[go: up one dir, main page]

WO1993016004A1 - Procede de purification thermique des eaux industrielles - Google Patents

Procede de purification thermique des eaux industrielles Download PDF

Info

Publication number
WO1993016004A1
WO1993016004A1 PCT/AT1993/000015 AT9300015W WO9316004A1 WO 1993016004 A1 WO1993016004 A1 WO 1993016004A1 AT 9300015 W AT9300015 W AT 9300015W WO 9316004 A1 WO9316004 A1 WO 9316004A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
evaporator coil
superheater
line
Prior art date
Application number
PCT/AT1993/000015
Other languages
German (de)
English (en)
Inventor
Adolf Schiestl
Original Assignee
Adolf Schiestl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adolf Schiestl filed Critical Adolf Schiestl
Priority to AU33373/93A priority Critical patent/AU670056B2/en
Publication of WO1993016004A1 publication Critical patent/WO1993016004A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to a method for thermal process water purification.
  • the object of the invention is therefore to avoid these disadvantages and to provide a simple, inexpensive method which can be carried out with little energy expenditure.
  • the invention solves the problem in that a large number of heat exchangers fed with process water are connected in cascade, in that the process water in each heat exchanger is evaporated via an evaporator unit, in that the steam generated in each heat exchanger for evaporating the process water in this heat exchanger
  • the following heat exchanger is used so that each heat exchanger is kept at a constant temperature, the first heat exchanger being fed from an external source, and the temperature difference between the heat exchangers due to the evaporation of the process water is indicated by the heat exchangers ⁇ ordered superheater is compensated, and that cleaned condensate is removed from each evaporator unit.
  • the method is characterized in that the medium which feeds the superheater is collected after it has passed through the heat exchanger and is used to feed the evaporator unit of the first heat exchanger.
  • Another feature of the invention is that the medium which feeds the superheater is passed to a consumer after it has passed through the heat exchanger and that the heat removed from the last heat exchanger is used to feed the evaporator unit of the first heat exchanger.
  • the invention further relates to a device for performing the method according to the invention, which is characterized in that each heat exchanger has a superheater, an evaporator coil and a feed line for the process water, that each evaporator coil at its outlet from the heat exchanger is connected to a conduit transporting line, that each heat exchanger is provided in its upper area with a line that transports the generated steam into the next heat exchanger and is connected to a further evaporator coil, and that each superheater is provided with is connected to the external heat source.
  • each heat exchanger is provided with an outlet for the remote impurities.
  • each superheater has a discharge line for the medium flowing through it, which is connected to a collecting line, and that the collecting line is connected to the feed line of the evaporator coil of the first heat exchanger.
  • the device is characterized in that the discharge line of each superheater is coupled to a consumer and that the discharge line for the steam of the last heat exchanger is connected to the inlet of the evaporator coil of the first heat exchanger.
  • FIG. 1 shows an arrangement of a plurality of heat exchangers 1, 1 ', 1'',1''', each of which is supplied with process water via a process water pipe 2.
  • Each heat exchanger is in its upper area with a superheater 3, 3 ', 3'',3''' and an evaporator coil 4, 4 ', 4'',4'' and an outlet 5, 5 ', 5 '', 5 ''', by means of which the settled impurities are removed from the heat exchanger.
  • the evaporator coil 4 is connected via a feed line 6 to an external heat source, not shown. For example, superheated steam runs through the evaporator coil.
  • This contaminated process water is now evaporated in the heat exchanger filled with process water to just below the superheater 4.
  • the steam is led in the area of the superheater via a line 7 into the evaporator coil 4 'of the next heat exchanger.
  • the custom relaxed, superheated steam passing through the evaporator coil 4 is discharged as condensate via the line 8 and discharged for further use in a collecting line 9 to which all evaporator coils are connected.
  • the medium cleaned in this way can be used as desired.
  • the process described for the first heat exchanger is now repeated in every further heat exchanger.
  • the superheater 3 Since the steam leaving the first heat exchanger naturally has a lower temperature than the medium passing through the first evaporator coil 4, the superheater 3 'is used in this heat exchanger in order to restore the temperature prevailing in the heat exchanger 1. This process is repeated in all other heat exchangers.
  • the superheaters are also powered by the external heat source. All heat exchangers are kept at a constant temperature. However, only the surfaces and blowdown losses have to be covered additionally. All other heat of evaporation is passed on from one heat exchanger to the next heat exchanger. Only a small amount of heat has to be added with the superheaters.
  • FIG.2 A particularly favorable embodiment of the invention is shown in Fig.2.
  • the superheaters 3, 3 ', 3'',3''' fed by the external heat source have a discharge line 9, 9 ', 9'',9''', which lead to a collecting line 10 which carries the medium , which has released only a small part of its energy in the individual heat exchangers, leads back again into the feed line 6 for the first evaporator coil 4.
  • the further supply of the evaporator coil directly from the external heat source can now be omitted. From this point in time, the superheater 3 also works in the heat exchanger 1, which was initially not used when the hot water was heated exclusively by the external heat source.
  • the heat balance is significantly improved by this circuit, since the superheated steam has a much lower heat of vaporization.
  • a large number of heat exchangers can be operated.
  • the number of heat exchangers to be used depends on the boundary conditions such as e.g. B pressure and temperature dependent and is based in particular on the ratio of evaporation energy to superheating energy. 1
  • FIG. 3 Another training shown in FIG. 3 is also conceivable.
  • the medium emerging from the superheaters does not go into a manifold 10 as shown in the exemplary embodiment according to FIG. 2, but is fed directly to a consumer.
  • the discharge line 7 '' 'for the steam generated in the last heat exchanger is connected to the evaporator coil 4 de first heat exchanger 1, i.e. h, the energy remaining in the last heat exchanger is fed to the first heat exchanger.
  • the cleaned condensate is removed as in the previous examples and can be used for any purpose.
  • the superheaters 3, 3 ', 3' ', 3' '' keep the heat exchangers at a constant temperature by adding little energy.
  • the exemplary embodiment shown in example 2 could be used for water provision for solar hydrogen production.
  • the embodiment shown in Example 3 could be used in a heating center where the medium emerging from the superheaters is fed to a boiler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Procédé et dispositif pour la purification thermique des eaux industrielles selon lequel un grand nombre d'échangeurs de chaleur (1, 1', 1', 1'') alimentés en eaux industrielles sont montés en cascade. Chaque échangeur de chaleur (1, 1', 1', 1'') comprend un serpenting d'évaporation (4, 4', 4', 4'') et un surchauffeur (3, 3', 3', 3''), le serpentin d'évaporation (4) du premier échangeur de chaleur (1) et tous les surchauffeurs étant alimentés par une source de chaleur externe. L'eau industrielle évaporée par le serpenting d'évaporation (4) alimente sous forme de vapeur surchauffée le serpentin d'évaporation (4') de l'échangeur de chaleur suivant (1'). Le fluide détendu est extrait du serpentin d'évaporation sous forme de condensat. L'utilisation de la chaleur du premier échangeur de chaleur permet d'alimenter les nombreux échangeurs de chaleur. Les pertes par condensation et par purge qui se produisent entre les échangeurs de chaleur successifs sont compensées par l'apport d'une faible quantité de chaleur.
PCT/AT1993/000015 1992-02-10 1993-02-08 Procede de purification thermique des eaux industrielles WO1993016004A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33373/93A AU670056B2 (en) 1992-02-10 1993-02-08 Thermal method for cleaning waste water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA221/92 1992-02-10
AT0022192A AT397078B (de) 1992-02-10 1992-02-10 Verfahren und vorrichtung zur thermischen brauchwasserreinigung

Publications (1)

Publication Number Publication Date
WO1993016004A1 true WO1993016004A1 (fr) 1993-08-19

Family

ID=3484753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1993/000015 WO1993016004A1 (fr) 1992-02-10 1993-02-08 Procede de purification thermique des eaux industrielles

Country Status (3)

Country Link
AT (1) AT397078B (fr)
AU (1) AU670056B2 (fr)
WO (1) WO1993016004A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597594A3 (fr) * 1992-10-16 1995-03-15 Chen Chan Ming Fontaine purifiant de l'eau en éconmisant de l'énergie susceptible à fourmir de l'eau distillée chaude, tiède ou glacée.
WO1995012549A1 (fr) * 1993-11-05 1995-05-11 Sunds Defibrator Industries Ab Procede de purification des eaux residuaires
EP0757016A3 (fr) * 1995-08-04 1997-07-30 Bipiemme S R L Purification, régénération et recyclage des eaux usées industrielles
WO2010009259A3 (fr) * 2008-07-16 2010-04-15 Tiax Llc Dispositifs et procédé d’élimination d’impuretés dans de l’eau utilisant de la chaleur à basse énergie
EP2839870A1 (fr) * 2013-08-21 2015-02-25 Rafaël Van Bogaert Installation de distillation, usine de dessalement et procédé de distillation d'eau
CN104548636A (zh) * 2014-12-26 2015-04-29 淄博广通化工有限责任公司 二氯氧化锆生产工艺中的浓缩蒸发装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2219650A1 (de) * 1971-04-22 1972-12-14 Saari, Risto Vaino Juhani, Luoma, Huhta Koivisto, Esko Ensio, Helsinki, (Finnland) Destillierverfahren und Vorrichtung zur Durchfuhrung des Verfahrens
AT353193B (de) * 1976-01-07 1979-10-25 Hoiss Jakob Verfahren und vorrichtung zum destillieren von rohwasser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2219650A1 (de) * 1971-04-22 1972-12-14 Saari, Risto Vaino Juhani, Luoma, Huhta Koivisto, Esko Ensio, Helsinki, (Finnland) Destillierverfahren und Vorrichtung zur Durchfuhrung des Verfahrens
AT353193B (de) * 1976-01-07 1979-10-25 Hoiss Jakob Verfahren und vorrichtung zum destillieren von rohwasser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597594A3 (fr) * 1992-10-16 1995-03-15 Chen Chan Ming Fontaine purifiant de l'eau en éconmisant de l'énergie susceptible à fourmir de l'eau distillée chaude, tiède ou glacée.
WO1995012549A1 (fr) * 1993-11-05 1995-05-11 Sunds Defibrator Industries Ab Procede de purification des eaux residuaires
AU678081B2 (en) * 1993-11-05 1997-05-15 Sunds Defibrator Industries Ab Method of purifying waste water
EP0757016A3 (fr) * 1995-08-04 1997-07-30 Bipiemme S R L Purification, régénération et recyclage des eaux usées industrielles
WO2010009259A3 (fr) * 2008-07-16 2010-04-15 Tiax Llc Dispositifs et procédé d’élimination d’impuretés dans de l’eau utilisant de la chaleur à basse énergie
EP2839870A1 (fr) * 2013-08-21 2015-02-25 Rafaël Van Bogaert Installation de distillation, usine de dessalement et procédé de distillation d'eau
CN104548636A (zh) * 2014-12-26 2015-04-29 淄博广通化工有限责任公司 二氯氧化锆生产工艺中的浓缩蒸发装置
CN104548636B (zh) * 2014-12-26 2016-05-18 淄博广通化工有限责任公司 二氯氧化锆生产工艺中的浓缩蒸发装置

Also Published As

Publication number Publication date
ATA22192A (de) 1993-06-15
AU670056B2 (en) 1996-07-04
AU3337393A (en) 1993-09-03
AT397078B (de) 1994-01-25

Similar Documents

Publication Publication Date Title
DE3213837C2 (de) Abgasdampferzeuger mit Entgaser, insbesondere für kombinierte Gasturbinen-Dampfkraftanlagen
EP0561220B1 (fr) Procédé pour le fonctionnement d'une installation de génération de vapeur et générateur de vapeur
EP2521861B1 (fr) Centrale solaire thermique à évaporation indirecte et procédé permettant de faire fonctionner une telle centrale solaire thermique
EP2889479B1 (fr) Installation géothermique, procédé de fonctionnement d'une installation géothermique et procédé destiné à augmenter le rendement d'une installation géothermique
DE3035349C2 (de) Anlage zur Verdampfung von flüssigem Erdgas
WO2016016297A1 (fr) Procédé et dispositif de séchage d'un produit à sécher, installation industrielle, papeterie et dispositif de commande
EP1507069B1 (fr) Procédé et installation de récupération d'eau dans une centrale d'énergie
DE10025472C2 (de) Dampfphasenlötanlage mit überhitztem Dampf
DE10144841C1 (de) Solarthermisches Gas- und Dampfkraftwerk und Verfahren zur Umwandlung von thermischer Energie in elektrische Energie
EP0593687B1 (fr) Procede et dispositif de dessalement de l'eau de mer avec un echangeur de chaleur a plaques
WO1993016004A1 (fr) Procede de purification thermique des eaux industrielles
EP2322768B1 (fr) Centrale à vapeur et procédé de fonctionnement d'une centrale à vapeur
WO2000063534A1 (fr) Procede de transformation de chaleur a l'aide d'un appareil generateur de tourbillons
WO1996036792A1 (fr) Procede et dispositif permettant de degazer un condensat
DE2648219A1 (de) Verfahren zum erhitzen eines stroemenden mediums in einer anlage zum eindampfen und trocknen eines produktes
EP0840837B1 (fr) Procede d'exploitation d'une installation de turbines a gaz et a vapeur et installation exploitee selon ce procede
DE3515999A1 (de) Vorrichtung zum konzentrieren von salzwasser
DE10222316B4 (de) Vorrichtung und Verfahren zur solaren Meerwasserentsalzung und zur Stromerzeugung
DE2510168A1 (de) Anlage zur gewinnung von trink- oder nutzwasser aus salz-, brack- oder schmutzwasser
DE3020297A1 (de) Anlage zur erzeugung von ueberhitztem prozessdampf aus salzhaltigem rohwasser
DE69520366T2 (de) Verfahren zur abschliessenden eindampfung von schwarzlauge
WO2015003898A1 (fr) Système de préchauffage et procédé utilisant un tel système de préchauffage
CH369220A (de) Verfahren zum Abführen der im Innern eines Kernreaktors freiwerdenden Wärme
EP2638286B1 (fr) Centrale héliothermique
DE60107618T2 (de) Verfahren zum Erzeugen von Dampf mittels einer Müllverbrennungsanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR SN TD TG

ENP Entry into the national phase

Ref country code: AT

Ref document number: 1993 9022

Date of ref document: 19930819

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 19939022

Country of ref document: AT

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA