[go: up one dir, main page]

WO2018131697A1 - Gas separation membrane - Google Patents

Gas separation membrane Download PDF

Info

Publication number
WO2018131697A1
WO2018131697A1 PCT/JP2018/000744 JP2018000744W WO2018131697A1 WO 2018131697 A1 WO2018131697 A1 WO 2018131697A1 JP 2018000744 W JP2018000744 W JP 2018000744W WO 2018131697 A1 WO2018131697 A1 WO 2018131697A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
gas
separation membrane
polyimide
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/000744
Other languages
French (fr)
Japanese (ja)
Inventor
弘 江口
山中 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017234224A external-priority patent/JP2018114491A/en
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Publication of WO2018131697A1 publication Critical patent/WO2018131697A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a gas separation membrane, a gas separation method using the same, and a gas separation apparatus.
  • a chemical absorption method in which an acidic gas is adsorbed to amines or the like has been used as a method for removing and purifying an acidic gas such as carbon dioxide (CO 2 ) from natural gas containing methane (CH 4 ).
  • the chemical absorption method is a method in which high-purity methane is efficiently obtained by adsorbing an acidic gas to an amine.
  • refining natural gas using the chemical absorption method requires a large gas separation device for the amount of purification, which requires construction costs, and costs for reusing the amine used as the absorbent in the purification process. There are problems such as taking.
  • the gas separation method using a gas separation membrane can use a small gas separation device for the gas throughput, and is advantageous for offshore plants of natural gas with a limited installation area.
  • the pressure of the natural gas at the time of sampling can be used as the driving force for passing the gas separation membrane.
  • a polymer such as polyimide is used as a material for the gas separation membrane.
  • the polyimide membrane exhibits excellent separation performance of carbon dioxide and methane at room temperature (about 20 ° C.).
  • the separation and purification of natural gas is generally performed continuously with the sampling gas, and is generally performed in the vicinity of 50 ° C., which is a higher temperature range.
  • the selectivity between carbon dioxide and methane decreases near 50 ° C., and high-purity methane tends not to be obtained.
  • Non-Patent Document 1 describes that the separation selectivity between carbon dioxide and methane by a polyimide membrane decreases as the temperature increases.
  • Natural gas is a fossil fuel containing a light hydrocarbon gas as a combustible gas.
  • hydrocarbon gas examples include methane, ethane, propane, butane, and pentane.
  • Natural gas contains nonflammable gases such as nitrogen, oxygen, carbon dioxide, water vapor, hydrogen sulfide gas, sulfurous acid gas, or sulfur oxide gas in addition to hydrocarbon gases. It is preferable to remove the flammable gas and separate and purify the combustible gas.
  • a gas separation membrane has a relationship in which gas separation selectivity and permeability at the time of gas separation are opposite to each other. Therefore, a polymer membrane having high permeability is inferior in separation selectivity.
  • a gas separation membrane having high gas permeability and excellent gas separation selectivity is required, and development of a polymer material having excellent gas separation performance compared to conventional polyimide membranes has been demanded. I'm in a hurry.
  • Patent Document 1 has a phenylenediamine skeleton, and at least one hydrogen atom on the phenylenediamine is a hexafluoroisopropanol group (2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl group;
  • a fluorine-containing polymerizable monomer substituted with —C (CF 3 ) 2 OH hereinafter sometimes referred to as HFIP group
  • Patent Documents 2 to 5 disclose gas separation membranes having a polyimide structure containing HFIP groups.
  • Patent Document 6 discloses a methane separation method capable of separating and purifying methane from biogas containing a high concentration of carbon dioxide with high efficiency, a methane separation device using the same, and a methane utilization system, and a gas separation membrane module Is used.
  • the permeability coefficient of carbon dioxide when separating natural gas is 10 Barrer or more, and the permeability coefficient ratio between carbon dioxide and methane (CO 2 permeability coefficient P CO2 / CH 4 permeability coefficient P CH4 ) exceeds 40
  • CO 2 permeability coefficient P CO2 / CH 4 permeability coefficient P CH4 exceeds 40
  • An object of the present invention is to provide a gas separation membrane having excellent gas separation performance, a gas separation method using the same, and a gas separation device. Specifically, a gas separation membrane excellent in removing carbon dioxide from natural gas and obtaining a gas containing high-concentration methane in a high temperature range of 35 ° C. or higher and 70 ° C. or lower, and gas using the same An object of the present invention is to provide a separation method and a gas separation apparatus. In particular, the permeability coefficient P CO2 of carbon dioxide when a gas containing carbon dioxide and methane is separated at a separation temperature of 50 ° C.
  • An object of the present invention is to provide a gas separation membrane having a gas separation performance with a CO 2 / CH 4 permeability coefficient P CH4 ) exceeding 40.
  • DSDA 4,4′-diphenylsulfonetetracarboxylic dianhydride
  • the present inventors have found that the gas separation membrane of the polyimide has a different permeability coefficient ratio between oxygen and nitrogen and can concentrate oxygen or nitrogen in a gas containing oxygen and nitrogen. Based on these findings, the present invention has been completed.
  • 1 Barrer 1 ⁇ 10 ⁇ 10 cm 3 (STP) ⁇ cm / sec ⁇ cm 2 ⁇ cmHg.
  • the present invention includes the following inventions 1 to 17.
  • a gas separation membrane comprising a polyimide having a repeating unit represented by formula (1).
  • R 1 is a divalent organic group represented by formula (2).
  • R 2 is a hydrogen atom, an alkyl group or a fluoroalkyl group, and a is an integer of 1 to 2
  • invention 4 The gas separation membrane according to inventions 1 to 3, wherein the polyimide has a weight average molecular weight of 20,000 or more and 500,000 or less.
  • invention 5 The gas separation membrane according to any one of inventions 1 to 4, wherein the polyimide heated at 50 ° C. or more and 400 ° C. or less is used.
  • invention 6 The gas separation membrane of inventions 1 to 5, wherein the gas to be separated is a gas containing at least carbon dioxide and methane.
  • invention 7 The gas separation membrane of invention 6 wherein the permeability coefficient of carbon dioxide at 50 ° C. and 150 kPa is 10 Barrer or more, and the permeability coefficient ratio (P CO2 / P CH4 ) between carbon dioxide and methane is 40 or more.
  • invention 8 The gas separation membrane of invention 6 or invention 7, wherein the gas containing carbon dioxide and methane is natural gas.
  • invention 10 A gas separation method for separating carbon dioxide from a gas containing carbon dioxide and methane using the gas separation membranes of the inventions 6 to 8.
  • invention 11 The gas separation method of Invention 9 or Invention 10, wherein gas separation is performed at 35 ° C. or more and 70 ° C. or less.
  • invention 12 A gas separation membrane module having the gas separation membrane of inventions 1 to 8.
  • invention 13 A gas separation device having the gas separation membrane of the inventions 1 to 8.
  • invention 14 The gas separation membrane of inventions 1 to 5, wherein the gas to be separated is a gas containing at least oxygen and nitrogen.
  • invention 16 A gas separation method for separating oxygen from a gas containing oxygen and nitrogen using the gas separation membranes of the inventions 14 to 15.
  • invention 17 A gas separation method for separating nitrogen from a gas containing oxygen and nitrogen using the gas separation membranes of the inventions 14 to 15.
  • a gas separation membrane having excellent gas separation performance at a separation temperature of 35 ° C. or higher and 70 ° C. or lower, a gas separation method and a gas separation apparatus using the same are obtained.
  • the gas separation performance is such that the permeability coefficient of carbon dioxide when separating gas containing carbon dioxide and methane is 10 Barrer or higher and the permeability coefficient ratio of carbon dioxide and methane (CO 2 permeability) (Coefficient / CH 4 permeability coefficient) exceeds 40, and it is excellent in removing carbon dioxide from natural gas and obtaining a gas containing a high concentration of methane.
  • CO 2 permeability coefficient and CO 2 / CH 4 permeability coefficient ratio measured in the gas permeability performance test (50 ° C. test ambient temperature) of the gas separation membranes obtained in the examples and comparative examples. It is a graph showing the relationship of a transmission coefficient.
  • the gas separation membrane of the present invention contains polyimide.
  • gas permeability is the solubility indicating how much gas dissolves into the membrane (hereinafter sometimes referred to as the solubility coefficient) and how fast the gas moves through the membrane (hereinafter referred to as the diffusion coefficient).
  • the permeability coefficient is expressed as the product of the solubility coefficient and the diffusion coefficient.
  • the temperature dependence of the CO 2 solubility coefficient and the CO 2 diffusion coefficient cancel each other, and as a result, it is presumed that the temperature dependence of the CO 2 permeability coefficient is low.
  • the phenylenediamine-derived skeleton having an HFIP group in the polyimide used for the gas separation membrane increases the free volume in the polyimide, thereby activating the permeation of CH 4 with a large dynamic molecular size into the membrane.
  • the temperature dependence of CH 4 is lowered, and the gas separation membrane has a free volume that is optimal for the selection of carbon dioxide and methane, resulting in a high carbon dioxide and methane permeability coefficient ratio.
  • the polyimide which the gas separation membrane of this invention contains has a repeating unit represented by General formula (1).
  • the repeating unit represented by formula (1) may be referred to as repeating unit (1)
  • the polyimide having the repeating unit represented by formula (1) may be referred to as polyimide (1).
  • R 1 is a divalent organic group represented by formula (2).
  • R 2 is a hydrogen atom, an alkyl group or a fluoroalkyl group, and a is an integer of 1 to 2
  • R 1 is a divalent organic group, and may have not only a linear structure but also an alicyclic, unsaturated, aromatic, or polycyclic structure with a carbon atom, or a heterocyclic structure.
  • Hydrogen atom, fluorine atom, chlorine atom, oxygen atom, sulfur atom or nitrogen atom may be contained. Further, some or all of the hydrogen atoms may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group, or a cyano group.
  • R 1 is preferably any one of the following divalent organic groups.
  • the polyimide (1) used for the gas separation membrane of the present invention is preferably a polyimide (1) having any one of the following repeating units.
  • polyimide (1) having the following repeating units.
  • the repeating unit (1) may be regularly arranged in the polyimide (1) or may be irregularly arranged.
  • the polyimide (1) contained in the gas separation membrane of the present invention may further have a repeating unit represented by the formula (3).
  • the repeating unit represented by the general formula (3) may be referred to as a repeating unit (3).
  • R 1 is a divalent organic group, and may have not only a linear structure but also an alicyclic, unsaturated, aromatic, or polycyclic structure with a carbon atom, or a heterocyclic structure.
  • Hydrogen atom, fluorine atom, chlorine atom, oxygen atom, sulfur atom or nitrogen atom may be contained. Further, some or all of the hydrogen atoms may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group, or a cyano group.
  • R 1 is preferably any one of the following organic groups.
  • R 3 is any tetravalent organic group represented by the following formula.
  • R 3 is preferably any organic group represented by the following formula.
  • the polyimide (1) used for the gas separation membrane of the present invention is preferably a polyimide having any of the following repeating units (3) in addition to the repeating unit (1).
  • polyimide (1) having the following repeating unit (3).
  • the abundance ratio of the repeating unit (1) and the repeating unit (3) is not particularly limited.
  • the weight average molecular weight (Mw) of the polyimide (1) contained in the gas separation membrane of the present invention is preferably from 20,000 to 500,000, particularly preferably from 30,000 to 200,000. If it is 20000 or more, a tough gas separation membrane can be obtained, and if it is 500,000 or less, it can be formed.
  • the weight average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) and converting to polystyrene using a standard polystyrene calibration curve.
  • Polyimide (1) can be obtained by reacting phenylenediamine represented by formula (4) with tetracarboxylic dianhydride represented by formula (5).
  • a and R 2 are each synonymous with a and R 2 of formula (2).
  • polyimide (A) or (B) phenylenediamine represented by formula (4) and tetracarboxylic dianhydride represented by formula (5) are subjected to condensation polymerization in an organic solvent to obtain a polyamic acid, and then the polyamic acid is dehydrated. The manufacturing method of the polyimide which obtains a polyimide (1) by making it ring-close and imidize.
  • a diamine other than that represented by formula (4) or a tetra other than that represented by formula (5) may be used as necessary to adjust the properties of the resulting polyimide.
  • Carboxylic dianhydride, or both, may be added.
  • the polyimide production method (A) is obtained by polycondensing a phenylenediamine represented by the formula (4) and a tetracarboxylic dianhydride represented by the formula (5) in an organic solvent.
  • an acid is obtained, and then the polyamic acid is dehydrated and cyclized and imidized to obtain polyimide (1).
  • the organic solvent to be used may be one that does not inhibit the polycondensation reaction for obtaining a polyamic acid from the phenylenediamine represented by the formula (4) and the tetracarboxylic dianhydride represented by the formula (5).
  • organic solvents include amide solvents, aromatic solvents, halogen solvents, lactone solvents, alcohol solvents, and glycol ether solvents. These organic solvents may be used alone or in combination of two or more.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, and N-methyl-2-pyrrolidone.
  • aromatic solvent examples include benzene, anisole, diphenyl ether, nitrobenzene, benzonitrile, and p-chlorophenol.
  • halogen solvent examples include chloroform, dichloromethane, 1,2-dichloroethane, and 1,1,2,2-tetrachloroethane.
  • lactone solvent examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, and ⁇ -methyl- ⁇ -butyrolactone.
  • alcohol solvent examples include n-butyl alcohol.
  • glycol ether solvents include 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol.
  • the reaction temperature in the polycondensation reaction for obtaining a polyamic acid from the phenylenediamine represented by the formula (4) and the tetracarboxylic dianhydride represented by the formula (5) is usually ⁇ 20 ° C. or higher and 80 ° C. or lower. Since the polycondensation reaction between diamine and tetracarboxylic dianhydride is a one-to-one reaction expressed in molar ratio, in the polycondensation reaction, the phenylenediamine represented by formula (4) and formula (5) It is preferable that the abundance ratio of the tetracarboxylic dianhydride represented by the formula is represented as a molar ratio of 1: 1.
  • the polyimide (1) is obtained by further dehydrating and ring-closing the polyamic acid obtained by the polymerization reaction to imidize.
  • Dehydration ring closure is a method in which the polyamic acid immediately after condensation polymerization is heated to 100 ° C. or higher and 350 ° C. or lower, or 0 ° C. or higher and 50 ° C. or lower, pyridine, triethylamine, etc.
  • the base and acetic anhydride of each are imidized by adding 2 molar equivalents or more and 10 equivalents or less, and the polyimide (1) solution can be obtained.
  • the obtained polyimide (1) solution may be directly used for the production of a gas separation membrane described later, or may be concentrated or diluted, or an organic solvent or the like is removed from the polyimide (1) solution.
  • polyimide (1) itself may be obtained.
  • the gas separation membrane of the present invention is particularly excellent in carbon dioxide permeability and excellent in separation of a mixed gas containing carbon dioxide and hydrocarbons, particularly a mixed gas containing carbon dioxide and methane.
  • a gas separation membrane according to an embodiment of the present invention is a gas separation membrane for separating carbon dioxide or methane from a gas containing at least carbon dioxide and methane.
  • the gas separation membrane of the present invention is excellent in separation of oxygen and nitrogen, and is useful as a gas separation membrane for separating oxygen from a gas (for example, air) containing oxygen and nitrogen.
  • the gas separation membrane of the present invention contains at least polyimide (1).
  • the content of the polyimide (1) is preferably 40% by mass or more, more preferably 80% by mass or more, and particularly preferably only the polyimide (1).
  • various polymer compounds other than polyimide (1) may be contained as components.
  • examples of such a polymer compound include acrylic resins, silicone resins, polyurethane resins, polyamide resins, polyimide resins, polyamideimide resins, polyester resins, epoxy resins, phenol resins, bismaleimide resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl resins.
  • Formal resin, vinyl resin, rubber, wax, shellac and other natural resins can be used. Also. Two or more of these may be used in combination.
  • the temperature when heating (baking) the polyimide (1) contained in the gas separation membrane of the present invention is preferably 50 ° C. or higher and 400 ° C. or lower, more preferably 100 ° C. or higher and 325 ° C. or lower. In particular, it is preferably 150 ° C. or higher and 320 ° C. or lower.
  • the heating temperature is lower than 50 ° C., it is difficult to obtain a dense separation layer as a gas separation membrane.
  • the heating temperature is higher than 400 ° C., there is a concern about thermal decomposition of polyimide (1), and it is used as a gas separation membrane. It is difficult to obtain a sufficient mechanical strength.
  • the heating time is preferably 30 minutes or longer and 24 hours or shorter, more preferably 1 hour or longer and 12 hours or shorter.
  • Performance gas permeability coefficient of the gas separation membrane especially CO 2 permeability coefficient under the conditions of 150 kPa, 50 ° C.
  • CO 2 permeability coefficient is preferably 10 barrels (Barrer) above.
  • the permeability coefficient ratio between carbon dioxide and methane is preferably 40 or more, particularly preferably 42 or more, and further preferably 45 or more.
  • the gas permeability coefficient is a CO 2 permeability coefficient of 10 barr or more, and the permeability coefficient ratio between carbon dioxide and methane (CO 2 permeability coefficient / CH 4 permeability coefficient). Is more preferably 45 or more, because it is a gas separation membrane that satisfies both high permeability and very excellent gas selectivity at the same time, and is particularly preferable.
  • the gas separation performance of the gas separation membrane of the present invention is that the CO 2 permeability coefficient is 10 barrels or more at 50 ° C., and the permeability coefficient ratio (CO 2 permeability coefficient / CH 4 permeability coefficient) between carbon dioxide and methane is 40 or more. It is.
  • the CO 2 permeability coefficient is 10 Barrer or more under the conditions of 150 kPa and 50 ° C., and the permeability coefficient ratio (CO 2) between carbon dioxide and methane. (2 permeability coefficient / CH 4 permeability coefficient) of 40 or more can be obtained, and high carbon dioxide permeability and gas selectivity can be satisfied simultaneously.
  • the gas separation membrane of the present invention may be a symmetric membrane comprising a dense layer or an asymmetric membrane comprising a dense layer and a porous layer.
  • the dense layer has a different permeation rate depending on the gas species and serves to separate the gas mixture, while the porous layer can serve as a support for maintaining the membrane shape.
  • the shape of the asymmetric membrane may be, for example, a flat membrane shape or a hollow fiber membrane shape.
  • the thickness is preferably 500 nm or more and 1 mm or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less. If it is thinner than 500 nm, the film formation is not easy and it is easy to break, and if it is thicker than 1 mm, the gas hardly penetrates.
  • the thickness of the dense layer is preferably 10 nm or more and 10 ⁇ m or less, and more preferably 30 nm or more and 1 ⁇ m or less. If it is thinner than 10 nm, the film formation is not easy and it is easy to break, and if it is thicker than 10 ⁇ m, the gas hardly penetrates.
  • the layer thickness of the porous layer is preferably 5 ⁇ m or more and 2 mm or less, more preferably 10 ⁇ m or more and 500 ⁇ m or less. If it is thinner than 5 ⁇ m, it is not easy to form a film and it is easy to break.
  • the outer side is preferably a dense layer and the inner side is preferably a porous layer, and the inner diameter is preferably 10 ⁇ m or more and 4 mm or less, more preferably 20 ⁇ m or more.
  • the outer diameter which is 1 mm or less, is preferably 30 ⁇ m or more and 8 mm or less, and more preferably 50 ⁇ m or more and 1.5 mm or less.
  • the inner diameter is less than 10 ⁇ m and the outer diameter is less than 30 ⁇ m, it is difficult to produce a hollow fiber membrane, and when the inner diameter is less than 1 mm and the outer diameter is less than 8 mm, it is not suitable for practical use as a hollow fiber membrane-shaped gas separation membrane.
  • the gas separation membrane of the present invention is a solution in which polyimide (1) is dissolved in an organic solvent, and is usually used for spin coating, spray coating, flow coating, impregnation coating, brush coating, etc. on a substrate. After coating by the method, it can be produced by forming or forming the film as it is.
  • the kind of organic solvent should just be what melt
  • the kind of organic solvent shown by the manufacturing method of the polyimide (1) of (A) is used. Can do. Moreover, you may use the solution of the said polyimide (1) used with the manufacturing method of the polyimide of (A).
  • the obtained gas separation membrane is preferably heated at a temperature of 50 ° C. or more and 400 ° C. or less after film formation or at the time of molding.
  • the solution of the polyamic acid obtained by the manufacturing method of the polyimide (1) of (A) is applied on a substrate, and the organic solvent is volatilized by heating at a heating temperature of 50 ° C. or more and 400 ° C. or less.
  • the dehydration ring-closure reaction is allowed to proceed to form a polyimide (1) membrane, which can be used as the gas separation membrane of the present invention.
  • the concentration of the polyimide (1) or the polyamic acid that is a precursor thereof in the solution is preferably 5% by mass or more and 50% by mass or less, and more preferably 10% by mass or more and 40% by mass or less.
  • the solution to be applied is a solution of polyimide (1) or polyamic acid poured into a poor solvent to precipitate, collect and dry the polyimide (1) polyamic acid, and then re-dissolved in an organic solvent. It may be used.
  • the substrate on which the polyimide (1) solution or the polyamic acid solution that is a precursor thereof is applied includes glass, silicon wafer, metal, metal oxide, ceramics, or resin. Can do.
  • a symmetrical membrane as the gas separation membrane of the present invention
  • a substrate such as a glass substrate using a spin coater or applicator
  • air By heating in a dry gas such as nitrogen or argon, the fired body is obtained through evaporation of the organic solvent and the cyclization dehydration reaction, and then the fired body is peeled off from the substrate.
  • a dry gas such as air, nitrogen, or argon It is obtained by peeling from the base material after obtaining a fired body by evaporating the organic solvent by heating in.
  • a solution of polyimide (1) is placed in a pressure vessel and is compatible with an organic solvent in the solution from its discharge port.
  • the polyimide is discharged into a bath filled with a poor solvent that does not dissolve, and the solvent present in the vicinity of the surface of the obtained polyimide film is evaporated in the air to form a dense layer on the surface side.
  • a method of forming the porous layer can be exemplified.
  • water or a mixed solution of water and an organic solvent is preferably used as the poor solvent.
  • the composition of this mixed solution is such that when a mixed solution of water and an organic solvent is used, water is 30% by mass or more and 90% by mass or less, preferably 40% by mass or more and 80% by mass with respect to the total mass of the mixed solution % Or less is preferably included.
  • the organic solvent include alcohol solvents and ketone solvents.
  • the alcohol solvent examples include methanol, ethanol, and isopropanol.
  • the ketone solvent examples include acetone, methyl ethyl ketone, diethyl ketone, and diethyl ketone.
  • a coating liquid containing polyimide (1) is applied on a porous support (porous support) to form a gas separation layer.
  • content of the polyimide (1) in a coating liquid is not specifically limited, It is preferable that it is 0.1 to 30 mass%, and it is especially 0.3 to 10 mass% especially. preferable. If the content of the polyimide (1) is too low, it is not preferable because it penetrates into the porous region when a film is formed on the support and a defect occurs on the surface of the separation layer. On the other hand, if the content is too high, the porous portion is filled at a high concentration, the separation layer is also thickened, and the permeability may be lowered.
  • the composite film By adjusting the molecular weight, structure, and solution viscosity of the polyimide (1), the composite film can be appropriately produced.
  • another layer such as a siloxane compound may be present between the polyimide (1) and the porous support layer in order to smooth the surface of the support layer.
  • porous support materials include polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, polyurethane, polyacrylonitrile, polyphenylene oxide, and polysulfone. And various resins such as polyethersulfone, polyimide, polyamide, and polyamideimide.
  • Gas Separation Method uses a gas separation membrane containing the polyimide (1) of the present invention. This is a method for separating a specific kind of gas from a gas containing at least two kinds of gases.
  • the gas separation method of the present invention exhibits particularly excellent performance when the gas contains an acidic gas such as carbon dioxide.
  • the gas separation method of the present invention is preferably used for separation of a gas containing carbon dioxide and hydrocarbons, particularly a gas containing carbon dioxide and methane, because the gas separation membrane of the present invention is particularly excellent in carbon dioxide permeability.
  • carbon dioxide or methane can be suitably separated with good selectivity from a gas containing carbon dioxide and methane.
  • a CO 2 permeability coefficient of 10 barrels or more is obtained at 50 ° C., and a permeability coefficient ratio (CO 2 permeability coefficient / CH 4 permeability coefficient) between carbon dioxide and methane is 40 or more. can get.
  • a CO 2 permeability coefficient of 10 barr or more and a permeability coefficient ratio of carbon dioxide and methane (150 bar, 50 ° C.) CO 2 permeability coefficient / CH 4 permeability coefficient) of 40 or more can be obtained, and high carbon dioxide permeability and gas selectivity can be satisfied at the same time.
  • a gas containing carbon dioxide and methane, particularly natural gas at 35 ° C. or higher and 70 ° C. or lower. More preferably, it is 40 degreeC or more and 60 degrees C or less. More preferably, it is 45 degreeC or more and 55 degrees C or less.
  • gas Although the gas which the gas separation membrane of this invention isolate
  • the abundance ratio of carbon dioxide with respect to the total amount of gas including carbon dioxide and methane is preferably 1% or more and 80% or less, more preferably 5% or more and 60% or less, and more preferably expressed in mass%. Is 7% or more and 50% or less.
  • the type of gas other than carbon dioxide and methane is not particularly limited, but other than hydrogen, helium, carbon monoxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxide (SOx), nitrogen oxide (NOx), and methane And hydrocarbons, unsaturated hydrocarbons, perfluoro compounds and the like.
  • hydrocarbons other than methane ethane, propane, butane or pentane can be exemplified
  • unsaturated hydrocarbons ethylene and propylene can be exemplified.
  • Tetrafluoroethane can be raised as the perfluoro compound.
  • gas to be separated by the gas separation membrane of the present invention include natural gas, which is effective for separating and purifying hydrocarbons, which are combustible gas components, by separating incombustible gas contained in natural gas. Can be used.
  • gas separated by the gas separation membrane of the present invention include biogas, and methane, which is a low-permeability gas, is preferably used for separation and purification from biogas containing methane and carbon dioxide. Can do.
  • the gas to be separated by the gas separation membrane of the present invention include a mixed gas obtained by an oil recovery enhancement method (EOR). From a mixed gas containing methane and carbon dioxide, a low permeability gas can be used. Certain methane can be suitably used for separation and purification. Further, the separated and recovered carbon dioxide can be used as a drop for EOR gas.
  • EOR oil recovery enhancement method
  • Gas Separation Device The gas separation membrane of the present invention can be used in a gas separation device as a means for separating and recovering or purifying gas.
  • the gas separation membrane of the present invention can be suitably used as a gas separation membrane module by being housed in a housing.
  • the gas separation membrane module include a spiral type, a hollow fiber membrane type, a pleat type, a tubular type, and a plate & frame type.
  • gas separation membrane of the present invention may be used as a gas separation membrane module, for example, in a gas separation / recovery device by a membrane / absorption hybrid method used in combination with an absorbing solution described in Patent Document 6.
  • Example 1 [Production of gas separation membrane made of polyimide (A)] ⁇ Preparation of polyimide (A)> 20.0 g (73 mmol) of HFIP-pPD and 26.1 g (73 mmol) of DSDA represented by the following formula were added to a 500-mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, and dimethylacetamide (73 mmol) as a solvent was further added. After adding 85 g of DMAc), the mixture was stirred at room temperature (20 ° C.) under a nitrogen atmosphere to obtain a reaction solution.
  • Mw is a weight average molecular weight and Mn is a number average molecular weight.
  • polyimide (P1) represented by the following formula was prepared by filtration under pressure.
  • the DMAc solution of the polyimide (P2) shown below was prepared by carrying out pressure filtration.
  • the DMAc solution of the polyimide (P3) shown below was prepared by carrying out pressure filtration.
  • the DMAc solution of the polyimide (P5) shown in the following reaction formula was prepared by carrying out pressure filtration.
  • the DMAc solution of the polyimide (P6) shown below was prepared by carrying out pressure filtration.
  • the DMAc solution of the polyimide (P7) shown below was prepared by carrying out pressure filtration.
  • the permeability coefficient ratio is an indicator of gas selectivity.
  • Table 1 shows the methane permeability coefficient, the carbon dioxide permeability coefficient, and the permeability coefficient measured at 35 ° C., 50 ° C. or 70 ° C. using the gas separation membranes prepared in Examples 1 to 3 and Comparative Examples 1 to 7 above. The ratio (CO 2 permeability coefficient / CH 4 permeability coefficient) is shown.
  • the gas separation performance of the gas separation membrane is greater for the gas of methane and carbon dioxide, the greater the permeability coefficient of carbon dioxide, the better the gas throughput per unit time, and the greater the permeability coefficient ratio, the greater the ratio of methane and carbon dioxide. Excellent separation performance.
  • the gas separation membrane of the present invention containing the HFIP group and the polyimide having the structure derived from phenylenediamine or the structure derived from DSDA prepared in Examples 1 to 3 was compared with Comparative Example 1 and Comparative Example 1.
  • the permeation coefficient ratio is large and the separation performance of methane and carbon dioxide is excellent in a 50 ° C. measurement environment. It was.
  • the gas separation membranes prepared in Examples 1 to 3 and including the polyimide having the structure derived from HFIP group and phenylenediamine and the structure derived from DSDA have the structures derived from HFIP group and DSDA in Comparative Examples 3 and 4.
  • the permeability coefficient ratio was large at 35 ° C. and 50 ° C., and the separation performance of methane and carbon dioxide was excellent.
  • the gas separation membranes prepared in Examples 1 to 3 have a HFIP group of Comparative Example 5 and are 35% more than the gas separation membrane containing polyimide not having a structure derived from DSDA and a structure derived from phenylenediamine.
  • the permeability coefficient ratio was large, and the separation performance of methane and carbon dioxide was excellent.
  • the gas separation membranes prepared in Examples 1 to 3 are gas separations containing polyimide prepared in Comparative Example 6 or Comparative Example 7 having a structure derived from HFIP groups and phenylenediamine and not having a structure derived from DSDA. Compared with the membrane, the permeability coefficient ratio was large at 35 ° C. and 50 ° C., and the separation performance of methane and carbon dioxide was excellent.
  • the gas separation membrane prepared in Example 1 is compared with the gas separation membrane prepared in Comparative Example 3, which includes a polyimide having a structure derived from HFIP group and DSDA and not having a structure derived from phenylenediamine.
  • the permeability coefficient ratio was large and the separation performance of methane and carbon dioxide was excellent.
  • the gas separation membrane of the present invention containing the polyimide having both the structure derived from HFIP group and phenylenediamine and the structure derived from DSDA prepared in Examples 1 to 3 is used when carbon dioxide is separated from natural gas by a gas separation membrane.
  • the carbon dioxide removal ability is superior to that of the conventional gas separation membrane, and high-purity methane can be obtained without loss of methane in the separation process.
  • nitrogen gas (N 2 ) was used instead of oxygen gas (0 2 ), and the permeability coefficient of nitrogen gas (N 2 ) was measured in the same manner. From the measured permeability coefficients of oxygen gas (0 2 ) and nitrogen gas (N 2 ), the permeability coefficient ratio of nitrogen gas (N 2 and oxygen gas (0 2 )) (nitrogen gas (N 2 ) / oxygen gas (0 2) ) Transmission coefficient). The permeability coefficient ratio is an indicator of gas selectivity.
  • Table 2 shows the oxygen permeability coefficient, nitrogen permeability coefficient, and permeability coefficient ratio (O 2) measured at 35 ° C. or 50 ° C. using the gas separation membranes prepared in Examples 1 to 3 and Comparative Examples 5 to 7 above. Transmission coefficient / N 2 transmission coefficient).
  • the oxygen concentration of air can be increased and a gas having a high oxygen concentration can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This gas separation membrane contains a polyimide which has a repeating unit represented by formula (1). This gas separation membrane has excellent gas separation performance in a separation temperature range of from 35°C to 70°C (inclusive), and exhibits particularly excellent separation performance for CO2 and CH4. Formula (1) (In formula (1), R1 represents a divalent organic group represented by formula (2).) Formula (2) (In formula (2), R2 represents a hydrogen atom, an alkyl group or a fluoroalkyl group; and a represents an integer of 1-2.)

Description

気体分離膜Gas separation membrane

 本発明は、気体分離膜、それを用いた気体の分離方法および気体分離装置に関する。 The present invention relates to a gas separation membrane, a gas separation method using the same, and a gas separation apparatus.

 従来、メタン(CH4)を含む天然ガスから二酸化炭素(CO2)等の酸性ガスを除去し精製する方法として、酸性ガスをアミン類等に吸着させる化学吸収法が用いられてきた。化学吸収法は、酸性ガスをアミンに吸着させることで、高純度のメタンが効率よく得られる方法である。しかしながら、化学吸収法を用い天然ガスを精製するには、精製量に対し大型の気体分離装置を必要とし、建設費用がかかる、また、精製工程で吸収剤として用いるアミンを再利用するための費用がかかる等の問題がある。 Conventionally, a chemical absorption method in which an acidic gas is adsorbed to amines or the like has been used as a method for removing and purifying an acidic gas such as carbon dioxide (CO 2 ) from natural gas containing methane (CH 4 ). The chemical absorption method is a method in which high-purity methane is efficiently obtained by adsorbing an acidic gas to an amine. However, refining natural gas using the chemical absorption method requires a large gas separation device for the amount of purification, which requires construction costs, and costs for reusing the amine used as the absorbent in the purification process. There are problems such as taking.

 化学吸収法と比較して、気体分離膜を用いる気体分離方法は、気体の処理量に対し小型の気体分離装置を使用でき、設置面積が限られた天然ガスの洋上プラント等に有利である。天然ガスを分離する際に、気体分離膜を通過させる駆動力に、採ガス時の天然ガスの圧力を利用することができる。 Compared with the chemical absorption method, the gas separation method using a gas separation membrane can use a small gas separation device for the gas throughput, and is advantageous for offshore plants of natural gas with a limited installation area. When separating the natural gas, the pressure of the natural gas at the time of sampling can be used as the driving force for passing the gas separation membrane.

 気体分離膜を用いる天然ガスの分離精製工程において、気体分離膜の材料には、ポリイミド等の高分子が用いられている。ポリイミド膜は、室温(約20℃)では、例えば、二酸化炭素とメタンの優れた分離性能を発現する。しかしながら、天然ガスの分離精製は採ガスと連続して行われ、これより高温域である50℃付近で行われるのが一般的である。ポリイミド膜を用いると、50℃付近では二酸化炭素とメタンの選択性が低下し、高純度のメタンが得られない傾向がある。例えば、非特許文献1には、ポリイミド膜による二酸化炭素とメタンの分離選択性は、高温域程、低下することが記載されている。 In a natural gas separation and purification process using a gas separation membrane, a polymer such as polyimide is used as a material for the gas separation membrane. For example, the polyimide membrane exhibits excellent separation performance of carbon dioxide and methane at room temperature (about 20 ° C.). However, the separation and purification of natural gas is generally performed continuously with the sampling gas, and is generally performed in the vicinity of 50 ° C., which is a higher temperature range. When a polyimide membrane is used, the selectivity between carbon dioxide and methane decreases near 50 ° C., and high-purity methane tends not to be obtained. For example, Non-Patent Document 1 describes that the separation selectivity between carbon dioxide and methane by a polyimide membrane decreases as the temperature increases.

 天然ガスは可燃性ガスとしての軽い炭化水素ガスを含む化石燃料であり、含まれる炭化水素ガスとして、具体的には、メタン、エタン、プロパン、ブタンまたはペンタンを例示することができる。天然ガスは炭化水素ガスの他に、窒素、酸素、炭酸ガス、水蒸気、硫化水素ガス、亜硫酸ガス、または硫黄酸化物ガス等の不燃性ガスを含むため、燃料として使用する際はこれら不燃性ガスを除去し、可燃性ガスを分離精製することが好ましい。 Natural gas is a fossil fuel containing a light hydrocarbon gas as a combustible gas. Specific examples of the hydrocarbon gas contained include methane, ethane, propane, butane, and pentane. Natural gas contains nonflammable gases such as nitrogen, oxygen, carbon dioxide, water vapor, hydrogen sulfide gas, sulfurous acid gas, or sulfur oxide gas in addition to hydrocarbon gases. It is preferable to remove the flammable gas and separate and purify the combustible gas.

 一般的に気体分離膜は、気体分離時の気体の分離選択性と透過性が相反する関係にあるため、透過性の高い高分子膜は、分離選択性に劣る。しかしながら、特に前記高温域において、気体の透過性が高く且つ気体の分離選択性に優れた気体分離膜が求められ、従来のポリイミド膜に対し、優れた気体分離性能を有する高分子材料の開発が急がれている。 Generally, a gas separation membrane has a relationship in which gas separation selectivity and permeability at the time of gas separation are opposite to each other. Therefore, a polymer membrane having high permeability is inferior in separation selectivity. However, particularly in the high temperature range, a gas separation membrane having high gas permeability and excellent gas separation selectivity is required, and development of a polymer material having excellent gas separation performance compared to conventional polyimide membranes has been demanded. I'm in a hurry.

 特許文献1には、フェニレンジアミン骨格を有し、そのフェニレンジアミン上の少なくとも1つの水素原子がヘキサフルオロイソプロパノール基(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル基;-C(CF32OH;以下、HFIP基と呼ぶことがある)に置換した含フッ素重合性単量体とそれを用いた高分子化合物であるポリイミドが開示されている。特許文献2~5には、HFIP基を含むポリイミド構造を有する、気体分離膜が開示されている。 Patent Document 1 has a phenylenediamine skeleton, and at least one hydrogen atom on the phenylenediamine is a hexafluoroisopropanol group (2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl group; A fluorine-containing polymerizable monomer substituted with —C (CF 3 ) 2 OH (hereinafter sometimes referred to as HFIP group) and a polyimide which is a polymer compound using the same are disclosed. Patent Documents 2 to 5 disclose gas separation membranes having a polyimide structure containing HFIP groups.

 特許文献6には、高濃度の二酸化炭素を含有するバイオガスからメタンを高効率に分離精製可能なメタン分離方法、それを用いたメタン分離装置、およびメタン利用システムが開示され、気体分離膜モジュールが使用されている。 Patent Document 6 discloses a methane separation method capable of separating and purifying methane from biogas containing a high concentration of carbon dioxide with high efficiency, a methane separation device using the same, and a methane utilization system, and a gas separation membrane module Is used.

特開2007-119504号公報JP 2007-119504 A 特開2013-10096号公報JP 2013-10096 A 特開2014-128787号公報JP 2014-128787 A 特開2014-128788号公報JP 2014-128788 A 特開2016-137484号公報JP 2016-137484 A 特開2007-297605号公報JP 2007-297605 A

Journal of Membrane Science, Vo47, 203-215, 1989Journal of Membrane Science, Vo47, 203-215, 1989

 温度50℃において、天然ガスを分離した際の二酸化炭素の透過係数が10Barrer以上で、かつ二酸化炭素とメタンの透過係数比(CO2透過係数PCO2/CH4透過係数PCH4)が40を超える気体分離性能を有する気体分離膜は、従来技術において開示されていない。 At a temperature of 50 ° C., the permeability coefficient of carbon dioxide when separating natural gas is 10 Barrer or more, and the permeability coefficient ratio between carbon dioxide and methane (CO 2 permeability coefficient P CO2 / CH 4 permeability coefficient P CH4 ) exceeds 40 A gas separation membrane having gas separation performance is not disclosed in the prior art.

 本発明は、優れた気体分離性能を有する気体分離膜、それを用いた気体の分離方法および気体分離装置を提供することを目的とする。具体的には、分離温度35℃以上、70℃以下の高温領域において、天然ガスから二酸化炭素を除去し、高濃度のメタンを含む気体を得るのに優れた気体分離膜、それを用いた気体の分離方法および気体分離装置を提供することを目的とする。特に、分離温度50℃の高温域において、二酸化炭素とメタンを含む気体を分離した際の二酸化炭素の透過係数PCO2が10Barrer以上で、かつ二酸化炭素とメタンの透過係数比(CO2透過係数PCO2/CH4透過係数PCH4)が40を超える気体分離性能を有する気体分離膜を提供することを目的とする。 An object of the present invention is to provide a gas separation membrane having excellent gas separation performance, a gas separation method using the same, and a gas separation device. Specifically, a gas separation membrane excellent in removing carbon dioxide from natural gas and obtaining a gas containing high-concentration methane in a high temperature range of 35 ° C. or higher and 70 ° C. or lower, and gas using the same An object of the present invention is to provide a separation method and a gas separation apparatus. In particular, the permeability coefficient P CO2 of carbon dioxide when a gas containing carbon dioxide and methane is separated at a separation temperature of 50 ° C. is 10 Barrer or more, and the permeability coefficient ratio of carbon dioxide and methane (CO 2 permeability coefficient P An object of the present invention is to provide a gas separation membrane having a gas separation performance with a CO 2 / CH 4 permeability coefficient P CH4 ) exceeding 40.

 本発明者らが、鋭意検討したところ、HFIP基を有するポリイミドの中で、フェニレンジアミン骨格にHFIP基を有するジアミンと4,4’-ジフェニルスルホンテトラカルボン酸二無水物(以下、DSDAと呼ぶことがある)を重合して得られるポリイミドを気体分離膜に用いることで、温度50℃において、二酸化炭素とメタンを含む気体を分離した際の二酸化炭素の透過係数PCO2が10Barrer以上、且つ二酸化炭素とメタンの透過係数比(CO2透過係数PCO2/CH4透過係数PCH4)40を超える気体分離性能が得られることを見出した。また、本発明者らは、当該ポリイミドを気体分離膜は、酸素と窒素の透過係数比が異なり、酸素と窒素を含む気体において、酸素または窒素を濃縮できることを見出した。これらの知見に基づき、本発明を完成させるに至った。尚、1Barrer=1×10-10cm3(STP)・cm/sec・cm2・cmHgである。 As a result of intensive studies by the present inventors, among polyimides having an HFIP group, a diamine having an HFIP group in a phenylenediamine skeleton and 4,4′-diphenylsulfonetetracarboxylic dianhydride (hereinafter referred to as DSDA). Is used for the gas separation membrane, and at a temperature of 50 ° C., the carbon dioxide has a permeability coefficient P CO2 of 10 Barrer or more when the gas containing carbon dioxide and methane is separated. It was found that a gas separation performance exceeding 40 (CO 2 permeability coefficient P CO2 / CH 4 permeability coefficient P CH4 ) ratio of 40 and methane was obtained. Further, the present inventors have found that the gas separation membrane of the polyimide has a different permeability coefficient ratio between oxygen and nitrogen and can concentrate oxygen or nitrogen in a gas containing oxygen and nitrogen. Based on these findings, the present invention has been completed. 1 Barrer = 1 × 10 −10 cm 3 (STP) · cm / sec · cm 2 · cmHg.

 すなわち、本発明は、以下の発明1~17を含む。 That is, the present invention includes the following inventions 1 to 17.

 [発明1]
 式(1)で表される繰り返し単位を有するポリイミドを含む、気体分離膜。

Figure JPOXMLDOC01-appb-C000006
(式(1)中、R1は式(2)で表される2価の有機基である。)
Figure JPOXMLDOC01-appb-C000007
(式(2)中、R2は水素原子、アルキル基またはフルオロアルキル基であり、aは1~2の整数である。) [Invention 1]
A gas separation membrane comprising a polyimide having a repeating unit represented by formula (1).
Figure JPOXMLDOC01-appb-C000006
(In formula (1), R 1 is a divalent organic group represented by formula (2).)
Figure JPOXMLDOC01-appb-C000007
(In the formula (2), R 2 is a hydrogen atom, an alkyl group or a fluoroalkyl group, and a is an integer of 1 to 2)

 [発明2]
 前記ポリイミドが、さらに、式(3)で表される繰り返し単位を含むポリイミドである、発明1の気体分離膜。

Figure JPOXMLDOC01-appb-C000008
(式(3)中、R1は前記式(1)のR1と同義である。R3は、以下の式で表されるいずれかの4価の有機基である。)
Figure JPOXMLDOC01-appb-C000009
[Invention 2]
The gas separation membrane according to Invention 1, wherein the polyimide further comprises a polyimide containing a repeating unit represented by the formula (3).
Figure JPOXMLDOC01-appb-C000008
(In the formula (3), R 1 is .R 3 R 1 as synonymous of the formula (1) is any tetravalent organic group represented by the following equation.)
Figure JPOXMLDOC01-appb-C000009

 [発明3]
 前記R1が、以下のいずれかの2価の有機基である、発明1または発明2の気体分離膜。

Figure JPOXMLDOC01-appb-C000010
[Invention 3]
The gas separation membrane of Invention 1 or Invention 2, wherein R 1 is any one of the following divalent organic groups.
Figure JPOXMLDOC01-appb-C000010

 [発明4]
 前記ポリイミドの重量平均分子量が、20000以上、500000以下である、発明1~3の気体分離膜。
[Invention 4]
The gas separation membrane according to inventions 1 to 3, wherein the polyimide has a weight average molecular weight of 20,000 or more and 500,000 or less.

 [発明5]
 50℃以上、400℃以下で加熱した前記ポリイミドを用いる、発明1~4の気体分離膜。
[Invention 5]
The gas separation membrane according to any one of inventions 1 to 4, wherein the polyimide heated at 50 ° C. or more and 400 ° C. or less is used.

 [発明6]
 分離する気体が、少なくとも二酸化炭素とメタンを含む気体である、発明1~5の気体分離膜。
[Invention 6]
The gas separation membrane of inventions 1 to 5, wherein the gas to be separated is a gas containing at least carbon dioxide and methane.

 [発明7]
 50℃、150kPa下における二酸化炭素の透過係数が10Barrer以上であり、二酸化炭素とメタンとの透過係数比(PCO2/PCH4)が40以上である、発明6の気体分離膜。
[Invention 7]
The gas separation membrane of invention 6 wherein the permeability coefficient of carbon dioxide at 50 ° C. and 150 kPa is 10 Barrer or more, and the permeability coefficient ratio (P CO2 / P CH4 ) between carbon dioxide and methane is 40 or more.

 [発明8]
 二酸化炭素とメタンを含む気体が天然ガスである、発明6または発明7の気体分離膜。
[Invention 8]
The gas separation membrane of invention 6 or invention 7, wherein the gas containing carbon dioxide and methane is natural gas.

 [発明9]
 発明6~8の気体分離膜を用いて、二酸化炭素とメタンを含む気体からメタンを分離する、気体の分離方法。
[Invention 9]
A gas separation method for separating methane from a gas containing carbon dioxide and methane using the gas separation membranes of the inventions 6 to 8.

 [発明10]
 発明6~8の気体分離膜を用いて、二酸化炭素およびメタンを含む気体から二酸化炭素を分離する、気体の分離方法。
[Invention 10]
A gas separation method for separating carbon dioxide from a gas containing carbon dioxide and methane using the gas separation membranes of the inventions 6 to 8.

 [発明11]
 気体の分離を35℃以上、70℃以下で行う、発明9または発明10の気体の分離方法。
[Invention 11]
The gas separation method of Invention 9 or Invention 10, wherein gas separation is performed at 35 ° C. or more and 70 ° C. or less.

 [発明12]
 発明1~8の気体分離膜を有する気体分離膜モジュール。
[Invention 12]
A gas separation membrane module having the gas separation membrane of inventions 1 to 8.

 [発明13]
 発明1~8の気体分離膜を有する気体分離装置。
[Invention 13]
A gas separation device having the gas separation membrane of the inventions 1 to 8.

 [発明14]
 分離する気体が、少なくとも酸素と窒素を含む気体である、発明1~5の気体分離膜。
[Invention 14]
The gas separation membrane of inventions 1 to 5, wherein the gas to be separated is a gas containing at least oxygen and nitrogen.

 [発明15]
 酸素と窒素を含む気体が空気である、発明14の気体分離膜。
[Invention 15]
The gas separation membrane of the invention 14 whose gas containing oxygen and nitrogen is air.

 [発明16]
 発明14~15の気体分離膜を用いて、酸素と窒素を含む気体から酸素を分離する、気体の分離方法。
[Invention 16]
A gas separation method for separating oxygen from a gas containing oxygen and nitrogen using the gas separation membranes of the inventions 14 to 15.

 [発明17]
 発明14~15の気体分離膜を用いて、酸素および窒素を含む気体から窒素を分離する、気体の分離方法。
[Invention 17]
A gas separation method for separating nitrogen from a gas containing oxygen and nitrogen using the gas separation membranes of the inventions 14 to 15.

 本発明により、分離温度35℃以上、70℃以下において、優れた気体分離性能を有する気体分離膜、それを用いた気体の分離方法および気体分離装置を得られた。その気体分離性能は、高温域(50℃)において、二酸化炭素とメタンを含む気体を分離した際の二酸化炭素の透過係数が10Barrer以上であり、且つ二酸化炭素とメタンの透過係数比(CO2透過係数/CH4透過係数)が40を超え、天然ガスから二酸化炭素を除去し、高濃度のメタンを含むガスを得るのに優れる。 According to the present invention, a gas separation membrane having excellent gas separation performance at a separation temperature of 35 ° C. or higher and 70 ° C. or lower, a gas separation method and a gas separation apparatus using the same are obtained. The gas separation performance is such that the permeability coefficient of carbon dioxide when separating gas containing carbon dioxide and methane is 10 Barrer or higher and the permeability coefficient ratio of carbon dioxide and methane (CO 2 permeability) (Coefficient / CH 4 permeability coefficient) exceeds 40, and it is excellent in removing carbon dioxide from natural gas and obtaining a gas containing a high concentration of methane.

実施例および比較例で得られた気体分離膜の気体透過性能試験(50℃試験環境温度)で測定した、CO2の透過係数とCO2/CH4透過係数比(CO2透過係数/CH4透過係数)の関係を表わすグラフである。CO 2 permeability coefficient and CO 2 / CH 4 permeability coefficient ratio (CO 2 permeability coefficient / CH 4 ) measured in the gas permeability performance test (50 ° C. test ambient temperature) of the gas separation membranes obtained in the examples and comparative examples. It is a graph showing the relationship of a transmission coefficient.

 以下の実施形態における各構成およびそれらの組み合わせは、本発明の実施形態の一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 Each configuration in the following embodiment and a combination thereof are examples of the embodiment of the present invention, and addition, omission, replacement, and other modifications of the configuration can be made without departing from the spirit of the present invention. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.

 本発明の気体分離膜は、ポリイミドを含む。 The gas separation membrane of the present invention contains polyimide.

 二酸化炭素とメタンを含む気体から二酸化炭素またはメタンを分離するために気体分離膜を用いる場合、気体分離膜の二酸化炭素の透過係数が大きいほど、単位時間当たりのガス処理量に優れ、二酸化炭素とメタンの透過係数比(CO2透過係数/CH4透過係数)が大きいほど、二酸化炭素とメタンの分離選択性に優れる。 When using a gas separation membrane to separate carbon dioxide or methane from a gas containing carbon dioxide and methane, the larger the carbon dioxide permeability coefficient of the gas separation membrane, the better the gas throughput per unit time. The larger the methane permeability coefficient ratio (CO 2 permeability coefficient / CH 4 permeability coefficient), the better the separation selectivity between carbon dioxide and methane.

 気体分離膜において気体の透係性は、気体が膜にどれくらい溶け込むかを表わす溶解度(以下、溶解度係数と呼ぶことがある)と気体が膜をどれくらい速く移動するかの拡散速度(以下、拡散係数と呼ぶことがある)によって影響され、透過係数は溶解度係数と拡散係数の積で表される。 In gas separation membranes, gas permeability is the solubility indicating how much gas dissolves into the membrane (hereinafter sometimes referred to as the solubility coefficient) and how fast the gas moves through the membrane (hereinafter referred to as the diffusion coefficient). The permeability coefficient is expressed as the product of the solubility coefficient and the diffusion coefficient.

 当該気体分離膜において、CO2溶解度係数とCO2拡散係数の温度依存性は互いに相殺され、結果としてCO2透過係数の温度依存性が低いと推測される。且つ、当該気体分離膜に用いられる前記ポリイミド中のHFIP基を有するフェニレンジアミン由来の骨格がポリイミド中の自由体積を増加させることで、動的分子サイズの大きいCH4の膜への透過に関する活性化エネルギーを下げて、結果として、CH4の温度依存性が低くなる、且つ、該当気体分離膜は、二酸化炭素とメタンの分離選択に最適な自由体積を持ち、高い二酸化炭素とメタンの透過係数比(CO2透過係数/CH4透過係数)を発現すると推察される。従って、50℃の高温域において、二酸化炭素の透過係数が10Barrer以上、且つ二酸化炭素とメタンの透過係数比が40を超える気体分離性能が得られたと推察される。 In the gas separation membrane, the temperature dependence of the CO 2 solubility coefficient and the CO 2 diffusion coefficient cancel each other, and as a result, it is presumed that the temperature dependence of the CO 2 permeability coefficient is low. In addition, the phenylenediamine-derived skeleton having an HFIP group in the polyimide used for the gas separation membrane increases the free volume in the polyimide, thereby activating the permeation of CH 4 with a large dynamic molecular size into the membrane. As a result, the temperature dependence of CH 4 is lowered, and the gas separation membrane has a free volume that is optimal for the selection of carbon dioxide and methane, resulting in a high carbon dioxide and methane permeability coefficient ratio. It is assumed that (CO 2 permeability coefficient / CH 4 permeability coefficient) is expressed. Therefore, it is presumed that a gas separation performance with a carbon dioxide permeability coefficient of 10 Barrer or more and a carbon dioxide and methane permeability coefficient ratio exceeding 40 was obtained in a high temperature range of 50 ° C.

 1.ポリイミド
 本発明の気体分離膜が含むポリイミドについて説明する。
1. Polyimide The polyimide contained in the gas separation membrane of the present invention will be described.

 [式(1)で表される繰り返し単位を有するポリイミド]
 本発明の気体分離膜が含むポリイミドは、一般式(1)で表される繰り返し単位を有する。以後、一般式(1)で表される繰り返し単位を繰り返し単位(1)、一般式(1)で表される繰り返し単位を有するポリイミドをポリイミド(1)と呼ぶことがある。

Figure JPOXMLDOC01-appb-C000011
(式(1)中、R1は式(2)で表される2価の有機基である。)
Figure JPOXMLDOC01-appb-C000012
(式(2)中、R2は水素原子、アルキル基またはフルオロアルキル基であり、aは1~2の整数である。) [Polyimide having a repeating unit represented by the formula (1)]
The polyimide which the gas separation membrane of this invention contains has a repeating unit represented by General formula (1). Hereinafter, the repeating unit represented by formula (1) may be referred to as repeating unit (1), and the polyimide having the repeating unit represented by formula (1) may be referred to as polyimide (1).
Figure JPOXMLDOC01-appb-C000011
(In formula (1), R 1 is a divalent organic group represented by formula (2).)
Figure JPOXMLDOC01-appb-C000012
(In the formula (2), R 2 is a hydrogen atom, an alkyl group or a fluoroalkyl group, and a is an integer of 1 to 2)

 R1は2価の有機基であり、直鎖構造のみならず、炭素原子による脂環、不飽和環、芳香環または多環構造を有してもよく、複素環構造を有してもよく、水素原子、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有していてもよい。また、水素原子の一部または全部が、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。 R 1 is a divalent organic group, and may have not only a linear structure but also an alicyclic, unsaturated, aromatic, or polycyclic structure with a carbon atom, or a heterocyclic structure. , Hydrogen atom, fluorine atom, chlorine atom, oxygen atom, sulfur atom or nitrogen atom may be contained. Further, some or all of the hydrogen atoms may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group, or a cyano group.

 R1は、好ましくは、以下のいずれかの2価の有機基である。

Figure JPOXMLDOC01-appb-C000013
R 1 is preferably any one of the following divalent organic groups.
Figure JPOXMLDOC01-appb-C000013

 本発明の気体分離膜に用いるポリイミド(1)は、好ましくは、以下のいずれかの繰り返し単位を有するポリイミド(1)である。

Figure JPOXMLDOC01-appb-C000014
The polyimide (1) used for the gas separation membrane of the present invention is preferably a polyimide (1) having any one of the following repeating units.
Figure JPOXMLDOC01-appb-C000014

 特に好ましくは、これら中でも以下の繰り返し単位を有するポリイミド(1)である。

Figure JPOXMLDOC01-appb-C000015
Particularly preferred among these is polyimide (1) having the following repeating units.
Figure JPOXMLDOC01-appb-C000015

 繰り返し単位(1)は、ポリイミド(1)中に規則的に配列されていてもよいし、不規則に配列していてもよい。 The repeating unit (1) may be regularly arranged in the polyimide (1) or may be irregularly arranged.

 [式(3)で表される繰り返し単位を有するポリイミド]
 本発明の気体分離膜が含むポリイミド(1)は、さらに式(3)で表される繰り返し単位を有してもよい。以後、一般式(3)で表される繰り返し単位を繰り返し単位(3)と呼ぶことがある。

Figure JPOXMLDOC01-appb-C000016
[Polyimide having a repeating unit represented by the formula (3)]
The polyimide (1) contained in the gas separation membrane of the present invention may further have a repeating unit represented by the formula (3). Hereinafter, the repeating unit represented by the general formula (3) may be referred to as a repeating unit (3).
Figure JPOXMLDOC01-appb-C000016

 R1は2価の有機基であり、直鎖構造のみならず、炭素原子による脂環、不飽和環、芳香環または多環構造を有してもよく、複素環構造を有してもよく、水素原子、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有していてもよい。また、水素原子の一部または全部が、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。 R 1 is a divalent organic group, and may have not only a linear structure but also an alicyclic, unsaturated, aromatic, or polycyclic structure with a carbon atom, or a heterocyclic structure. , Hydrogen atom, fluorine atom, chlorine atom, oxygen atom, sulfur atom or nitrogen atom may be contained. Further, some or all of the hydrogen atoms may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group, or a cyano group.

 R1は、好ましくは、以下のいずれかの有機基である。

Figure JPOXMLDOC01-appb-C000017
R 1 is preferably any one of the following organic groups.
Figure JPOXMLDOC01-appb-C000017

 R3は、以下の式で表されるいずれかの4価の有機基である。

Figure JPOXMLDOC01-appb-C000018
R 3 is any tetravalent organic group represented by the following formula.
Figure JPOXMLDOC01-appb-C000018

 R3は、好ましくは、以下の式で表されるいずれかの有機基である。

Figure JPOXMLDOC01-appb-C000019
R 3 is preferably any organic group represented by the following formula.
Figure JPOXMLDOC01-appb-C000019

 本発明の気体分離膜に用いるポリイミド(1)は、好ましくは、繰り返し単位(1)に加え、以下のいずれかの繰り返し単位(3)を有するポリイミドである。

Figure JPOXMLDOC01-appb-C000020
The polyimide (1) used for the gas separation membrane of the present invention is preferably a polyimide having any of the following repeating units (3) in addition to the repeating unit (1).
Figure JPOXMLDOC01-appb-C000020

 特に好ましくは、これら中でも以下の繰り返し単位(3)を有するポリイミド(1)である。

Figure JPOXMLDOC01-appb-C000021
Particularly preferred among these is polyimide (1) having the following repeating unit (3).
Figure JPOXMLDOC01-appb-C000021

 ポリイミド(1)が繰り返し単位(1)に加え、さらに繰り返し単位(3)を有する場合において、繰り返し単位(1)と繰り返し単位(3)の存在比は、特に限定されるものではないが、繰り返し単位(1)と繰り返し単位(3)を有するポリイミド(1)を本発明の気体分離膜として使用する際、所望の二酸化炭素とメタンの分離選択性能を得るためには、繰り返し単位(1)の存在が、繰り返し単位(3)を1として、好ましくは、0.05以上あり、さらに好ましくは0.1以上であり、さらに好ましくは0.5以上である。すなわち、繰り返し単位(1):繰り返し単位(3)=0.05:1~1:0である。 In the case where the polyimide (1) has a repeating unit (3) in addition to the repeating unit (1), the abundance ratio of the repeating unit (1) and the repeating unit (3) is not particularly limited. When the polyimide (1) having the unit (1) and the repeating unit (3) is used as the gas separation membrane of the present invention, in order to obtain the desired separation performance of carbon dioxide and methane, the repeating unit (1) The presence is preferably 0.05 or more, more preferably 0.1 or more, and further preferably 0.5 or more, with 1 as the repeating unit (3). That is, repeating unit (1): repeating unit (3) = 0.05: 1 to 1: 0.

 [ポリイミドの重量平均分子量]
 本発明の気体分離膜が含む、ポリイミド(1)の重量平均分子量(Mw)は、20000以上、500000以下が好ましく、30000以上、200000以下特に好ましい。20000以上であれば、強靭な気体分離膜を得ることができ、500000以下であれば成膜可能である。ここで、重量平均分子量は、ゲル・パーミエーション・クロマトグラフィ(GPC)により測定し、標準ポリスチレン検量線を用いポリスチレン換算して得られる値である。
[Weight average molecular weight of polyimide]
The weight average molecular weight (Mw) of the polyimide (1) contained in the gas separation membrane of the present invention is preferably from 20,000 to 500,000, particularly preferably from 30,000 to 200,000. If it is 20000 or more, a tough gas separation membrane can be obtained, and if it is 500,000 or less, it can be formed. Here, the weight average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) and converting to polystyrene using a standard polystyrene calibration curve.

 2.ポリイミドの製造方法
 本発明の気体分離膜が含むポリイミド(1)の製造方法について説明する。
2. Manufacturing method of polyimide The manufacturing method of the polyimide (1) which the gas separation membrane of this invention contains is demonstrated.

 ポリイミド(1)は、式(4)で表されるフェニレンジアミンと式(5)で表されるテトラカルボン酸二無水物とを反応させて得ることができる。

Figure JPOXMLDOC01-appb-C000022
(式(4)中、aおよびR2は式(2)のaおよびR2とそれぞれ同義である。式(2)中のaおよびR2は、式(4)で表されるフェニレンジアミン中のaおよびbにそれぞれ由来する。)
Figure JPOXMLDOC01-appb-C000023
Polyimide (1) can be obtained by reacting phenylenediamine represented by formula (4) with tetracarboxylic dianhydride represented by formula (5).
Figure JPOXMLDOC01-appb-C000022
(In the formula (4), a and R 2 are each synonymous with a and R 2 of formula (2). A and R 2 in formula (2) during phenylenediamine represented by the formula (4) Derived from a and b.)
Figure JPOXMLDOC01-appb-C000023

 具体的には、以下の(A)または(B)のポリイミドの製造方法を示すことができる。
(A):式(4)で表されるフェニレンジアミンと式(5)で表されるテトラカルボン酸二無水物を有機溶剤中で縮重合してポリアミック酸を得て、次いで該ポリアミック酸を脱水閉環させてイミド化することでポリイミド(1)を得るポリイミドの製造方法。
(B):式(4)で表されるHFIP基を有するフェニレンジアミンと式(5)で表されるテトラカルボン酸二無水物の共存下、150℃以上に加熱溶融し反応させることで、ポリイミド(1)を得るポリイミドの製造方法。
Specifically, the following method for producing polyimide (A) or (B) can be shown.
(A): phenylenediamine represented by formula (4) and tetracarboxylic dianhydride represented by formula (5) are subjected to condensation polymerization in an organic solvent to obtain a polyamic acid, and then the polyamic acid is dehydrated. The manufacturing method of the polyimide which obtains a polyimide (1) by making it ring-close and imidize.
(B): In the presence of a phenylenediamine having an HFIP group represented by the formula (4) and a tetracarboxylic dianhydride represented by the formula (5), the polyimide is heated, melted and reacted at 150 ° C. or higher. The manufacturing method of the polyimide which obtains (1).

 (A)または(B)のポリイミドの製造方法において、得られるポリイミドの物性の調整等の必要に応じ、式(4)で表される以外のジアミン、式(5)で表される以外のテトラカルボン酸二無水物、またはその両方を加えてもよい。 In the polyimide production method of (A) or (B), a diamine other than that represented by formula (4) or a tetra other than that represented by formula (5) may be used as necessary to adjust the properties of the resulting polyimide. Carboxylic dianhydride, or both, may be added.

 (A)のポリイミドの製造方法について説明する。 (A) The polyimide production method will be described.

 以下に示す様に、(A)のポリイミドの製造方法は式(4)で表されるフェニレンジアミンと式(5)で表されるテトラカルボン酸二無水物を有機溶剤中で縮重合してポリアミック酸を得て、次いで該ポリアミック酸を脱水閉環させてイミド化することでポリイミド(1)を得る方法である。

Figure JPOXMLDOC01-appb-C000024
As shown below, the polyimide production method (A) is obtained by polycondensing a phenylenediamine represented by the formula (4) and a tetracarboxylic dianhydride represented by the formula (5) in an organic solvent. In this method, an acid is obtained, and then the polyamic acid is dehydrated and cyclized and imidized to obtain polyimide (1).
Figure JPOXMLDOC01-appb-C000024

 使用する有機溶剤は、式(4)で表されるフェニレンジアミンと式(5)で表されるテトラカルボン酸二無水物からポリアミック酸を得る縮重合反応を阻害しないものでなければよい。このような有機溶剤として、アミド系溶媒、芳香族系溶媒、ハロゲン系溶媒、ラクトン類溶媒、アルコール類溶媒またはグリコールエーテル類溶媒を挙げることができる。これらの有機溶剤は単独で用いてもよいし、二種以上を併用してもよい。 The organic solvent to be used may be one that does not inhibit the polycondensation reaction for obtaining a polyamic acid from the phenylenediamine represented by the formula (4) and the tetracarboxylic dianhydride represented by the formula (5). Examples of such organic solvents include amide solvents, aromatic solvents, halogen solvents, lactone solvents, alcohol solvents, and glycol ether solvents. These organic solvents may be used alone or in combination of two or more.

 アミド系溶媒としては、具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミド、またはN-メチル-2-ピロリドンを例示することができる。 Specific examples of the amide solvent include N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, and N-methyl-2-pyrrolidone.

 芳香族系溶媒としては、具体的には、ベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼン、ベンゾニトリル、またはp-クロロフェノールを例示することができる。ハロゲン系溶媒としては、具体的には、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、または1,1,2,2-テトラクロロエタンを例示することができる。 Specific examples of the aromatic solvent include benzene, anisole, diphenyl ether, nitrobenzene, benzonitrile, and p-chlorophenol. Specific examples of the halogen solvent include chloroform, dichloromethane, 1,2-dichloroethane, and 1,1,2,2-tetrachloroethane.

 ラクトン類溶媒としては、具体的には、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、またはα-メチル-γ-ブチロラクトンを例示することができる。 Specific examples of the lactone solvent include γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, and α-methyl-γ-butyrolactone.

 アルコール類溶媒としては、具体的には、n-ブチルアルコールを例示することができる。 Specific examples of the alcohol solvent include n-butyl alcohol.

 グリコールエーテル類溶媒としては、具体的には、2-メトキシエタノール、2-エトキシエタノール、または2-ブトキシエタノールを例示することができる。 Specific examples of glycol ether solvents include 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol.

 式(4)で表されるフェニレンジアミンと式(5)で表されるテトラカルボン酸二無水物からポリアミック酸を得る縮重合反応における反応温度は通常-20℃以上、80℃以下で行う。ジアミンとテトラカルボン酸二無水物との縮重合反応は、モル比で表して1対1で反応することから、前記縮重合反応において、式(4)で表されるフェニレンジアミンと式(5)で表されるテトラカルボン酸二無水物の存在比を、モル比で表して、1対1とすることが好ましい。 The reaction temperature in the polycondensation reaction for obtaining a polyamic acid from the phenylenediamine represented by the formula (4) and the tetracarboxylic dianhydride represented by the formula (5) is usually −20 ° C. or higher and 80 ° C. or lower. Since the polycondensation reaction between diamine and tetracarboxylic dianhydride is a one-to-one reaction expressed in molar ratio, in the polycondensation reaction, the phenylenediamine represented by formula (4) and formula (5) It is preferable that the abundance ratio of the tetracarboxylic dianhydride represented by the formula is represented as a molar ratio of 1: 1.

 ポリイミド(1)は、重合反応で得られたポリアミック酸をさらに脱水閉環させイミド化することで得られる。 The polyimide (1) is obtained by further dehydrating and ring-closing the polyamic acid obtained by the polymerization reaction to imidize.

 脱水閉環は、縮重合直後のポリアミック酸を100℃以上、350℃以下に加熱すること、または0℃以上、50℃以下で、式(4)で表されるフェニレンジアミンに対し、ピリジンまたはトリエチルアミン等の塩基と無水酢酸をそれぞれ2モル当量以上、10当量以下を加えることでイミド化し、ポリイミド(1)の溶液を得ることができる。得られたポリイミド(1)溶液は、そのまま後述の気体分離膜の製造に供してもよく、あるいは、濃縮または希釈してもよく、あるいは、ポリイミド(1)の溶液中から有機溶剤等を除去してポリイミド(1)そのものを得てもよい。 Dehydration ring closure is a method in which the polyamic acid immediately after condensation polymerization is heated to 100 ° C. or higher and 350 ° C. or lower, or 0 ° C. or higher and 50 ° C. or lower, pyridine, triethylamine, etc. The base and acetic anhydride of each are imidized by adding 2 molar equivalents or more and 10 equivalents or less, and the polyimide (1) solution can be obtained. The obtained polyimide (1) solution may be directly used for the production of a gas separation membrane described later, or may be concentrated or diluted, or an organic solvent or the like is removed from the polyimide (1) solution. Thus, polyimide (1) itself may be obtained.

 3.気体分離膜
 本発明の気体分離膜は、特に二酸化炭素の透過性に優れ、二酸化炭素と炭化水素を含む混合ガス、特に二酸化炭素とメタンを含む混合ガスの分離に優れる。本発明の一実施形態に係る気体分離膜は、少なくとも二酸化炭素とメタンを含む気体から、二酸化炭素またはメタンを分離するための気体分離膜である。また、本発明の気体分離膜は、酸素と窒素の分離にも優れ、酸素と窒素を含む気体(例えば空気)から酸素を分離するための気体分離膜としても有用である。
3. Gas Separation Membrane The gas separation membrane of the present invention is particularly excellent in carbon dioxide permeability and excellent in separation of a mixed gas containing carbon dioxide and hydrocarbons, particularly a mixed gas containing carbon dioxide and methane. A gas separation membrane according to an embodiment of the present invention is a gas separation membrane for separating carbon dioxide or methane from a gas containing at least carbon dioxide and methane. Further, the gas separation membrane of the present invention is excellent in separation of oxygen and nitrogen, and is useful as a gas separation membrane for separating oxygen from a gas (for example, air) containing oxygen and nitrogen.

 本発明の気体分離膜は、ポリイミド(1)を少なくとも含む。本発明の気体分離膜において、ポリイミド(1)の含有率は、40質量%以上であることが好ましく、より好ましくは80質量%以上であり、ポリイミド(1)のみからなることが特に好ましい。 The gas separation membrane of the present invention contains at least polyimide (1). In the gas separation membrane of the present invention, the content of the polyimide (1) is preferably 40% by mass or more, more preferably 80% by mass or more, and particularly preferably only the polyimide (1).

 膜物性を調整するために、ポリイミド(1)以外の各種高分子化合物を成分として含有してもよい。このような高分子化合物としては、アクリル系樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ビニル系樹脂、ゴム、ワックス、シェラックその他天然樹脂等が使用できる。また。これらは、2種類以上併用してもかまわない。 In order to adjust film physical properties, various polymer compounds other than polyimide (1) may be contained as components. Examples of such a polymer compound include acrylic resins, silicone resins, polyurethane resins, polyamide resins, polyimide resins, polyamideimide resins, polyester resins, epoxy resins, phenol resins, bismaleimide resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl resins. Formal resin, vinyl resin, rubber, wax, shellac and other natural resins can be used. Also. Two or more of these may be used in combination.

 本発明の気体分離膜が含むポリイミド(1)を、加熱(焼成)する際の温度は、好ましくは、50℃以上、400℃以下であり、さらに、好ましくは、100℃以上、325℃以下であり、特に、好ましくは、150℃以上、320℃以下である。加熱温度が、50℃より低い温度では、気体分離膜としての密綱な分離層を得ることが難しく、400℃より高い温度では、ポリイミド(1)の熱分解が懸念され、気体分離膜として使用するのに十分な機械強度を得ることが難しい。 The temperature when heating (baking) the polyimide (1) contained in the gas separation membrane of the present invention is preferably 50 ° C. or higher and 400 ° C. or lower, more preferably 100 ° C. or higher and 325 ° C. or lower. In particular, it is preferably 150 ° C. or higher and 320 ° C. or lower. When the heating temperature is lower than 50 ° C., it is difficult to obtain a dense separation layer as a gas separation membrane. When the heating temperature is higher than 400 ° C., there is a concern about thermal decomposition of polyimide (1), and it is used as a gas separation membrane. It is difficult to obtain a sufficient mechanical strength.

 加熱時間は、好ましくは、30分以上、24時間以下であり、さらに好ましくは、1時間以上、12時間以下である。 The heating time is preferably 30 minutes or longer and 24 hours or shorter, more preferably 1 hour or longer and 12 hours or shorter.

 4.気体分離膜の性能
 気体透過係数、特にCO2透過係数について、150kPa、50℃の条件下で、CO2透過係数は10バーレル(Barrer)以上が好ましい。150kPa、50℃の条件下で、二酸化炭素とメタンとの透過係数比(CO2透過係数/CH4透過係数)は40以上が好ましく、42以上が特に好ましい、45以上がさらに好ましい。
4). Performance gas permeability coefficient of the gas separation membrane, especially CO 2 permeability coefficient under the conditions of 150 kPa, 50 ° C., CO 2 permeability coefficient is preferably 10 barrels (Barrer) above. Under the conditions of 150 kPa and 50 ° C., the permeability coefficient ratio between carbon dioxide and methane (CO 2 permeability coefficient / CH 4 permeability coefficient) is preferably 40 or more, particularly preferably 42 or more, and further preferably 45 or more.

 中でも、150kPa、50℃の条件下で、気体透過係数について、CO2透過係数が10バーレル(Barrer)以上、かつ、二酸化炭素とメタンとの透過係数比(CO2透過係数/CH4透過係数)が45以上であると、高い透過性と非常に優れたガス選択性とを同時に満足する気体分離膜であるため、特に好ましい。 Above all, under conditions of 150 kPa and 50 ° C., the gas permeability coefficient is a CO 2 permeability coefficient of 10 barr or more, and the permeability coefficient ratio between carbon dioxide and methane (CO 2 permeability coefficient / CH 4 permeability coefficient). Is more preferably 45 or more, because it is a gas separation membrane that satisfies both high permeability and very excellent gas selectivity at the same time, and is particularly preferable.

 本発明の気体分離膜の気体分離性能は、50℃において、CO2透過係数が10バーレル以上であり、二酸化炭素とメタンとの透過係数比(CO2透過係数/CH4透過係数)が40以上である。 The gas separation performance of the gas separation membrane of the present invention is that the CO 2 permeability coefficient is 10 barrels or more at 50 ° C., and the permeability coefficient ratio (CO 2 permeability coefficient / CH 4 permeability coefficient) between carbon dioxide and methane is 40 or more. It is.

 実施例に記載の様に、本発明の気体分離膜を用いると、150kPa、50℃の条件下で、CO2透過係数が10バーレル(Barrer)以上、二酸化炭素とメタンとの透過係数比(CO2透過係数/CH4透過係数)40以上が得られ、高い二酸化炭素透過性とガス選択性とを同時に満足することができる。 As described in the examples, when the gas separation membrane of the present invention is used, the CO 2 permeability coefficient is 10 Barrer or more under the conditions of 150 kPa and 50 ° C., and the permeability coefficient ratio (CO 2) between carbon dioxide and methane. (2 permeability coefficient / CH 4 permeability coefficient) of 40 or more can be obtained, and high carbon dioxide permeability and gas selectivity can be satisfied simultaneously.

 5.気体分離膜の形状
 本発明の気体分離膜は、緻密層からなる対称膜であってもよく、または緻密層と多孔質層からなる非対称膜であってもよい。非対称膜の場合、緻密層はガス種によって透過速度が異なり、ガス混合物を分離する役割を果たす一方で、多孔質層は、膜形状を保持するための支持体としての役割を果たすことが可能となる。非対称膜の形状は、例えば、平坦な膜状、中空糸膜状のいずれの形状であってもよい。
5). Shape of Gas Separation Membrane The gas separation membrane of the present invention may be a symmetric membrane comprising a dense layer or an asymmetric membrane comprising a dense layer and a porous layer. In the case of an asymmetric membrane, the dense layer has a different permeation rate depending on the gas species and serves to separate the gas mixture, while the porous layer can serve as a support for maintaining the membrane shape. Become. The shape of the asymmetric membrane may be, for example, a flat membrane shape or a hollow fiber membrane shape.

 対称膜の場合、その厚みは、好ましくは、500nm以上、1mm以下であり、さらに好ましくは、10μm以上、100μm以下である。500nmより薄いと製膜が容易でなく破れやすい、1mmより厚いと気体が透過し難い。 In the case of a symmetric film, the thickness is preferably 500 nm or more and 1 mm or less, more preferably 10 μm or more and 100 μm or less. If it is thinner than 500 nm, the film formation is not easy and it is easy to break, and if it is thicker than 1 mm, the gas hardly penetrates.

 非対称膜の平坦な膜状とする場合、その緻密層の層厚は、好ましくは、10nm以上、10μm以下であり、さらに、好ましくは、30nm以上、1μm以下である。10nmより薄いと製膜が容易でなく破れやすい、10μmより厚いと、気体が透過し難い。その多孔質層の層厚は、好ましくは、5μm以上、2mm以下であり、さらに、好ましくは、10μm以上、500μm以下である。5μmより薄いと製膜が容易でなく破れやすい、2mmより厚いと気体が透過し難い。 When the asymmetric film is formed into a flat film, the thickness of the dense layer is preferably 10 nm or more and 10 μm or less, and more preferably 30 nm or more and 1 μm or less. If it is thinner than 10 nm, the film formation is not easy and it is easy to break, and if it is thicker than 10 μm, the gas hardly penetrates. The layer thickness of the porous layer is preferably 5 μm or more and 2 mm or less, more preferably 10 μm or more and 500 μm or less. If it is thinner than 5 μm, it is not easy to form a film and it is easy to break.

 非対称膜を中空糸膜状とする場合には、外側を緻密層、内側を多孔質層とすることが好ましく、内径は、好ましくは、10μm以上、4mm以下であり、さらに、好ましくは、20μm以上、1mm以下である、外径は、好ましくは、30μm以上、8mm以下であり、さらに、好ましくは、50μm以上1.5mm以下が特に好ましい。内径が10μm未満、外径が30μm未満では、中空糸膜状に製造し難く、内径が1mm未満、外径が8mm未満では、中空糸膜状の気体分離膜として実用に適していない。 When the asymmetric membrane is a hollow fiber membrane, the outer side is preferably a dense layer and the inner side is preferably a porous layer, and the inner diameter is preferably 10 μm or more and 4 mm or less, more preferably 20 μm or more. The outer diameter, which is 1 mm or less, is preferably 30 μm or more and 8 mm or less, and more preferably 50 μm or more and 1.5 mm or less. When the inner diameter is less than 10 μm and the outer diameter is less than 30 μm, it is difficult to produce a hollow fiber membrane, and when the inner diameter is less than 1 mm and the outer diameter is less than 8 mm, it is not suitable for practical use as a hollow fiber membrane-shaped gas separation membrane.

 6.気体分離膜の製造方法
 本発明の気体分離膜は、ポリイミド(1)を有機溶剤に溶解した溶液とし、基材上にスピンコート、スプレーコート、フローコート、含浸コート、ハケ塗り等、通常用いられる方法で塗布した後、そのままの形状で製膜あるいは成形し製造することができる。
6). Method for Producing Gas Separation Membrane The gas separation membrane of the present invention is a solution in which polyimide (1) is dissolved in an organic solvent, and is usually used for spin coating, spray coating, flow coating, impregnation coating, brush coating, etc. on a substrate. After coating by the method, it can be produced by forming or forming the film as it is.

 有機溶剤の種類は、ポリイミド(1)が溶解し、加熱温度以下で揮発するものであればよく、好ましくは、(A)のポリイミド(1)の製造方法で示した種類の有機溶剤を用いることができる。また、(A)のポリイミドの製造方法で用いた、前記ポリイミド(1)の溶液を用いてもよい。得られた気体分離膜は、製膜後、あるいは成形時、50℃以上、400℃以下の温度で加熱することが好ましい。 The kind of organic solvent should just be what melt | dissolves a polyimide (1) and volatilizes below a heating temperature, Preferably, the kind of organic solvent shown by the manufacturing method of the polyimide (1) of (A) is used. Can do. Moreover, you may use the solution of the said polyimide (1) used with the manufacturing method of the polyimide of (A). The obtained gas separation membrane is preferably heated at a temperature of 50 ° C. or more and 400 ° C. or less after film formation or at the time of molding.

 また、(A)のポリイミド(1)の製造方法で得られたポリアミック酸の溶液を基材上に塗布し、50℃以上、400℃以下上記の加熱温度で加熱することで有機溶剤を揮発させるとともに脱水閉環反応を進行させてポリイミド(1)の膜とし、本発明の気体分離膜とすることもできる。 Moreover, the solution of the polyamic acid obtained by the manufacturing method of the polyimide (1) of (A) is applied on a substrate, and the organic solvent is volatilized by heating at a heating temperature of 50 ° C. or more and 400 ° C. or less. At the same time, the dehydration ring-closure reaction is allowed to proceed to form a polyimide (1) membrane, which can be used as the gas separation membrane of the present invention.

 溶液中のポリイミド(1)またはその前駆体であるポリアミック酸の濃度は、好ましくは、5質量%以上、50質量%以下であり、さらに、好ましくは、10質量%以上、40質量%以下である。また、塗布する溶液は、ポリイミド(1)の溶液またはポリアミック酸の溶液を貧溶媒に注いでポリイミド(1)ポリアミック酸またはを沈殿、回収、乾燥させた後に、有機溶剤に再溶解させた溶液を用いてもよい。 The concentration of the polyimide (1) or the polyamic acid that is a precursor thereof in the solution is preferably 5% by mass or more and 50% by mass or less, and more preferably 10% by mass or more and 40% by mass or less. . The solution to be applied is a solution of polyimide (1) or polyamic acid poured into a poor solvent to precipitate, collect and dry the polyimide (1) polyamic acid, and then re-dissolved in an organic solvent. It may be used.

 気体分離膜を製造する際に、ポリイミド(1)溶液、またはその前駆体であるポリアミック酸溶液を塗布する基材には、ガラス、シリコンウエハ、金属、金属酸化物、セラミックス、または樹脂を挙げることができる。 In manufacturing a gas separation membrane, the substrate on which the polyimide (1) solution or the polyamic acid solution that is a precursor thereof is applied includes glass, silicon wafer, metal, metal oxide, ceramics, or resin. Can do.

 本発明の気体分離膜として、対称膜を製造する場合、前述のポリアミック酸溶液を用いる際には、例えば、ガラス基板等の基材にスピンコーターまたはアプリケーター等を用いて湿式塗布した後、空気、窒素またはアルゴン等の乾燥気体中で加熱を行うことで、有機溶剤の蒸発、前記環化脱水反応を経て焼成体を得た後、前記基材から該焼成体を剥離させることで得られる。ポリイミド(1)の溶液を用いる場合、例えば、ガラス基板やPTFE(ポリテトラフルオロエチレン)基板等の基材にスピンコートまたはアプリケーター等を用いて塗布した後、空気、窒素、またはアルゴン等の乾燥気体中で加熱を行うことで、有機溶剤の蒸発を経て焼成体を得た後、前記基材から剥離させることで得られる。 When producing a symmetrical membrane as the gas separation membrane of the present invention, when using the above-mentioned polyamic acid solution, for example, after wet application to a substrate such as a glass substrate using a spin coater or applicator, air, By heating in a dry gas such as nitrogen or argon, the fired body is obtained through evaporation of the organic solvent and the cyclization dehydration reaction, and then the fired body is peeled off from the substrate. When using a solution of polyimide (1), for example, after applying it to a substrate such as a glass substrate or PTFE (polytetrafluoroethylene) substrate using a spin coater or an applicator, a dry gas such as air, nitrogen, or argon It is obtained by peeling from the base material after obtaining a fired body by evaporating the organic solvent by heating in.

 本発明の気体分離膜とする際、非対称膜を得る製造として、具体的には、ポリイミド(1)の溶液を圧力容器内に入れ、その吐出口から、溶液中の有機溶剤と相溶するがポリイミドは溶解しない貧溶媒を満たした浴内に吐出させて、得られたポリイミド膜の表面近傍に存在する溶媒を空気中に蒸発させ、表面側に緻密層を形成した後、浴側は微細な多孔質層を形成させる方法を例示することができる。 When producing the gas separation membrane of the present invention, as a method for obtaining an asymmetric membrane, specifically, a solution of polyimide (1) is placed in a pressure vessel and is compatible with an organic solvent in the solution from its discharge port. The polyimide is discharged into a bath filled with a poor solvent that does not dissolve, and the solvent present in the vicinity of the surface of the obtained polyimide film is evaporated in the air to form a dense layer on the surface side. A method of forming the porous layer can be exemplified.

 この際、貧溶媒としては、水、または水と有機溶剤の混合液が好適に使用される。この混合溶液の組成は、水と有機溶剤の混合液を使用する場合、混合溶液の全質量に対して、水が30質量%以上、90質量%以下、好ましくは、40質量%以上、80質量%以下、含まれることが好ましい。有機溶剤はアルコール系溶剤またはケトン系溶剤を挙げることができる。 In this case, water or a mixed solution of water and an organic solvent is preferably used as the poor solvent. The composition of this mixed solution is such that when a mixed solution of water and an organic solvent is used, water is 30% by mass or more and 90% by mass or less, preferably 40% by mass or more and 80% by mass with respect to the total mass of the mixed solution % Or less is preferably included. Examples of the organic solvent include alcohol solvents and ketone solvents.

 アルコール系溶剤としては、具体的には、メタノール、エタノールまたはイソプロパノールを例示することができる。ケトン系溶剤としては、アセトン、メチルエチルケトン、ジエチルケトンまたはジエチルケトンを例示することができる。 Specific examples of the alcohol solvent include methanol, ethanol, and isopropanol. Examples of the ketone solvent include acetone, methyl ethyl ketone, diethyl ketone, and diethyl ketone.

 本発明の気体分離膜として、複合膜を製造する場合には、ポリイミド(1)を含有する塗布液を多孔質の支持体(多孔質支持体)上に塗布して気体分離層を形成させることが好ましい。塗布液中のポリイミド(1)の含有量は特に限定されないが、0.1質量%以上、30質量%以下であることが好ましく、0.3質量%以上、10質量%以下であることが特に好ましい。ポリイミド(1)の含有量が低すぎると、支持体上に塗布製膜した際に、多孔質部位に浸透し、分離層表面に欠陥が生じるため好ましくない。また含有量が高すぎると、多孔質部位が高濃度に充填され、分離層も厚くなり透過性が低下する可能性があるので好ましくない。ポリイミド(1)の分子量、構造、溶液粘度を調整することで、複合膜を適切に製造することができる。複合膜を製造する際に、ポリイミド(1)と多孔質支持層の間に、支持層の表面の平滑化のために、シロキサン化合物等の他の層が存在してもよい。 When producing a composite membrane as the gas separation membrane of the present invention, a coating liquid containing polyimide (1) is applied on a porous support (porous support) to form a gas separation layer. Is preferred. Although content of the polyimide (1) in a coating liquid is not specifically limited, It is preferable that it is 0.1 to 30 mass%, and it is especially 0.3 to 10 mass% especially. preferable. If the content of the polyimide (1) is too low, it is not preferable because it penetrates into the porous region when a film is formed on the support and a defect occurs on the surface of the separation layer. On the other hand, if the content is too high, the porous portion is filled at a high concentration, the separation layer is also thickened, and the permeability may be lowered. By adjusting the molecular weight, structure, and solution viscosity of the polyimide (1), the composite film can be appropriately produced. When manufacturing the composite membrane, another layer such as a siloxane compound may be present between the polyimide (1) and the porous support layer in order to smooth the surface of the support layer.

 多孔質支持体の素材としては、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデンの含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアミド、ポリアミドイミド等の各種樹脂を挙げることができる。 Examples of porous support materials include polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, polyurethane, polyacrylonitrile, polyphenylene oxide, and polysulfone. And various resins such as polyethersulfone, polyimide, polyamide, and polyamideimide.

 7.気体の分離方法
 本発明の気体の分離方法は、本発明のポリイミド(1)を含む気体分離膜を用いて。少なくとも2種以上の種類の気体を含む気体から特定の種類の気体を分離する方法である。
7). Gas Separation Method The gas separation method of the present invention uses a gas separation membrane containing the polyimide (1) of the present invention. This is a method for separating a specific kind of gas from a gas containing at least two kinds of gases.

 本発明の気体の分離方法は、気体が二酸化炭素のような酸性ガスを含む場合、特に優れた性能を発揮する。本発明の気体の分離方法は、本発明の気体分離膜が特に二酸化炭素の透過性に優れるので、二酸化炭素と炭化水素を含む気体、特に二酸化炭素とメタンを含む気体の分離に好適に用いることができ、特に、二酸化炭素とメタンを含む気体から、二酸化炭素またはメタンを選択性よく好適に分離することができる。 The gas separation method of the present invention exhibits particularly excellent performance when the gas contains an acidic gas such as carbon dioxide. The gas separation method of the present invention is preferably used for separation of a gas containing carbon dioxide and hydrocarbons, particularly a gas containing carbon dioxide and methane, because the gas separation membrane of the present invention is particularly excellent in carbon dioxide permeability. In particular, carbon dioxide or methane can be suitably separated with good selectivity from a gas containing carbon dioxide and methane.

 本発明の気体の分離方法を用いると50℃において、CO2透過係数は10バーレル以上が得られ、二酸化炭素とメタンとの透過係数比(CO2透過係数/CH4透過係数)は40以上が得られる。 When the gas separation method of the present invention is used, a CO 2 permeability coefficient of 10 barrels or more is obtained at 50 ° C., and a permeability coefficient ratio (CO 2 permeability coefficient / CH 4 permeability coefficient) between carbon dioxide and methane is 40 or more. can get.

 実施例に記載の様に、本発明の気体の分離方法を用いると、150kPa、50℃の条件下で、CO2透過係数が10バーレル(Barrer)以上、二酸化炭素とメタンとの透過係数比(CO2透過係数/CH4透過係数)40以上が得られ、高い二酸化炭素透過性とガス選択性とを同時に満足することができる。 As described in the examples, when the gas separation method of the present invention is used, a CO 2 permeability coefficient of 10 barr or more and a permeability coefficient ratio of carbon dioxide and methane (150 bar, 50 ° C.) CO 2 permeability coefficient / CH 4 permeability coefficient) of 40 or more can be obtained, and high carbon dioxide permeability and gas selectivity can be satisfied at the same time.

 二酸化炭素とメタンを含む気体、特に、天然ガスの分離を35℃以上、70℃以下で行うことが好ましい。より好ましくは、40℃以上、60℃以下である。さらに好ましくは、45℃以上、55℃以下である。 It is preferable to separate a gas containing carbon dioxide and methane, particularly natural gas, at 35 ° C. or higher and 70 ° C. or lower. More preferably, it is 40 degreeC or more and 60 degrees C or less. More preferably, it is 45 degreeC or more and 55 degrees C or less.

 [気体]
 本発明の気体分離膜が分離する気体は特に限定されないが、二種以上の気体を含む気体であって、好ましくは、二酸化炭素および炭化水素を含む気体であり、特に、二酸化炭素およびメタンを含む気体である。二酸化炭素およびメタンを含む気体全量に対する二酸化炭素の存在比は、質量%で表わして、好ましくは、1%以上、80%以下であり、さらに好ましくは5%以上、60%以下であり、さらに好ましくは、7%以上50%以下である。
[gas]
Although the gas which the gas separation membrane of this invention isolate | separates is not specifically limited, It is a gas containing 2 or more types of gas, Preferably it is a gas containing a carbon dioxide and a hydrocarbon, Especially, a carbon dioxide and methane are included. It is a gas. The abundance ratio of carbon dioxide with respect to the total amount of gas including carbon dioxide and methane is preferably 1% or more and 80% or less, more preferably 5% or more and 60% or less, and more preferably expressed in mass%. Is 7% or more and 50% or less.

 二酸化炭素およびメタン以外の気体としてはその種類は特に問わないが、水素、ヘリウム、一酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物(SOx)、窒素酸化物(NOx)、メタン以外の炭化水素、不飽和炭化水素、パーフルオロ化合物等を挙げることができる。ここで、メタン以外の炭化水素としては、エタン、プロパン、ブタンまたはペンタンを例示することができる、不飽和炭化水素としては、エチレン、プロピレンを例示することができる。パーフルオロ化合物としては、テトラフルオロエタンを上げことができる。 The type of gas other than carbon dioxide and methane is not particularly limited, but other than hydrogen, helium, carbon monoxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxide (SOx), nitrogen oxide (NOx), and methane And hydrocarbons, unsaturated hydrocarbons, perfluoro compounds and the like. Here, as hydrocarbons other than methane, ethane, propane, butane or pentane can be exemplified, and as unsaturated hydrocarbons, ethylene and propylene can be exemplified. Tetrafluoroethane can be raised as the perfluoro compound.

 本発明の気体分離膜が分離する気体として、具体的には、天然ガスを挙げることができ、天然ガスが含む不燃性ガスを分離し、可燃性ガス成分である炭化水素の分離精製に有効に使用することができる。 Specific examples of the gas to be separated by the gas separation membrane of the present invention include natural gas, which is effective for separating and purifying hydrocarbons, which are combustible gas components, by separating incombustible gas contained in natural gas. Can be used.

 本発明の気体分離膜が分離する気体として、具体的には、バイオガスを挙げることができ、メタンと二酸化炭素を含むバイオガスから、低透過性ガスであるメタンを分離精製に好適に用いることができる。 Specific examples of the gas separated by the gas separation membrane of the present invention include biogas, and methane, which is a low-permeability gas, is preferably used for separation and purification from biogas containing methane and carbon dioxide. Can do.

 本発明の気体分離膜が分離する気体として、具体的には、石油回収増進法(EOR)で得られる混合ガスを挙げることができ、メタンと二酸化炭素を含む混合ガスから、低透過性ガスであるメタンを分離精製に好適に用いることができる。さらに分離回収した二酸化炭素は、EOR用のガスとして、好滴に使用することができる。 Specific examples of the gas to be separated by the gas separation membrane of the present invention include a mixed gas obtained by an oil recovery enhancement method (EOR). From a mixed gas containing methane and carbon dioxide, a low permeability gas can be used. Certain methane can be suitably used for separation and purification. Further, the separated and recovered carbon dioxide can be used as a drop for EOR gas.

 8.気体分離装置
 本発明の気体分離膜は気体を分離回収または分離精製させるための手段として、気体分離装置に使用することができる。
8). Gas Separation Device The gas separation membrane of the present invention can be used in a gas separation device as a means for separating and recovering or purifying gas.

 本発明の気体分離膜は、ハウジング内に収めることで気体分離膜モジュールとして好適に用いることができる。気体分離膜モジュールの種類としては、スパイラル型、中空糸膜型、プリーツ型、管状型、プレート&フレーム型等を挙げることができる。 The gas separation membrane of the present invention can be suitably used as a gas separation membrane module by being housed in a housing. Examples of the gas separation membrane module include a spiral type, a hollow fiber membrane type, a pleat type, a tubular type, and a plate & frame type.

 また、本発明の気体分離膜は、気体分離膜モジュールとして、例えば、特許文献6に記載される吸収液と併用した膜・吸収ハイブリッド法による気体分離回収装置に使用してもよい。 Further, the gas separation membrane of the present invention may be used as a gas separation membrane module, for example, in a gas separation / recovery device by a membrane / absorption hybrid method used in combination with an absorbing solution described in Patent Document 6.

 以下に実施例に基づき本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

 [実施例1]
 [ポリイミド(A)からなる気体分離膜の作製]
 <ポリイミド(A)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すHFIP-pPDを20.0g(73mmol)、およびDSDAを26.1g(73mmol)加え、さらに、溶媒としてジメチルアセトアミド(DMAc)を85g加えた後、窒素雰囲気下、室温(20℃)で攪拌し反応液を得た。得られた反応液に、ピリジンを12.1g(153mmol)、無水酢酸を15.6g(153mmol)、順に加え、さらに24時間攪拌し、イミド化を行った。その後、DMAc(58g)を加えてイミド化後の反応液を希釈し、加圧濾過することで、以下の式に示すポリイミド(A)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000025
 ポリイミド(A)のDMAc溶液のゲル・パーミエーション・クロマトグラフィ(GPC)による分子量の測定結果は、Mw=71000、Mw/Mn=3.0であった。なお、GPCには、東ソー株式会社製、機種名:HLC-8320GPC、カラム:TSKgel SuperHZM-Hを用い、展開溶媒にはテトラヒドロフラン(THF)を用いた。Mwは重量平均分子量、Mnは数平均分子量である。 [Example 1]
[Production of gas separation membrane made of polyimide (A)]
<Preparation of polyimide (A)>
20.0 g (73 mmol) of HFIP-pPD and 26.1 g (73 mmol) of DSDA represented by the following formula were added to a 500-mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, and dimethylacetamide (73 mmol) as a solvent was further added. After adding 85 g of DMAc), the mixture was stirred at room temperature (20 ° C.) under a nitrogen atmosphere to obtain a reaction solution. To the obtained reaction solution, 12.1 g (153 mmol) of pyridine and 15.6 g (153 mmol) of acetic anhydride were sequentially added, and the mixture was further stirred for 24 hours to perform imidization. Thereafter, DMAc (58 g) was added to dilute the reaction solution after imidization, followed by pressure filtration to prepare a DMAc solution of polyimide (A) represented by the following formula.
Figure JPOXMLDOC01-appb-C000025
The measurement result of the molecular weight by the gel permeation chromatography (GPC) of the DMAc solution of polyimide (A) was Mw = 71000 and Mw / Mn = 3.0. For GPC, Tosoh Corporation model name: HLC-8320GPC, column: TSKgel SuperHZM-H was used, and tetrahydrofuran (THF) was used as a developing solvent. Mw is a weight average molecular weight and Mn is a number average molecular weight.

 <気体分離膜の作製>
 調製したポリイミド(A)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度1000rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃下で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(A)からなる気体分離膜を得た。膜厚計で測定したところ、膜厚は38μmであった。尚、膜厚計には、株式会社ニコン製、機種名:DIGIMICRO MH-15を用いた。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (A) is hung on a glass substrate, and the rotation speed is increased to 1000 rpm over 10 seconds using a spin coater, and then the rotation is maintained for 10 seconds, uniformly on the glass substrate. Applied. Drying at 180 ° C. for 30 minutes in a nitrogen atmosphere to remove the solvent, heating at 250 ° C. for 2 hours, cooling, and peeling the polyimide film from the glass substrate to separate the gas from the polyimide (A) A membrane was obtained. When measured with a film thickness meter, the film thickness was 38 μm. As the film thickness meter, model name: DIGIMICRO MH-15 manufactured by Nikon Corporation was used.

 [実施例2]
 [ポリイミド(B)からなる気体分離膜の作製]
 <ポリイミド(B)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すHFIP-pPDを20.0g(73mmol)、DSDAを13.1g(36.5mmol)、および6FDAを16.2g(36.5mmol)加え、溶媒としてDMAcを98g加えた後、窒素雰囲気下、室温で攪拌し反応液を得た。得られた反応液にピリジンを12.1g(153mmol)、無水酢酸を15.6g(153mmol)、順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、以下の式に示すポリイミド(B)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000026
 実施例1と同じ機器を用いて同様に測定したポリイミド(B)の分子量は、Mw=86600、Mw/Mn=2.7であった。 [Example 2]
[Production of gas separation membrane made of polyimide (B)]
<Preparation of polyimide (B)>
In a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, 20.0 g (73 mmol) of HFIP-pPD represented by the following formula, 13.1 g (36.5 mmol) of DSDA, and 16.2 g of 6FDA ( 36.5 mmol), and 98 g of DMAc was added as a solvent, followed by stirring at room temperature under a nitrogen atmosphere to obtain a reaction solution. To the obtained reaction solution, 12.1 g (153 mmol) of pyridine and 15.6 g (153 mmol) of acetic anhydride were sequentially added, and the mixture was further stirred for 24 hours to perform imidization. Then, the DMAc solution of the polyimide (B) shown to the following formula | equation was prepared by carrying out pressure filtration.
Figure JPOXMLDOC01-appb-C000026
The molecular weight of the polyimide (B) measured similarly using the same apparatus as Example 1 was Mw = 86600 and Mw / Mn = 2.7.

 <気体分離膜の作製>
 調製したポリイミド(B)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度400rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(B)からなる気体分離膜を得た。実施例1で用いたのと同じ膜厚計で測定したところ、膜厚は41μmであった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (B) is hung on a glass substrate, and the rotation speed is increased to 400 rpm over 10 seconds using a spin coater. Then, the rotation is maintained for 10 seconds, and uniformly on the glass substrate. Applied. In a nitrogen atmosphere, the solvent is removed by drying at 180 ° C. for 30 minutes, and after heating at 250 ° C. for 2 hours, the gas separation membrane is formed of the polyimide (B) by cooling and peeling the polyimide membrane from the glass substrate. Got. When measured with the same film thickness meter as used in Example 1, the film thickness was 41 μm.

 [実施例3]
 [ポリイミド(C)からなる気体分離膜の作製]
 <ポリイミド(C)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すHFIP-pPDを20.0g(73mmol)、DSDAを13.1g(36.5mmol)、およびBPDAを10.7g(36.5mmol)加え、溶媒としてDMAcを81g加えた後、窒素雰囲気下、室温で攪拌し反応液を得た。得られた反応液にピリジンを12.1g(153mmol)、無水酢酸を15.6g(153mmol)、順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、以下の式に示すポリイミド(C)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000027
 実施例1と同じ機器を用いて同様に測定したポリイミド(C)の分子量は、Mw=55100、Mw/Mn=2.8であった。 [Example 3]
[Production of gas separation membrane made of polyimide (C)]
<Preparation of polyimide (C)>
In a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, 20.0 g (73 mmol) of HFIP-pPD represented by the following formula, 13.1 g (36.5 mmol) of DSDA, and 10.7 g of BPDA ( 36.5 mmol), and 81 g of DMAc was added as a solvent, followed by stirring at room temperature under a nitrogen atmosphere to obtain a reaction solution. To the obtained reaction solution, 12.1 g (153 mmol) of pyridine and 15.6 g (153 mmol) of acetic anhydride were sequentially added, and the mixture was further stirred for 24 hours to perform imidization. Thereafter, a DMAc solution of polyimide (C) represented by the following formula was prepared by filtration under pressure.
Figure JPOXMLDOC01-appb-C000027
The molecular weight of polyimide (C) measured in the same manner using the same equipment as in Example 1 was Mw = 55100 and Mw / Mn = 2.8.

 <気体分離膜の作製>
 調製したポリイミド(C)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度1100rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(C)からなる気体分離膜を得た。実施例1で用いたのと同じ膜厚計で測定したところ、膜厚は、57μmであった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (C) is hung on a glass substrate, and the rotation speed is increased to 1100 rpm over 10 seconds using a spin coater. Then, the rotation is maintained for 10 seconds, and uniformly on the glass substrate. Applied. In a nitrogen atmosphere, the solvent is removed by drying at 180 ° C. for 30 minutes, and after heating at 250 ° C. for 2 hours, the gas separation membrane is made of the polyimide (C) by cooling and peeling the polyimide membrane from the glass substrate. Got. When measured with the same film thickness meter as used in Example 1, the film thickness was 57 μm.

 [比較例1]
 [ポリイミド(P1)からなる気体分離膜の作製]
 <ポリイミド(P1)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すMDAを30.0g(151mmol)および6FDAを67.2g(151mmol)加え、溶媒としてDMAcを277g加えた後、窒素雰囲気下、室温で攪拌し反応液を得た。得られた反応液に、ピリジンを47.9g(605mmol)、無水酢酸を67.8g(605mmol)、順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、以下の式に示すポリイミド(P1)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000028
 実施例1と同じ機器を用いて同様に測定したポリイミド(P1)の分子量は、Mw=63600、Mw/Mn=2.1であった。 [Comparative Example 1]
[Production of gas separation membrane made of polyimide (P1)]
<Preparation of polyimide (P1)>
30.0 g (151 mmol) of MDA represented by the following formula and 67.2 g (151 mmol) of 6FDA were added to a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, and 277 g of DMAc was added as a solvent. The reaction solution was obtained by stirring at room temperature under an atmosphere. To the obtained reaction solution, 47.9 g (605 mmol) of pyridine and 67.8 g (605 mmol) of acetic anhydride were added in this order, and the mixture was further stirred for 24 hours to perform imidization. Thereafter, a DMAc solution of polyimide (P1) represented by the following formula was prepared by filtration under pressure.
Figure JPOXMLDOC01-appb-C000028
The molecular weight of polyimide (P1) measured in the same manner using the same equipment as in Example 1 was Mw = 63600 and Mw / Mn = 2.1.

 <気体分離膜の作製>
 調製したポリイミド(P1)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度700rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(P1)からなる気体分離膜を得た。実施例1で用いたのと同じ膜厚計で測定したところ、膜厚は、35μmであった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (P1) is dropped on a glass substrate, and the spin coater is used to increase the rotation speed to 700 rpm over 10 seconds. Then, the rotation is maintained for 10 seconds and uniformly on the glass substrate. Applied. Drying at 180 ° C. for 30 minutes in a nitrogen atmosphere to remove the solvent, heating at 250 ° C. for 2 hours, cooling, and peeling the polyimide membrane from the glass substrate, thereby forming a gas separation membrane comprising the polyimide (P1) Got. When measured with the same film thickness meter as used in Example 1, the film thickness was 35 μm.

 [比較例2]
 [ポリイミド(P2)からなる気体分離膜の作製]
 <ポリイミド(P2)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すpPDを10.0g(92mmol)および6FDAを41.1g(92mmol)加え、溶媒としてDMAcを100g加えた後、窒素雰囲気下、20℃で攪拌し反応液を得た。得られた反応液にピリジンを15.4g(194mmol)、無水酢酸を19.8g(194mmol)、順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、以下に示すポリイミド(P2)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000029
 実施例1と同じ機器を用いて同様に測定したポリイミド(P2)の分子量は、Mw=106000、Mw/Mn=2.2であった。 [Comparative Example 2]
[Production of gas separation membrane made of polyimide (P2)]
<Preparation of polyimide (P2)>
After adding 10.0 g (92 mmol) of pPD shown in the following formula and 41.1 g (92 mmol) of 6FDA to a 500 mL three-neck flask equipped with a nitrogen introduction tube and a stirring blade, and adding 100 g of DMAc as a solvent, The reaction solution was obtained by stirring at 20 ° C. in an atmosphere. To the obtained reaction solution, 15.4 g (194 mmol) of pyridine and 19.8 g (194 mmol) of acetic anhydride were added in this order, and the mixture was further stirred for 24 hours for imidization. Then, the DMAc solution of the polyimide (P2) shown below was prepared by carrying out pressure filtration.
Figure JPOXMLDOC01-appb-C000029
The molecular weight of polyimide (P2) measured in the same manner using the same equipment as in Example 1 was Mw = 106000 and Mw / Mn = 2.2.

 <気体分離膜の作製>
 調製したポリイミド(P2)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度1000rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(P2)からなる気体分離膜を得た。実施例1で用いたのと同じ膜厚計で測定したところ、膜厚計で膜厚を測定したところ、膜厚は、41μmであった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (P2) is dropped on a glass substrate, and the rotation speed is increased to 1000 rpm over 10 seconds using a spin coater. Then, the rotation is maintained for 10 seconds, and uniformly on the glass substrate. Applied. Drying at 180 ° C. for 30 minutes in a nitrogen atmosphere to remove the solvent, heating at 250 ° C. for 2 hours, cooling, and peeling the polyimide membrane from the glass substrate to form a gas separation membrane made of the polyimide (P2) Got. When the film thickness was measured with the same film thickness meter used in Example 1, the film thickness was 41 μm when measured with the film thickness meter.

 [比較例3]
 [ポリイミド(P3)からなる気体分離膜の作製]
 <ポリイミド(P3)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すHFIP-MDAを30.0g(56mmol)およびDSDAを20.2g(56mmol)加え、溶媒としてDMAcを100g加えた後、窒素雰囲気下、室温で攪拌し反応液を得た。得られた反応液に、ピリジンを9.4g(118mmol)、無水酢酸を12.1g(118mmol)を順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、以下に示すポリイミド(P3)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000030
 実施例1と同じ機器を用いて同様に測定したポリイミド(P3)の分子量は、Mw=91000、Mw/Mn=3.2であった。 [Comparative Example 3]
[Production of gas separation membrane made of polyimide (P3)]
<Preparation of polyimide (P3)>
After adding 30.0 g (56 mmol) of HFIP-MDA and 20.2 g (56 mmol) of DSDA, and 100 g of DMAc as a solvent, to a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade The mixture was stirred at room temperature under a nitrogen atmosphere to obtain a reaction solution. To the obtained reaction solution, 9.4 g (118 mmol) of pyridine and 12.1 g (118 mmol) of acetic anhydride were added in this order, and the mixture was further stirred for 24 hours to perform imidization. Then, the DMAc solution of the polyimide (P3) shown below was prepared by carrying out pressure filtration.
Figure JPOXMLDOC01-appb-C000030
The molecular weight of polyimide (P3) measured in the same manner using the same equipment as in Example 1 was Mw = 91000 and Mw / Mn = 3.2.

 <気体分離膜の作製>
 調製したポリイミド(P3)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度700rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、300℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(P3)からなる気体分離膜を得た。実施例1で用いたのと同じ膜厚計で測定したところ、膜厚は、43μmであった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (P3) is dropped on a glass substrate, and the spin coater is used to increase the rotation speed to 700 rpm over 10 seconds. Then, the rotation is maintained for 10 seconds, and uniformly on the glass substrate. Applied. Drying at 180 ° C. for 30 minutes in a nitrogen atmosphere to remove the solvent, heating at 300 ° C. for 2 hours, cooling, and peeling the polyimide membrane from the glass substrate, thereby forming a gas separation membrane made of the polyimide (P3) Got. When measured with the same film thickness meter used in Example 1, the film thickness was 43 μm.

 [比較例4]
 [ポリイミド(P4)からなる気体分離膜]
 <ポリイミド(P4)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すHFIP-ODAを12.5g(23.5mmol)およびDSDAを8.4g(23.5mmol)を加え、溶媒としてDMAcを31g加えた後、窒素雰囲気下、室温で攪拌し反応液を得た。得られた反応液に、ピリジンを3.9g(49mmol)、無水酢酸を5.0g(49mmol)、順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、下記反応式中に示されるポリイミド(P4)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000031
 実施例1と同じ機器を用いて同様に測定したポリイミド(P4)の分子量は、Mw=67600、Mw/Mn=2.3であった。 [Comparative Example 4]
[Gas separation membrane made of polyimide (P4)]
<Preparation of polyimide (P4)>
To a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, 12.5 g (23.5 mmol) of HFIP-ODA and 8.4 g (23.5 mmol) of DSDA represented by the following formula were added, and DMAc was used as a solvent. After adding 31 g, the mixture was stirred at room temperature under a nitrogen atmosphere to obtain a reaction solution. To the resulting reaction solution, 3.9 g (49 mmol) of pyridine and 5.0 g (49 mmol) of acetic anhydride were added in this order, and the mixture was further stirred for 24 hours for imidization. Then, the DMAc solution of the polyimide (P4) shown in the following reaction formula was prepared by carrying out pressure filtration.
Figure JPOXMLDOC01-appb-C000031
The molecular weight of the polyimide (P4) measured in the same manner using the same equipment as in Example 1 was Mw = 67600 and Mw / Mn = 2.3.

 <気体分離膜の作製>
 調製したポリイミド(P4)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度300rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(P4)からなる気体分離膜を得た。以下記載の気体分離性能試験を実施した結果、得られた気体分離膜は、CO2透過係数とCH4透過係数が等しい値となり、ガス分離選択性を発現しなかった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (P4) is hung on a glass substrate, and the spin coater is used to increase the rotation speed to 300 rpm over 10 seconds. Then, the rotation is maintained for 10 seconds and uniformly on the glass substrate. Applied. After removing the solvent by drying at 180 ° C. for 30 minutes in a nitrogen atmosphere, heating at 250 ° C. for 2 hours, cooling, and peeling the polyimide membrane from the glass substrate, the gas separation membrane comprising the polyimide (P4) Got. As a result of performing the gas separation performance test described below, the obtained gas separation membrane had the same CO 2 permeability coefficient and CH 4 permeability coefficient, and did not exhibit gas separation selectivity.

 [比較例5]
 [ポリイミド(P5)からなる気体分離膜の作製]
 <ポリイミド(P5)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下に示すHFIP-ODAを29.3g(55mmol)およびBPDAを16.2g(55mmol)加え、溶媒としてDMAcを100g加え、窒素雰囲気下、室温で攪拌し反応液を得た。得られた反応液に、ピリジンを17.9g(220mmol)、無水酢酸を22.5g(220mmol)を順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、下記反応式中に示されるポリイミド(P5)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000032
 実施例1と同じ機器を用いて同様に測定したポリイミド(P5)の分子量は、Mw=72000、Mw/Mn=3.1であった。 [Comparative Example 5]
[Production of gas separation membrane made of polyimide (P5)]
<Preparation of polyimide (P5)>
To a 500 mL three-necked flask equipped with a nitrogen inlet tube and a stirring blade, 29.3 g (55 mmol) of HFIP-ODA and 16.2 g (55 mmol) of BPDA shown below were added, and 100 g of DMAc was added as a solvent. And stirred at room temperature to obtain a reaction solution. To the obtained reaction solution, 17.9 g (220 mmol) of pyridine and 22.5 g (220 mmol) of acetic anhydride were added in this order, and the mixture was further stirred for 24 hours for imidization. Then, the DMAc solution of the polyimide (P5) shown in the following reaction formula was prepared by carrying out pressure filtration.
Figure JPOXMLDOC01-appb-C000032
The molecular weight of polyimide (P5) measured in the same manner using the same equipment as in Example 1 was Mw = 72000 and Mw / Mn = 3.1.

 <気体分離膜の作製>
 調製したポリイミド(P5)のDMAc溶液をガラス基材上に垂らしスピンコーターを用い、10秒間かけて回転速度450rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(P5)からなる気体分離膜を得た。実施例1で用いたのと同じ膜厚計で膜厚を測定したところ、膜厚は、66μmであった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (P5) is dropped on a glass substrate, and the spin coater is used to increase the rotation speed to 450 rpm over 10 seconds. Then, the rotation is maintained for 10 seconds and uniformly applied onto the glass substrate. did. In a nitrogen atmosphere, the solvent is removed by drying at 180 ° C. for 30 minutes, and after heating at 250 ° C. for 2 hours, the gas separation membrane is made of the polyimide (P5) by cooling and peeling the polyimide membrane from the glass substrate. Got. When the film thickness was measured with the same film thickness meter used in Example 1, the film thickness was 66 μm.

 [比較例6]
 [ポリイミド(P6)からなる気体分離膜の作製]
 <ポリイミド(P6)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すHFIP-pPDを18.0g(66mmol)およびBTDAを21.1g(66mmol)、溶媒としてDMAcを60g加えた後、窒素雰囲気下、室温で攪拌反応液を得た。得られた反応液に、ピリジンを20.8g(263mmol)、無水酢酸を26.8g(263mmol)を順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、以下に示すポリイミド(P6)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000033
 実施例1と同じ機器を用いて同様に測定したポリイミド(P6)の分子量は、Mw=77500、Mw/Mn=2.6であった。 [Comparative Example 6]
[Production of gas separation membrane made of polyimide (P6)]
<Preparation of polyimide (P6)>
After adding 18.0 g (66 mmol) of HFIP-pPD and 21.1 g (66 mmol) of BTDA and 60 g of DMAc as a solvent to a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, A stirred reaction solution was obtained at room temperature under a nitrogen atmosphere. To the obtained reaction solution, 20.8 g (263 mmol) of pyridine and 26.8 g (263 mmol) of acetic anhydride were added in this order, and the mixture was further stirred for 24 hours to perform imidization. Then, the DMAc solution of the polyimide (P6) shown below was prepared by carrying out pressure filtration.
Figure JPOXMLDOC01-appb-C000033
The molecular weight of the polyimide (P6) measured in the same manner using the same equipment as in Example 1 was Mw = 77500 and Mw / Mn = 2.6.

 <気体分離膜の作製>
 調製したポリイミド(P6)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度300rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(P6)からなる気体分離膜を得た。実施例1で用いたのと同じ膜厚計で測定したところ、膜厚は、50μmであった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (P6) is dropped on a glass substrate, and the rotation speed is increased to 300 rpm over 10 seconds using a spin coater. Then, the rotation is maintained for 10 seconds, and uniformly on the glass substrate. Applied. In a nitrogen atmosphere, the solvent is removed by drying at 180 ° C. for 30 minutes, and after heating at 250 ° C. for 2 hours, the gas separation membrane is made of the polyimide (P6) by cooling and peeling the polyimide membrane from the glass substrate. Got. When measured with the same film thickness meter used in Example 1, the film thickness was 50 μm.

 [比較例7]
 [ポリイミド(P7)からなる気体分離膜の作製]
 <ポリイミド(P7)の調製>
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下に示すHFIP-pPDを20.0g(73mmol)およびODPAを22.6g(73mmol)、溶媒としてDMAcを100g加えた後、窒素雰囲気下、室温で攪拌し反応液を得た。得られた反応液に、ピリジンを12.1g(153mmol)、無水酢酸を15.6g(153mmol)を順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することで、以下に示すポリイミド(P7)のDMAc溶液を調製した。

Figure JPOXMLDOC01-appb-C000034
 実施例1と同じ機器を用いて同様に測定したポリイミド(P7)の分子量は、Mw=85900、Mw/Mn=3.3であった。 [Comparative Example 7]
[Production of gas separation membrane made of polyimide (P7)]
<Preparation of polyimide (P7)>
After adding 20.0 g (73 mmol) of HFIP-pPD and 22.6 g (73 mmol) of HFPA and 100 g of DMAc as a solvent to a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, a nitrogen atmosphere was added. Under stirring at room temperature, a reaction solution was obtained. To the obtained reaction solution, 12.1 g (153 mmol) of pyridine and 15.6 g (153 mmol) of acetic anhydride were sequentially added, and the mixture was further stirred for 24 hours to perform imidization. Then, the DMAc solution of the polyimide (P7) shown below was prepared by carrying out pressure filtration.
Figure JPOXMLDOC01-appb-C000034
The molecular weight of polyimide (P7) measured in the same manner using the same equipment as in Example 1 was Mw = 85900 and Mw / Mn = 3.3.

 <気体分離膜の作製>
 調製したポリイミド(P7)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用い、10秒間かけて回転速度700rpmに上昇させた後、10秒間、回転を保持し、ガラス基材上に均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、250℃で2時間加熱した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、上記ポリイミド(P7)からなる気体分離膜を得た。実施例1で用いたのと同じ膜厚計で膜厚を測定したところ、膜厚は、63μmであった。
<Production of gas separation membrane>
The prepared DMAc solution of polyimide (P7) is hung on a glass substrate, and the spin coater is used to increase the rotation speed to 700 rpm over 10 seconds. Then, the rotation is maintained for 10 seconds and uniformly on the glass substrate. Applied. Drying at 180 ° C. for 30 minutes in a nitrogen atmosphere to remove the solvent, heating at 250 ° C. for 2 hours, cooling, and peeling the polyimide membrane from the glass substrate to form a gas separation membrane made of the polyimide (P7) Got. When the film thickness was measured with the same film thickness meter as used in Example 1, the film thickness was 63 μm.

 [気体分離性能の評価]
 実施例1~3、および比較例1~7で作製した気体分離膜における気体の透過係数を、JIS K 7126-1:2006「プラスチック-フィルムおよびシート-ガス透過度試験方法」に準拠して測定した。本測定には、の差圧式ガス透過率測定装置(GTRテック株式会社製 形式GTR-30AS)を用いた。具体的には、ステンレス鋼製のセルに膜面積3.14cm2以上、15.2cm2以下の気体分離膜を配置し、35℃、50℃または70℃において、メタンの供給圧力を0.15MPaとしてメタンの透過係数を測定した。次いで、メタンの代わりに二酸化炭素を用い、同様にして二酸化炭素の透過係数を測定した。測定したメタンおよび二酸化炭素の透過係数より、メタンと二酸化炭素の透過係数比(CO2透過係数/CH4の透過係数)を算出した。透過係数比はガス選択性の指標となる。
[Evaluation of gas separation performance]
The gas permeation coefficient of the gas separation membranes prepared in Examples 1 to 3 and Comparative Examples 1 to 7 was measured in accordance with JIS K 7126-1: 2006 “Plastics-Film and Sheet—Gas Permeability Test Method”. did. In this measurement, a differential pressure type gas permeability measuring device (model GTR-30AS manufactured by GTR Tech Co., Ltd.) was used. Specifically, a stainless steel cell membrane area 3.14 cm 2 or more, arranged 15.2 cm 2 or less of a gas separation membrane, 35 ° C., 0.15 MPa at 50 ° C. or 70 ° C., the supply pressure of methane As a result, the permeability coefficient of methane was measured. Next, carbon dioxide was used instead of methane, and the carbon dioxide permeability coefficient was measured in the same manner. From the measured permeability coefficient of methane and carbon dioxide, the ratio of permeability coefficient between methane and carbon dioxide (CO 2 permeability coefficient / CH 4 permeability coefficient) was calculated. The permeability coefficient ratio is an indicator of gas selectivity.

 表1に、上記実施例1~3および比較例1~7で調製した気体分離膜を用い、35℃、50℃または70℃で測定したメタンの透過係数、二酸化炭素の透過係数、および透過係数比(CO2透過係数/CH4の透過係数)を示す。

Figure JPOXMLDOC01-appb-T000035
Table 1 shows the methane permeability coefficient, the carbon dioxide permeability coefficient, and the permeability coefficient measured at 35 ° C., 50 ° C. or 70 ° C. using the gas separation membranes prepared in Examples 1 to 3 and Comparative Examples 1 to 7 above. The ratio (CO 2 permeability coefficient / CH 4 permeability coefficient) is shown.
Figure JPOXMLDOC01-appb-T000035

 気体分離膜の気体分離性能は、メタンと二酸化炭素の気体に対し、二酸化炭素の透過係数が大きい程、単位時間当たりのガス処理量に優れ、また、透過係数比が大きいほどメタンと二酸化炭素の分離性能に優れる。 The gas separation performance of the gas separation membrane is greater for the gas of methane and carbon dioxide, the greater the permeability coefficient of carbon dioxide, the better the gas throughput per unit time, and the greater the permeability coefficient ratio, the greater the ratio of methane and carbon dioxide. Excellent separation performance.

 表1に示されるように、実施例1~3で調製した、HFIP基と、フェニレンジアミン由来の構造またはDSDA由来の構造を有するポリイミドを含む、本発明の気体分離膜は、比較例1および比較例2で調製した、HFIP基とDSDA由来の構造を有しないポリイミドを含む気体分離膜と比較して、50℃測定環境下において、透過係数比が大きく、メタンと二酸化炭素の分離性能に優れていた。 As shown in Table 1, the gas separation membrane of the present invention containing the HFIP group and the polyimide having the structure derived from phenylenediamine or the structure derived from DSDA prepared in Examples 1 to 3 was compared with Comparative Example 1 and Comparative Example 1. Compared with the gas separation membrane prepared in Example 2 and containing a polyimide having no structure derived from HFIP groups and DSDA, the permeation coefficient ratio is large and the separation performance of methane and carbon dioxide is excellent in a 50 ° C. measurement environment. It was.

 また、実施例1~3で調製した、HFIP基とフェニレンジアミン由来の構造とDSDA由来の構造を有するポリイミドを含む気体分離膜は、比較例3および4のHFIP基とDSDA由来の構造を有し、フェニレンジアミン由来の構造を持たないポリイミドを含む気体分離膜と比較して、35℃および50℃において、透過係数比が大きく、メタンと二酸化炭素の分離性能に優れていた。 Further, the gas separation membranes prepared in Examples 1 to 3 and including the polyimide having the structure derived from HFIP group and phenylenediamine and the structure derived from DSDA have the structures derived from HFIP group and DSDA in Comparative Examples 3 and 4. Compared with a gas separation membrane containing polyimide having no structure derived from phenylenediamine, the permeability coefficient ratio was large at 35 ° C. and 50 ° C., and the separation performance of methane and carbon dioxide was excellent.

 また、実施例1~3で調製した気体分離膜は、比較例5のHFIP基を有し、DSDA由来の構造およびフェニレンジアミン由来の構造を持たないポリイミドを含む気体分離膜と比較して、35℃および50℃において、透過係数比が大きく、メタンと二酸化炭素の分離性能に優れていた。 In addition, the gas separation membranes prepared in Examples 1 to 3 have a HFIP group of Comparative Example 5 and are 35% more than the gas separation membrane containing polyimide not having a structure derived from DSDA and a structure derived from phenylenediamine. At ℃ and 50 ℃, the permeability coefficient ratio was large, and the separation performance of methane and carbon dioxide was excellent.

 また、実施例1~3で調製した気体分離膜は、比較例6または比較例7で調製した、HFIP基とフェニレンジアミン由来の構造を有し、DSDA由来の構造を有しないポリイミドを含む気体分離膜と比較して、35℃および50℃において、透過係数比が大きく、メタンと二酸化炭素の分離性能に優れていた。 The gas separation membranes prepared in Examples 1 to 3 are gas separations containing polyimide prepared in Comparative Example 6 or Comparative Example 7 having a structure derived from HFIP groups and phenylenediamine and not having a structure derived from DSDA. Compared with the membrane, the permeability coefficient ratio was large at 35 ° C. and 50 ° C., and the separation performance of methane and carbon dioxide was excellent.

 また、実施例1で調製した気体分離膜は、比較例3で調製した、HFIP基とDSDA由来の構造を有し、フェニレンジアミン由来の構造を持たないポリイミドを含む気体分離膜と比較して、70℃において、透過係数比が大きく、メタンと二酸化炭素の分離性能に優れていた。 In addition, the gas separation membrane prepared in Example 1 is compared with the gas separation membrane prepared in Comparative Example 3, which includes a polyimide having a structure derived from HFIP group and DSDA and not having a structure derived from phenylenediamine. At 70 ° C., the permeability coefficient ratio was large and the separation performance of methane and carbon dioxide was excellent.

 実施例1~3で調製した、HFIP基とフェニレンジアミン由来の構造とDSDA由来の構造をともに有するポリイミドを含む、本発明の気体分離膜は、天然ガスより二酸化炭素を気体分離膜により分離する際に実用上使われる35℃から70℃の温度範囲で、従来の気体分離膜と比べて二酸化炭素の除去能力に優れ、分離工程でメタンをロスすることなく高純度のメタンが得られる。 The gas separation membrane of the present invention containing the polyimide having both the structure derived from HFIP group and phenylenediamine and the structure derived from DSDA prepared in Examples 1 to 3 is used when carbon dioxide is separated from natural gas by a gas separation membrane. In the temperature range of 35 ° C. to 70 ° C. that is practically used, the carbon dioxide removal ability is superior to that of the conventional gas separation membrane, and high-purity methane can be obtained without loss of methane in the separation process.

 [酸素(02)、窒素(N2)混合ガスに対する気体分離性能の評価]
 実施例1~3、および比較例5~7で調製した気体分離膜における気体の透過係数を、JIS K 7126-1:2006「プラスチック-フィルムおよびシート-ガス透過度試験方法」に準拠して測定した。本測定には、差圧式ガス透過率測定装置(GTRテック株式会社製 形式GTR-30AS)を用いた。具体的には、ステンレス鋼製のセルに膜面積3.14cm2以上、15.2cm2以下の気体分離膜を配置し、35℃または50℃において、酸素ガス(02)供給圧力を0.15MPaとして、酸素ガス(02)の透過係数を測定した。次いで、酸素ガス(02)の代わりに窒素ガス(N2)を用い、同様にして窒素ガス(N2)の透過係数を測定した。測定した酸素ガス(02)および窒素ガス(N2)の透過係数より、窒素ガス(N2と)酸素ガス(02)の透過係数比(窒素ガス(N2)/酸素ガス(02)の透過係数)を算出した。透過係数比はガス選択性の指標となる。
[Evaluation of gas separation performance for oxygen (0 2 ) and nitrogen (N 2 ) mixed gas]
The gas permeability coefficient of the gas separation membranes prepared in Examples 1 to 3 and Comparative Examples 5 to 7 was measured according to JIS K 7126-1: 2006 “Plastics-Film and Sheet—Gas Permeability Test Method”. did. In this measurement, a differential pressure type gas permeability measuring device (model GTR-30AS manufactured by GTR Tech Co., Ltd.) was used. Specifically, membrane area 3.14 cm 2 or more in a stainless steel cell, place the 15.2 cm 2 or less of a gas separation membrane, at 35 ° C. or 50 ° C., the oxygen gas (0 2) supply pressure 0. The permeability coefficient of oxygen gas (0 2 ) was measured at 15 MPa. Next, nitrogen gas (N 2 ) was used instead of oxygen gas (0 2 ), and the permeability coefficient of nitrogen gas (N 2 ) was measured in the same manner. From the measured permeability coefficients of oxygen gas (0 2 ) and nitrogen gas (N 2 ), the permeability coefficient ratio of nitrogen gas (N 2 and oxygen gas (0 2 )) (nitrogen gas (N 2 ) / oxygen gas (0 2) ) Transmission coefficient). The permeability coefficient ratio is an indicator of gas selectivity.

 表2に、上記実施例1~3および比較例5~7で調製した気体分離膜を用い、35℃または50℃で測定した酸素の透過係数、窒素の透過係数、および透過係数比(O2透過係数/N2の透過係数)を示す。

Figure JPOXMLDOC01-appb-T000036
Table 2 shows the oxygen permeability coefficient, nitrogen permeability coefficient, and permeability coefficient ratio (O 2) measured at 35 ° C. or 50 ° C. using the gas separation membranes prepared in Examples 1 to 3 and Comparative Examples 5 to 7 above. Transmission coefficient / N 2 transmission coefficient).
Figure JPOXMLDOC01-appb-T000036

 本発明の気体分離膜を用いれば、空気の酸素濃度を高め、酸素濃度の高い気体も得ることができる。 If the gas separation membrane of the present invention is used, the oxygen concentration of air can be increased and a gas having a high oxygen concentration can be obtained.

Claims (17)

式(1)で表される繰り返し単位を有するポリイミドを含む、気体分離膜。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R1は式(2)で表される2価の有機基である。)
Figure JPOXMLDOC01-appb-C000002
(式(2)中、R2は水素原子、アルキル基またはフルオロアルキル基であり、aは1~2の整数である。)
A gas separation membrane comprising a polyimide having a repeating unit represented by formula (1).
Figure JPOXMLDOC01-appb-C000001
(In formula (1), R 1 is a divalent organic group represented by formula (2).)
Figure JPOXMLDOC01-appb-C000002
(In the formula (2), R 2 is a hydrogen atom, an alkyl group or a fluoroalkyl group, and a is an integer of 1 to 2)
前記ポリイミドが、さらに、式(3)で表される繰り返し単位を含むポリイミドである、請求項1に記載の気体分離膜。
Figure JPOXMLDOC01-appb-C000003
(式(3)中、R1は前記式(1)のR1と同義である。R3は、以下の式で表されるいずれかの4価の有機基である。)
Figure JPOXMLDOC01-appb-C000004
The gas separation membrane according to claim 1, wherein the polyimide is a polyimide containing a repeating unit represented by the formula (3).
Figure JPOXMLDOC01-appb-C000003
(In the formula (3), R 1 is .R 3 R 1 as synonymous of the formula (1) is any tetravalent organic group represented by the following equation.)
Figure JPOXMLDOC01-appb-C000004
前記R1が、以下のいずれかの2価の有機基である、請求項1または請求項2に記載の気体分離膜。
Figure JPOXMLDOC01-appb-C000005
The gas separation membrane according to claim 1 or 2, wherein R 1 is any one of the following divalent organic groups.
Figure JPOXMLDOC01-appb-C000005
前記ポリイミドの重量平均分子量が、20000以上、500000以下である、請求項1乃至請求項3のいずれか1項に記載の気体分離膜。 The gas separation membrane according to any one of claims 1 to 3, wherein the polyimide has a weight average molecular weight of 20,000 or more and 500,000 or less. 50℃以上、400℃以下で加熱した前記ポリイミドを用いる、請求項1乃至請求項4のいずれか1項に記載の気体分離膜。 The gas separation membrane according to any one of claims 1 to 4, wherein the polyimide heated at 50 ° C or higher and 400 ° C or lower is used. 分離する気体が、少なくとも二酸化炭素とメタンを含む気体である、請求項1乃至請求項5のいずれか1項に記載の気体分離膜。 The gas separation membrane according to any one of claims 1 to 5, wherein the gas to be separated is a gas containing at least carbon dioxide and methane. 50℃、150kPa下における二酸化炭素の透過係数が10Barrer以上であり、二酸化炭素とメタンとの透過係数比(PCO2/PCH4)が40以上である、請求項6に記載の気体分離膜。 The gas separation membrane according to claim 6, wherein the permeability coefficient of carbon dioxide at 50 ° C. and 150 kPa is 10 Barrer or more, and the permeability coefficient ratio (P CO2 / P CH4 ) between carbon dioxide and methane is 40 or more. 二酸化炭素とメタンを含む気体が天然ガスである、請求項6または請求項7に記載の気体分離膜。 The gas separation membrane according to claim 6 or 7, wherein the gas containing carbon dioxide and methane is natural gas. 請求項6乃至請求項8のいずれか1項に記載の気体分離膜を用いて、二酸化炭素とメタンを含む気体からメタンを分離する、気体の分離方法。 The gas separation method which isolate | separates methane from the gas containing a carbon dioxide and methane using the gas separation membrane of any one of Claim 6 thru | or 8. 請求項6乃至請求項8のいずれか1項に記載の気体分離膜を用いて、二酸化炭素およびメタンを含む気体から二酸化炭素を分離する、気体の分離方法。 A gas separation method for separating carbon dioxide from a gas containing carbon dioxide and methane using the gas separation membrane according to any one of claims 6 to 8. 気体の分離を35℃以上、70℃以下で行う、請求項9または請求項10に記載の気体の分離方法。 The gas separation method according to claim 9 or 10, wherein gas separation is performed at 35 ° C or higher and 70 ° C or lower. 請求項1乃至請求項8のいずれかに1項に記載の気体分離膜を有する気体分離膜モジュール。 A gas separation membrane module comprising the gas separation membrane according to any one of claims 1 to 8. 請求項1乃至請求項8のいずれかに1項に記載の気体分離膜を有する気体分離装置。 A gas separation device comprising the gas separation membrane according to any one of claims 1 to 8. 分離する気体が、少なくとも酸素と窒素を含む気体である、請求項1乃至請求項5のいずれか1項に記載の気体分離膜。 The gas separation membrane according to any one of claims 1 to 5, wherein the gas to be separated is a gas containing at least oxygen and nitrogen. 酸素と窒素を含む気体が空気である、請求項14に記載の気体分離膜。 The gas separation membrane according to claim 14, wherein the gas containing oxygen and nitrogen is air. 請求項14または請求項15に記載の気体分離膜を用いて、酸素と窒素を含む気体から酸素を分離する、気体の分離方法。 A gas separation method for separating oxygen from a gas containing oxygen and nitrogen by using the gas separation membrane according to claim 14. 請求項14または請求項15に記載の気体分離膜を用いて、酸素および窒素を含む気体から窒素を分離する、気体の分離方法。 A gas separation method for separating nitrogen from a gas containing oxygen and nitrogen using the gas separation membrane according to claim 14 or 15.
PCT/JP2018/000744 2017-01-16 2018-01-15 Gas separation membrane Ceased WO2018131697A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017004794 2017-01-16
JP2017-004794 2017-03-09
JP2017234224A JP2018114491A (en) 2017-01-16 2017-12-06 Gas separation membrane
JP2017-234224 2017-12-06

Publications (1)

Publication Number Publication Date
WO2018131697A1 true WO2018131697A1 (en) 2018-07-19

Family

ID=62839788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000744 Ceased WO2018131697A1 (en) 2017-01-16 2018-01-15 Gas separation membrane

Country Status (1)

Country Link
WO (1) WO2018131697A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359860A (en) * 2003-06-05 2004-12-24 Ube Ind Ltd Polyimide porous membrane having fine penetration path and method for producing the same
JP2016137484A (en) * 2015-01-26 2016-08-04 セントラル硝子株式会社 Gas separation membrane
JP2016175000A (en) * 2015-03-18 2016-10-06 宇部興産株式会社 Polyimide gas separation membrane and gas separation method
JP2018001118A (en) * 2016-07-05 2018-01-11 セントラル硝子株式会社 Gas separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359860A (en) * 2003-06-05 2004-12-24 Ube Ind Ltd Polyimide porous membrane having fine penetration path and method for producing the same
JP2016137484A (en) * 2015-01-26 2016-08-04 セントラル硝子株式会社 Gas separation membrane
JP2016175000A (en) * 2015-03-18 2016-10-06 宇部興産株式会社 Polyimide gas separation membrane and gas separation method
JP2018001118A (en) * 2016-07-05 2018-01-11 セントラル硝子株式会社 Gas separation membrane

Similar Documents

Publication Publication Date Title
US8575414B2 (en) Membrane system for natural gas upgrading
KR101676586B1 (en) Polymers, polymer membranes and methods of producing the same
JP5423400B2 (en) Solvent resistant asymmetric hollow fiber gas separation membrane and method for producing the same
US8814982B2 (en) Tetrazole functionalized polymer membranes
JP2009082850A (en) NOVEL GAS SEPARATION MEMBRANE, METHOD FOR PRODUCING THE SAME, AND GAS TREATMENT METHOD USING THE SAME
JP2018126729A (en) Separation method of gas
JP5359914B2 (en) Polyimide gas separation membrane and gas separation method
JP5359957B2 (en) Polyimide gas separation membrane and gas separation method
JP2018122280A (en) Asymmetric membrane
JP2018114491A (en) Gas separation membrane
JP5747730B2 (en) Polyimide gas separation membrane and gas separation method
WO2015147103A1 (en) Asymmetric gas separation membrane, and methods for separating and recovering gases
JP6623600B2 (en) Asymmetric gas separation membrane and method for separating and recovering gas
JP4857593B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JPWO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method and polyimide compound
JP2018001118A (en) Gas separation membrane
JP4978602B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
WO2018131697A1 (en) Gas separation membrane
JP5136667B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP5099242B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP2016137484A (en) Gas separation membrane
JP6060715B2 (en) Polyimide gas separation membrane and gas separation method
JP4857592B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP5240152B2 (en) Polyimide gas separation membrane and gas separation method
JP4857588B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18738482

Country of ref document: EP

Kind code of ref document: A1