WO2002007360A1 - Recepteur et procede de transmission optique d'informations - Google Patents
Recepteur et procede de transmission optique d'informations Download PDFInfo
- Publication number
- WO2002007360A1 WO2002007360A1 PCT/DE2001/002672 DE0102672W WO0207360A1 WO 2002007360 A1 WO2002007360 A1 WO 2002007360A1 DE 0102672 W DE0102672 W DE 0102672W WO 0207360 A1 WO0207360 A1 WO 0207360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- signals
- polarization
- regenerated
- sdd21
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 22
- 230000005540 biological transmission Effects 0.000 title claims description 17
- 238000000034 method Methods 0.000 title claims description 11
- 230000010287 polarization Effects 0.000 claims abstract description 64
- 101150072497 EDS1 gene Proteins 0.000 claims abstract description 14
- 101100170933 Arabidopsis thaliana DMT1 gene Proteins 0.000 claims abstract description 13
- 101100277337 Arabidopsis thaliana DDM1 gene Proteins 0.000 claims abstract description 12
- 101100116283 Arabidopsis thaliana DD11 gene Proteins 0.000 claims abstract description 11
- 230000003111 delayed effect Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 2
- 101100163833 Arabidopsis thaliana ARP6 gene Proteins 0.000 abstract 2
- 239000006185 dispersion Substances 0.000 description 4
- HCUOEKSZWPGJIM-YBRHCDHNSA-N (e,2e)-2-hydroxyimino-6-methoxy-4-methyl-5-nitrohex-3-enamide Chemical compound COCC([N+]([O-])=O)\C(C)=C\C(=N/O)\C(N)=O HCUOEKSZWPGJIM-YBRHCDHNSA-N 0.000 description 3
- 101100028789 Arabidopsis thaliana PBS1 gene Proteins 0.000 description 3
- 101100139907 Arabidopsis thaliana RAR1 gene Proteins 0.000 description 3
- 101001109689 Homo sapiens Nuclear receptor subfamily 4 group A member 3 Proteins 0.000 description 3
- 101000598778 Homo sapiens Protein OSCP1 Proteins 0.000 description 3
- 101001067395 Mus musculus Phospholipid scramblase 1 Proteins 0.000 description 3
- 102100022673 Nuclear receptor subfamily 4 group A member 3 Human genes 0.000 description 3
- 101100028790 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PBS2 gene Proteins 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/532—Polarisation modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/06—Polarisation multiplex systems
Definitions
- the invention relates to an arrangement and an associated method for optical information reception with polarization multiplex according to the preamble of independent claims 1 and 5.
- Polarization multiplexing is used to increase the capacity of an optical transmission system.
- Polarization-Multiplexed Transmission Systems "describes an optical polarization multiplex transmission system.
- a major disadvantage in this embodiment of an optical transmission system is the regulation of a polarization transformer on the receiver side in such a way that the two polarization multiplex channels are divided between the two outputs of a downstream polarization beam splitter a correlation signal of the recovered clock with the received signal is formed and this is maximized by adjusting the polarization transformer
- the procedure according to the prior art has several disadvantages:
- the object of the invention is therefore to provide an arrangement and an associated method for optical information transmission by means of polarization multiplex, which avoid the disadvantages of the prior art as far as possible.
- the solution to the problem lies in measuring the crosstalk caused by the unwanted signal while receiving zeros of the desired signal of a receiver channel.
- the received signal is fed to a controller via a switch. This switch is opened while received ones of the desired signal, and closed when received zeros.
- the control signal obtained only disappears if a signal at the regenerator input does not simultaneously contain a portion of the signal to be regenerated by the other regenerator.
- the polarization controller is controlled by a control device so that the control signal disappears.
- each regenerator receives and regenerates only one polarization multiplex channel, which corresponds to the desired separation of the signals on the receiver side.
- FIG. 1 shows the basic structure of a transmission system with polarization multiplex
- FIG. 2 shows a receiver according to the invention
- FIG. 3 shows a separator / detector
- FIG. 4 shows a vector diagram of linear polarization states
- FIG. 5 shows an embodiment of part of the separator / detector
- FIG. 6 shows a switch with logic module and low-pass filter
- FIG. 7 shows a time diagram of signals occurring according to the invention.
