数に限定されるものではない。 In the seventh modification, irradiation with a plurality of electron beams EB is performed in parallel. The plurality of electron beams EB are irradiated so as to correspond to the plurality of shot regions S on the wafer W on a one-to-one basis. FIG. 23 is a plan view showing on the wafer W the irradiation positions (that is, the irradiation areas EA) of the plurality of electron beams EB and the arrangement positions of the plurality of electron beam optical systems 12. As shown in FIG. 23, the electron beam irradiation apparatus 1g can simultaneously irradiate a plurality of electron beams EB to a plurality of irradiation areas EA set on a plurality of shot areas S on the wafer W, respectively. . That is, the plurality of electron beam optical systems 12 can simultaneously irradiate the plurality of electron beams EB to the plurality of irradiation areas EA respectively set on the plurality of shot areas S on the wafer W. If the electron beam irradiation apparatus 1g irradiates the electron beam EB while moving the wafer W relative to the irradiation area EA, a plurality of shot areas S on the wafer W are exposed in parallel. As a result, a pattern smaller than the resolution limit of the exposure apparatus of the comparative example that exposes the wafer with ultraviolet light is formed in each shot region S with a relatively high throughput. The number of shot regions S is not limited to the number shown in FIG.
 複数の磁場発生器5は、複数の電子ビーム光学系12に夫々対応するように配置される。以下、図24(a)から図24(b)を参照しながら、複数の磁場発生器5と複数の電子ビーム光学系12との対応関係について説明する。図24(a)は、第7変形例における複数の磁場発生器5と複数の電子ビーム光学系12との対応関係を、YZ平面上で示す断面図である。図24(b)は、第7変形例における複数の磁場発生器5と複数の電子ビーム光学系12との対応関係を、XY平面上で示す平面図である。 The plurality of magnetic field generators 5 are arranged so as to correspond to the plurality of electron beam optical systems 12, respectively. Hereinafter, the correspondence between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 will be described with reference to FIGS. 24 (a) to 24 (b). FIG. 24A is a cross-sectional view showing a correspondence relationship between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 on the YZ plane in the seventh modification. FIG. 24B is a plan view showing a correspondence relationship between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 on the XY plane in the seventh modification.
 露光装置EXfがN個の電子ビーム光学系12を備えている場合には、露光装置EXfはN個の磁場発生器5を備えているものとする。以降、N個の電子ビーム光学系12を、電子ビーム光学系12、電子ビーム光学系12、電子ビーム光学系12、・・・、電子ビーム光学系12N-1及び電子ビーム光学系12と表記して、互いに区別する。この場合、露光装置EXは、電子ビーム光学系12に対応する磁場発生器5と、電子ビーム光学系12に対応する磁場発生器5と、電子ビーム光学系12に対応する磁場発生器5と、・・・、電子ビーム光学系12N-1に対応する磁場発生器5N-1と、電子ビーム光学系12に対応する磁場発生器5とを備えている。尚、露光装置EXfの電子ビーム光学系12がN個である場合に、露光装置EXfがN個の磁場発生器5を備えていると限定されるものではない。 When the exposure apparatus EXf includes N electron beam optical systems 12, it is assumed that the exposure apparatus EXf includes N magnetic field generators 5. Thereafter, the N electron beam optical systems 12 are referred to as an electron beam optical system 12 1 , an electron beam optical system 12 2 , an electron beam optical system 12 3 ,..., An electron beam optical system 12 N-1 and an electron beam optical system. 12 N to distinguish from each other. In this case, the exposure apparatus EX includes a magnetic field generator 5 1 corresponding to the electron beam optical system 12 1, and the magnetic field generator 5 2 corresponding to the electron beam optical system 12 2, a magnetic field corresponding to the electron beam optical system 12 3 a generator 5 3, ..., and a magnetic field generator 5 N-1 corresponding to the electron beam optical system 12 N-1, and a magnetic field generator 5 N corresponding to the electron beam optical system 12 N. When the number of electron beam optical systems 12 of the exposure apparatus EXf is N, the exposure apparatus EXf is not limited to being provided with the N magnetic field generators 5.
 図24(a)から図24(b)に示すように、磁場発生器5(但し、kは、1≦k≦Nを満たす整数)は、コイル51Zと、コイル52Yと、コイル52Xとを備えている。但し、図面の簡略化のために、図24(a)では、コイル52Xが図示されていない。コイル51Zの構造は上述したコイル51Zの構造と同一であり、コイル52Yの構造は上述したコイル52Yの構造と同一であり、コイル52Xの構造は上述したコイル52Xの構造と同一である。 As shown in FIG. 24 (b) from FIG. 24 (a), the magnetic field generator 5 k (where, k is an integer satisfying 1 ≦ k ≦ N) includes a coil 51Z k, and the coil 52Y k, coils 52X k . However, for simplification of the drawing, in FIG. 24 (a), the coil 52X k is not shown. Structure of coil 51Z k is identical to the structure of the coil 51Z as described above, the structure of the coil 52Y k is identical to the structure of the coil 52Y as described above, the structure of the coil 52X k is the same as the structure of the coil 52X as described above .
 磁場発生器5は、磁場発生器5に対応する一の電子ビーム光学系12とウェハWとの間の空間SPにキャンセル磁場を発生可能である。例えば、磁場発生器5は、磁場発生器5に対応する一の電子ビーム光学系12とウェハWとの間の空間SPにキャンセル磁場を発生可能である。例えば、磁場発生器5は、磁場発生器5に対応する一の電子ビーム光学系12とウェハWとの間の空間SPにキャンセル磁場を発生可能である。 The magnetic field generator 5 k is capable of generating cancellation magnetic field in a space SP k between the primary electron beam optical system 12 k and the wafer W corresponding to the magnetic field generator 5 k. For example, the magnetic field generator 5 1 can generate a cancellation magnetic field in a space SP 1 between the primary electron beam optical system 12 1 and the wafer W corresponding to the magnetic field generator 5 1. For example, the magnetic field generator 5 2 is capable of generating cancellation magnetic field in a space SP 2 between the one electron beam optical system 12 2 and the wafer W corresponding to the magnetic field generator 5 2.
 コイル51Zは、空間SPにキャンセル磁場BZを発生可能である。この場合、コイル51Zに含まれるコイル511Z及び512Zの夫々の内側を電子ビーム光学系12の光軸AXが通過するように、コイル51Zが電子ビーム光学系12に対して位置合わせされてもよい。コイル51Zは、主として、電子ビーム光学系12の内部から空間SPに漏れ出た内部漏れ磁場の影響を抑制するためのキャンセル磁場BZを発生可能である。つまり、コイル51Zは、空間SPに漏れ出た内部漏れ磁場の方向をZ軸方向に揃えることが可能なキャンセル磁場BZを発生可能である。 The coil 51Z k can generate a cancel magnetic field BZ in the space SP k . In this case, the coils 511Z and inner respective 512Z included in the coil 51Z k to pass through the optical axis AX of the electron beam optical system 12 k, coil 51Z k is aligned with respect to the electron beam optical system 12 k May be. Coil 51Z k is primarily a cancellation magnetic field BZ in order to suppress the influence of the internal leakage magnetic field leaking to the space SP k from the interior of the electron beam optical system 12 k can be generated. In other words, the coil 51Z k is capable of generating canceling magnetic field BZ capable to align the direction of the internal leakage magnetic field leaking to the space SP k in Z-axis direction.
 コイル52Yは、空間SPにキャンセル磁場BYを発生可能である。この場合、コイル52Yに含まれるコイル521Y及び522Yの間を電子ビーム光学系12の光軸AXが通過するように、コイル52Yが電子ビーム光学系12に対して位置合わせされてもよい。コイル52Yは、主として、電子ビーム光学系12の外部から空間SPに漏れ出た外部漏れ磁場の影響を抑制するためのキャンセル磁場BYを発生可能である。つまり、コイル52Yは、コイル52Xが発生するキャンセル磁場BXと協働して、空間SPに漏れ出た外部漏れ磁場を相殺することが可能なキャンセル磁場BYを発生可能である。 The coil 52Y k can generate a cancel magnetic field BY in the space SP k . In this case, between the coils 521Y and 522Y included in the coil 52Y k to pass through the optical axis AX of the electron beam optical system 12 k, also the coil 52Y k is aligned with respect to the electron beam optical system 12 k Good. Coil 52Y k is primarily a cancellation magnetic field BY for suppressing the influence of an external leakage magnetic field leaking to the space SP k from the outside of the electron beam optical system 12 k can be generated. In other words, the coil 52Y k, in cooperation with the cancel magnetic field BX coil 52X k occurs, it is possible to generate a cancellation magnetic field BY capable of canceling the external leakage magnetic field leaking to the space SP k.
 コイル52Xは、空間SPにキャンセル磁場BXを発生可能である。この場合、コイル52Xに含まれるコイル521X及び522Xの間を電子ビーム光学系12の光軸AXが通過するように、コイル52Xが電子ビーム光学系12に対して位置合わせされてもよい。コイル52Xは、主として、電子ビーム光学系12の外部から空間SPに漏れ出た外部漏れ磁場の影響を抑制するためのキャンセル磁場BXを発生可能である。つまり、コイル52Xは、コイル52Yが発生するキャンセル磁場BYと協働して、空間SPに漏れ出た外部漏れ磁場を相殺することが可能なキャンセル磁場BXを発生可能である。 The coil 52X k can generate a cancel magnetic field BX in the space SP k . In this case, between the coils 521X and 522X contained in the coil 52X k to pass through the optical axis AX of the electron beam optical system 12 k, also coil 52X k is aligned with respect to the electron beam optical system 12 k Good. The coil 52X k can mainly generate a cancel magnetic field BX for suppressing the influence of the external leakage magnetic field leaking from the outside of the electron beam optical system 12k to the space SP k . In other words, the coil 52X k, in cooperation with the cancel magnetic field BY the coil 52Y k occurs, it is possible to generate a cancellation magnetic field BX capable of canceling the external leakage magnetic field leaking to the space SP k.
 但し、第7変形例では、電子ビーム光学系12の外部から空間SPに漏れ出た外部漏れ磁場は、図8を参照しながら上述した外部漏れ磁場に加えて、電子ビーム光学系12以外の他の電子ビーム光学系12(つまり、電子ビーム光学系12から電子ビーム光学系12k-1及び電子ビーム光学系12k+1から電子ビーム光学系12)の内部から空間SPに漏れ出た磁場をも含む。このため、コイル52Y及び52Xは、電子ビーム光学系12から電子ビーム光学系12k-1及び電子ビーム光学系12k+1から電子ビーム光学系12の内部から空間SPに漏れ出た磁場を含む外部漏れ磁場の影響を抑制可能なキャンセル磁場を発生する。例えば、コイル52Y及び52Xは、電子ビーム光学系12から電子ビーム光学系12の内部から空間SPに漏れ出た磁場を含む外部漏れ磁場の影響を抑制可能なキャンセル磁場を発生する。例えば、コイル52Y及び52Xは、電子ビーム光学系12及び電子ビーム光学系12から電子ビーム光学系12の内部から空間SPに漏れ出た磁場を含む外部漏れ磁場の影響を抑制可能なキャンセル磁場を発生する。 However, in the seventh modification, the external leakage magnetic field leaking from the outside of the electron beam optical system 12 k to the space SP k is added to the electron beam optical system 12 k in addition to the external leakage magnetic field described above with reference to FIG. other electron beam optical system 12 other than (that is, from the electron beam optical system 12 1 from the electron beam optical system 12 k-1 and the electron beam optical system 12 k + 1 electron beam optical system 12 N) leaking into the space SP k from the interior of the Including the magnetic field. Thus, the coil 52Y k and 52X k is leaking from the electron beam optical system 12 1 from the electron beam optical system 12 k-1 and the electron beam optical system 12 k + 1 to the space SP k from the interior of the electron beam optical system 12 N A cancel magnetic field that can suppress the influence of an external leakage magnetic field including a magnetic field is generated. For example, the coils 52Y 1 and 52X 1 generates a cancellation magnetic field that can suppress the influence of external leakage magnetic field including a magnetic field leaked to the space SP 1 from the electron beam optical system 12 2 from the interior of the electron beam optical system 12 N . For example, the coils 52Y 2 and 52X 2 suppress the influence of an external leakage magnetic field including a magnetic field leaking from the electron beam optical system 12 1 and the electron beam optical system 12 3 into the space SP 2 from the inside of the electron beam optical system 12 N. Generate possible canceling magnetic field.
 このような第7変形例の露光装置EXgは、複数の電子ビームEBの照射に付随して発生する漏れ磁場の影響を受けることなく又は漏れ磁場の影響に関わらず、複数の電子ビームEBを、ウェハW上の所望位置に照射することができる。その結果、複数の電子ビームEBによる露光精度の悪化が適切に抑制される。つまり、露光装置EXgが複数の電子ビームEBを照射する場合においても、上述した露光装置EXが享受可能な効果が適切に享受可能である。 Such an exposure apparatus EXg of the seventh modified example does not receive the influence of the leakage magnetic field generated accompanying the irradiation of the plurality of electron beams EB or regardless of the influence of the leakage magnetic field, A desired position on the wafer W can be irradiated. As a result, deterioration of exposure accuracy due to the plurality of electron beams EB is appropriately suppressed. That is, even when the exposure apparatus EXg irradiates a plurality of electron beams EB, the effects that can be enjoyed by the exposure apparatus EX can be appropriately enjoyed.
 尚、XY平面上において隣り合う二つの磁場発生器5は、各コイル52Y及び各コイル52Xから発生させる磁場の向きが互いに逆向きで、相殺し合うようにしてもよい。また、XY平面上において隣り合う二つの磁場発生器5は、コイル51Z、コイル52Y及びコイル52Xの少なくとも一部を共用してもよい。つまり、XY平面上において隣り合う二つの磁場発生器5は、互いに共用可能なコイルを含んでいてもよい。言い換えれば、XY平面上において隣り合う二つの磁場発生器5が備えるコイル51Z、コイル52Y及びコイル52Xの少なくとも一部が、一体化されていてもよい。つまり、隣り合う二つの磁場発生器5に共通して含まれるコイルが配置されていてもよい。 The two magnetic field generators 5 adjacent to each other on the XY plane may cancel each other because the directions of the magnetic fields generated from the coils 52Y and the coils 52X are opposite to each other. Two adjacent magnetic field generators 5 on the XY plane may share at least a part of the coil 51Z, the coil 52Y, and the coil 52X. That is, the two magnetic field generators 5 adjacent on the XY plane may include coils that can be shared with each other. In other words, at least a part of the coil 51Z, the coil 52Y, and the coil 52X included in the two magnetic field generators 5 adjacent to each other on the XY plane may be integrated. That is, the coil contained in common with two adjacent magnetic field generators 5 may be arrange | positioned.
 例えば、X軸に沿って隣り合う二つの磁場発生器5は、X軸に沿って隣り合う二つのコイル52Xの少なくとも一部を共用してもよい。典型的には、X軸に沿って隣り合う二つの磁場発生器5のうちの一の磁場発生器5が備えるコイル521Xと、X軸に沿って隣り合う二つの磁場発生器5のうちの他の磁場発生器5が備えるコイル522Xとに代えて、X軸に沿って隣り合う二つの磁場発生器5によって共用されるコイルが配置されていてもよい。具体的には、図24(a)から図24(b)に示す例で言えば、磁場発生器5が備えるコイル522Xと磁場発生器5が備えるコイル521Xとに代えて、磁場発生器5がコイル522Xとして利用し且つ磁場発生器5がコイル521Xとして利用する単一のコイルが配置されていてもよい。 For example, the two magnetic field generators 5 adjacent along the X axis may share at least a part of the two coils 52X adjacent along the X axis. Typically, the coil 521X included in one of the two magnetic field generators 5 adjacent along the X axis and the other of the two magnetic field generators 5 adjacent along the X axis. Instead of the coil 522X included in the magnetic field generator 5, a coil shared by the two magnetic field generators 5 adjacent to each other along the X axis may be arranged. Specifically, in the example shown in FIG. 24 (b) from FIG. 24 (a), the place of the coil 521X of coils 522X and the magnetic field generator 5 4 with the magnetic field generator 5 1 is provided, the magnetic field generator 5 1 utilizing and magnetic field generator 5 4 as a coil 522X may be arranged a single coil to be used as a coil 521X.
 例えば、Y軸に沿って隣り合う二つの磁場発生器5は、Y軸に沿って隣り合う二つのコイル52Yの少なくとも一部を共用してもよい。典型的には、Y軸に沿って隣り合う二つの磁場発生器5のうちの一の磁場発生器5が備えるコイル521Yと、Y軸に沿って隣り合う二つの磁場発生器5のうちの他の磁場発生器5が備えるコイル522Yとに代えて、Y軸に沿って隣り合う二つの磁場発生器5によって共用されるコイルが配置されていてもよい。具体的には、図24(a)から図24(b)に示す例で言えば、磁場発生器5が備えるコイル522Yと磁場発生器5が備えるコイル521Yとに代えて、磁場発生器5がコイル522Yとして利用し且つ磁場発生器5がコイル521Yとして利用する単一のコイルが配置されていてもよい。 For example, the two magnetic field generators 5 adjacent along the Y axis may share at least a part of the two coils 52Y adjacent along the Y axis. Typically, the coil 521Y included in one of the two magnetic field generators 5 adjacent along the Y axis and the other of the two magnetic field generators 5 adjacent along the Y axis. Instead of the coil 522Y included in the magnetic field generator 5, a coil shared by two magnetic field generators 5 adjacent to each other along the Y axis may be disposed. Specifically, in the example shown in FIG. 24 (b) from FIG. 24 (a), the place of the coil 521Y coil 522Y and the magnetic field generator 5 2 provided in the magnetic field generator 5 1 is provided, the magnetic field generator 5 1 and the magnetic field generator 5 2 utilized is as the coil 522Y may be arranged a single coil to be used as a coil 521Y.
 (3-8)第8変形例
 続いて、第8変形例の露光装置EXhについて説明する。第8変形例の露光装置EXhは、隣り合う二つ以上の電子ビーム光学系12に一つの磁場発生器5が対応付けられるという点で、一つの電子ビーム光学系12に一つの磁場発生器5が対応付けられる第7変形例の露光装置EXgとは異なる。第8変形例の露光装置EXhが備えるその他の構成要素は、上述した第7変形例の露光装置EXgが備えるその他の構成要素と同一である。以下、図25(a)から図25(b)を参照しながら、複数の磁場発生器5と複数の電子ビーム光学系12との対応関係について説明する。図25(a)は、第8変形例における複数の磁場発生器5と複数の電子ビーム光学系12との対応関係を、YZ平面上で示す断面図である。図25(b)は、第8変形例における複数の磁場発生器5と複数の電子ビーム光学系12との対応関係を、XY平面上で示す平面図である。尚、以下では、XY平面上において2行×2列のマトリクス状の配列パターンで隣り合う四つの電子ビーム光学系12に一つの磁場発生器5が対応付けられる例を用いて説明を進める。但し、三つ以下又は五つ以上の電子ビーム光学系12に一つの磁場発生器5が対応付けられてもよい。
(3-8) Eighth Modification Next, an exposure apparatus EXh according to an eighth modification will be described. In the exposure apparatus EXh of the eighth modification, one magnetic field generator 5 is associated with one electron beam optical system 12 in that one magnetic field generator 5 is associated with two or more adjacent electron beam optical systems 12. Is different from the exposure apparatus EXg of the seventh modified example. Other components included in the exposure apparatus EXh according to the eighth modification are the same as those included in the exposure apparatus EXg according to the seventh modification described above. Hereinafter, the correspondence between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 will be described with reference to FIGS. 25 (a) to 25 (b). FIG. 25A is a cross-sectional view showing the correspondence relationship between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 on the YZ plane in the eighth modification. FIG. 25B is a plan view showing a correspondence relationship between the plurality of magnetic field generators 5 and the plurality of electron beam optical systems 12 on the XY plane in the eighth modification. In the following, the description will be given using an example in which one magnetic field generator 5 is associated with four adjacent electron beam optical systems 12 in a 2 × 2 matrix arrangement pattern on the XY plane. However, one magnetic field generator 5 may be associated with three or less or five or more electron beam optical systems 12.
 第8変形例においても、露光装置EXfがN個の電子ビーム光学系12(つまり、電子ビーム光学系12から電子ビーム光学系12)を備えているものとする。但し、説明の便宜上、第8変形例におけるN個の電子ビーム光学系12のXY平面上での配列順(図25(a)参照)は、第7変形例におけるN個の電子ビーム光学系12のXY平面上での配列順(図24(a)参照)とは異なるものとする。この場合、露光装置EXは、隣り合う四つの電子ビーム光学系12から12に対応する磁場発生器5p1と、隣り合う四つの電子ビーム光学系12から12に対応する磁場発生器5p2と、・・・、隣り合う四つの電子ビーム光学系12N-3から電子ビーム光学系12に対応する磁場発生器5pn(但し、nは、N/4以上の整数)を備えている。但し、磁場発生器5p1から5pnの少なくとも一つは、三つ以下の電子ビーム光学系12に対応していてもよい。 Also in the eighth modification, the exposure apparatus EXf are N electron beam optical system 12 (that is, from the electron beam optical system 12 1 electron beam optical system 12 N) shall have a. However, for convenience of explanation, the arrangement order of the N electron beam optical systems 12 in the eighth modified example on the XY plane (see FIG. 25A) is N electron beam optical systems 12 in the seventh modified example. The order of arrangement on the XY plane (see FIG. 24A) is different. In this case, the exposure apparatus EX, the magnetic field generator corresponding to the magnetic field generator 5 p1 corresponding of four electron beam optical system 12 1 adjacent to 12 4, the four electron beam optical system 12 5 adjacent to 12 8 5 p2 ... Includes a magnetic field generator 5 pn corresponding to the electron beam optical system 12 N from four adjacent electron beam optical systems 12 N-3 (where n is an integer equal to or greater than N / 4). ing. However, at least one of the magnetic field generators 5 p1 to 5 pn may correspond to three or less electron beam optical systems 12.
 図25(a)から図25(b)に示すように、磁場発生器5pm(但し、mは、1≦k≦nを満たす整数)は、コイル51Zpmと、コイル52Ypmと、コイル52Xpmとを備えている。但し、図面の簡略化のために、図25(a)では、コイル52Xpmが図示されていない。コイル51Zpmの構造は上述したコイル51Zの構造と同一であり、コイル52Ypmの構造は上述したコイル52Yの構造と同一であり、コイル52Xpmの構造は上述したコイル52Xの構造と同一である。但し、コイル51Zpmに含まれるコイル511Z及び512Zは、XY平面上において、コイル51Zpmに対応する四つの電子ビーム光学系12の光軸AXを包含できるサイズを有している。コイル52Ypmに含まれるコイル521Y及び522Yは、XY平面上において、コイル52Ypmに対応する四つの電子ビーム光学系12の光軸AXを間に挟みこむことができるサイズを有している。コイル52Xpmに含まれるコイル521X及び522Xは、XY平面上において、コイル52Xpmに対応する四つの電子ビーム光学系12の光軸AXを間に挟みこむことができるサイズを有している。 Figure 25 (a) as shown in FIG. 25 (b), the magnetic field generator 5 pm (where, m is 1 integer satisfying ≦ k ≦ n) includes a coil 51Z pm, the coil 52Y pm, coils 52X pm . However, for simplification of the drawing, the coil 52X pm is not shown in FIG. Structure of coil 51Z pm is identical to the structure of the coil 51Z as described above, the structure of the coil 52Y pm is identical to the structure of the coil 52Y as described above, the structure of the coil 52X pm is the same as the structure of the coil 52X as described above . However, the coils 511Z and 512Z are included in the coil 51Z pm, in the XY plane, and has a size that can contain the optical axis AX of the four electron beam optical system 12 corresponding to the coil 51Z pm. The coils 521Y and 522Y included in the coil 52Y pm have a size capable of sandwiching the optical axes AX of the four electron beam optical systems 12 corresponding to the coils 52Y pm on the XY plane. Coils 521X and 522X contained in the coil 52X pm, in the XY plane, and has a size that can be sandwiched between the optical axis AX of the four electron beam optical system 12 corresponding to the coil 52X pm.
 磁場発生器5pmは、磁場発生器5pmに対応する四つの電子ビーム光学系12の夫々とウェハWとの間の空間SPを含む空間SPpmにキャンセル磁場を発生可能である。例えば、磁場発生器5P1は、電子ビーム光学系12とウェハWとの間の空間SP、電子ビーム光学系12とウェハWとの間の空間SP、電子ビーム光学系12とウェハWとの間の空間SP及び電子ビーム光学系12とウェハWとの間の空間SPを含む空間SPP1にキャンセル磁場を発生可能である。例えば、磁場発生器5P2は、電子ビーム光学系12とウェハWとの間の空間SP、電子ビーム光学系12とウェハWとの間の空間SP、電子ビーム光学系12とウェハWとの間の空間SP及び電子ビーム光学系12とウェハWとの間の空間SPを含む空間SPP2にキャンセル磁場を発生可能である。 The magnetic field generator 5 pm can generate a cancel magnetic field in the space SP pm including the space SP between each of the four electron beam optical systems 12 corresponding to the magnetic field generator 5 pm and the wafer W. For example, the magnetic field generator 5 P1 includes a space SP 1 between the electron beam optical system 12 1 and the wafer W, a space SP 2 between the electron beam optical system 12 2 and the wafer W, and an electron beam optical system 12 3 . it is possible to generate a cancellation magnetic field in a space SP P1 containing space SP 4 between the space SP 3 and the electron beam optical system 12 4 and the wafer W between the wafer W. For example, the magnetic field generator 5 P2 is space SP 5 between electron beam optical system 12 5 and the wafer W, a space SP 6, the electron beam optical system 12 7 between the electron beam optical system 12 6 and the wafer W it is possible to generate a cancellation magnetic field in a space SP P2 containing space SP 8 between the space SP 7 and the electron beam optical system 12 8 and the wafer W between the wafer W.
 コイル51Zpmは、空間SPpmにキャンセル磁場BZを発生可能である。この場合、コイル51Zpmに含まれるコイル511Z及び512Zの夫々の内側を、コイル51Zpmに対応する四つの電子ビーム光学系12の光軸AXが通過するように、コイル51Zpmが、当該コイル51Zpmに対応する四つの電子ビーム光学系12に対して位置合わせされてもよい。コイル51Zpmは、主として、コイル51Zpmに対応する四つの電子ビーム光学系12の内部から空間SPpmに漏れ出た内部漏れ磁場の影響を抑制するためのキャンセル磁場BZを発生可能である。つまり、コイル51Zpmは、空間SPpmに漏れ出た内部漏れ磁場の方向をZ軸方向に揃えることが可能なキャンセル磁場BZを発生可能である。 The coil 51Z pm can generate a cancel magnetic field BZ in the space SP pm . In this case, the coil 51Z pm is connected to the coil 51Z pm so that the optical axes AX of the four electron beam optical systems 12 corresponding to the coils 51Z pm pass through the inner sides of the coils 511Z and 512Z included in the coil 51Z pm. You may align with respect to the four electron beam optical systems 12 corresponding to pm . The coil 51Z pm can mainly generate a cancel magnetic field BZ for suppressing the influence of the internal leakage magnetic field leaking from the inside of the four electron beam optical systems 12 corresponding to the coil 51Z pm to the space SP pm . That is, the coil 51Z pm can generate a cancel magnetic field BZ that can align the direction of the internal leakage magnetic field leaking into the space SP pm in the Z-axis direction.
 コイル52Ypmは、空間SPpmにキャンセル磁場BYを発生可能である。この場合、コイル52Ypmに含まれるコイル521Y及び522Yの間を、コイル52Ypmに対応する四つの電子ビーム光学系12の光軸AXが通過するように、コイル52Ypmが、コイル52Ypmに対応する四つの電子ビーム光学系12に対して位置合わせされてもよい。コイル52Ypmは、主として、コイル52Ypmに対応する四つの電子ビーム光学系12の外部から空間SPpmに漏れ出た外部漏れ磁場の影響を抑制するためのキャンセル磁場BYを発生可能である。つまり、コイル52Ypmは、コイル52Xpmが発生するキャンセル磁場BXと協働して、空間SPpmに漏れ出た外部漏れ磁場を相殺することが可能なキャンセル磁場BYを発生可能である。 The coil 52Y pm can generate a cancel magnetic field BY in the space SP pm . In this case, between the coils 521Y and 522Y included in the coil 52Y pm, so that the optical axis AX of the four electron beam optical system 12 corresponding to the coil 52Y pm passes, the coil 52Y pm is, corresponding to the coil 52Y pm The four electron beam optical systems 12 may be aligned. The coil 52Y pm can mainly generate a cancel magnetic field BY for suppressing the influence of the external leakage magnetic field leaking from the outside of the four electron beam optical systems 12 corresponding to the coil 52Y pm to the space SP pm . In other words, the coil 52Y pm, in cooperation with the cancel magnetic field BX coil 52X pm occurs, it is possible to generate a cancellation magnetic field BY capable of canceling the external leakage magnetic field leaking to the space SP pm.
 コイル52Xpmは、空間SPpmにキャンセル磁場BXを発生可能である。この場合、コイル52Xpmに含まれるコイル521X及び522Xの間を、コイル52Xpmに対応する四つの電子ビーム光学系12の光軸AXが通過するように、コイル52Xpmが、コイル52Xpmに対応する四つの電子ビーム光学系12に対して位置合わせされてもよい。コイル52Xpmは、主として、コイル52Xpmに対応する四つの電子ビーム光学系12の外部から空間SPpmに漏れ出た外部漏れ磁場の影響を抑制するためのキャンセル磁場BYを発生可能である。つまり、コイル52Xpmは、コイル52Ypmが発生するキャンセル磁場BYと協働して、空間SPpmに漏れ出た外部漏れ磁場を相殺することが可能なキャンセル磁場BXを発生可能である。 The coil 52X pm can generate a cancel magnetic field BX in the space SP pm . In this case, between the coils 521X and 522X contained in the coil 52X pm, so that the optical axis AX of the four electron beam optical system 12 corresponding to the coil 52X pm passes, the coil 52X pm is, corresponding to the coil 52X pm The four electron beam optical systems 12 may be aligned. The coil 52X pm can mainly generate a cancel magnetic field BY for suppressing the influence of the external leakage magnetic field leaking from the outside of the four electron beam optical systems 12 corresponding to the coil 52X pm to the space SP pm . In other words, the coil 52X pm, in cooperation with the cancel magnetic field BY the coil 52Y pm occurs, it is possible to generate a cancellation magnetic field BX capable of canceling the external leakage magnetic field leaking to the space SP pm.
 但し、第8変形例では、四つの電子ビーム光学系12の外部から空間SPpmに漏れ出た外部漏れ磁場は、図8を参照しながら上述した外部漏れ磁場に加えて、四つの電子ビーム光学系12以外の他の電子ビーム光学系12の内部から空間SPpmに漏れ出た磁場をも含む。このため、コイル52Ypm及び52Xpmは、コイル52Ypm及び52Xpmに対応する四つの電子ビーム光学系12以外の他の電子ビーム光学系12の内部から空間SPpmに漏れ出た磁場を含む外部漏れ磁場の影響を抑制可能なキャンセル磁場を発生する。例えば、コイル52Yp1及び52Xp1は、電子ビーム光学系12から電子ビーム光学系12の内部から空間SPp1に漏れ出た磁場を含む外部漏れ磁場の影響を抑制可能なキャンセル磁場を発生する。例えば、コイル52Yp2及び52Xp2は、電子ビーム光学系12から電子ビーム光学系12及び電子ビーム光学系12から電子ビーム光学系12の内部から空間SPp2に漏れ出た磁場を含む外部漏れ磁場の影響を抑制可能なキャンセル磁場を発生する。 However, in the eighth modification, the external leakage magnetic field leaking from the outside of the four electron beam optical systems 12 into the space SP pm is not limited to the external leakage magnetic field described above with reference to FIG. A magnetic field leaking into the space SP pm from the inside of the electron beam optical system 12 other than the system 12 is also included. For this reason, the coils 52Y pm and 52X pm have an external magnetic field that leaks into the space SP pm from the inside of the electron beam optical system 12 other than the four electron beam optical systems 12 corresponding to the coils 52Y pm and 52X pm. A cancel magnetic field that can suppress the influence of the leakage magnetic field is generated. For example, the coil 52Y p1 and 52X p1 generates a cancellation magnetic field that can suppress the influence of external leakage magnetic field including a magnetic field leaked to the space SP p1 from the electron beam optical system 12 5 from the interior of the electron beam optical system 12 N . For example, the coil 52Y p2 and 52X p2 includes a magnetic field leaked to the space SP p2 from the electron beam optical system 12 1 from the electron beam optical system 12 4, and the electron beam optical system 12 9 from the interior of the electron beam optical system 12 N A cancel magnetic field that can suppress the influence of an external leakage magnetic field is generated.
 このような第8変形例の露光装置EXhは、複数の電子ビームEBの照射に付随して発生する漏れ磁場の影響を受けることなく又は漏れ磁場の影響に関わらず、複数の電子ビームEBを、ウェハW上の所望位置に照射することができる。その結果、複数の電子ビームEBによる露光精度の悪化が適切に抑制される。つまり、露光装置EXhが複数の電子ビームEBを照射する場合においても、上述した露光装置EXが享受可能な効果が適切に享受可能である。 Such an exposure apparatus EXh of the eighth modified example does not receive the influence of the leakage magnetic field generated accompanying irradiation of the plurality of electron beams EB or regardless of the influence of the leakage magnetic field, A desired position on the wafer W can be irradiated. As a result, deterioration of exposure accuracy due to the plurality of electron beams EB is appropriately suppressed. That is, even when the exposure apparatus EXh irradiates a plurality of electron beams EB, the effects that can be enjoyed by the exposure apparatus EX described above can be appropriately enjoyed.
 (3-9)その他の変形例
 上述した説明では、露光装置EXは、電子ビームEBをウェハWに照射して当該ウェハWを露光する露光装置である。しかしながら、露光装置EXは、電子ビームEBとは異なる任意の荷電粒子ビーム(例えば、イオンビーム)をウェハWに照射して当該ウェハWを露光する露光装置であってもよい。
(3-9) Other Modifications In the above description, the exposure apparatus EX is an exposure apparatus that exposes the wafer W by irradiating the wafer W with the electron beam EB. However, the exposure apparatus EX may be an exposure apparatus that exposes the wafer W by irradiating the wafer W with an arbitrary charged particle beam (for example, an ion beam) different from the electron beam EB.
 上述した説明では、露光装置EXは、電子ビーム光学系12が単一の電子ビームEBを用いてウェハWにパターンを描画又は転写するシングルビーム型の露光装置である。この場合、露光装置EXは、電子ビーム光学系12がウェハWに照射する電子ビームEBの断面をサイズ可変の矩形に成形する可変成形型の露光装置であってもよい。露光装置EXは、電子ビーム光学系12がスポット状の電子ビームEBをウェハWに照射するポイントビーム型の露光装置であってもよい。露光装置EXは、電子ビーム光学系12が所望形状のビーム通過孔が形成されたステンシルマスクを用いて電子ビームEBを所望形状に成形するステンシルマスク型の露光装置であってもよい。 In the above description, the exposure apparatus EX is a single beam type exposure apparatus in which the electron beam optical system 12 draws or transfers a pattern on the wafer W using a single electron beam EB. In this case, the exposure apparatus EX may be a variable shaping type exposure apparatus that shapes the cross section of the electron beam EB irradiated to the wafer W by the electron beam optical system 12 into a variable size rectangle. The exposure apparatus EX may be a point beam type exposure apparatus in which the electron beam optical system 12 irradiates the wafer W with a spot-shaped electron beam EB. The exposure apparatus EX may be a stencil mask type exposure apparatus in which the electron beam optical system 12 shapes the electron beam EB into a desired shape using a stencil mask in which a beam passage hole having a desired shape is formed.
 或いは、露光装置EXは、電子ビーム光学系12が複数の電子ビームを用いてウェハWにパターンを描画又は転写するマルチビーム型の露光装置であってもよい。例えば、露光装置EXは、複数の開口を有するブランキングアパーチャアレイを介して複数の電子ビームを発生させ、描画パターンに応じて複数の電子ビームを個別にON/OFFしてパターンをウェハWに描画する露光装置であってもよい。例えば、露光装置EXは、電子ビーム光学系12が複数の電子ビームを夫々射出する複数の電子放出部を有する面放出型電子ビーム源を備える露光装置であってもよい。 Alternatively, the exposure apparatus EX may be a multi-beam type exposure apparatus in which the electron beam optical system 12 draws or transfers a pattern on the wafer W using a plurality of electron beams. For example, the exposure apparatus EX generates a plurality of electron beams via a blanking aperture array having a plurality of openings, and individually turns on / off the plurality of electron beams according to the drawing pattern, thereby drawing the pattern on the wafer W. An exposure apparatus may be used. For example, the exposure apparatus EX may be an exposure apparatus that includes a surface emission type electron beam source having a plurality of electron emission portions from which the electron beam optical system 12 emits a plurality of electron beams.
 露光装置EXは、一つの半導体チップのパターン又は複数の半導体チップのパターンをマスクからウェハWへ一括して転写する一括転写方式の露光装置であってもよい。露光装置EXは、一括転写方式よりも高いスループットで露光が可能な分割転写方式の露光装置であってもよい。分割転写方式の露光装置は、ウェハWに転写すべきパターンをマスク上で1つのショット領域Sに相当する大きさよりも小さい複数の小領域に分割し、これら複数の少領域のパターンをウェハWに転写する。尚、分割転写方式の露光装置としては、一つの半導体チップのパターンを備えたマスクのある範囲に電子ビームEBを照射し、当該電子ビームのEBが照射された範囲のパターンの像を投影レンズで縮小転写する縮小転写型の露光装置もある。 The exposure apparatus EX may be a batch transfer type exposure apparatus that collectively transfers a pattern of one semiconductor chip or a plurality of semiconductor chip patterns from a mask to the wafer W. The exposure apparatus EX may be a split transfer type exposure apparatus capable of performing exposure with higher throughput than the batch transfer type. The division transfer type exposure apparatus divides a pattern to be transferred onto the wafer W into a plurality of small areas smaller than the size corresponding to one shot area S on the mask, and the plurality of small area patterns are formed on the wafer W. Transcript. As an exposure apparatus of the divided transfer method, an electron beam EB is irradiated to a certain area of a mask having a pattern of one semiconductor chip, and an image of the pattern in the area irradiated with the electron beam EB is projected with a projection lens. There is also a reduction transfer type exposure apparatus that performs reduction transfer.
 露光装置EXは、スキャニング・ステッパであってもよい。露光装置EXは、ステッパなどの静止型露光装置であってもよい。露光装置EXは、一のショット領域Sの少なくとも一部と他のショット領域Sの少なくとも一部とを合成するステップ・アンド・スティッチ型の縮小投影露光装置であってもよい。 The exposure apparatus EX may be a scanning stepper. The exposure apparatus EX may be a stationary exposure apparatus such as a stepper. The exposure apparatus EX may be a step-and-stitch type reduction projection exposure apparatus that synthesizes at least a part of one shot area S and at least a part of another shot area S.
 上述した説明では、露光装置EXの露光対象が、半導体デバイスを製造するための半導体基板(つまり、ウェハW)である。しかしながら、露光装置EXの露光対象は、任意の基板(或いは、任意の物体)であってもよい。例えば、露光装置EXは、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン又はDNAチップを製造するための露光装置であってもよい。例えば、露光装置EXは、角型のガラスプレートやシリコンウエハにマスクパターンを描画するための露光装置であってもよい。 In the above description, the exposure target of the exposure apparatus EX is a semiconductor substrate (that is, the wafer W) for manufacturing a semiconductor device. However, the exposure target of the exposure apparatus EX may be an arbitrary substrate (or an arbitrary object). For example, the exposure apparatus EX may be an exposure apparatus for manufacturing an organic EL, a thin film magnetic head, an image sensor (CCD or the like), a micromachine, or a DNA chip. For example, the exposure apparatus EX may be an exposure apparatus for drawing a mask pattern on a square glass plate or a silicon wafer.
 半導体デバイス等のデバイスは、図26に示す各ステップを経て製造されてもよい。デバイスを製造するためのステップは、デバイスの機能及び性能設計を行うステップS201、機能及び性能設計に基づく露光パターン(つまり、電子ビームEBによる露光パターン)を生成するステップS202、デバイスの基材であるウェハWを製造するステップS203、生成した露光パターンに応じた電子ビームEBを用いてウェハWを露光し且つ露光されたウェハWを現像するステップS204、デバイス組み立て処理(ダイシング処理、ボンディング処理、パッケージ処理等の加工処理)を含むステップS205及びデバイスの検査を行うステップS206を含んでいてもよい。 A device such as a semiconductor device may be manufactured through the steps shown in FIG. The steps for manufacturing the device are step S201 for designing the function and performance of the device, step S202 for generating an exposure pattern based on the function and performance design (that is, an exposure pattern by the electron beam EB), and a substrate of the device. Step S203 for manufacturing the wafer W, Step S204 for exposing the wafer W using the electron beam EB corresponding to the generated exposure pattern and developing the exposed wafer W, device assembly processing (dicing processing, bonding processing, package processing) Step S205 including a processing process such as the above and step S206 for inspecting a device may be included.
 上述の各実施形態(各変形例を含む、以下この段落において同じ)の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least a part of the constituent elements of each of the above-described embodiments (including each modification, the same applies in this paragraph below) can be appropriately combined with at least another part of the constituent elements of each of the above-described embodiments. Some of the configuration requirements of the above-described embodiments may not be used. In addition, as long as permitted by law, the disclosures of all published publications and US patents cited in the above-described embodiments are incorporated as part of the description of the text.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う露光装置、露光方法、及び、デバイス製造方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the scope or spirit of the invention that can be read from the claims and the entire specification, and an exposure apparatus with such changes, An exposure method and a device manufacturing method are also included in the technical scope of the present invention.
 EX 露光装置
 W ウェハ
 EB 電子ビーム
 EA 照射領域
 S ショット領域
 1 電子ビーム照射装置
 11 鏡筒
 12 電子ビーム光学系
 13 メトロロジーフレーム
 2 ステージ装置
 21 定盤
 22 ステージ
 3 制御装置
 5 磁場発生器
 51Z、511Z、512Z コイル
 52Y、521Y、522Y コイル
 52X、521X、522X コイル
 53Z、54Y、54X 磁石
 6a 支持部材
 7f 磁場センサ
EX exposure apparatus W wafer EB electron beam EA irradiation area S shot area 1 electron beam irradiation apparatus 11 barrel 12 electron beam optical system 13 metrology frame 2 stage apparatus 21 surface plate 22 stage 3 control apparatus 5 magnetic field generator 51Z, 511Z, 512Z Coil 52Y, 521Y, 522Y Coil 52X, 521X, 522X Coil 53Z, 54Y, 54X Magnet 6a Support member 7f Magnetic field sensor

Claims (42)

  1.  荷電粒子ビームを物体に照射可能なビーム光学系と、
     前記ビーム光学系と前記物体との間の空間に対して、第1の特性を有する第1の磁場を発生可能な第1磁場発生装置と、
     前記ビーム光学系と前記物体との間の空間に対して、前記第1の特性とは異なる第2の特性を有する第2の磁場を発生可能な第2磁場発生装置と
     を備える露光装置。
    A beam optical system capable of irradiating an object with a charged particle beam;
    A first magnetic field generator capable of generating a first magnetic field having a first characteristic with respect to a space between the beam optical system and the object;
    An exposure apparatus comprising: a second magnetic field generation device capable of generating a second magnetic field having a second characteristic different from the first characteristic with respect to a space between the beam optical system and the object.
  2.  前記特性は、前記磁場の方向を含む
     請求項1に記載の露光装置。
    The exposure apparatus according to claim 1, wherein the characteristic includes a direction of the magnetic field.
  3.  前記第1の磁場の方向は、前記第2の磁場の方向に交差する
     請求項2に記載の露光装置。
    The exposure apparatus according to claim 2, wherein the direction of the first magnetic field intersects the direction of the second magnetic field.
  4.  前記第1の磁場の方向は、前記第2の磁場の方向に直交する
     請求項2又は3に記載の露光装置。
    The exposure apparatus according to claim 2, wherein the direction of the first magnetic field is orthogonal to the direction of the second magnetic field.
  5.  前記第1の磁場は、前記ビーム光学系の内部から前記ビーム光学系と前記物体との間の空間に発生する第3の磁場に作用し、
     前記第2の磁場は、前記ビーム光学系の外部から前記ビーム光学系と前記物体との間の空間に発生する第4の磁場に作用する
     請求項1から4のいずれか一項に記載の露光装置。
    The first magnetic field acts on a third magnetic field generated in the space between the beam optical system and the object from the inside of the beam optical system,
    5. The exposure according to claim 1, wherein the second magnetic field acts on a fourth magnetic field generated in a space between the beam optical system and the object from outside the beam optical system. apparatus.
  6.  前記第1の磁場は、前記第3の磁場の方向を揃えるように前記第3の磁場に作用し、
     前記第2の磁場は、前記第4の磁場を相殺するように前記第4の磁場に作用する
     請求項5に記載の露光装置。
    The first magnetic field acts on the third magnetic field so as to align the direction of the third magnetic field,
    The exposure apparatus according to claim 5, wherein the second magnetic field acts on the fourth magnetic field so as to cancel the fourth magnetic field.
  7.  前記第1及び第2磁場発生装置の少なくとも一方は、前記物体の上方に配置される
     請求項1から6のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 1 to 6, wherein at least one of the first and second magnetic field generation devices is disposed above the object.
  8.  前記第1及び第2磁場発生装置の少なくとも一方は、前記物体と前記ビーム光学系との間に配置される
     請求項1から7のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 1 to 7, wherein at least one of the first and second magnetic field generation devices is disposed between the object and the beam optical system.
  9.  前記第1及び第2磁場発生装置の少なくとも一方は、前記物体の下方に配置される
     請求項1から8のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 1 to 8, wherein at least one of the first and second magnetic field generation devices is disposed below the object.
  10.  前記物体を前記物体の下方から支持するステージを更に備え、
     前記第1及び第2磁場発生装置の少なくとも一方は、前記ステージに配置される
     請求項1から9のいずれか一項に記載の露光装置。
    Further comprising a stage for supporting the object from below the object;
    The exposure apparatus according to any one of claims 1 to 9, wherein at least one of the first and second magnetic field generation devices is disposed on the stage.
  11.  前記第1及び第2磁場発生装置の少なくとも一方は、コイルを含む
     請求項1から10のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 1 to 10, wherein at least one of the first and second magnetic field generators includes a coil.
  12.  前記第1及び第2磁場発生装置の少なくとも一方は、ヘルムホルツ型の前記コイルを含む
     請求項11に記載の露光装置。
    The exposure apparatus according to claim 11, wherein at least one of the first and second magnetic field generation devices includes the Helmholtz-type coil.
  13.  前記第1磁場発生装置が含む前記コイルの中心軸は、前記第2磁場発生装置が含む前記コイルの中心軸に交差又は直交する
     請求項11又は12に記載の露光装置。
    The exposure apparatus according to claim 11 or 12, wherein a central axis of the coil included in the first magnetic field generator intersects or is orthogonal to a central axis of the coil included in the second magnetic field generator.
  14.  前記第1磁場発生装置が含む前記コイルの中心軸は、前記ビーム光学系の光軸に沿っており、
     前記第2磁場発生装置が含む前記コイルの中心軸は、前記光軸に交差する又は直交する平面に沿っている
     請求項11から13のいずれか一項に記載の露光装置。
    A central axis of the coil included in the first magnetic field generator is along an optical axis of the beam optical system;
    The exposure apparatus according to claim 11, wherein a central axis of the coil included in the second magnetic field generation device is along a plane that intersects or is orthogonal to the optical axis.
  15.  前記第1及び第2磁場発生装置の少なくとも一方は、磁石を含む
     請求項1から14のいずれか一項に記載の露光装置。
    The exposure apparatus according to claim 1, wherein at least one of the first and second magnetic field generators includes a magnet.
  16.  前記第1磁場発生装置が含む前記磁石の2つの磁極が並ぶ方向は、前記第2磁場発生装置が含む前記磁石の2つの磁極が並ぶ方向に交差又は直交する
     請求項15に記載の露光装置。
    The exposure apparatus according to claim 15, wherein a direction in which the two magnetic poles of the magnet included in the first magnetic field generation device are aligned intersects or is orthogonal to a direction in which the two magnetic poles of the magnet included in the second magnetic field generation device are aligned.
  17.  前記第1磁場発生装置が含む前記磁石の2つの磁極が並ぶ方向は、前記ビーム光学系の光軸に沿っており、
     前記第2磁場発生装置が含む前記磁石の2つの磁極が並ぶ方向は、前記光軸に交差する又は直交する平面に沿っている
     請求項15又は16に記載の露光装置。
    The direction in which the two magnetic poles of the magnet included in the first magnetic field generator are aligned is along the optical axis of the beam optical system,
    The exposure apparatus according to claim 15 or 16, wherein a direction in which the two magnetic poles of the magnet included in the second magnetic field generation device are aligned is along a plane intersecting or orthogonal to the optical axis.
  18.  前記第2磁場発生装置は、夫々が異なる特性の前記第2の磁場を発生可能な少なくとも2つの第3磁場発生装置を含む
     請求項1から17のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 1 to 17, wherein the second magnetic field generation device includes at least two third magnetic field generation devices capable of generating the second magnetic field having different characteristics.
  19.  前記少なくとも2つの第3磁場発生装置のうちの一の第3磁場発生装置が発生する前記第2の磁場の方向は、前記少なくとも2つの第3磁場発生装置のうちの他の第3磁場発生装置が発生する前記第2の磁場の方向に交差又は直交する
     請求項18に記載の露光装置。
    The direction of the second magnetic field generated by one of the at least two third magnetic field generators is the other third magnetic field generator of the at least two third magnetic field generators. The exposure apparatus according to claim 18, wherein the exposure apparatus intersects or is orthogonal to a direction of the second magnetic field in which the generation occurs.
  20.  前記少なくとも2つの第3磁場発生装置の夫々は、コイルを含み、
     前記少なくとも2つの第3磁場発生装置のうちの一の第3磁場発生装置が含む前記コイルの中心軸は、前記少なくとも2つの第3磁場発生装置のうちの他の第3磁場発生装置が含む前記コイルの中心軸に交差又は直交する
     請求項18又は19に記載の露光装置。
    Each of the at least two third magnetic field generators includes a coil;
    The central axis of the coil included in one third magnetic field generator among the at least two third magnetic field generators is included in the other third magnetic field generator included in the at least two third magnetic field generators. The exposure apparatus according to claim 18, wherein the exposure apparatus intersects or is orthogonal to the central axis of the coil.
  21.  複数の前記第1磁場発生器を備える
     請求項1から20のいずれか一項に記載の露光装置。
    The exposure apparatus according to claim 1, comprising a plurality of the first magnetic field generators.
  22.  前記複数の第1磁場発生器は、夫々、少なくとも部分的に異なる複数の空間に対して前記第1の磁場を発生可能である
     請求項21に記載の露光装置。
    The exposure apparatus according to claim 21, wherein each of the plurality of first magnetic field generators can generate the first magnetic field in a plurality of spaces that are at least partially different from each other.
  23.  前記ビーム光学系を複数備えており、
     前記複数の第1磁場発生装置は、前記複数のビーム光学系に夫々対応する
     請求項21又は22に記載の露光装置。
    A plurality of the beam optical systems;
    The exposure apparatus according to claim 21 or 22, wherein the plurality of first magnetic field generation devices respectively correspond to the plurality of beam optical systems.
  24.  各第1磁場発生装置は、前記複数のビーム光学系のうち各第1磁場発生装置に対応する一のビーム光学系と前記物体との間の空間に対して前記第1の磁場を発生可能である
     請求項23に記載の露光装置。
    Each first magnetic field generation device can generate the first magnetic field in a space between one beam optical system corresponding to each first magnetic field generation device and the object among the plurality of beam optical systems. The exposure apparatus according to claim 23.
  25.  各第1磁場発生装置は、前記複数のビーム光学系のうち各第1磁場発生装置に対応する一のビーム光学系の内部から前記一のビーム光学系と前記物体との間の空間に発生する第3の磁場の方向を揃える前記第1の磁場を発生可能である
     請求項23又は24に記載の露光装置。
    Each first magnetic field generator is generated in the space between the one beam optical system and the object from the inside of one beam optical system corresponding to each first magnetic field generator among the plurality of beam optical systems. The exposure apparatus according to claim 23, wherein the first magnetic field that aligns the direction of the third magnetic field can be generated.
  26.  前記ビーム光学系を複数備えており、
     各第1磁場発生装置は、前記複数のビーム光学系のうちのN1(但し、N1は2以上の整数)個のビーム光学系に対応する
     請求項21又は22に記載の露光装置。
    A plurality of the beam optical systems;
    23. The exposure apparatus according to claim 21, wherein each first magnetic field generator corresponds to N1 (N1 is an integer of 2 or more) beam optical systems among the plurality of beam optical systems.
  27.  各第1磁場発生装置は、前記複数のビーム光学系のうち各第1磁場発生装置に対応するN1個のビーム光学系と前記物体との間の空間に対して前記第1の磁場を発生可能である
     請求項26に記載の露光装置。
    Each first magnetic field generator can generate the first magnetic field in a space between N1 beam optical systems corresponding to each first magnetic field generator and the object among the plurality of beam optical systems. The exposure apparatus according to claim 26.
  28.  各第1磁場発生装置は、前記複数のビーム光学系のうち各第1磁場発生装置に対応するN1個のビーム光学系の内部から前記N1個のビーム光学系と前記物体との間の空間に発生する第3の磁場の方向を揃える前記第1の磁場を発生可能である
     請求項26又は27に記載の露光装置。
    Each of the first magnetic field generators is arranged in a space between the N1 beam optical systems and the object from the inside of the N1 beam optical systems corresponding to the first magnetic field generators of the plurality of beam optical systems. The exposure apparatus according to claim 26 or 27, wherein the first magnetic field for aligning the direction of the generated third magnetic field can be generated.
  29.  複数の前記第2磁場発生器を備える
     請求項1から28のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 1 to 28, comprising a plurality of the second magnetic field generators.
  30.  前記複数の第2磁場発生器は、夫々、少なくとも部分的に異なる複数の空間に対して前記第2の磁場を発生可能である
     請求項29に記載の露光装置。
    30. The exposure apparatus according to claim 29, wherein each of the plurality of second magnetic field generators can generate the second magnetic field for a plurality of different spaces at least partially.
  31.  前記ビーム光学系を複数備えており、
     前記複数の第2磁場発生装置は、前記複数のビーム光学系に夫々対応する
     請求項29又は30に記載の露光装置。
    A plurality of the beam optical systems;
    The exposure apparatus according to claim 29 or 30, wherein the plurality of second magnetic field generation devices respectively correspond to the plurality of beam optical systems.
  32.  各第2磁場発生装置は、前記複数のビーム光学系のうち各第2磁場発生装置に対応する一のビーム光学系と前記物体との間の空間に対して前記第2の磁場を発生可能である
     請求項31に記載の露光装置。
    Each of the second magnetic field generators can generate the second magnetic field in a space between one beam optical system corresponding to each second magnetic field generator of the plurality of beam optical systems and the object. The exposure apparatus according to claim 31.
  33.  各第2磁場発生装置は、前記複数のビーム光学系のうち各第2磁場発生装置に対応する一のビーム光学系の外部から前記一のビーム光学系と前記物体との間の空間に発生する第4の磁場を相殺する前記第2の磁場を発生可能である
     請求項31又は32に記載の露光装置。
    Each of the second magnetic field generators is generated in a space between the one beam optical system and the object from the outside of the one of the plurality of beam optical systems corresponding to the second magnetic field generator. The exposure apparatus according to claim 31 or 32, wherein the second magnetic field that cancels a fourth magnetic field can be generated.
  34.  前記ビーム光学系を複数備えており、
     各第2磁場発生装置は、前記複数のビーム光学系のうちのN1(但し、N1は2以上の整数)個のビーム光学系に対応する
     請求項29又は30に記載の露光装置。
    A plurality of the beam optical systems;
    31. The exposure apparatus according to claim 29 or 30, wherein each second magnetic field generator corresponds to N1 (where N1 is an integer of 2 or more) beam optical systems among the plurality of beam optical systems.
  35.  各第2磁場発生装置は、前記複数のビーム光学系のうち各第2磁場発生装置に対応するN2個のビーム光学系と前記物体との間の空間に対して前記第2の磁場を発生可能である
     請求項34に記載の露光装置。
    Each second magnetic field generator can generate the second magnetic field in a space between N2 beam optical systems corresponding to each second magnetic field generator among the plurality of beam optical systems and the object. The exposure apparatus according to claim 34.
  36.  各第2磁場発生装置は、前記複数のビーム光学系のうち各第2磁場発生装置に対応するN2個のビーム光学系の外部から前記N2個のビーム光学系と前記物体との間の空間に発生する第4の磁場を相殺する前記第2の磁場を発生可能である
     請求項34又は35に記載の露光装置。
    Each of the second magnetic field generators is arranged in a space between the N2 beam optical systems and the object from outside the N2 beam optical systems corresponding to the second magnetic field generators of the plurality of beam optical systems. 36. The exposure apparatus according to claim 34 or 35, wherein the second magnetic field that cancels the generated fourth magnetic field can be generated.
  37.  前記第1及び第2の磁場の少なくとも一方を調整するように前記第1及び第2磁場発生装置の少なくとも一方を夫々制御する制御装置を更に備える
     請求項1から36のいずれか一項に記載の露光装置。
    The control device according to any one of claims 1 to 36, further comprising a control device that controls at least one of the first and second magnetic field generators so as to adjust at least one of the first and second magnetic fields. Exposure device.
  38.  前記制御装置は、前記ビーム光学系と前記物体との間の空間の磁場の推定結果に基づいて、前記第1及び第2の磁場の少なくとも一方を調整するように前記第1及び第2磁場発生装置の少なくとも一方を夫々制御する
     請求項37に記載の露光装置。
    The control device generates the first and second magnetic fields so as to adjust at least one of the first and second magnetic fields based on an estimation result of a magnetic field in a space between the beam optical system and the object. The exposure apparatus according to claim 37, wherein at least one of the apparatuses is controlled.
  39.  前記ビーム光学系と前記物体との間の空間の磁場を計測可能な計測装置を含み、
     前記制御装置は、前記計測装置の計測結果に基づいて、前記第1及び第2の磁場の少なくとも一方を調整するように前記第1及び第2磁場発生装置の少なくとも一方を夫々制御する
     請求項37又は38に記載の露光装置。
    A measuring device capable of measuring a magnetic field in a space between the beam optical system and the object;
    The control device controls at least one of the first and second magnetic field generation devices to adjust at least one of the first and second magnetic fields based on a measurement result of the measurement device. Or the exposure apparatus of 38.
  40.  前記物体を前記物体の下方から支持しながら移動可能なステージを更に備え、
     前記制御装置は、前記ステージの移動に応じて前記第1及び第2の磁場の少なくとも一方を調整するように前記第1及び第2磁場発生装置の少なくとも一方を夫々制御する
     請求項37から39のいずれか一項に記載の露光装置。
    A stage that is movable while supporting the object from below the object;
    40. The control device controls at least one of the first and second magnetic field generators so as to adjust at least one of the first and second magnetic fields in accordance with the movement of the stage. The exposure apparatus according to any one of the above.
  41.  請求項1から40のいずれか一項に記載の露光装置を用いて前記物体を露光する露光方法。 An exposure method for exposing the object using the exposure apparatus according to any one of claims 1 to 40.
  42.  リソグラフィ工程を含むデバイス製造方法であって、
     前記リソグラフィ工程では、請求項41に記載の露光方法により前記物体に対する露光が行われるデバイス製造方法。
    A device manufacturing method including a lithography process,
    42. A device manufacturing method in which, in the lithography process, the object is exposed by the exposure method according to claim 41.
PCT/JP2017/016524 2017-04-26 2017-04-26 Exposure apparatus, exposure method, and method for manufacturing device WO2018198222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/016524 WO2018198222A1 (en) 2017-04-26 2017-04-26 Exposure apparatus, exposure method, and method for manufacturing device
TW107108377A TW201907233A (en) 2017-04-26 2018-03-13 Exposure apparatus, exposure method and method of manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016524 WO2018198222A1 (en) 2017-04-26 2017-04-26 Exposure apparatus, exposure method, and method for manufacturing device

Publications (1)

Publication Number Publication Date
WO2018198222A1 true WO2018198222A1 (en) 2018-11-01

Family

ID=63918088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016524 WO2018198222A1 (en) 2017-04-26 2017-04-26 Exposure apparatus, exposure method, and method for manufacturing device

Country Status (2)

Country Link
TW (1) TW201907233A (en)
WO (1) WO2018198222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020210183A1 (en) * 2019-04-08 2020-10-15 Technical Manufacturing Corporation Magnetic field suppression system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024087130A (en) * 2022-12-19 2024-07-01 株式会社Screenホールディングス Exposure apparatus, exposure method, and method for creating machine learning model

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182789A (en) * 1991-12-27 1993-07-23 Ishikawajima Harima Heavy Ind Co Ltd Wiggler
JP2000357648A (en) * 1999-06-15 2000-12-26 Nec Corp Transfer exposing apparatus
JP2003068603A (en) * 2001-08-23 2003-03-07 Nikon Corp Charged particle beam exposure system
JP2003332781A (en) * 2002-05-16 2003-11-21 Tokkyokiki Corp Active magnetic field canceler
JP2005252254A (en) * 2004-03-03 2005-09-15 Ims Nanofabrication Gmbh Magnetic field compensation method in the operating region
JP2006287015A (en) * 2005-04-01 2006-10-19 Canon Inc Charged particle beam exposure system
JP2008053121A (en) * 2006-08-25 2008-03-06 Horiba Ltd Magnetic shield apparatus and magnetic shielding method
WO2009157054A1 (en) * 2008-06-24 2009-12-30 株式会社アドバンテスト Multicolumn electron beam exposure apparatus and magnetic field generating apparatus
WO2010029725A1 (en) * 2008-09-10 2010-03-18 株式会社竹中工務店 Magnetic shield system and magnetic shield method
WO2011065240A1 (en) * 2009-11-26 2011-06-03 株式会社日立ハイテクノロジーズ Scanning electron microscope
JP2011243541A (en) * 2010-05-21 2011-12-01 Hitachi High-Technologies Corp Electron microscope
JP2012009711A (en) * 2010-06-25 2012-01-12 Canon Inc Exposure apparatus and method of controlling device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182789A (en) * 1991-12-27 1993-07-23 Ishikawajima Harima Heavy Ind Co Ltd Wiggler
JP2000357648A (en) * 1999-06-15 2000-12-26 Nec Corp Transfer exposing apparatus
JP2003068603A (en) * 2001-08-23 2003-03-07 Nikon Corp Charged particle beam exposure system
JP2003332781A (en) * 2002-05-16 2003-11-21 Tokkyokiki Corp Active magnetic field canceler
JP2005252254A (en) * 2004-03-03 2005-09-15 Ims Nanofabrication Gmbh Magnetic field compensation method in the operating region
JP2006287015A (en) * 2005-04-01 2006-10-19 Canon Inc Charged particle beam exposure system
JP2008053121A (en) * 2006-08-25 2008-03-06 Horiba Ltd Magnetic shield apparatus and magnetic shielding method
WO2009157054A1 (en) * 2008-06-24 2009-12-30 株式会社アドバンテスト Multicolumn electron beam exposure apparatus and magnetic field generating apparatus
WO2010029725A1 (en) * 2008-09-10 2010-03-18 株式会社竹中工務店 Magnetic shield system and magnetic shield method
WO2011065240A1 (en) * 2009-11-26 2011-06-03 株式会社日立ハイテクノロジーズ Scanning electron microscope
JP2011243541A (en) * 2010-05-21 2011-12-01 Hitachi High-Technologies Corp Electron microscope
JP2012009711A (en) * 2010-06-25 2012-01-12 Canon Inc Exposure apparatus and method of controlling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020210183A1 (en) * 2019-04-08 2020-10-15 Technical Manufacturing Corporation Magnetic field suppression system
US12293861B2 (en) 2019-04-08 2025-05-06 Technical Manufacturing Corporation Magnetic field suppression system

Also Published As

Publication number Publication date
TW201907233A (en) 2019-02-16

Similar Documents

Publication Publication Date Title
JP6466333B2 (en) Actuating mechanism, optical apparatus, lithographic apparatus, and device manufacturing method
US6304320B1 (en) Stage device and a method of manufacturing same, a position controlling method, an exposure device and a method of manufacturing same, and a device and a method of manufacturing same
JP2008521221A (en) Pattern lock device for particle beam exposure apparatus
CN103477285A (en) System for magnetic shielding
US6930756B2 (en) Electron beam exposure apparatus and semiconductor device manufacturing method
WO2018198222A1 (en) Exposure apparatus, exposure method, and method for manufacturing device
CN101917110B (en) Linear motor magnetic shield apparatus
US7193339B2 (en) Positioning apparatus and charged-particle-beam exposure apparatus
US20150034842A1 (en) Driving apparatus, charged particle beam irradiation apparatus, method of manufacturing device
US8476607B2 (en) Charged particle beam drawing apparatus and article manufacturing method
JP2005005393A (en) Stage apparatus, exposure apparatus, and device manufacturing method
US6608317B1 (en) Charged-particle-beam (CPB)-optical systems with improved shielding against stray magnetic fields, and CPB microlithography apparatus comprising same
US11276558B2 (en) Exposure apparatus and exposure method, lithography method, and device manufacturing method
WO2018167924A1 (en) Charged particle beam optical system, exposure apparatus, exposure method, and device manufacturing method
US20140306123A1 (en) Stage apparatus, drawing apparatus, and method of manufacturing article
US6768117B1 (en) Immersion lens with magnetic shield for charged particle beam system
US6670547B2 (en) Magnetically shielded enclosures and associated methods for protecting a field-sensitive system from stray external magnetic fields
JP6964531B2 (en) Wien filter, electro-optical device
WO2018173829A1 (en) Exposure device, exposure method, and device manufacturing method
JP2006287015A (en) Charged particle beam exposure system
WO2016199738A1 (en) Charged particle beam exposure apparatus and device manufacturing method
JP7674975B2 (en) Stage device, charged particle beam device and vacuum device
WO2018167922A1 (en) Charged particle beam optical apparatus, exposure apparatus, exposure method, control apparatus, control method, information generation apparatus, information generation method, and device manufacturing method
JP2005209709A (en) Stage equipment
JP2002324748A (en) Magnetic shielding method for charged particle beam exposure equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP