[go: up one dir, main page]

WO1996014599A1 - Affichage a cristaux liquides - Google Patents

Affichage a cristaux liquides Download PDF

Info

Publication number
WO1996014599A1
WO1996014599A1 PCT/JP1995/002285 JP9502285W WO9614599A1 WO 1996014599 A1 WO1996014599 A1 WO 1996014599A1 JP 9502285 W JP9502285 W JP 9502285W WO 9614599 A1 WO9614599 A1 WO 9614599A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
anodizing
signal
linear resistance
substrate
Prior art date
Application number
PCT/JP1995/002285
Other languages
English (en)
French (fr)
Inventor
Kanetaka Sekiguchi
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to JP8515202A priority Critical patent/JP3059487B2/ja
Priority to EP95936756A priority patent/EP0793135B1/en
Priority to US08/836,481 priority patent/US6128050A/en
Publication of WO1996014599A1 publication Critical patent/WO1996014599A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1365Active matrix addressed cells in which the switching element is a two-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures

Definitions

  • the present invention relates to a monochrome or color liquid crystal display device widely used as a display of a clock, a calculator, a video camera, and other various electronic devices.
  • one of the two substrates enclosing the liquid crystal has a first electrode and a second electrode, and the first electrode is provided between the first electrode and the second electrode as a non-linear resistance layer.
  • the present invention relates to a configuration of a liquid crystal display device in which an anodized film of an electrode is formed and a non-linear resistance element having a “metal-insulating film-metal” or “metal-insulating film-transparent conductor” structure is provided.
  • the contrast or the response speed decreases as time is divided. For this reason, when it has about 200 scanning lines, it is difficult to obtain a sufficient contrast.
  • an active matrix type liquid crystal display panel in which a switching element is provided for each pixel is employed.
  • This active matrix liquid crystal display panel is roughly divided into three terminals that use thin-film transistors (hereinafter referred to as “TFTs”) as switching elements.
  • TFTs thin-film transistors
  • a diode type, a parister type, or a thin-film diode (hereinafter referred to as “TFD”) type has been developed.
  • the TFD type has a feature that the structure is particularly simple and the manufacturing process is short.
  • liquid crystal display panels are required to have high density and high definition, and the occupied area of the switching elements needs to be reduced.
  • FIG. 45 is a plan view of an example of the liquid crystal display device. This will be described with reference to FIG. 46 which is a plan view shown in FIG. 46 and FIG. 47 which is a cross-sectional view taken along the line XX of FIG.
  • a first substrate 1 and a second substrate 11 each made of a transparent material are opposed to each other at a predetermined interval via a spacer 17.
  • the liquid crystal 16 is sealed between them.
  • a lower electrode 2 and a signal electrode 4 are provided as a first electrode, and a non-linear resistance layer 9 is provided on the lower electrode 2.
  • an upper electrode 6 is provided as a second cathode pole so as to overlap the nonlinear resistance layer 9, thereby constituting the nonlinear resistance element 9.
  • the upper electrode 6 as a second electrode extends from the display electrode 7 as shown in FIG. 46, and a part of the upper electrode 6 also serves as a display electrode.
  • the non-linear resistance element 9 and the display electrode 7 are provided in a matrix.
  • a black matrix 12 is provided over the entire area shown by hatching in FIG. That is, the black matrix 12 is provided as a light-shielding portion in the non-display portion.
  • the opposing electrode 13 is opposed to the display electrode 7 as shown in FIG. 47, and the interlayer insulating film 1 is formed so as not to come into contact with the black matrix 12 and short-circuit. It is provided in a belt shape with 4 interposed.
  • the lower electrode 2 and the signal electrode 4 as the first electrodes on the first substrate 1 and the upper electrode 6 and the display electrode 7 as the second electrodes are all shown by broken lines.
  • the non-linear resistance layer 3 is not shown, and the black matrix 12 and the counter electrode 13 on the lower surface of the second substrate 11 are shown by solid lines.
  • the lower electrode 2 provided on the first substrate 1 protrudes from the signal electrode 4 in order to provide the non-linear resistance element 9, and the lower electrode 2 serving as the protruding area overlaps with the upper electrode 6. To form a non-linear resistance element 9.
  • the signal electrode 4 as the first electrode and the display electrode 7 as the second electrode have a gap d of a predetermined size as shown in FIG. 46.
  • the signal electrode 4 as the first electrode and the display electrode 7 as the second electrode have a gap d of a predetermined size as shown in FIG. 46.
  • the black matrix 13 is provided so as to overlap a region where the display electrode 7 is formed by a predetermined amount, and has a role of preventing light from leaking from a peripheral region of the display electrode 7.
  • the liquid crystal display device displays a predetermined image by a change in the transmittance of the liquid crystal 16 in a region where the black matrix 13 is not formed on the display electrode 7.
  • alignment films 15 and 15 are provided on the opposing surfaces of the first substrate 1 and the second substrate 11 as processing layers for regularly arranging the molecules of the liquid crystal 16. I have.
  • signal electrodes 4 of M columns are provided on the first substrate 1, and the counter electrodes 13 or N rows of N rows are provided on the second substrate 11.
  • a liquid crystal display device having a display area 18 indicated by a dashed line composed of a matrix of M columns and N rows.
  • Each of the intersections of the signal electrode 4 in the M column and the counter electrode 13 or the data electrode in the N row has a display electrode 7, and a non-linear resistance element (this In the example, a TFD) 9 is provided.
  • a non-linear resistance element this In the example, a TFD
  • an electrode 5 for anodic oxidation for connecting the signal electrodes 4 in M rows to each other, and the electrode for anodic oxidation is provided.
  • connection electrode 8 for connecting each signal electrode 4 to an external circuit.
  • the signal electrodes 4 in each row are connected by the anodizing electrode 5, and the lower electrode 2 connected to the signal electrode is subjected to the anodizing process at once, and the The non-linear resistance layer 3 (Fig. 47) is formed, but after the processing, the signal electrodes 4 in each column must be separated and independent.
  • the cutout portion 6 2 in which the anodizing electrode 5 is extended by a length L outside the separation line (shown by a broken line) 34 of the first substrate 1 is shown.
  • the substrate is cut along the separation line 34 to separate the anodizing electrode 5 from the first substrate 1 together with the cut portion 62.
  • the anodizing electrode 5 is separated during the alignment process to arrange the liquid crystal regularly, which is the process of processing the substrate 1 having the non-linear resistance element 9 for the liquid crystal display device, and during the transport between devices and the inspection process. In this case, the static electricity generated locally cannot be dispersed.
  • the voltage can be applied to each display electrode 7 only by applying a voltage to the anodic oxidation angle electrodes 5 connected to each other, so that the inspection can be performed easily. it can.
  • an external circuit is mounted on the substrate 1 on which the nonlinear resistance element 9 is formed
  • an integrated circuit capable of high-density mounting is mounted on the substrate using a conductive adhesive.
  • COG glass
  • the present invention provides a liquid crystal display device in which a part of the anodizing electrode is easily removed by etching after completion of the above-mentioned various steps, so that each signal electrode is independent. Prevents the deterioration and destruction of the nonlinear resistance element due to static electricity generated during the manufacturing process of the nonlinear resistance element or the subsequent process of switching to a liquid crystal display device, eliminates the defect of the nonlinear resistance element, and reduces the characteristics of the nonlinear resistance element.
  • the primary purpose is to stabilize.
  • a signal electrode is formed of a metal film, and an initial signal electrode and a final signal electrode have the same wiring width. For this reason, there is a problem that it is difficult to correct an etching defect in a part of the signal electrode when the defect occurs.
  • the signal electrode when used as a part of the anodizing electrode, if the signal electrode is disconnected, the anodic oxide film cannot be formed. Furthermore, in order to form the anodized film uniformly, it is necessary to form the anodized electrode as wide as possible.
  • a gate electrode when a gate electrode is used as an anodizing electrode and an anodized film of a gate electrode is used as a gate insulating film, the case of a TFD element is considered.
  • the anodizing electrode may be disconnected, or an electrical short circuit may occur between the signal electrode (gate electrode or source electrode) and the transparent display electrode.
  • the present invention uses a signal electrode as a part of an anodic oxidation electrode so that an anodic oxide film serving as a non-linear resistance layer of each non-linear resistance element can be formed reliably and uniformly. It should be easy to correct even if an etching defect occurs in a part of the signal electrode, and if an electrical short circuit occurs between the display electrode of the transparent conductive film and the signal electrode or anodizing electrode. However, it is also an object to make it easy to detect the short-circuited portion. Disclosure of the invention
  • a liquid crystal display device is configured as follows.
  • a first substrate and a second substrate are opposed to each other with a predetermined interval, a plurality of electrodes are provided on the first substrate, and the plurality of electrodes overlap.
  • a non-linear resistance layer is formed by an anodic oxide film of one electrode, and a non-linear resistance element such as a TFD element or a TFT element is provided.
  • the liquid crystal is sealed between the first substrate and the second substrate.
  • an electrode for forming the anodic oxide film for forming the non-linear resistance layer which is connected in advance to the anodic oxidation electrode so that the anodic oxidation process can be performed quickly and uniformly, and the anodic oxidation electrode.
  • Another electrode that masks part of the electrode is provided, and after the anodizing treatment, the exposed portion of the anodizing electrode is removed by etching using the other electrode as a mask, so that each electrode is independent. Is what it is.
  • the special coating for masking can be omitted or reduced, and the etching process for independence of each electrode can be easily performed in any step after the anodizing process.
  • the remaining portion of the anodizing electrode can be effectively used as a connection electrode, an input electrode (terminal), and the like.
  • the anodizing electrode around the display area or around the display element portion, it can be used as a light shielding portion, and there is no black matrix.
  • the liquid crystal display device can also be provided with a breakout.
  • the uniformity of the anodized film can be improved and the effect of preventing cutting or the like can be improved.
  • repair can be performed using the wide portion of the anodic oxidation electrode.
  • FIG. 1 is a plan view showing a part of a liquid crystal display device according to a first embodiment of the present invention
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a plan view showing a part of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 4 is a sectional view taken along the line BB of FIG.
  • FIG. 5 is a plan view showing a state in which a plurality of substrates of a liquid crystal display device according to a third embodiment of the present invention are arranged on a large-sized substrate.
  • FIG. 6 is an enlarged plan view showing a boundary portion between two liquid crystal display device substrates surrounded by broken lines in FIG.
  • FIG. 7 is a cross-sectional view taken along line C-C of FIG. 6 in a state where the liquid crystal display device is configured
  • FIG. 8 is a cross-sectional view taken along line DD of FIG.
  • FIG. 9 is a plan view showing a part of the liquid crystal display device according to a fourth embodiment of the present invention on the first substrate side.
  • FIG. 10 is a view showing a state in which the liquid crystal display device is constructed. It is sectional drawing which follows the E line.
  • FIG. 11 is a plan view showing the overall configuration of a liquid crystal display device according to a fifth embodiment of the present invention.
  • FIG. 12 is a plan view showing, in an enlarged manner, the portions enclosed by broken lines a and b in FIG. It is.
  • FIG. 13 is a sectional view taken along line FF of FIG. 12 in a state where the liquid crystal display device is configured
  • FIG. 14 is a sectional view taken along line GG of FIG. 12 similarly.
  • FIG. 15 is an enlarged plan view showing a part of a liquid crystal display device according to a sixth embodiment of the present invention
  • FIG. 16 is a cross-sectional view taken along line HH of FIG.
  • FIG. 17 is an enlarged plan view showing a part of a liquid crystal display device according to a seventh embodiment of the present invention
  • FIG. 18 is a sectional view taken along the line I--I in FIG. .
  • FIG. 19 is a plan view showing an entire configuration of a liquid crystal display device according to an eighth embodiment of the present invention.
  • FIG. 20 is a plan view showing a part of FIG. 19 in an enlarged manner. Is a sectional view taken along the line J-J in FIG.
  • FIG. 22 is an enlarged plan view showing a part of the liquid crystal display device according to the ninth embodiment of the present invention
  • FIG. 23 is a cross-sectional view taken along the line KK of FIG.
  • FIG. 24 is a plan view showing a partial region of a first substrate forming a TFD element of a liquid crystal display device S according to a tenth embodiment of the present invention, and FIG. FIG. 24 is a sectional view taken along line L-L in FIG.
  • FIG. 27 to 29 are sectional views showing a method of manufacturing an active substrate of a liquid crystal display according to a tenth embodiment of the present invention in the order of steps.
  • FIG. 30 is a plan view showing a partial area of a first substrate forming a TFD element of the liquid crystal display device according to the eleventh embodiment of the present invention.
  • FIG. It is sectional drawing which follows the M line.
  • FIGS. 32 to 34 are cross-sectional views showing a method of manufacturing the active substrate of the liquid crystal display device according to the eleventh embodiment of the present invention in step (2).
  • FIG. 35 is a plan view showing a partial region of a first substrate forming a TFD element of a liquid crystal display device according to a 12th embodiment of the present invention, and FIG. It is sectional drawing which follows the N line.
  • FIG. 37 is a plan view showing a partial region of a first substrate forming a TFD element of a liquid crystal display device according to a thirteenth embodiment of the present invention.
  • FIG. It is sectional drawing which follows the P line.
  • FIG. 39 is a plan view showing a partial area of a first substrate forming a TFT element of a liquid crystal display device according to a 14th embodiment of the present invention.
  • FIG. 40 is a plan view of Q in FIG. -It is a sectional view along the Q line.
  • 41 to 44 are sectional views showing a method for manufacturing an active substrate of a liquid crystal display device according to a fourteenth embodiment of the present invention in the order of steps.
  • 41 to 44 are sectional views showing a method of manufacturing an active substrate of a liquid crystal display according to a fourteenth embodiment of the present invention in the order of steps.
  • FIG. 45 is an overall plan view showing an example of a conventional liquid crystal display device
  • FIG. 46 is a partially enlarged plan view thereof
  • FIG. 47 is X-X in FIG. It is sectional drawing which follows a line.
  • FIGS. 1 to 44 used in the description of each embodiment below, portions corresponding to FIGS. 45 to 47 described above, in the drawings of the embodiment, corresponding parts are denoted by the same reference numerals.
  • FIG. 1 is a plan view showing a part of the liquid crystal display device of the first embodiment
  • FIG. 2 is a sectional view taken along line AA in FIG. In FIG. 1, the first and second substrates are not shown.
  • the basic configuration of this liquid crystal display device is the same as that of the above-described conventional example.
  • a first substrate 1 and a second substrate 11 each made of a material such as transparent glass are illustrated. They face each other at a predetermined interval via a spacer which is not used, and the liquid crystal 16 is sealed between them.
  • a lower electrode 2 made of a tantalum (Ta) film, a signal electrode 4, and an anodizing electrode 5 are provided as first electrodes. Further, on the lower electrode 2, a non-linear resistance layer 3 made of a tantalum oxide (Ta205) film, which is an anodized film of the lower electrode 2 itself, is formed.
  • the anodic oxide film is formed not only on the lower electrode 2 but also on the entire surface of the first electrode, that is, on the surfaces of the signal electrode 4 and the anodic oxidation electrode 5.
  • an upper electrode 6 on the nonlinear resistance layer 3 a display electrode 7 connected to the upper electrode 6, and a connection electrode 8 forming a part of the anodizing electrode 5 are formed. It is provided with an indium tin oxide (ITO) film.
  • ITO indium tin oxide
  • the lower electrode 2, the nonlinear resistance layer 3 and the upper electrode 6 constitute a nonlinear resistance element 9 having a TFD structure.
  • connection electrode 8 composed of the second electrode has a large part of the anodizing electrode 5 composed of the first electrode.
  • the runner portion 5a of the anodizing electrode 5 connecting the electrodes 4 to each other is separated from each other on the separation side 10 by the connecting electrode 8, and the independent signal electrodes 4 are separated from each other.
  • connection pole 8 is an electrode connected to the output terminal 100 a of the driver IC 100 driving the liquid crystal display device as shown in FIG. 2, and further, the inside of the second substrate 11.
  • a black matrix 12 made of a chromium (Cr) film is provided on the surface of .
  • the black matrix 12 is not provided in the region of the second substrate 11 facing the display electrode 7 on the first substrate 1.
  • a counter electrode 13 made of an indium tin oxide film is provided on one side of the second substrate 11 so as to face the display electrode 7.
  • the counter electrode 13 is provided via an interlayer insulating film 14 so as to prevent short-circuit due to contact with the black matrix 12.
  • the first electrode (signal electrode 4) and the display electrode 7 have a gap of a predetermined size so that the two are not short-circuited.
  • the display electrode 7 is arranged so as to overlap the counter electrode 13 via the liquid crystal 16 as shown in FIG. 2, thereby forming a display pixel portion of the liquid crystal display panel.
  • the black matrix 12 has an opening 12a. Then, the formation region of the black matrix 12 shown by hatching in FIG. 1 becomes a light shielding portion.
  • the liquid crystal display device performs a predetermined image display by the change in the transmittance of the liquid crystal 16 in the display pixel portion described above.
  • first substrate 1 and the second substrate 11 are provided with alignment films 15 and 15 as treatment layers for regularly arranging the molecules of the liquid crystal 16.
  • the anodic oxidation electrode 5 composed of the first electrode is configured to be self-alignedly separated by the connection electrode 8 composed of the second electrode.
  • the signal electrode 4 in each row is connected to the anodizing electrode 5. Connected to each other.
  • etching is performed using the connecting electrode 8 composed of the second electrode as a mask, thereby covering the anodizing electrode 5 with the connecting electrode 8 of the electrode 5.
  • the runner portions 5a which have not been removed are removed, and are separated from each other at the separation side 10 of the connection electrode 8, thereby forming independent signal electrodes 4 of each row.
  • connection electrode 8 as the second electrode is used as an etching mask
  • the signal electrodes connected to each other during the manufacturing process of the liquid crystal display panel, during the inspection process, or after the inspection. 4 can be processed into independent signal electrodes.
  • FIG. 3 is a plan view showing a part of the liquid crystal display device of the second embodiment
  • FIG. 4 is a sectional view taken along line BB of FIG. In FIG. 3, the first and second substrates are not shown.
  • a lower electrode 2 a signal electrode 4, and an anodizing electrode 5 are provided on a first substrate 1 as first electrodes made of a tantalum (Ta) film. Then, on the surface of the first electrode including the lower electrode 2, tantalum oxide is used as an exposed oxide film of the first electrode itself.
  • a non-linear resistance layer 3 composed of a (Ta 205) film is formed.
  • an upper electrode 6 made of a chromium (Cr) film is provided on the non-linear resistance layer 3 and a first contact forming a part of the anodizing layer is provided. Electrodes 22 are provided with the same chrome.
  • the lower electrode 2, the non-linear resistance layer 3 and the upper electrode 21 constitute a non-linear resistance element 9 having a TFD structure.
  • a display electrode 7 and a second connection electrode 8 which is a part of the electrode 5 for anodization are formed on the first substrate 1.
  • Is provided by an indium tin oxide (ITO) film.
  • the upper electrode 6 is electrically connected to the display electrode 7 by a connection portion 7a which is a part of the display electrode 7.
  • first connection electrode 22 composed of the second electrode and the second connection electrode 8 composed of the third electrode cover a part of the anodizing electrode 5 composed of the first electrode.
  • the anodizing electrode 5 is separated at the separation side 10 of the second connection electrode 8 to form independent connection terminals 23, 24, 25,...
  • connection terminals 23, 24, 25,... are electrically connected to the signal electrodes 4 of each row via the separated anodic oxidation electrodes 5, the connection terminals 23, 24, 2 are connected.
  • An external circuit (such as a driver IC as in the first embodiment) is connected to 5, ..., and a voltage is applied to each nonlinear resistance element 9 independently via the signal electrode 4 of each row, Each display pole 7 can be displayed for the purpose.
  • connection between the connection terminals 23, 24, 25,... And the external circuit is performed so that the chip “on” glass (COG) method can be used. They are arranged close to each other on the terminal forming portion 1 a of the substrate 1.
  • COG chip “on” glass
  • the CG method is a method in which an anisotropic conductive sealant or conductive particles are formed in a convex shape on a semiconductor integrated circuit (IC), and the adhesive in the anisotropic conductive sealant is used. This is a method of mounting an integrated circuit on a substrate. 4 Also according to the second embodiment, when performing the anodic oxidation treatment for forming the non-linear resistance layer on the lower electrode 2, the signal electrodes 4 in each row are connected to each other by the anodizing electrode 5. I have.
  • etching is performed using the second connection electrode 8 composed of the second electrode as a mask, so that the second connection electrode 8 of the anodizing electrode 5 is formed.
  • the runner portions 5a (represented by phantom lines in FIG. 3) that are not covered by the slab are removed and separated from each other at the separation sides 10 around the second connection electrode 8, and Configure independent connection terminals 23, 24, 25, ... that conduct the signal power 4 respectively.
  • each signal electrode can be made independent by a simple etching process.
  • first connection electrode 22 composed of a second electrode and a second connection electrode 8 composed of a third electrode are sequentially formed on the anodic oxidation electrode 5 composed of the first electrode. Therefore, the adhesion between the anodizing electrode 5 and the second connection electrode 8 can be increased.
  • FIG. 5 is a plan view showing a state where a plurality of substrates of the liquid crystal display device g according to the third embodiment are arranged on a large-sized substrate.
  • Fig. 6 is an enlarged view of the boundary between the two substrates for liquid crystal display devices shown in Fig. 5 surrounded by broken lines.
  • FIG. 5 is a plan view.
  • FIG. 7 is a cross-sectional view along the line C-C in FIG. 6, and
  • FIG. 8 is a cross-sectional view along the same line DD.
  • liquid crystal display substrates 31, 32,... are provided on a large first substrate 30.
  • the liquid crystal display substrates 31 and 32 are configured to be separated from each other by separating lines 33 and 34.
  • the liquid crystal display substrate 31 or 32 (corresponding to the first substrate 1 in each of the above-described embodiments) has a first electrode made of a tantalum (Ta) film. As shown in FIGS. 6 and 8, a lower electrode 2, a signal electrode 4, and an anodizing electrode 41 are provided.
  • the anodizing electrode 41 is provided on the liquid crystal display substrate 32 side as shown in FIG. 6, and connects the respective signal electrodes 4 of the adjacent liquid crystal display substrate 31 to each other to form an anodized electrode. In some cases, a voltage is applied from the signal electrode 4 to each lower electrode 2.
  • Ta205 tantalum oxide
  • an upper electrode 6 provided on the nonlinear resistance layer 3, a display electrode 7 connected to the upper electrode 6, and a first liquid crystal display device substrate provided on the large substrate 30 are provided.
  • the input electrode 8 ′ (corresponding to the connection electrode 8 in each of the above-described embodiments) that covers the — part of the anodizing electrode 5 composed of an electrode is a second electrode composed of an indium tin oxide (ITO) film. Provided.
  • the lower electrode 2, the non-linear resistance layer 3 and the upper electrode 6 constitute a non-linear resistance element 9 having a TFD structure.
  • the input electrode 8 ′ composed of the second electrode covers a part of the anodic oxidation electrode 41 composed of the first electrode of the adjacent liquid crystal display substrate 32.
  • the anodizing electrode 41 After the anodizing electrode 41, after the anodizing process, it is separated by the etching process on the same side as the input electrode 8 ', and the portion shown by the imaginary line in FIG. 6 is removed. Thereby, adjacent 6
  • the independent input terminals 38, 39, 40 on the liquid crystal display substrate 32 are formed together with the connection terminals 23, 24, 25, 26 for the driver IC.
  • Reference numeral 60 denotes a seal for enclosing the liquid crystal 16 between the liquid crystal display substrate 31 or 32 and the second substrate 11, and the internal structure of the liquid crystal display device is as follows. This is the same as the first embodiment.
  • each signal electrode 4 is connected to the anodizing electrode 4 1.
  • an etching process is performed using the input electrode 8 ′ composed of the second electrode as a mask, so that the oxidation electrode 4 is formed. As 1, independent signal electrodes 4 can be obtained.
  • each signal electrode 4 is connected and separated using an anodizing electrode 41 composed of a first electrode and an input electrode 8 ′ composed of a second electrode of an adjacent liquid crystal display device. Therefore, it does not require much space for removing the anodizing electrode, so that a large substrate can be used effectively.
  • the portion remaining after the separation of the anodizing electrode 41 or 5 can be effectively used as an input terminal or a connection terminal of the liquid crystal display device to be connected.
  • FIG. 9 is a plan view showing a part of the liquid crystal display device according to the fourth embodiment on the first substrate side
  • FIG. 10 is a diagram showing a state in which the liquid crystal display device is constituted.
  • FIG. 10 is a sectional view taken along line EE in FIG. 9 in a state 7;
  • the non-linear resistance layer 3 made of this anodic oxide film is also provided on the surface of the first anodizing electrode 55 and the second anodizing electrode 56, which are the same as the lower electrode 2 as the first electrode. It is formed.
  • an upper electrode 6 provided on the non-linear resistance layer 3 and a display electrode 7 connected to the upper electrode 6 are provided by an indium oxide (ITO) film.
  • ITO indium oxide
  • Each connection electrode 8 and a peripheral electrode 58 are provided so as to cover most of the second anodizing electrode 56.
  • the second anodizing electrode 56 and the peripheral electrode 58 are arranged so as to surround the connection electrodes 51, 52, 53, 54, and the display electrode 7 near the seal 60. Is connected to the surrounding electrode 57 close to.
  • the above-described lower electrode 2, non-linear resistance layer 3, and upper electrode 6 constitute a non-linear resistance element 9 having a TFD structure.
  • Liquid crystals are regularly arranged on the non-linear resistance element 9, and the ion component of the orientation film 15 or the liquid crystal 16 affects the non-linear resistance element 9, which may cause a change or deterioration in the characteristics of the non-linear resistance element 9.
  • a transparent insulating film 48 is provided on and around the nonlinear resistance element 9.
  • the insulating film 48 has an opening above the first anodizing electrode 55 connecting the connection electrodes 51 to 54 of each signal electrode 50 and the second anodizing electrode 56. 4 9 is provided. 8. Then, in the state of the liquid crystal display device, the portion of the first anodizing electrode 55 exposed at the opening of the insulating film 48, which is indicated by the phantom line in FIG. 9, is removed. Therefore, the connecting electrodes 51 to 54 and the surrounding electrode 58 form independent electrodes that are electrically separated from each other.
  • the characteristic change or the characteristic deterioration of the non-linear resistance element 9 is prevented.
  • An insulating film 48 is provided, and in the opening 49 of the insulating film 48, the anodizing electrode 55 composed of the first electrode is provided on a part of the side that is the second electrode.
  • the signal electrodes 50 are independent and the connection electrodes 51 to 54 are connected to external circuits such as the driver IC 100 shown by virtual lines in FIG. It constitutes independent electrode terminals to be connected.
  • the signal electrodes 50 are connected to each other by the first and second anodic oxidation electrodes 55, 56. The same effect can be obtained.
  • a second anodizing electrode 56 is arranged near the connection electrodes 51 to 54, and is connected to the first anodizing electrode 55 via a branch portion thereof.
  • the static electricity can be dispersed around.
  • the first anodizing electrode 55 (indicated by a virtual line in FIG. 9) in the opening 49 is removed. Therefore, since the processing for making each signal electrode 50 independent can be performed simultaneously, the number of manufacturing steps does not increase.
  • the opening 49 is formed in the insulating film 48, the second substrate 11 and the seal 60 are assembled.
  • a tantalum film is used as the first electrode.
  • a tantalum film containing nitrogen other than a normal tantalum film may be used.
  • a tantalum film containing tin or a tantalum film containing niobium can also be used as the first electrode.
  • a multilayer film of a low-resistance material such as aluminum, copper, or nickel and tantalum or a film containing impurities in tantalum may be used.
  • the non-linear resistance layer is composed of a tantalum oxide film, a silicon nitride film containing impurities, or a silicon oxide film containing impurities on top of the tantalum oxide film.
  • a non-linear resistance layer may be used.
  • the film formed on the tantalum oxide film of the non-linear resistance layer composed of a multilayer film may be formed by using a plasma enhanced chemical vapor deposition (CVD) method.
  • CVD plasma enhanced chemical vapor deposition
  • a voltage is applied to the tantalum oxide film, and the withstand voltage is improved, so that deterioration of the nonlinear resistance element can be prevented.
  • CVD plasma enhanced chemical vapor deposition
  • a non-linear resistance layer composed of a multilayer film it is possible to control the current-voltage characteristics of the non-linear resistance element. For this reason, it is possible to suppress the flow of the overflow to the non-linear resistance element, and to improve the characteristics of the liquid crystal display device.
  • the example of the liquid crystal display device having one non-linear resistance element for each pixel has been described, but a plurality of non-linear resistance elements are provided for each pixel. An element may be provided.
  • FIG. 11 is a plan view showing the entire configuration of the liquid crystal display device according to the fifth embodiment. For the sake of clarity, both the configurations of the first and second substrates, which are vertically stacked, are shown. This is indicated by a solid line.
  • FIG. 12 is an enlarged plan view showing portions surrounded by broken lines a and b in FIG. However, the upper substrate and the film formed thereon have been removed. The part surrounded by the broken line a is shown on the upper side, and the part surrounded by bash b is shown on the lower side.
  • FIG. 13 is a sectional view taken along line FF of FIG. 12 in a state where the liquid crystal display device is configured
  • FIG. 14 is a sectional view taken along line GG of FIG. 12 similarly. .
  • the basic configuration of the liquid crystal display device according to this embodiment is also common to each of the above-described embodiments.
  • a lower electrode 2, a signal electrode 4, and an anodizing electrode 5 are provided as first electrodes made of a tantalum (Ta) film.
  • a non-linear resistance layer 3 made of a tantalum oxide (Ta 205) film is formed on the lower electrode 2 and the anodizing electrode 5, these As 2, a non-linear resistance layer 3 made of a tantalum oxide (Ta 205) film is formed.
  • the anodizing electrode 5 is formed in a strip shape so as to surround the display castle 18 as shown by hatching in FIG. Then, in order to form the plurality of first substrates 1 from the large original substrate, the interconnection electrodes 65 are connected to the first substrate 1 in order to connect the anodic oxidation electrodes 5 to each other. It is provided at the end.
  • the anodic oxidation electrode 5 composed of the first electrode has a matrix shape composed of the signal electrodes 4 in M rows and the counter electrodes 13 in N columns. A plurality of signal electrodes 4, 4,... Are connected to each other around the display area 18.
  • an upper electrode 6 on the nonlinear resistance layer 3 and a display electrode 7 connected to the upper electrode 6 are provided by an indium tin oxide (ITO) film.
  • ITO indium tin oxide
  • the lower electrode 2, the non-linear resistance layer 3 and the upper electrode 6 constitute a non-linear resistance element 9 having a TFD structure.
  • a hatched area is provided on the anodizing electrode 5 provided so as to surround the display area 18 in which a large number of display electrodes 7 are arranged in a matrix.
  • the rectangular light-blocking portion electrode 75 arranged side by side and the surrounding electrode 58 extending from the surrounding electrode 57 so as to surround the tip of each of the connection electrodes 71 to 74 are also indium oxide as the second electrode. It is formed of a tin (ITO) film.
  • all the anodizing electrodes 5 are formed below the hatched electrodes in FIG. 12 as well, and during the anodizing treatment, all signal compressing electrodes 4 are anodized at both ends.
  • the electrodes 5 are reliably connected to each other.
  • the peripheral electrodes 57, 58 composed of these second electrodes, the connection electrodes 71 to 74, and the light-shielding electrode 75 form part of the anodizing electrode 5.
  • the mask serves as a mask to cover, and the surface of the display area 18 having a width indicated by D in FIG. The exposed part is removed.
  • each signal electrode 4 and each of the connection electrodes 71 to 74 connected thereto are separated from each other to form independent electrodes.
  • FIGS. 13 and 14 the portions from which the anodizing electrode 5 and the non-linear resistance layer 3 are removed are indicated by imaginary lines.
  • the signal electrodes 4 are connected to each other by the anodizing electrodes 5 during the anodizing process for forming the non-linear resistance layer 3 and during the subsequent inspection process.
  • the same effects as those of the above embodiments can be obtained.
  • the connection is made at both ends of the signal electrode 4, the connection is more reliable, and even if a disconnection occurs in the middle of the signal electrode, the anodic oxidation treatment can be performed reliably.
  • the signal electrode 4 and the connection electrodes 71 to 74 are easily separated from each other by performing an etching process using the second electrode as a mask. It can be.
  • the sides on both sides of the peripheral electrode 57, the left and right sides in FIG. 12 of the connection electrodes 71 to 74, and the side around the light-shielding portion electrode 75 are separated sides.
  • the opaque anodizing electrode 5 remains on the outer peripheral portion of the display region 18 to form a light-shielding portion, so that the display region 18 can be closed.
  • a liquid crystal display device without the black matrix 12 can be cut off (a frame surrounding the periphery of the display area).
  • the width of the anodizing electrode can be increased by the anodizing electrode 5 used for parting, and the uniformity of the anodized film is improved.
  • a TFD structure element is used as a non-linear resistance element, and a structure in which two TFD elements are connected in series is used for each surface element, and the TFD elements are composed of N columns of data electrodes. The case where it is provided on the side will be described.
  • FIG. 15 is an enlarged plan view showing a part of the liquid crystal display device
  • FIG. 6 is a cross-sectional view taken along the line HH of FIG.
  • a first electrode made of a tantalum (T a) film is provided on the first substrate 1 as an island-shaped lower electrode 2, a first data electrode 82, and an anodizing layer.
  • An electrode 5 and a wiring connection part 76 for connecting the island-shaped lower electrode 2 and the first data electrode 82 are provided, and the anodic oxide film of the first electrode and the Then, a non-linear resistance layer 3 composed of a tantalum oxide (Ta 205) film is formed.
  • the first electrode 5 for anodic oxidation is composed of a plurality of data electrodes 81 around a matrix-shaped display area composed of signal electrodes in M rows and data electrodes 81, 81 in N columns. , 81 are connected to each other.
  • the display electrode upper electrode 85 to be connected, and the display electrode 7 and the second data electrode 83 on the first data electrode 82 are provided with an indium tin oxide (ITO) film.
  • the island-shaped lower electrode 2, the non-linear resistance layer 3, and the data electrode upper electrode 84 constitute a first non-linear resistance element 86 having a TFD structure. Further, the island-shaped lower electrode 2, the nonlinear resistance layer 3, and the display electrode upper electrode 85 constitute a second nonlinear resistance element 87 having a TFD structure.
  • the second data electrode 83 From the second data electrode 83, the data electrode upper electrode 84, the nonlinear resistance layer 3, the lower electrode 2, the nonlinear resistance layer 3, the display electrode upper electrode 85, and the display electrode 7 are connected in this order.
  • the second data The data electrode 83 and the display electrode 7 have a symmetric TFD element configuration.
  • an insulating film 48 made of tantalum oxide (Ta205) is provided as shown in FIG.
  • the insulating film 48 has a wiring connection separating opening 91 around the wiring connection 76 connecting the first signal electrode 4 and the island-shaped lower electrode 2.
  • a plurality of separation openings 92 are provided on the anode oxidation electrode 5, as shown in FIG. 15, a plurality of separation openings 92 are provided.
  • connection opening 93 for connecting an external circuit to the second data electrode 83 is provided.
  • the insulating film 48 and the first electrode Certain lower electrodes 2 have the same separation side.
  • the insulating film 48 and the anodizing electrode 5 have the same separation side 10.
  • light shielding portions 76 in which the anodizing electrode 5 is separated by the same separation side as the insulating film 48.
  • the outer periphery of the display area is formed by the light-shielding portion 76 as a parting-off.
  • a red filter 95 and a blue filter 96 are provided on the inner surface of the second substrate 11 so that the liquid crystal display device performs color display.
  • a green filter color filter that does not.
  • an area 97 in which color filters are overlapped is provided.
  • a counter electrode 13 made of an indium tin oxide film is provided on the second substrate 11 so as to face the display electrode 7.
  • the display electrode 7 is arranged so as to overlap the counter electrode 13 via the liquid crystal 16, thereby forming a display pixel portion of the liquid crystal display panel.
  • the display pixel portion has a single color filter, for example, a red filter 93.
  • the change in the transmittance of the liquid crystal 16 in the display pixel area causes the liquid crystal display In the show, a predetermined image is displayed.
  • first substrate 1 and the second substrate 11 are provided with alignment films 15 and 15, respectively, as processing layers for regularly arranging the molecules of the liquid crystal 16.
  • the anodic oxidation electrode 5 composed of the first electrode is separated from the separation side 1 that is self-aligned by the opening of the insulating film 48 around the display area. Has zero.
  • the island shape is formed from the anodic oxidation electrode 5 or the first data electrode 82.
  • the lower electrode 2 must be separated.
  • the light-shielding portion 76 can be provided around the display area by using the anodic oxidation electrode 5 without any particular step. Therefore, when the part where the color filters are overlapped is used in place of the black matrix for parting, even if the parting part has insufficient light-shielding properties, the light-shielding part where the anodizing electrode 5 remains remains By using 7.6, it is possible to give up sufficient light-shielding properties.
  • a voltage can be supplied from the surroundings during the anodizing process for forming the non-linear resistance layer 3, so that, for example, a defect may occur in some of the anodizing electrodes 5. If this occurs, voltage can be supplied from other parts.
  • FIG. 17 a liquid crystal display according to a seventh embodiment of the present invention will be described with reference to FIGS. 17 and 18.
  • FIG. 17
  • a TFT structure element is used as the non-linear resistance element.
  • FIG. 17 is an enlarged plan view showing a part of the liquid crystal display device.
  • FIG. 18 is a cross-sectional view along the line II.
  • a good electrode 101 corresponding to the signal electrode 4 and an anodizing electrode 5 are provided on the first substrate 1 in the seventh embodiment.
  • a gate insulating film 102 made of a tantalum oxide (Ta2O5) film is provided on the first electrode as a charging oxide film of the first electrode.
  • the anodic oxidation electrode 5 composed of the first electrode has a matrix-like shape composed of a gate Oxide pole 101 of M rows and a source electrode 105 of N columns. A plurality of gate electrodes 101 and 101 are connected to each other around the display area.
  • the anodizing electrode 5 is also provided below the surrounding electrode 57 and the light shielding portion electrode 75 shown by hatching in FIG.
  • An amorphous silicon (a-Si) film is provided as a semiconductor layer 103 on and around the gate insulating film 102. Further, a semiconductor layer 104 containing phosphorus (P) as impurity ions is provided over the semiconductor layer 103.
  • a-Si amorphous silicon
  • a source electrode 105 and a drain electrode 106 are provided over the semiconductor layer 104 containing impurity ions.
  • the source electrode 105 and the drain electrode 106 are provided with molybdenum (Mo).
  • Mo molybdenum
  • the semiconductor layer 104 containing impurity ions is composed of a source electrode 105, a drain electrode 106, and a semiconductor.
  • the source electrode 105 is connected to the data electrodes 121 and 122 connected to the external circuit.
  • the drain electrode 106 is connected to the display electrode 7 made of a transparent conductive film to form a display pixel portion.
  • the same film as the display electrode 7 is provided on the anodic oxidation electrode 5 connected to the gate electrode 101. Further, a part of the anodizing electrode 5 is separated from the display electrode 7 by the same separation side 10 as the side of the same film as the display electrode 7 to form a light shielding portion.
  • a part of the anodic oxidation electrode 5 is covered with a peripheral electrode 57 and a light-shielding electrode 75, which are the same film as the display electrode 7, and the display area is masked and etched to form an anodic oxidation electrode.
  • a transparent conductive material is first placed on the second substrate 11 in order to reduce the amount of reflected light 112 from the external light source 111 as shown in FIG.
  • a counter electrode 13 made of a conductive film is provided.
  • a black and matrix 12 made of a chromium (Cr) film is provided.
  • the reflected light 112 can be reduced by interference between the counter electrode 13 made of a transparent conductive film, the second substrate 11 and the black matrix 12 made of a chromium film.
  • the liquid crystal display device displays a predetermined image according to the change in the transmittance of the liquid crystal 16 in the display pixel portion.
  • first substrate 1 and the second substrate 11 are provided with alignment films 15 and 15 as processing layers for regularly arranging the molecules of the liquid crystal 16.
  • first substrate 1 and the second substrate 11 are opposed to each other with a predetermined gap by a spacer (not shown), and are bonded together by a seal 60.
  • a liquid crystal 16 is sealed between the substrate 11 and the substrate 11.
  • the anodizing electrode 5 composed of the first electrode has a separation side that is separated in a self-aligned manner by the same film as the display electrode 7 around the display area. .
  • a light-shielding portion can be provided around the display region by using the anodic oxidation electrode 5 remaining after separation.
  • the anodizing electrode 5 Before the anodizing electrode 5 is separated, during the anodizing treatment for forming the non-linear resistance layer, the anodizing electrode 5 applies a voltage to each good electrode 101 from the surroundings. Therefore, for example, even if a defect occurs in a part of the anodic oxidation electrode 5, a voltage can be supplied from another part. (Eighth embodiment)
  • FIG. 19 a liquid crystal display device g according to an eighth embodiment of the present invention will be described with reference to FIGS. 19 to 21.
  • FIG. 19 a liquid crystal display device g according to an eighth embodiment of the present invention will be described with reference to FIGS. 19 to 21.
  • a TFD structure element is used as a non-linear resistance element and the TFD element is provided on the signal electrode side composed of M rows.
  • the light-shielding portion provided around the display electrode 7 uses a part of the second anodizing electrode 1 26 to form a second non-linear resistance layer 1 2 on the second anodizing electrode 1 26.
  • Numeral 8 is different from the first nonlinear resistance layer 3 used for the nonlinear resistance element 9 in film thickness.
  • FIG. 19 is a plan view showing the entire configuration of a liquid crystal display bun according to an eighth embodiment of the present invention.
  • FIG. 20 is an enlarged plan view showing a part of FIG. 19, and
  • FIG. 21 is a cross-sectional view taken along the line J--J of FIGS. 20 and 21. In the figure, the upper second substrate, the film formed thereon, and the liquid crystal are not shown.
  • a lower electrode 2, a signal electrode 4, a first anodizing electrode 5, and a second anodizing electrode 1 are formed as a first electrode made of a tantalum (Ta) film. 26, the auxiliary electrode 1 27 and the interconnection electrode 66 are provided.On the lower electrode 2, the first anodic oxidation electrode 5 and the signal electrode 4, an anodic oxide film of the first electrode is provided. A first nonlinear resistance layer 3 made of a tantalum oxide (Ta 2 O 5) film is provided.
  • the interconnection electrodes 6 Is provided at the end of the first substrate 1.
  • a second nonlinear resistance layer made of a tantalum oxide (Ta2O5) film is used as an anodizing film of the first electrode. 1 2 8 is provided. Further, as shown in FIG. 19, in order to form a plurality of first substrates 1 from a large original substrate, connection of the first and second anodizing electrodes 5 and 126 with each other is made. For this purpose, interconnection electrodes 65 and 65 are provided at both ends of the first substrate 1. The first anodizing electrode 5 and the second anodizing electrode 126 are separated from each other.
  • the second non-linear resistance layer 128 has a larger film thickness than the first non-linear resistance layer 3 used for the non-linear resistance element 9.
  • a plurality of Oshiki poles 5 are arranged around a matrix-shaped display area 18 consisting of signal electrodes 4 of M rows and counter electrodes 13 of N columns.
  • the signal electrodes 4 are connected to each other.
  • the second anode electrode 126 for anodic oxidation has a configuration in which a plurality of auxiliary electrodes 127 are connected to each other.
  • the second electrode As the second electrode, the upper electrode 6 on the first nonlinear resistance layer 3, the display electrode 7 connected to the upper electrode 6, and a part of the first anodizing electrode 5 are used.
  • the connecting electrode 8 to be formed is provided by an indium tin oxide (ITO) film.
  • the lower electrode 2, the first nonlinear resistance layer 3, and the upper electrode 6 constitute a non-linear resistance element 9 having a TFD structure.
  • a part of the display electrode 7 covers the auxiliary electrode 127 connected to the second anodizing electrode 126, and the display electrode 7 and the auxiliary electrode 127 form a light shielding part. .
  • a tantalum oxide film (T) is formed on the first substrate 1, the nonlinear resistance element 9, the signal electrode 4, the display electrode 7, the first anodizing electrode 5, and the second anodizing electrode 126.
  • An insulating film 48 made of a205) is provided.
  • the insulating film 48 is provided with a separation opening 92 on the first anodizing electrode 5 and the second anodizing electrode.
  • the first anodizing electrode 5 is separated and forms an independent signal electrode 4 by the same separating side 10 as the separating opening 9 2, and the second anodizing electrode 12 6 constitutes an independent auxiliary electrode 127.
  • an opening 49 is provided around the display electrode 7, and the auxiliary electrode 127 is displayed by the same separation side 10 as the opening 49 of the display electrode 7 or the insulating film 48. Separated for each electrode 7, it becomes a light shielding part.
  • connection electrode 8 An opening 93 is also provided on the connection electrode 8 to enable connection with an external circuit.
  • the configuration on the second substrate 11 side is the same as that of the above-described embodiment, and a black matrix made of a chromium (Cr) film for preventing light from leaking from the gap between the display electrodes 7; It has an opposing electrode 13 and an interlayer insulating film or the like in order to secure the air-insulating property between the black matrix and the opposing electrode 13.
  • Cr chromium
  • the first substrate 1 and the second substrate 11 are adhered at a constant interval, and a liquid crystal is sealed to form a liquid crystal display device.
  • the second anodizing electrode 126 composed of the first electrode is independent from the first anodizing electrode 5 from the beginning. Therefore, the shadow of the second anodizing electrode 126 is not given to the first anodizing electrode 5. Further, the second anodizing electrode 126 is separated in a self-aligned manner around the display area from the display electrode 7 composed of the second exposed electrode or the opening 49 of the insulating film 48. And the light-shielding portion is formed independently for each display electrode 7.
  • a second non-linear resistance layer 128 provided on the second anodizing electrode 126 is provided on the lower cathode 2 by the first anodizing electrode 51.
  • the thickness is made thicker than the resistance layer 3 and the insulation is enhanced, so that even if an electrical short circuit occurs between the display electrode 7 and the auxiliary electrode 127, the display quality is not affected. , The yield is improved.
  • FIG. 22 is a plan view showing a part of the liquid crystal display device in an enlarged manner
  • FIG. 23 is a sectional view taken along the line K--K in FIG.
  • parts corresponding to those in FIGS. 15 and 16 are denoted by the same reference numerals.
  • first electrode made of a tantalum (Ta) film
  • a lower electrode 2 a first data electrode 81, and a first data electrode 8
  • a first anodizing electrode 5 a second anodizing electrode 126, an auxiliary electrode 127, and an interconnection electrode 66 thereof are provided.
  • a first non-linear resistance made of a tantalum oxide (Ta 205) film is used as an anodizing film of the first electrode.
  • Layer 3 is provided.
  • a second nonlinear electrode made of a tantalum oxide (Ta205) film is formed on the second electrode for oxidation 26 and the auxiliary electrode 127 as an anodic oxide film of the first electrode.
  • a resistance layer 1 28 is provided.
  • the first anodizing electrode 5 and the second anodizing electrode 126 are separated from each other.
  • the second non-linear resistance layer 1 2 8, first for the anodic oxidation of a first are thick compared to the thickness in the non-linear resistive layer 3 t the first electrode for use in non-linear resistance element 9
  • the electrode 5 has a configuration in which the first data electrodes 81 of N columns are connected to each other around the display area.
  • the second anodizing electrode 126 has a configuration for interconnecting a plurality of auxiliary electrodes 127.
  • a second data electrode 83 is provided on the first data electrode 81, and is connected to the second data electrode 83.
  • An upper electrode 84 for data electrode is provided on the first nonlinear resistance layer 3
  • a display electrode 7 is provided on a part of the auxiliary electrode 127 and on the first substrate 1, and a first electrode 84 on the lower electrode 2 is provided.
  • an upper electrode 85 for a display electrode connected to the display electrode 7 is formed of an indium tin oxide (ITO) film.
  • ITO indium tin oxide
  • connection electrode 8 connected to the second data electrode 83 and forming a part of the first anodizing electrode 5 is also provided by an indium tin oxide (ITO) film together with the second oxide electrode.
  • ITO indium tin oxide
  • the lower electrode 2, the first nonlinear resistance layer 3, and the data electrode upper electrode 84 constitute a first nonlinear resistance element 86 having a TFD structure.
  • the lower electrode 2, the first nonlinear resistance layer 3, and the display electrode upper electrode 85 form a second nonlinear resistance element 87 having a TFD structure.
  • a part of the display electrode 7 covers the auxiliary electrode 127 connected to the second anodizing electrode 126, and the display electrode 7 and the auxiliary furrow electrode 127 constitute a light shielding portion. I do.
  • An insulating film 48 made of a tantalum oxide film (Ta 205) is provided so as to cover each upper surface of the electrode for use 126.
  • a separation opening 92 is provided on the first anodizing electrode 5 and the second anodizing electrode 126. Then, the first anodizing electrode 5 is separated by the same separation side 10 as the separation opening 92, thereby forming an independent first data electrode 81. The second anodizing electrode 126 is also separated to form an independent auxiliary electrode 127.
  • an opening 49 is provided around the display electrode 7, and the auxiliary electrode 127 is formed by the same separation side 10 as the display electrode 7 or the opening 49 of the insulating film 48.
  • Each display electrode 7 is separated to form a light shielding portion.
  • the second anodizing electrode 126 composed of the first electrode is independent from the first anodizing electrode 5 from the beginning. Therefore, the shadow of the second anodizing electrode 126 is not given to the first anodizing electrode 5. Further, the second anodizing electrode 126 has a separation edge which is self-aligned with the display electrode 7 composed of the second electrode or the opening 49 of the insulating film 48 around the display area. 10 and constitutes an independent light-shielding portion for each display electrode 7.
  • a second non-linear resistance layer 128 provided on the second anodizing electrode 126 is provided on the lower electrode 2 by the first anodizing electrode 51. Thickness is greater than that of layer 3 and insulation is improved. Therefore, even if an electrical short circuit occurs between the display electrode 7 and the auxiliary electrode 127 of the display electrode 7, the display quality is affected.
  • the light shielding portion 75 can be provided around the display electrode 7 with good yield without giving.
  • the non-linear In the eighth and ninth embodiments of the present invention, the non-linear In the case where the first substrate having a resistive element is used for a liquid crystal display device, an insulating film is provided to prevent mechanical deterioration of the nonlinear resistive element, but no insulating film is provided. Even in such a case, the present invention is effective.
  • a part of the anodizing electrode can be used for the light shielding portion.
  • the opening of the protective insulating film should be formed at the portion of the anodic oxidation electrode where separation is desired.
  • the anodic oxidation electrode can be easily separated by performing the etching process using the mask provided with the protective insulating film or the resist used for forming the opening of the protective insulating film as a mask.
  • FIG. 24 a liquid crystal display device according to a tenth embodiment of the present invention will be described with reference to FIGS. 24 and 25.
  • FIG. 24 a liquid crystal display device according to a tenth embodiment of the present invention will be described with reference to FIGS. 24 and 25.
  • FIG. 24 is a plan view showing a partial region of a first substrate forming a TFD element of a liquid crystal display according to a tenth embodiment of the present invention.
  • FIG. 25 is a sectional view taken along the line L-L in FIG.
  • the width W 1 of the anodizing electrode 5 is wider than the width W 2 of the signal electrode 4 except for around the lower electrode 2.
  • the anodizing electrode 5 has an anodizing electrode at one end. A plurality of wires are electrically connected by 5a, and the other end is connected to a connection 8 for applying a signal from an external circuit to the nonlinear resistance element.
  • the anodizing electrode 5 is used as an electrode when the non-linear resistance layer 3 is formed on the surface of the lower electrode 2 by the anodizing treatment.
  • a wide positive electrode 5 having a width W 1.
  • the etching removal portion 121 which is a part of the anodizing electrode 5, is removed in the final shape. That is, FIG. 24 shows the process in the middle of the manufacturing process so that the description can be easily understood.
  • a non-linear resistor 3 made of a tantalum oxide (Ta205) film formed by subjecting the lower electrode 2 to a positive oxidation treatment.
  • a transparent conductive film is provided on the overlapping portion 122, which is a part of the anodizing electrode 5, and the substrate 1, thereby forming the display electrode 7. Then, an upper electrode 6 connected to the display electrode 7 is provided on the lower electrode 2. Further, a transparent conductive compressible film is also provided on the anodizing electrode 5 to form a connection electrode 8.
  • a partial region of the display electrode 7 has an overlapping portion 122 that is a region overlapping with a partial region of the anodizing electrode 5.
  • the lower electrode 2, the nonlinear resistance layer 3, and the upper electrode 6 constitute a non-linear resistance element (TFD element) 9.
  • both the upper electrode 6 and the display electrode 7 are formed of a transparent conductive film, for example, an indium tin oxide (ITO) film.
  • ITO indium tin oxide
  • the etching removal portion 121 between the signal electrode 4, which is a part of the anodizing electrode 5, and the overlapping portion 122 below the display electrode 7 is removed, and the signal electrode 4 is removed. 4 and the display electrode 7 made of a transparent conductive film are separated from each other.
  • the anodizing electrode 5a connecting the plurality of signal electrodes 4 is also removed, and each signal electrode 4 becomes independent.
  • each display electrode 7 is also independent.
  • the width W 1 of the anodizing electrode 5 is equal to the width W of the signal electrode 4. It becomes 2.
  • the width of the anodizing electrode 5 is W1, which is wider than the width W2 of the signal electrode 4, and extends to the lower part of the display electrode 7. Spread it out.
  • the adjacent display electrodes 7 are also connected by the anodic oxidation electrodes 5.
  • the anodizing electrode 5 is etched to remove the etching-removed portion 121 which is a part of the anodizing electrode 5, and the width of the signal electrode 4 is set to W2. . Further, the etching removal portion 121 provided between the adjacent display electrodes 7 is also removed to obtain an isolated display electrode 7.
  • the width of the anodizing electrode 5 is widened (W 1) at the time of anodizing, and a uniform anodized film 3 can be formed in a short time.
  • the display electrode 7 is a transparent conductive film, it is difficult to inspect the etching state around the display electrode 7 because it is transparent.
  • the tantalum film and the tantalum oxide film are provided around the display electrode 7 as the anodizing electrode 5, even if the display electrode 7 is a transparent conductive film, it is removed by etching.
  • the transparent conductive film serves as an etching mask when the part 121 is etched, and the tantalum or tantalum oxide film and the tantalum film remain. This makes it easy to inspect the etching state of the transparent conductive film around the display electrode 7.
  • the transparent conductive film 7 when the transparent conductive film 7 slightly remains, the transparent conductive film can also be removed during the etching process of the etching-removed portion 121, and the etching remaining film around the display electrode 7 is removed. Can be taken clean.
  • width (W 1) of the anodizing electrode 5 is widened, if there is a break in the width (W 2) of the signal electrode 4, the distance between the display electrode 7 and the signal electrode 4 is reduced. By utilizing the anodizing electrode 5 between them, disconnection of the signal electrode 4 can be prevented.
  • FIG. 26 is a plan view showing a situation where a break 4 d has occurred in the signal electrode 4 in this embodiment.
  • This figure shows an example in which a disconnection point 4 d deeper than the radiation W 2 of the signal electrode 4 (depth W 3) occurs. If the signal electrode 4 has the conventional electrode width W2, it will break. That is, it is not possible to carry out anodic oxidation. Furthermore, voltage cannot be applied to the nonlinear resistance element 9 (TFD element) from outside.
  • TFD element nonlinear resistance element
  • the anodic oxidation electrode 5 can be anodic oxidized because the width W 2 of the signal electrode 4 is set well wide. Further, the signal electrode 4 is disconnected by using a part of the anodizing electrode 5 formed around the signal electrode 4 so as to bypass the broken part of the signal electrode 4. do not do.
  • the display electrode 7 is provided with a deletion part 7a for deleting a part. ing.
  • FIGS. 27 to FIG. 29 are cross-sectional views corresponding to FIG. 25 showing the manufacturing method in the order of steps.
  • a tantalum (Ta) film is sputtered to a thickness of 150 nm on the entire surface of the first substrate 1 which is an active substrate made of glass shown in FIG. It is formed by a method.
  • a photosensitive resin (not shown) is formed on the entire surface of the tantalum film by a spin coating method, and is exposed and developed using a predetermined photomask to form a photosensitive resin pattern. Then, using the patterned photosensitive resin as an etching mask, an anodic oxidation electrode 5, a lower electrode 2, and a plurality of signal electrodes 4 (anodically oxidized) are formed by a photoetching process of etching the tantalum film. The electrode and the part to be connected are patterned.
  • the etching of the tantalum film is performed by reactive ion etching (hereinafter referred to as “reactive ion etching”). This is performed using an apparatus.
  • a mixed gas of sulfur hexafluoride (SF 6) and oxygen (O 2) is used as an etching gas.
  • the anodizing electrode 5 is used as an anode, and as an anodizing solution,
  • a voltage of 30 to 40 V is applied to perform anodizing treatment of the tantalum film.
  • a non-linear resistance layer 3 made of a tantalum oxide film (Ta 205) is formed on the side wall and the upper surface of the lower electrode 2 and the anodizing electrode 5 to a thickness of 60 to 75 nm.
  • an indium tin oxide (ITO) film having a thickness of 100 nm is formed as a transparent conductive film on the entire surface by a sputtering method. Thereafter, a photosensitive resin (not shown) is formed on the indium tin oxide film. Then, the indium tin oxide film is subjected to an etching treatment to simultaneously pattern-form the display electrode 7, the upper electrode 6 connected to the display electrode 7, and the connection electrode 8 (not shown) as shown in FIG.
  • ITO indium tin oxide
  • This etching of indium tin oxide is performed by wet etching using an aqueous solution etchant of ferric oxide and hydrochloric acid.
  • the etchant temperature at this time is set at 30 to 40 ° C.
  • a photosensitive resin was used to pattern the etched portion 1 2 1 between the anodizing electrode 5 and the overlapping portion 1 2 2 under the display electrode 7.
  • Form 1 2 5 The etching removal section 121 uses the RIE apparatus as an etching mask, using the display electrode 7 made of the photosensitive resin 125 and the indium tin oxide film as an etching mask.
  • This etching condition uses a mixed gas of sulfur hexafluoride (SF) and oxygen (O2) as an etching gas. And of sulfur hexafluoride Flow rate 1 0 0 ⁇ 2 0 0 sccm, oxygen flow at 1 0 to 4 0 seem, the pressure 4 ⁇ : I 2 X 1 0 - and 2 torr,. 2 to use a setting lever mosquito 0. 0. 0. 5 1 ⁇ ⁇ ⁇ / (: 111 2
  • the signal electrode 4, which is a part of the anodizing electrode 5, and the overlapping portion 122 of the display electrode 7 can be separated by removing the etching removal portion 121.
  • the anode oxidation electrode 5 is separated from the display electrode 7 to become the signal electrode 4, and an external circuit (not shown) Connection electrode 8, a signal electrode 4, a lower electrode 2 connected thereto, a non-linear resistance layer 3 formed on the lower electrode 2, and an upper electrode 6 formed on the non-linear resistance layer 3.
  • a desired voltage can be applied to the display electrode 7 connected to the upper electrode 6.
  • the nonlinear resistance element (TFD element) 9 is formed by the lower electrode 2, the nonlinear resistance layer 3, and the upper electrode 6.
  • the photosensitive resin 125 and the display electrode 7 are used as an etching mask. Therefore, the etched portion 122 can be formed into a shape that matches the lower surface region of the display electrode 7. Therefore, for example, even when a so-called poor etching occurs, for example, when an indium tin oxide film is thinly or slightly left on the etching-removed portion 121, when the etching of the etching-removed portion 122 is performed, the signal electrode 4 and the signal electrode 4 are not connected.
  • the transparent conductive film in the poorly etched portion between the display electrodes 7 can be removed at the same time.
  • the indium tin oxide film remains on the large surface after the etching, so that the non-linear resistance layer 3 is formed below the indium tin oxide film. Only the transparent conductive film because tantalum oxide and tantalum as the lower electrode 2 remain Inspection of the short part becomes much easier than in the case of the above.
  • the refractive index of the liquid crystal or the thickness or the orientation of the substrate 1 is set. Due to the refractive index of the film and the like, it is difficult to detect the etching remaining film of the transparent conductive film around the display electrode 7.
  • tantalum or the like remains as an etching residual film, so that detection is extremely easy.
  • FIG. 30 a liquid crystal display device according to a eleventh embodiment of the present invention will be described with reference to FIGS. 30 and 31.
  • FIG. 30 a liquid crystal display device according to a eleventh embodiment of the present invention will be described with reference to FIGS. 30 and 31.
  • FIG. 30 is a plan view showing a partial region of a first substrate forming a TFD element of the liquid crystal display device according to the eleventh embodiment, and FIG. -It is a sectional view along the M line.