- Figure 1 shows the basic structure of a transmission system with polarization multiplex.
- TX1, TX2 which emit a first and a second optical partial signal OS1, 0S2 with mutually orthogonal polarizations.
- PBSS transmitter-side polarization beam splitter
- EI input EI
- the optical fiber generally the polarization does not preserve the difficulty of separating the two partial signals OS1, OS2 again.
- a simple optical directional coupler can also be used, which, however, leads to a loss of power and less well-defined
- Orthogonality of the partial signals OS1, OS2 leads.
- the first and second optical transmitters TX1 and TX2 are modulated with first and second transmission-side modulation signals SDDll and possibly SDD12 or SDD21 and possibly SDD22.
- Each modulation signal on the transmission side can have two portions SDD11, SDD12 or SDD21, SDD22 interleaved in time division multiplex.
- the receiver RX here consists of a separator / detector SD and downstream receiver electronics.
- the separator / detector SD for polarization multiplex is shown in FIG. 3.
- the received optical partial signals are fed from the input EI to an endless polarization transformer PT which receives a first control signal ST1 and a second control signal ST2. Both the first control signal ST1 and the second control signal ST2 can consist of one or more signals.
- a polarizing element EPBS on the receiver side is attached to the output of the polarization transformer PT. This can be designed as a polarization beam splitter, which provides first and second signal components OUT1, OUT2 at its outputs.
- the signal components OUT1, OUT2 should be the orthogonally polarized partial signals OS1 and OS2; however, these are only with a suitable setting of the polarization transformer PT and a compensator of polarization mode dispersion PMDC, which may be connected upstream.
- the signal components OUT1, OUT2 are detected in photodetectors PD11, PD21, which generate electrically detected signals EDI, ED2.
- a compensator of polarization mode dispersion PMDC can also be provided in front of the polarization transformer PT.
- PMD compensator PMDC, polarization transformer PT and receiver-side polarizing element EPBS designed as a polarization beam splitter can be integrated on a substrate SUB consisting, for example, of lithium niobate.
- a PMD compensator coupler KPMDC can be present between the PMD compensator PMDC and the polarization transformer PT for decoupling part of the signals transported between these modules.
- the PMD compensator PMDC could also be omitted, for example, and polarization transformer PT and receiver side as polar polarization element EPBS formed as a beam splitter as described in the conference proceedings of the European Conference on Optical Communications 1993, Montreux, Switzerland, pp. 401-404, article WeP9.3.
- Embodiments according to the subjects described in German patent applications 19858148.3, 19919576.5 are also possible.
- the electrically detected signals ED1, ED2 are sent to decision-makers DDM1, DDM2.
- the decision makers DDM1, DDM2 are preferably designed as de ultiplexer decision makers, which have a decision maker function, but at the same time, e.g. Multiplex down to half the data rate.
- Such circuits are from the International J. of High Speed Electronics and Systems, Volume 9, 1998, No. 2, H.-M. Rein, "Si and SiGe bipolar ICs for 10 to 40 Gb / s optical-fiber TDM links", is known. It is expedient to take the clock signals CL1, CL2 required for the operation of the decision-makers DDM1, DDM2 from a common source it is also possible to take the clock signals CL1 and CL2 from different sources.
- Demu1tiplexfunktion have regenerated digital signals DDll, DD12 or DD21, DD22 available at their outputs. These are supplied to logic modules NOR1 and NOR2, which in the present exemplary embodiment are designed as NOR gates. A first logic signal SNOR1 or a second logic signal SNOR2 at their outputs are equal to one if both of the regenerated digital signals DD11, DD12 or DD21, DD22, DD22 resulting from 1: 2 demultiplexing are equal to zero. This is the case if an electrical detected signal ED1 or ED2 contains two consecutive logical zeros which originate from the modulation signals SDD11, SDD12 or SDD21, SDD22 on the transmission side.
- Non-zero signal values of an electrically detected signal ED1 or ED2 indicate crosstalk NS through the signals that actually should appear only in the other channel in the other electrically detected signal ED2 or ED1 and originate from the modulation signals SDD21, SDD22 or SDDll, SDD12 on the transmission side.
