Mehr über MLOps-Plattformen erfahren
Wer nutzt MLOps-Plattformen?
Datenwissenschaftler sind sehr gefragt, aber es gibt einen Mangel an verfügbaren Fachkräften. Der Kompetenzbereich ist vielfältig und umfangreich (zum Beispiel gibt es einen Bedarf, eine Vielzahl von Algorithmen, fortgeschrittener Mathematik, Programmierkenntnissen und mehr zu verstehen); daher sind solche Fachleute schwer zu finden und verlangen hohe Vergütungen. Um dieses Problem zu lösen, enthalten Plattformen zunehmend Funktionen, die es einfacher machen, KI-Lösungen zu entwickeln, wie Drag-and-Drop-Funktionen und vorgefertigte Algorithmen.
Darüber hinaus ist es für den Start von Datenwissenschaftsprojekten entscheidend, dass das breitere Unternehmen in diese Projekte investiert. Die robusteren Plattformen bieten Ressourcen, die es nicht-technischen Benutzern ermöglichen, die Modelle, die beteiligten Daten und die Aspekte des Geschäfts, die betroffen sind, zu verstehen.
Dateningenieure: Mit robusten Datenintegrationsfähigkeiten nutzen Dateningenieure, die mit dem Design, der Integration und dem Management von Daten beauftragt sind, diese Plattformen, um mit Datenwissenschaftlern und anderen Interessenten innerhalb der Organisation zusammenzuarbeiten.
Citizen Data Scientists: Insbesondere mit dem Aufkommen benutzerfreundlicherer Funktionen wenden sich Citizen Data Scientists, die nicht professionell ausgebildet sind, aber Datenfähigkeiten entwickelt haben, zunehmend MLOps zu, um KI in ihre Organisation zu bringen.
Professionelle Datenwissenschaftler: Experten-Datenwissenschaftler nutzen diese Plattformen, um Datenwissenschaftsoperationen über den gesamten Lebenszyklus hinweg zu skalieren, den Prozess vom Experimentieren bis zur Bereitstellung zu vereinfachen, die Datenerkundung und -vorbereitung zu beschleunigen sowie die Modellentwicklung und -schulung.
Geschäftsinteressenten: Geschäftsinteressenten nutzen diese Werkzeuge, um Klarheit über die maschinellen Lernmodelle zu gewinnen und besser zu verstehen, wie sie mit dem breiteren Geschäft und seinen Operationen zusammenhängen.
Was sind die Alternativen zu MLOps-Plattformen?
Alternativen zu MLOps-Plattformen können diese Art von Software entweder teilweise oder vollständig ersetzen:
Datenwissenschafts- und maschinelle Lernplattformen: Abhängig vom Anwendungsfall könnten Unternehmen Datenwissenschafts- und maschinelle Lernplattformen in Betracht ziehen. Diese Software bietet eine Plattform für die vollständige End-to-End-Entwicklung von maschinellen Lernmodellen und kann robustere Funktionen zur Operationalisierung dieser Algorithmen bieten.
Maschinelle Lernsoftware: MLOps-Plattformen sind großartig für die umfassende Überwachung und Verwaltung von Modellen, sei es für Computer Vision, Natural Language Processing (NLP) und mehr. In einigen Fällen möchten Unternehmen jedoch eine Lösung, die eher sofort verfügbar ist und die sie in Plug-and-Play-Manier verwenden können. In einem solchen Fall können sie maschinelle Lernsoftware in Betracht ziehen, die weniger Einrichtungszeit und Entwicklungskosten erfordert.
Viele verschiedene Arten von maschinellen Lernalgorithmen führen verschiedene Aufgaben und Funktionen aus. Diese Algorithmen können aus spezifischeren maschinellen Lernalgorithmen bestehen, wie Assoziationsregel-Lernen, Bayes'sche Netzwerke, Clustering, Entscheidungsbaum-Lernen, genetische Algorithmen, Lernklassifikationssysteme und Support-Vektor-Maschinen, unter anderem. Dies hilft Organisationen, die nach Punktlösungen suchen.
Software im Zusammenhang mit MLOps-Plattformen
Verwandte Lösungen, die zusammen mit MLOps-Plattformen verwendet werden können, umfassen:
Datenvorbereitungssoftware: Datenvorbereitungssoftware hilft Unternehmen bei ihrem Datenmanagement. Diese Lösungen ermöglichen es Benutzern, Daten zu entdecken, zu kombinieren, zu bereinigen und anzureichern, um einfache Analysen durchzuführen. Obwohl MLOps-Plattformen Datenvorbereitungsfunktionen bieten, könnten Unternehmen ein dediziertes Vorbereitungstool bevorzugen.
Datenlager-Software: Die meisten Unternehmen haben eine große Anzahl von unterschiedlichen Datenquellen, und um alle ihre Daten am besten zu integrieren, implementieren sie ein Datenlager. Datenlager speichern Daten aus mehreren Datenbanken und Geschäftsanwendungen, sodass Business-Intelligence- und Analysetools alle Unternehmensdaten aus einem einzigen Repository abrufen können.
Datenkennzeichnungssoftware: Um überwachtes Lernen in Gang zu bringen, ist es entscheidend, beschriftete Daten zu haben. Eine systematische, nachhaltige Kennzeichnungsanstrengung kann durch Datenkennzeichnungssoftware unterstützt werden, die ein Werkzeugset bietet, mit dem Unternehmen unbeschriftete Daten in beschriftete Daten umwandeln und entsprechende KI-Algorithmen erstellen können.
Natural Language Processing (NLP) Software: NLP ermöglicht es Anwendungen, mit menschlicher Sprache unter Verwendung eines Deep-Learning-Algorithmus zu interagieren. NLP-Algorithmen nehmen Sprache auf und geben eine Vielzahl von Ausgaben basierend auf der erlernten Aufgabe aus. NLP-Algorithmen bieten Spracherkennung und natürliche Sprachgenerierung (NLG), die Daten in verständliche menschliche Sprache umwandelt. Einige Beispiele für NLP-Anwendungen sind Chatbots, Übersetzungsanwendungen und Social-Media-Überwachungstools, die soziale Netzwerke nach Erwähnungen durchsuchen.
Wie kauft man MLOps-Plattformen
Anforderungserhebung (RFI/RFP) für MLOps-Plattformen
Wenn ein Unternehmen gerade erst anfängt und seine erste Datenwissenschafts- und maschinelle Lernplattform kaufen möchte, oder wo auch immer ein Unternehmen in seinem Kaufprozess steht, kann g2.com helfen, die beste Option auszuwählen.
Der erste Schritt im Kaufprozess muss eine sorgfältige Betrachtung der Unternehmensdaten beinhalten. Da ein grundlegender Teil der Datenwissenschaftsreise die Datenverarbeitung (d. h. Datensammlung und -analyse) umfasst, müssen Unternehmen sicherstellen, dass ihre Datenqualität hoch ist und die betreffende Plattform ihre Daten sowohl in Bezug auf Format als auch Volumen angemessen handhaben kann. Wenn das Unternehmen viele Daten gesammelt hat, müssen sie nach einer Lösung suchen, die mit der Organisation wachsen kann. Benutzer sollten über die Schmerzpunkte nachdenken und sie aufschreiben; diese sollten verwendet werden, um eine Checkliste von Kriterien zu erstellen. Darüber hinaus muss der Käufer die Anzahl der Mitarbeiter bestimmen, die diese Software nutzen müssen, da dies die Anzahl der Lizenzen bestimmt, die sie wahrscheinlich kaufen werden.
Ein ganzheitlicher Überblick über das Geschäft und die Identifizierung von Schmerzpunkten kann dem Team helfen, in die Erstellung einer Checkliste von Kriterien einzusteigen. Die Checkliste dient als detaillierter Leitfaden, der sowohl notwendige als auch wünschenswerte Funktionen umfasst, einschließlich Budget, Funktionen, Anzahl der Benutzer, Integrationen, Sicherheitsanforderungen, Cloud- oder On-Premises-Lösungen und mehr.
Abhängig vom Umfang der Bereitstellung könnte es hilfreich sein, ein RFI zu erstellen, eine einseitige Liste mit einigen Stichpunkten, die beschreiben, was von einer Datenwissenschaftsplattform benötigt wird.
Vergleichen Sie MLOps-Plattformen
Erstellen Sie eine Longlist
Von der Erfüllung der Geschäftsanforderungen bis zur Implementierung sind Anbieterevaluierungen ein wesentlicher Bestandteil des Softwarekaufprozesses. Für einen einfachen Vergleich, nachdem alle Demos abgeschlossen sind, hilft es, eine konsistente Liste von Fragen zu spezifischen Bedürfnissen und Bedenken vorzubereiten, die jedem Anbieter gestellt werden sollen.
Erstellen Sie eine Shortlist
Aus der Longlist der Anbieter ist es hilfreich, die Liste der Anbieter zu verkleinern und eine kürzere Liste von Kandidaten zu erstellen, vorzugsweise nicht mehr als drei bis fünf. Mit dieser Liste in der Hand können Unternehmen eine Matrix erstellen, um die Funktionen und Preise der verschiedenen Lösungen zu vergleichen.
Führen Sie Demos durch
Um sicherzustellen, dass der Vergleich gründlich ist, sollte der Benutzer jede Lösung auf der Shortlist mit demselben Anwendungsfall und Datensätzen demonstrieren. Dies ermöglicht es dem Unternehmen, gleichwertig zu bewerten und zu sehen, wie sich jeder Anbieter im Vergleich zur Konkurrenz schlägt.
Auswahl von MLOps-Plattformen
Wählen Sie ein Auswahlteam
Bevor Sie beginnen, ist es entscheidend, ein Gewinnerteam zu erstellen, das während des gesamten Prozesses zusammenarbeitet, von der Identifizierung von Schmerzpunkten bis zur Implementierung. Das Softwareauswahlteam sollte aus Mitgliedern der Organisation bestehen, die das richtige Interesse, die richtigen Fähigkeiten und die Zeit haben, an diesem Prozess teilzunehmen. Ein guter Ausgangspunkt ist es, drei bis fünf Personen zu haben, die Rollen wie den Hauptentscheidungsträger, Projektmanager, Prozessverantwortlichen, Systemverantwortlichen oder Personalexperten sowie einen technischen Leiter, IT-Administrator oder Sicherheitsadministrator ausfüllen. In kleineren Unternehmen kann das Anbieterauswahlteam kleiner sein, mit weniger Teilnehmern, die mehrere Aufgaben übernehmen und mehr Verantwortung tragen.
Verhandlung
Nur weil etwas auf der Preisseite eines Unternehmens steht, bedeutet das nicht, dass es fest ist (obwohl einige Unternehmen nicht nachgeben werden). Es ist wichtig, ein Gespräch über Preisgestaltung und Lizenzierung zu eröffnen. Zum Beispiel könnte der Anbieter bereit sein, einen Rabatt für mehrjährige Verträge oder für die Empfehlung des Produkts an andere zu gewähren.
Endgültige Entscheidung
Nach dieser Phase und bevor man sich vollständig engagiert, wird empfohlen, einen Testlauf oder ein Pilotprogramm durchzuführen, um die Akzeptanz mit einer kleinen Stichprobengröße von Benutzern zu testen. Wenn das Tool gut genutzt und gut angenommen wird, kann der Käufer sicher sein, dass die Auswahl korrekt war. Wenn nicht, könnte es an der Zeit sein, zurück ans Reißbrett zu gehen.
Was kosten MLOps-Plattformen?
Wie bereits erwähnt, kommen MLOps-Plattformen sowohl als On-Premises- als auch als Cloud-Lösungen. Die Preisgestaltung zwischen den beiden kann unterschiedlich sein, wobei erstere oft mit höheren Vorabkosten für die Einrichtung der Infrastruktur verbunden sind.
Wie bei jeder Software sind diese Plattformen häufig in verschiedenen Stufen erhältlich, wobei die eher einsteigerfreundlichen Lösungen weniger kosten als die unternehmensweiten. Erstere haben oft nicht so viele Funktionen und können Nutzungsbeschränkungen haben. Anbieter können eine gestaffelte Preisgestaltung haben, bei der der Preis auf die Unternehmensgröße der Benutzer, die Anzahl der Benutzer oder beides zugeschnitten ist. Diese Preisstrategie kann mit einem gewissen Maß an Unterstützung einhergehen, die entweder unbegrenzt oder auf eine bestimmte Anzahl von Stunden pro Abrechnungszyklus begrenzt sein kann.
Einmal eingerichtet, erfordern sie oft keine erheblichen Wartungskosten, insbesondere wenn sie in der Cloud bereitgestellt werden. Da diese Plattformen oft mit vielen zusätzlichen Funktionen ausgestattet sind, können Unternehmen, die den Wert ihrer Software maximieren möchten, Drittberater beauftragen, um ihnen zu helfen, Erkenntnisse aus ihren Daten zu gewinnen und das Beste aus der Software herauszuholen.
Return on Investment (ROI)
Unternehmen entscheiden sich für den Einsatz von MLOps-Plattformen, um einen gewissen ROI zu erzielen. Da sie versuchen, die Verluste aus der Software wieder hereinzuholen, ist es entscheidend, die Kosten zu verstehen. Wie bereits erwähnt, werden diese Plattformen typischerweise pro Benutzer abgerechnet, manchmal gestaffelt je nach Unternehmensgröße. Mehr Benutzer bedeuten in der Regel mehr Lizenzen, was mehr Geld bedeutet.
Benutzer müssen berücksichtigen, wie viel ausgegeben wird und das mit dem vergleichen, was gewonnen wird, sowohl in Bezug auf Effizienz als auch auf Umsatz. Daher können Unternehmen Prozesse vor und nach der Bereitstellung der Software vergleichen, um besser zu verstehen, wie sich Prozesse verbessert haben und wie viel Zeit gespart wurde. Sie können sogar eine Fallstudie (entweder für interne oder externe Zwecke) erstellen, um die Gewinne zu demonstrieren, die sie durch die Nutzung der Plattform erzielt haben.
Implementierung von MLOps-Plattformen
Wie werden MLOps-Plattformen implementiert?
Die Implementierung unterscheidet sich drastisch je nach Komplexität und Umfang der Daten. In Organisationen mit großen Datenmengen aus unterschiedlichen Quellen (z. B. Anwendungen, Datenbanken usw.) ist es oft ratsam, eine externe Partei zu nutzen, sei es ein Implementierungsspezialist des Anbieters oder eine Drittberatung. Mit umfangreicher Erfahrung können sie Unternehmen helfen, zu verstehen, wie sie ihre Datenquellen verbinden und konsolidieren und die Software effizient und effektiv nutzen können.
Wer ist für die Implementierung von MLOps-Plattformen verantwortlich?
Es kann viele Menschen oder viele Teams erfordern, um eine Datenwissenschaftsplattform ordnungsgemäß bereitzustellen, einschließlich Dateningenieuren, Datenwissenschaftlern und Softwareingenieuren. Dies liegt daran, dass, wie bereits erwähnt, Daten über Teams und Funktionen hinweg geschnitten werden können. Daher ist es selten, dass eine Person oder sogar ein Team ein vollständiges Verständnis aller Datenressourcen eines Unternehmens hat. Mit einem funktionsübergreifenden Team an Ort und Stelle kann ein Unternehmen beginnen, seine Daten zusammenzufügen und die Reise der Datenwissenschaft zu beginnen, beginnend mit der ordnungsgemäßen Datenvorbereitung und -verwaltung.
Wie sieht der Implementierungsprozess für MLOps-Plattformen aus?
In Bezug auf die Implementierung ist es typisch, dass die Plattformbereitstellung in begrenztem Umfang beginnt und anschließend in größerem Umfang ausgerollt wird. Zum Beispiel könnte eine Einzelhandelsmarke entscheiden, ihren Einsatz eines Personalisierungsalgorithmus für eine begrenzte Anzahl von Besuchern ihrer Website zu A/B-testen, um besser zu verstehen, wie er abschneidet. Wenn die Bereitstellung erfolgreich ist, kann das Datenwissenschaftsteam seine Ergebnisse dem Führungsteam (das je nach Struktur des Unternehmens der CTO sein könnte) präsentieren.
Wenn die Bereitstellung nicht erfolgreich war, könnte das Team zurück ans Reißbrett gehen und versuchen herauszufinden, was schiefgelaufen ist. Dies wird die Untersuchung der Trainingsdaten sowie der verwendeten Algorithmen beinhalten. Wenn sie es erneut versuchen und nichts scheint erfolgreich zu sein (d. h. das Ergebnis ist fehlerhaft oder es gibt keine Verbesserung der Vorhersagen), könnte das Unternehmen zurück zu den Grundlagen gehen und seine Daten als Ganzes überprüfen müssen.
Wann sollten Sie MLOps-Plattformen implementieren?
Wie bereits erwähnt, ist die Datenverarbeitung, die die Vorbereitung und Sammlung von Daten umfasst, ein grundlegendes Merkmal von Datenwissenschaftsprojekten. Daher müssen Unternehmen Priorität darauf legen, ihre Daten in Ordnung zu bringen und sicherzustellen, dass es keine doppelten Datensätze oder nicht übereinstimmende Felder gibt. Obwohl dies einfach klingt, ist es alles andere als das. Fehlerhafte Daten als Eingabe führen zu fehlerhaften Daten als Ausgabe.
MLOps-Plattformen Trends
AutoML
AutoML hilft, viele Aufgaben zu automatisieren, die zur Entwicklung von KI- und maschinellen Lernanwendungen erforderlich sind. Anwendungen umfassen automatische Datenvorbereitung, automatisiertes Feature Engineering, Bereitstellung von Erklärbarkeit für Modelle und mehr.
Eingebettete KI
Maschinen- und Deep-Learning-Funktionalitäten werden zunehmend in nahezu alle Arten von Software eingebettet, unabhängig davon, ob der Benutzer sich dessen bewusst ist oder nicht. Die Verwendung von eingebetteter KI in Software wie CRM, Marketing-Automatisierung und Analyselösungen ermöglicht es Benutzern, Prozesse zu straffen, bestimmte Aufgaben zu automatisieren und sich mit prädiktiven Fähigkeiten einen Wettbewerbsvorteil zu verschaffen. Eingebettete KI könnte in den kommenden Jahren allmählich zunehmen und könnte dies auf die Weise tun, wie Cloud-Bereitstellung und mobile Fähigkeiten im letzten Jahrzehnt oder so zugenommen haben. Schließlich müssen Anbieter möglicherweise nicht mehr die Vorteile ihrer Produkte durch maschinelles Lernen hervorheben, da dies einfach angenommen und erwartet werden könnte.
Maschinelles Lernen als Dienstleistung (MLaaS)
Die Softwareumgebung hat sich zu einer granulareren, mikroservicebasierten Struktur entwickelt, insbesondere für Entwicklungsoperationsbedürfnisse. Darüber hinaus hat der Boom der öffentlichen Cloud-Infrastrukturdienste es großen Unternehmen ermöglicht, Entwicklungs- und Infrastrukturdienste anderen Unternehmen mit einem Pay-as-you-use-Modell anzubieten. KI-Software ist da keine Ausnahme, da dieselben Unternehmen MLaaS anderen Unternehmen anbieten.
Entwickler nutzen diese vorgefertigten Algorithmen und Lösungen einfach, indem sie ihnen ihre eigenen Daten zuführen, um Erkenntnisse zu gewinnen. Die Nutzung von Systemen, die von Unternehmensunternehmen gebaut wurden, hilft kleinen Unternehmen, Zeit, Ressourcen und Geld zu sparen, indem sie die Notwendigkeit eliminieren, qualifizierte maschinelle Lernentwickler einzustellen. MLaaS wird weiter wachsen, da Unternehmen weiterhin auf diese Mikroservices angewiesen sind und der Bedarf an KI zunimmt.
Erklärbarkeit
Wenn es um maschinelle Lernalgorithmen geht, insbesondere Deep Learning, kann es besonders schwierig sein, zu erklären, wie sie zu bestimmten Schlussfolgerungen gekommen sind. Erklärbare KI, auch bekannt als XAI, ist der Prozess, bei dem der Entscheidungsprozess von Algorithmen transparent und für Menschen verständlich gemacht wird. Transparenz ist das am weitesten verbreitete Prinzip in der aktuellen KI-Ethik-Literatur, und daher wird Erklärbarkeit, ein Teilbereich der Transparenz, entscheidend. MLOps-Plattformen enthalten zunehmend Werkzeuge zur Erklärbarkeit, die Benutzern helfen, Erklärbarkeit in ihre Modelle einzubauen und die Anforderungen an die Datenerklärbarkeit in Gesetzen wie dem Datenschutzgesetz der Europäischen Union, der DSGVO, zu erfüllen.