  • anodizing electrode 5 made of a tantalum (Ta) film as a metal film, an island-like lower electrode 2, an anodizing electrode 5, and a lower electrode 2 are formed.
  • a wiring connection part 76 (illustrated by a virtual line) for connecting is provided.
  • the width of the anodizing electrode 5 is W 1, which is wider than the width W 2 of the first data electrode 81, except for the periphery of the island-shaped lower electrode 2.
  • the anodizing electrode 5 has one end connected to a plurality of electrodes by an anodizing electrode 5a, and the other end connected to a connection electrode 8 for applying a signal from an external circuit to the nonlinear resistance element. Coated.
  • the anodizing electrode 5 is used as an electrode when the non-linear resistance layer 3 is formed on the surface of the lower electrode 2 by anodizing.
  • An anodic oxidation electrode 5 is provided between the first data electrode 81 and the display electrode 7.
  • the etching removal portion 121 which is a part of the anodizing electrode 5, is removed in the final structure.
  • the wiring connection portion 76 connected to the first data electrode 81 and the island-shaped lower electrode ffi 2 is also removed in the final structure. That is, in the plan view of FIG. 30 and the cross-sectional view of FIG. 31, the middle of the manufacturing process is indicated by a broken line, so that the description can be easily understood.
  • a tantalum oxide (Ta 205) formed by anodizing the tantalum film is formed on the surface of the island-shaped lower electrode 2 via the anodizing electrode 5 and the wiring connection portion 76.
  • a non-linear resistance layer 3 made of a film is provided, and a transparent conductive film is provided on an overlapping portion 122 of the anodizing electrode 5 and on the substrate 1 to form a display electrode 7.
  • an upper electrode 85 for a display electrode connected to the display electrode 7 is provided on the lower electrode 2.
  • a second data electrode 83 is provided on the anode oxidation electrode 5, and further, a data upper pole Oxide electrode 84 connected to the second data electrode 83 is provided.
  • a contact electrode 8 made of a transparent conductive film is provided on the anodizing electrode 5 made of tantalum for applying a signal from an external circuit to the nonlinear resistance element portion.
  • the tantalum of the anode pole 5 for anodic oxidation has a frame shape.
  • the connection electrode 8 made of a transparent conductive film covers the frame-shaped tantalum.
  • the frame-shaped tantalum makes it possible to clarify the stitching from the transparent conductive film, thereby improving the alignment accuracy. Furthermore, by providing a transparent conductive film inside and outside the frame-shaped tantalum, the connection status between the external circuit and the input unit can be confirmed through the transparent conductive film pad.
  • the transparent conductive Since the alignment accuracy is poor with only the conductive film, the alignment accuracy is improved by providing tantalum in a frame shape, and the island-like lower electrode 2, the non-linear resistance layer 3 and the data electrode upper electrode 84 are used.
  • the first nonlinear resistance element (TFD element) 86 Further, the bird-like lower electrode 2, the non-linear resistance layer 3, and the display electrode upper electrode 85 constitute a second non-linear resistance element (TFD element) 87.
  • the display electrode upper electrode 85, the data electrode upper electrode 84, and the display electrode 7 are all formed of a transparent conductive film, for example, an indium tin oxide (ITO) film.
  • ITO indium tin oxide
  • an overlapping portion 122 of the anodizing electrode 5 and the display electrode 7 made of a transparent conductive film, and a first data electrode 8 made of tantalum below the second data electrode 83 are provided. This is a structure that separates 1. Then, the etching removal portion 121 between the first data electrode 81 and the display electrode 7 is also removed, and separated from the display electrode 7.
  • the width W 1 of the anodizing electrode 5 becomes the width W 2 as the first data electrode 81.
  • the width W 1 of the anodizing electrode 5 is set to be wider than the width W 2 of the first data electrode 81, and is extended to the lower part of the display electrode 7. Further, adjacent display electrodes 7 are also connected by the anodizing electrode 5.
  • the wiring connection part 76 connecting the first data electrode 81 and the island-shaped lower electrode 2 is etched.
  • the etching removal portion 121 between the first data electrode 81 and the display electrode 7 is etched, and the isolated display electrode 7 and the first Data electrode 8 1
  • the anodizing electrode 5 is Since the width is as wide as W l, a uniform anodic oxide film can be formed in a short time.Furthermore, as in the example of FIG. 26, the width of the anodic oxidation electrode is increased, If there is a disconnection within the width W2 of the first data electrode 81, the first data electrode 8 is connected to the display electrode 7 and the anodizing electrode 5 between the data electrodes 81 and 83. According to this embodiment, it is necessary to separate the island-shaped lower electrode 2 from the first data electrode 8 1. Since the process for processing the data electrode 81 can be performed at the same time, no additional process is required.
  • FIG. 32 to FIG. 34 are cross-sectional views corresponding to FIG. 31 showing a method of manufacturing an active substrate of a liquid crystal display device in the 12th embodiment in the order of steps.
  • a tantalum (Ta) film as a metal film is sputtered to a thickness of 200 nm on the entire surface of the first substrate 1 which is an active substrate made of glass shown in FIG. It is formed by a shaping method.
  • a photosensitive resin (not shown) is formed on the entire surface of the tantalum film by a spin coating method, and is exposed and developed using a predetermined photomask to form a pattern of the photosensitive resin.
  • an anodic oxidation electrode 5 including a portion to be the first data electrode 81 and an island-shaped electrode 5 are formed by a photoetching process of etching the tantalum film.
  • the lower electrode 2, a wiring connection part 76 connecting the anodizing electrode 5 and the island-shaped lower electrode 2, and a plurality of anodizing electrodes 5 are formed so as to be connected to each other.
  • the etching of the tantalum film is performed using a RIE apparatus.
  • a mixed gas of sulfur hexafluoride (SF 6) and oxygen (O 2) is used as an etching gas.
  • the flow force of sulfur hexafluoride 100 ⁇ 200 sccm
  • the oxygen flow rate is 100 ⁇ 40 s eem
  • the pressure is 4 A ⁇ 1 2 X 1 0- 2 torr , further use power carried by 0.2 ⁇ 0.5 kWZ cm 2.
  • the anodizing electrode 5 is used as an anode, and as an anodizing solution,
  • An anodizing treatment of the tantalum film is performed by applying a voltage of 16 to 20 V using a 0.01 to 1.0 wt% aqueous solution of citric acid, an aqueous solution of ammonium borate, or an aqueous solution of phosphoric acid.
  • a non-linear resistance layer 3 made of a tantalum oxide film (Ta 205) is formed on the side walls and the upper surface of the lower electrode 2 and the anodizing electrode 5 to a thickness of 30 to 4 nm.
  • an indium tin oxide (ITO) film is formed as a transparent conductive film to a thickness of 150 nm over the entire surface by a sputtering method. Then, a photosensitive resin (not shown) is formed on the indium tin oxide film.
  • ITO indium tin oxide
  • the indium tin oxide film is etched to form a display electrode 7, a display electrode upper electrode 85 connected to the display electrode 7, a connection electrode 8, and a second data as shown in FIG.
  • the electrode 83 and the data electrode upper electrode 84 connected to the second data electrode 83 are simultaneously patterned.
  • the etching of the indium tin oxide is performed by wet etching using an aqueous solution etchant of bromine (HBr).
  • HBr bromine
  • the etchant temperature is set at 25 ° C to 30 ° C.
  • the wiring connection portion 76 connecting the anodizing electrode 5 and the island-shaped lower electrode 2 was removed to form an isolated island-shaped lower electrode 2.
  • a photosensitive resin 125 is formed.
  • the etching removal portion 121, which is a part of the anode oxidation electrode 5, is removed, and the anode oxidation electrode 5 is overlapped with the first data electrode 81 and the overlapping portion 1 under the display electrode 7. Separate into 2 and 2.
  • the anodic oxidation electrode 5 is formed by using a RIE device using a display electrode 7 made of a photosensitive resin 125 and an indium tin oxide film and a second data electrode 83 as a mask for etching. Te is etched £ this etching condition, and the etching gas hexafluoride sulfur (SF 6) Use a mixed gas of oxygen (O2) and oxygen.
  • SF 6 etching gas
  • the flow rate of hexafluoride sulfur; ⁇ 1 0 0 ⁇ 2 0 Osccm in oxygen flow 1 0 ⁇ 4 0 seem, the pressure is 4 ⁇ 1 2 X 1 0 - and 2 torr, and et to use power carried out in the 0.2 ⁇ 0. 5 k WZ cm 2.
  • the anodizing electrode 5 is separated into the first data electrode 81 and the overlapping portion 122 below the display electrode 7, and
  • the circuit signal can be applied by the following path (that is, the connection electrode 8 connected to the external circuit (not shown), the first data electrode 81 connected to the anodizing electrode 5, and the second data An electrode 83, an upper electrode 84 for a data electrode connected to the second data electrode 83, a nonlinear resistance layer 3, an island-shaped lower electrode 2, a nonlinear resistance layer 3, and an upper electrode 8 for a display electrode. 5, a desired voltage is applied to the display electrode 7 connected to the display electrode upper electrode 85.
  • etching is performed using the photosensitive resin 125, the display electrode 7, and the second data electrode 83 as a mask for etching. I do.
  • the etching removal portion 121 between the first data electrode 81 and the overlapping portion 122 of the anode oxidation electrode 5 is removed at the same time, so that the number of steps does not increase.
  • FIG. 35 a liquid crystal display device according to a 12th embodiment of the present invention will be described with reference to FIGS. 35 and 36.
  • FIG. 35 is a plan view showing a partial region of a first substrate forming a TFD element of the liquid crystal display device according to the 12th embodiment.
  • FIG. 36 is a cross-sectional view taken along the line NN of FIG.
  • the anodizing electrode 5 of the first embodiment is extended to the top, bottom, left and right of the display electrode 7, and the overlapping portions 122 are provided to the top, bottom, left and right of the display electrode 7.
  • an anodizing electrode 5 made of a tantalum (Ta) film as a metal film, an island-like lower electrode 2, an anodizing electrode 5, and a lower electrode 2 are formed.
  • Anodizing electrode 5 made of a tantalum (Ta) film as a metal film As a metal film, an island-like lower electrode 2, an anodizing electrode 5, and a lower electrode 2 are formed.
  • a tantalum (Ta) film As a metal film
  • an island-like lower electrode 2 As a metal film
  • the width of the anodizing electrode 5 has a width W 2 wider than the width W 2 of the first data electrode 81 except for the periphery of the island-shaped lower electrode 2. Further, the anodizing electrodes 5 are connected to each other up, down, left, and right.
  • the anodizing electrode 5 has a configuration in which one end is connected to a plurality of pieces by an anodizing electrode 5a, and the other end applies a signal from an external circuit to the nonlinear resistance element. For connection.
  • This anodizing electrode 5 is used as an electrode when the non-linear resistance layer 3 is formed on the surface of the lower electrode 2 by anodizing.
  • Anodizing electrodes 5 are also provided between the first data electrode 81 and the display electrode 7 and between the display electrodes 7 in FIG.
  • the etching removal portion 121 which is a part of the anodizing electrode 5, is removed in the final structure.
  • the wiring connection portion 76 connected to the first data electrode 81 and the island-shaped lower electrode 2 is also removed in the final structure. That is, the plan view of FIG. 35 and the cross-sectional view of FIG. 36 show the manufacturing process in phantom lines so that the description can be easily understood.
  • a tantalum oxide (Ta 2 O 5) formed by anodizing the tantalum film is formed on the surface of the island-shaped lower electrode 2 via the anodic oxidation electrode 5 and the wiring connection portion 76.
  • a transparent conductive film is provided on the overlapping portion 122 of the anodizing electrode 5 and the substrate 1 to provide a display electrode 7.
  • a display electrode upper electrode 85 connected to the display electrode 7 is provided on the lower electrode 2.
  • a second data electrode 83 is provided on the anodizing electrode 5, and an upper electrode 84 for data electrode connected to the second data electrode 83 is provided.
  • connection electrode 8 made of a transparent conductive film is provided on the anodizing electrode 5 made of tantalum for applying a signal from an external circuit to the nonlinear resistance element portion.
  • the tantalum has a frame shape.
  • the transparent conductive film covers the frame-shaped tantalum.
  • the first non-linear resistance element (TFD element) 86 is constituted by the island-shaped lower electrode 2, the non-linear resistance layer 3, and the data electrode upper electrode 84. Further, a second nonlinear resistance element (TFD element) 87 is constituted by the island-shaped lower electrode 2, the nonlinear resistance layer 3, and the display electrode upper electrode 85.
  • the display electrode upper electrode 85, the data electrode upper electrode 84, and the display electrode 7 are all formed of a transparent conductive film, for example, an indium tin oxide (ITO) film.
  • ITO indium tin oxide
  • the anodizing electrode 5 is formed by overlapping an anodizing electrode 5 with a display electrode 7 made of a transparent conductive film 122 and a first tantalum under the second data electrode 83. This is a structure that separates the data electrodes into 81. In addition, the etching removal section 121 between the first data electrode 81 and the display electrode 7 is also removed, and separated from the display electrode 7.
  • the width of the anodizing electrode 5 is the radiation W 2 as the first data electrode 81.
  • the width W 1 of the anodizing electrode 5 is defined as the width W 1 1 is wider than the width (W 2) of the data electrode 8 1, and is extended to the lower part of the display electrode 7.
  • the adjacent display electrodes 7 are also connected by the anodizing electrode 5.
  • the wiring connection portion 76 connecting between the first data electrode 8 1 and the island-shaped lower electrode 2 is etched and isolated.
  • the etching removal portion 121 between the first data electrode 81 and the display electrode 7 is etched, and the isolated display electrode 7 and the first data are etched.
  • the width of the anodizing electrode 5 at the time of anodizing is widened and crosses up, down, left and right, so that a uniform anodized film can be formed in a short time.
  • FIG. 37 a liquid crystal display device according to a thirteenth embodiment of the present invention will be described with reference to FIGS. 37 and 38.
  • FIG. 37 a liquid crystal display device according to a thirteenth embodiment of the present invention will be described with reference to FIGS. 37 and 38.
  • FIG. 37 is a plan view showing a partial region of a first substrate forming a TFD element of the liquid crystal display device according to the thirteenth embodiment.
  • FIG. 38 is a plan view of FIG. -It is a sectional view along the P line.
  • an insulating film 48 is formed in the first embodiment, an opening 49 is provided in the insulating film 48, and the island-shaped lower electrode 2 and the first The wiring connection portion 76 connecting the data electrode 81 of FIG. 7 is removed by etching.
  • the opening 49 of the insulating film 48 is formed between the first data electrode 81 or the second data electrode 83 and the display electrode 7, or between the display electrode 7 and the display electrode 7.
  • a part of the anodizing electrode 5, that is, the etching removal part 1 2 1 is removed, and the first data electrode 8 1 and the display electrode 7 are removed. Are separated from each other.
  • anodizing electrode 5 made of tantalum (T a) ⁇ as a metal film, an island-shaped lower electrode 2, an anodizing electrode 5 and a lower electrode 2 And a wiring connection part 76 (shown by a virtual line) connecting the
  • the width W 1 of the anodizing electrode 5 is wider than the width W 1 of the first data electrode 81 except at the periphery of the island-shaped lower electrode 2.
  • a plurality of anodizing electrodes 5 are connected to each other at one end by an anodizing electrode 5a.
  • the other end of the anodic oxidation electrode 5 is covered with a connection electrode 8 for applying a signal to a nonlinear resistance element from an external circuit.
  • the anodizing electrode 5 is used as an electrode when the non-linear resistance layer 3 is formed on the surface of the lower electrode 2 by anodizing.
  • An anodizing electrode 5 is provided between the first data electrode 81 and the display electrode 7 shown in FIG.
  • the etching removal part 1 2 1 is removed in the final structure.
  • the wiring connection portion 76 connected to the first data electrode 81 and the island-shaped lower electrode 2 is also removed in the final structure. That is, in FIGS. 37 and 38, the middle of the manufacturing process is indicated by imaginary lines so that the explanation can be easily understood.
  • a tantalum oxide (Ta 205) formed by anodizing the tantalum film is formed on the surface of the island-shaped lower electrode 2 via the anodizing electrode 5 and the wiring connection portion 76.
  • the wiring connection portions 76 are provided in two directions above and below the lower electrode 2 so that, for example, the wiring connection portion 76 on one side is formed. Even in the case of disconnection, the anodic oxidation film can be formed on the surface of the lower electrode 2 without any problem because the anodic oxidation electrode 5 is connected to the anodic oxidation electrode 5 by another wiring connection portion 76.
  • a transparent conductive film is provided on the overlapping portion 122 of the anodizing electrode 5 and on the substrate 1 to form the display electrode 7. Then, this display electrode 7 is connected An upper electrode 85 for a display electrode to be continued is provided on the lower electrode 2. Further, a second data electrode 83 is provided on the anodizing electrode 5, and a data electrode upper electrode 84 connected to the second data electrode 83 is provided. Further, a connection electrode 8 made of a transparent conductive film is provided on an anodization electrode 5 made of tantalum for applying a signal from an external circuit to the nonlinear resistance element portion. In this connecting pole 8, the tantalum has a frame-like shape. The transparent conductive film covers the frame-shaped tantalum, and has a square shape. With this shape, when the external circuit is connected to the connection electrode 8, the frame-shaped tantalum pad portion 7 allows the position to be clearer than that of the transparent conductive film. improves.
  • the connection status between the external circuit and the input unit can be confirmed through the transparent conductive film.
  • the first non-linear resistance element (TFD element) 86 is constituted by the island-shaped lower electrode 2, the non-linear resistance layer 3, and the data electrode upper electrode 84. Further, a second nonlinear resistance element (TFD element) 87 is constituted by the island-shaped lower electrode 2, the nonlinear resistance layer 3, and the display electrode upper electrode 85.
  • the display electrode upper electrode 85, the data electrode upper electrode 84, and the display electrode 7 are all formed of a transparent conductive film, for example, an indium oxide (ITO) film.
  • ITO indium oxide
  • a tantalum oxide film (Ta 2 O 5) is provided by a sputtering method.
  • the insulating film 48 is provided with a wiring connection opening 91 (indicated by a dashed line) for removing the wiring connection portion 76 as an opening 49.
  • Separation openings 92 are also provided on the etching removal portions 121 between the overlapping portions 122 of the anodizing electrode 5 and the display electrode 7.
  • connection electrode 8 a connection opening 93 of the insulating film 48 is provided on the connection electrode 8 of the transparent conductive film, and the insulating film 48 is left in other portions.
  • the insulating film 48 covers most of the wiring. Input parts and wiring lines that are close to each other due to dust etc. will not cause an electrical short circuit.
  • the wiring connection part 76 has the same side as the wiring connection opening 91 of the insulating film 48 and the side of the display electrode 7, and the island-shaped lower electrode 2 is wired from the anodizing electrode 5. It has the same side as the connection opening 91.
  • the etching removal portion 122 has the same side as the separation opening 92 of the insulating film 48 and the side of the display electrode 7, and the etching removal portion 122 forms the anodic oxidation electrode 52. Becomes the first data electrode 81, and becomes a configuration of the independent display electrode 7.
  • the width of the anodizing electrode 5 is the width W 2 as the first data electrode 81.
  • the width of the anodizing electrode 5 is set to W 1, which is wider than the width W 2 of the first data electrode 81, and is extended to the lower part of the display electrode 7. Keep it.
  • the adjacent display electrodes 7 are also connected by the anodic oxidation electrodes 5.
  • the second data electrode 83 and the display electrode 7 are provided, and after the insulating film 48 is provided, the connection between the first data electrode 81 and the island-shaped lower electrode 2 is made. Etching of the wiring connection portion 76 to be provided to provide the isolated island-shaped lower electrode 2 and, at the same time, etching of the etching removal portion 121 between the first data electrode 81 and the display electrode 7. Then, the isolated display electrode 7 and the first data electrode 81 are set.
  • the width of the anodic oxidation electrode can be increased during anodization, and a uniform anodic oxide film can be formed in a short time. 5
  • the width of the anodizing electrode (W1) since the width of the anodizing electrode (W1) has been increased, the width of the first data electrode 81 (W2) ⁇ ⁇ In this case, the disconnection of the first data electrode 81 can be prevented by using a part of the anodizing electrode 5 between the display electrode 7 and the first data electrode 81.
  • connection electrode 8 it is necessary to separate the island-shaped lower electrode 2 from the first data electrode 81. Further, in the connection electrode 8, an opening is provided in the insulating film 48 to connect with an external circuit. It is necessary to make an electrical connection. Therefore, at the same time as processing the insulating film 48, the process of removing the wiring connection portion 76 and processing the first data electrode 81 from the anodic oxidation electrode 5 can be performed at the same time. It will not be added at all.
  • the insulating film 48 is provided on the second data electrode 83 or the display electrode 7, an electrical short circuit with the counter electrode used when used as a liquid crystal display device does not occur. .
  • two upper electrodes may be provided.
  • FIG. 39 a liquid crystal display device according to a 14th embodiment of the present invention will be described with reference to FIGS. 39 and 40.
  • FIG. 39 a liquid crystal display device according to a 14th embodiment of the present invention will be described with reference to FIGS. 39 and 40.
  • the fifteenth embodiment relates to the structure of a TFT element.
  • FIG. 39 is a plan view showing a part of a first substrate forming a TFT element of the liquid crystal display device according to the 14th embodiment.
  • FIG. 40 is a plan view of Q in FIG. -It is a sectional view along the Q line.
  • an anodizing electrode 5 made of a tantalum (T a) film as a metal film and a part of the anodizing electrode 5 A new gate electrode 101 is provided.
  • the anodizing electrode 5 is composed of a gate electrode 101, an etching removal part 122, and an overlapping part 122.
  • the width of the anodizing electrode 5 is as wide as W 1 except around the gate electrode 101.
  • the anodizing electrode 5 has a structure in which a plurality of electrodes 5 are connected to each other at one end by an anodizing electrode portion (not shown). The other end is covered with a connection 8 for applying a signal from an external circuit to the TFT element.
  • the anodizing electrode 5 is used as an electrode when the gate insulating film 102 is formed on the surface of the gate electrode portion 101 by anodizing.
  • a part of the anodizing electrode 5 is provided between the gate electrode 101 and the display electrode 7 in FIG.
  • the etching removing portion 121 which is a region other than the display electrode 7, is removed in the final structure.
  • a gate insulating film 100 made of a tantalum oxide (T a 205) film formed by anodizing the tantalum film is provided on the surfaces of the anodic oxidation electrode 5 and the gate electrode 101. 2 is provided.
  • a semiconductor layer 103 made of amorphous silicon (a-Si) is provided around the gate electrode 101. Further, a semiconductor layer 104 containing phosphorus (P) as impurity ions is provided on the semiconductor layer 103, and a source electrode 105 and a drain electrode are formed on the semiconductor layer 104 containing impurity ions. An electrode 106 is provided. The source electrode 105 and the data electrode 106 are provided with molybdenum (Mo). The semiconductor layer 104 containing impurity ions is provided in a portion where the source electrode 105, the drain electrode 106, and the semiconductor layer 103 overlap. The source electrode 105 is connected to a data electrode 81 connected to an external circuit.
  • a-Si amorphous silicon
  • the gate electrode 101 is a metal film (tantalum) 2 and an anodic oxide film (tantalum oxide) 3, and the semiconductor layer 10 3 And a metal film (molybdenum) of a semiconductor layer 104 containing impurity ions and a source electrode 105 are provided.
  • the metal film of the gate electrode 101 and the gold film of the source electrode 105 An electrical short circuit can be prevented by providing a multilayer insulating film or semiconductor layer 103 between the metal films.
  • the display electrode 7 is provided on the overlapping portion 122 of the anodizing electrode 5 and the substrate 1.
  • connection electrode 8 made of a transparent conductive film is provided on an anodic oxidation electrode 5 made of tantalum for applying a signal from an external circuit to the nonlinear resistance element.
  • the tantalum has a frame shape.
  • the transparent conductive film has a rectangular shape using a frame-shaped tantalum.
  • the position when connecting the external circuit to the connection electrode 8, the position can be made clearer than the transparent conductive film by the frame-shaped tantalum, so that the alignment accuracy is improved. Furthermore, by providing a transparent conductive film on the outside and outside of the frame-shaped tantalum, the connection state between the external circuit and the connection electrode 8 can be checked through the transparent conductive film.
  • each of the display electrode 7 and the connection electrode 8 is formed of a transparent conductive film, for example, an indium tin oxide (ITO) film.
  • ITO indium tin oxide
  • the etching removal portion 121 between the display electrode 7 and the gate electrode 101 is removed by etching using an etching treatment method. Becomes the gate electrode 101 and is separated from the overlapping portion 122 under the display electrode 7.
  • the width of the anodizing electrode 5 becomes the width W 2 as the gate electrode 101.
  • the width of the anodizing electrode 5 is set to W 1, which is wider than the width (W 2) of the gate electrode 101, and is extended to the lower portion of the display electrode 7. Further, the adjacent display electrodes 7 are also connected by the anodizing electrode 5.
  • the display electrode 7 is provided, it is separated into the gate electrode 101 and the overlapping portion 122 below the display electrode 7. In addition, the display electrode 7 is isolated.
  • the anodizing electrode is By increasing the width, a uniform anodic oxide film can be formed in a short time.
  • width (W 1) of the anodizing electrode 5 is widened, if there is a disconnection within the width (W 2) of the gate electrode 101, the display electrode 7 is connected to the display electrode 7. Disconnection of the gate electrode 101 can be prevented by using a part of the anodic oxidation electrode 5 between the gate electrodes 101.
  • 41 to 44 are sectional views showing a method of manufacturing an active substrate of a liquid crystal display according to the fourteenth embodiment in the order of steps.
  • a tantalum (Ta) film was sputtered to a thickness of 200 nm as a metal film on the entire surface of the first substrate 1 which is an active substrate made of glass shown in FIG. It is formed by a ring method.
  • a photosensitive resin (not shown) is formed on the entire surface of the tantalum film by a spin coating method, exposed and developed using a predetermined photomask, and the photosensitive resin is patterned.
  • Anodizing electrode 5 and a gate electrode portion connected to anodizing electrode 5 are formed by a photoetching process in which the tantalum film is etched using the patterned photosensitive resin as an etching mask. 1 0 1 is patterned.
  • the etching of the tantalum film is performed using an RIE apparatus.
  • a mixed gas of sulfur hexafluoride (SF 6) and oxygen (O 2) is used as an etching gas.
  • hexafluoride sulfur flow rate is 1 0 0 to 2 0 0 sccm
  • an oxygen flow rate is 1 0 to 4 0 sccm
  • pressure is 4 ⁇ : I 2 X 1 0 - and 2 torr, using electric mosquito 0 . 2 ⁇ 0. 5 1 ⁇ ⁇ ⁇ £ : 111 carried out in two.
  • anodizing electrode 5 is used as an anode, and an anodic oxidizing solution is prepared by using an aqueous solution of 0.01 to 1.0 wt% of citric acid, an aqueous solution of ammonium borate, or an aqueous solution of phosphoric acid to obtain 60 to 70%.
  • An anodizing treatment of the tantalum film is performed by applying a voltage of V.
  • an insulating film made of a tantalum oxide film (Ta2O5) is formed on the side walls and the upper surface of the gate electrode portion 101 and the anodizing electrode 5. Is formed in a thickness of 120 to 130 nm.
  • an amorphous silicon (a-Si) film is formed as a semiconductor layer 103 with a thickness of 70 nm over the entire surface.
  • a semiconductor layer 104 (na-Si) containing phosphorus (P) as impurity ions is formed on the entire surface to a thickness of 20 nm using a plasma CVD method.
  • the semiconductor layers 103 and 104 are subjected to an etching process to form a pattern on the periphery of the gate electrode portion 101 and the portion of the data electrode 81.
  • the etching of the amorphous silicon film is performed using a RIE apparatus.
  • etching conditions a mixed gas of carbon tetrafluoride (CF 4 ) and oxygen (O 2) is used as an etching gas. Then the flow of carbon tetrafluoride is 1 0 0 ⁇ 2 0 0 sccm, the oxygen flow rate is 1 0 ⁇ 4 0 sccm, pressure is 4 ⁇ : L 2 X 1 0 - and 2 torr, used electricity to al mosquitoes is carried out in the 0.2 ⁇ 0.5 kW / cm 2.
  • a molybdenum film (Mo) is formed to a thickness of 200 nm over the entire surface by a sputtering method. After that, a photosensitive resin (not shown) is formed on the molybdenum film.
  • the molybdenum film is etched to form a source electrode 105 and a data electrode 81 connected to the drain electrode 106 and the source electrode 105 simultaneously.
  • the etching of the molybdenum film is performed Ri by the Uetsu preparative etching using a Etsuchan bets phosphoric acid (H 3 PO 4) and nitric acid (H N0 3) and acetic acid (CH 3 CO OH).
  • the etchant temperature is set at 25 to 26 ° C.
  • the semiconductor layer 104 containing impurity ions is etched using the photosensitive resin as a mask for etching.
  • the etching is performed using a RIE apparatus, and the etching conditions are such that the underlying semiconductor layer 103 does not deteriorate.
  • an indium tin oxide (ITO) film having a thickness of 100 nm is formed as a transparent conductive film on the entire surface by a sputtering method. Then, a photosensitive resin (not shown) is formed on the indium tin oxide film.
  • ITO indium tin oxide
  • the indium tin oxide film is etched and connected to the drain electrode 106, and the display electrode 7 is patterned on the overlapping portion 122 which is a part of the anodizing electrode 5. Further, an input portion (not shown) connected to the connection electrode 8 and the data electrode 81 is formed on the anodic oxidation electrode 5 connected to the gate electrode 101 by patterning.
  • the etching of the indium tin oxide is performed by wet etching using an aqueous solution of bromine (HBr). At this time, the etchant temperature is set at 25 to 30 ° C.
  • the etching removed portion 121 between the overlapping portion 122 of the display electrode 7 and the gate electrode 101 of the anodizing electrode 5 or the display electrode 7 is displayed.
  • a photosensitive resin 125 covering the periphery of the data electrode 81 and the gate electrode 101 is formed.
  • the etched portion 121 is exposed from the photosensitive resin 125 and the display electrode 7 made of indium tin oxide film, so that the photosensitive resin 125 and the display electrode are exposed. 7 is used as an etching mask, and the etching removal portion 122 is removed by etching using an RIE device.
  • This etching condition uses a mixed gas of sulfur hexafluoride (SF 6) and oxygen (02) as an etching gas. Then hexafluoride sulfur flow capacity 1 0 0 ⁇ 2 0 0 sccm, an oxygen flow rate is 1 0 to 4 0 sccm, a pressure of 4 to: the I 2 X 1 0- 2 torr, and more use electric mosquito 0.2-0.5 1 £ /. m '-at line D
  • the anodizing electrode 5 is composed of the good electrode 101 and the overlapping part 12 below the display electrode 7. 2 and can be separated.
  • the width (W 1) of the anodizing electrode can be increased during anodization, and a uniform anodized film can be formed in a short time.
  • the width W 1 of the anodizing electrode 5 is widened, if there is a break in the width W 2 of the gate electrode 101, the display electrode 7 and the gate electrode 10 The disconnection of the gate electrode 101 can be prevented by using a part of the anodizing electrode 5 during the period 1.
  • ITO indium tin oxide
  • Oxides such as (In 2 O 3), tin oxide (SnO 2), and zinc oxide (ZnO) may be used.
  • tantalum is used as the material of the anodizing electrode 5 . May be used.
  • the upper electrode and the display electrode were made of different materials. It may be provided.
  • the present invention relates to a liquid crystal display device which is frequently used in various electronic devices, particularly a liquid crystal display device which uses a non-linear resistance element such as a TFD or a TFT as a switching element which can be miniaturized and is effective in reducing cost.
  • the non-linear resistance layer can be uniformly formed in a short time by anodic oxidation of the pole, and subsequent destruction and occurrence can be prevented, and inspection can be facilitated.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Description

明 細 窨 液 晶 表 示 装 惺 技術分野
この発明は、 時計, 電卓, ビデオカメ ラ, その他各種電子機器の 表示器と して広範に使用されているモノ ク ロあるいはカラーの液晶 表示装置に関する。
特に、 液晶を封入する 2枚の基板の一方に第 1 の電極と第 2の電 極を有し、 その第 1 の電極と第 2の電極との間に非線形抵抗層と し て第 1 の電極の陽極酸化膜を形成して、 「金属一絶縁膜一金属」 あ るいは 「金属一絶縁膜一透明導電体」 構造の非線形抵抗素子を設け た液晶表示装置の構成に関する ものである。 背景技術
近年、 液晶パネルを用いた液晶表示装置の表示容量は、 大容量化 の一途をたどっている。
そして、 単純マ ト リ クス構成の液晶表示装置にマルチブレクス駆 動を用いる方式においては、 髙時分割化するに従ってコ ン ト ラス ト の低下あるいは応答速度の低下が生じる。 このため、 2 0 0本程度 の走査線を有する場合には、 充分なコン ト ラス トを得ることが難し く なる。
そこで、 このよ うな欠点を除去するために、 それぞれの画素にス ィ ツチング素子を設けるアクティブマ ト リ クス方式の液晶表示パネ ルが採用されている。
このアクティブマ ト リ ク ス方式の液晶表示パネルには、 大別する と、 スイ ッチング素子と して薄膜トランジスタ (Th i n-Fi lm-Trans i stor :以下 「T F T」 と称す」 を用いる三端子系と、 非線形抵抗素 子を用いる二端子系とがある。 そして、 構造や製造方法が簡単な点 で二端子系の方が優れている。 この二端子系には、 ダイオー ド型やパリ スタ型、 あるいは薄膜ダ ィオー ド (Thin-Fi lm-Diode : 以下 「T F D」 と称す) 型などが開 発されている。
このうち、 T F D型は特に構造が簡単で、 そのう え製造工程が短 いという特徴を備えている。
さ らに、 液晶表示パネルは高密度でしかも高精細化が要求され、 スイ ッチング素子の占有面稍を小さ くする必要がある。
その高密度化高精細化の手段と して、 半導体製造技術の微細加工 技術であるフォ ト リ ソグラフィ技術とエッチング技術とがある。 し かしながら、 この半導体製造技術を用いても、 大面積加工が可能で しかも低コス トを実現するのは非常に困難である。
そこで、 大面積化および低コス ト化に有効なスイ ッチング素子を 有する従来の液晶表示装置の構造を、 その一例を示す液晶表示装置 の平面図である第 4 5図、 その一部を拡大して示す平面図である第 4 6図、 及びその X— X線に沿う断面図である第 4 7図を用いて説 明する。
この液晶表示装置は、 第 4 7図に明示されるよ うに、 それぞれ透 明材料からなる第 1 の基板 1 と第 2の基板 1 1 とをスぺーサ 1 7を 介して所定の間隔をもって対向させ、 その間に液晶 1 6を封入して いる。
その第 1 の基板 1上には、 第 1 の電棲と して下部電極 2 と信号電 檁 4を設け、 その下部電極 2上に非線形抵抗層 9を設ける。 さ らに、 その非線形抵抗層 9上にオーバラップするよ うに第 2の鴛極と して 上部電極 6を設けて、 非線形抵抗素子 9を構成している。 第 2の 電極と しての上部電極 6は、 第 4 6図に示されるよ うに表示電極 7 から延設しており、 一部は表示 «極を兼ねている。
この非線形抵抗素子 9 と表示電極 7は、 マ ト リ クス状に設けられ ている。
一方、 第 2の基板 1 1 の第 1 の基板 1 と対向する面には、 第 1 の 基板 1 上に設けた各表示電極 7の隙間からの光の漏れを防止するた めに、 第 4 6図に斜線を施して示す領域全体にブラックマ ト リ クス 1 2を設けている。 すなわち、 非表示部に遮光部と してブラックマ ト リ タス 1 2を設けている。
さらに、 第 2の基板 1 1 には、 対向電極 1 3を第 4 7図に示すよ うに表示電極 7 と対向させて、 ブラックマ ト リ クス 1 2 と接触して 短絡しないよ うに層間絶縁膜 1 4を介して帯状に設けている。
なお、 第 4 6図においては、 第 1 の基板 1上の第 1 の電極である 下部電極 2および信号電極 4 と、 第 2の電極である上部電極 6 と表 示電極 7はいずれも破線で示し、 非線形抵抗層 3は図示を省略し、 第 2の基板 1 1 の下面のブラックマ ト リ クス 1 2 と対向電極 1 3は 実線で示している。
そして、 第 1 の基板 1上に設ける下部電極 2は、 非線形抵抗素子 9を設けるために信号電極 4から張り出しており、 この張り 出し領 域と しての下部電極 2が上部電極 6 とオーバラ ップして、 非線形抵 抗素子 9を構成している。
また、 第 1 の電極と しての信号電極 4 と第 2の電極と しての表示 電極 7 とは、 第 4 6図に示すよ うに所定寸法の間隙 d を有している < 表示電極 7は、 液晶 1 6 を介して対向電極 1 3 と重なり合う よ う に配置することによ り、 液晶表示パネルの画素部となる。
ブラックマ ト リ クス 1 3は、 表示電極 7 の形成領域にまで一定量 オーバラップするよ うに設け、 表示電極 7の周辺部の領域からの光 りの漏れを防止する役割をもっている。
表示電極 7上のブラックマ ト リ クス 1 3が形成されていない領域 の液晶 1 6の透過率変化によ り、 液晶表示装置は所定の画像表示を 行う。
さらに、 第 1 の基板 1 と第 2 の基板 1 1 の対向面側には、 液晶 1 6の分子を規則的に並べるための処理層と して、 それぞれ配向膜 1 5, 1 5を設けている。
そして、 第 4 5図に示すよ うに、 第 1 の基板 1上には M列の信号 電極 4を設け、 第 2の基板 1 1上には N行の対向電極 1 3またはデ ータ電極を設けて、 M列 N行のマ ト リ クスからなる 1点鎖線で示す 表示領域 1 8を有する液晶表示装置を構成している。
その M列の信号電極 4 と N行の対向電極 1 3またはデータ電極の 交点には、 それぞれ表示鴛極 7を有し、 その信号電極 4 と表示電極 7の間には、 非線形抵抗素子 (この例では T F D ) 9を設けている, さ らに、 第 1 の基板 1上には、 M列の信号電極 4 を相互に接続す る ¾極酸化用電極 5を有し、 その陽極酸化用電極 5 と反対の方向に は、 各信号電極 4を外部回路と接続するための接続電極 8を有して いる。
このよ うに、 陽極酸化用電極 5によつて各列の信号電極 4 を接続 し、 その信号電極に接続されている各下部電極 2に対して一度に陽 極酸化処理を行って、 その表面に非線形抵抗層 3 (第 4 7図) を形 成するが、 その処理後には各列の信号電極 4を分離して独立させな ければならない。
そのため、 第 4 5図に示すよ うに、 陽極酸化用電極 5を第 1 の基 板 1 の分離線 (破線で示す) 3 4 よ り外方に長さ Lだけ延設した切 断部分 6 2に設けて、 陽極酸化処理後に分離線 3 4で切断して、 陽 極酸化用電極 5を切断部分 6 2 と共に第 1 の基板 1 から切り離すよ うにしている。
しかしながら、 このよ うに陽極酸化用電極 5 を信号電極 4 と分離 するためには、 この切断部分 6 2を設ける必要があり、 それは分離 線 3 4に切り込みを入れた後、 作業者が指で折り曲げて切断できる だけの大きさが必要であり、 それだけ材料が無駄になるという問題 力 s S)る。
さ らに、 切断部分 6 2 を信号電極 4 よ り切り離す工程において、 静電気によって非線形抵抗素子 9の特性を劣化させる可能性もある。
また、 第 1 の基板 1 の切断されたところには各信号電極の端面が 露出するため、 ゴミゃ水分の吸着によって複数の信号電極間で短絡 が発生する恐れもある。
また、 陽極酸化用電極 5を切断する工程をどの時点で行うかによ つて、 非線形抵抗素子 9の特性劣化や破壊を招く ことがある。
非線形抵抗素子 9を有する基板 1 を液晶表示装置用に加工するェ 程処理である、 液晶を規則正しく配列するための配向処理や、 装置 間の搬送時や検査工程時に、 陽極酸化用電極 5が分離していると、 局所的に発生する静電気を分散できない。
そのために、 非線形抵抗素子 9に過剰な電圧が印加されるこ とに なり、 非線形抵抗素子 9の劣化や破壊が発生することがある。
さ らに、 液晶表示装置の検査中には、 陽極酸化用電極を相互に接 続していることによ り 、 非線形抵抗素子 9の劣化や破壊の発生を防 止することができる。
さ らにまた、 液晶表示装置の検査工程のとき、 相互に接続してい る陽極酸化角電極 5に電圧を印加するだけで各表示電極 7に電圧を 印加できるため、 検査を容易に行う ことができる。
特に、 外部回路を非線形抵抗素子 9を形成する基板 1上に実装す るとき、 たとえば高密度な実装が可能である集積回路を導電性接着 剤を使用して基板上に実装するチップ · オン ' ガラス (C O G ) 実 装法のときには、 実装前に実装用電極上と導電ペース ト間に汚染物 質が混入しないことが要求される。
そのため、 前述のよ うに第 1 の基板に切断部分を設けてそこに陽 極酸化用電極を形成し、 陽極酸化処理後にその切断部分を切断して 各信号電極から切り離す構造では、 材料の無駄になるばかり力 、 上 述のよ うな種々の要求を満たすことができなかった。
そのため、 この発明は、 上記のよ うな各種の工程が終了した後に 陽極酸化用電極の一部をエッチングによって簡単に除去して、 各信 号電極が独立するよ うにした液晶表示装置を提供し、 非線形抵抗素 子の製造工程、 あるいはそれ以後の液晶表示装置化への工程時に発 生する静電気による非線形抵抗素子の劣化や破壊を防止し、 非線形 抵抗素子の欠陥を滅らし、 非線形抵抗素子の特性を安定にすること を第 1 の目的とする。
また、 第 4 6図に示した切断部分のよ うな無駄に廃棄する部分を なく し、 陽極酸化処理に使用した陽極酸化用電極の各信号鼋極を独 立させた後に残存する部分を有効に利用すること も他の目的とする, さ らに、 前述した従来の非線形抵抗素子を有する液晶表示装置は 信号電極を金属膜によって形成し、 初期の信号 «極と最終の信号電 極の配線幅が同一である。 そのため、 信号電極の一部にエッチング 不良が発生した場合には修正がしにくいという問題があった。
また、 信号電極を陽極酸化用電極の一部と して使用する場合には 信号電極が断線すると陽極酸化膜を形成できなくなる。 さらに、 陽 極酸化膜を均一に形成するためには、 陽極酸化用電極をできるだけ 幅広く形成しておく必要がある。
さ らにまた、 表示電極と して透明導電性膜を使用する場合には、 透明導電性膜のエッチング不良によ り信号電極と表示電極とが電気 的に短絡 (ショー ト) していても、 表示 ®極が透明なためその短絡 箇所を容易に検出することができなかった。
なお、 T F T素子に関しても、 ゲー ト電極を陽極酸化用電極とて 利用し、 ゲー ト絶縁膜と してゲ一 ト電極の陽極酸化膜を用いるよ う にした場合には、 T F D素子の場合と同様に陽極酸化用電極の断線 あるいは、 信号電極 (ゲー ト電極あるいはソース電極) と透明な表 示電極との電気的短絡が発生する恐れがある。
そのため、 この発明は、 信号電極を陽極酸化用電極の一部と して 使用して、 各非線形抵抗素子の非線形抵抗層とする陽極酸化膜を確 実且つ均一に形成できるよ うにすると共に、 その信号電極の一部に エッチング不良が発生した場合にも容易に修正できるよ うにするこ と、 および透明導電性膜の表示電極と信号電極あるいは陽極酸化用 電極との電気的短絡が発生した場合に、 その短絡箇所を検出し易く すること も目的とする。 発明の開示
この発明は上記の目的を達成するため、 液晶表示装置を次のよ う に構成する。 この発明の対象とする液晶表示装置は、 第 1 の基板と第 2の基板 とを所定の間隔をもって対向させ、 その第 1 の基板上に、 複数の電 極を設け、 その複数の電極が重なり合う領域に、 一方の電極の陽極 酸化膜によ り非線形抵抗層を形成して、 T F D素子あるい T F T素 子等の非線形抵抗素子を設ける。 そして、 その第 1 の基板と第 2の 基板との間に液晶を封入した構造のものである。
そして、 上記非線形抵抗層を形成するために陽極酸化膜を形成す る各電極を、 予め相互に接続して陽極酸化処理を速く均一に行える よ うにする陽極酸化用電極と、 その陽極酸化用電極の一部をマスク する他の電極とを設け、 陽極酸化処理後にその他の電極をマスク と してエッチングによ り陽極酸化用電極の露出部分を除去するこ とに よ り 、 各電極が独立しているものである。
したがって、 マスキング用の特別な被覆を省略するか少なくする ことができ、 陽極酸化処理後の任意の工程で容易に各電極の独立の ためのエッチング処理を行なう ことができる。
また、 陽極酸化用電極の残った部分を、 接続電極や入力電極 (端 子) 等に有効に利用することができる。
また、 その陽極酸化用電極を表示領域の周囲や表示素子部の周囲 に設けるこ とによ り 、 それを遮光部と して利用することができ、 ブ ラ ック · マ ト リ タスがない液晶表示装置にも見切り を設けることが できる。
さ らに、 その陽極酸化用電極の幅を初期には広く しておく ことに よ り、 陽極酸化膜の均一性の向上および切断等の防止効果を高める ことができ、 電極の一部に欠陥が生じた場合にも陽極酸化用電極の 幅広部を利用して補修することが可能になる。 図面の簡単な説明
第 1 図はこの発明の第 1実施例の液晶表示装置の一部を示す平面 図であり、 第 2図は図 1 の A— A線に沿う断面図である。
第 3図はこの発明の第 2実施例の液晶表示装置の一部を示す平面 図であり、 第 4図は図 3の B— B線に沿う断面図である。
第 5図はこの発明の第 3実施例による液晶表示装置の基板を大型 基板上に複数個配置する状態を示す平面図である。
第 6図は第 5図に破線で囲んで示す 2個の液晶表示装置用基板の 境界部を拡大して示す平面図である。
第 7図は液晶表示装置を構成した状態で第 6図の C一 C線に沿う 断面図、 第 8図は同じく D— D線に沿う断面図である。
第 9図はこの発明の第 4実施例による液晶表示装置の第 1 の基板 側の一部を示す平面図であり、 第 1 0図は液晶表示装置を構成した 状態で第 9図の E— E線に沿う断面図である。
第 1 1 図はこの発明の第 5実施例による液晶表示装置の全体構成 を示す平面図、 第 1 2図は第 1 1 図に破線 a , bでそれぞれ囲んだ 部分を拡大して示す平面図である。
第 1 3図は液晶表示装置を構成した状態で第 1 2図の F— F線に 沿う断面図、 第 1 4図は同じく第 1 2図の G— G線に沿う断面図で ある。
第 1 5図はこの発明の第 6実施例による液晶表示装置の一部を拡 大して示する平面図であり、 第 1 6図は第 1 5図の H— H線に沿う 断面図である。
第 1 7図はこの発明の第 7実施例による液晶表示装爨の一部を拡 大して示す平面図であり、 第 1 8図は第 1 7図の I 一 I線に沿う断 面図である。
第 1 9図はこの発明の第 8の実施例による液晶表示装篋の全体構 成を示す平面図、 第 2 0図は第 1 9図の一部分を拡大して示す平面 図、 第 2 1図は第 2 0図の J ― J線に沿う断面図である。
第 2 2図はこの発明の第 9実施例による液晶表示装置の一部分を 拡大して示す平面図であり、 第 2 3図は第 2 2の K— K線に沿う断 面図である。
第 2 4図はこの発明の第 1 0実施例による液晶表示装 Sの T F D 素子を形成する第 1 の基板の一部領域を示す平面図、 第 2 5図は第 2 4図の L一 L線に沿う断面図である。
第 2 7図乃至第 2 9図はこの発明の第 1 0実施例による液晶表示 装置のァクティブ基板の製造方法を工程順に示す断面図である。 第 3 0図はこの発明の第 1 1 実施例における液晶表示装置の T F D素子を形成する第 1 の基板の一部領域を示す平面図であり、 第 3 1図は第 3 0図の M— M線に沿う断面図である。
第 3 2図乃至第 3 4図はこの発明の第 1 1 実施例における液晶表 示装置のアクティブ基板の製造方法を工程顺に示す断面図である。 第 3 5図はこの発明の第 1 2実施例における液晶表示装置の T F D素子を形成する第 1 の基板の一部領域を示す平面図であり 、 第 3 6図は第 3 5図の N— N線に沿う断面図である。
図 3 7図はこの発明の第 1 3実施例における液晶表示装置の T F D素子を形成する第 1 の基板の一部領域を示す平面図であり、 第 3 8図は第 3 7図の P— P線に沿う断面図である。
図 3 9図はこの発明の第 1 4実施例による液晶表示装置の T F T 素子を形成する第 1 の基板の一部領域を示す平面図であり、 第 4 0 図は第第 3 9図の Q— Q線に沿う断面図である。
第 4 1乃至第 4 4図はこの発明の第 1 4実施例による液晶表示装 置のァクティブ基板の製造方法を工程順に示す断面図である。
第 4 1乃至第 4 4図はこの発明の第 1 4実施例による液晶表示装 麗のァクティブ基板の製造方法を工程順に示す断面図である。
第 4 5図は従来の液晶表示装置の一例を示す全体の平面図、 第 4 6図はその一部を拡大して示す平面図、 第 4 7図は第 4 6図におけ る X— X線に沿う断面図である。 発明を実施するための最良の形態
この発明の内容をよ り詳細に説明するために、 添付の図面を参照 しながらこの発明の実施例を説明する。
なお、 以下の各実施例の説明に使用する第 1図乃至第 4 4図にお いて、 前述した第 4 5図乃至第 4 7図と対応する部分、 および各実 0 施例の図においてそれぞれ対応する部分には同一の符号を付してあ る。
〔第 1実施例〕
先ず始めに、 この発明の第 1実施例である液晶表示装置の構成を 第 1図と第 2図に基づいて説明する。
第 1 図は第 1 実施例の液晶表示装置の一部を示す平面図であり、 第 2図は第 1図の A— A線に沿う断面図である。 なお、 第 1図では 第 1 , 第 2 の基板自体は図示を省略している。
この液晶表示装置の基本的構成は、 前述した従来例と同様であり 第 2図に示すよ うに、 それぞれ透明なガラス等の材料からなる第 1 の基板 1 と第 2の基板 1 1 とを図示しないスぺーサを介して所定の 間隔をもって対向させ、 その間に液晶 1 6を封入している。
そして、 その第 1 の基板 1上には、 第 1 の電極と して、 タンタル ( T a ) 膜からなる下部電極 2 と信号電極 4 と陽極酸化用電極 5 と を設けている。 また、 下部電極 2上には、 その下部電極 2 自体の陽 極酸化膜である酸化タ ンタル ( T a 2 05 ) 膜からなる非線形抵抗 層 3を形成している。 その陽極酸化膜は下部電極 2上だけでなく 、 第 1 の電極の全表面、 すなわち信号電極 4および陽極酸化用電極 5 の表面にも形成される。
さ らに、 第 2の電極と して、 非線形抵抗層 3上の上部電極 6 と、 その上部電極 6 と接続する表示電極 7 と、 陽極酸化用電極 5の一部 をなす接続電極 8 とを、 酸化インジウム錫 ( I T O ) 膜で設けてい る。
これらの下部電極 2 と非線形抵抗層 3 と上部鴛極 6 とによって、 T F D構造の非線形抵抗素子 9を構成している。
さ らに、 第 2の電極からなる接続電極 8は、 第 1 の電極からなる 陽極酸化用電極 5 の一部を多い、 陽極酸化処理時には第 1図に仮想 線で示すよ うに、 各行の信号電極 4を相互に接続している陽極酸化 用電極 5のランナー部 5 a を、 陽極酸化処理後にこの接続電極 8に よる分離辺 1 0にて相互に分離し、 それぞれ独立した信号電極 4 を 構成する。
この接続亀極 8は、 第 2図に示すよ うにこの液晶表示装置を駆動 する ドライバ I C 1 0 0 の出力端子 1 0 0 a と接続する電極である, さらに、 第 2の基板 1 1 の内側の面には、 第 1 の基板 1上に設け た各表示電極 7の間隙からの光の漏れを防止するために、 クロム ( C r ) 膜からなるブラ ックマ ト リ クス 1 2を設けている。
なお、 第 1図に示すよ うに、 第 1 の基板 1上の表示電極 7に対向 する第 2 の基板 1 1 の領域には、 ブラックマ ト リ クス 1 2は設けな い o
また、 この第 2の基板 1 1 の內側の面には、 表示電極 7 と対向す るよ う に酸化インジウム錫膜からなる対向電極 1 3を設けている。 この対向電極 1 3は、 ブラ ックマ ト リ クス 1 2 と接触して短絡しな いよ うに、 層間絶縁膜 1 4 を介して設ける。
さらに第 1 図に示すよ うに、 第 1 の電極 (信号電極 4 ) と表示電 極 7 とは、 両者が短絡しないよ うに所定寸法の間隙を有する。
表示電極 7は、 第 2図に示すよ うに液晶 1 6 を介して対向電極 1 3 と重なり合う よ うに配置されることによ り、 液晶表示パネルの表 示画素部となる。 この各表示画素部では、 ブラ ックマ ト リ クス 1 2 は開口部 1 2 a を設けている。 そして、 第 1図に斜線を施して示す ブラックマ ト リ クス 1 2 の形成領域が遮光部となる。
上述した表示画素部の液晶 1 6の透過率の変化によ り、 この液晶 表示装置は所定の画像表示を行う。
さ らに、 第 1 の基板 1 と第 2の基板 1 1 とは、 液晶 1 6の分子を 規則的に並べるための処理層と して、 それぞれ配向膜 1 5, 1 5を 設けている。
以上説明したこの第 1 実施例の構成によ り、 第 1の電極からなる 陽極酸化用電極 5は、 第 2の電極からなる接続電極 8により 自己整 合的に分離する構成を有する。
すなわち、 下部電極 2上に非線形抵抗層を形成するための陽極酸 化処理を行う際には、 各行の信号電極 4が陽極酸化用電極 5によつ 2 て相互に接続されている。 そして、 陽極酸化処理後のたとえば液晶 表示パネルの検査後に、 第 2の電極からなる接続電極 8をマスク と してエッチングを行う ことによって、 陽極酸化用 ®極 5の接続用電 棰 8に覆われていないランナー部 5 aが除去され、 接続電極 8 の分 離辺 1 0にて相互に分離されて、 各行の独立した信号電極 4を構成 する。
このよ う に、 第 2 の電極である接続電極 8 をエッチングのマスク と して使用するため、 液晶表示パネルの製造工程中や検査工程中、 あるいは検査後に、 相互に接続されている各信号電極 4を独立した 信号電極に加工することが可能となる。
それによつて、 その各接続電極 8 と独立した信号電極 4を用いて. 各行の非線形抵抗素子 9に外部信号を印加することが可能になる。
また、 非線形抵抗素子 9を有する第 1 の基板 1 に配向膜 1 5 を印 刷する工程や、 配向膜 1 5を利用してその表面を布で擦って配向処 理を行う工程等の静電気の発生を伴う工程では、 各信号電極 4が陽 極酸化用電極 5によって相互に接続されたままの状態にしておく こ とによ り、 非線形抵抗素子 9の特性劣化を防止することができる。 それによつて、 均一で安定した特性の良好な表示品質を有する液 晶表示装置を得るこ とができる。
〔第 2実施例〕
次に、 この発明の第 2実施例である液晶表示装置の構造を、 第 3 図及び第 4図に基づいて説明する。
第 3図はその第 2実施例の液晶表示装置の一部を示す平面図であ り 、 第 4図は第 3図の B— B線に沿う断面図である。 なお、 第 3図 では第 1, 第 2の基板自体は図示を省略している。
この実施例においても、 第 1 の基板 1 上には、 タ ンタル (T a ) 膜からなる第 1 の電極と して、 下部電極 2 と信号電極 4 と陽極酸化 用電極 5を設けている。 そして、 その下部電極 2を含む第 1 の電極 の表面には、 その第 1 の電極自体の曝極酸化膜と して酸化タ ンタル 3
(T a 2 05 ) 膜からなる非線形抵抗層 3を形成する。
さ らに、 第 2の ®極と して、 非線形抵抗層 3上にクロム (C r ) 膜からなる上部電極 6を設けると共に、 陽極酸化用鼋欏の一部をな す第 1の接統電極 2 2を同じクロムで設けている。
これらの下部電極 2 と非線形抵抗層 3 と上部電極 2 1 とによって T F Dの構造の非線形抵抗素子 9を構成する。
第 1の基板 1上にはさ らに、 第 3の電極と して、 表示電極 7 と陽 極酸化用電極 5の一部をなす第 2の接続電極 8 (第 1実施例の接続 電極 8に相当する) とを、 酸化インジウム錫 ( I T O) 膜で設けて いる。 その上部電極 6は、 表示電極 7の一部である接続部 7 aによ つて表示電極 7 と電気的に接続されている。
さ らに、 第 2の電極からなる第 1 の接続電極 2 2 と第 3の電極か らなる第 2の接続電極 8 とは、 第 1 の電極からなる陽極酸化用電極 5の一部を覆っており、 その陽極酸化用電極 5は、 第 2の接続電極 8の分離辺 1 0で分離されて、 独立する接続端子 2 3 , 24, 2 5, …を構成する。
その接続端子 2 3, 2 4, 2 5, …は、 それぞれ分離された陽極 酸化用電極 5を介して各行の信号電極 4 と導通しているから、 各接 続端子 2 3, 2 4, 2 5, …に外部回路 (第 1実施例の場合と同様 に ドライバ I C等) を接続して、 各行の信号電極 4を介してそれぞ れ独立して各非線形抵抗素子 9に電圧を印加し、 各表示亀極 7に目 的の表示をさせるこ とができる。
さ らに、 この実施例においては、 各接続端子 2 3 , 2 4, 2 5, …と外部回路との接続を、 チップ ' オン ' ガラス (C OG) 法を用 いて行なえるよ うに、 第 1の基板 1 の端子形成部 1 a上に互いに近 接させて配設している。
なお C OG法とは、 半導体集積回路 ( I C) 上に異方性導電シー ル剤や、 あるいは導電粒子を凸状に形成し、 異方性導電シール剤中 の接着剤を利用して、 半導体集積回路を基板上に実装する方法であ る。 4 この第 2実施例によっても、 下部電極 2上に非線形抵抗層を形成 するための陽極酸化処理を行う際には、 各行の信号電極 4は陽極酸 化用鼋極 5によって相互に接続されている。
そして、 陽極酸化処理後のたとえば液晶表示パネルの検査後に、 第 2の電極からなる第 2の接続電極 8をマスク と してエッチングを 行う ことによって、 陽極酸化用電極 5の第 2の接続電極 8に覆われ ていない各ランナー部 5 a (第 3図に仮想線で示す) が除去され、 第 2の接続鼋極 8の周囲の各分離辺 1 0にて相互に分離されて、 各 行の信号電棰 4をそれぞれ導通する独立した接続端子 2 3, 2 4, 2 5, …を構成する。
したがって、 この第 2実施例によれば、 高密度実装に用いる C O G法を利用する場合においても、 陽極酸化処理のときには、 各信号 電極 4 を陽極酸化用電極 5によって相互に接続し、 その後、 所要の 工程完了後に、 簡単なエッチング処理によって、 各信号電極を独立 したものとすることができる。
そのため、 前述の第 1実施例と同様な効果が得られると共に、 液 晶表示パネルの作成中、 あるいはその検査中又は検査後に、 高密度 実装に必要な、 高密度な電極端子の配置を行う場合においても、 独 立する信号亀極の各端子に簡単に加工することが可能になる。
さ らに、 第 1の電極からなる陽極酸化用電極 5上に、 第 2の電極 からなる第 1の接続電極 2 2 と第 3の電極からなる第 2の接続電極 8 とを順番に形成しているので、 陽極酸化用電極 5 と第 2の接続電 極 8 との密着力を高めることができる。
〔第 3実施例〕
次に、 この発明の第 3実施例である液晶表示装置について、 第 5 図乃至第 8図に基づいて説明する。
第 5図は、 この第 3実施例による液晶表示装 gの基板を大型基板 上に複数個配置する状態を示す平面図である。 第 6図は、 第 5図に 破線で囲んで示す 2個の液晶表示装置用基板の境界部を拡大して示 5 す平面図である。 第 7図は、 第 6図の C一 C線に沿う断面図、 第 8 図は、 同じく D— D線に沿う断面図である。
第 5図の平面図に示すよ うに、 大型の第 1 の基板 3 0上に、 複数 個 (この例では 6個) の液晶表示装置用基扳 3 1, 3 2 , …を有す る。 そして、 この各液晶表示装置用基板 3 1 と 3 2は、 分離線 3 3 , 3 4によ り分離して使用する構成となっている。
さ らに、 この液晶表示装置用基板 3 1 あるいは 3 2 (前述の各実 施例における第 1 の基板 1 に相当する) には、 タンタル (T a ) 膜 からなる第 1 の電極と して、 第 6図および第 8図に示すよ うに下部 電極 2 と信号電極 4 と陽極酸化用電極 4 1 とを設ける。
その陽極酸化用電極 4 1 は、 第 6図に示すよ うに液晶表示装置用 基板 3 2側に設けられ、 隣接する液晶表示装置用基板 3 1の各信号 電極 4 を相互に接続し、 陽極酸化時に信号電極 4から各下部電極 2 に電圧を印加する構造を有する。
下部電極 2上には、 下部電極 2 自体を陽極酸化処理して形成する 陽極酸化膜である酸化タンタル (T a 2 05 ) 膜からなる非線形抵 抗層を設ける。
さ らに、 その非線形抵抗層 3の上にもう ける上部電極 6 と、 その 上部電極 6 と接続する表示電極 7 と、 大型基板 3 0上に設けた隣接 する液晶表示装置用基板の第 1 の電極からなる陽極酸化用電極 5の —部を覆う入力電極 8 ' (前述の各実施例における接続電極 8に相 当する) とを、 酸化インジウム錫 ( I T O ) 膜からなる第 2の電極 と して設ける。
これらの下部電極 2 と非線形抵抗層 3 と上部電極 6 とによって、 T F D構造の非線形抵抗素子 9 を構成する。
図 6に示すよ うに、 第 2の電極からなる入力電極 8 ' は、 隣接す る液晶表示装置用基板 3 2の第 1 の電極からなる陽極酸化用電極 4 1 の一部を覆っているので、 その陽極酸化用電極 4 1 は陽極酸化処 理後に、 エッチング処理によ り入力電極 8 ' と同一な辺で分離され、 第 6図に仮想線で示す部分が除去される。 それによつて、 隣接する 6 液晶表示装置用基板 3 2における独立した入力端子 3 8 , 3 9 , 4 0を、 ドライバ I C用の接続端子 2 3, 2 4 , 2 5, 2 6 と共に形 成する。
6 0は、 この液晶表示装置用基板 3 1 あるいは 3 2 と第 2 の基板 1 1 との間に液晶 1 6 を封入するためのシールであり、 その内部の 液晶表示装置と しての構成は前述の第 1実施例と同様である。
この第 3実施例の構成によ り、 液晶表示装置用基板を大型基板上 に複数個配置する場合においても、 陽極酸化処理の際には、 各信号 «極 4を陽極酸化用亀極 4 1 によって相互に接続しており、 その後 の液晶表示パネルの検査中あるいは検査後に、 第 2 の電極からなる 入力電極 8 ' をマスク と してエッチング処理を行う ことによ り、 陽 棰酸化用電極 4 1 と して、 独立した各信号電極 4を得ることができ る。
したがって、 高密度実装に必要な高密度な信号電極の配置を行う ときにおいても、 独立する信号電極に簡単に加工することができる, そして、 大型基板上に複数の液晶表示装置用基板を設ける場合に おいて、 隣接する液晶表示装置の第 1 の電極からなる陽極酸化用電 棰 4 1 と第 2 の電極からなる入力電極 8 ' を利用して、 各信号電極 4 の接続と分離がなされるので、 陽極酸化用電極を除去するための スペースをあま り必要と しないため、 大型基板を有効に使用するこ とが可能になる。
そして、 陽極酸化用電極 4 1 あるいは 5 の分離後に残った部分を, 降接する液晶表示装置の入力端子あるいは接続端子と して有効に利 用することができる。
〔第 4実施例〕
次に、 この発明の第 4実施例による液晶表示装置について、 第 9 図および第 1 0図に基づいて説明する。
第 9図は、 この第 4実施例による液晶表示装篋の第 1 の基板側の 一部を示す平面図であり、 第 1 0図は、 液晶表示装置を構成した状 7 態で第 9図の E— E線に沿う断面図である。
この実施例における第 1 の基板 1上には、 第 1 の電極と して、 タ ンタル (T a ) 膜からなる下部電極 2および信号電極 5 0 と、 第 1 の陽極酸化用電極 5 5および第 2の陽極酸化用電極 5 6 とを設けて いる。
さ らに、 その下部電極上 2には、 下部電極 2 自体の陽極酸化膜で ある酸化タ ンタル ( T a 2 05 ) 膜からなる非線形抵抗層 3を形成 している。 この陽極酸化膜による非線形抵抗層 3は、 下部電極 2 と 同じ第 1 の電極である信号電極、 および第 1 の陽極酸化用電極 5 5 と第 2 の陽極酸化用電極 5 6の表面にもそれぞれ形成される。
また、 第 2の電極と して、 非線形抵抗層 3上に設ける上部電極 6 と、 その上部電極 6 と接続する表示電極 7 とを酸化インジウム ( I T O ) 膜によって設けて、 また、 同じく酸化タンタルによる第 2電 極と して、 シール 6 0 よ り外側の第 1の基板 1上に延びる各信号電 極 5 0 とそれらを相互に第 1 の陽極酸化用電極 5 5 の一部を覆う よ うに各接続電極 8 と、 第 2の陽極酸化用電極 5 6 の殆どを覆う よ う に周囲電極 5 8 とを設けている。
第 2の陽極酸化用電極 5 6及び周囲電極 5 8は、 接続電極 5 1, 5 2, 5 3, 5 4 の近傍を囲むよ うに配置し、 さ らにシール 6 0 の 近傍の表示電極 7に近接する周囲電極 5 7 と接続している。
上述の下部電極 2 と非線形抵抗層 3 と上部電極 6 とによって、 T F D構造の非線形抵抗素子 9を構成する。
この非線形抵抗素子 9に対して、 液晶を規則正しく並べたもの配 向膜 1 5あるいは液晶 1 6 のイオン成分が影響し、 非線形抵抗素子 9の特性変化あるいは劣化が生じてしま う こ とがある。
この特性変化や劣化を防止するために、 非線形抵抗素子 9上とそ の周辺に透明な絶縁膜 4 8を設けている。
この絶縁膜 4 8は、 各信号電極 5 0の接続電極 5 1 乃至 5 4およ び第 2 の陽極酸化用電極 5 6 を連結する第 1 の陽極酸化用亀極 5 5 の上部に開口部 4 9を設けている。 8 そして、 液晶表示装笸となった状態では、 この絶縁膜 4 8の開口 部に露出する第 1 の陽極酸化用電極 5 5の第 9図に仮想線で示す部 分は除去されている。 したがって、 接統電極 5 1〜 5 4, および周 囲電檁 5 8は、 それぞれ電気的に分離された、 独立の電極を構成し ている。
その他の構成は、 前述した各実施例と同じである。
この第 4の実施例の液晶表示装置の構成においては、 第 1 の電極 からなる陽極酸化用電極 5 5 , 5 6上には、 非線形抵抗素子 9の特 性変化あるいは特性劣化を防止するための絶縁膜 4 8を設けている, そして、 その絶縁膜 4 8の開口部 4 9内において、 第 1 の電極か らなる陽極酸化用電極 5 5は、 第 2の電極である一部の辺にて自己 整合して分離された形状を有し、 各信号電極 5 0は独立し、 接続電 極 5 1〜 5 4は第 1 0図に仮想線で示すドライバ I C 1 0 0などの 外部回路と接続する独立した電極端子を構成している。
この実施例においても、 陽極酸化処理を行う ときには、 各信号電 極 5 0は、 第 1, 第 2の陽極酸化用電極 5 5, 5 6によって相互に 接続されているので、 前述の各実施例と同様な効果が得られる。
さ らに、 第 2 の陽極酸化用電極 5 6を接続電極 5 1 〜 5 4 の近傍 に配置して、 これに第 1 の陽極酸化用電極 5 5の枝部を介して接続 することによ り 、 各接続電極 5 1 〜 5 4あるいは信号電極 5 0から 静電気が発生したときに、 周囲にその静電気を分散させることがで きる。
また、 絶縁膜 4 8に開口部 4 9を形成する際のェツチング時に、 その開口部 4 9内の第 1 の陽極酸化用電極 5 5 (第 9図に仮想線で 示している) を除去して、 各信号電極 5 0を独立させる加工を同時 にすることが可能なため、 製造工程の増加は生じない。
なお、 この絶縁膜 4 8に開口部 4 9を形成するときには、 第 2の 基板 1 1やシール 6 0が組み付けられている。
このことによ り、 静電気が発生しやすい液晶表示パネルの作成後、 あるいは液晶表示パネルの検査後、 レーザーにより絶縁膜を一部除 9 去した領域から信号電極 5 0に電圧を印加するとき、 あるいはチッ プ * オン · ガラス法によ り ドライバ I C 1 0 0を実装する直前など に、 絶縁膜 4 8の開口部 4 9を形成するこ とが可能になる。
したがって、 非線形抵抗素子 9 を有する第 1 の基板 1 に配向膜 1 5を印刷する工程、 あるいは配向膜 1 5を利用して配向膜 1 5の表 面を布で擦り配向処理を行う工程などの静電気の発生を伴う工程に おいて、 非線形抵抗素子 9の特性が劣化するのを防止できる。
そのため、 均一で安定した特性の良好な表示品質を有する液晶表 示装置を得ることができる。
〔第 1乃至第 4実施例の変形例〕
以上説明したこの発明の第 1実施例から第 4実施例においては、 第 1 の電極と してタンタル膜を用いた例について説明したが、 普通 のタンタル膜以外でも、 窒素を含むタンタル膜ゃリ ンを含むタンタ ル膜、 あるいはニオブを含むタンタル膜なども、 第 1 の電極と して 使用することができる。
さ らに、 この第 1 の電極と しては、 アルミニウム, 銅やあるいは ニッケルなどの低抵抗材料と、 タンタルあるいはタンタルに不純物 を含む膜との多層膜を用いてもよい。
また、 上記各実施例では、 第 1 の電極 2 と してタンタル膜を用い、 非線形抵抗眉と して酸化タンタル膜を形成する場合について説明し た。 しかしながら、 非線形抵抗層と しては、 酸化タンタル膜の上部 に酸化シリ コン膜ゃ窒化シリ コン膜、 あるいは不純物を含む酸化シ リ コンを設け、 酸化タンタル膜と これらの膜との多層膜からなる非 線形抵抗層を用いてもよい。
さ らに、 多層膜からなる非線形抵抗層の酸化タンタル膜上に形成 する被膜は、 プラズマ化学気相成長法 (C V D法) を利用して形成 すると よい。 このことによ り、 酸化タンタル膜に電圧が印加するこ とになり、 耐圧が向上するため非線形抵抗素子の劣化を防止するこ とが可能になる。 また、 多層膜からなる非線形抵抗層を使用することによ り、 非線 形抵抗素子の電流一電圧特性の制御が可能になる。 このため、 非線 形抵抗素子への過 ®流が流れることを抑制し、 液晶表示装置の特性 向上が可能になる。
さ らにまた、 前述の第 1 実施例から第 4実施例においては、 各画 素に 1個の非線形抵抗素子を備える液晶表示装置の例を示したが、 各画素ごとに複数個の非線形抵抗素子を設けてもよい。
その場合にも、 多層膜からなる非線形抵抗層を使用するこ とによ り、 非線形抵抗素子の電流一電圧特性の制御が可能になる。 それに よって、 非線形抵抗素子に過電流が流れることを抑制し、 液晶表示 装置の特性向上を計ることができる。
〔第 5実施例〕
次に、 この発明の第 5実施例による液晶表示装置について、 第 1 1図乃至第 1 3図に基づいて説明する。
第 1 1図は、 この第 5実施例による液晶表示装置の全体構成を示 す平面図であり、 判り易くするため、 上下に重なっている第 1 , 第 2の両基板側の構成をいずれも実線で示している。
第 1 2図は、 第 1 1 図に破線 a , bでそれぞれ囲んだ部分を拡大 して示す平面図である。 但し、 上側の基板とそれに形成される膜な どは除去して示している。 そして、 破線 a で囲んだ部分を上側に、 破艨 bで囲んだ部分を下側に図示している。
第 1 3図は、 液晶表示装麗を構成した状態で第 1 2図の F— F線 に沿う断面図、 第 1 4図は同じく第 1 2図の G— G線に沿う断面図 である。
この実施例による液晶表示装置も、 基本的な構成は前述の各実施 例と共通している。
すなわち、 第 1の基板 1上には、 タンタル ( T a ) 膜からなる第 1 の電極と して、 下部電極 2 と信号電極 4 と陽極酸化用電極 5 を設 けている。 その下部電極 2 と陽極酸化用電極 5上には、 これらの第 2 と して、 酸化タンタル (T a 2 05 ) 膜から なる非線形抵抗層 3を形成する。
この実施例ではその陽極酸化用電極 5を、 第 1 1 図に斜線を施し て示すよ うに、 表示領城 1 8の周囲を囲むよ うに帯状に形成してい る。 そして、 複数個の第 1 の基板 1 を大きな元基板から作成するた め、 その基板相互の陽極酸化用電極 5の接続を行うために、 相互接 続用電極 6 5を第 1 の基板 1 の端に設けている。
この第 1 の電極からなる陽極酸化用電極 5は、 第 1 1 図と第 1 2 図に示すよ うに、 M行の信号電極 4 と N列の対向電極 1 3からなる マ ト リ クス状の表示領域 1 8の周囲において複数の信号電極 4, 4 , …を相互に接続する構成を有する。
また、 第 2の電極と して、 非線形抵抗層 3上の上部電極 6 と、 そ の上部電極 6 と接続する表示電極 7 とを酸化イ ンジウム錫 ( I T O ) 膜で設けている。
この下部電極 2 と非線形抵抗層 3 と上部電極 6 とによって、 T F D構造の非線形抵抗素子 9を構成している。
さ らに、 第 1 2図において多数の表示電極 7がマ ト リ クス状に列 設された表示領域 1 8を囲むよ うに設けられた陽極酸化用電極 5上 に、 斜線を施して示す周囲電極 5 7 と、 各信号電極 4 と接続して第 1 の基板 1 のシール 6 0 よ り外の端子形成部 1 aに延びる各接続電 極 7 1〜 7 4 と、 その間に若干の隙間をあけて並ぶ長方形の遮光部 電極 7 5 と、 周囲電極 5 7から各接続電極 7 1〜 7 4の先端部を囲 むよ うに延びる周囲電極 5 8 も、 第 2の電極と して酸化イ ンジウム 錫 ( I T O ) 膜で形成している。
すなわち、 第 1 2図において斜線を施して示した各電極の下側に も全て陽極酸化用電極 5が形成されており、 陽極酸化処理時には、 全ての信号罨極 4がその両端で陽極酸化用電極 5によって相互に確 実に接続されている。
そして、 これらの第 2 の電極からなる周囲電極 5 7, 5 8、 各接 続電極 7 1〜 7 4, 遮光部電極 7 5は、 陽極酸化用電極 5 の一部を 覆うマスクの役目をなし、 表示領域 1 8の第 1 2図に Dで示す幅の 面にも別にマスクを施してエッチング処理を行なう ことによ り、 陽 極酸化用電極 5のそれらのマスクから露出する部分が除去される。
それによつて、 各信号電極 4及びそれに接続する各接続電極 7 1 〜 7 4が、 それぞれ分離され、 独立した電極を構成する。
第 1 3図および第 1 4図においては、 この陽極酸化用電極 5およ び非線形抵抗層 3の除去される部分は仮想線で示している。
その他の構成は、 前述の各実施例と同様であるので、 その説明は 省略する。
この第 5実施例によっても、 非線形抵抗層 3を形成するための陽 極酸化処理時及びその後の検査工程等においては、 各間信号電極 4 が陽極酸化用電極 5によって相互に接続されているので、 前述の各 実施例と同様な効果が得られる。 しかも、 その接続が信号電極 4の 両端でなされるので、 よ り確実であり、 信号電極の途中で断線が生 じた場合でも、 陽極酸化処理を確実に行なう ことができる。
そして、 任意の工程において、 第 2の電極をマスクに利用して、 エッチング処理を行なう こ とによ り 、 容易に各信号電極 4及び接続 鴛極 7 1 〜 7 4 を分離して独立した電極とすることができる。 その 際、 周囲電極 5 7の両側の辺、 各接続電極 7 1 〜 7 4の第 1 2図で 左右の辺、 および遮光部電極 7 5の周囲の辺が分離辺となる。
そして、 表示領域 1 8の外周部には、 不透明な陽極酸化用電極 5 が残存して遮光部を形成し、 表示領域 1 8の見切りを構成できる。
このよ うに、 陽極酸化用電極 5を遮光部に利用することによ り、 ブラック ' マ ト リ クス 1 2がない液晶表示装置においても、 見切り (表示領域周辺を囲む枠) ができる。
また、 見切りに利用する陽極酸化用電極 5によ り陽極酸化用電極 の幅を広くすることができ、 陽極酸化膜の均一性が向上する。
[第 6実施例〕
次に、 この発明の第 6実施例による液晶表示装置について、 第 1 5図と第 1 6図に基づいて説明する。
この第 6の実施例においては、 非線形抵抗素子と して T F D構造 の素子を使用し、 各面素部には T F D素子を 2個直列接続する構造 を用い、 T F D素子を N列からなるデータ電極側に設ける場合につ いて説明する。
第 1 5図はその液晶表示装置の一部を拡大して示す平面図であり 第 6図は第 5図の H— H線に沿う断面図である。
この実施例においては、 第 1 の基板 1上には、 タンタル (T a ) 膜からなる第 1 の電極と して、 島状の下部電極 2 と第 1 のデータ亀 極 8 2 と陽極酸化用電極 5 と、 島状の下部電極 2 と第 1 のデータ電 極 8 2 とを接続する配線接続部 7 6 とを設け、 この第 1 の電極上に は、 第 1 の電極の陽極酸化膜と して酸化タンタル (T a 2 05 ) 膜 からなる非線形抵抗層 3を形成する。
この第 1 の電極からなる陽極酸化用電極 5は、 M行の信号電極と N列のデータ電極 8 1, 8 1からなるマ ト リ クス状の表示領域の周 囲において複数のデータ電極 8 1, 8 1 を相互に接続する構成を有 する。
さ らに、 第 2の電極と して、 島状の下部電極 2上の非線形抵抗層 3上に、 第 2のデータ電極 8 3に接続するデータ電極用上部電極 8 4 と、 表示電極 7に接続する表示電極用上部電極 8 5 と、 表示電極 7 と第 1 のデータ電極 8 2上の第 2のデータ電極 8 3 とを、 酸化ィ ンジゥム錫 ( I T O ) 膜で設ける。
この島状の下部電極 2 と非線形抵抗層 3 とデータ電極用上部電極 8 4 とによって、 T F D構造の第 1 の非線形抵抗素子 8 6を構成す る。 さらに、 島状の下部電極 2 と非線形抵抗層 3 と表示電極用上部 電極 8 5 とによって、 T F D構造の第 2の非線形抵抗素子 8 7を構 成する。
第 2のデータ電極 8 3から、 データ電極用上部電極 8 4, 非線形 抵抗層 3, 下部電極 2, 非線形抵抗層 3, 表示電極用上部電極 8 5 と表示電極 7の順に接続する。 島状の下部電極 2に対し、 第 2のデ ータ電極 8 3 と表示電極 7は対称の T F D素子構成となる。
さらに、 第 1 の基板 1上には、 第 1 6図に示すよ うに酸化タンタ ル (T a 2 0 5 ) からなる絶縁膜 4 8を設ける。 この絶縁膜 4 8 に は、 第 1の信号電極 4 と島状の下部電極 2 とを接続する配線用接続 部 7 6上の周囲に配線接続部分離用開口部 9 1 を有する。 また、 陽 極酸化用電極 5上には、 第 1 5図に示すよ うに複数個の分離用開口 部 9 2を有する。
さ らに、 第 2 のデータ電極 8 3上には、 外部回路と第 2のデータ 電檷 8 3の接続を行うための接続用開口部 9 3を有する。
第 1 のデータ亀極 8 2 と島状の下部電極 2 とを接続する配線接続 部 7 6上に設けた配線接続部分離用開口部 9 1 においては、 絶縁膜 4 8 と第 1 の電極である下部電極 2が同一の分離辺を有する。
陽極酸化用電極 5上に設ける複数個の分離用開口部 9 2において は、 絶縁膜 4 8 と陽極酸化用電極 5が同一の分離辺 1 0を有する。 表示領域の上下、 左右には、 陽極酸化用電極 5を絶縁膜 4 8 と同 —な分離辺にて分離した遮光部 7 6を設ける。
したがって、 表示領域の外周部は遮光部 7 6によ り見切りが構成 される。
さ らに、 第 1 6図に示すよ うに、 第 2の基板 1 1 の内側の面には, 液晶表示装置がカラー表示を行うために、 赤フィルタ 9 5, 青フィ ルタ 9 6 と、 図示しない緑フィルタのカラーフィルタを設ける。 そ れぞれの表示電極 7の間隙からの光の漏れを防止するために、 カラ 一フィルタを重ね合わせた領域 9 7を設ける。
さらに、 第 2の基板 1 1 には、 表示電極 7 と対向するよ うに酸化 インジウム錫膜からなる対向電極 1 3を設ける。
表示電極 7は、 液晶 1 6 を介して対向電極 1 3 と重なり合う よ う に配置することによ り、 液晶表示パネルの表示画素部となる。 そし てこの表示画素部では、 単色のカラーフィルタ、 例えば赤フィルタ 9 3を有する。
そして、 この表示画素部の液晶 1 6の透過率変化によ り、 液晶表 示装篋は所定の画像表示を行う。
さらに、 第 1 の基板 1 と第 2の基板 1 1 には、 液晶 1 6の分子を 規則的に並べるための処理層と して、 それぞれ配向膜 1 5, 1 5を 設けている。
この第 6実施例の構成によ り、 第 1 の電極からなる陽極酸化用電 極 5は表示領域の周囲部において絶縁膜 4 8の開口部によ り 自己整 合的に分離する分離辺 1 0を有する。
さ らに、 この実施例に示すよ うに、 複数の T F D素子を接続する 場合には、 非線形抵抗層 3 を設けた後に、 陽極酸化用電極 5あるい は第 1 のデータ電極 8 2から島状の下部電極 2 を分離する必要があ る。
そのため、 絶縁膜 4 8の開口部を利用して分離する方法、 あるい は絶縁膜なしに分離する必要がある。 この分離工程を有するため、 この実施例の場合には、 特に工程を增やすことなく表示領域の周囲 に陽極酸化用電極 5を利用して遮光部 7 6 を設けることができる。 そのため、 ブラック · マ ト リ クスの代わり にカラーフィルタを重 ね合わせた部分を見切り に利用した場合に、 見切り部の遮光性が不 十分な場合においても、 陽極酸化用電極 5が残存した遮光部 7 6 を 利用することによ り、 遮光性の十分な見切りができる。
また、 陽極酸化用電極 5を分離する以前には、 非線形抵抗層 3を 形成する陽極酸化処理の際に周囲から電圧を供給することができる ため、 例えば一部の陽極酸化用電極 5に欠陥が生じても他の部分か ら電圧の供給ができる。
〔第 7実施例〕
次に、 この発明の第 7実施例による液晶表示装置について、 第 1 7図と第 1 8図に基づいて説明する。
この実施例においては、 非線形抵抗素子と して T F T構造の素子 を使用する。
第 1 7図は、 その液晶表示装置の一部を拡大して示す平面図であ り、 第 1 8図は、 その I一 I線に沿う断面図である。
この第 7実施例における第 1の基板 1上には、 タンタル (T a ) 膜からなる第 1の電極と して、 信号電極 4に相当するグー ト電極 1 0 1 と陽極酸化用電極 5 とを設け、 第 1の電極上には、 第 1の電極 の攝極酸化膜と して酸化タンタル (T a2 O5 ) 膜からなるゲー ト 絶縁膜 1 0 2を設ける。
この第 1の電極からなる陽極酸化用電極 5は、 第 1 7図に示すよ うに、 M行のゲー ト鴛極 1 0 1 と N列のソース電極 1 0 5からなる マ ト リ クス状の表示領域の周囲において、 複数のゲー ト電極 1 0 1, 1 0 1 を相互に接続する。 この陽極酸化用電極 5は第 1 7図に斜線 を施して示した周囲電極 5 7及び遮光部電極 7 5の下にも設けられ ている。
ゲー ト絶縁膜 1 0 2上とその周囲には半導体層 1 0 3 と してァモ ルファスシリ コ ン ( a — S i ) 膜を設ける。 さらに、 半導体層 1 0 3上に不純物イオンと してリ ン (P) を含む半導体層 1 04を設け る。
さらに、 不純物イオンを含む半導体層 1 04上にソース電極 1 0 5 と ドレイ ン電極 1 0 6を設ける。 ソース電極 1 0 5 と ドレイ ン電 極 1 0 6はモリ ブデン (M o ) にて設ける。 不純物イオンを含む半 導体層 1 04はソース電極 1 0 5 と ドレイ ン電極 1 0 6 と半導体
1 0 3の重なり合う部分に設けている。 また、 ソース電極 1 0 5は 外部回路に接続するデータ電極 1 2 1, 1 2 2に接続する。
ドレイ ン電極 1 0 6は透明導電性膜からなる表示電極 7に接続し、 表示画素部となる。
ゲー ト電極 1 0 1 に接続する陽極酸化用電極 5上には、 表示電極 7 と同一膜を設けて有る。 また、 陽極酸化用電極 5の一部は表示電 極 7 と同一膜の辺と同一な分離辺 1 0にて分離し、 遮光部とする。
陽極酸化用電極 5の一部は、 表示電極 7 と同一膜である周囲電極 5 7 と遮光部電極 7 5に覆われており、 表示領域をマスキングして エッチング処理することにより、 陽極酸化用電極の破線で示す部分 は除去され、 各ゲー ト電極 1 0 1 を独立させる。 そして、 表示領域 の外周部には、 残った陽極酸化用電極 5によって形成される遮光 部によ り見切りができる。
さらに、 第 2の基板 1 1 には、 第 1 8図に示すよ うに外部光源 1 1 1 の反射光 1 1 2の光量を低滅するために、 第 2の基板 1 1上に はまず透明導電性膜からなる対向電極 1 3 を設ける。 つぎに、 表示 電極 7の周囲からの光の漏れを防止するために、 クロム (C r ) 膜 からなるブラ ック , マ ト リ クス 1 2 を設ける。 透明導電性膜からな る対向電極 1 3 と第 2 の基板 1 1 とクロム膜からなるブラック · マ ト リ クス 1 2の干渉によ り、 反射光 1 1 2を低減できる。
そして、 この表示画素部の液晶 1 6の透過率変化によ り、 液晶表 示装置は所定の画像表示を行う。
さ らに、 第 1 の基板 1 と第 2 の基板 1 1 とは、 液晶 1 6 の分子を 規則的に並べるための処理層と して、 それぞれ配向膜 1 5, 1 5を 設けている。
そして、 スぺーサ (図示せず) によって、 第 1 の基板 1 と第 2の 基板 1 1 とを所定の間隙をもって対向させ、 シール 6 0によ り貼り 合わせ、 第 1 の基板 1 と第 2の基板 1 1 との間に液晶 1 6を封入し ている。
この第 7実施例の構成によ り、 第 1 の電極からなる陽極酸化用電 極 5は表示領域の周囲部において表示電極 7 と同一な膜によ り 自己 整合的に分離する分離辺を有する。
また、 表示領域の周囲に分離後に残る陽極酸化用電極 5を利用し 遮光部を設けることができる。
そして、 陽極酸化用電極 5を分離する以前には、 非線形抵抗層を 形成するための陽極酸化処理の際に、 この陽極酸化用電極 5によつ て周囲から各グー ト電極 1 0 1 に電圧を供給することができるため、 例えば一部陽極酸化用電極 5に欠陥が生じても他の部分から電圧の 供給ができる。 〔第 8実施例〕
次に、 この発明の第 8実施例による液晶表示装 gについて、 第 1 9図乃至第 2 1図に基づいて説明する。
この第 8 の実施例においては、 非線形抵抗素子と して T F D構造 の素子を利用し、 T F D素子を M列からなる信号電極側に設ける場 合について説明する。
また、 表示電極 7の周囲に設ける遮光部は第 2 の陽極酸化用電極 1 2 6の一部を利用し、 第 2の陽極酸化用電極 1 2 6上の第 2の非 線形抵抗層 1 2 8は非線形抵抗素子 9に用いる第 1 の非線形抵抗層 3 と膜厚が異なる。
第 1 9図は、 この発明の第 8の実施例による液晶表示装饅の全体 構成を示す平面図である。 第 2 0図は、 第 1 9図の一部分を拡大し て示す平面図であり、 第 2 1図はその J 一 J線に沿う断面図である < 但し、 第 2 0図及び第 2 1 図では上側の第 2の基板及びそれに形成 される膜等、 並びに液晶は図示を省略している。
第 1 の基板 1上には、 タンタル (T a ) 膜からなる第 1 の電極と して、 下部電極 2 と信号電極 4 と第 1の陽極酸化用電極 5 と第 2の 陽極酸化用電極 1 2 6 と補助電極 1 2 7 と相互接続用電極 6 6 を設 け、 下部電極 2 と第 1 の陽極酸化用電極 5 と信号電極 4上には、 第 1 の電極の陽極酸化膜と して酸化タ ンタル ( T a 2 O 5 ) 膜からな る第 1 の非線形抵抗層 3 を設ける。
また、 第 1 9図に示すよ うに、 複数個の第 1 の基板 1 を大きな元 基板から作成するために、 相互の陽極酸化用電極 5の接続を行うた めに、 相互接続用電極 6 5を第 1 の基板 1 の端に設ける。
第 2の陽極酸化用電極 1 2 6 と補助電極 1 2 7上には、 第 1 の電 極の陽極酸化膜と して酸化タンタル (T a 2 O 5 ) 膜からなる第 2 の非線形抵抗層 1 2 8を設ける。 また、 第 1 9図に示すよ うに、 複 数個の第 1の基板 1 を大きな元基板から作成するために、 相互の第 1, 第 2の陽極酸化用電極 5, 1 2 6 の接続を行うために、 相互接 続用電極 6 5, 6 5を第 1 の基板 1 の両端に設ける。 第 1 の陽極酸化用電極 5 と第 2の陽極酸化用髦極 1 2 6 とは相互 に分離している。 また、 第 2の非線形抵抗層 1 2 8は、 非線形抵抗 素子 9に用いる第 1 の非線形抵抗層 3に比較し膜厚を厚く してある, この第 1 の鴛極からなる第 1 の陽極酸化用鴛極 5は、 第 1 9図と 第 2 0図に示すよ うに、 M行の信号電極 4 と N列対向電極 1 3から なるマ ト リ クス状の表示領域 1 8の周囲において複数の信号電極 4 を相互に接続する構成を有する。 また、 第 2の陽極酸化用髦極 1 2 6は複数の補助電極 1 2 7 を相互に接続する構成を有する。
さ らに、 第 2の電極と して、 第 1 の非線形抵抗層 3上の上部電極 6 と、 その上部電極 6 と接続する表示電極 7 と、 第 1 の陽極酸化用 電極 5の一部をなす接続電極 8 とを酸化インジウム錫 ( I T O ) 膜 にて設ける。
そして、 下部電極 2 と第 1 の非線形抵抗層 3 と上部電極 6 とによ つて、 T F D構造の非線形抵抗素子 9を構成する。
さ らに、 表示電極 7の一部は第 2の陽極酸化用電極 1 2 6に接続 する補助電極 1 2 7 を覆い、 表示電極 7 と補助電極 1 2 7によ り遮 光部を構成する。
また、 第 1 の基板 1上と非線形抵抗素子 9 と信号電極 4 と表示電 極 7 と第 1 の陽極酸化用電極 5 と第 2の陽極酸化用電極 1 2 6上と に酸化タンタル膜 (T a 2 05 ) からなる絶縁膜 4 8 を設ける。
その絶縁膜 4 8には、 第 1 の陽極酸化用電極 5 と第 2の陽極酸化 用電極上に分離用開口部 9 2を設ける。 その分離用開口部 9 2 と同 一な分離辺 1 0によ り、 第 1 の陽極酸化用電極 5は分離して独立す る信号電極 4を構成し、 第 2の陽極酸化用電極 1 2 6は独立する補 助電極 1 2 7を構成する。
さ らに、 表示電極 7の周囲においては、 開口部 4 9を設け、 補助 電極 1 2 7は、 表示電極 7あるいは絶縁膜 4 8の開口部 4 9 と同一 な分離辺 1 0によ り表示電極 7毎に分離し、 遮光部となる。
接続電極 8上にも開口部 9 3を設けて、 外部回路との接続を可能 にしている。 第 2の基板 1 1側の構成は前述の実施例と同様であり、 表示電極 7の間隙からの光の漏れを防止するためのク ロム (C r ) 膜からな るブラックマ ト リ クスと、 対向電極 1 3 と、 ブラック · マ ト リ クス と対向電極 1 3 との髦気的絶縁性を確保するために層間絶縁膜等を 有する。
この第 1 の基板 1 と第 2の基板 1 1 を一定の間隔で張り合わせ、 液晶を封入して液晶表示装置とする。
この第 8実施例の構成により、 第 1の電極からなる第 2の陽極酸 化用電極 1 2 6は、 第 1 の陽極酸化用電極 5から初期よ り独立して いる。 そのため第 2の陽極酸化用電極 1 2 6の影謇を第 1 の陽極酸 化用電極 5に与えることがない。 さ らに、 第 2の陽極酸化用電極 1 2 6は、 表示領域の周囲部において、 第 2の露極からなる表示電極 7、 あるいは絶縁膜 4 8の開口部 4 9 と 自己整合的に分離する分離 辺 1 0を有し、 表示電極 7毎に独立する遮光部を構成する。
さ らに、 第 2の陽極酸化用電極 1 2 6上に設ける第 2 の非線形抵 抗層 1 2 8を第 1の陽極酸化用電極 5によ り下部鴛極 2上に設ける 第 1 の非線形抵抗層 3 よ り膜厚を厚く し、 絶縁性を高めておく 、 そ のため、 表示電極 7 と補助電極 1 2 7が電気的短絡を起しても、 表 示品質に影響を与えることなく 、 歩留ま り良く なる。
[第 9実施例〕
次に、 この発明の第 9実施例による液晶表示装置について、 第 2 2図及び第 2 3図に基づいて説明する。
第 2 2図はその液晶表示装置の一部分を拡大して示す平面図であ り、 第 2 3図は第 2 2図の K一 K線に沿う断面図である。 これらの 図において、 第 1 5図および第 1 6図と対応する部分には同一符号 を付してある。
この実施例における第 1 の基板 1上には、 タンタル (T a ) 膜か らなる第 1 の電極と して、 下部電極 2 と、 第 1 のデータ電極 8 1 と, 第 1 のデータ電極 8 1 と下部電極 2を接続する配線接続部 7 6 と、 第 1の陽極酸化用電極 5 と、 第 2の陽極酸化用電極 1 2 6 と、 補助 電極 1 2 7 と、 その相互接続用電極 6 6 とを設けている。
下部電極 2 と第 1の陽極酸化用電極 5 と第 1のデータ電極 8 1上 には、 第 1の電極の陽極酸化膜と して酸化タンタル (T a2 05 ) 膜からなる第 1の非線形抵抗層 3を設ける。
また、 第 2の暘極酸化用電極 1 2 6 と補助電極 1 2 7上には、 第 1の電極の陽極酸化膜と して酸化タンタル (T a 2 05 ) 膜からな る第 2の非線形抵抗層 1 2 8を設ける。
第 1の陽極酸化用電極 5 と第 2の陽極酸化用電極 1 2 6とは相互 に分離している。 また、 第 2の非線形抵抗層 1 2 8は、 非線形抵抗 素子 9に用いる第 1の非線形抵抗層 3に比較し膜厚を厚く してある t この第 1の電極からなる第 1の陽極酸化用電極 5は、 第 2 2図に 示すよ うに、 N列の第 1のデータ電極 8 1 を表示領域の周囲におい て相互に接続する構成を有する。 また、 第 2の陽極酸化用電極 1 2 6は複数の補助電極 1 2 7を相互に接続する構成を有する。
さ らに、 第 2の電極と して、 第 1のデータ電極 8 1上に第 2のデ ータ電極 8 3を設け、 第 2のデータ電極 8 3に接続し、 下部 ®極 2 上の第 1の非線形抵抗層 3上にデータ電極用上部電極 8 4を設け、 補助電極 1 2 7の一部と第 1の基板 1上とに表示電極 7を設け、 下 部電極 2上の第 1の非線形抵抗層 3上に、 表示電極 7に接続する表 示電極用上部電極 8 5を、 いずれも酸化インジウム錫 ( I T O) 膜 にて設ける。
また、 第 2のデータ電極 8 3に接続して、 第 1の陽極酸化用電極 5の一部をなす接続電極 8 も、 上記第 2の鴛極と共に酸化ィンジゥ ム錫 ( I T O) 膜にて設ける。
この下部電極 2 と第 1の非線形抵抗層 3 とデータ電極用上部電極 8 4 とによって、 T F D構造の第 1 の非線形抵抗素子 8 6を構成す る。
さ らに、 この下部電極 2 と第 1の非線形抵抗層 3 と表示電極用上 部電極 8 5 とによって、 T F D構造の第 2の非線形抵抗素子 8 7を 構成する。
そして、 表示電極 7の一部は第 2の陽棰酸化用電極 1 2 6に接統 する補助電極 1 2 7を覆い、 表示電極 7 と補助髦極 1 2 7によ り遮 光部を構成する。
さらにまた、 第 1 の基板 1上と非線形抵抗素子 8 6, 8 7 と、 第 2のデータ電極 8 3 と、 表示鼋極 7 と、 第 1 の陽極酸化用電極 5 と . 第 2の陽極酸化用電極 1 2 6の各上面を覆う よ うに、 酸化タンタル 膜 (T a 2 05 ) からなる絶縁膜 4 8を設ける。
その絶縁膜 4 8には、 第 1 の陽極酸化用電極 5 と第 2の陽極酸化 用電極 1 2 6上に分離用開口部 9 2を設ける。 そして、 その分離用 開口部 9 2 と同一な分離辺 1 0によ り第 1 の陽極酸化用電極 5は分 離して、 独立する第 1 のデータ電極 8 1 を構成する。 第 2の陽極酸 化用電極 1 2 6 も分離して独立する補助電極 1 2 7を構成する。
さ らに、 表示電極 7の周囲においては開口部 4 9を設け、 補助電 極 1 2 7は、 表示鸳極 7あるいは絶縁膜 4 8の開口部 4 9 と同一な 分離辺 1 0によ り表示電極 7毎に分離して遮光部となる。
この第 9実施例の構成により、 第 1 の電極からなる第 2の陽極酸 化用電極 1 2 6は、 第 1 の陽極酸化用電極 5から初期よ り独立して いる。 そのため第 2の陽極酸化用電極 1 2 6の影謇を第 1 の陽極酸 化用電極 5に与えるこ とがない。 さ らに、 第 2の陽極酸化用電極 1 2 6は、 表示領域の周囲部において第 2の電極からなる表示電極 7 あるいは絶縁膜 4 8の開口部 4 9 と 自己整合的に分離する分離辺 1 0を有し、 表示電極 7毎に独立する遮光部を構成する。
さ らに、 第 2の陽極酸化用電極 1 2 6上に設ける第 2の非線形抵 抗層 1 2 8を第 1 の陽極酸化用電極 5によ り下部電極 2上に設ける 第 1 の非線形抵抗層 3 よ り膜厚を厚く し、 絶縁性を高めておく、 そ のため、 表示電極 7 と表示鴛極 7の補助電極 1 2 7が電気的短絡を 起しても、 表示品質に影響を与えることなく歩留まり 良く表示電極 7の周囲に遮光部 7 5 を設けることができる。
また、 この発明の第 8の実施例と第 9の実施例においては、 非線 形抵抗素子を有する第 1 の基板を液晶表示装鷺に利用する際に、 非 線形抵抗素子の機械的劣化を防止するために、 絶縁膜を設ける場合 を示したが、 絶縁膜を設けていない場合においても、 本発明は有効 である。
これらの第 5乃至第 9実施例によれば、 陽極酸化用電極の一部を 遮光部に利用することができる。
また、 複数の非線形抵抗素子を有する場合には、 第 1 の信号電極 と下部電極を分離する際に、 陽極酸化用電極と第 1 の信号電極との 分離と、 陽極酸化用電極と遮光部の分離を同時に行なえる。
保護用絶縁膜を有する場合には、 外部回路との接続を行うための 保護用絶縁膜の開口部を形成する際に、 陽極酸化用電極の分離した い部分に保護用絶縁膜の開口部を設け、 その保護用絶縁膜あるいは 保護用絶縁膜の開口部の形成に利用する レジス トをマスクにして、 エッチング処理を行う こ とによ り、 容易に陽極酸化用電極の分離が 可能である。
〔第 1 0実施例〕
次に、 この発明の第 1 0実施例による液晶表示装置について、 第 2 4図と第 2 5図に基づいて説明する。
第 2 4図は、 この発明の第 1 0実施例による液晶表示装置の T F D素子を形成する第 1 の基板の一部領域を示す平面図である。 第 2 5図は、 第 2 4図の L一 L線に沿う断面図である。
まず、 これらの図を参照して、 この実施例における T F D素子の 構成を説明する。
T F D素子を形成するァクティブ基板である第 1 の基板 1上には、 いずれも金属膜と してタンタル (T a ) 膜からなる陽極酸化用電極 5 と下部電極 2 とを設ける。
陽極酸化用電極 5の幅 W 1 は、 下部電極 2の周辺以外では、 信号 電極 4の幅 W 2 よ り広い。
そして、 この陽極酸化用電極 5は、 一方の端部で陽極酸化用電極 5 a によって複数本が鼋気的に接続され、 他方の端部を外部回路か ら非線形抵抗素子に信号を印加するための接続 «棰 8に接続する。 この陽極酸化用電極 5は、 下部電極 2の表面に非線形抵抗層 3を陽 極酸化用処理により形成するときの電極と して使用する。
したがって、 信号钂極 4 と表示電極 7 との間には幅 W 1の広い陽 極酸化用電極 5を有する。 陽極酸化用電極 5の一部であるエツチン グ除去部 1 2 1 は、 最終形状では除去される。 すなわち、 この第 2 4図は製造工程の途中を示し、 説明を理解し易いよ うにしている。 さ らに、 この下部電極 2の表面には、 この下部電極 2を暘極酸化 処理して形成する酸化タンタル (T a 2 05 ) 膜からなる非線形抵 抗屠 3を設ける。
さ らに、 陽極酸化用電極 5の一部である重なり部 1 2 2 と、 基板 1上に透明導電膜を設けて表示電極 7 とする。 そして、 この表示電 極 7に接続する上部電極 6を下部電極 2上に設ける。 さらに、 陽極 酸化用電極 5上にも透明導罨性膜を設け接続電極 8 とする。
表示電極 7の一部領域は、 陽極酸化用電極 5の一部領域とオーバ —ラップする領域である重なり部 1 2 2 を有する。
そして、 下部電極 2 と非線形抵抗層 3 と上部電極 6 とによ り非線 形抵抗素子 (T F D素子) 9を構成する。
ここで、 上部電極 6 と表示電極 7 とは、 いずれも透明導電膜、 た とえば酸化インジウム錫 ( I T O ) 膜で構成する。
さ らに、 陽極酸化用 «極 5の一部からなる信号電極 4 と、 表示電 極 7の下部にある重なり部 1 2 2 との間にあるエッチング除去部 1 2 1 は除去され、 信号電極 4 と透明導電性膜からなる表示電極 7 と は分離する構造となる。
複数の信号電極 4を接続する陽極酸化用電極 5 a も除去され、 各 信号電極 4は独立したものとなる。
さらに、 表示電極 7間にあるエッチング除去部 1 2 1 も除去され, 各表示髦極 7 も独立したものとなる。
このため、 陽極酸化用電極 5の幅 W 1 は信号電極 4 と しての幅 W 2 となる。
すなわち、 陽極酸化を行う以前には、 陽極酸化用電極 5 と してそ の電極の幅は W 1であり、 信号電極 4の幅 W 2 よ り幅を広く し、 表 示電極 7の下部まで広げておく。 さ らに隣接する表示電極 7の間も 陽極酸化用電極 5によ り連結している。
表示電極 7を設けた後に、 陽極酸化用電極 5のエッチング加工を 行い、 陽極酸化用電極 5の一部であるエッチング除去部 1 2 1 を除 去し、 信号電極 4の幅を W 2 とする。 さらに、 隣接する表示電極 7 の間に設けたエッチング除去部 1 2 1 も除去し、 孤立した表示電極 7 とする。
この構造を用いるこ とによ り 、 陽極酸化用電極 5を陽極酸化時に は幅を広く (W 1 ) し、 短時間に均一な陽極酸化膜 3を形成可能に する。
通常、 表示電極 7が透明導電性膜の場合には、 透明なため表示電 極 7の周囲のエッチング状況を検査することが難しい。
しかし、 本実施例によれば、 表示電極 7の周辺には陽極酸化用電 極 5 と してタンタル膜と酸化タンタル膜があるため、 表示電極 7が 透明導電性膜であっても、 エッチング除去部 1 2 1 のエッチングの 際に透明導電性膜がェツチングマスク となり、 タンタルあるいは酸 化タンタル膜とタンタル膜が残り、 表示電極 7の周辺の透明導電性 膜のエッチング状況を検査しやすく なる。
さ らに、 透明導電性膜 7がわずかに残る場合には、 エッチング除 去部 1 2 1 のエッチング処理の際に、 その透明導電性膜も除去でき, 表示電極 7の周辺のエッチング残膜をきれい取ることができる。
さ らに、 陽極酸化用電極 5の幅 (W 1 ) を広く してあるため、 信 号電極 4の幅 (W 2 ) 内に断線箇所がある場合には、 表示電極 7 と 信号電極 4の間の陽極酸化用電極 5 を利用して、 信号電極 4の断線 を防止することができる。
第 2 6図は、 この実施例において信号電極 4に断線箇所 4 dが発 生している状況を示す平面図である。 この図では、 信号電極 4の輻 W 2 よ り深い (深さ W 3 ) 断線箇所 4 dが発生した場合の例を示してある。 信号 ®極 4が従来の電極幅 W 2のままでは断線してしま う。 すなわち、 暘極酸化を行う ことが できない。 さらに、 非線形抵抗素子 9 ( T F D素子) に外部よ り電 圧を印加することができない。
しかし、 この実施例では、 陽極酸化用電極 5を信号電極 4の幅 W 2よく広く しているため、 陽極酸化を行う ことができる。 さ らに、 信号鴛極 4の周囲に形成する陽極酸化用電極 5 の一部を利用して信 号電極 4の断線箇所を迂回されるよ うに形成することによ り、 信号 電極 4は断線しない。
さ らに、 表示電極 7の下部にある重なり部 1 2 2の一部を信号電 極 4の迂回部と して使用するため、 表示電極 7には一部を削除する 削除部 7 a を設けている。
このよ うに、 陽極酸化用電極 5の幅を広く してあるため、 陽極酸 化膜の均一性の向上と断線による陽極酸化膜の形成できない部分を 防止できるため、 歩留ま りおよび陽極酸化膜の性能を向上できる。 次に、 この第 1 0実施例による液晶表示装置のアクティブ基板の 製造方法を、 を用いて説明する。 第 2 7図から第 2 9図は、 その製 造方法を工程順に示す第 2 5図と対応する断面図である。
先ず始めに第 2 7図に示すガラスからなるァクティブ基板である 第 1 の基板 1上の全面に、 金展膜と してタンタル (T a ) 膜を 1 5 0 n mの膜厚でスパッタ リ ング法で形成する。
その後、 そのタンタル膜上の全面に感光性樹脂 (図示せず) を回 転塗布法によ り形成し、 所定のホ トマスクを用いて露光, 現像処理 を行って感光性榭脂をパターン形成し、 その後このパターニングし た感光性榭脂をェツチングマスクに用いて、 タンタル膜をェッチン グするホ トエッチング処理によ り 、 陽極酸化用電極 5 と下部電極 2 と複数の信号電極 4 (陽極酸化用電極) を接続する部分とをパター ン形成する。
ここでタンタル膜のエッチングは、 反応性イオンエッチング (以 下 R I Eと記載する) 装置を用いて行う。
そのエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F 6 ) と酸素 (O2 ) との混合ガスを用いる。 そして六弗化硫黄の流 量力 S 1 00〜 2 0 0 seem, 酸素流量が 1 0〜 4 0 sccmと し、 圧力が 4〜 1 2 X 1 0 -2torrと し、 さらに使用電力が 0.2〜 0.5 k WZ c m2 で行う。
その後、 陽極酸化用電極 5を陽極と し、 陽極酸化液と して、
0. 1〜 1.0 w t %のクェン酸水溶液あるいはホウ酸アンモ-ゥム 水溶液を用いて、 3 0〜 4 0 Vの電圧を印加して、 タンタル膜の陽 極酸化処理を行う。
その結果、 下部電極 2 と陽極酸化用電極 5の側壁と上面の表面に, 酸化タンタル膜 (T a 2 05 ) からなる非線形抵抗層 3が 6 0〜 7 5 n mの膜厚で形成される。
つぎにスパッタ リ ング法を用いて、 透明導電膜と して酸化インジ ゥム錫 ( I TO) 膜を膜厚 1 0 0 n mで全面に形成する。 その後、 その酸化インジウム錫膜上に感光性榭脂 (図示せず) を形成する。 そして、 酸化インジウム錫膜をエッチング処理して、 第 2 7図に 示すよ うに、 表示電極 7 と、 表示電極 7に接続する上部電極 6 と、 図示されない接続電極 8 とを同時にパターン形成する。
この酸化インジウム錫のエッチングは、 酸化第二鉄と塩酸の水溶 液エツチャン トを用いるゥエツ トエッチングによ り行う。 なおこの ときのエッチヤン ト液温は 3 0 〜 4 0°Cに設定する。
つぎに第 2 9図に示すよ うに、 陽極酸化用電極 5 と表示電極 7の 下部にある重なり部 1 2 2 との間にあるエッチング除去部 1 2 1 を パターン形成するために、 感光性樹脂 1 2 5を形成する。 エツチン グ除去部 1 2 1は、 感光性樹脂 1 2 5 と酸化イ ンジユウム錫膜から なる表示電極 7をエッチング用のマスク と し、 R I E装置を使用し エッチング処理する。
このエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F ) と酸素 (O2 ) との混合ガスを用いる。 そして、 六弗化硫黄の 流量が 1 0 0〜 2 0 0 sccm、 酸素流量が 1 0〜 4 0 seemで、 圧力が 4〜 : I 2 X 1 0 -2torrと し、 使用鴛カが 0. 2〜 0. 5 1^ \^/ (: 1112 で行う。
上記のエッチング条件では、 酸化インジウム鍋をほとんどエッチ ングすることなく、 タンタル膜と非線形抵抗層 3の酸化タンタル膜 だけをエッチングするこ とができる。
そのため、 陽極酸化用電極 5の一部からなる信号電極 4 と表示電 極 7の重なり部 1 2 2 とを、 エッチング除去部 1 2 1 をエッチング 除去するこ とにより分離できる。
以上の工程によ り、 第 1 0実施例の第 2 5図に示したように、 陽 極酸化用電極 5は表示電極 7 と分離して信号電極 4 となり、 外部回 路 (図示せず) と接続する接続電極 8 と、 信号電極 4及びそれと接 続する下部電極 2 と、 その下部電極 2上に形成する非線形抵抗層 3 と、 非線形抵抗層 3上に形成する上部電極 6 とを介して、 上部電極 6に接続する表示電極 7に目的の電圧を印加できる。
また、 非線形抵抗素子 (T F D素子) 9は、 下部電極 2 と非線形 抵抗層 3 と上部電極 6によ り形成する。
この実施例においては、 陽極酸化用電極 5 をエッチング処理にて 加工するときに、 感光性榭脂 1 2 5 と表示電極 7 とをエッチング用 マスク と して使用する。 このため、 エッチング除去部 1 2 1 を表示 電極 7の下面領域に整合するよ うな形状に形成することができる。 そのため、 例えば酸化ィンジュゥム錫膜がェツチング除去部 1 2 1上に薄く あるいは僅かに残る、 いわゆるエッチング不良が発生し た場合においても、 エッチング除去部 1 2 1 のエッチングを行う際 に、 信号電極 4 と表示電極 7の間にあるエッチング不良部の透明導 電性膜を同時に除去できる。
さ らに、 大きな面で酸化イ ンジュゥム錫膜がエツチング後に残る 場合にも、 エッチング除去部 1 2 1上に酸化インジユウム錫膜が残 るため、 酸化ィンジゥム錫膜の下部に非線形抵抗層 3である酸化タ ンタルと下部電極 2であるタンタルが残るため、 透明導電性膜のみ に比べショー ト箇所の検査が非常に容易になる。
さ らに、 液晶表示装置と して、 第 1の基板 1 と第 2の基板 (図示 せず) を張り合わせて液晶を封入した後には、 液晶の屈折率あるい は基板 1 の厚み、 または配向膜等の屈折率のために、 表示電極 7の 周囲の透明導電性膜のエッチング残膜は検出が難しい。
この場合にも、 タンタル等がエッチング残膜と して残るため、 検 出が極めて容易になる。
〔第 1 1実施例〕
つぎに、 この発明の第 1 1実施例による液晶表示装置について、 第 3 0図および第 3 1図に基づいて説明する。
第 3 0図は、 この第 1 1実施例における液晶表示装置の T F D素 子を形成する第 1 の基板の一部領域を示す平面図であり、 第 3 1図 は、 第 3 0図の M— M線に沿う断面図である。
これらの図を参照して、 この第 1 1の実施例における T F D素子 の構成を説明する。
第 1 の基板 1 の上には、 いずれも金属膜と してタンタル (T a ) 膜からなる陽極酸化用電極 5 と、 島状の下部電極 2 と、 陽極酸化用 電極 5 と下部電極 2 とを接続する配線接続部 7 6 (仮想線にて図示) を設ける。
陽極酸化用電極 5の幅は島状の下部電極 2の周辺以外では、 第 1 のデータ電極 8 1 の幅 W 2 よ り広い W 1 となっている。
陽極酸化用電極 5は、 一方の端部を陽極酸化用電極 5 aによって 複数本が相互に接続され、 他方の端部は外部回路から非線形抵抗素 子に信号を印加するための接続電極 8に被覆されている。
この陽極酸化用電極 5は、 下部電極 2の表面に非線形抵抗層 3を 陽極酸化処理によ り形成するときの電極と して使用する。
第 1 のデータ電極 8 1 と表示電極 7 との間には陽極酸化用電極 5 を有する。 陽極酸化用電極 5の一部であるエッチング除去部 1 2 1 は最終構造では除去される。 さらに、 第 1のデータ電棰 8 1 と島状の下部電 ffi 2に接統する配 線接続部 7 6 も最終構造では除去される。 すなわち、 この第 3 0図 の平面図と第 3 1図の断面図は製造工程の途中を破線にて示し、 躭 明を理解しやすいよ うにしている。
さ らに、 この陽極酸化用電檷 5 と配線接続部 7 6を介する島状の 下部電極 2の表面には、 このタンタル膜を陽極酸化処理して形成す る酸化タンタル (T a 2 05 ) 膜からなる非線形抵抗層 3を設ける, そして、 陽極酸化用電極 5の重なり部 1 2 2上と、 基板 1上に透 明導電膜を設けて表示電極 7 とする。 さ らに、 この表示電極 7に接 統する表示鴛極用上部電極 8 5を下部電極 2上に設ける。 さらに陽 極酸化用電極 5上に第 2のデーター電極 8 3を設け、 さ らに第 2の データ電極 8 3に接統するデータ «極用上部鴛極 8 4を設ける。
さ らに、 外部回路から非線形抵抗素子部に信号を印加するための タンタルからなる陽極酸化用電極 5に上に透明導電性膜からなる接 統電極 8を設ける。 接統 «極 8においては、 陽極酸化用髦極 5のタ ンタルは額縁状の形状をしている。 また、 透明導電性膜による接統 鼋極 8は額緣状のタンタルを覆っている。
この形状にすることにより、 外部回路と接続鴛極 8 との接統を行 う場合に、 額縁状のタンタルによ り透明導電性膜よ り位篋を明確に できるため、 合わせ精度が向上する。 さらに、 額縁状タンタルの内 と外に透明導電性膜を設けることにより、 外部回路と入力部の接統 状況を透明導電性膜パッ ド部を透して確認できる。
4 特に、 集積回路 ( I C) と入力部を導電ペース ト等の媒介を利用 し、 接続電極 8上に直に接続する、 いわゆるチップ ' オン ' ガラス (C OG) 法の場合には、 透明導電性膜のみでは合わせ精度が悪い ため、 タンタルを額縁状に設けることによ り合わせ精度が向上する, そして、 島状の下部電極 2 と非線形抵抗層 3 とデータ電極用上部 電極 8 4 とによ り第 1の非線形抵抗素子 (T F D素子) 8 6を構成 する。 さらに、 鳥状の下部電極 2 と非線形抵抗層 3 と表示電極用上 部電極 8 5 とによ り、 第 2の非線形抵抗素子 (T F D素子) 8 7を 構成する。
ここで、 表示電極用上部電極 8 5 とデーター電極用上部電極 8 4 と表示電極 7 とは、 いずれも透明導電膜、 たとえば酸化インジウム 錫 ( I TO) 膜で構成する。
さ らに、 陽極酸化用電極 5 と透明導電性膜からなる表示電極 7 と の重なり部 1 2 2 と、 第 2のデ一タ電極 8 3の下部にあるタンタル からなる第 1のデータ電極 8 1 を分離する構造である。 そして、 第 1のデータ電極 8 1 と表示電極 7間にあるエッチング除去部 1 2 1 も除去し、 表示電極 7 と分離する。
このため、 陽極酸化用電極 5の幅 W 1は第 1のデータ電極 8 1 と しての幅 W 2 となる。
したがって、 陽極酸化時には陽極酸化用電極 5の幅 W 1 と して第 1のデータ電極 8 1 の幅 W 2よ り広く し、 表示電極 7の下部まで広 げておく。 さ らに隣接する表示電極 7の間も陽極酸化用電極 5によ り連結している。
第 2のデーター電極 8 3 と表示電極 7 とを設けた後に、 第 1 のデ ータ電極 8 1 と島状の下部電極 2 との間を接続する配線接続部 7 6 のエッチング加工を行い、 孤立する島状の下部電極 2を設ける と同 時に、 第 1のデータ電極 8 1 と表示電極 7の間にあるエッチング除 去部 1 2 1のエッチング加工を行い、 孤立する表示電極 7と第 1の データ電極 8 1 とする。
この構造を用いるこ とによ り、 陽極酸化用電極 5を陽極酸化時に 幅が W l と広いので、 短時間に均一な陽極酸化膜を形成可能になる, さ らに、 第 2 6図の例と同様に、 陽極酸化用電極の幅を広く して あるため、 第 1のデータ電極 8 1 の幅 W 2内に断線箇所がある場合 には、 表示電極 7 とデータ電極 8 1, 8 3の間の陽極酸化用電極 5 を利用して、 第 1 のデータ電極 8 1 の断線を防止することができる, またこの実施例によれば、 第 1のデータ電極 8 1 から島状の下部 電極 2を分離する必要があるが、 そのため、 陽極酸化用電極 5から 第 1 のデータ電極 8 1 に加工を行う工程も同時に行う こ とができる ため、 工程の付加にはならない。
つぎに、 この第 1 1実施例による液晶表示装置のアクティブ基板 の製造方法を、 第 3 2図から第 3 4図を用いて説明する。
第 3 2図から第 3 4図は、 この第 1 2実施例における液晶表示装 置のァクティブ基板の製造方法を工程順に示す第 3 1図に相当する 断面図である。
先ず始めに、 第 3 2図に示すガラスからなるアクティブ基板であ る第 1 の基板 1 上の全面に、 金属膜と してタンタル (T a ) 膜を 2 0 0 n mの膜厚でスパッタ リ ング法で形成する。
その後、 タンタル膜上の全面に感光性樹脂 (図示せず) を回転塗 布法によ り形成し、 所定のホ トマスクを用いて露光, 現像処理を行 い、 感光性榭脂をパターン形成する。
その後、 このパターニングした感光性樹脂をェツチングマスクに 用いて、 タンタル膜をェッチングするホ トエッチング処理によ り、 第 1 のデータ電極 8 1 となる部分を含む陽極酸化用電極 5 と、 島状 の下部電極 2 と、 陽極酸化用電極 5 と島状の下部電極 2 とを接続す る配線接続部 7 6 と、 複数の陽極酸化用電極 5 をお互いに接続する よ うにパターン形成する。
ここでタンタル膜のエッチングは、 R I E装置を用いて行う。
そのエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F 6 ) と酸素 (O 2 ) との混合ガスを用いる。 そして六弗化硫黄の流 量力; 1 0 0〜 2 0 0 sccm、 酸素流量が 1 0〜 4 0 s eemで、 圧力が 4 〜 1 2 X 1 0-2torrと し、 さらに使用電力が 0.2〜 0.5 kWZ c m 2 で行う。
その後、 陽極酸化用電極 5を陽極と し、 陽極酸化液と して、
0.0 1〜 1.0 w t %のクェン酸水溶液あるいはホゥ酸アンモ-ゥ ム水溶液又は燐酸水溶液を用いて、 1 6〜 2 0 Vの電圧を印加して タンタル膜の陽極酸化処理を行う。
この結果、 下部電極 2 と陽極酸化用電極 5の側壁と上面の表面に 酸化タンタル膜 (T a 2 05 ) からなる非線形抵抗層 3を 3 0〜 4 O n mの膜厚で形成する。
つぎに、 スパッタ リ ング法を用いて、 透明導電膜と して酸化イン ジゥム錫 ( I T O) 膜を膜厚 1 5 0 n mで全面に形成する。 その後 酸化インジウムスズ膜上に感光性榭脂 (図示せず) を形成する。
その後、 酸化インジウム錫膜をエッチング処理して、 第 3 3図に 示すよ うに、 表示電極 7 と、 表示電極 7に接続する表示電極用上部 電極 8 5 と、 接続電極 8 と、 第 2のデーター電極 8 3 と、 第 2のデ —ター電極 8 3に接続するデータ電極用上部電極 8 4 とを同時にパ ターン形成する。
この酸化イ ンジウム錫のエッチングは、 臭素 (H B r ) の水溶液 エッチヤン トを用いるゥエツ トエッチングによ り行う。 このときの エッチヤン ト液温は 2 5 °C〜 3 0でに設定する。
つぎに、 第 3 4図に示すよ うに、 陽極酸化用電極 5 と島状の下部 電極 2 とを接続する配線接続部 7 6を除去し、 孤立する島状の下部 電極 2を形成するために、 感光性樹脂 1 2 5を形成する。 この際陽 極酸化用電極 5の一部であるエッチング除去部 1 2 1 を除去し、 陽 極酸化用電極 5を第 1 のデータ電極 8 1 と、 表示電極 7の下部にあ る重なり部 1 2 2にとに分離する。
この陽極酸化用電極 5は、 感光性樹脂 1 2 5 と酸化イ ンジユウム スズ膜からなる表示電極 7 と、 第 2のデーター電極 8 3 とをエッチ ング用のマスク と して、 R I E装置を使用してエッチング処理する £ このエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F 6 ) と酸素 (O2 ) との混合ガスを用いる。 そして六弗化硫黄の流 量;^ 1 0 0〜 2 0 Osccm、 酸素流量が 1 0〜 4 0 seemで、 圧力が 4 〜 1 2 X 1 0 -2torrと し、 さ らに使用電力が 0.2〜 0. 5 k WZ c m 2 で行う。
上記のエッチング条件では、 酸化インジウム錫をほとんどエッチ ングすることなく 、 配線接続部 7 6 とエッチング除去部 1 2 1 のタ ンタル膜と酸化タンタル膜だけをェツチングすることができる。 以上の工程によ り、 第 3 1図に示したよ うに、 陽極酸化用電極 5 は、 第 1のデータ電極 8 1 と、 表示電極 7の下部にある重なり部 1 2 2 とに分離され、 外部回路の信号を以下に示す経路で印加できる ( すなわち、 外部回路 (図示せず) と接続する接続電極 8 と、 陽極 酸化用電極 5に接続する第 1 のデータ電極 8 1 と、 第 2のデータ電 極 8 3 と、 第 2のデータ電極 8 3に接続するデータ電極用上部電極 8 4 と、 非線形抵抗層 3 と、 島状の下部電極 2 と、 非線形抵抗層 3 と表示電極用上部電極 8 5 とを介して、 表示電極用上部電極 8 5に 接続する表示電極 7に目的の電圧を印加する。
この実施例においては、 島状の下部電極 2 を分離するために、 感 光性榭脂 1 2 5 と表示電極 7 と第 2のデーター電極 8 3 をエツチン グ用マスク と して使用してエッチングを行う。 このとき同時に、 陽 極酸化用電極 5の内、 第 1 のデータ電極 8 1 と重なり部 1 2 2 との 間のエッチング除去部 1 2 1 を除去するため、 工程の増加にはなら ない。
〔第 1 2実施例〕
つぎに、 この発明の第 1 2実施例による液晶表示装置について、 第 3 5図および第 3 6図に基づいて説明する。
第 3 5図は、 この第 1 2実施例における液晶表示装置の T F D素 子を形成する第 1 の基板の一部領域を示す平面図である。 第 3 6図 は、 第 3 5図の N— N線に沿う断面図である。 この実施例では、 第 1 1実施例の陽極酸化用電極 5を表示電極 7 の上下左右まで延ばし、 重なり部 1 2 2を表示電極 7の上下左右に 設ける。
第 1 の基板 1 の上には、 いずれも金属膜と してタンタル (T a ) 膜からなる陽極酸化用電極 5 と、 島状の下部電極 2 と、 陽極酸化用 電極 5 と下部電極 2 とを接続する配線接続部 7 6 (第 3 5図に仮想 線破線で図示) を設ける。
この陽極酸化用電極 5の幅は、 島状の下部電極 2の周辺以外では 第 1 のデータ電極 8 1 の幅 W 2 よ り広い幅 W 2を有する。 さらに、 陽極酸化用電極 5は、 上下左右にお互いに接続している。
また、 陽極酸化用電極 5は、 一方の端部を陽極酸化用電極 5 a に よつて複数本の互いに接続する構成を有し、 他方の端部は外部回路 から非線形抵抗素子に信号を印加するための接続電極 8で被覆され ている。 この陽極酸化用電極 5は、 下部電極 2表面に非線形抵抗層 3を陽極酸化処理によ り形成するときの電極と して使用する。
この第 3 5図の第 1 のデータ電極 8 1 と表示電極 7 との間、 およ び表示電極 7間にも陽極酸化用電極 5を有する。 陽極酸化用電極 5 の一部であるエッチング除去部 1 2 1 は最終構造では除去される。
さ らに、 第 1 のデータ電極 8 1 と島状の下部電極 2に接続する配 線接続部 7 6 も、 最終構造では除去される。 すなわちこの第 3 5図 の平面図と第 3 6図の断面図は製造工程の途中を仮想線にて示し、 説明を理解しやすいよ うにしている。
さ らに、 この陽極酸化用電極 5 と配線接続部 7 6を介する島状の 下部電極 2の表面には、 このタンタル膜を陽極酸化処理して形成す る酸化タンタル (T a 2 O 5 ) 膜からなる非線形抵抗層 3を設ける £ そして、 陽極酸化用電極 5の重なり部 1 2 2上と基板 1上に透明 導電膜を設け、 表示電極 7 とする。 さらにこの表示電極 7に接続す る表示電極用上部電極 8 5を下部電極 2上に設ける。 また、 陽極酸 化用電極 5上に第 2のデータ電極 8 3を設け、 さらに第 2のデータ 一極 8 3に接続するデータ電極用上部電極 8 4を設ける。 さ らに、 外部回路から非線形抵抗素子部に信号を印加するための タンタルからなる陽極酸化用電極 5に上に、 透明導電性膜からなる 接統電榡 8を設ける。 この接続電極 8においては、 タ ンタルは額緣 状の形状をしている。 また、 透明導電性膜は額縁状のタ ンタルを覆 つている。 この形状にすることによ り、 外部回路と接続電極 8 との 接続を行う場合に、 額縁状のタンタルにより透明導電性膜よ り位置 を明確にできるため、 合わせ精度が向上する。 さらに、 額縁状タン タルの内と外に透明導電性膜を設けることによ り、 外部回路と入力 部の接続状況を透明導電性膜パッ ド部を透して確認できる。
と く に、 集積回路 ( I C ) と入力部を導電ペース ト等の媒介を利 用し、 接続電極 8上に直に接続する、 いわゆるチップ · オン · ガラ ス ( C O G ) 法の場合には、 透明導電性膜のみでは合わせ精度が悪 いため、 タンタルを額縁状に設けることによ り合わせ精度が向上す る。
そして、 島状の下部電極 2 と非線形抵抗層 3 とデーター電極用上 部電極 8 4 とによ り第 1 の非線形抵抗素子 (T F D素子) 8 6 を構 成する。 さらに、 島状の下部電極 2 と非線形抵抗層 3 と表示電極用 上部電極 8 5 とによ り第 2 の非線形抵抗素子 (T F D素子) 8 7を 構成する。
こ こで表示電極用上部電極 8 5 とデーター電極用上部電極 8 4 と 表示電極 7 とは、 いずれも透明導電膜、 たとえば酸化イ ンジウムス ズ ( I T O ) 膜で構成する。
さらに、 陽極酸化用電極 5を、 陽極酸化用電極 5 と透明導電性膜 からなる表示電極 7 との重なり部 1 2 2 と、 第 2のデータ電極 8 3 の下部にあるタ ンタルからなる第 1 のデータ電極 8 1 に分離する構 造である。 また、 第 1 のデータ電極 8 1 と表示電極 7間にあるエツ チング除去部 1 2 1 も除去し、 表示電極 7 と分離する。
このため、 陽極酸化用電極 5の幅は第 1 のデーター電極 8 1 と し ての輻 W 2 となる。
したがって、 陽極酸化時には陽極酸化用電極 5の幅 W 1 と して第 1 のデータ電極 8 1 の幅 (W 2 ) よ り広く し、 表示電極 7の下部ま で広げておく。 さ らに隣接する表示電極 7の間も陽極酸化用電極 5 によ り連結している。
第 2のデータ電極 8 3 と表示電極 7 とを設けた後に、 第 1 のデー タ電極 8 1 と島状の下部電極 2 との間を接続する配線接続部 7 6の エッチング加工を行い、 孤立する島状の下部電極 2 を設けると同時 に、 第 1 のデータ電極 8 1 と表示電極 7の間にあるエッチング除去 部 1 2 1 のェツチング加工を行い、 孤立する表示電極 7 と第 1 のデ ータ一電極 8 1 とする。
この構造を用いることによ り、 陽極酸化用電極 5を陽極酸化時に は幅を広く して且つ上下左右に横断しているため、 短時間に均一な 陽極酸化膜を形成可能となる。
その他の作用効果は第 1 1実施例の場合と同様である。
[第 1 3実施例〕
つぎに、 この発明の第 1 3の実施例による液晶表示装置について, 第 3 7図と第 3 8図に基づいて説明する。
図 3 7図は、 この第 1 3実施例における液晶表示装置の T F D素 子を形成する第 1 の基板の一部領域を示す平面図であり、 第 3 8図 は、 第 3 7図の P— P線に沿う断面図である。
これらの図を参照して、 この第 1 3実施例における T F D素子の 構成を説明する。
なお、 この実施例は、 第 1 1実施例に絶縁膜 4 8 を形成し、 絶縁 膜 4 8に開口部 4 9 を設け、 開口部 4 9を利用して島状の下部電極 2 と第 1 のデータ電極 8 1 を接続する配線接続部 7 6 をエッチング 除去する。
さ らに、 絶縁膜 4 8の開口部 4 9を第 1 のデータ電極 8 1 あるい は第 2のデータ電極 8 3 と表示電極 7 との間、 あるいは表示電極 7 と表示電極 7の間に設け、 陽極酸化用電極 5の一部すなわちエッチ ング除去部 1 2 1 を除去し、 第 1 のデーター電極 8 1 と表示電極 7 を分離する構成からなる。
第 1 の基板 1 の上には、 いずれも金属膜と してタンタル (T a ) 胰からなる陽極酸化用電極 5 と、 島状の下部電極 2 と、 陽檷酸化用 電極 5 と下部電極 2 とを接続する配線接続部 7 6 と (仮想線にて図 示) を設ける。
陽極酸化用電極 5の幅 W 1は島状の下部電極 2の周辺以外では、 第 1データ電極 8 1 の幅 W 1 よ り広い。
陽極酸化用電極 5は、 一方の端部を陽極酸化用電極 5 aによって 複数本が相互に接続されている。 また、 その陽極酸化用電極 5の他 方の端部は、 外部回路から非線形抵抗素子に信号を印加するための 接続電極 8に被覆されている。
この陽極酸化用電極 5は、 下部電極 2 の表面に非線形抵抗層 3を 陽極酸化処理によ り形成するときの電極と して使用する。
この第 3 1図に示す第 1 のデータ電極 8 1 と表示電極 7 との間に は陽極酸化用電極 5を有する。 エッチング除去部 1 2 1 は最終構造 では除去される。
さ らに、 第 1 のデータ電極 8 1 と島状の下部電極 2に接続する配 線接続部 7 6 も最終構造では除去される。 すなわち、 この第 3 7図 と第 3 8は、 製造工程の途中を仮想線にて示して説明を理解しやす いよ うにしている。
さ らに、 この陽極酸化用電極 5 と配線接続部 7 6を介する島状の 下部電極 2の表面には、 このタンタル膜を陽極酸化処理して形成す る酸化タ ンタル (T a 2 05 ) 膜からなる非線形抵抗層 3を設ける, 陽極酸化処理を行う場合には、 下部電極 2の上下の 2方向に配線 接続部 7 6を設けるこ とによ り、 例えば片側の配線接続部 7 6が断 線した場合においても、 別の配線接続部 7 6 によ り陽極酸化用電極 5に接続しているため、 下部電極 2の表面には陽極酸化膜を問題な く形成できる。
さらに、 陽極酸化用電極 5の重なり部 1 2 2上と、 基板 1上に透 明導電膜を設けて表示鴛極 7 とする。 そして、 この表示電極 7に接 続する表示電極用上部電極 8 5を下部電極 2上に設ける。 さ らに、 陽極酸化用電極 5上に第 2のデータ電極 8 3を設け、 さ らに、 第 2 のデータ電極 8 3に接続するデータ電極用上部電極 8 4を設ける。 また、 外部回路から非線形抵抗素子部に信号を印加するためのタ ンタルからなる陽極酸化用電極 5上に透明導電性膜からなる接続電 極 8を設ける。 この接続亀極 8においては、 タンタルは額縁状の形 状をしている。 また、 透明導電性膜は額縁状のタンタルを覆い、 四 角形をしている。 この形状にするこ とによ り 、 外部回路と接続電極 8 との接続を行う場合に、 額縁状のタンタルパッ ド部 7によ り透明 導電性膜よ り位置を明確にできるため、 合わせ精度が向上する。
さ らに、 額縁状タンタルの内と外に透明導電性膜を設けるこ とに よ り 、 外部回路と入力部の接続状況を透明導電性膜を透して確認で きる。
そして、 島状の下部電極 2 と非線形抵抗層 3 とデータ電極用上部 電極 8 4 とによ り第 1 の非線形抵抗素子 (T F D素子) 8 6 を構成 する。 さ らに、 島状の下部電極 2 と非線形抵抗層 3 と表示電極用上 部電極 8 5 とによ り第 2 の非線形抵抗素子 (T F D素子) 8 7 を構 成する。
こ こで、 表示電極用上部電極 8 5 とデータ電極用上部電極 8 4 と 表示電極 7 とは、 いずれも透明導電膜、 たとえば酸化イ ンジウムス ズ ( I T O ) 膜で構成する。
つぎに、 全面に非線形抵抗素子 (T F D ) の液晶表示装置への加 ェを行う場合の外力による劣化あるいは破損の防止と、 第 2のデー ター電極 8 3 と液晶表示装置を構成する対向電極 (図示せず) 間の 電気的短絡の防止と表示電極 7 と対向電極 (図示せず) 間の電気的 短絡の防止のために、 全面に絶縁膜 4 8を設ける。
この絶縁膜 4 8は、 スパッタ リ ング法による酸化タンタル膜 (T a 2 O 5 ) を設ける。
この絶縁膜 4 8に開口部 4 9 と して配線接続部 7 6 を除去するた めの配線接続用開口部 9 1 (一点鎖線にて示す) を設ける。 さ らに、 陽極酸化用電極 5 と表示電極 7の重なり部 1 2 2の間のエッチング 除去部 1 2 1上にも、 分離用開口部 9 2を設ける。
さらに、 接続電極 8においては、 絶緣膜 4 8の接続用開口部 9 3 を透明導電性膜の接続電極 8上に設け、 他の部分には絶縁膜 4 8 を 残してある。
このよ うに、 接続電極 8において、 絶縁膜 4 8を外部回路との接 統電極 8以外の領域に残しておく ことによ り、 絶縁膜 4 8がほとん どの配線上を被覆しているため、 ゴミ等によ り近接する入力部、 配 線同士が電気的短絡を起こすことがない。
また、 配線接続部 7 6は、 絶縁膜 4 8の配線接続用開口部 9 1 と 表示電極 7の辺と同一な辺を有し、 島状の下部電極 2は、 陽極酸化 用電極 5から配線接続用開口部 9 1 と同一辺を有する。 また、 エツ チング除去部 1 2 1 は、 絶縁膜 4 8の分離用開口部 9 2 と表示電極 7の辺と同一な辺を有し、 エッチング除去部 1 2 1 によ り陽極酸化 用電極 5は第 1 のデータ電極 8 1 となり、 独立する表示電極 7の構 成となる。
このため、 陽極酸化用電極 5の幅は第 1 のデータ電極 8 1 と して の幅 W 2 となる。
したがって、 陽極酸化を行う時には、 陽極酸化用鼋極 5の幅を W 1 と して第 1 のデータ電極 8 1 の幅 W 2よ り輻を広く しており、 表 示電極 7の下部まで広げておく。 さ らに隣接する表示電極 7の間も 陽極酸化用電極 5によ り連結している。
最後に、 第 2のデータ電極 8 3 と表示電極 7 とを設け、 さ らに、 絶縁膜 4 8を設けた後に、 第 1 のデータ電極 8 1 と島状の下部電極 2 との間を接続する配線接続部 7 6のエッチング加工を行い、 孤立 する島状の下部電極 2を設けると同時に第 1 のデータ電極 8 1 と表 示電極 7の間にあるエッチング除去部 1 2 1 のェツチング加工を行 い、 孤立する表示電極 7 と第 1 のデーター電極 8 1 とする。
この構造を用いるこ とによ り 、 陽極酸化用電極を陽棰酸化時には 幅を広く し、 短時間に均一な陽極酸化膜を形成可能となる。 5 さ らに、 第 2 6図の例と同様に、 陽極酸化用電極の幅 (W 1 ) を 広く してあるため、 第 1 のデータ電極 8 1 の幅 (W 2 ) 內に断線箇 所がある場合には、 表示電極 7 と第 1のデーター極 8 1 の間の陽極 酸化用電極 5 の一部を利用して、 第 1 のデータ電極 8 1 の断線を防 止することができる。
さらに、 この実施例によれば、 第 1 のデータ電極 8 1から島状の 下部電極 2を分離する必要がある、 さらに、 接続電極 8において絶 縁膜 4 8に開口部を設け、 外部回路との電気的接続を行う必要があ る。 そのため、 絶縁膜 4 8の加工を行う と同時に、 配線接続部 7 6 の除去と、 陽極酸化用電極 5から第 1のデーター電極 8 1 に加工を 行う工程も同時に行う こ とができるため、 工程の增加には全く なら ない。
また、 絶縁膜 4 8 を第 2のデータ電極 8 3上、 あるいは表示電極 7上に設けることによ り、 液晶表示装置と して利用する場合に使用 する対向電極との電気的短絡が発生しない。
さ らに、 2つの上部電極を設ける実施例で説明したが、 2つ以上 の上部電極を設けてもよい。
〔第 1 4実施例〕
つぎに、 この発明の第 1 4実施例による液晶表示装置について、 第 3 9図と第 4 0図に基づいて説明する。
この第 1 4実施例は、 T F T素子の構造に関するものである。
図 3 9図は、 この第 1 4実施例による液晶表示装置の T F T素子 を形成する第 1 の基板の一部領城を示す平面図であり、 第 4 0図は、 第 3 9図の Q— Q線に沿う断面図である。
T F T素子を形成するアクティブ基板である第 1 の基板 1 の上に は、 いずれも金属膜と してタンタル (T a ) 膜からなる陽極酸化用 電極 5 と、 陽極酸化用電極 5の一部からなるゲー ト電極 1 0 1 を設 ける。 また、 陽極酸化用電極 5は、 ゲー ト電極 1 0 1 とエッチング 除去部 1 2 1 と重なり部 1 2 2からなる。 陽極酸化用電極 5の幅はゲー ト電極 1 0 1の周辺以外では幅 W 1 と広い。
この陽極酸化用電極 5は、 一方の端部では図示しない陽極酸化用 電極部によって複数本相互に接続されている構成を有する。 他方の 端部においては、 外部回路から T F T素子に信号を印加するための 接続部 8に被覆されている。 この陽極酸化用電極 5は、 ゲー ト電極 部 1 0 1の表面にゲー ト絶縁膜 1 0 2を陽極酸化処理により形成す るときの黧極と して使用する。
この第 3 9図のゲー ト電極 1 0 1 と表示電極 7との間には陽極酸 化用電極 5の一部を有する。 表示電極 7以外の領域であるェッチン グ除去部 1 2 1 は最終構造では除去される。
すなわち、 これらの図では製造工程の途中を仮想線で示し、 説明 を理解しやすいよ うにしている。
さ らに、 この陽極酸化用電極 5 とゲー ト電極 1 0 1の表面には、 このタンタル膜を陽極酸化処理して形成する酸化タンタル (T a 2 05 ) 膜からなるゲー ト絶縁膜 1 0 2を設ける。
そして、 ゲー ト電極 1 0 1の周辺にアモルフ ァスシリ コン ( a — S i ) からなる半導体層 1 0 3を設ける。 さらに、 半導体層 1 0 3 上に不純物イオンと してリ ン ( P) を含む半導体層 1 0 4を設ける, さらに、 不純物イオンを含む半導体層 1 0 4上にソース電極 1 0 5 と ドレイ ン電極 1 0 6を設ける。 ソース電極 1 0 5 とデータ一電 極 1 0 6はモリ ブデン (M o ) にて設ける。 不純物イオンを含む半 導体層 1 0 4はソース電極 1 0 5 と ドレイ ン電極 1 0 6 と半導体層 1 0 3の重なり合う部分に設けている。 また、 ソース電極 1 0 5は 外部回路に接続するデータ電極 8 1 に接続する。
データ電極 8 1 とグー ト電極 1 0 1の重なる部分では、 ゲー ト電 極 1 0 1が金属膜 (タンタル) 2 と陽極酸化膜 (酸化タンタル) 3 であり 、 その上部に半導体層 1 0 3 と不純物ィオンを含む半導体層 1 04 と ソース電極 1 0 5の金属膜 (モリ ブデン) を設ける。
このよ うに、 ゲー ト電極 1 0 1の金属膜と ソース電極 1 0 5の金 属膜の間に多層の絶縁膜、 あるいは半導体層 1 0 3を設けることに よ り電気的短絡を防止できる。
さらに、 陽極酸化用電極 5 の重なり部 1 2 2上と基板 1上に表示 電極 7を設ける。
また、 外部回路から非線形抵抗素子に信号を印加するためのタン タルからなる陽極酸化用電極 5上に透明導電性膜からなる接続電極 8を設ける。 この接続電極 8においては、 タ ンタルは額縁状の形状 をしている。 また、 透明導電性膜は額縁状のタ ンタルを ¾い、 四角 形をしている。
この形状にすることによ り、 外部回路と接続電極 8 との接続を行 う場合に、 額縁状のタ ンタルによ り透明導電性膜よ り位置を明確に できるため、 合わせ精度が向上する。 さ らに、 額縁状タ ンタルの內 と外に透明導電性膜を設けるこ とによ り、 外部回路と接続電極 8 の 接続状況を透明導電性膜を透して確認できる。
ここで表示電極 7 と接続電極 8 とは、 いずれも透明導電膜、 たと えば酸化イ ンジウム錫 ( I T O ) 膜で構成する。
さ らに、 陽極酸化用電極 5の内、 表示電極 7 とゲー ト電極 1 0 1 の間にあるエッチング除去部 1 2 1 は、 エッチング処理法によ りェ ツチング除去し、 陽極酸化用電極 5は、 ゲー ト電極 1 0 1 となり、 表示電極 7の下部にある重なり部 1 2 2 と分離する。
このため、 陽極酸化用電極 5 の幅はゲー ト電極 1 0 1 と しての幅 W 2 となる。
したがって、 陽極酸化を行う時には、 陽極酸化用電極 5の幅を W 1 と してゲー ト電極 1 0 1 の幅 (W 2 ) よ り幅を広く し、 表示電極 7の下部まで広げておく。 さらに隣接する表示電極 7 の間も陽極酸 化用電極 5によ り連結している。
最後に表示電極 7 を設けた後に、 ゲー ト電極 1 0 1 と表示電極 7 の下部にある重なり部 1 2 2に分離する。 さらに、 孤立する表示電 極 7 となる。
この構造を用いるこ とによ り 、 陽極酸化用電極を陽極酸化時には 幅を広く し、 短時間に均一な陽極酸化膜を形成可能となる。
さ らに、 陽極酸化用電極 5の幅 (W 1 ) を広く してあるため、 ゲ 一ト電極 1 0 1 の幅 (W 2 ) 内に断線箇所がある場合には、 表示電 極 7 とゲー ト電極 1 0 1 の間の陽極酸化用電極 5の一部を利用しゲ 一ト電極 1 0 1 の断線を防止することができる。
ここで、 この第 1 4実施例による液晶表示装置のアクティブ基板 の製造方法を、 第 4 1乃至第 4 4図を用いて説明する。
第 4 1乃至第 4 4図は、 この第 1 4実施例による液晶表示装置の ァクティブ基板の製造方法を工程順に示す断面図である。
先ず始めに、 第 4 1図に示すガラスからなるアクティブ基板であ る第 1 の基板 1上の全面に、 金属膜と してタ ンタル (T a ) 膜を 2 0 0 n mの膜厚でスパッタ リ ング法で形成する。
その後、 タ ンタル膜上の全面に感光性榭脂 (図示せず) を回転塗 布法によ り形成し、 所定のホ トマスクを用いて露光, 現像処理を行 い、 感光性榭脂をパターン形成し、 その後このパターニングした感 光性榭脂をエッチングマスクに用いてタンタル膜をエッチングする ホ トエッチング処理によ り 、 陽極酸化用電極 5 と、 陽極酸化用電極 5に接続するゲー ト電極部 1 0 1 とをパターン形成する。
ここでタンタル膜のエッチングは、 R I E装置を用いて行う。 そのエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F 6 ) と酸素 (O2 ) との混合ガスを用いる。 そして六弗化硫黄の流 量が 1 0 0〜 2 0 0 sccm、 酸素流量が 1 0〜 4 0 sccmで、 圧力が 4 〜 : I 2 X 1 0 -2torrと し、 使用電カが 0. 2〜 0. 5 1∑ \\^ £: 1112 で 行う。
その後、 陽極酸化用電極 5を陽極と し、 陽極酸化液と して、 0 . 0 1 〜 1 . O w t %のクェン酸水溶液あるいはホウ酸アンモニゥム 水溶液または燐酸水溶液を用いて、 6 0〜 7 0 Vの電圧を印加して、 タンタル膜の陽極酸化処理を行う。
この結果、 ゲー ト電極部 1 0 1 と陽極酸化用電極 5 との側壁と上 面の表面に、 酸化タンタル膜 (T a 2 O5 ) からなる絶縁膜 (図示 せず) を 1 2 0〜 1 3 0 n mの膜厚で形成する。
つぎに、 プラズマ C V D法を用いて、 半導体層 1 0 3 と してァモ ルフ ァ ス シ リ コ ン ( a — S i ) 膜を 70 n mで全面に形成する。 そ の後、 プラズマ C V D法を用いて不純物イオンと してリ ン ( P) を 含む半導体層 1 04 ( n - a - S i ) を 2 0 n mで全面に形成する, その後、 第 4 2図に示すよ うに、 半導体層 1 0 3 , 1 04をエツ チング処理して、 ゲー ト電極部 1 0 1上の周囲とデータ電極 8 1の 部分にパターン形成する。
ここでアモルフ ァ スシリ コン膜のエッチングは、 R I E装置を用 いて行う。
そのエッチング条件は、 エッチングガスと して四弗化炭素 (C F 4) と酸素 (O2 ) との混合ガスを用いる。 そして四弗化炭素の流 量が 1 0 0〜 2 0 0 sccm, 酸素流量が 1 0〜 4 0 sccmで、 圧力が 4 〜 : L 2 X 1 0 -2torrと し、 さ らに使用電カが 0.2〜 0.5 kW/ c m 2 で行う。
つぎに第 4 3図に示すよ うに、 スパッタ リ ング法を用いて、 モ リ ブデン膜 (M o ) を膜厚 2 0 0 n mで全面に形成する。 その後、 モ リ ブデン膜上に感光性樹脂 (図示せず) を形成する。
その後、 モリ ブデン膜をエッチング処理してソース電極 1 0 5 と, ド レイ ン電極 1 0 6 と ソース電極 1 0 5に接続するデーター電極 8 1 とを同時にパターン形成する。
このモリ ブデン膜のエッチングは、 燐酸 (H3P O4) と硝酸(H N03) と酢酸(C H3C O OH) のエツチャン ト とを用いるゥエツ トエッチングによ り行う。 なおこのと きのエツチャン ト液温は 2 5 で〜 2 6 °Cに設定する。
さ らに、 その感光性榭脂をエッチング用のマスク と して不純物ィ オンを含む半導体層 1 0 4をエッチングする。 エッチングは、 R I E装置を用いて行い、 そのエッチング条件は、 下地の半導体層 1 0 3の劣化が起きない条件とする。
エッチングガスと して四弗化炭素(C F4) と酸素 (O2 ) との混 合ガスを用いる。 そして四弗化炭素流量が 8 0〜 1 2 Osccnu 酸素 流量が 1 0〜 1 5sccmとで、 圧力が 1 0〜 : 1 2 X 1 0-2torrと し、 さ らに使用電カが 0.0 5〜 0. 1 1^ \¥ <: 1112 で行う。
つぎにスパッタ リ ング法を用いて、 透明導電膜と して酸化ィンジ ゥムスズ ( I T O) 膜を膜厚 1 0 0 n mで全面に形成する。 その後 酸化インジウムスズ膜上に感光性樹脂 (図示せず) を形成する。
その後、 酸化ィンジゥム錫膜をエッチング処理して ドレイン電極 1 0 6に接続し、 陽極酸化用電極 5の一部である重なり部 1 2 2上 に表示電極 7をパターン形成する。 さらに、 ゲー ト電極 1 0 1 に接 続する陽極酸化用電極 5上に接続電極 8 とデータ電極 8 1 に接続す る入力部 (図示せず) をパターン形成する。
この酸化イ ンジウム錫のエッチングは、 臭素 (H B r ) の水溶液 エツチャン トを用いるゥエツ トエッチングによ り行う。 なおこのと きのエッチヤン ト液温は 2 5で〜 3 0 °Cに設定する。
つぎに第 4 4図に示すよ うに、 陽極酸化用電極 5の內表示電極 7 の重なり部 1 2 2 とゲー ト電極 1 0 1 の間のエッチング除去部 1 2 1 、 あるいは表示電極 7 と表示電極 7の間にあるエッチング除去部 1 2 1 をエッチング除去するために、 データー電極 8 1 とゲー ト電 極部 1 0 1 の周への覆う感光性樹脂 1 2 5を形成する。
陽極酸化用電極 5の内、 エッチング除去部 1 2 1 は、 感光性榭脂 1 2 5 と酸化イ ンジュゥム錫膜からなる表示電極 7から露出してい るため、 感光性樹脂 1 2 5 と表示電極 7をエッチング用のマスク と し、 エッチング除去部 1 2 1は R I E装置を使用したエッチング処 理によ り除去される。
このエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F 6 ) と酸素 (02 ) との混合ガスを用いる。 そして六弗化硫黄の流 量カ 1 0 0〜 2 0 0 sccm、 酸素流量が 1 0〜 4 0 sccmで、 圧力が 4 〜: I 2 X 1 0- 2torrと し、 さらに使用電カが 0. 2〜 0.5 1£ /。 m '- で行ラ D
上記のエッチング条件では、 酸化インジウム錫をほとんどエッチ ングすることなく、 タンタル膜 2 とゲー ト絶縁膜 1 0 2である酸化 タンタル膜だけをエッチングすることができる。
以上の工程により、 この実施例の第 3 9図と第 4 0図に示したよ うに、 陽極酸化用電極 5は、 グー ト電極 1 0 1 と、 表示電極 7 の下 部にある重なり部 1 2 2 とに分離することができる。
この製造方法を用いることによ り 、 陽極酸化用電極を陽極酸化時 には幅 (W 1 ) を広く し、 短時間に均一な陽極酸化膜を形成可能と なる。
さ らに、 陽極酸化用電極 5の幅 W 1 を広く してあるため、 ゲー ト 電極 1 0 1 の幅 W 2内に断線箇所がある場合には、 表示電極 7 とゲ 一ト電極 1 0 1 の間の陽極酸化用電極 5の一部を利用してゲー ト電 極 1 0 1 の断線を防止することができる。
〔第 1 0乃至 1 4実施例の変更例〕
以上説明した各実施例においては、 透明導電膜と しては酸化イ ン ジゥムスズ ( I T O ) を用いた例で説明したが、 酸化インジウム
( I n 2 O 3 ) 、 酸化錫 ( S n O 2 ) 、 酸化亜鉛 ( Z n O ) などの 酸化物を用いてもよい。
また、 陽極酸化用電極 5の材料と してタンタルを用いた例で説明 したが、 アルミ ニウムあるいは、 タ ンタルあるいは、 アルミ ニウム に炭素, シリ コ ン, ニオブ, 窒素, あるいはリ ンを含む金属膜を用 いてもよい。
さ らに、 第 1 0実施例乃至第 1 3実施例において、 上部電極と し て表示電極と同一の透明導電性膜を用いた例を説明したが、 上部電 極と表示電極を異なる材質で設けるよ うにしてもよい。
上部電極の材質と して、 ク ロム, チタ ン, タ ングステン, チタ ン シリサイ ド, タ ングステンシリサイ ド, あるいは窒素を含むク ロム 膜も使用するこ とができる。 産業上の利用性 この発明は、 各種電子機器に多用されている液晶表示装置、 特に 微細化加工が可能でコス ト低滅に有効な T F Dあるいは T F T等の 非線形抵抗素子をスィ ツチング素子に用いた液晶表示装置において ¾極の陽極酸化処理による非線形抵抗層の形成を短時間に均一に行 う こ とができ、 その後の破壊や起こるのを防ぎ、 検査も容易にする ことができる。
また、 陽極酸化用電極を使用した後の残存部分を有効に利用して 外部回路との接続電極などを形成したり、 遮光部と して見切り利用 したり、 電極に欠陥が生じた場合の補修用に利用したりするこ とが できる。
したがって、 液晶表示装置の製作時の歩留ま りの向上、 表示品質 の向上、 汎用性の拡大、 コス トの低滅などを実現するこ とができ、 産業上の利用価値が高いものである。

Claims

請 求 の 範 囲
1 . 所定の間隔を もって対向する第 1 の基板および第 2 の基板と 、 その第 1 の基板上に設けた第 1 の鴛極および第 2 の電極と 、 その 第 1 の電極と第 2 の電極とが重な り合う領城に設けた非線形抵抗 素子と、 前記第 1 の基板と第 2 の基板と の間に封入した液晶 と を 備えた液晶表示装置において、
前記第 1 の電極は、 前記非線形抵抗素子を構成する下部電極と 、 該非線形抵抗素子に外部信号を印加するための複数の信号霪極と 、 前記下部電極を陽極酸化して非線形抵抗層を形成するための陽極 酸化用電極と を有 し、 前記複数の信号電極は、 前記下部電極の陽 極酸化処理を行う と き には、 前記陽極酸化用電極によ り相互に接 続されてお り 、
前記第 2 の電極は、 前記非線形抵抗層上に設ける上部電極と 、 該上部電極に接続される表示電極と 、 前記陽極酸化用電極の一部 を覆 う接続電極と を有し、
前記下部電極と 、 該下部電極の陽極酸化処理によって形成され た非線形抵抗層 と 、 前記上部電極と によって前記非線形抵抗素子 を構成し、
前記陽極酸化用電極は、 前記陽極酸化処理後に前記接続電極に 覆われない部分が除去され、 それによつて前記各信号電極を分離 し独立させている こ と を特徴とする液晶表示装置。
2 . 所定の間隔を もって対向する第 1 の基扳および第 2 の基板と、 その第 1 の基板上に設けた第 1 の電極および第 2 の電極と 、 その 第 1 の電極と第 2 の電極と が重な り 合 う領域に設けた非線形抵抗 素子と 、 前記第 1 の基板と第 2 の基板と の間に封入した液晶と を 備えた液晶表示装髭において、
前記第 1 の電極は、 前記非線形抵抗素子を構成する下部電極と 、 該非線形抵抗素子に外部信号を印加するための複数の信号電極と、 前記下部電極を陽極酸化して非線形抵抗層を形成するための陽極 酸化用電極と を有し、 前記複数の信号電極は、 前記下部電極の陽 接酸化処理を行う と きには、 前記陽極酸化用電極によ り相互に接 続されてお り 、
前記第 2 の亀極と して前記非線形抵抗層上に設ける上部電極を、 第 3 の電極と して該上部電極に接続される表示電極を設け、 その 第 2 の電極あるいは第 3 の電極の少なく と も一方が前記陽極酸化 用 «楠の一部を覆 う接続電極を有し、
前記下部電極と 、 該下部電極の陽極酸化処理によ って形成され た非線形抵抗層と 、 前記上部電極と によって前記非線形抵抗素子 を構成し、
前記陽極酸化用電極は、 前記陽極酸化処理後に前記第 2 の電極 あるいは第 3 の電極からなる接続電極に覆われない部分が除去さ れ、 それによつて前記各信号電極を分離し独立させている こ と を 特徴とする液晶表示装置。
3 . 所定の間隔を もって対向する第 1 の基板および第 2 の基板と 、 その第 1 の基扳上に設けた第 1 の電極および第 2 の電栩と 、 その 第 1 の電極と第 2 の亀極とが重な り 合う領域に設けた非線形抵抗 素子と 、 前記第 1 の基板と第 2 の基板と の間に封入した液晶と を 備えた液晶表示装置において、
前記第 1 の電極は、 前記非線形抵抗素子を構成する下部電極と、 該非線形抵抗素子に外部信号を印加するための複数の第 1 の信号 電極と 、 前記下部電極を陽極酸化して非線形抵抗層を形成するた めの陽極酸化用電極と を有し、 前記複数の第 1 の信号電極は、 前 記下部電極の陽極酸化処理を行 う と き には、 前記陽極酸化用電極 によ り相互に接続されてお り 、
前記第 2 の電極は、 前記非線形抵抗層上に設ける上部電極と、 該上部電極に接続される表示電極と 、 前記非線形抵抗素子に外部 信号を印加するための第 2 の信号電極と 、 該信号電極に外部回路 から電圧を印加する入力電極と を有し、
該入力電極は前記陽極酸化用電極の一部を覆い、 その陽極酸化 用電極は前記入力電極と 同一辺にて分離されている こ と を特徴と する液晶表示装置。
4 . 所定の間隔を もって対向する第 1 の基板および第 2 の基板と 、 その第 1 の基板上に設けた第 1 の電極および第 2 の電極と 、 その 第 1 の電極と第 2 の電極と が重な り 合 う領域に設けた非線形抵抗 素子と 、 前記第 1 の基板と第 2 の基板と の間に封入した液晶と を 備えた液晶表示装 Sにおいて、
前記第 1 の電極は、 前記非線形抵抗素子を構成する下部電極と 、 該非線形抵抗素子に外部信号を印加するための複数の第 1 の信号 電極と 、 前記下部電極を陽極酸化して非線形抵抗層を形成するた めの陽極酸化用電極と を有し、 前記複数の第 1 の信号電極は、 前 記下部電極の陽極酸化処理を行 う と き には、 前記陽極酸化用電極 によ り相互に接続されてお り 、
前記第 2 の電極は、 前記非線形抵抗層上に設ける上部電極と、 該上部電極に接続される表示電極と 、 前記非線形素子に外部信号 を印加するための第 2 の信号電極と 、 該信号電極に外部回路から 電圧を印加する入力電極と を有し、
前記非線形抵抗素子あるいは、 前記表示電極上を覆 う絶縁膜を 形成し、 該絶縁膜の前記陽極酸化膜上と前記入力電極上に開口部 を設け、 前記陽極酸化用電極が前記開 口部と 同一の辺にて分離さ れている こ と を特徴をする液晶表示装置。
5 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための信号電 極を有し、 信号電極は、 陽極酸化処理を行う と き には、 陽極酸化 用電極によ り相互に接続し、 さ らに第 2 の電極と して、 非線形抵 抗層上に設ける上部電極と上部電極に接続する表示電極と 陽極酸 化用電極の一部を覆う接続電極を有し、 下部電極と非線形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 さ らに陽極酸化用電 極は、 陽極酸化後に、 陽極酸化用電極の一部は、 第 1 の電極から なる独立する信号電極と表示領域の周囲に第 1 の電極と第 1 の電 極の暘極酸化膜である絶縁膜からなる遮光部を有する こ と を特徴 とする液晶表示装置。
6 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を陽棰酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための信号電 極を有し、 信号 ®極は、 陽極酸化処理を行 う と きには、 陽極酸化 用電極によ り相互に接続し、 さ らに第 2 の電極と して、 非線形抵 抗層上に設ける上部電極と上部電極に接続する表示電極と 陽極酸 化用電極の一部を覆う接続電極を有し、 下部電極と非線形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 さ らに陽極酸化用電 極は、 陽極酸化後に、 陽極酸化用電極の一部は、 第 1 の電極から なる独立する信号電極と表示領域の周囲に第 1 の電極と第 1 の電 極の陽極酸化膜である絶縁膜からなる遮光部を有し、 遮光部には 開口部を有する こ と を特徴とする液晶表示装置。
7 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を瞄極酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部鴛極と非線形抵抗素子に外部信号を印加するための信号電 槿を有し、 信号電極は、 陽極酸化処理を行 う と きには、 陽極酸化 用電極によ り 相互に接続し、 さ らに第 2 の電極と して、 非線形抵 抗層上に設ける上部電極と上部電極に接続する表示電極と 陽極酸 化用電極の一部を Sう接続電極を有し、 下部電極と非線形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 さ らに陽極酸化用電 極は、 陽極酸化後に、 陽極酸化用電極の一部は、 第 2 の電極から なる接続電極と 同一な辺で分離し、 独立した信号電極と し、 さ ら に、 表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜であ る絶縁膜からなる遮光部と を有する こ と を特徴とする液晶表示装 置。
8 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を陽極酸化するための陽極酸化用鴛極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための第一の 信号電極と を有し、 第 1 の信号電棰は、 陽極酸化処理を行 う と き には、 陽極酸化用電極によ り相互に接続し、 さ らに第 2 の電極と して、 非線形抵抗層上に設ける上部電極と上部電極に接統する表 示電極と第 1 の信号電極上を覆う 第 2 の信号電極と 陽極酸化用電 極の一部を覆 う接続鴛極と を有し、 さ らに、 下部電極上には、 2 つの上部電極を有し、 一方の上部電極は、 第 2 の信号電極に接続 し、 他方は表示電極に接続し、 下部電極と非線形抵抗層と上部電 極によ り 非線形抵抗素子を構成し、 さ らに陽極酸化用電極は、 陽 棰酸化後に、 陽極酸化用電極の一部は、 第 2 の電極からなる接続 電極と 同一な辺で分離し、 独立した第 1 の信号電極と し、 さ らに、 表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜である絶 縁膜からなる遮光部と を有する こ と を特徴とする液晶表示装置。
9 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための信号電 極を有し、 信号電極は、 陽極酸化処理を行う と きには、 陽極酸化 用電極によ り相互に接続し、 さ らに第 2 の電極と して、 非線形抵 抗層上に設ける上部電極と上部電極に接続する表示電極と 陽極酸 化用電極の一部を覆う接続電極を有し、 下部電極と非線形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 さ らに、 第 1 基板上 には、 絶縁膜を有し、 絶縁膜には、 開口部を有し、 陽極酸化用電 極の一部は、 陽極酸化後に、 絶縁膜の開口部と 同一な辺にて分離 し、 第 1 の電極からなる独立する信号電極と表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜である絶縁膜と保護用絶縁膜 からなる遮光部を有する こ と を特徴とする液晶表示装置。
1 0 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成 する下部亀棰と非線形抵抗素子に外部信号を印加するための第一 の信号電極と を有し、 第 1 の信号電極は、 陽極酸化処理を行う と きには、 陽極酸化用電極によ り 相互に接統し、 さ らに第 2 の髦極 と して、 非線形抵抗層上に設ける上部電極と上部電極に接統する 表示電極と第 1 の信号電極上を覆う第 2 の信号電極と腸極酸化用 髦極の一部を覆う接続電極と を有し、 さ らに、 下部電極上には、 2つの上部電極を有し、 一方の上部 ®極は、 第 2 の信号電極に接 続し、 他方は表示滬極に接続し、 下部電極と非線形抵抗層 と上部 鼋極によ り 非線形抵抗素子を構成し、 さ らに、 第 1 の基板上には 絶縁膜を有し、 絶緣膜には開口部を有し、 陽棰酸化用電極は、 陽 極酸化後に、 保護用絶縁膜の開口部と 同一辺にて分離し、 第 1 の 亀極からなる独立する第 1 の信号電極と し、 さ らに、 表示領城の 周囲に第 1 の S槿と第 1 の電極の陽極酸化膜である絶縁膜からな る遮光部と を有する こ と を特徴とする液晶表示装置。
1 1 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための陽極酸化用髦極と非線形抵抗素子を構成 する下部電極と非線形抵抗素子に外部信号を印加するための信号 電極を有し、 信号電極は、 陽極酸化処理を行 う と き には、 陽極酸 化用亀極によ り相互に接続し、 さ らに第 1 の電極上の陽極酸化膜 をゲー ト絶縁膜と し、 ゲー ト絶縁膜上には、 半導体層を有し、 半 導体層上にソ ース電極と ド レイ ン電極と を有し、 ド レイ ン電極に 接続する表示電極を有し、 さ らに陽極酸化用鴛極は、 陽極酸化後 に、 陽極酸化用電極の一部は、 第 1 の電極からなる独立するゲー ト電極と表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜 である絶縁膜からなる遮光部を有する こ と を特徴とする液晶表示 装置。
1 2 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 檁を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成 する下部電極と非線形抵抗素子に外部信号を印加するための信号 電極を有し、 信号電極は、 陽極酸化処理を行う と き には、 陽極酸 化用鴛極によ り相互に接続し、 さ らに第 1 の電極上の陽極酸化膜 をゲー ト絶縁膜と し、 ゲー ト絶縁膜上には、 半導体層を有し、 半 導体層上にソース電極と ド レイ ン電極と を有し、 ド レイ ン電棰に 接統する表示電極を有し、 さ らに陽極酸化用電極は、 陽極酸化後 に、 陽極酸化用電極の一部は、 第 1 の電極からなる独立するグー ト電極と表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜 である絶縁膜からなる遮光部を有し、 前記遮光部上には、 表示電 檷と 同一な材質の膜が設けてあ り 、 前記遮光部は、 前記表示電極 と 同一な材質の膜と 同一な辺を有する こ と を特徴とする液晶表示 装置。
1 3 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成 する下部電極と非線形抵抗素子に外部信号を印加するための信号 電極を有し、 信号電極は、 陽極酸化処理を行 う と き には、 陽極酸 化用電極によ り相互に接続し、 さ らに第 1 の電極上の陽極酸化膜 をゲー ト絶縁膜と し、 ゲー ト絶縁膜上には、 半導体層を有し、 半 導体層上にソース電極と ド レイ ン電極と を有し、 ド レイ ン電極に 接続する表示電極を有し、 さ らに、 第 1 の基板上には絶縁膜を有 し、 絶縁膜には開 口部を有し、 さ らに陽極酸化用電極は、 陽極酸 化後に、 陽極酸化用電極の一部は、 第 1 の電極からなる独立する ゲー ト電極と表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸 化膜である絶縁膜からなる遮光部を有し、 前記遮光部上には、 絶 縁膜が設けてあ り 、 前記遮光部は、 前記絶縁膜の開 口部と 同一な 辺を有する こ と を特徴とする液晶表示装置。
1 4 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための第 1 の陽極酸化用電極と第 1 の陽極酸化 用電極から独立する第 2 の陽極酸化用電極と 第 1 の陽極酸化用電 極に接続する下部電極と非線形抵抗素子に外部信号を印加するた めの第 1 の陽極酸化用鴛極に接続する信号電極を有し、 信号電極 は、 ¾極酸化処理を行 う と きには、 第 1 の陽檁酸化用電極によ り 相互に接続し、 さ らに、 補助電極は、 第 2 の陽極酸化用電極に接 練し、 さ らに第 2 の電極と して、 非線形抵抗層上に設ける上部電 極と上部電極に接続する表示電極と第 1 の陽極酸化用電極と第 2 の陽極酸化用電極の一部を覆う接続電極を有し、 下部電極と非線 形抵抗層と上部電極によ り 非線形抵抗素子を構成し、 さ らに第 1 の陽極酸化用電極と第 2 の陽極酸化用電極の一部は、 陽極酸化後 に、 独立する信号電極と独立刷る補助電極と な り 、 第 2 の陽極酸 化用電極上に設ける非線形抵抗層の膜厚は、 第 1 の陽極酸化用電 極上に設ける非線形抵抗層の膜厚よ り 厚いこ と を特徴とする液晶 表示装髭。
1 5 . 第 1 の基板上と第 1 の陽極酸化用鼋極上の非線形抵抗層上 と第のの陽極酸化用電極上の非線形抵抗層上と信号電極上と補助 電極上と表示電極上および、 外部回路と の接続部に絶縁膜を有し、 第 1 の陽極酸化用電極と第 2 の陽極酸化用電極の一部に開口部を 有し、 第 1 の陽極酸化用電極と第 2 の陽極酸化用電極は、 絶縁膜 の開口部と 同一辺にて分離する こ と を特徴とする請求項 1 0 に記 載の液晶表示装置。
1 6 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の鼋 極を陽極酸化するための第 1 の陽極酸化用電極と第 1 の陽極酸化 用電極から独立する第 2 の陽極酸化用電極と非線形抵抗素子を構 成する下部電極と非線形抵抗素子に外部信号を印加するための第 1 の信号電極と を有し、 第 1 の信号電極は、 陽極酸化処理を行う と き には、 第 1 の陽極酸化用電極によ り 相互に接続し、 さ らに補 助鼋極は第 2 の陽極酸化用電極に接続し、 さ らに第 2 の電極と し て、 非線形抵抗層上に設ける上部電極と、 上部電極に接続する表 示電極と第 1 の信号電極上を覆 う第 2 の信号電極と第 1 の陽極酸 化用電極の一部を覆う接続電極と を有し、 さ らに、 下部電極上に は、 2つの上部電極を有し、 一方の上部電極は、 第 2 の信号鴛極 に接続し、 他方は表示電極に接続し、 下部電極と非線形抵抗層と 上部電極によ り 非線形抵抗素子を構成し、 第 1 の陽極酸化用電極 は、 陽極酸化後に分離し、 第 1 の電極からなる独立する第 1 の信 号鴛極と し、 第 2 の陽極酸化用電極は、 陽極酸化後に分離してな る補助電極と を有し、 第 2 の陽極酸化用電極上の非線形抵抗層の 膜厚は、 第 1 の陽極酸化用電極上の非線形抵抗層の膜厚よ り 厚い こ と を特徴とする液晶表示装置。
1 7 . 第 1 の基板上と第 1 の陽極酸化用電極上の非線形抵抗層上 と第 2 の陽極酸化用電極上の非線形抵抗層上と信号電極上と補助 電極上と表示電極上および、 外部回路と の接続部に絶縁膜を有し、 第 1 の陽極酸化用電極と第 2 の陽極酸化用電極の一部に開口部を 有し、 第 1 の陽極酸化用電極と第 2 の陽極酸化用電極は、 絶縁膜 の開口部と 同一辺にて分離する こ と を特徴とする液晶表示装置。
1 8 . 基板上にいずれも金属膜からなる陽極酸化用電極と 陽極酸 化用電極に接続し陽極酸化用電極の一部からなる信号電極と信号 電極に接続する下部電極と陽極酸化用電極の一部からなるエ ッチ ング除去部と表示電極かにある重な り 部と を有し、 こ の金属膜か らなる陽極酸化用電極と信号電極と下部電極と重な り 部上には、 非線形抵抗層を有し、 さ らに、 下部電極上の非線形抵抗層上には 上部電極を有し、 上部電極は表示電極に接続し、 下部電極と非線 形抵抗層と上部電極によ り 非線形抵抗素子を構成し、 陽極酸化用 電極の一部が表示電極と重なる重な り 部を有し、 重な り 部は表示 電極毎に分離している こ と を特徴とする液晶表示装置。
1 9 . 基板上にいずれも金属膜からなる陽極酸化用電極と 陽極酸 化用電極に接続し陽極酸化用電極の一部からなる信号電極と信号 電極に接続する下部電極と陽極酸化用電極の一部からなるエ ッチ ング除去部と表示髦極かにある重な り 部と を有し、 この金属膜か らなる陽極酸化用電極と信号電極と下部電極と重な り部上には、 第 1 の電極の陽極酸化膜からなる非線形抵抗層を有し、 さ らに、 下部電極上の非線形抵抗層上には上部電極を有し、 上部電極は表 示電極に接続し、 下部電極と非線形抵抗層 と上部電極によ り 非線 形抵抗素子を構成し、 陽極酸化用電極の一部がが表示電極と重な る重な り 部を有し、 重な り 部は表示電極毎に分離している こ と を 特徴とする液晶表示装置。
2 0 . 基板上にいずれも金属膜からなる信号電極と 島状の下部電 極と信号電極に平行するダミ ー電極と を有し、 この金属膜表面に 設ける絶縁膜と 、 下部電極上に絶縁膜を介して設ける 2 つの上部 電極と、 ダミ ー電極上の重な り 部を覆う透明導電膜からなる表示 電極と を備え、 上部電極は下部電極と交差し、 この上部電極と絶 縁膜と 下部電極から 2つの非線形抵抗素子部を構成 し、 非線形抵 抗素子部を構成する上部電極の一方は信号電極に接続し、 非線形 抵抗素子部を構成する上部電極の他方は表示電極に接続し、 表示 電極の下部にはダミ ー電極の重な り 部を有し、 下部電極と ダミ ー 電極は同一の金属膜と絶縁膜と からなる こ と を特徴とする液晶表 示装置。
2 1 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と、 島状の下部電極と 、 初期陽極酸化用電極と 島状の下部電極を接続 する接続部と 、 初期陽極酸化用電極に接続するダミ ー電極と を有 し、 この金属膜表面に設ける絶縁膜と 、 下部電極上に絶縁膜を介 して設ける 2つの上部電極と、 ダミ ー電極上の重な り 部を稷 ぅ透 明導電膜からなる表示電極と を備え、 上部電極は下部電極と交差 し、 この上部電極と絶縁膜と下部電極から 2 つの非線形抵抗素子 部を構成し、 非線形抵抗素子部を構成する上部電棰の一方は、 初 期陽極酸化用電極の一部からなる第 1 の信号電極上に設ける上部 電極と 同一材料からなる第 2 の信号電極に接続し、 非線形抵抗素 子部を構成する上部電極の他方は表示電極に接続し、 表示電極の 下部にはダミ ー電極の重な り部を有し、 下部電極と ダミ ー電極は 同一の金属膜と絶縁膜と からなる こ と を特徴とする液晶表示装置。
2 2 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と 、 ft状の下部電極と 、 初期陽極酸化用電極と島状の下部電極を接続 する接続部と、 初期陽極酸化用電極に接続するダミ ー電極と を有 し、 この島状の下部電極は 2個の異なる接続部によ り初期陽極酸 化用電極に接続し、 この金属膜表面に設ける絶縁膜と 、 下部電極 上に絶縁膜を介して設ける 2つの上部電極と 、 ダミ ー電極上の重 な り 部を覆 う透明導電膜からなる表示電極と を備え、 上部電極は 下部電極と 交差し、 この上部電極と絶縁膜と 下部電極から 2つの 非線形抵抗素子部を構成し、 非線形抵抗素子部を構成する上部電 極の一方は、 初期陽極酸化用電極の一部からなる第 1 の信号電極 上に設ける上部電極と 同一材料からなる第 2 の信号電極に接続し、 非線形抵抗素子部を構成する上部電極の他方は表示電極に接続し、 表示電極の下部にはダミ ー電極の重な り 部を有し、 下部電極と ダ ミ ー電極は同一の金展膜と絶縁膜とからなる こ と を特徴とする液 晶表示装置。
2 3 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と 、 島状の下部電極と 、 初期陽極酸化用電極と 島状の下部電極を接続 する接続部と 、 初期陽極酸化用電極に接続するダミ ー電極と を有 し、 この金属膜表面に設ける絶縁膜と 、 下部電極上に絶縁膜を介 して設ける 2つの透明導電性膜からなる上部電極と 、 ダミ ー電極 上の重な り 部を覆 う透明導電膜からなる表示電極と を備え、 上部 電極は下部電極と 交差し、 この上部電極と絶縁膜と 下部電極から 2つの非線形抵抗素子部を構成し、 非線形抵抗素子部を構成する 上部電極の一方は、 初期陽極酸化用電極の一部からなる第 1 の信 号電極上に設ける透明導電性膜からなる第 2 の信号電極に接続し、 非線形抵抗素子部を構成する上部電極の他方は表示電極に接続し、 表示電極の下部にはダミ ー電極の重な り部を有し、 下部髦極と ダ ミー電極は同一の金属膜と絶縁膜とからなる こ と を特徴とする液 晶表示装置。
2 4 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と 、 島状の下部電極と 、 初期陽極酸化用電極と 島状の下部鴛極を接続 する接続部と 、 初期陽極酸化用電極に接続するダミー電極と を有 し、 この金属膜表面に設ける絶縁膜と 、 下部電極上に絶縁膜を介 して股ける 2つの上部電極と 、 ダミー亀極上の重な り部を «う透 明導鴛膜からなる表示電極と を備え、 上部電極は下部 ® ®と交差 し、 この上部電極と絶縁膜と下部電極から 2 つの非線形抵抗素子 部を構成し、 非線形抵抗素子部を構成する上部電極の一方は、 初 期陽極酸化用電極の一部からなる第 1 の信号鸳極上に設ける上部 鸳極と 同一材料からなる第 2の信号電極に接続し、 非線形抵抗素 子部を構成する上部電極の他方は表示電極に接続し、 表示氅極の 下部にはダミー電極の重な り 部を有し、 さ らに、 非線形抵抗素子 部あるいは第 2 の信号電極の周辺には保護用絶縁膜を有し、 第 2 の信号電極と表示電極の間には保護用絶縁膜の開口部を有 し、 下 部電極と ダミ ー電極は同一の金属膜と絶縁膜とからなるこ と を特 徴とする液晶表示装置。
2 5 . 基板上にいずれも金属膜からなる初期陽極酸化用鴛極と初 期陽極酸化用電極に接続するゲー ト電極部を有し、 初期陽極酸化 用電檁は、 ゲー ト電極と ダミー電極と に分離してお り 、 前記ゲー ト電極部の周囲にはゲー ト絶縁膜を有し、 ゲー ト絶縁膜上には、 半導体層を有し、 半導体層上には、 ソース電極と ド レイ ン電極と を有し、 ソース電極は、 データー電極に接続し、 ド レイ ン鴦極は、 表示電極に接続する構造を有する こ と を特徵とする液晶表示装置。
2 6 . 基板上にいずれも金展膜からなる初期陽槿酸化用電極と初 期陽棰酸化用電極に接続するゲー ト電極部を有し、 初期陽極酸化 用鴛極は、 ゲー ト電極と ダミ ー電極と に分離してお り 、 前記ゲー ト鴛極部の周囲にはゲー ト絶縁膜を有し、 グー ト絶縁膜上には、 半導体層を有し、 半導体層上には、 ソース電極と ド レイ ン電極と を有し、 ソース電極は、 データー電極 に接続し、 ド レイ ン電極 は、 表示電極に接続し、 前記ダミ ー電極は、 表示電極の下部に残 る構造を有する こ と を特徴とする液晶表示装置。
PCT/JP1995/002285 1994-11-08 1995-11-08 Affichage a cristaux liquides WO1996014599A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8515202A JP3059487B2 (ja) 1994-11-08 1995-11-08 液晶表示装置
EP95936756A EP0793135B1 (en) 1994-11-08 1995-11-08 Liquid crystal display
US08/836,481 US6128050A (en) 1994-11-08 1995-11-08 Liquid crystal display device with separated anode oxide electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/273941 1994-11-08
JP27394194 1994-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/553,403 Division US6327443B1 (en) 1994-11-08 2000-04-20 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO1996014599A1 true WO1996014599A1 (fr) 1996-05-17

Family

ID=17534706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002285 WO1996014599A1 (fr) 1994-11-08 1995-11-08 Affichage a cristaux liquides

Country Status (4)

Country Link
US (3) US6128050A (ja)
EP (1) EP0793135B1 (ja)
JP (1) JP3059487B2 (ja)
WO (1) WO1996014599A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032784A (ja) * 2006-07-26 2008-02-14 Optrex Corp 液晶表示装置および液晶表示装置の検査方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834327A (en) * 1995-03-18 1998-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
JP3866783B2 (ja) * 1995-07-25 2007-01-10 株式会社 日立ディスプレイズ 液晶表示装置
JPH10221683A (ja) * 1997-02-07 1998-08-21 Alps Electric Co Ltd 液晶表示装置およびその製造方法
CN1177251C (zh) * 1997-07-23 2004-11-24 精工爱普生株式会社 液晶装置及电子设备
US6388652B1 (en) * 1997-08-20 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
JP3102392B2 (ja) * 1997-10-28 2000-10-23 日本電気株式会社 半導体デバイスおよびその製造方法
JP3119228B2 (ja) * 1998-01-20 2000-12-18 日本電気株式会社 液晶表示パネル及びその製造方法
KR100474002B1 (ko) * 1998-04-28 2005-07-18 엘지.필립스 엘시디 주식회사 액정표시장치의불량패드수리방법및그구조
EP1533649B1 (en) * 1998-12-28 2016-04-20 Kyocera Corporation Liquid crystal display device
US6825488B2 (en) * 2000-01-26 2004-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2001343663A (ja) * 2000-05-31 2001-12-14 Sony Corp 液晶表示装置及びその製造方法
US6784506B2 (en) * 2001-08-28 2004-08-31 Advanced Micro Devices, Inc. Silicide process using high K-dielectrics
JP2003172946A (ja) * 2001-09-28 2003-06-20 Fujitsu Display Technologies Corp 液晶表示装置用基板及びそれを用いた液晶表示装置
TW588831U (en) * 2002-02-07 2004-05-21 Jiun-Fu Liou Writing plate computer capable of switching display output and externally connecting input apparatus
JP3925486B2 (ja) * 2003-01-23 2007-06-06 セイコーエプソン株式会社 電気光学装置用基板、電気光学装置及び電子機器
JP4871083B2 (ja) * 2006-09-27 2012-02-08 テルモ株式会社 体液採取ユニット
DE202007002770U1 (de) * 2007-02-26 2008-07-10 Aeg Gesellschaft für Moderne Informationssysteme mbH LCD-Anzeigeelement und LCD-Anzeigetafel
TWI360683B (en) * 2007-09-14 2012-03-21 Chimei Innolux Corp Display module
TWI684812B (zh) * 2018-11-26 2020-02-11 友達光電股份有限公司 顯示面板
CN109727999B (zh) * 2019-01-02 2020-07-03 合肥京东方显示技术有限公司 阵列基板的制备方法、阵列基板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260220A (ja) * 1985-05-15 1986-11-18 Seiko Epson Corp 液晶セルの製造方法
JPS63195687A (ja) * 1987-02-09 1988-08-12 セイコーエプソン株式会社 アクテイブマトリツクス基板の端子構造
JPH0327026A (ja) * 1989-06-23 1991-02-05 Fuji Electric Co Ltd 液晶表示素子
JPH03125123A (ja) * 1989-10-09 1991-05-28 Sharp Corp アクティブマトリクス表示装置及びその製造方法
JPH04120518A (ja) * 1990-09-12 1992-04-21 Hitachi Ltd 液晶表示装置の製造方法
JPH0643494A (ja) * 1991-06-17 1994-02-18 Seiko Epson Corp 電気光学装置の製造方法
JPH07104316A (ja) * 1993-10-07 1995-04-21 Sanyo Electric Co Ltd 液晶表示装置の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404555A (en) * 1981-06-09 1983-09-13 Northern Telecom Limited Addressing scheme for switch controlled liquid crystal displays
JPS59124162A (ja) * 1982-12-29 1984-07-18 Sharp Corp 薄膜トランジスタ
JPS59131974A (ja) * 1983-01-18 1984-07-28 セイコーエプソン株式会社 液晶表示装置
JPS60120399A (ja) * 1983-12-02 1985-06-27 シチズン時計株式会社 ダイオ−ド型表示装置の駆動方法
JPS63208023A (ja) * 1987-02-25 1988-08-29 Alps Electric Co Ltd 液晶表示素子の製造方法
JP2610328B2 (ja) * 1988-12-21 1997-05-14 株式会社東芝 液晶表示素子の製造方法
US5294560A (en) * 1989-01-13 1994-03-15 Seiko Epson Corporation Bidirectional nonlinear resistor, active matrix liquid crystal panel using bidirectional nonlinear resistor, and method for production thereof
EP0381927A3 (en) * 1989-01-13 1991-08-14 Seiko Epson Corporation Bidirectional non-linear resistor, active matrix liquid-crystal panel using the same, and method for its production
JPH02210331A (ja) * 1989-02-09 1990-08-21 Ricoh Co Ltd 液晶表示装置
JP2870016B2 (ja) * 1989-05-18 1999-03-10 セイコーエプソン株式会社 液晶装置
US5019002A (en) * 1989-07-12 1991-05-28 Honeywell, Inc. Method of manufacturing flat panel backplanes including electrostatic discharge prevention and displays made thereby
JP3009438B2 (ja) * 1989-08-14 2000-02-14 株式会社日立製作所 液晶表示装置
TW201343B (ja) * 1990-11-21 1993-03-01 Toshiba Co Ltd
JP2814161B2 (ja) * 1992-04-28 1998-10-22 株式会社半導体エネルギー研究所 アクティブマトリクス表示装置およびその駆動方法
EP0577429B1 (en) * 1992-07-03 1999-09-01 Citizen Watch Co. Ltd. Liquid crystal display having non linear resistance elements
JPH07104315A (ja) * 1993-09-30 1995-04-21 Sanyo Electric Co Ltd 液晶表示装置
JPH07131030A (ja) * 1993-11-05 1995-05-19 Sony Corp 表示用薄膜半導体装置及びその製造方法
JP3125123B2 (ja) 1993-11-30 2001-01-15 西川ゴム工業株式会社 ウエザーストリップの型成形方法
US5753937A (en) * 1994-05-31 1998-05-19 Casio Computer Co., Ltd. Color liquid crystal display device having a semitransparent layer on the inner surface of one of the substrates
WO1996003673A1 (fr) * 1994-07-21 1996-02-08 Citizen Watch Co., Ltd. Dispositif d'affichage a cristaux liquides

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260220A (ja) * 1985-05-15 1986-11-18 Seiko Epson Corp 液晶セルの製造方法
JPS63195687A (ja) * 1987-02-09 1988-08-12 セイコーエプソン株式会社 アクテイブマトリツクス基板の端子構造
JPH0327026A (ja) * 1989-06-23 1991-02-05 Fuji Electric Co Ltd 液晶表示素子
JPH03125123A (ja) * 1989-10-09 1991-05-28 Sharp Corp アクティブマトリクス表示装置及びその製造方法
JPH04120518A (ja) * 1990-09-12 1992-04-21 Hitachi Ltd 液晶表示装置の製造方法
JPH0643494A (ja) * 1991-06-17 1994-02-18 Seiko Epson Corp 電気光学装置の製造方法
JPH07104316A (ja) * 1993-10-07 1995-04-21 Sanyo Electric Co Ltd 液晶表示装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0793135A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032784A (ja) * 2006-07-26 2008-02-14 Optrex Corp 液晶表示装置および液晶表示装置の検査方法

Also Published As

Publication number Publication date
EP0793135B1 (en) 2002-02-20
JP3059487B2 (ja) 2000-07-04
US6388720B1 (en) 2002-05-14
EP0793135A1 (en) 1997-09-03
US6327443B1 (en) 2001-12-04
US6128050A (en) 2000-10-03
EP0793135A4 (ja) 1997-09-03

Similar Documents

Publication Publication Date Title
JP3059487B2 (ja) 液晶表示装置
US6624864B1 (en) Liquid crystal display device, matrix array substrate, and method for manufacturing matrix array substrate
US5585290A (en) Method of manufacturing a thin film transistor substrate
KR100276442B1 (ko) 액정표시장치 제조방법 및 그 제조방법에 의한 액정표시장치
JP4354542B2 (ja) 液晶表示装置及びその製造方法
US6933989B2 (en) Manufacturing method for a liquid crystal display device
KR100804345B1 (ko) 액정 표시 장치용 기판 및 그것을 이용한 액정 표시 장치
US6731364B2 (en) Liquid crystal display device
JP4266793B2 (ja) 液晶表示装置用アレイ基板
KR101221261B1 (ko) 액정 표시 장치용 어레이 기판 및 그 제조 방법
JP2008107849A (ja) 液晶表示装置及びその製造方法
US20120217495A1 (en) Thin-film transistor substrate and method of manufacturing the same
JP3152193B2 (ja) 薄膜トランジスタアレイ基板およびその製造方法
JP6785563B2 (ja) 非線形素子、アレイ基板、およびアレイ基板の製造方法
CN103003743A (zh) 有源矩阵基板及其制造方法和液晶显示面板
US7872698B2 (en) Liquid crystal display with structure resistant to exfoliation during fabrication
JP2001244473A (ja) 薄膜トランジスタ、これを利用した液晶表示装置およびそれらの製造方法
KR100942265B1 (ko) 씨오티 구조 액정표시장치 및 제조방법
JP4381691B2 (ja) 液晶表示装置用基板及びそれを備えた液晶表示装置及びその製造方法
JP3231410B2 (ja) 薄膜トランジスタアレイ及びその製造方法
JPH0695150A (ja) 薄膜トランジスタ基板及び液晶表示装置及びその製造方法
WO1996014599A9 (ja)
JP2007193373A (ja) 液晶表示装置用基板及びそれを用いた液晶表示装置
JP3508964B2 (ja) 液晶表示装置とその製造方法
WO1996030801A1 (en) Liquid crystal display

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGES 2,3,6,8-10,12,13,15,17,20,22,24,29,35-37,40,41,43-46,48,49 AND 53-58, DESCRIPTION, REPLACED BY NEW PAGES BEARING THE SAME NUMBER; AFTER RECTIFICATION OF OBVIOUS ERRORS AS AUTHORIZED BY THE INTERNATIONAL SEARCHING AUTHORITY

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995936756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08836481

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995936756

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995936756

Country of ref document: EP