- first logic signal SNOR1 or the second logic signal SNOR2 is equal to one, a first switch SSI or a second switch SS2 is closed, so that the first electrically detected signal ED1 or the second electrically detected signal ED2 is switched in a first Signal ESDI or a second switched signal ESD2 appears.
- the first control signal EDS1 and the second control signal EDS2 correspond only to the crosstalk NS of the respectively undesired channel, that is to say signals which should only appear in the second electrically detected signal ED2 or in the first electrically detected signal ED1.
- Control signals EDS1, EDS2 are fed to a controller RG, which can consist of two controllers RG1 or RG2, which generate the control signals ST1 and possibly ST2.
- the running times of the decision-makers DDM1 or DDM2 have to be delayed e.g. the electrically detected signals ED1 or ED2 are balanced up to the inputs of the switches SSI or SS2. In FIG. 2, this is done by delay lines L01 or L02, the first delayed signal ESI or the second delayed signal ES2 corresponding to the first electrically detected signal ED1 or the second electrically detected signal ED2. After passing through the switches SSI, SS2, there are switched signals ESDI, ESD2.
- FIG. 7 shows the measurement of crosstalk NS according to the invention, which during transmitted zeros is caused by the desired channel is generated. This is crosstalk by the second partial signal OS2, while the first partial signal OS1 is to be received.
- Crosstalk NS represented by hatched areas, increases the zero values of the first delayed signal ESI when the second partial signal OS2 corresponds to a logic one. Crosstalk during sent logical ones is not shown for the sake of clarity.
- the signals described above are shown first delayed signal ESI, DD11, DD12, first logic signal SN0R1, first switched signal ESDI during typical bit patterns as functions of time t. A symbol duration T is also shown.
- "0 W and" 1 denote the levels of logical zeros and ones.
- the vertical axis is in each case an amplitude axis, for example for voltage or current. Deviating from the strictly rectangular-shaped signals of FIG. 7, the invention also functions when rounded edges Bandwidth limits occur.
- FIG. 7 also applies analogously to the measurement of crosstalk in the second partial signal OS2 by the first partial signal OS1.
- logic modules NOR1 and NOR2 must each be AND gates. According to the invention, the switches SSI and SS2 are in turn only closed when there are two consecutive logical zeros in the electrically detected signal ED1 and ED2.
- FIG. 6 shows a possible embodiment of the first switch SSI, which can also be used analogously for the second switch SS2.
- the decision signals DD11 and DD12 of a decision maker who also executes demultiplexing at the same time, are fed to the bases of a first switching transistor TT1 and a second switching transistor TT2.
- a third transistor TT3 the base of which is set at a reference level P01 corresponding to the mean of the zeros and ones of DDll, DD12 and whose emitter is connected to the Emitter of the other two switching transistors TT1, TT2 is conductively connected, conductive and conducts a constant current IK to a differential amplifier DF, which thereby becomes functional and the first delayed signal ESI as its input signal in its differential form in its output signal, namely the difference between the collector currents reinforced by DF.
- This output signal is the first switched signal ESDI.
- the positive supply voltage is U +.
- the decision-makers DDM1 or DDM2 are preferably designed as simple decision-makers without demultiplexing function, each with only one output signal DD11 or DD21.
- the second transistor TT2 is then omitted in FIG.
- the controllers RG1, RG2, RG minimize the control signal or signals EDS1, EDS2. This requires DC voltage coupling of the electrically detected signals ED1, ED2 to behind the switches SSI, SS2 and finally the provision of the control signals EDS1, EDS2. The result is a signal EDS1, EDS2 indicating the crosstalk NS in the respective channel.
- the polarization transformer PT is therefore advantageously set such that regenerated signals DD11, DD21, DD12, DD22 are available at the outputs of optimal quality and lowest bit error rates. These signals correspond to the modulation signals SDD11, SDD12, SDD21, SDD22, which are indicated by a "S" in front of them.
- Additional quality signal winners and controllers RP1, RP2, which can also be combined to form a common assembly RP and which generate at least one control signal SP1, SP2, can be used as in the proc. 9th European Conference on Integrated Optics (ECIO'99), April 14-16, 1999, Turin, Italy, postdeadline-paper-Band, pp. 17-19, D. Sandel et al. , "Integrated-optical polarization or dispersion compensation for 6-ps, 40-Gb / s pulses", described can be used to control the PMD compensator PMDC.
- the polarization transformer PT is constructed in exactly the same way as the PMD compensator PMDC, which is described in more detail in the literature just mentioned and simply represents the cascade of several mode converters as polarization transformers.
- the control signals of the controller RG are fed to the polarization transformer PT, while the control signals of the controller RP are fed to the PMD compensator PMDC.
- FIGS. 3 and 5 are derived from the two electrically detected signals ED1 and ED2.
- the disadvantage here is that the settings of PT, PTl, PT2 can also have an effect on the PMD compensation.
- FIGS 5 each a coupler KPMDC, a photodetector PDPMDC connected to it, a distortion analyzer DANA, a controller RPMDC and a PMD compensator PMDC are provided.
- the components RP, RP1, RP2 in FIG. 2 are omitted and the components PMDCl, PMDC2 in FIG. 5 are replaced by through connections.
- This type of PMD compensation is in principle already known, for example from European patent application EP 0 909 045 A2 and from IEEE J. Lightwave Technology, 17 (1999) 9, pp. 1602-1616; however, what is new is their application to polarization multiplex signals.
- the invention is suitable for the non-return-to-zero signal format (NRZ) as well as for the return-to-zero signal format (RZ) without restrictions.
- NRZ non-return-to-zero signal format
- RZ return-to-zero signal format
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
La présente invention concerne un récepteur permettant la transmission de signaux optiques (OS1, OS2) grâce à un multiplexage en polarisation, ledit récepteur comprenant un séparateur/détecteur (SD) qui fournit des signaux électriques de détection (ED1, ED2), et des éléments à seuil (DDM1, DDM2), dans lequel ces signaux électriques de détection (ED1, ED2) sont régénérés. Ledit récepteur présente des commutateurs (SS1, SS2) qui reçoivent ces signaux électriques de détection (ED1, ED2) et les transmettent sous la forme de signaux couplés (ESD1, ESD2), lesdits commutateurs se trouvant en position fermée lorsque un signal régénéré (DD11, DD12, ou DD21, DD22), correspondant à un signal de modulation côté émission (SDD11, SDD12, SDD21, SDD22), est nul d'un point de vue logique. Selon l'invention, un régulateur (RG; RG1, RG2) sert à réguler une valeur moyenne (EDS1, EDS2) de ce signal couplé (ESD1, ESD2) au moyen d'un convertisseur de polarisation se trouvant dans le séparateur/détecteur (SD), de sorte que ce signal électrique de détection (ED1, ED2) correspond également le plus précisément possible à un zéro logique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2000135086 DE10035086A1 (de) | 2000-07-17 | 2000-07-17 | Empfänger und Verfahren für eine optische Informationsübertragung |
DE10035086.0 | 2000-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002007360A1 true WO2002007360A1 (fr) | 2002-01-24 |
Family
ID=7649450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/002672 WO2002007360A1 (fr) | 2000-07-17 | 2001-07-17 | Recepteur et procede de transmission optique d'informations |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10035086A1 (fr) |
WO (1) | WO2002007360A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006045324A1 (fr) * | 2004-10-22 | 2006-05-04 | Pirelli & C. S.P.A. | Procede et dispositif permettant de stabiliser l'etat de polarisation d'un rayonnement optique multiplexe en polarisation |
RU2375830C2 (ru) * | 2004-03-31 | 2009-12-10 | Кабусики Кайся Кенвуд | Способ для генерирования сигнала основной полосы и устройство для его осуществления, а также программа, заставляющая компьютер выполнять упомянутый способ |
-
2000
- 2000-07-17 DE DE2000135086 patent/DE10035086A1/de not_active Withdrawn
-
2001
- 2001-07-17 WO PCT/DE2001/002672 patent/WO2002007360A1/fr active Application Filing
Non-Patent Citations (2)
Title |
---|
HEISMANN F ET AL: "AUTOMATIC POLARISATION DEMULTIPLEXER FOR POLARISATION-MULTIPLEXED TRANSMISSION SYSTEMS", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 29, no. 22, 28 October 1993 (1993-10-28), pages 1965 - 1966, XP000421562, ISSN: 0013-5194 * |
REIN H-M: "SI AND SIGE BIPOLAR ICS FOR 10 TO 40 GB/S OPTICAL-FIBER TDM LINKS", INTERNATIONAL JOURNAL OF HIGH SPEED ELECTRONICS, WORLD SCIENTIFIC, LONDON, GB, vol. 9, no. 2, 1998, pages 347 - 383, XP000912236, ISSN: 0129-1564 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2375830C2 (ru) * | 2004-03-31 | 2009-12-10 | Кабусики Кайся Кенвуд | Способ для генерирования сигнала основной полосы и устройство для его осуществления, а также программа, заставляющая компьютер выполнять упомянутый способ |
WO2006045324A1 (fr) * | 2004-10-22 | 2006-05-04 | Pirelli & C. S.P.A. | Procede et dispositif permettant de stabiliser l'etat de polarisation d'un rayonnement optique multiplexe en polarisation |
US7917031B2 (en) | 2004-10-22 | 2011-03-29 | Pgt Photonics S.P.A. | Method and device for stabilizing the state of polarization of a polarization multiplexed optical radiation |
US8200087B2 (en) | 2004-10-22 | 2012-06-12 | Google Inc. | Method and device for stabilizing the state of polarization of a polarization multiplexed optical radiation |
Also Published As
Publication number | Publication date |
---|---|
DE10035086A1 (de) | 2002-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69233151T2 (de) | Polarisationsmultiplexierung mit solitons | |
DE69826225T2 (de) | Verfahren zum test von empfängern bei polarisationsmodendispersion mit inkrementaler verzögerungsschaltung | |
DE69424311T2 (de) | Querverbindungssystem für ein optisches netzwerk | |
EP0457863B1 (fr) | Dispositif de transmission avec parcours de transmission optique | |
DE68926195T2 (de) | Stabilisierungsverfahren für eine Frequenztrennung in einer optischen heterodynen oder homodynen Übertragung | |
DE69326105T2 (de) | Kompensation polarisationsabhängiger Verzerrung für faseroptische Übertragungen | |
DE60310781T2 (de) | System und Verfahren zur Mehrpegel-Phasenmodulationübertragung | |
DE69608263T2 (de) | Optisches netzwerk | |
DE60101252T2 (de) | System eines Diversitätsempfängers zur Verringerung der Faserdispersionseffekte durch die Detektion zweier übertragener Seitenbänder | |
DE102015002386A1 (de) | Optisches Modul | |
DE69520227T2 (de) | Optisches netzwerk | |
EP0798883A2 (fr) | Récepteur optique avec circuit égaliseur pour distorsion par dispersion de modes de polarisation et système avec un tel récepteur | |
EP1356619B1 (fr) | Procede et circuit electro-optique destines a la protection de ligne dans un lien de transmission de donnees wdm | |
Sandel et al. | Automatic polarisation mode dispersion compensation in 40 Gbit/s optical transmission system | |
DE60132728T2 (de) | Programmierbare optische Schaltvorrichtung | |
EP1210785B1 (fr) | Dispositif et procede de transmission optique d'informations | |
WO2002007360A1 (fr) | Recepteur et procede de transmission optique d'informations | |
EP0729247A2 (fr) | Méthode et dispositif pour utilisation optimale de la capacité de transmission dans des réseaux de boucle synchrones bidirectionnels | |
LU87901A1 (de) | Passives optisches telekommunikationssystem | |
EP2903184B1 (fr) | Convertisseur de longueur d'onde et procédé de conversion de longueur d'onde | |
DE69424460T2 (de) | Kohärenter optischer Sender/Empfänger mit Frequenzstabilisierung | |
EP1120924A1 (fr) | Procédé d'amélioration de qualité de signaux optiques, système de transmission optique ainsi qu'émetteur | |
DE69027915T2 (de) | Überwachung von Tonabstand und Leistungspegel bei FSK-Lichtwellensystemen | |
EP1177650B1 (fr) | Recepteur et procede de transmission optique d'informations | |
DE4427973A1 (de) | Überwachung optischer Breitband-Anschlußleitungen bis zu einer passiven Schnittstelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: RU Ref document number: 2002 2002130206 Kind code of ref document: A Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |