[go: up one dir, main page]

WO2003059995A1 - Film de resine thermoplastique biaxialement oriente - Google Patents

Film de resine thermoplastique biaxialement oriente Download PDF

Info

Publication number
WO2003059995A1
WO2003059995A1 PCT/JP2003/000076 JP0300076W WO03059995A1 WO 2003059995 A1 WO2003059995 A1 WO 2003059995A1 JP 0300076 W JP0300076 W JP 0300076W WO 03059995 A1 WO03059995 A1 WO 03059995A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
biaxially oriented
film
resin film
oriented thermoplastic
Prior art date
Application number
PCT/JP2003/000076
Other languages
English (en)
French (fr)
Inventor
Tetsuya Machida
Shigetoshi Maekawa
Takuji Higashioji
Tetsuya Tsunekawa
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to US10/501,041 priority Critical patent/US7384690B2/en
Priority to EP03700489A priority patent/EP1473318A4/en
Priority to KR10-2004-7010734A priority patent/KR20040072714A/ko
Priority to JP2003560090A priority patent/JP4277685B2/ja
Publication of WO2003059995A1 publication Critical patent/WO2003059995A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73929Polyester substrates, e.g. polyethylene terephthalate comprising naphthalene ring compounds, e.g. polyethylene naphthalate substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73937Substrates having an organic polymer comprising a ring structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/206Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 inorganic and synthetic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31728Next to second layer of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a biaxially oriented thermoplastic resin film having significantly improved quality. More specifically, it has excellent heat resistance, thermal dimensional stability, and mechanical properties, and is suitable as a film for various industrial materials such as magnetic recording media, circuit materials, capacitors, thermal transfer ribbons, and cards.
  • the present invention relates to a biaxially oriented thermoplastic resin film.
  • Background Art Plastic films are in great demand for magnetic recording, agriculture, packaging, building materials, etc., taking advantage of their properties such as strength, durability, transparency, flexibility, and the addition of surface properties. Used in the field. Above all, biaxially oriented polyester films are used in various fields due to their excellent mechanical, thermal, electrical and chemical resistance, and are particularly suitable for magnetic recording applications.
  • a method of incorporating particles in a biaxially oriented polyester film has been studied, and a film containing oxide particles of the fifth and sixth elements of the periodic table having a particle size of less than 300 nm (for example, see No. 3 — 1 1 5 4 3 7), but these are mainly for the purpose of forming the film surface, and are proposed for the purpose of improving scratch resistance. It is not intended to improve thermal dimensional stability and mechanical properties.
  • the biaxially oriented thermoplastic resin film of the present invention is a biaxially oriented thermoplastic resin film made of a thermoplastic resin containing transition metal oxide particles, and is a biaxially oriented thermoplastic resin film.
  • the melting point is higher than the melting point of the thermoplastic resin used.
  • the biaxially oriented thermoplastic resin film of the present invention is a biaxially oriented thermoplastic resin film made of a thermoplastic resin into which transition metal oxide particles are blended.
  • DSC peak temperature of heat of fusion of 1 Strun by measurement (melting point and 2 Ndrun heat of fusion of the peak temperature (melting point T 2) the difference in the following formula (1)
  • thermoplastic resin is a resin having at least one main component selected from polyester, polyphenylene sulfide, polyolefin, polyamide, polyimide, polycarbonate, and polyetheretherketone.
  • a biaxially oriented thermoplastic resin film characterized in that, when the thermoplastic resin is polyester, the plane orientation coefficient is 0.120 or more and less than 0.280.
  • a magnetic recording medium, a circuit material, a capacitor, a thermal transfer ribbon, and a card characterized by using the above-mentioned biaxially oriented thermoplastic resin film.
  • BEST MODE FOR CARRYING OUT THE INVENTION The biaxially oriented thermoplastic resin film of the present invention is a film comprising a thermoplastic resin and transition metal oxide particles as main components.
  • thermoplastic resin is not particularly limited, but polyester, polyphenylene sulfide, polyolefin, polyamide, polyimide, polycarbonate, polyether ether ketone, polysulfone, polyether sulfone, polyarylate, vinyl chloride resin, styrene resin At least one selected from resins, acrylic resins, polyacetals, fluorine resins, and the like can be used as a main component.
  • the main component is preferably at least 50% by weight, more preferably at least 70% by weight, even more preferably at least 90% by weight.
  • Polyester, polyphenylene sulfide, polyolefin, polyamide, polyimide, polycarbonate, and polyetheretherketone improve the heat resistance, thermal dimensional stability, and mechanical properties of the film from the viewpoint of achieving the effects of the present invention.
  • Polyester, Polypropylene Sulfides are particularly preferred.
  • the polyester is not particularly limited, but ethylene terephthalate, ethylene-1,6-naphthalate, hexamethylene terephthalate, cyclohexanedimethylene terephthalate, ethylene- ⁇ ,] 3-bis (2-chlorophenoxy) ) Ethane-4,4 'dicanoleboxylate, butylene terephthalate, butylene-1,2,6-naphthalate, butylene-1-, ⁇ -bis (2-chloroenophenoxy) ethane-4,4'
  • the main component is 50 weight.
  • / 0 or more is preferable, 70% by weight or more is more preferable, and 90% by weight or more is more preferable.
  • a liquid crystalline polyester resin for example, a known liquid crystalline polyester as described in US Pat. No. 4,552,948 can be used. That is, the weight of parahydroxybenzoic acid ( ⁇ ⁇ ⁇ ) component is 40 to 90% by weight as the main mesogen.
  • / 0 contains, moreover 4 for improving the fluidity, 4 'single.
  • Dihydric mud carboxymethyl Biff liquid crystalline polyester containing enyl (DHB) is preferred.
  • the mesogen may be contained in any form, such as random copolymer, block copolymer, branch copolymer, or a combination thereof.
  • polyethylene terephthalate polyethylene terephthalate
  • Liquid crystalline resin composed of PET) or polyethylene naphthalate (PEN) / HBA / DHB / isophthalic acid (IPA) or terephthalic acid (TPA), etc.
  • Main component is HBAZ6-hydroxy-2-naphthoic acid Copolymers, copolymers of HBAZ, 4 'dihydroxybiphenyl and terephthalic acid, isophtalic acid, and copolymers of HBA / hydroquinone (HQ) / sebacic acid (SA) are preferred. Commercially available ones can be used.
  • a polyester containing polyethylene terephthalate (hereinafter referred to as PET) and / or polyethylene naphthalate (hereinafter referred to as PEN) as a main component is particularly preferable in terms of mechanical properties, dimensional stability, and productivity.
  • PEN polyethylene naphthalate
  • a plurality of polymers may be blended as long as the object of the present invention is not hindered.
  • the polyphenylene sulfide (PPS) resin referred to in the present invention is a (P) A resin containing 70% by mole or more of monophenylene sulfide. This is because a composition having a value less than the above value can only obtain inferior properties such as heat resistance, dimensional stability and mechanical properties.
  • the resin contains a small amount of other monomers having a poly (meta) (m) -phenylene sulfide polymer, an aryl group, a biphenyl group, a terphenyl group, a vinylene group, a carbonate group, or the like. It may be copolymerized and mixed in any form within a range of less than 0 mol%.
  • the molecule of the PPS resin is preferably a linear / linear polymer having a molecular weight of 50,000 or more, but is not limited to this, and may be a polymer having a branched chain or a polymer having a branched chain. It may have a partially crosslinked structure.
  • the low-molecular-weight oligomers contained in the PPs resin can be removed by washing with a solvent such as diphenyl ether. However, the extraction with boiling xylene for 36 hours results in 1.5 kg of oligomer. / 0 or less is preferable.
  • a method for producing these PPS resins the method described in U.S. Pat. No. 3,354,129 is useful.
  • the intrinsic viscosity of the polyester family used in the present invention is preferably from 0.55 to 2.0 d 1 / g, from the viewpoints of film forming properties, kneading with particles, and decomposability during melt extrusion.
  • melt viscosity of the polyphenylene sulfide raw material is preferably from 500 to 300,000 voices, more preferably from 1,000 to 150,000 voices, still more preferably from 200,000 voices. 0 ⁇ 1 0 0 0 0 Boys.
  • transition metal oxide particles referred to in the present invention are not particularly limited, but are preferably transition metal oxide particles of Group VA, VIA, WA, Group, or IB of the Periodic Table of the Elements, and more preferably, those of Element Periodic Table. These are transition metal oxide particles belonging to the VA, VIA, WA, VI, and IB groups in the fourth period of the table.
  • transition metal oxide particles belonging to the VA, VIA, WA, VI, and IB groups in the fourth period of the table.
  • particles of vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, niobium oxide, molybdenum oxide, technetium oxide, ruthenium oxide, rhodium oxide, palladium oxide, silver oxide, and the like can be used.
  • the film of the present invention manganese oxide, iron oxide, copper oxide, and the like are preferable, and copper oxide in the fourth period of the periodic table is particularly preferable. Iron oxide yellow is most preferred from the viewpoint of heat resistance, thermal dimensional stability, mechanical properties, and quality stability.
  • the main component constituting the transition metal oxide particles is copper oxide. In this case, the content of copper oxide in the particles is 50% by weight. / 0 or more, more preferably 60% by weight or more, even more preferably 70% by weight or more.
  • copper oxide particles either cuprous oxide or cupric oxide may be used, but in the case of cupric oxide, heat resistance, thermal dimensional stability, mechanical characteristics, and quality stability are considered. Is preferred.
  • the weight fraction of cupric oxide in copper oxide is 50 weight. /. Above, preferably 60 weight. / 0 or more, more preferably 70% by weight or more. Further, two or more kinds of contained particles may be used in combination.
  • the shape of the contained particles may be spherical, needle-like, or plate-like, but is not particularly limited. A spherical shape is preferred from the viewpoint of the smoothness of the film surface.
  • these transition metal oxide particles can use a commercial thing.
  • Nanotek manufactured by Nanohopse, and the like can be used. More preferably, by subjecting these particles to a surface treatment, a film of the object of the present invention can be obtained.
  • the average primary particle size of the transition metal oxide particles of the present invention is preferably in the range of 3 to 120 nm.
  • transition metal oxide particles having an average primary particle size of 3 to 120 nm when added to the resin may be used. Those having an average primary particle size smaller than the above range are difficult to obtain industrially. On the other hand, if it is larger than the above range, the stretchability of the film is inferior, and the film is easily broken in the film forming process. It is preferably in the range of 5 to 100 ⁇ , and most preferably in the range of 10 to 50 nm.
  • the transition metal oxide particles present in the film have an average secondary particle diameter of particles from the viewpoints of heat resistance, thermal dimensional stability and mechanical properties, film forming stability and coarse projections on the film surface.
  • the range between 3 and 250 nm is preferred. It is usually difficult to make the average secondary particle size smaller than the above range.
  • the thickness is larger than the above range, the film-forming stability is likely to be reduced, and depending on the application such as a high-density magnetic tape, coarse projections may be formed on the film surface. More preferably, it is in the range of 5 to 150 nm, most preferably in the range of 10 to 100 nm. is there.
  • the content of the transition metal oxide particles in the thermoplastic resin film is 0.001 to 5 weight from the viewpoint of the heat resistance, thermal dimensional stability and mechanical properties of the film. / 0 is preferred. More preferably, the weight is 0.02 to 2 weight. / 0 , most preferably 0.1-1.5% by weight. If the content is less than the above range, the heat resistance, thermal dimensional stability and mechanical properties of the film cannot be sufficiently improved. On the other hand, if the content exceeds the above range, the particles are aggregated, and furthermore, the ejection becomes unstable during film forming extrusion, and the film is easily broken, which is not preferable.
  • the transition metal oxide particles used in the present invention may be subjected to, for example, silane coupling, titanium coupling treatment, or the like, for the purpose of increasing the affinity with the base resin or controlling aggregation, if necessary.
  • Surface treatment may be performed. Further, the particle surface may be coated by an organic treatment.
  • inorganic particles, organic particles, and other various additives different from the transition metal oxide particles of the present invention such as an antioxidant, an ultraviolet absorber, an antistatic agent, Organic lubricants such as crystal nucleating agents, flame retardants, pigments, dyes, fatty acid esters, and waxes, and inert particles may be added.
  • the inorganic particles include carbonates such as calcium carbonate and barium carbonate, sulfates such as calcium sulfate and barium sulfate, titanates such as barium titanate and potassium titanate, and phosphorus.
  • Phosphates such as tricalcium phosphate, dicalcium phosphate, dicalcium phosphate and the like can be used, but are not limited thereto. In addition, two or more of these may be used depending on the purpose.
  • organic particles include polystyrene or crosslinked polystyrene particles, vinyl particles such as styrene'acrylic and acryl crosslinked particles, styrene'methacrylic and methacrylic crosslinked particles, and benzoguanamine-formaldehyde.
  • Particles such as silica, silicon, and polytetrafluoroethylene can be used, but are not limited thereto.
  • the particle size, blending amount, shape, etc. of these particles can be selected according to the application and purpose, but usually the average particle size is not less than 0.1 ⁇ ⁇ , 3! 11 and more preferably not more than 0. More or less, as a blending amount, 0. 0 0 1 weight 0/0 above, 5 wt% or less is preferable from the object of the aspects of the present invention.
  • the biaxially oriented thermoplastic resin film of the present invention has a melting point higher than the melting point of the thermoplastic resin used.
  • the melting point is preferably at least 1 ° C higher than the melting point of the thermoplastic resin used, more preferably 2 ° C or higher.
  • the melting point of the biaxially oriented thermoplastic resin film can be measured by the peak temperature (melting point of the heat of fusion of 1 S tru eta by differential scanning calorimetry (DSC) measurement.
  • DSC differential scanning calorimetry
  • the melting point of the thermoplastic resin used is DSC measurement can be measured by 2 Ndrun heat of fusion peak temperature of the measurement (melting point T 2) according to.
  • DSC measurement heat of fusion peak temperature of 1 stru eta by the constant (the melting point and the peak temperature of heat of fusion of 2 Ndrun measurement (Melting point T 2 ) is calculated by the following formula (1)
  • the thermoplastic resin to be used is a resin such as polyphenylene sulfide in which the molecular chain has a partially crosslinked structure
  • the above formula (1) is more preferably 5 ° C or more and 30 ° C or more. C or less, and most preferably 12 ° C or more and 2.5 ° C or less.
  • the difference of the melting points is 2 ° C. or more, the practical characteristics are sufficiently improved in each application assumed in the present invention.
  • the transition metal oxide particles present in the biaxially oriented thermoplastic resin film have 30/100 m 2 or less coarse aggregates of 3 / X m or more.
  • the number is less than 100 cm 2 , more preferably less than 100 pieces / cm 2 .
  • coarse aggregates of 3 ⁇ m or more are present in the film in an amount of more than 30 particles // l OO cm 2 , the filter is clogged at the time of extrusion for film formation, and the film is frequently torn and the film formation property is reduced. Attention is necessary because there are cases.
  • coarse aggregates are present, especially in high-density magnetic recording applications, the electromagnetic conversion characteristics and error rate are significantly reduced, and a film that can be used practically becomes difficult.
  • the chlorine content (also referred to as chlorine concentration) contained in the transition metal oxide particles is from 0.001 to 10% by weight. It is preferably in the range of / 0 . Care must be taken if the content is more than 10% by weight because it will be difficult to improve the heat resistance, dimensional stability and mechanical properties of the film. is there. More preferably, it is in the range of 0.05 to 5% by weight, most preferably in the range of 0.01 to 1% by weight.
  • the area ratio of the voids present in the biaxially oriented thermoplastic resin film is preferably 0% or more and 5% or less, more preferably 0% or more and 3% or less, and most preferably. 0% or more and 1% or less. If the void area ratio is larger than the above range, the mechanical properties such as the Young's modulus and the elongation at break of the film decrease, and the heat shrinkage ratio also increases.
  • the biaxially oriented thermoplastic resin film of the present invention is a film that has been stretched in the film longitudinal direction and the width direction in order to improve heat resistance, thermal dimensional stability, and mechanical properties.
  • Necessary hereinafter, the longitudinal direction may be called the vertical direction, and the width direction may be called the horizontal direction).
  • the film stretching method include a simultaneous biaxial stretching method in which longitudinal stretching and transverse stretching are simultaneously performed, a sequential biaxial stretching method in which longitudinal stretching and transverse stretching are sequentially performed, and a film sequentially stretched in two longitudinal and transverse directions.
  • re-longitudinal stretching method in which the film is stretched in the longitudinal direction again to increase the strength in the longitudinal direction.
  • the longitudinal re-horizontal stretching method and the longitudinal multi-stage stretching method in which the film is stretched in two or more steps in the machine direction and then stretched in the film transverse direction. Even when the film containing the particles of the present invention is stretched, voids may be formed between the particles and the polymer as the base material. It is preferable to reduce the voids by performing heat treatment or the like at a temperature equal to or higher than the glass transition temperature T g, but this is not a limitation.
  • the plane orientation coefficient of the biaxially oriented polyester film may be in a range of 0.120 or more and less than 0.280. is important. If the orientation is not given to the film and the plane orientation coefficient is smaller than the above range, a high Young's modulus cannot be obtained, and the requirements may not be sufficiently satisfied in applications such as magnetic recording films. Also, care must be taken when the orientation is excessively imparted and the plane orientation coefficient is larger than the above range, since the elongation at break decreases. Particularly when the polyester is mainly composed of ethylene terephthalate, the plane orientation coefficient is preferably 0.165 or more and less than 0.20 in order to obtain the effects of the present invention remarkably. It is more preferably in the range of 0.175 or more and less than 0.190, and most preferably 0.1. 076
  • the range is from 178 to 0 ⁇ 190.
  • the plane orientation coefficient should be 0.210 or more and less than 0.280 in order to obtain a remarkable effect of the present invention. Is more preferable, and the range of 0.240 or more and less than 0.280 is most preferable.
  • the intrinsic viscosity of the biaxially oriented thermoplastic resin film of the present invention (IV) is 0. 5 5 d 1 Roh g or more, 2. not more than 0 d 1 Z g is an object in the present invention characteristics and surface drawback This is preferable from the viewpoints of reducing the amount of foreign matter and surface projections, and the film forming property.
  • Preferred intrinsic viscosities are in the range from 0.60 to 0.85 d1 Zg, most preferably in the range from 0.65 to 0.80 d1 g.
  • Films with an intrinsic viscosity of less than 0.55 are prone to film breakage during film formation, making it difficult to form films stably. Care must be taken for films with an intrinsic viscosity of more than 2.0, because the shear heat generated during melt extrusion increases, and pyrolysis and gelation increases in the film, making it difficult to obtain high-quality films.
  • the thickness of the biaxially oriented thermoplastic resin film of the present invention can be appropriately determined according to the application and purpose, but is preferably in the range of 0.5 to 300 ⁇ m. From the viewpoint of achieving the object of the present invention, the thickness of the film is more preferably less than 150 ⁇ m, and further preferably less than lO / zm. 1 / X m or more and 15 m or less for magnetic recording materials, 2 ⁇ m or more and 10 / m or less for data coating magnetic recording media, and 3 m or more and 9 m or less for data evaporation magnetic recording media Is preferable.
  • a thickness of 10 to 300 / m is preferably used, 50 to 200 / m is more preferable, and 70 to 150 / ⁇ is more preferable.
  • the thickness of the film is preferably 0.5 to 15 ⁇ . If the film thickness is in this range, the film will have excellent dielectric breakdown voltage and dielectric properties.
  • the film thickness is preferably from 1 to 6 ⁇ m, more preferably from 2 to 4 ⁇ m.If the film thickness is within this range, there will be no wrinkles when printing, uneven printing or ink. This is because high-definition printing can be performed without causing over-transfer.
  • the film thickness is preferably 30 to 150 ⁇ m, more preferably 70 to 1251.
  • the thickness unevenness in the hand direction is preferably less than 15%.
  • the thickness unevenness of the film is more preferably less than 10%, further preferably less than 8%, and most preferably less than 6%.
  • the biaxially oriented thermoplastic resin film of the present invention preferably has a total of Young's modulus in the longitudinal direction and the width direction of 9 GPa, preferably 12 GPa or more, for various uses such as a magnetic recording medium.
  • GPa or less is preferred from the viewpoint of film forming properties of the film. More preferably, it is 14 GPa or more and 32 GPa or less, and most preferably it is 15 GPa or more and 30 GPa or less.
  • the elongation at break of the biaxially oriented thermoplastic resin film of the present invention is such that the total of elongation at break in the longitudinal direction and the width direction is at least 120%, thereby reducing surface defects, foreign substances, surface projections, and forming a film. It is preferable from the viewpoint of stability.
  • the preferred elongation at break of the film is at least 150%, more preferably at least 180%.
  • the heat shrinkage at 100 ° C in the longitudinal direction or the width direction is 0% or more in order to suppress wrinkles due to heat history in the processing step.
  • the content is less than 1.0% in order to suppress a track deviation or the like of the magnetic tape. It is more preferably in the range of 0 to 0.8%, and most preferably in the range of 0 to 0.5%.
  • the heat shrinkage at 150 ° C in the longitudinal direction and the width or width direction of the film should be 0% or more and less than 1.5% from the viewpoint of handling in various applications and improving the yield during processing. Preferably, it is in the range of 0-0.8%, most preferably in the range of 0-0.5%.
  • the biaxially oriented polyester film of the present invention preferably has a storage elastic modulus in dynamic viscoelasticity measurement at 200 ° C. of 0.4 GPa or more and less than 3.0 GPa. It is an aspect. More preferably, it is 0.6 to 2. OGPa, and most preferably, it is 0.8 to 1.5 GPa. If the storage modulus in the dynamic viscoelasticity measurement at 200 ° C is smaller than 0.4 GPa, the thermal dimensional stability at high temperatures and the flatness during processing will be reduced. It should also be noted that if the storage modulus exceeds 3. OGPa, melt extrusion becomes difficult and film formability often deteriorates.
  • the dynamic viscoelasticity was measured at a frequency of 1 Hz when the temperature was raised from 26 to 240 ° C at a rate of 2 ° C / min from 26 to 240 ° C by DMS 6100 manufactured by Seiko Instruments Inc. Measure Storage elastic modulus.
  • the film of the present invention may be a laminated film of two or more layers.
  • the surface roughness of the film surface to be the magnetic recording surface and the surface roughness of the opposite running surface are designed differently, especially according to the use of the base film of the magnetic recording medium. It can be suitably used as a method for performing the above.
  • polyester resin used in the present invention those produced by a conventionally known method can be used.
  • the transition oxide particles to be added to the predetermined polyester resin may be added at any stage before, during, or after the polymerization in the resin production process.
  • a method of kneading with a polymer using a slurry form using a vented twin-screw kneading extruder (2) Ethylene glycol, a diol component used as a raw material
  • a method of mixing, dispersing and adding in the form of a slurry to coal and the like is preferably used.
  • a method in which a slurry in which particles are dispersed is added to a twin-screw kneading extruder and kneaded with a polymer is most preferable.
  • the L / D of the twin-screw kneading extruder used is preferably at least 25, more preferably at least 30.
  • the residence time of the polyester resin is preferably from 10 seconds to 90 seconds, more preferably from 20 seconds to 80 seconds, and still more preferably from 30 seconds to 70 seconds.
  • a surface treatment agent for the particles may be used by a known method according to the type of the polyester resin.
  • the surface treatment agent examples include ayuon such as sodium dodecylbenzenesulfonate, lithium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium dialkylsulfosuccinate, and formalin condensate of naphthalenesulfonic acid.
  • Nonionic surfactants such as surfactants, polyoxyphenol ether, polyethylene glycol monostearate, monostearate stearate, and their metal salts, polyvinyl alcohol, polyvinylpyrrolidone, and polyethylene
  • Water-soluble synthetic polymers such as glycol, water-soluble natural polymers such as gelatin and starch, and water-soluble such as carboxymethyl cellulose 0300076
  • semi-synthetic polymers silane-based or titanium-based coupling agents, phosphoric acid, phosphorous acid, phosphoric acid, and phosphoric acid compounds such as these conductors can be used.
  • a mill such as a roll mill, a high-speed rotary mill, a jet mill, or a Nauta mixer or a ribbon mixer can be used.
  • glass beads are used as a medium.
  • the dispersion method is particularly effective.
  • the glass beads to be used preferably have a diameter of 10 to 300 / ⁇ , more preferably 30 to 200 ⁇ m, and 50 to: the particle dispersibility of ⁇ ⁇ ⁇ Most preferred from the viewpoint of.
  • the stirring speed is preferably from 2000 to 800 rpm, more preferably from 300 to 700 rpm, and most preferably from 400 to 600 rpm.
  • the stirring time is preferably 1 to 9 hours, more preferably 3 to 7 hours, most preferably 4 to 6 hours.
  • the medium is mixed and dispersed in the same volume as the slurry used.
  • the slurry can be appropriately selected depending on the type of polymer and particles used, such as water slurry and ethylene glycol slurry.
  • the surface treatment agent is added to the slurry to disperse the media. Further, it is preferable to filter through a 5 m cut filter after the dispersion of the media, more preferably a 3 ⁇ cut filter, and most preferably an l / m cut filter.
  • the filter used is not particularly limited, but can be appropriately selected depending on the particles used.
  • the transition metal oxide particles used in the present invention are preferably washed with hot water before being added to the resin, and then dried under reduced pressure to reduce the chlorine content.
  • a master pellet containing particles at a high concentration is prepared in the above-described manner, and a master pellet containing the particles at a high concentration is formed at the time of film formation. It is preferable to use a method of diluting with a polymer which does not substantially contain the like.
  • the pellets of the polyester resin containing these particles are sufficiently dried as necessary, and then heated to a temperature equal to or higher than the melting point of the polyester resin under a stream of nitrogen or under reduced pressure so that the intrinsic viscosity does not decrease.
  • the screw shear rate (- ⁇ / ⁇ ⁇ ); D: screw diameter (cm); N: screw rotation speed (rp HI); h: groove depth of the screw measuring section (Cm)) is preferably from 50 to: L 000 sec- 1 and more preferably from 90 to 500 sec- 1 . More preferably, 150 to 300 seconds- 1 is preferable from the viewpoints of suppressing thermal decomposition of the thermoplastic resin and dispersing the thermoplastic resin and particles.
  • the screw used for melt extrusion may be of any shape, such as full frit or nori frit.However, the dispersibility of the thermoplastic resin particles and the agglomeration of coarse particles are increased.
  • a mixing screw is a screw that has a screw compression section, a metering section, or a mixing section at an intermediate position between them.For example, it has a fruited barrier, dal image, hummelt, multiple pins, etc. Screw.
  • the extruder may be either a single-screw or a twin-screw kneading type, but it is effective to use a high shear / low heat type screw.
  • a tandem extruder can be preferably used.
  • the discharge time of the polymer is preferably from 90 seconds to 6 minutes, more preferably from 2 minutes to 4 minutes.
  • the molten polymer is extruded from a die, and cooled on a casting drum having a surface temperature equal to or lower than the glass transition point of the polyester resin to form an unstretched film.
  • various filters for example, a filter made of a material such as a sintered metal, a porous ceramic, a sand, a wire mesh, or the like in order to remove foreign substances and a denatured polymer in a melt extruder. It is preferable that the filtration accuracy of the filter is appropriately selected depending on the transition metal oxide particles used and the particle size of the inert particles.
  • thermoplastic resin containing spherical inert particles on the film surface layer or laminating other layers After each chip is sufficiently dried, separate it into two or more melt extruders. And then combined using two or the desired number of multi-layer manifolds or confluence blocks, extruded as multi-layer sheets from the die, and a casting drum with a surface temperature of 120 ° C to 60 ° C. Cool on top to make unstretched film.
  • laminating using a merging block having a rectangular merging cross section is effective for laminating a thin and uniform thermoplastic resin containing various inert particles. is there.
  • a method of installing a static mixer or a gear pump in these polymer channels is effective in reducing film thickness unevenness.
  • the unstretched film is stretched in the longitudinal direction and / or the width direction of the film.
  • a stretching method there is a sequential biaxial stretching method in which an unstretched film is sequentially stretched in a machine direction and a transverse direction using a roll-stenter.
  • Simultaneous biaxial stretching in which unstretched film is simultaneously stretched longitudinally and transversely using a stenter, is effective because the process is simplified and stretching tears are less likely to occur than in sequential biaxial stretching.
  • the re-longitudinal stretching method in which a film successively stretched in both longitudinal and transverse directions is stretched again in the longitudinal direction, is extremely effective for increasing the strength in the longitudinal direction.
  • the re-longitudinal re-horizontal stretching method which extends again in the horizontal direction after the above-mentioned vertical re-stretching method, is extremely effective when it is desired to further impart strength in the horizontal direction.
  • a longitudinal multi-stage stretching method in which the film is stretched in two or more stages in the machine direction and subsequently in the transverse direction of the film can be used in the present invention.
  • the conditions for the stretching in the longitudinal direction are not particularly limited, but the stretching speed is 100 000 to 150 000%, and the stretching temperature is
  • the glass transition temperature of the polyester resin is preferably Tg or more and (glass transition temperature + 50 ° C) or less, and the stretching ratio is preferably 2.5 to 10 times, and more preferably 3.0 to 5 times.
  • a uniaxially oriented film is obtained by stretching in the longitudinal direction as described above.
  • the uniaxially oriented film obtained by the above-described method is used at the entrance of the tenter to obtain a melting point T of the polyester resin. m or less, and a heat treatment at a glass transition point Tg or more is preferable to reduce the amount of voids in the film.
  • a more preferable heat treatment temperature is (glass transition point Tg + 20 ° C) or more (melting point Tg). m—100 ° C) or less.
  • the subsequent stretching in the width direction is performed using a known tenter, and the stretching temperature is set to be equal to or higher than the glass transition temperature T g of the polyester resin, and equal to or lower than (glass transition temperature T g + 80 ° C.), more preferably, the polyester resin.
  • the glass transition temperature Tg or more and (glass transition temperature Tg + 40 ° C) or less, and the stretching ratio is 2.0 to 10 times, more preferably 2.5 to 5 times. Just do it.
  • the stretching speed at that time is not particularly limited. PC orchid 76
  • the biaxially oriented film may be stretched again in at least one direction in the longitudinal direction and the width direction.
  • the longitudinal stretching performed again is preferably performed at a stretching temperature of (glass transition temperature Tg + 20 ° C) or higher (glass transition temperature + 120 ° C) of the polyester resin, more preferably (glass transition temperature).
  • the stretching temperature is not less than (glass transition temperature Tg + 20.C) and not more than (glass transition temperature Tg + 150 ° C) of the polyester resin. More preferably, it is in the range of (glass transition temperature Tg + 50.C) or more and (glass transition temperature + 130 ° C) or less, and the stretching ratio is preferably in the range of 102 to 2 times, and 1. A range of 1-1.5 times is more preferred.
  • the heat treatment conditions may be any of fixed length, fine stretching, and relaxed conditions, with a temperature ranging from 0.5 to 6 in the range of (melting point of thermoplastic resin) to (melting point of thermoplastic resin-100 ° C). Preferably, it is performed for 0 seconds.
  • the temperature for simultaneous biaxial stretching is preferably not lower than the glass transition temperature of the polyester resin. Tg and not higher than (glass transition temperature Tg + 50 ° C.). If the stretching temperature greatly deviates from this range, uniform stretching cannot be performed, resulting in uneven thickness and tearing of the film.
  • the stretching ratio may be 3 to 10 times in each of the vertical and horizontal directions. Although the stretching speed is not particularly limited, it is preferably from 2000 to 5Q000% / minute.
  • heat treatment is preferably performed to reduce the void area ratio and the heat shrinkage.
  • the film biaxially oriented and heat-treated in each of the above methods is gradually cooled to room temperature and wound up by a winder.
  • the cooling method is preferably to gradually cool to room temperature in two or more steps. At this time, performing a relaxation treatment of about 0.5 to 10% in the longitudinal direction and the width direction is effective for reducing the thermal dimensional stability.
  • the first stage is (heat treatment temperature-20 ° C) ⁇ (heat treatment temperature-80 ° C)
  • the second stage is The range of the cooling temperature of the stage (30 ° C.) to (—the cooling temperature of the stage—60 ° C.) is preferable, but is not limited thereto.
  • the biaxially oriented thermoplastic resin film of the present invention can be preferably used for magnetic recording media, circuit materials, capacitors, thermal transfer ribbons, and cards.
  • the magnetic recording medium is preferably used as a high-density magnetic recording medium such as a digital video or a data storage tape, but is not limited thereto.
  • biaxially oriented thermoplastic resin films include a flexible circuit board (FPC) having an electric circuit on at least one surface, a multilayer circuit board, a build-up circuit board, and a semiconductor package. It can be used as a circuit board application such as a film for TAB (TAB) or as a protective film for a circuit board such as a coverlay.
  • FPC flexible circuit board
  • the capacitor may be of any type, such as with or without leads (so-called chip capacitor), and is not limited thereto.
  • thermal transfer ribbons it is used in any of the transfer methods such as a heat-sensitive ink transfer method and a heat-sensitive sublimation transfer method.
  • a high heat resistance is required for the base film.
  • the biaxially oriented thermoplastic resin film of the present invention is preferably used.
  • cards it can be applied to cards that can record information, especially cards that can be read and read or written magnetically, electrically, or optically, and cards that can record information by embossing or embossing. . Specifically, it is suitable for contact-type IC cards.
  • Non-contact type IC cards with an IC chip antenna circuit embedded in the chip magnetic cards such as magnetic strip cards, optical cards, etc. It can be used, and more specifically, a prepaid card, a credit card, a puncturing card, various certification cards, a driver's license card and the like can be exemplified.
  • the method for measuring characteristic values and the method for evaluating effects used in the present invention are as follows. (1) Melting point of film and thermoplastic resin
  • the polymer is removed from the film by plasma ashing to expose the particles. Processing conditions are selected such that the polymer is ashed but the particles are not damaged.
  • the particles are observed with a scanning electron microscope (SEM), and the particle images are processed with an image analyzer. The magnification of the SEM is approximately 20000 to 100000, and the field of view for one measurement is appropriately selected so that one side is approximately 10 to 50 / m.
  • the primary average particle size (R 1) and average secondary particle size (R 2.) of the particles are determined for at least 500 particles at different observation points.
  • a solvent that does not dissolve the particles by dissolving the polymer is appropriately selected, and 100 g of the film sample is dissolved in the solvent. Next, the polymer solution is centrifuged to separate particles. Further, the polymer adhering to the separation particles is dissolved in the solvent and centrifuged. After repeating this operation three times, the remaining particles are thoroughly washed with acetone. The weight of the obtained particles is measured.
  • the measurement was performed by ordinary X-ray fluorescence analysis. If necessary, quantitate using pyrolysis gas chromatography, infrared absorption, Raman scattering, SEM—XMA, etc.
  • 77 Sp (solution viscosity _ / solvent viscosity)-1
  • [77] is the intrinsic viscosity
  • C is the weight of dissolved polymer per 100 ml of solvent (g / 100 ml, usually 1 . 2)
  • K is the Huggins constant (assumed to be 0.334).
  • the solution viscosity and the solvent viscosity were measured using an Ostold viscometer. The unit is indicated by [d1 / g].
  • a cross-sectional photograph of the cross section of the film cut in the thickness direction with a microtome is taken at a magnification of 500 to 500,000 times using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a total of 100 or more voids were marked, the cross-sectional photograph was digitized by a scanner, and image processing and measurement software "Image — Pro PLUS" was used. Calculate the ratio of the sum of the areas of the voids to the area of the cross-sectional photograph observed with a microscope, and display it in%.
  • an instron type tensile tester (Orientec Co., Ltd. automatic film strength and elongation measuring device “Tensilon A MF / R TA-100”) ).
  • a sample film having a width of 10 mm is pulled under the conditions of a test length of 100 mm and a pulling speed of 200 mm / min.
  • the Young's modulus is determined from the slope of the rising tangent of the obtained tension-strain curve, and the elongation at break is determined.
  • the measurement is performed in an atmosphere of 25 ° C and 65% RH.
  • Heat shrinkage (%) ⁇ (L 0-L 1) / L 0 ⁇ X 1 0 0
  • the refractive index was measured using an Abbe refractometer type 4 manufactured by Atago Co., Ltd. according to the method specified in JIS K7105, using sodium D line as a light source. In addition, it measured at 23 degreeC and 65% RH. After that, the plane orientation coefficient was obtained from the measured refractive index by the following formula.
  • Plane orientation factor, number ⁇ (nMD + nTD) / 2 ⁇ -nZD
  • n MD Refractive index in the longitudinal direction of the film
  • n T D Refractive index in the film width direction
  • n Z D Refractive index in film thickness direction
  • the storage elastic modulus was measured according to the method specified in ASTM D506, using a DMS610 manufactured by Seiko Instruments Inc., at a frequency of 1 Hz, a width of lOmmX and a length of 2 Omm. Was heated from 26 ° C to 240 ° C at a rate of 2 ° C / min, and the storage elastic modulus at 200 ° C was determined. The sample was measured in the longitudinal direction of the film.
  • a magnetic paint or a non-magnetic paint having the following composition is applied in multiple layers by an extrusion coater (the upper layer is coated with a magnetic paint at a thickness of 0.1 lum, and the thickness of the non-magnetic lower layer is appropriately changed). Then, it is magnetically oriented and dried. Next, after forming a back coat layer of the following composition on the opposite side, force was applied at a temperature of 85 ° C and a linear pressure of 200 kg Z cm with a small test calender (5 steel steel rolls). After rendering, cure at 70 ° C for .48 hours. Slit the above tape into 8 mm width to make pancake.
  • a 200 m length of this pancake is incorporated into a cassette to form a cassette tape.
  • VTR for Hi8 EV-BS300 from Sony Corporation
  • this tape was used to measure the C / N (carrier-to-noise ratio) at 7 MHz + 1 MHz. Do. Compare this C / N with a commercially available video tape for H ⁇ 8 (Sony Corporation's 120-minute MP), and compare +3 ( ⁇ is more than 18 and + is more than +1 and less than +3 dB). If it is less than + ld B, it is judged as X. ⁇ is desirable, but ⁇ can be used practically.
  • Ferromagnetic metal powder 00 parts by weight
  • Titanium oxide 100 parts by weight
  • Carbon black (average particle size: 280 nm): 10 parts by weight
  • a magnetic paint having the following composition is applied to the surface of the film of the present invention so as to have a coating thickness of 2.0 / xm, magnetically oriented, and dried.
  • the back coat layer is calendered and cured at 70 ° C. for 48 hours. Slit the above tape into 1/2 inch width, and as a magnetic tape, assemble a length of 670 m into a cassette to form a cassette tape.
  • Ferromagnetic metal powder 00 parts by weight
  • Tonolen 75 parts by weight
  • Carbon plaque (average particle diameter 20 nm): 95 parts by weight
  • the created cassette tape is allowed to run for 100 hours using Magstar 390 MOD ELB1A TAPe Drive manufactured by III Corporation, and the running durability of the tape is evaluated according to the following criteria.
  • is a passing product.
  • X A part of the tape end face is stretched, wakame-like deformation is seen, and scraping marks are seen. Also, the cassette tape created above is applied to IBM's Magstar 3590 MO DELB 1 AT ae Drive. After reading the data, the cassette tape is stored in an atmosphere of 60 ° C and 80% RH for 100 hours, and then the data is reproduced to evaluate the preservability of the tape according to the following criteria.
  • is a passing product.
  • the film side of the copper-clad polyimide film described in JISC 6472 is bonded to the film of the present invention with an adhesive composed of a general-purpose vinyl chloride resin and a plasticizer, at a temperature of 165 ° C and a pressure of 30 kgZ. Crimping with a roll under the conditions of cm 2 and time of 30 minutes I do. With the sample size being 25 cm! 25 cin, the curl at the four corners was observed while placed on the surface plate, and the average value of the warpage (mm) at the four corners was calculated. evaluated. ⁇ and ⁇ passed.
  • Warpage is 5 mm or more and less than 10 mm
  • Warpage is 1 O mm or more
  • a pair of left-right symmetrical / evaporated films with a width of 30 mm and a margin of 1.5 mm are stacked and wound to a length of 1.5 F.
  • the roll is pressed at 140 ° C, 70 kg Zc ni 2 for 10 minutes to form.
  • Metallicon is sprayed on both ends to form electrodes, and leads are attached to make capacitor samples.
  • a capacitor sample with an insulation resistance of less than 500 000 ⁇ is regarded as a defective product and judged according to the following criteria. In the present invention, ⁇ , ⁇ , and ⁇ are acceptable products.
  • a rubber plate with a rubber shore hardness of about 60 degrees and a thickness of about 2 mm is laid on a metal plate of an appropriate size, and 10 pieces of aluminum foil with a thickness of about 6 Atm are stacked on top of it.
  • the lower electrode is a lower electrode
  • the upper electrode is a brass cylinder with a weight of about 50 g and a round bottom with a diameter of about 8 mm and a smooth surface with no damage.
  • the test was performed under the following two conditions, and the breakdown voltage at room temperature and high temperature was measured. Measure the pressure.
  • a test piece is inserted between the upper electrode and the lower electrode, and a DC voltage is applied between both electrodes by a DC power supply in each atmosphere. Raise at 100 V / s from 0 V to break down.
  • a test was performed on 50 samples, and the average value was calculated by dividing the insulation breakdown voltage by the thickness of the test piece. The average value was AOO VZ / i iri or more under condition 1, and 35 OV / ni or more under condition 2. Is passed ( ⁇ ).
  • a thermal transfer ink having the following composition is applied to the biaxially oriented film of the present invention on a surface opposite to the anti-fusing layer with a hot melt coater so that the applied thickness becomes 3.5 ⁇ m, thereby preparing a thermal transfer ribbon. .
  • the printed thermal transfer ribbon is printed with a solid black with a bar code printer (BC-18) manufactured by Oaks Corporation, and the printability is evaluated.
  • is a passing product.
  • XX The film is wrinkled during hot melt coating, and the thermal transfer ink cannot be coated uniformly.
  • the paste was applied to a film of the present invention (thickness: 100 ⁇ , width: 54 mm, length: 86 mm, both surfaces of which were subjected to corona discharge treatment) using a screen printing machine (20 turns). , Length 280 cm, circuit width design value 400 / ⁇ , circuit space design value 250 m), then pre-dry at 100 ° C, then 1 This was dried at 50 ° C to obtain a printed circuit board on which a printed antenna circuit was formed.
  • a chip (IC, capacitor) with a thickness of 250 / im is further heated to 200 ° C and 200 ° C using an anisotropic conductive film (AC-8301, manufactured by Hitachi Chemical Co., Ltd.). It was connected to a printed antenna circuit at 0 kg / cm 2 to obtain a printed board on which a chip and a printed antenna circuit were formed.
  • AC-8301 anisotropic conductive film
  • connection between the circuit and the chip on the printed board obtained here was observed, and the judgment was made based on the following criteria.
  • Polyethylene terephthalate used as a polyester resin was prepared by adding 0.14 parts by weight of magnesium acetate tetrahydrate to 194 parts by weight of dimethyl terephthalate and 124 parts by weight of ethylene glycol, and 140 to 230
  • the ester exchange reaction was performed while distilling methanol at ° C.
  • an ethylene glycol solution of 0.05 parts by weight of trimethyl phosphate and 0.05 parts by weight of antimony trioxide were added and stirred for 5 minutes.
  • the reaction system was stirred while the low polymer was stirred at 30 rpm. Was gradually increased from 230 ° C to 290 ° C, and the pressure was reduced to 0.1 kPa.
  • the final temperature and the time to reach the final pressure were both 60 minutes.
  • the transition metal oxide particles have an average primary particle size (R 1) of 3 Using 0 nm cupric oxide, 19.9 wt% of cupric oxide is blended with 99.9 wt% of PET and fed to a vented twin-screw extruder heated to 295 ° C. Melt extrusion was performed in 30 seconds, and 1 cupric oxide particles were added. /. A polymer chip to be blended (Polymer-1A) was obtained.
  • This polymer A was extruded at 280 ° C using a melt extruder, and was tightly adhered to a casting drum with a surface temperature of 25 ° C while applying an electrostatic charge from a die to cool and solidify. was prepared. .
  • This unstretched film is stretched 3.3 times in the longitudinal direction at a stretching temperature of 95 ° C by a wool-type stretching machine, and then subjected to heat treatment at 150 ° C under tension in a tenter preheating zone under a tension of 0.5 ° C. It went for seconds. Subsequently, the film is stretched 3.6 times in the width direction at a temperature of 95 ° C using a tenter, and the film is stretched 1.7 times in the longitudinal direction at a temperature of 135 ° C using a roll-type stretching machine. The film was stretched, and further stretched 1.3 times in the width direction using a tenter at a stretching temperature of 190 ° C.
  • heat treatment is performed at constant temperature for 2 seconds at an ambient temperature of 210 ° C, and for 1 second while applying 3% relaxation at 150 ° C in a cooling zone, and 2% at 100 ° C.
  • the film was gradually cooled for 3 seconds while being relaxed to obtain a biaxially oriented polyester film having a thickness of 6 m and a film IV of 0.60.
  • Glass beads 500 Aim were added in the same volume as water, and cupric oxide particles were added, followed by stirring and dispersion (stirring speed: 300 rpm, stirring time: 4 hours). After the stirring, the glass beads were removed to prepare a water slurry of copper oxide particles. The slurry was filtered through a 1 ⁇ m cut filter to remove coarse particles. When the concentration of the obtained copper oxide water slurry was measured, it was 4 wt%. This was heated in the same manner as in Example 1 to obtain PET 99% by weight and cupric oxide to 1% by weight. The slurry was added to the kneading extruder, and the mixture was melt-pushed with a residence time of 30 seconds, and 1 weight of cupric oxide was added. /.
  • a polymer chip (polymer B) to be blended was obtained.
  • An unstretched film was produced by tightly contacting and cooling on a 25 ° C casting drum while applying an electrostatic charge. Subsequently, the film was stretched in the same manner as in Example 1 to obtain a biaxially oriented polyester film having a thickness of 6 ⁇ m and a film IV of 0.62.
  • the properties of this biaxially oriented polyester film are superior to those of Example 1 in that the dispersibility of cupric oxide particles present in the film is excellent, and the heat resistance, thermal dimensional stability and mechanical properties It had excellent characteristics.
  • a film was obtained in the same manner as in Example 2 except that lithium dodecyl benzene sulfonic acid was added as a surface treating agent for cupric oxide particles.
  • the obtained film had a thickness of 6 ⁇ and a film IVO.65.As shown in Table 1, the dispersibility of cupric oxide particles present in the film was more excellent than that of Example 2; It had excellent heat resistance, thermal dimensional stability and mechanical properties.
  • a film having a thickness of 6 ⁇ and a finolem I V O.58 was obtained in the same manner as in Example 1 except that the addition amount of cupric oxide particles was changed to 5% by weight.
  • the resulting film had the same improvement in heat resistance, thermal dimensional stability, and mechanical properties as compared to Example 1, despite the 5 wt% addition of particles. .
  • Example 2 In the same manner as in Example 1, except that the polyester resin was changed to polyethylene naphthalate of IVO.68 (hereinafter referred to as PEN) obtained by the usual method, and the melt extrusion temperature was changed to 300 ° C. An unstretched film was produced.
  • PEN polyethylene naphthalate of IVO.68
  • This unstretched film is stretched 4.0 times in the longitudinal direction with a roll stretching machine at a stretching temperature of 135 ° C and then heat-treated at 170 ° C under tension in a tenter preheating zone for 0.5 seconds. went. Subsequently, the film is stretched 4.0 times in the width direction at a temperature of 140 ° C using a tenter, and further, the film is stretched 1.5 times in the longitudinal direction at a temperature of 170 ° C with a mouth-type stretching machine. The film was further stretched 1.2 times at a stretching temperature of 210 ° C. in the width direction using a tenter.
  • a finolem having a thickness of 6 ⁇ and a finolem IV of 0.59 was obtained in the same manner as in Example 1, except that yellow iron oxide having an average primary particle size of 40 nm was used.
  • MD Film longitudinal direction
  • TD Film width direction
  • R Average particle size of particles in film 0076
  • the molten film extruded in this manner was applied with an electrostatic charge, and was tightly cooled and solidified on a casting drum (diameter: 800 mm) having a surface temperature of 25 ° C.
  • the obtained film is supplied to a longitudinal stretching machine composed of a group of heating rolls, stretched 3.5 times at a film temperature of 100 ° C, and then stretched 100 ° C in a width direction using a tenter. Stretched 4.0 times, and heat-treated at 230 ° C for 5 seconds, relaxed by 8% in the width direction of the tenter, and edge-cut the edge to make a biaxial orientation with a thickness of 6? PS film was obtained.
  • the obtained biaxially stretched PPS film had excellent particle dispersibility, and excellent characteristics in heat resistance, thermal dimensional stability, and mechanical properties.
  • Example 2 After stretching in the longitudinal direction, a film was obtained in the same manner as in Example 1 except that no heat treatment was performed in the tenter preheating zone. The resulting biaxially oriented polyester film had increased voids and decreased film formation stability. In addition, the mechanical properties were lower than in Example 1.
  • Example 5 After stretching in the longitudinal direction, a film was obtained in the same manner as in Example 5, except that no heat treatment was performed in the tenter preheating zone. The resulting biaxially oriented polyester film had increased voids and decreased film formation stability. In addition, the mechanical properties were lower than in Example 1.
  • the stretching ratio in the longitudinal direction was changed to 3.5 times
  • the stretching ratio in the width direction was changed to 4.5 times
  • the subsequent stretching ratio in the longitudinal direction and the width direction was changed.
  • a film having a thickness of 6 / im was obtained in the same manner as in Experimental Example 1 except that re-stretching was not performed.
  • the obtained biaxially oriented polyester film was excellent in particle dispersibility and excellent in heat resistance, mechanical properties and dimensional stability.
  • a film having a thickness of 6 ⁇ m and having a thickness of 6 ⁇ m was obtained in the same manner as in Example 1 except that copper oxide particles were not contained.
  • MD Film longitudinal direction
  • TD Film width direction
  • R Average particle size of particles in film 0300076
  • a film having a thickness of 6 ⁇ and a film IV of 0.60 was obtained in the same manner as in Example 1, except that cupric oxide particles having an average primary particle size of 200 nm were used.
  • a film having a thickness of 6 ⁇ m was obtained in the same manner as in Example 7, except that the cupric oxide particles were not blended.
  • a film having a thickness of 6 ⁇ m and a film IVO.60 was obtained in the same manner as in Example 10, except that the cupric oxide particles were not blended.
  • a film having a thickness of 6 ⁇ and a film IVO of 58 was obtained in the same manner as in Example 1, except that alumina particles having an average primary particle size of 50 nm were used as the particles.
  • alumina particles are present as agglomerates in the film, the film formation stability is lower than in Example 1, the Young's modulus is lower, and the void area ratio is lower. Was large and the breaking elongation was small.
  • a film having a thickness of 6 ⁇ m and a film IV of 0.55 was obtained in the same manner as in Example 1, except that the cupric oxide particles used in Example 1 were mixed at 10 wt%.
  • the obtained biaxially oriented polyester film has agglomeration of particles in the film, lacks film forming stability, has a low Young's modulus, and has a lower void area ratio than that of Example 1. But the elongation at break was small. Also, thermal dimensional stability was poor.
  • MD longitudinal direction of finolem
  • TD width direction of film
  • R average particle size of particles in film
  • a laminated film was prepared using two extruders A and B such that the extruder A formed a magnetic surface and the extruder B formed a running surface.
  • the extruder A heated to 280 ° C was supplied with the polymer chip (I) after being dried under reduced pressure at 180 ° C for 3 hours, while the extruder also heated to 280 ° C.
  • Example 2 the film was stretched in the same manner as in Example 2 of the obtained film to obtain a biaxially oriented polyester film having a thickness of 6.0 / m.
  • Table 4 shows the magnetic tape properties of the obtained film.
  • the film of this example containing cupric oxide is superior in strength, thermal dimensional stability, running durability, storage stability, high-speed scraping property, etc., compared to the film of Comparative Example 8 consisting of PET alone. It was much better in terms of magnetic tape characteristics.
  • a film was obtained in the same manner as in Example 11 except that the cupric oxide was not blended.
  • the biaxially oriented polyester film was compared with Example 11 as shown in Table 4.
  • Strength, heat It was inferior in magnetic tape characteristics such as dimensional stability, running durability, storage stability, high-speed shaving, and electromagnetic conversion characteristics.
  • Example 10 In the same manner as in Example 10, a biaxially oriented film having a thickness of 100 m was obtained. The thickness was adjusted by adjusting the discharge amount of the extruder. The obtained film was evaluated for practical properties as a circuit material by the method described above, and as shown in Table 5, as compared with the film of Comparative Example 9 consisting of PET alone, the film was used for a circuit material. And had very good properties.
  • a film was obtained in the same manner as in Example 12 except that cupric oxide was not blended.
  • the obtained film was evaluated for practical characteristics as a circuit material in the same manner as in Example 12. As a result, as shown in Table 5, the film had a larger warp than the film of Example 12 and had inferior properties for circuit materials.
  • a biaxially oriented film having a thickness of 3.5 ⁇ m was obtained in the same manner as in Example 10. The thickness was adjusted by adjusting the discharge amount of the extruder.
  • the film of this example was compared with the film of Comparative Example 10 consisting of PET alone, as shown in Table 6. It had very good properties for use.
  • a film was obtained in the same manner as in Example 13 except that cupric oxide was not blended.
  • the obtained film was evaluated for practical characteristics as a capacitor, and as shown in Table 6, was found to be inferior to the film of Example 13 in heat resistance.
  • a cupric oxide-blended polymer chip was obtained in the same manner as in Example 2, except that 0.25% by weight of agglomerated silica particles having an average particle diameter of 0.3 ⁇ m was blended into the PET obtained in Example 2.
  • This polymer chip was coated on one side of an unstretched film obtained in the same manner as in Example 2 with a coating having the following composition as an anti-fusing layer so that the coating thickness after drying was 0.5 ⁇ m. Coated with a beer coater.
  • Example 10 Thereafter, the film was stretched in the same manner as in Example 10 to obtain a biaxially oriented polyester film having a thickness of 3.5 ⁇ m.
  • This film was processed and evaluated for its practical properties as a thermal transfer ribbon.As shown in Table 7, the film was compared with the film of Comparative Example 11 consisting of PET alone, and was used as a thermal transfer ribbon. And had very good properties.
  • a film was obtained in the same manner as in Example 14 except that cupric oxide was not blended. The obtained film was evaluated for practical properties as a thermal transfer ribbon.
  • the film of this comparative example which was composed of a single film, easily printed, and could not be used as a thermal transfer ribbon. Table 7
  • a biaxially oriented film having a thickness of 50 / _t m and a thickness of ⁇ m was obtained in the same manner as in Example 10. The thickness was adjusted by adjusting the discharge amount of the extruder.
  • a film was obtained in the same manner as in Example 15 except that cupric oxide was not added, and then an IC card was prepared in the same manner as in Example 15.
  • the obtained card is a car
  • the card was inferior, the flatness was deteriorated, and the appearance as a card was inferior.Also, the antenna substrate inside the card was deformed, and the connection between the chip and the circuit was broken. .
  • Table 8 shows the results.
  • thermoplastic resin film having excellent heat resistance, thermal dimensional stability and mechanical properties can be obtained. Therefore, the biaxially oriented thermoplastic resin film of the present invention can be widely used as a film for various industrial materials such as magnetic recording media, circuit materials, capacitors, thermal transfer ribbons, and cards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

明 細 書 二軸配向熱可塑性樹脂フィルム 技術分野 本発明は品質を大幅に向上させた二軸配向熱可塑性樹脂ブイルムに関する。 さ らに詳しくは、 耐熱性、 熱寸法安定性および機械特性に優れ、 磁気記録媒体用、 回路材料用、 コンデンサー用、 熱転写リボン用、 カード用などの各種工業材料用 のフィルムと して適した二軸配向熱可塑性樹脂フィルムに関するものである。 背景技術 プラスチックフィルムは、 その強度、 耐久性、 透明性、 柔軟性、 表面特性の付 与などの特性を活かして、 磁気記録用、 農業用、 包装用、 建材用などの大量に需 要のある分野で用いられている。 中でも、 二軸配向ポリエステルフィルムは、 そ の優れた機械的特性、 熱的特性、 電気的特性および耐薬品性のために、 様々な分 野で利用されており、 特に磁気記録用途と しての有用性は、 他のフィルムの追随 を許さない。 しかし、 用途によってはポリエステルフィルムでは寸法安定性ゃ耐 熱性が十分ではなく、 各種工業材料用フィルムへの適用に際して限界があった。 例えば磁気記録用途では、 小型化および長時間記録化のために薄膜化および高密 度記録化が進められており、 ベースフィルムの高強度化、 使用環境下での形態安 定性および熱寸法安定性の改善に対する要求がますます高まっている。 また、 回 路材料用途などでは、 電気、 電子分野の小型化、 多機能化のニーズから耐熱性、 熱寸法安定性、 機械強度、 耐薬品性等が高次元でパランスしたフィルムの要求が 厳しくなつてきている。 .
また、 従来からポリエステルに粒子を含有させて繊維や樹脂成形品を高強力化 させる方法が検討され、 粒径が 1 0 0 n m以下の金属酸化物の微粒子を繊維中に 含有させ、 繊維の強度並びに寸法安定性を向上させたもの (特開平 1 — 1 9 2 8 2 0号公報) 、 ポリ エステル系樹脂中にグリ コール類が配位した金属錯体を重合 添加し、 金属単体への還元により、 パラジウム等の金属微粒子をポリマー中に微 分散させ、 樹脂成型品を高弾性率化したもの (特開平 1 0— 2 9 8 4 0 9号公 報) などが提唱されている。 しかし、 これらの技術をフィルムに適用した例はな く、 本発明のようにフィルムの融点を上昇させ、 フィルムの耐熱性、 熱寸法安定 性の向上を目的とするものではなかった。
また、 二軸配向ポリエステルフィルム中に粒子を含有させる方法が検討され、 粒径が 3 0 0 n m未満である元素周期表第 5、 第 6周期元素の酸化物粒子を含有 したもの (例えば特開平 3 — 1 1 5 4 3 7号公報) などがあるが、 これらは主に フィルム表面形成を目的と しており、 耐スクラッチ性向上を目的として提唱され ているものであり、 フィルムの耐熱性、 熱寸法安定性および機械特性の向上を目 的とするものではない。
本発明の目的は、 かかる問題点を解決し、 耐熱性、 熱寸法安定性おょぴ機械特 性に優れた高品質の二軸配向熱可塑性樹脂フィルムを提供することである。 中で も、 各種用途において重要視されてきた実用特性、 例えば、 磁気記録用途におけ る走行耐久性、 回路材料用途における加工時の平面性や反り、 コンデンサー用途 における耐熱性、 リボン用途における印字ズレ、 カード用途における回路のズレ などを大幅に改良する二軸配向熱可塑性樹脂フィルムを提供することである。 発明の開示 上記目的を達成するために鋭意検討した結果、 遷移金属酸化物粒子を特定の分 散状態で配合すると、 熱可塑性樹脂と粒子との間で相互作用が飛躍的に高まり、 分子鎖 粒子間で架橋構造を形成するため、 高温での貯蔵弾性率が向上し、 融点 が上昇して、 耐熱性、 熱寸法安定性および機械特性に優れ、 各種フィルム用途で 有用な工業的に優れたフィルムを見いだし、 本発明を完成するに至った。 すなわ ち、 本発明の二軸配向熱可塑性樹脂フィルムは、 遷移金属酸化物粒子が配合され た熱可塑性樹脂からなる二軸配向熱可塑性樹脂フィルムであって、 該ニ軸配向熱 可塑性樹脂ブイルムの融点が使用する熱可塑性樹脂の融点よりも高いこ とを特徴 とする二軸配向熱可塑性樹脂フィルムである。 また、 本発明の二軸配向熱可塑性 樹脂フィルムは、 遷移金属酸化物粒子が配合された熱可塑性樹脂からなる二軸配 向熱可塑性樹脂フィルムであって、 二軸配向フィルムの示差走査熱量計 (D S C ) 測定による 1 s t r u nの融解熱量のピーク温度 (融点 および 2 n d r u nの融解熱量のピーク温度 (融点 T 2 ) の差が下記式 ( 1 )
2 °。≤ 1 — T 2≤ 3 0。C ( 1 )
を満足することを特徴とする二軸配向熱可塑性樹脂フィルムである。 また、 熱可 塑性樹脂がポリエステル、 ポリ フエ二レンスルフイ ド、 ポリオレフイ ン、 ポリ ア ミ ド、 ポリイ ミ ド、 ポリカーボネート、 ポリエーテルエーテルケ トンの中から選 ばれる少なく とも 1種を主たる成分とする樹脂であることを特徴とし、 熱可塑性 樹脂がポリエステルの場合、 面配向係数が 0 . 1 2 0以上、 0 · 2 8 0未満であ ることを特徴とする二軸配向熱可塑性樹脂フィルムであって、 上記の二軸配向熱 可塑性樹脂フィルムを用いることを特徴とする磁気記録媒体、 回路材料、 コンデ ンサ一、 熱転写リボン、 カードである。 . 発明を実施するための最良の形態 本発明の二軸配向熱可塑性樹脂ブイルムは、 熱可塑性樹脂と遷移金属酸化物粒 子とを主たる成分と してなるフィルムである。
熱可塑性樹脂は特に限定されないが、 ポリエステル、 ポリフエ-レンスルフィ ド、 ポリオレフイ ン、 ポリアミ ド、 ポリイミ ド、 ポリカーボネート、 ポリエーテ ルエーテルケ トン、 ポリ スルフォン、 ポリエーテルスルフォン、 ポリ アリ レー ト, 塩化ビュル系樹脂、 スチレン系樹脂、 アク リル系樹脂、 ポリアセタール、 弗素樹 脂などの中から選ばれる少なく とも 1種を主たる成分と して使用することができ る。 主たる成分と しては、 5 0重量%以上が好ましく、 より好ましくは 7 0重量 %以上、 さらに好ましくは 9 0重量%以上である。 本発明の効果発現の観点でポ リエステル、 ポリ フエ二レンスルフイ ド、 ポリオレフイ ン、 ポリアミ ド、 ポリイ ミ ド、 ポリカーボネー ト、 ポリエーテルエーテルケ トンがフィルムの耐熱性、 熱 寸法安定性および機械特性向上の点で好ましく、 ポリエステル、 ポリフヱ二レン スルフィ ドが特に好ましい。
ポリエステルは特に限定されないが、 エチレンテレフタレー ト、 エチレン一 2 , 6 —ナフタ レー ト、 へキサメチレンテレフタレー ト、 シクロへキサンジメチレン テレフタレー ト、 エチレン一 α , ]3 —ビス ( 2—ク ロルフエノキシ) エタンー 4 , 4 ' ージカノレボキシレー ト、 プチレンテレフタレー ト、 プチレン一 2, 6—ナフ タレー ト、 プチレン一 α, β — ビス ( 2 —クロノレフエノキシ) ェタン一 4, 4 ' 一ジカルボキシレート単位から選ばれた少なく とも 1種の構造単位を主たる構成 成分とする場合に、 本発明の効果がより顕著となるので好ましい。 主たる構成成 分と しては、 5 0重量。 /0以上が好ましく、 より好ましくは 7 0重量%以上、 さら に好ましくは 9 0重量%以上である。 また、 液晶性ポリエステル樹脂の場合、 例 えば米国特許第 4 5 5 2 9 4 8号に記載されたような公知の液晶性ポリエステル を用いることができる。 すなわち、 パラヒ ドロキシ安息香酸 (Η Β Α) 成分を主 メ ソゲンとして 4 0〜 9 0重量。 /0含有し、 しかも流動性改良のために 4, 4 ' 一. ジヒ ドロキシビフエニル (DHB) を含んだ液晶性ポリエステルが好ましい。 メ ソゲンの含有形式は、 ランダム共重合、 プロ ック共重合、 ブランチ共重合、 およ びそれらの組み合わせ複合共重合など任意の形式でよいが、 本発明の場合、 ポリ エチレンテレフタ レー ト ( P E T) あるいはポリエチレンナフタレー ト (P E N) /HB A/DH B/イ ソフタル酸 ( I P A) あるいはテレルタル酸 (T P A) 等からなる液晶性樹脂、 HB AZ6—ヒ ドロキシー 2—ナフトェ酸を主成分 とする共重合体、 H B AZ , 4 ' ージヒ ドロキシビフエ-ルとテレフタル酸、 ィソフタル酸との共重合体、 H B A /ハイ ドロキノン (HQ) /セバシン酸 ( S A) との共重合体などが好ましい。 これらは、 市販のものを使用することができ. 例えば東'レ株式会社製シベラス、 上野製薬株式会社製 U E NO— L C Pなどを用 いることができる。 本発明では、 ポリエチレンテレフタレート (以下 P E Tと称 す) および/またはポリエチレンナフタレート (以下 P E Nと称す) を主たる成 分とするポリエステルの場合、 機械特性、 寸法安定性、 生産性の点から特に好ま しい。 また、 本発明の目的を阻害しない範囲内で複数のポリマをブレンドしても かまわない。
本発明でいうポリ フエ二レンスルフィ ド ( P P S ) 樹脂とは、 ポリ一パラ ( P ) 一フエ二レンスルフイ ドを 7 0モル%以上含む樹脂をいう。 該値未満の組 成物では耐熱性、 寸法安定性および機械特性などの諸特性において劣ったものし か得られないためである。 該榭脂は、 ポリ 一メタ (m) —フエ-レンスルフイ ド ポリマーや、 ァリール.基、 ビフエ-ル基、 ターフェニル基、 ビニレン基、 カーボ ネート基などを有した他のモノマーを少量、 例えば 3 0モル%未満の範囲で任意 の形態で共重合、 混合させたものでもよい。
P P S樹脂の分子は、 直鎖 ·線状の分子量 5万以上の高分子であるのが好まし いが、 必ずしもこれにはこだわるものではなく、 分岐鎖を有した高分子でも、 あ るいは一部架橋構造を有したものであってもよい。
また、 P P s樹脂中に含まれる低分子量オリゴマーは、 ジフヱニルエーテルな どの溶媒で洗浄することにより除去できるが、 沸騰キシレンでの 3 6時間の抽出 でオリ ゴマー量としては 1. 5重量。 /0以下となるようにすることが好ましい。 これらの P P S樹脂の製造方法としては、 米国特許第 3 3 5 4 1 2 9号明細書 に記載の方法などが参考になる。
本発明に用いられるポリ エステル原科の固有粘度は、 製膜性、 粒子との混練性、 溶融押出時の分解性等の観点から好ましくは 0. 5 5〜 2 · 0 d 1 / g , より好 ましく は 0. 6 ~ 1. 4 d l Z g、 最も好ましくは 0. 7 0〜: 1. O d l Z gで める。
また、 ポリフエ二レンスルフィ ド原料の溶融粘度は、 5 0 0〜 3 0 0 0 0ボイ ズが好ましく、 より好ましくは 1 00 0〜 1 5 0 0 0ボイズであり、 さらに好ま しくは、 2 0 0 0~ 1 0 0 0 0ボイズである。
また、 本発明でいう遷移金属酸化物粒子は特に限定されないが、 元素周期表 V A族、 VIA族、 WA族、 族、 I B族の遷移金属酸化物粒子が好ましく、 より好 ましくは、 元素周期表第 4周期の V A族、 VIA族、 WA族、 VI族、 I B族の遷移 金属酸化物粒子である。 例えば、 酸化バナジウム、 酸化クロム、 酸化マンガン、 酸化鉄、 酸化コバルト、 酸化ニッケル、 酸化銅、 酸化ニオブ、 酸化モリブデン、 酸化テクネチウム、 酸化ルテニウム、 酸化ロジウム、 酸化パラジウム、 酸化銀の 粒子などを用いることができるが、 本発明のフィルムにおいては、 酸化マンガン. 酸化鉄、 酸化銅などが好ましく、 特に好ましくは元素周期表第 4周期の酸化銅、 黄酸化鉄が、 耐熱性、 熱寸法安定性おょぴ機械特性、 品質の安定性の観点から最 も好ましい。 また、 遷移金属酸化物粒子を構成する主たる成分としては、 酸化銅 であることが好ましい。 この場合、 粒子に占める酸化銅の含有量は 5 0重量。 /0以 上であることが好ましく、 より好ましく は 6 0重量%以上、 さらに好ましく は 7 0重量%以上である。 また、 酸化銅粒子を用いる場合、 酸化第一銅、 酸化第二銅 のいずれでもかまわないが、 酸化第二銅の場合、 耐熱性、 熱寸法安定性および機 械特性、 品質の安定性の観点から好ましい。 酸化銅中、 酸化第二銅が占める重量 分率は、 5 0重量。/。以上、 好ましくは 6 0重量。 /0以上、 さらに好ましくは 7 0重 量%以上である。 また、 含有される粒子は 2種類以上併用してもかまわない。 ま た含有される粒子の形状は球状、 針状、 板状のいずれでもよいが特に限定されな い。 フィルム表面の平滑性の観点からは球状が好ましい。
また、 これらの遷移金属酸化物粒子は市販のものを使用できる。 例えば、 N a n o p h a s e社製 N a n o t e kなどを用いることができ、 より好ましくは、 これらの粒子に表面処理を施すことによって、 より本発明の目的のフィルムを得 ることが可能となる。
また、 本発明の遷移金属酸化物粒子の平均一次粒径は、 3〜 1 2 0 n mの範囲 であることが好ましい。 フィルム中における粒子の平均一次粒径が該範囲内であ るためには、 樹脂に添加するときに、 平均一次粒径が 3〜 1 2 0 n mである遷移 金属酸化物粒子を用いればよい。 平均一次粒径が上記範囲よりも小さいものは、 工業的に得られ難い。 また、 上記範囲よりも大きいとフィルムの延伸性に劣り、 製膜工程においてフィルム破れが起こりやすい。 好ましくは 5 ~ 1 0 0 η ηιの範 囲であり、 最も好ましくは 1 0〜 5 0 n mの範囲である。
本発明のフィルムにおいて、 フィルム中に存在する遷移金属酸化物粒子は、 耐 熱性、 熱寸法安定性および機械特性、 製膜安定性およびフィルム表面の粗大突起 の観点から粒子の平均二次粒径が 3〜 2 5 0 n mの範囲が好ましい。 平均二次粒 径を上記範囲より小さくすることは通常困難である。 また、 上記範囲よりも大き いと製膜安定性が低下しやすく、 高密度磁気テープなど適用する用途によっては. フィルム表面の粗大突起となる場合があるため注意すべきである。 さらに好まし くは、 5〜 1 5 0 n mの範囲であり、 最も好ましくは 1 0〜 1 0 0 n mの範囲で ある。
本発明において、 熱可塑性樹脂フィルム中における、 遷移金属酸化物粒子の含 有量は、 フィルムの耐熱性、 熱寸法安定性および機械特性の観点から 0 . 0 0 1 〜 5重量。 /0が好ましい。 さらに好ましく は 0 . 0 2 ~ 2重量。 /0であり、 最も好ま しくは 0 . 1〜 1 . 5重量%である。 含有量が上記範囲未満であるとフィルムの 耐熱性、 熱寸法安定性および機械特性が十分高められない。 また、 含有量が上記 範囲を越えると、 粒子が凝集し、 さらには、 製膜押出し時に吐出が不安定となり、 フィルム破れが起こりやすくなるため好ましくない。
本発明で用いる遷移金属酸化物粒子は、 必要に応じて基材樹脂との親和性を高 めるためや凝集をコント口ールする目的で、 例えばシランカップリング、 チタン カップリ ング処理などによって粒子表面処理を行ってもよい。 また、 有機処理に よって粒子表面をコートしてもよい。 また、 フィルムの特性を損なわない範囲內 であれば、 本発明の遷移金属酸化物粒子とは異なる無機粒子、 有機粒子、 その他 の各種添加剤、 例えば酸化防止剤、 紫外線吸収剤、 帯電防止剤、 結晶核剤、 難燃 剤、 顔料、 染料、 脂肪酸エステル、 ワックスなどの有機滑剤や不活性粒子などを 添加してもかまわない。 無機粒子の具体例と しては、 炭酸カルシウム、 炭酸バリ ゥムなどの炭酸塩、 硫酸カルシウム、 硫酸バリ ウムなどの硫酸塩、 チタン酸バリ ゥム、 チタン酸カリ ウムなどのチタン酸塩、 リン酸第 3カルシウム、 リ ン酸第 2 カルシゥム、 リン酸第 1カルシゥムなどのリ ン酸塩などを用いることができるが- これらに限定されるわけではない。 また、 これらは目的に応じて 2種以上用いて もかまわない。 有機粒子の具体例と しては、 ポリスチレンもしくは架橋ポリスチ レン粒子、 スチレン ' アク リル系及びアク リル系架橋粒子、 チレン ' メタク リ ル系及びメタクリル系架橋粒子などのビニル系粒子、 ベンゾグァナミン · ホルム アルデヒ ド、 シリ コーン、 ポリテトラフルォロエチレンなどの粒子を用いること ができるが、 これらに限定されるものではない。 これらの粒子の粒径、 配合量、 形状などは用途、 目的に応じて選ぶことが可能であるが、 通常は、 平均粒子径と しては 0 . Ο ΐ μ ηι以上、 3 !11以下さらに好ましくは 0 . 以上 以下、 配合量と しては、 0 . 0 0 1重量0 /0以上、 5重量%以下が本発明の目的の 面からも好ましい。 細 76
8 本発明の二軸配向熱可塑性樹脂ブイルムの融点は、 使用する熱可塑性樹脂の融 点よりも高いことが重要である。 融点は、 少なく とも使用する熱可塑性樹脂の融 点よりも 1 °C以上高いことが好ましく、 2 °C以上高いことがより好ましい。 二軸 配向熱可塑性樹脂フィルムの融点は、 示差走査熱量計 (D S C) 測定による 1 S t r u ηの融解熱量のピーク温度 (融点 によって測定できる。 また、 使 用する熱可塑性樹脂の融点は、 D S C測定による 2 n d r u n測定の融解熱量 のピーク温度 (融点 T 2) によって測定できる。 また、 本発明の場合、 D S C測 定による 1 s t r u ηの融解熱量ピーク温度 (融点 および 2 n d r u n測定の融解熱量のピーク温度 (融点 T 2) の差が下記式 ( 1 )
20C≤ T X - T 2≤ 3 0 °C ( 1 )
を満足することが重要であり、 より好ましくは 3 °C以上 2 5 C以下の範囲であり、 最も好ましくは 5 °C以上 2 0 °C以下の範囲である。
ただし、 使用する熱可塑性樹脂がポリ フエ二レンスルフィ ドなどのように分子 鎖が一部架橋構造を有するような樹脂の場合、 上記式 ( 1 ) において、 より好ま しくは 5 °C以上 3 0 °C以下であり、 最も好ましくは 1 2 °C以上 2 ,5 °C以下である。 上記式 ( 1 ) において融点の差が 2 °C以上の場合、 本発明で想定している各用 途において実用特性が十分に向上する。 また、 融点の差を 3 0 °Cを超える値とす ることは、 工業的に難しい。
本発明において、 二軸配向熱可塑性樹脂ブイルム中に存在する遷移金属酸化物 粒子は、 3 /X m以上の粗大凝集物が 3 0個 1 0 0 c m2以下であることが好ま しい。 好ましく は、 2 0個ノ 1 0 0 c m 2以下、 さらに好ましくは 1 0個/ 1 0 0 c m 2以下である。 3 μ m以上の粗大凝集物がフィルム中に 3 0個/ / l O O c m2より多く存在する場合、 製膜押出し時にフィルターに目づまりをおこ し、 破 れが多発して製膜性が低下する場合があるので注意が必要である。 また、 粗大凝 集物が存在すると特に高密度磁気記録用途において、 電磁変換特性、 エラーレー トが大幅に低下し、 実用に供し得るフィルムが難しくなる。
遷移金属酸化物粒子に含まれる塩素の含有量 (塩素濃度ともいう) は 0. 0 0 1〜 1 0重量。 /0の範囲であることが好ましい。 1 0重量%より大きいとフィルム の耐熱性、 熱寸法安定性および機械特性を向上させにく くなるので注意が必要で ある。 さらに好ましくは 0 . 0 0 5〜 5重量%の範囲であり、 最も好ましくは 0 . 0 1〜 1重量%の範囲である。
本発明のフィルムにおいて、 二軸配向熱可塑性樹脂フィルム中に存在するボイ ドの面積比率は 0 %以上 5 %以下であることが好ましく、 さらに好ましくは 0 % 以上 3 %以下であり、 最も好ましくは 0 %以上 1 %以下である。 ボイ ドの面積比 率が上記範囲より大きいと、 フィルムのヤング率、 破断伸度等の機械特性が低下 し、 熱収縮率も大きくなるので注意が必要である。
本発明の二軸配向熱可塑性樹脂フィルムは、 耐熱性、 熱寸法安定性および機械 特性の向上のためフィルム長手方向および幅方向に延伸したフィルムであること、 即ち、 二軸延伸フィルムであることを要する (以下、 長手方向を縦方向、 幅方向 を横方向ということがある) 。 フィルムの延伸方法と しては、 例えば縦延伸及び 横延伸を同時に行う同時二軸延伸法、 縦延伸と横延伸とを順に行う逐次二軸延伸 法のほか、 縦横二方向に逐次延伸したフィルムを再度縦方向に延伸し、 縦方向を 高強度化する、 いわゆる再縦延伸法、 さらに横方向にも強度を付与したい場合、 上記の再縦延伸を行った後、 再度横方向に延伸するという再縦再横延伸法、 フィ ルムの縦方向に 2段以上 伸し、 引き続き、 フィルムの横方向に延伸を行う縦多 段延伸法が例示される。 本発明の粒子を内包したフイルムを延伸した場合におい ても、 粒子と基材であるポリマーとの間にボイ ドが出来ることがあるので、 一方 向に延伸した後の任意の工程で、 ポリマーのガラス転移温度 T g以上の温度で熱 処理等を行いボイ ドを低減することが好ましいが、 この限りではない。
本発明では、 耐熱性、 熱寸法安定性おょぴ機械特性向上の観点から、 二軸配向 ポリエステルフィルムの面配向係数は 0 . 1 2 0以上、 0 . 2 8 0未満の範囲で あることが重要である。 フィルムに配向を付与せず面配向係数が上記範囲より小 さいと高いヤング率が得られなくなり、 磁気記録フィルム用途などで要求を十分 に満足できないことがある。 また、 配向を付与しすぎ、 面配向係数が上記範囲よ り大きいと破断伸度が低下するため注意が必要である。 特にポリエステルがェチ レンテレフタレートを主成分とする場合、 本発明の効果を顕著に得るためには面 配向係数が 0 . 1 6 5以上、 0 . 2 0 0未満の範囲であることが好ましく、 より 好ましくは 0 . 1 7 5以上、 0 . 1 9 0未満の範囲であり、 最も好ましくは 0 . 076
10
1 7 8〜0 · 1 9 0の範囲である。 また、 特にポリ エステルがエチレン一 2, 6 —ナフタレー トを主成分とする場合において、 本発明の効果を顕著に得るために は面配向係数が 0. 2 1 0以上、 0. 2 8 0未満の範囲であることがより好まし く、 0. 2 4 0以上、 0. 2 8 0未満の範囲がもっとも好ましい。
本発明の二軸配向熱可塑性樹脂フィルムの固有粘度 ( I V) は 0. 5 5 d 1ノ g以上、 2. 0 d 1 Z g以下であることが本発明で目的とする特性および表面欠 点、 異物、 表面粗大突起の低減、 ならびに製膜性の観点から好ましい。 好ましい 固有粘度は、 0. 6 0〜0. 8 5 d 1 Z gの範囲であり、 0. 6 5〜0. 8 0 d 1ノ gの範囲が最も好ましい。 固有粘度が 0. 5 5未満のフィルムは製膜時にフ イルム破れが起こりやすく、 安定に製膜することが困難である。 固有粘度が 2. 0を越えるフィルムは溶融押出時に剪断発熱が大きくなり、 熱分解 · ゲル化物が フィルム中に増加し、 高品質のフィルムが得られにく くなるので注意が必要であ る。
本発明の二軸配向熱可塑性樹脂フィルムの厚みは、 用途、 目的に応じて適宜決 定できるが、 0. 5〜 3 0 0 μ mの範囲が好ましい。 フィルムの厚みは、 本発明 の目的を達成する観点から、 1 5 0 ^ m未満がより好ましく、 l O /z m未満がさ らに好ましい。 磁気記録材料用途では、 1 /X m以上 1 5 m以下、 データ用塗布 型磁気記録媒体用途では 2 μ m以上 1 0 / m以下、 データ用蒸着型磁気記録媒体 用途では 3 m以上 9 m以下の範囲が好ましい。 また、 回路材料用途では、 一 般に 1 0〜 3 0 0 / mの厚みが好ましく用いられ、 5 0〜 2 0 0 / mがより好ま しく、 7 0〜 ; 1 5 Ο μ πιがさらに好ましい。 コンデンサー用途では、 フィルムの 厚みは 0. 5 ~ 1 5 μ πιが好ましい。 フィルム厚みがこの範囲にあると、 絶縁破 壊電圧おょぴ誘電特性に優れたフィルムとなるからである。 また、 感熱転写リポ ン用途では、 フィルム厚みは 1〜 6 μ mが好ましく、 2〜 4 μ mがより好ましい, フィルム厚みがこの範囲にあると、 印字する際のしわがなく、 印字むらやインク の過転写を生じることなく、 高精細な印刷が可能となるからである。 製版、 磁気 記録カード、 I Cカード用フィルムでは、 フィルム厚みは 3 0〜 1 5 0 μ mが好 ましく、 より好ましくは 7 0〜1 2 5 01である。
本発明では、 各種フィルム用途への展開、 安定製膜の観点から、 フィルムの長 手方向の厚みむらは、 1 5 %未満であることが好ましい。 フィルムの厚みむらは、 1 0 %未満であることがより好ましく、 8 %未満がさらに好ましく、 6 %未満が 最も好ましい。
本発明の二軸配向熱可塑性樹脂ブイルムは長手方向および幅方向のヤング率の 合計が 9 G P a、 好ましく は 1 2 G P a以上であることが、 磁気記録媒体などの 各種用途において好ましく、 3 5 G P a以下であることがブイルムの製膜性の観 点から好ましい。 より好ましくは、 1 4 G P a以上 3 2 G P a以下であり、 最も 好ましくは 1 5 G P a以上 3 0 G P a以下である。
本発明の二軸配向熱可塑性樹脂フィルムの破断伸度は、 長手方向および幅方向 の破断伸度の合計が 1 2 0 %以上であることが表面欠点、 異物、 表面粗大突起の 低減および製膜安定性の観点から好ましい。 好ましいフィルムの破断伸度は 1 5 0 %以上であり、 さらに好ましくは 1 8 0 %以上である。
本発明の二軸配向ポリエステルフィルムは、 長手方向おょぴノまたは幅方向の 1 0 0 °Cにおける熱収縮率が、 加工工程での熱履歴によるしわ発生を抑制するた めに 0 %以上が好ましく、 磁気テープのトラックずれ等を抑制するために 1. 0 %未満が好ましい。 より好ましくは 0 ~ 0. 8 %の範囲であり、 最も好ましくは 0 ~ 0. 5 %の範囲である。 また、 フィルムの長手方向およびノまたは幅方向の 1 5 0 °Cにおける熱収縮率が、 0 %以上 1. 5 %未満であることが各種用途での 取り极いや加工時の歩留まり向上の観点から好ましく、 より好ましくは 0〜 0. 8 %の範囲であり、 最も好ましくは 0〜 0. 5 %の範囲である。
また、 本発明の二軸配向ポリ エステルフィルムは、 2 0 0 °Cにおける動的粘弾 性測定における貯蔵弾性率が 0. 4 G P a以上 3. 0 G P a未満であることが本 発明において好ましい態様である。 より好ましくは、 0. 6 ~ 2. O G P aであ り、 最も好ましく は 0. 8〜 1 . 5 G P aである。 2 0 0 °Cにおける動的粘弾性 測定における貯蔵弾性率が 0. 4 G P a よりも小さい場合、 高温における熱寸法 安定性、 加工時の平面性が低下する。 また、 貯蔵弾性率が 3. O G P aを越える と溶融押出しが困難となり製膜性が低下する場合が多いので注意すべきである。 動的粘弾性測定は、 セイ コーイ ンスツルメ ンッ社製 DMS 6 1 0 0によって、 2 6でから 2 4 0 °Cまで昇温速度 2 °C/分で昇温した際の、 周波数 1 H zで測定し た貯蔵弾性率の値である。
本発明のフィルムは 2層以上の積層フィルムであっても構わない。 2層以上積 層された積層フィルムの場合は、 特に磁気記録媒体のベースフィルムの用途に応 じて、 磁気記録面となるフィルム面とその反対側の走行面の表面粗さを異なる設 計にする方法として好適に用いることができる。
本発明に係るフィルムの製造法について二軸配向熱可塑性樹脂ブイルムの製造 方法の具体例をポリエステルの場合について説明するが、 本発明はこれに限定さ れるものではない。
本発明で用いるポリエステル樹脂は従来より知られている方法により製造され るものを用いることができる。 また、 所定のポリエステル樹脂に添加される遷移 酸化物粒子は樹脂製造工程における重合前、 重合中、 重合後のいずれの段階で添 加してもよいが、 本発明で特定した粗大凝集物の範囲とするためには、 例えば、 P E Tや P E Nの場合は、 ①ベント式の二軸混練押出機によりスラリーの形を用 いてポリマーと混練する方法、 ②原料と して使用するジオール成分であるェチレ ングリ コールなどに、 'スラ リーの形で混合、 分散せしめて添加する方法が好まし く用いられる。 本発明においては、 粒子を分散させたスラ リーを二軸混練押出機 中に添加しポリマーと混練する方法が最も好ましい。 使用する二軸混練押出機の L / Dは 2 5以上のものが好ましく、 より好ましくは 3 0以上である。 また、 ポ リエステル樹脂の滞留時間は 1 0秒以上 9 0秒以下が好ましく、 より好ましくは 2 0秒以上 8 0秒以下、 さらに好ましくは 3 0秒以上 7 0秒以下である。 この時、 粒子の凝集を防ぐために、 ポリエステル樹脂の種類に応じ公知の方法で粒子の表 面処理剤を使用してもよい。 表面処理剤と しては、 例えば、 ドデシルベンゼンス ルホン酸ナトリ ウム、 ドデシルベンゼンスルホン酸リチウム、 ラウリル硫酸ナト リ ウム、 ジアルキルスルホコハク酸ナト リ ウム、 ナフタレンスルホン酸のホルマ リ ン縮合物塩などのァユオン系界面活性剤、 ポリオキシフエノールエーテル、 ポ リエチレングリ コールモノステアレー ト、 ステアリ ン酸モノステアレートなどの 非イオン性界面活性剤およびこれらの金属塩、 ポリ ビニルアルコール、 ポリ ビニ ルピロ リ ドン、 ポリエチレングリコールなどの水溶性の合成高分子、 ゼラチン、 デンプンなどの水溶性の天然高分子、 カルボキシメチルセルロースなどの水溶性 0300076
13 の半合成高分子、 シラン系やチタン系のカップリング剤、 リン酸、 亜リ ン酸、 ホ スホン酸およびこれら^導体などのリ ン酸化合物などを用いることができる。 これら表面処理剤を 理的に混合する方法は、 例えばロールミル、 高速回転式粉 砕機、 ジエツ ト レ等の粉砕機、 あるいはナウタミキサー、 リボンミキサー、 へ を使用することができる。 また、 本発明の粒子をス しては、 ガラスビーズをメディアと して用いたメデ
Figure imgf000015_0001
ィァ分散法が特に有効である。 使用するガラスビーズは、 1 0〜 3 0 0 /ζ πι径の ものが好ましく、 より好ましくは 3 0〜 2 0 0 μ m径であり、 5 0〜 : Ι Ο Ο μ πι 径が粒子分散性の観点から最も好ましい。 撹拌速度は、 2 0 0 0〜 8 0 0 0 r p mが好ましく、 より好ましくは 3 0 0 0 ~ 7 0 0 0 r p mであり、 4 0 0 0〜 6 0 0 0 r p mが最も好ましい。 撹拌時間は、 1 〜 9時間が好ましく、 より好まし く は 3〜 7時間、 最も好ましくは 4〜 6時間である。 また、 メディアは、 使用す るスラリーと同体積量混合して分散せることが好ましい。 スラリーは、 水スラリ 一、 エチレングリコールスラリーなど使用するポリマーおよび粒子の種類によつ て適宜選択できる。 また、 このとき表面処理剤をスラリー中に添加しメディア分 散させることが本発明において最も好ましい。 また、 メディァ分散後 5 mカツ トフィルターで濾過することが好ましく、 より好ましくは 3 μ πιカッ トフィルタ 一であり、 最も好ましくは l / mカッ トフィルターである。 使用するフィルター は特に限定されないが、 使用する粒子によって適宜選択することができる。
本発明に使用する遷移金属酸化物粒子は、 樹脂に添加する前に熱水で洗浄した 後、 減圧下で乾燥する等の方法により、 塩素含有量を低減しておく ことが好まし い
フィルム中における粒子の含有量を調節する方法と しては、 上記方法で粒子を 高濃度で含有するマスターペレツ トを作っておき、 この高濃度の粒子を含むマス ターペレッ トを、 製膜時に粒子などを実質的に含有しないポリマーで希釈する方 法を用いるのが好ましい。
次に、 これらの粒子を含有するポリエステル樹脂のペレツ トを必要に応じて十 分に乾燥した後、 固有粘度が低下しないように窒素気流下あるいは減圧下でポリ エステル樹脂の融点以上の温度に加熱された押出機に供給する。 使用する押出機 細 76
14 は、 スク リ ユー剪断速度 (- π ϋΝ/ δ Ο Ιι) ; D : スク リ ユー直径 ( c m) 、 N : スク リ ユー回転数 ( r p HI) 、 h : スク リ ユー計量部の溝深さ ( c m) ) は 5 0〜: L 00 0秒—1が好ましく、 9 0 ~ 5 0 0秒—1がより好ましい。 さらに好 ましくは 1 5 0 ~ 3 0 0秒—1が熱可塑性樹脂の熱分解抑止および熱可塑性樹脂 と粒子の分散性の観点から好ましい。 また、 溶融押出時に使用するスク リ ューは フルフライ ト、 ノ リアフライ トなど、 いかなる形状のスク リ ユーを使用してもよ いが、 熱可塑性樹脂おょぴ粒子の粒子分散性の促進と粗大凝集物を低減させる観 点から、 スク リ ューの長さ (L) と直径 (D) の比 (L/D) は、 2 0以上、 好 ましくは 2 5以上の各種ミキシング型スク リユーを使用することが好ましい。 ミ キシング型スク リ ューとは、 スク リ ュー圧縮部、 計量部またはこれらの中間の位 置にミキシング部を有するスク リューであり、 例えばフルーテッ ドバリア、 ダル メージ、 ュニメルト、 多条ピンなどを有したスク リ ューが挙げられる。 押出機は 一軸でも二軸混練タイプのいずれでも良いが、 高剪断 ·低発熱タイプのスク リ ュ 一を使用することが有効で、 一軸タイプの場合にはタンデム押出機も好ましく使 用できる。 また、 ポリマーの吐出時間は、 9 0秒以上、 6分以下とするのが好ま しく、 より好ましく は、 2分以上、 4分以下である。 次いで、 溶融ポリマーを口 金より押し出し、 表面温度がポリエステル樹脂のガラス転移点以下のキャスティ ングドラム上で冷却して未延伸フィルムを作る。 また、 溶融押出機中で異物や変 質ポリマーを除去するために各種フィルター、 例えば、 焼結金属、 多孔性セラミ ック、 サンド、 金網などの素材からなるフィルターを用いることが好ましい。 フ ィルターの濾過精度は、 使用する遷移金属酸化物粒子、 および不活性粒子の粒径 によって適宜選択することが好ましい。
また、 フィルム表層に、 球状の不活性粒子を含有した熱可塑性樹脂を積層する 場合やそのほかの層を積層する場合は、 それぞれのチップを十分乾燥させた後、 2台以上の溶融押出機に別々に供給し、 2個または目的とする数の多層のマニホ ールドまたは合流プロックを用いて合流させ、 口金より多層のシートとして押し 出し、 表面温度が一 2 0°C〜 6 0°Cのキャスティングドラム上で冷却して未延伸 フィルムを作る。 この場合、 合流断面が矩形の合流プロックを用いて積層する方 法が、 各種不活性粒子を含有した熱可塑性樹脂を薄く均一に積層するのに有効で ある。 また、 これらのポリマー流路にスタティ ックミキサーまたはギヤポンプを 設置する方法はブイルムの厚みムラを低減するのに有効である。
次に、 この未延伸フィルムをブイルム長手方向および/または幅方向に延伸す る。 延伸方法としては、 未延伸フィルムをロールゃステンターを用い縦方向、 横 方向に逐次延伸する逐次二軸延伸法がある。 また、 未延伸フィルムをステンター を用い縦延伸及び横延伸を同時に行う同時二軸延伸法は、 逐次二軸延伸法に比べ 工程が簡略化され、 延伸破れが発生しにくいため有効である。 さらに、 縦横二方 向に逐次延伸したフィルムを再度縦方向に延伸する、 再縦延伸法は、 縦方向を高 強度化するのにきわめて有効である。 上記再縦延伸法に続けて、 再度横方向に延 伸する再縦再横延伸法は、 横方向にもさらに強度を付与したい場合にきわめて有 効である。 また、 フィルムの縦方向に 2段以上延伸し、 引き続きフィルムの横方 向に延伸を行う縦多段延伸法も本発明において用いることが可能である。
本発明において、 例えば逐次二軸延伸法を用いる場合、 長手方向の延伸の条件 は特に限定されないが、 延伸速度 1 0 0 0 0〜 1 5 0 0 0 0 % 分の速度で、 延 伸温度は、 ポリエステル樹脂のガラス転移温度 T g以上、 (ガラス転移温度 + 5 0 °C ) 以下の範囲が好ましく延伸倍率は 2 . 5 ~ 1 0倍、 さらには 3 . 0〜5倍 の範囲が好ましい。 本発明では、 このよ うに長手方向に延伸することにより一軸 配向フィルムを得る。
ここで、 ポリエステル榭脂と遷移金属酸化物粒子との組み合わせ等によっては. ボイ ドが生じ易くなるので、 上記による方法で得られた一軸配向フィルムをテン ター入り 口において、 ポリ エステル樹脂の融点 T m以下、 ガラス転移点 T g以上 で熱処理することがフィルム中のボイ ド量を減少させるために好ましく、 より好 ましい熱処理温度は (ガラス転移点 T g + 2 0 °C ) 以上 (融点 T m— 1 0 0 °C ) 以下である。
次に行う幅方向の延伸は、 公知のテンターを用いて、 延伸温度を、 ポリエステ ル樹脂のガラス転移温度 T g以上、 (ガラス転移温度 T g + 8 0 °C ) 以下、 より 好ましくはポリエステル樹脂のガラス転移温度 T g以上、 (ガラス転移温度 T g + 4 0 °C ) 以下の範囲と し、 延伸倍率を 2 . 0〜 1 0倍、 より好ましくは 2 . 5 ~ 5倍の範囲と して行えばよい。 その際の延伸速度は特に限定されないが、 1 0 PC蘭脑 76
16
00〜 5 000 0 %/分が好ましい。 さらに、 必要に応じてこの二軸配向フィル ムを再度長手方向、 幅方向の少なく とも一方向に延伸を行ってもよい。 この場合、 再度行う縦延伸は延伸温度をポリエステル樹脂の (ガラス転移温度 T g + 2 0 °C) 以上 (ガラス転移温度 + 1 2 0 °C) 下が好ましく、 より好ましく は (ガラ ス転移温度 T g + 5 0 °C) 以上 (ガラス転移温度 + 1 0 0 °C) 以下の範囲と し、 延伸倍率は 1. 2〜 2. 5倍が好ましく、 1. 2〜 1. 7倍がより好ましい。 ま た、 その後に再度行う横延伸は延伸温度をポリエステル樹脂の (ガラス転移温度 T g + 2 0。C) 以上 (ガラス転移温度 T g + 1 5 0 °C) 以下とすることが好まし く、 より好ましくは (ガラス転移温度 T g + 5 0。C) 以上 (ガラス転移温度 + 1 3 0 °C) 以下の範囲とし、 延伸倍率は 1. 0 2 ~ 2倍の範囲が好ましく、 1. 1 - 1. 5倍の範囲がより好ましい。
次に、 ボイ ド面積比率の低減や熱収縮率の低減等のために、 必要に応じて熱処 理を行う。 熱処理条件としては、 定長下、 微延伸下、 弛緩状態下のいずれかで、 (熱可塑性樹脂の融点) 〜 (熱可塑性樹脂の融点一 1 0 0 °C) の範囲で 0 · 5〜 6 0秒間行うことが好適である。
また、 同時二軸延伸法により延伸する場合は、 リ ニアモーターを利用した駆動 方式によるテンターを用いて同時二軸延伸する方法が好ましい。 同時二軸延伸の 温度としては、 ポリエステル樹脂のガラス転移温度. T g以上、 (ガラス転移温度 T g + 5 0 °C ) 以下であることが好ましい。 延伸温度がこの範囲を大きくはずれ ると、 均一延伸が出来なくなり、 厚みむらやフィルム破れが生じ好ましくない。 延伸倍率は、 縦方向、 横方向それぞれ 3〜 1 0倍とすればよい。 延伸速度と して は特に限定されないが、 2 0 0 0 ~ 5 Q 0 0 0 %/分が好ましい。 再延伸する場 合においては、 ボイ ド面積比率の低減や熱収縮率の低減等のために熱処理を行う ことが好ましい。
このようにそれぞれの方法で二軸配向し熱処理を施したフィルムを、 室温まで 徐冷しワインダ一にて卷き取る。 冷却方法は、 二段階以上に分けて室温まで徐冷 するのが好ましい。 この時、 長手方向、 幅方向に 0. 5 ~ 1 0 %程度のリラック ス処理を行うことは、 熱寸法安定性を低減するのに有効である。 冷却温度と して は、 一段目が (熱処理温度一 2 0 °C) ~ (熱処理温度一 8 0 °C) 、 二段目が (一 段目の冷却温度一 3 0 °C ) 〜 (—段目の冷却温度一 6 0 °C ) の範囲が好ましいが、 これに限定されるものではない。
本発明の二軸配向熱可塑性樹脂フィルムは、 磁気記録媒体、 回路材料、 コンデ ンサ一、 熱転写リボン、 カード用として好ましく用いることができる。 磁気記録 媒体と しては、 デジタルビデオやデータス ト レージテープなど高密度磁気記録媒 体として好ましく用いられるがこれらに限定されない。 また、 回路材料用と して は、 二軸配向熱可塑性樹脂フイルムの少なく とも片表面に電気回路を有したフレ キシプル回路基板 (F P C ) 、 多層回路基板、 ビルドアップ回路基板、 半導体パ ッケ一ジ用フィルム (T A B ) などの回路基板用途と してや、 カバーレイなどの 回路基板用保護フィルム用途として用いることができる。 また、 コンデンサー用 と しては、 リード付きやリードなし (いわゆるチップコンデンサー) 等のタイプ のいずれであってもよいし、 また、 それらに限定されない。 また、 熱転写リボン 用としては、 感熱ィンク転写方式および感熱昇華転写方式などのいずれの転写方 式にも用いられるが、 感熱昇華方式の場合、 ベースフィルムには高度の耐熱性が 要求されるため、 本発明の二軸配向熱可塑性樹脂フィルムが好ましく用いられる。 また、 カード用としては、 情報を記録できるカード、 特に磁気的、 電気的あるいは 光学的に読みおよびノまたは書き可能なカード用途、 およぴ またはエンボス加工 により情報を記録し得るカード用途に適用できる。 具体的には、 接触型 I C力一ド. I Cチップおょぴアンテナ回路が力一ド内に埋め込まれた非接触型 I Cカード、 磁 気ス トライプカードなどの磁気カード、 光カード等に好適に用いることができ、 よ り具体的には、 プリペイ ドカード、 クレジッ トカード、 パンキングカード、 各種証 明用カード、 運転免許証用カード等を例示することができる。
物性の測定方法ならびに効果の評価方法
本発明で用いた特性値の測定法ならびに効果の評価方法は次の通りである。 ( 1 ) フィルムおよび熱可塑性樹脂の融点
セイコー電子工業 (株) 社製 R D C— 2 2 0ロボッ ト D S Cを用い、 データー 解析装置と して、 同社製ディスクセッショ ン S S C Z 5 2 0 0を用いて、 サンプ ル 5 m gを採取し、 室温から昇温速度 2 0 °C /分で 3 0 0 °Cまで加熱していく過 程で結晶の融解熱量のピーク温度から二軸配向ブイルムの融点を測定した。 その 後、 サンプルを空気中に取り出して急冷し、 再び室温から昇温速度 2 0 °C/分で 3 0 0 °Cまで昇温したときに現れる結晶の融解熱量のピーク温度から使用した樹 脂の融点を測定した。
( 2 ) フィルム中の遷移金属酸化物粒子の平均一次粒径 (R 1 ) および平均二次 粒径 (R 2 )
フィルムからポリマーをプラズマ灰化処理法で除去し、 粒子を露出させる。 処 理条件は、 ポリマーは灰化されるが粒子はダメージを受けない条件を選択する。 その粒子を走査型電子顕微鏡 (S EM) で観察し、 粒子画像をイメージアナラー ザ一で処理する。 S EMの倍率は、 およそ、 2 0 0 0〜: 1 0 0 0 0 0倍、 また、 一回の測定視野は一辺がおおよそ 1 0〜 5 0 / mとなるよう適宜選択する。
観察箇所を変えて粒子数 5 0 0個以上について、 粒子の'一次平均粒径 (R 1 ) 、 平均二次粒径 (R 2.) を求める。
( 3 ) フィルム中の粗大凝集物
光学顕微鏡を用い、 明視野透過法にて、 5 0〜 1 0 0 0倍に拡大観察したフィ ルム表面写真を撮る。 1回の測定視野の 1辺がおよそ 5 0〜 1 0 0 X mとなるよ う適宜選択する。 観察場所を変えて 1 0 0視野以上について、 3 μ πι以上の粗大 凝集物の数を測定する。 フィルム 1 0 0 c m2あたり 3 m以上の粗大凝集物の 数により、 0 ~ 1 0個以下◎、 1 1〜 2 0個〇、 2 1個〜 3 0個△、 3 0個より 多い Xとランク付けする。
( 4 ) フィルム中の粒子含有量
ポリマーを溶かして粒子を溶かさない溶媒を適宜選択し、 フィルムサンプル 1 0 0 gを該溶媒に溶解する。 次に、 このポリマー溶液を遠心分離器にかけ、 粒子 を分離する。 さらにこの分離粒子に付着しているポリマーを該溶媒で溶解し、 遠 心分離する。 このような操作を 3回繰り返したのちに、 残った粒子をァセ トンで 十分に洗浄する。 こ う して得られた粒子について重量を測定する。
また、 溶媒に溶解しないポリマーの場合は、 通常の蛍光 X線分析法により測定 した。 また必要に応じて熱分解ガスクロマトグラフィーや赤外吸収、 ラマン散乱. S EM— XMAなど利用して定量する。
( 5 ) 固有粘度 P 漏細 76
19 オルトクロロフェノール中、 2 5 °Cで測定した溶液粘度から、 下式で計 した 値を用いた。 すなわち、
77 S p /C = [ 77 ] + K [ 77 ] 2 · C
ここで、 77 S p = (溶液粘度 _/溶媒粘度) — 1であり、 [ 77 ]は固有粘度、 Cは溶 媒 1 0 0 m l あたりの溶解ポリマ重量 ( g / 1 0 0 m l、 通常 1 . 2 ) 、 Kはハ ギンス定数 (0. 3 4 3とする) である。 また、 溶液粘度、 溶媒粘度はォス トヮ ルド粘度計を用いて測定した。 単位は [ d 1 / g ] で示す。
( 6 ) フィルム中のボイ ドの面積比率 :
フィルムをミクロ トームで厚み方向に切断した断面について、 走査型電子顕微 鏡 (S EM) を用い、 5 0 0〜 5 0 , 0 0 0倍に拡大観察した横断面写真を撮る。 この横断面写真において、 計 1 0 0個以上のボイ ド部分をマーキングし、 スキヤ ナ一にて断面写真を電子化したのち画像処理 · 計測ソフ ト " I m a g e — P r o P LU S" を用い、 ボイ ドの面積の和が、 顕微鏡で観察した断面写真の面積に占 める割合を計算し、 %で表示する。
( 7 ) 破れ頻度
製膜に伴うフィルム破れを観察して、 次の基準で判定した。
◎ : フィルム破れが皆無である場合
〇 : フィルム破れが極まれに生じる場合
△ : フィルム破れが時々生じる場合
X : フィルム破れが頻発する場合
( 8 ) ヤング率および破断伸度 :
A S TM— D 8 8 2に規定された次の方法に従って、 インス トロンタイプの引 張試験機 (オリエンテック (株) 製フィルム強伸度自動測定装置 "テンシロン A MF/R TA- 1 0 0 " ) を用いて測定した。 幅 1 0 mmの試料フィルムを、 試 長間 1 0 0 mm、 引張り速度 2 0 0 m m /分の条件で引っ張る。 得られた張力一 歪曲線の立上がりの接線の勾配からヤング率を求め、 また、 破断伸度を求める。 測定は 2 5 °C、 6 5 % R Hの雰囲気下で行う。
( 9 ) 熱収縮率 :
J I S C 2 3 1 8に従って、 フィルム表面に、 幅 1 0 mm、 測定長約 2 0 0 mmとなるように 2本のラインを引き、 この 2本のライン間の距離を正確に測定 しこれを L Oとする。 このフィルムサンプルを 1 0 0°Cあるいは 1 5 0°Cのォー プン中に 3 0分間、 無荷重下で放置した後、 再び 2本のライン間の距離を測定し これを L 1 とし、 下式により熱収縮率を求める。
熱収縮率 (%) = { ( L 0 - L 1 ) / L 0 } X 1 0 0
( 1 0) 面配向係数 :
屈折率を、 J I S K 7 1 0 5に指定された方法に従って、 ナトリ ウム D線を 光源として、 (株) ァタゴ製のアッベ屈折率計 4型を用いて測定した。 なお、 2 3°C、 6 5 %RHにて測定した。 その後、 面配向係数を測定した各屈折率から次 式より求めた。
面配向係、数 = { (nMD + n TD) / 2 } - n Z D
n MD : フィルム長手方向の屈折率
n T D : フィルム幅方向の屈折率
n Z D : フィルム厚み方向の屈折率
( 1 1 ) 貯蔵弾性率
貯蔵弾性率を、 AS TM D 5 0 2 6に指定された方法に従って、 セイコーィ ンスツルメ ンッ (株) 製 DMS 6 1 0 0を用い、 周波数 1 H zで、 幅 l OmmX 長さ 2 O mmの試料について、 昇温速度 2 °C/分で 2 6 °Cから 24 0 °Cまで昇温 し、 2 0 0 °Cにおける貯蔵弾性率を求めた。 試料はフィルム長手方向について測 定した。
( 1 2) 磁気テープの電磁変換特性 (CZN)
本発明のフィルムの表面に、 下記組成の磁性塗料おょぴ非磁性塗料をェクス ト ルージョンコーターにより重層塗布 (上層は磁性塗料で塗布厚 0. l u m、 非磁 性下層の厚みは適宜変化させる) し、 磁気配向させ、 乾燥させる。 次いで反対面 に下記組成のバックコート層を形成した後、 小型テス トカレンダー装置 (スチ一 ル スチールロール、 5段) で、 温度 : 8 5 °C、 線圧 : 2 0 0 k g Z c mで力レ ンダー処理した後、 7 0 °Cで、 .4 8時間キュアリングする。 上記テープ原反を 8 mm幅にスリ ッ ト し、 パンケーキを作成する。 次いで、 このパンケーキから長さ 20 0 m分を、 カセッ トに組み込んでカセッ トテープとする。 このテープに、 市販の H i 8用 VT R (ソニー (株) 製 E V— B S 3 0 0 0 ) を用いて、 7MH z + l MH zの C/N (キャリア対ノイズ比) の.測定を行 う。 この C/Nを市販の H Ϊ 8用ビデオテープ (ソニー (株) 製 1 2 0分 MP) と比較して、 + 3 (1 8以上は〇、 + 1以上 + 3 d B未満は△、 + l d B未満は X と判定する。 〇が望ましいが、 △でも実用的には使用可能である。
(磁性塗料の組成) .
強磁性金属粉末 0 0重量部
スルホン酸 N a変成塩化ビュル共重合体 1 0重量部
スルホン酸 N a変成ポリ ウレタン 1 0重量部
' ポリイソシァネート 5重量部
ステアリ ン酸 . 5重量部
ォレイン酸
カーボンブラック
アルミナ 1 0重量部
· メチノレエチルケ トン 7 5重量部
シク 口へキサノ ン 7 5重量部
トルエン 7 5重量部
(非磁性下層塗料の組成)
• 酸化チタン : 1 0 0重量部
' カーボンブラック : 1 0重量部
• スルホン酸 N a変成塩化ビニル共重合体 : 1 0重量部
' スルホン酸 N a変成ポリ ウレタン : 1 0重量部
• メチノレエチルケ トン : 3 0重量部
• メチルイソプチルケトン : 3 0重量部
' トルエン : 3 0重量部
(バックコ一トの組成)
' カーボンブラック (平均粒径 2 0 n m) : 9 5重量部
• カーボンブラック (平均粒径 2 8 0 n m) : 1 0重量部
• αアルミナ : 0. 1重量部 酸化亜鉛 0. 3重量部
スルホン酸 N a変成ポリ ウレタン 2 0重量部
スルホン酸 N a変成塩化ビニル共重合体 3 0重量部
シク口へキサノ ン 2 0 0重量部
メチルェチルケ トン 3 0 0重量部
トノレエン ■ 1 0 0重量部
( 1 3 ) 高速削れ性
フィルムを幅 1ノ 2ィンチのテープ状にスリ ッ ト したものをテープ走行性試験 機を使用して、 ガイ ドビン (表面粗度 : R aで 1 0 0 n m) 上を走行させる (走 行速度 2 5 0 分、 走行回数 1パス、 走行時間 5分、 卷き付け角 : 6 0 ° 、 走 行張力 : 9 0 g ) 。 この時、 フィルムを走行させ終わった後のガイ ドビンを肉眼 で観察し、 白粉の付着が見られないものを〇、 白粉の付着が若干見られるものを △、 白粉が多く付着しているものは Xと判定する。 〇が望ましいが、 △でも実用 的には使用可能である。
( 1 4) 磁気テープの走行耐久性および保存性
本発明のフィルムの表面に、 下記組成の磁性塗料を塗布厚さ 2. 0 /x mになる よ う塗布し、 磁気配向させ、 乾燥させる。 次いで反対面に下記組成のバックコー ト層を形成した後、 カレンダー処理し、 7 0 °Cで、 4 8時間キュアリングする。 上記テープ原反を 1 / 2インチ幅にス リ ッ ト し、 磁気テープと して、 長さ 6 7 0 m分を、 カセッ トに組み込んでカセッ トテープとする。
(磁性塗料の組成)
強磁性金属粉末 0 0重量部
変成塩化ビニル共重合体 1 0重量部
変成ポリ ウレタン 1 0重量部
ポリイ ソシァネー ト 5重量部
ステアリ ン酸 . 5重量部
ォレイ ン酸
カーボンブラック
アルミナ 0重量部 • メチノレエチノレケ ト ン : 7 5重量部
* シクロへキサノ ン : 7 5重量部
• トノレェン : 7 5重量部
(バック コー トの組成)
. カーボンプラック (平均粒径 2 0 n m ) : 9 5重量部
' カーポンプラック (平均粒径 2 8 0 n m) : 1 0重量部
• αアルミナ : 0. 1重量部
• 変成ポリ ウレタン : 2 0重量部
• 変成塩化ビニル共重合体 : 3 0重量部
• シクロへキサノン : 2 0 0重量部
• メチノレエチルケトン : 3 0 0重量部
' トルエン : 1 0 0重量部
作成したカセッ トテープを、 I Β Μ製 M a g s t a r 3 5 9 0 MOD E L B 1 A T a p e D r i v eを用い、 1 0 0時間走行させ、 次の基準でテープ の走行耐久性を評価する。 〇が合格品である。
〇 : テープ端面の伸び、 折れ曲がりがなく、 削れ跡が見られない。
△ : テープ端面の伸び、 折れ曲がりがないが、 一部削れ跡が見られる。
X : テープ端面の一部が伸び、 ワカメ状の変形が見られ、 削れ跡が見られる, また、 上記作成したカセッ トテープを I BM製 M a g s t a r 3 5 9 0 MO D E L B 1 A T a e D r i v eに、 データを読み込んだ後、 カセッ トテ一 プを 6 0 °C、 8 0 %RHの雰囲気中に 1 0 0時間保存した後、 データを再生して 次の基準で、 テープの保存性を評価する。 〇が合格品である。
〇 : トラックずれも無く、 正常に再生した。
△ : テープ幅に異常が無いが、 一部に読みとり不可が見られる。
X : テープ幅に変化があり、 読みと り不可が見られる。
( 1 5 ) 回路材料と しての寸法安定性
J I S C 6 4 7 2に記載の銅貼りポリイミ ドフィルムのフィルム側と本発明 のフィルムを汎用塩化ビニル系樹脂と可塑剤からなる接着剤により貼り合わせて 温度 1 6 5 °C、 圧力 3 0 k gZ c m2、 時間 3 0分の条件でロールを用いて圧着 する。 試料寸法を 2 5 c m !2 5 c inと し、 定盤上に置いた状態で 4隅のカール 状態を観測し、 4隅の反り量 (mm) の平均値を求めて、 下記の基準に従って評 価した。 ◎と〇が合格である。
◎ : 反り量が 5 mm未満
〇 : 反り量が 5 mm以上、 1 0 mm未満
X : 反り量が 1 O mm以上
( 1 6 ) コンデンサー用特性評価
A. 絶縁抵抗
3 0 mm幅で 1 . 5 m m幅のマージンを有する左右対称のア^/ミ蒸着フィルム 1対を重ね, 1 . 5 Fの容量となる長さに卷回する。 この卷回物を 1 4 0 °C, 7 0 k g Z c ni2の圧力で 1 0分間プレスして成形する。 両端面にメタリコンを 溶射して電極と し、 リード線を取り付けてコンデンサーサンプルとする。 次いで、 ここで作成した 1 . 5 μ Fのコンデンサーサンプル 1 0 0 0個を、 2 3 C、 6 5 %RHの雰囲気下において YH P社製の超絶縁抵抗計 4 3 2 9 Aにて印加電圧 5 0 0 V、 1分値の条件で測定し、 絶縁抵抗が 5 0 0 0 ΜΩ未満のコンデンサーサ ンプルを不良品と して、 以下の基準で判定する。 なお、 本発明においては、 ◎、 〇、 △が合格品である。
◎ : 不良品が 1 0個未満
〇 : 不良品が 1 0個以上 2 0個未満
△ : 不良品が 2 0個以上 5 0個未満
X : 不良品が 5 0個以上
B . 絶縁破壊電圧
J I S— C— 2 3 1 8に記載の方法に準じて、 ただし、 金属蒸着を施していな いフィルムを試験片として用いて次のように評価する。
適当な大きさの金属製平板の上に、 ゴムショァ硬さ約 6 0度、 厚さ約 2 mmの ゴム板を一枚敷き、 その上に厚さ約 6 At mのアルミニウム箔を 1 0枚重ねたもの を下部電極とし、 約 5 0 gの重さで周辺に約 l mmの丸みを持った径 8 mmの底 面が平滑で傷のない黄銅製円柱を上部電極とする。
次いで、 下記の 2つの条件下でテス トを行い、 室温および高温での絶縁破壊電 圧を測定する。 まず、 各雰囲気下に 4 8時間以上放置した後、 上部電極と下部電 極の間に試験片をはさみこみ、 各雰囲気中で両電極間に直流電源により直流電圧 を印加し、 該直流電圧を 1秒間に 1 0 0 Vの速さで 0 Vから絶縁破壌するまで上 昇させる。 試料 5 0個に対し試験を行い、 絶縁破壌電圧を試験片の厚みで除した ものの平均値を求め、 その値が条件 1では A O O VZ/i iri以上、 条件 2では 3 5 O V/ ni以上を合格 (〇) とする。
条件 1 : 温度 2 0 ± 5。C、 相対湿度 6 5 ± 5 %
条件 2 : 温度 1 2 5 ± 5。C、 相対湿度 6 5 ± 5 %
( 1 7) 熱転写リボンの印字性
本発明の二軸配向フィルムに下記組成の熱転写インクを、 塗布厚みが 3. 5 μ mになるようにホッ トメルトコーターで融着防止層とは反対面に塗工し、 熱転写 リボンを作成する。
(熱転写ィンクの組成)
カルナゥバワックス 6 0. 6重量%
マイクロク リ スタ リ ンワ ックス 1 8. 2重量%
酢酸ビニル · エチレン共重合体 0. 1重量%
カーボンプラック 2 1.
作成した熱転写リボンについて、 オークス社製のバーコードプリンター (B C 一 8) で黒ベタを印字して、 印字性を評価する。 〇が合格品である。
O :鮮明に印字。
△ : 印字にピッチずれが生じる。
X : リボンにしわが入り、 印字が乱れる。
X X : ホッ トメルト塗工時にフィルムにしわが入り、 熱転写ィンクが均一に塗 布できない。
( 1 8 ) I Cカード用のアンテナ基板と しての用途適性
平均粒径 5 /X m、 扁平度 1 0の銀粉 2 0 g とフヱノキシ榭脂 (ユニオンカーバ イ ド社製、 商標 U CAR P KH C) 6. 7 gのプチルカルビトール溶液 (樹脂 濃度 3 3 %) を乳鉢に入れて混合し、 B型粘度計でシェアレートが毎分 240 m mのときに粘度が 1 0万センチボイズになるように、 適宜プチルカルビトールを 追加し、 印刷アンテナ回路用導電ペース トを得た。
次いで、 このペース トを、 スク リーン印刷機を用いて、 本発明のフィルム (厚 み 1 0 0 μ πι、 幅 54mm、 長さ 8 6 mm、 両面をコロナ放電処理) にコィノレ状 ( 2 0ターン、 長さ 2 8 0 c m、 回路幅の設計値 40 0 /χ πι、 回路スペースの設 計値 2 5 0 m) に印刷し、 その後、 ー且 1 0 0 °Cで予備乾燥した後、 1 5 0 °C で本乾燥して、 印刷アンテナ回路を形成した印刷基板を得た。
その後、 さらに厚さ 2 5 0 /i mのチップ ( I C、 コンデンサー) を異方導電フ イルム (日立化成工業 (株) 製、 AC— 8 3 0 1 ) を用いて、 2 0 0 °C、 6 0 k g / c m 2で印刷アンテナ回路に接続し、 チップと印刷アンテナ回路を形成した 印刷基板を得た。
ここで得た印刷基板の回路とチップの接続部分を観察し、 下記の基準で判定し た。
〇 : I じまわりで回路のつぶれ、 断線が全くない。
Δ : I Cまわりの回路の変形、 若干のつぶれが見られる。
X : I Cまわりで回路がつぶれて断線している。
実施例
次に本発明を実施例に基づいて説明する。
実施例 1
ポリエステル樹脂と して用いたポリエチレンテレフタレー トは、 テレフタル酸 ジメチル 1 9 4重量部とエチレンダリ コール 1 2 4重量部に、 酢酸マグネシウム 4水塩 0. 1重量部を加え、 1 40〜 2 3 0 °Cでメタノールを留出しながらエス テル交換反応を行った。 次いで、 リ ン酸トリメチル 0. 0 5重量部のエチレング リ コール溶液、 および三酸化アンチモン 0. 0 5重量部を加え 5分間撹拌した後. 低重合体を 3 0 r p mで撹拌しながら、 反応系を 2 3 0 °Cから 2 9 0 °Cまで徐々 に昇温するとともに、 圧力を 0. 1 k P aまで下げた。 最終温度、 最終圧力到達 までの時間はともに 6 0分とした。 3時間重合反応させ所定の撹拌トルクとなつ た時点で反応系を窒素パージし常圧に戻して重縮合反応を停止し、 冷水にス トラ ン ド状に吐出、 直ちにカッティ ングして固有粘度 0. 6 8のポリエチレンテレフ タレー トペレッ トを得た。 遷移金属酸化物粒子と して平均一次粒径 (R 1 ) が 3 0 n mの酸化第二銅を用い、 P E T 9 9重量%に酸化第二銅 1重量%を配合し、 2 9 5 °Cに加熱されたベント式の二軸混練押出機に供給し、 滞留時間 3 0秒にて 溶融押出しを行い、 酸化第二銅粒子を 1重量。 /。配合するポリマーチップ (ポリマ 一 A ) を得た。
このポリマー Aを、 溶融押出機を用いて 2 8 0 °Cで押し出し、 口金から表面温 度 2 5 °Cのキャス ト ドラム上に静電荷を印加させながら密着させて冷却固化し、 未延伸フィルムを作製した。 .
この未延伸フィルムを口ール式延伸機にて長手方向に延伸温度 9 5 °Cで 3 · 3 倍延伸し、 その後テンター予熱ゾーンにて緊張下で 1 5 0 °Cの熱処理を 0 · 5秒 間行った。 続いてテンターを用いて幅方向に温度 9 5 °Cで 3 · 6倍延伸し、 さら に、 このフィルムをロール式延伸機で長手方向に延伸温度 1 3 5 °Cで 1 . 7倍に 再延伸し、 さらにテンターを用いて幅方向に延伸温度 1 9 0 °Cで 1 . 3倍再延伸 した。 さらに、 定長下で雰囲気温度 2 1 0 °Cにて 2秒間熱処理し、 冷却ゾーンに て 1 5 0 °Cで 3 %リ ラックスを施しながら 1秒間処理し、 1 0 0 °Cで 2 %リラッ クスを施しながら 3秒間徐冷し、 厚み 6 m ,フィルム I V 0 . 6 0の二軸配向 ポリエステルフィルムを得た。
この二軸配向ポリエステルフィルムの特性は、 表 1に示したとおり、 耐熱性、 熱寸法安定性および機械特性に優れた特性を有していた。
実施例 2
ガラスビーズ ( 5 0 Ai m ) を水と同体積量加え、 酸化第二銅粒子を添加して撹 拌分散 (撹拌速度 : 3 0 0 0 r p m、 撹拌時間 : 4時間) させた。 撹拌後、 ガラ スビーズを取り除いて、 酸化銅粒子の水スラ リーを作成した。 このスラ リーを 1 μ mカ ツ トフィルターで濾過し粗粒を取り除いた。 得られた酸化銅水スラリーの 濃度を測定したところ、 4 w t %であった。 これを実施例 1 と同様にして得られ た P E T 9 9重量%に酸化第二銅を 1重量%となるよう 2 9 5 °Cに加熱されたべ ント式の L / D = 3 0の二軸混練押出機にスラリ一を添加して、 滞留時間 3 0秒 にて溶融押しし、 酸化第二銅を 1重量。 /。配合するポリマーチップ (ポリマー B ) を得た。 得られたポリマー Bを剪断速度 2 0 0秒—1、 L Z D = 2 8の溶融押出 機を用いて、 2 8 0 °C、 ポリマーの吐出時間 3分で押し出し、 口金から表面温度 PC漏画 76
28
2 5°Cのキャス ト ドラム上に静電荷を印加させながら密着させて冷却固化し、 未 延伸フィルムを作製した。 次いで、 実施例 1 と同様に延伸して厚み 6 μ m、 フィ ルム I V 0. 6 2の二軸配向ポリエステルフィルムを得た。
この二軸配向ポリエステルフィルムの特性は、 表 1に示したとおり、 実施例 1 と比較してフィルム中に存在する酸化第二銅粒子の分散性が優れており耐熱性、 熱寸法安定性および機械特性に優れた特性を有していた。
実施例 3
実施例 2で酸化第二銅粒子の表面処理剤としてドデシルペンゼンスルホン酸リ チウムを添加する以外は実施例 2 と同様にフィルムを得た。 得られたフィルムは、 厚み 6 μ πι、 フィルム I V O . 6 5であり、 表 1に示したとおり、 実施例 2より もさらにフィルム中に存在する酸化第二銅粒子の分散性が優れており、 耐熱性、 熱寸法安定性および機械特性に優れた特性を有していた。
実施例 4
酸化第二銅粒子の添加量を 5重量%と変更した以外は実施例 1 と同様にして厚 み 6 πι、 フイノレム I V O . 5 8のフィルムを得た。 こ こで得られたフィルムは、 粒子の添加量が 5 w t %であるにも関わらず、 実施例 1 と比較して耐熱性、 熱寸 法安定性および機械特性の向上効果が同等であった。
実施例 5
ポリエステル樹脂を通常の方法により得られた I V O . 6 8のポリエチレンナ フタレート (以下 P ENと称す) に変更し、 溶融押出温度を 3 0 0 °Cに変更した 以外は実験例 1 と同様にして未延伸フィルムを作製した。
この未延伸フィルムをロール式延伸機にて長手方向に延伸温度 1 3 5°Cで 4. 0倍延伸し、 その後テンター予熱ゾーンにて緊張下で 1 7 0°Cの熱処理を 0. 5 秒間行った。 続いてテンターを用いて幅方向に温度 1 40°Cで 4. 0倍延伸し、 さらに、 このフィルムを口一ル式延伸機で長手方向に延伸温度 1 7 0 °Cで 1 · 5 5倍に再延伸し、 さらにテンターを用いて幅方向に延伸温度 2 1 0 °Cで 1. 2倍 再延伸した。 さらに、 定長下で雰囲気温度 2 3 0 °Cにて 2秒間熱処理し、 冷却ゾ —ンにてリラックス率 5 %にて 1 5 0 °Cで 1秒間、 1 0 0 °Cで 3秒間徐冷した以 外は、 実験例 1 と同様に延伸、 熱処理して厚み 6 ζ ΐη、 フィルム I V O . 6 3の 二軸配向フイルムを得た。
実施例 6
平均一次粒径が 4 0 n mの黄酸化鉄を使用した以外は実施例 1 と同様にして厚 み 6 μ πι、 フイノレム I V 0. 5 9のフイノレムを得た。
Figure imgf000032_0001
注) MD : フィルム長手方向、 T D : フィルム幅方向 粒子の平均粒径 R : フィルム中の粒子の平均粒径 0076
31 実施例 7
東レ (株) 製の線状 P P S樹脂 (ライ トン T 1 8 8 1 ) を用いて、 'これに、 添 加剤と してサイロイ ド 3 0 0を 0 . 1 2重量0 /0、 およびステアリ ン酸カルシウム 0 . 0 5重量%を用いる以外は実施例 2 と同様にポリマーチップを得た。 これを 実施例 2と同様の溶融押出機に供給し、 3 1 0 °Cで溶融させた後、 1 0 以上の 異物をカッ トする濾過箱を通過させて、 リ ップ幅 1 2 0 0 ミ リ、 リ ップ間隙 1 . 5 m mの Tダイ口金からフィルム状に押出した。 このようにして押出された溶融 フィルムに静電荷を印加させて、 表面温度 2 5 °Cのキャスティ ング ドラム (直径 8 0 0 m m ) に密着冷却固化させた。 得られたフィルムを、 加熱ロール群からな る長手方向延伸機に供給し、 フィルム温度 1 0 0 °Cで 3 . 5倍延伸し、 続いてテ ンターを用いて幅方向に 1 0 0 °Cで 4 . 0倍延伸し、 さらに 2 3 0 °Cで 5秒間熱 処理をしてテンタ幅方向に 8 %リラックスして、 端部ェッジカツ ト した後に厚さ 6 のニ軸配向? P Sフィルムを得た。
得られた二軸延伸 P P Sフィルムは、 表 2に示したとおり、 粒子分散性に優れ、 耐熱性、 熱寸法安定性および機械特性に優れた特性を有していた。
実施例 8
長手方向に延伸した後、 テンター予熱ゾーンにて熱処理を行わなかった以外は 実施例 1 と同様にしてフィルムを得た。 得られた二軸配向ポリエステルフィルム はボイ ドが増加し、 製膜安定性が低下した。 また、 実施例 1 と比較して機械特性 が低下した。
実施例 9
長手方向に延伸した後、 テンター予熱ゾーンにて熱処理を行わなかった以外は 実施例 5 と同様にしてフィルムを得た。 得られた二軸配向ポリエステルフィルム はボイ ドが増加し、 製膜安定性が低下した。 また、 実施例 1 と比較して機械特性 が低下した。
実施例 1 0
実施例 2と同様にして未延伸フィルムを作製した後、 長手方向の延伸倍率を 3 , 5倍、 幅方向の延伸倍率を 4 . 5倍に変更し、 またその後の長手方向、 幅方向へ の再延伸を行わなかった以外は実験例 1 と同様にして厚み 6 /i mのフィルムを得 た。 得られた二軸配向ポリ エステルフィルムは粒子分散性に優れ、 耐熱性、 機械 特性および寸法安定性に優れた特性を有していた。
比較例 1
酸化銅粒子を含有させなかったこと以外は実施例 1 と同様にして厚み 6 μ m、 フイノレム I V O . 6 5のフィルムを得た。
比較例 2
酸化銅粒子を配合させなかったこと以外は実施例 5 と同様にして厚み 6 β m、 フイノレム I V O . 6 5のフィルムを得た。
表 2
Figure imgf000035_0001
注) MD : フィルム長手方向、 T D : フィルム幅方向 粒子の平均粒径 R : フィルム中の粒子の平均粒径 0300076
34 比較例 3
平均一次粒径が 2 0 0 n mの酸化第二銅粒子を使用したこと以外は実施例 1 と 同様にして厚み 6 μ πι、 フィルム I V 0 . 6 0のフィルムを得た。
比較例 4
酸化第二銅粒子を配合させなかったこと以外は実施例 7 と同様にして厚み 6 μ mのフィルムを得た。
比較例 5
酸化第二銅粒子を配合させなかったこと以外は実施例 1 0と同様にして厚み 6 μ m, フィルム I V O . 6 0のフィルムを得た。
比較例 6
粒子と して平均一次粒径が 5 0 n mのアルミナ粒子を使用し、 実施例 1 と同様 にして厚み 6 πι、 フィルム I V O . 5 8のフィルムを得た。 得られた二軸配向 ポリエステルフィルムは、 フィルム中でアルミナ粒子が凝集体となって存在し、 実施例 1 と比較して製膜安定性に欠け、 ヤング率が低く、 さらにボイ ドの面積比 率が大きく、 破断伸度が小さかった。
比較例 Ί
実施例 1で使用した酸化第二銅粒子を 1 0 w t %配合する以外は実施例 1 と同 様にして厚み 6 μ m、 フィルム I V 0 . 5 5のブイルムを得た。 得られた二軸配 向ポリ エステルフィルムは、 フィルム中で粒子が凝集体となって存在し、 実施例 1 と比較して製膜安定性に欠け、 ヤング率が低く、 さらにボイ ドの面積比率が大 きく、 破断伸度が小さかった。 また熱寸法安定性も劣っていた。
表 3
Figure imgf000037_0001
注) MD : フイノレム長手方向、 T D : フィルム幅方向 粒子の平均粒径 R : フィルム中の粒子の平均粒径 実施例 1 1
平均粒径 0 . 0 7 mの球状シリカ粒子 0 . 4 0重量%を配合する以外は、 実 施例 2と同様の方法にて酸化第二銅粒子を 1重量%配合するポリマーチップ
( I ) を得た。 また、 平均粒径 0 . 3 mの球状架橋ポリスチレン粒子 0 . 5重 量。 /。と平均粒径 0 . 8 /X mの球状架橋ポリ スチレン粒子 0 . 0 2 5重量%を配合 する以外は、 実施例 2と同様の方法にて酸化第二銅粒子を 1重量。 /0配合するポリ マーチップ (Π ) を得た。
次いで、 押出機 A、 B 2台を用い、 押出機 Aが磁性面、 押出機 Bが走行面を形 成するように積層フィルムを作成した。 2 8 0 °Cに加熱された押出機 Aには、 ポ リマーチップ ( I ) を 1 8 0 °Cで 3時間減圧乾燥した後に供給し、 一方、 同じく 2 8 0 °Cに加熱された押出機 Bには、 ポリマーチップ ( Π ) を 1 8 0でで 3時間 減圧乾燥した後に供給し、 繊維焼結ステンレス金属フィルター カッ ト) 内を通過させた後、 Τダイ中で合流させた (積層比 I / Π = 1 0 / 1 ) 。 その後. 表面温度 2 5 °Cのキャスティ ングドラム上に静電気により密着させて冷却固化し- 積層未延伸フィルムを得た。
次いで、 ここで得られたフィルム実施例 2と同様に延伸し、 厚み 6 . 0 / mの 二軸配向ポリ エステルフィルムを得た。
得られたフィルムの磁気テープ特性を表 4に示す。 酸化第二銅を配合する本実 施例のフィルムは、 P E T単独からなる比較例 8のフィルムと比較して、 強度、 熱寸法安定性に優れ、 走行耐久性、 保存安定性、 高速削れ性などの磁気テープ特 性の点ではるかに優れていた。
比較例 8
酸化第二銅を配合させなかった以外は実施例 1 1 と同様にしてフィルムを得た < この二軸配向ポリエステルフィルムは、 表 4に示すように、 実施例 1 1 と比較し. 強度、 熱寸法安定性、 および走行耐久性、 保存安定性、 高速削れ性、 電磁変換特 性などの磁気テープ特性に劣っていた。 表 4
Figure imgf000039_0001
実施例 1 2
実施例 1 0と同様の方法で厚み 1 0 0 mの二軸配向フィルムを得た。 厚み調 整は押出機の吐出量を調整して行った。 得られたフィルムについて、 前記記載の 方法で回路材料用と しての実用特性を評価したところ、 表 5に示すように、 P E T単独からなる比較例 9 のフィルムと比較してフィルム回路材料用と して非常に 優れた特性を有していた。
比較例 9
酸化第二銅を配合させなかった以外は実施例 1 2と同様にしてフィルムを得た, 得られたフィルムについて、 実施例 1 2 と同様の方法で回路材料用と しての実用 特性を評価したところ、 表 5に示すように実施例 1 2 のフィルムよ り も反りが大 きく回路材料用と して劣った特性を有していた。
表 5
Figure imgf000039_0002
実施例 1 3
実施例 1 0 と同様の方法で厚み 3 . 5 μ mの二軸配向フィルムを得た。 厚み調 整は押出機の吐出量を調整して行った。 得られたフィルムについて、 コンデンサ —用と しての実用特性を評価したところ、 表 6に示すように、 P E T単独からな る比較例 1 0のブイルムと比較して、 本実施例のフィルムはコンデンサー用と し て非常に優れた特性を有していた。
比較例 1 0
酸化第二銅を配合させなかった以外は実施例 1 3 と同様にしてフィルムを得た, 得られたフィルムについて、 コンデンサー用と しての実用特性を評価したところ 表 6に示すように、 実施例 1 3のフィルムよりも耐熱性の点で劣ったものであつ た。
表 6
Figure imgf000040_0001
実施例 1 4
実施例 2で得られた P E T中に平均粒径 0 . 3 μ mの凝集シリ カ粒子 0 . 2 5 重量%を配合する以外は実施例 2と同様に酸化第二銅配合ポリマーチップを得た ( このポリマーチップを実施例 2と同様にして得た未延伸フィルムの片面に、 融着 防止層と して下記組成の塗剤を乾燥後の塗布厚みが 0 . 5 μ mになるようにダラ ビアコーターで塗工した。
(塗剤の組成)
ァク リル酸エステル : 1 4 . 0重量%
ァミ ノ変性シリ コーン : 5 . 9重量%
イ ソシァネー ト : 0 . 1重量%
水 : 8 0 . 0重量。 /0
その後、 実施例 1 0 と同様に延伸して厚さ 3 . 5 μ mの二軸配向ポリ エステル フィルムを得た。 このフィルムに加工を施して、 熱転写リボン用と しての実用特 性を評価したところ、 表 7に示すように、 P E T単独からなる比較例 1 1 のフィ ルムと比較し、 感熱転写リボンと して非常に優れた特性を有していた。
比較例 1 1
酸化第二銅を配合させなかった以外は実施例 1 4と同様にしてフィルムを得た, 得られたフィルムについて、 熱転写リボンと しての実用特性を評価したところ、 表 7に示すとおり、 P E T単独からなる本比較例のフィルムは、 印字シヮが入り 易く、 熱転写リボン用と して使えないものであった。 表 7
Figure imgf000041_0001
実施例 1 5
実施例 1 0のフィルムを用いて、 I Cカードを作成した例を示す。
まず実施例 1 0 と同様の方法で厚み 5 0 /_t mおよび Ι Ο Ο μ mの二軸配向フィ ルムを得た。 厚み調整は押出機の吐出量を調整して行った。
まず、 ここで得た厚み 5 0 mおよび 1 0 0 μ mフィルムをカードサイズ (幅
5 4 mm, 長さ 8 6 mm) に切った。 次いで、 厚さ 5 0 /z mの二軸配向フィルム を使用し、 前記の記載に従って、 チップと印刷アンテナ回路を形成した印刷基板 を作成した。
一方、 もう一枚の厚さ 5 0 mの二軸配向フィルム (幅 5 4 mm、 長さ 8 6 m m) を使用し、 上記印刷基板と重ね合わせた場合にチップが露出するように上記 印刷基板のチップ形成部分から、 幅方向および長さ方向に 1 0 ずつ広く く り抜いたフィルム Aを作成した。
次いで、 このフィルム Aの両面をコロナ放電処理した後、 粘着剤を 2 5 /X m形 成させ、 前記印刷基板に対してチップが露出するよ うに重ね合わせた。 その後、 両面をコロナ放電処理し、 粘着剤を 2 5 μ πι形成させた、 厚み 1 0 0 /x mのカー ド状ブイルム Bを 2枚作成し、 フィルム Bをフィルム Aを貼り合わせた印刷基板 の上下に重ね合わせ、 その後、 この多層積層体をロール温度が 1 2 0 °Cのラミネ 一ターでラミネートして、 厚み約 5 2 0 z mの厚みの I Cカードを作成した。 こ こで得たカードは、 カールがなく、 平面性が良好であり、 カードと しての外観に 優れたものであった。 また、 カード内部のアンテナ基板にも全く変形がなく、 チ ップの潰れやチップと回路の接続部分の断線もなかった。 結果を表 8に示す。 比較例 1 2
酸化第二銅を配合させなかった以外は実施例 1 5 と同様にしてブイルムを得た, 次いで実施例 1 5 と同様にして I Cカードを作成した。 得られたカードは、 カー ルが激しく、 平面性が悪化しており、 カードとしての外観に劣ったものであった, また、 カード内部のアンテナ基板においても変形が見られ、 チップと回路の接続 部分の断線が見られた。 結果を表 8に示す。
表 8
Figure imgf000042_0001
産業上の利用の可能性 本発明によれば、 耐熱性、 熱寸法安定性および機械特性が共に優れた二軸配向 熱可塑性樹脂フィルムとすることができる。 従って、 本発明の二軸配向熱可塑性 樹脂フィルムは、 磁気記録媒体用、 回路材料用、 コンデンサ用、 熱転写リボン用. カード用などの各種工業材料用フィルムと して広く活用が可能である。

Claims

請求の範囲
1. 遷移金属酸化物粒子が配合された熱可塑性樹脂からなる二軸配向熱可塑性 樹脂フィルムであって、 該ニ軸配向熱可塑性樹脂フィルムの融点が使用する熱可 塑性樹脂の融点よりも高いことを特徴とする二軸配向熱可塑性樹脂フィルム。
2. 遷移金属酸化物粒子が配合された熱可塑性樹脂からなる二軸配向熱可塑性 樹脂フィルムであって、 該ニ軸配向熱可塑性樹脂フィルムの示差走査熱量計 (D S C) 測定による 1 s t r u nの融解熱量のピーク温度 (融点 T J および 2 n d r u nの融解熱量のピーク温度 (融点 T 2) の差が下記式 ( 1 ) を満足す ることを特徴とする二軸配向熱可塑性樹脂ブイルム。
2 ^≤ Τ ! - Τ 2≤ 3 0 ^ ( 1 )
3. 遷移金属酸化物粒子が配合された熱可塑性樹脂からなる二軸配向熱可塑性 樹脂フィルムであって、 該ニ軸配向熱可塑性樹脂ブイルムの融点が使用する熱可 塑性樹脂の融点よりも高く、 かつ該ニ軸配向熱可塑性樹脂フィルムの示差走査熱 量計 (D S C) 測定による 1 s t r u nの融解熱量のピーク温度 (融点 T J および 2 n d r u nの融解熱量のピーク温度 (融点 T 2) の差が下記式 ( 1 ) を満足することを特徴とする二軸配向熱可塑性樹脂フィルム。
2 ^≤ Τ ! - Τ 2≤ 3 0 ^ ( 1 )
4. 熱可塑性樹脂がポリエステル、 ポリフエ二レンスルフイ ド、 ポリオレフィ ン、 ポリ アミ ド、 ポリイ ミ ド、 ポリカーボネー ト、 ポリエーテルエーテルケ トン の中から選ばれる少なく とも 1種を主たる成分とする樹脂であることを特徴とす る請求項 1〜 3のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
5. 熱可塑性樹脂がポリエステルを主たる成分とする樹脂であることを特徴と する請求項 1〜 4のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
6. 遷移金属酸化物粒子が配合されたポリエステルからなり、 面配向係数が 0. 1 2 0以上、 0. 2 8 0未満であることを特徴とする二軸配向熱可塑性樹脂フィ ノレム。
7. 遷移金属酸化物粒子の平均一次粒径が 3〜 1 2 0 n mであることを特徴と する請求項 1〜 6のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
8. 遷移金属酸化物粒子の平均二次粒径が 3〜 2 5 0 n mであることを特徴と する請求項 1〜 7のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
9. エチレンナフタレートを主たる成分とするポリエステルに遷移金属酸化物 粒子が配合されてなり、 面配向係数が 0. 2 1 0以上、 0. 2 8 0未満であるこ とを特徴とする請求項 6〜 8のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
1 0. エチレンテレフタレートを主たる成分とするポリエステルに遷移金属酸 化物粒子が配合されてなり、 面配向係数が 0. 1 6 5〜 0. 2 0 0であることを 特徴とする請求項 6〜 8のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
1 1. 遷移金属酸化物粒子の含有量が 0. 0 1〜 5重量。/。である請求項 1〜 1 0のいずれかに記載の二軸配向熱可塑性榭脂ブイルム。
1 2. 遷移金属酸化物粒子を構成する主たる成分が酸化銅である請求項 1〜 1 1のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
1 3. フィルム中のボイ ドの面積比率が 0 %以上、 5 %以下であることを特徴 とする請求項 1 ~ 1 2のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
1 4. フィルムの長手方向および幅方向のヤング率の合計が 9 G P a以上、 3 5 G P a以下である請求項 1 ~ 1 3のいずれかに記載の二軸配向熱可塑性樹脂フ イノレム,
1 5. フィルムの厚みが 0. 5 μ πι以上、 3 0 0 /X m以下であることを特徴と する請求項 1〜 1 4のいずれかに記載の二軸配向熱可塑性樹脂ブイルム。
1 6. フィルム中に存在する 3 β m以上の粗大凝集物が 3 0個/ 1 0 0 c m2 以下である請求項 1〜 1 5のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
1 7. フィルムの 20 0 °Cにおける動的粘弾性測定における貯蔵弾性率が 0. 4 G P a以上 1. 5 G P a未満であることを特徴とする請求項 1〜 1 6のいずれ かに記載の二軸配向熱可塑性樹脂フィルム。
1 8. フィルムの 1 0 0 °Cにおける熱収縮率が 0 %以上 1. 0 %未満であるこ とを特徴とする請求項 1〜 1 7のいずれかに記載の二軸配向熱可塑性樹脂フィル ム。
1 9. フィルムの 1 5 0 °Cにおける熱収縮率が 0 %以上 1. 5 %未満であるこ とを特徴とする請求項 1〜 1 8のいずれかに記載の二軸配向熱可塑性樹脂フィル ム。
20. 前記請求項 1〜 1 9項記載の二軸配向熱可塑性樹脂フィルムを用いるこ とを特徴とする磁気記録媒体。
2 1. 前記請求項 1〜 1 9項記載の二軸配向熱可塑性樹脂フィルムを用いるこ とを特徴とする回路材料。
2 2. 前記請求項 1〜 1 9項記載の二軸配向熱可塑性樹脂ブイルムを用いるこ とを特徴とするコンデンサー。
2 3 . 前記請求項 1〜 1 9項記載の二軸配向熱可塑性樹脂フィルムを用いる とを特徴とする熱転写リボン。
2 4 . 前記請求項 1 ~ 1 9項記載の二軸配向熱可塑性樹脂フィルムを用いる とを特徴とするカード。
PCT/JP2003/000076 2002-01-10 2003-01-08 Film de resine thermoplastique biaxialement oriente WO2003059995A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/501,041 US7384690B2 (en) 2002-01-10 2003-01-08 Biaxially oriented thermoplastic resin film
EP03700489A EP1473318A4 (en) 2002-01-10 2003-01-08 BIAXIALLY ORIENTED THERMOPLASTIC FOIL
KR10-2004-7010734A KR20040072714A (ko) 2002-01-10 2003-01-08 이축 배향 열가소성 수지 필름
JP2003560090A JP4277685B2 (ja) 2002-01-10 2003-01-08 二軸配向熱可塑性樹脂フィルム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002003503 2002-01-10
JP2002-3502 2002-01-10
JP2002003502 2002-01-10
JP2002-3503 2002-01-10

Publications (1)

Publication Number Publication Date
WO2003059995A1 true WO2003059995A1 (fr) 2003-07-24

Family

ID=26625477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000076 WO2003059995A1 (fr) 2002-01-10 2003-01-08 Film de resine thermoplastique biaxialement oriente

Country Status (6)

Country Link
US (1) US7384690B2 (ja)
EP (1) EP1473318A4 (ja)
JP (1) JP4277685B2 (ja)
KR (1) KR20040072714A (ja)
CN (1) CN1630680A (ja)
WO (1) WO2003059995A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302544A (ja) * 2007-06-06 2008-12-18 Sekisui Chem Co Ltd 延伸熱可塑性ポリエステル系樹脂シート及びその製造方法
JP2010168441A (ja) * 2009-01-21 2010-08-05 Mitsubishi Plastics Inc 層間絶縁材料形成用支持体
JP2010202837A (ja) * 2009-03-06 2010-09-16 Mitsubishi Plastics Inc 二軸配向ポリエステルフィルム
JP2011070714A (ja) * 2009-09-24 2011-04-07 Teijin Dupont Films Japan Ltd 磁気記録媒体用支持体および磁気記録媒体
JP2012015441A (ja) * 2010-07-05 2012-01-19 Teijin Dupont Films Japan Ltd フレキシブルプリント回路基板補強用フィルム、それからなるフレキシブルプリント回路補強板、およびそれらからなるフレキシブルプリント回路基板積層体
JP2012072219A (ja) * 2010-09-28 2012-04-12 Toray Ind Inc 二軸配向ポリエステルフィルム
JP2012135951A (ja) * 2010-12-27 2012-07-19 Mitsubishi Plastics Inc 両面粘着テープ用ポリエステルフィルム
JP2014080593A (ja) * 2012-09-27 2014-05-08 Toyobo Co Ltd ポリエステルフィルム
JP2014080594A (ja) * 2012-09-27 2014-05-08 Toyobo Co Ltd ポリエステルフィルム
JP2016215620A (ja) * 2015-05-15 2016-12-22 謙華科技股▲分▼有限公司 熱昇華型転写インクリボン
WO2018003839A1 (ja) * 2016-06-29 2018-01-04 京セラ株式会社 絶縁材料および配線部材
JP2018184508A (ja) * 2017-04-25 2018-11-22 東レ株式会社 ポリエステルフィルム。
JP2022027914A (ja) * 2017-04-25 2022-02-14 東レ株式会社 ポリエステルフィルム。
CN114430093A (zh) * 2020-10-29 2022-05-03 Sk新技术株式会社 耐热性提高的隔膜和应用该隔膜的锂二次电池
JP7630498B2 (ja) 2019-09-17 2025-02-17 インターナショナル・ビジネス・マシーンズ・コーポレーション 弾性基材を有する磁気記録テープ

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039867A1 (en) * 2001-11-09 2003-05-15 Toray Industries, Inc. Protective film for glass
US7365414B2 (en) * 2003-12-01 2008-04-29 Intel Corporation Component packaging apparatus, systems, and methods
US8043704B2 (en) * 2005-04-08 2011-10-25 The Boeing Company Layered, transparent thermoplastic for flammability resistance
US7811499B2 (en) * 2006-06-26 2010-10-12 International Business Machines Corporation Method for high density data storage and read-back
US20080118730A1 (en) * 2006-11-22 2008-05-22 Ta-Hua Yu Biaxially oriented film, laminates made therefrom, and method
US20100321908A1 (en) * 2007-02-22 2010-12-23 Motoji Shiota Electronic circuit device, production method thereof, and display device
CN101678604B (zh) * 2007-05-09 2013-01-02 东丽株式会社 双轴取向聚芳硫醚膜及其制造方法
JPWO2008149770A1 (ja) * 2007-05-30 2010-08-26 帝人デュポンフィルム株式会社 自動車駆動モーター用二軸配向ポリエステルフィルムおよびそれからなる電気絶縁部材
US20090045544A1 (en) 2007-08-14 2009-02-19 General Electric Company Method for manufacturing ultra-thin polymeric films
EP2108673A1 (en) * 2008-04-11 2009-10-14 DuPont Teijin Films U.S. Limited Partnership Plastic film having a high breakdown voltage
KR101545371B1 (ko) * 2008-04-21 2015-08-18 데이진 가부시키가이샤 2 축 배향 적층 필름
US20110130480A1 (en) * 2008-07-02 2011-06-02 Invista North America S.A.R.I. Copolyester for shrink film applications
JP2011198779A (ja) * 2008-07-22 2011-10-06 Sharp Corp 電子回路装置、その製造方法及び表示装置
US8445099B2 (en) * 2009-11-30 2013-05-21 E. I. Du Pont De Nemours And Company Polyimide film
US8974869B2 (en) * 2010-01-26 2015-03-10 Robert Hamilton Method for improving plating on non-conductive substrates
CN103827213A (zh) * 2011-09-30 2014-05-28 东丽株式会社 聚苯硫醚树脂组合物、其制造方法和其成型体
CN102601885A (zh) * 2012-03-20 2012-07-25 江苏景宏新材料科技有限公司 一种纵横纵拉伸强化锂离子电池隔膜的制备工艺
JP5868753B2 (ja) * 2012-03-26 2016-02-24 東レ・デュポン株式会社 ポリイミドフィルム
CN105637018B (zh) * 2013-11-21 2018-04-24 东丽株式会社 双轴取向聚酯膜及其制造方法
DE102016200256A1 (de) * 2016-01-13 2017-07-13 Robert Bosch Gmbh Pumpvorrichtung und Partikeldetektor mit einer Pumpvorrichtung
KR20190035864A (ko) * 2016-12-07 2019-04-03 아사히 가세이 가부시키가이샤 감광성 수지 조성물 및 감광성 수지 적층체
JP6691512B2 (ja) 2017-06-23 2020-04-28 富士フイルム株式会社 磁気記録媒体
JP6884874B2 (ja) 2017-09-29 2021-06-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP6884220B2 (ja) 2017-09-29 2021-06-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP6911721B2 (ja) * 2017-11-14 2021-07-28 住友金属鉱山株式会社 赤外線吸収体
CN111344824B (zh) 2017-11-15 2022-07-08 株式会社村田制作所 薄膜电容器以及薄膜电容器用薄膜
JP7247585B2 (ja) * 2017-12-20 2023-03-29 東レ株式会社 二軸配向熱可塑性樹脂フィルム
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP6830931B2 (ja) 2018-07-27 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830930B2 (ja) 2018-07-27 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6784738B2 (ja) 2018-10-22 2020-11-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7042737B2 (ja) 2018-12-28 2022-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830945B2 (ja) 2018-12-28 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003073B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US20200254737A1 (en) * 2019-02-12 2020-08-13 Berry Global, Inc. Machine direction-oriented polymeric film, and method of making the machine direction-oriented polymeric film
CN110211483B (zh) * 2019-05-24 2021-05-28 深圳昌茂粘胶新材料有限公司 一种可打印面胶双抗静电标签材料及其制备方法
TWI828911B (zh) * 2019-06-20 2024-01-11 日商東洋紡股份有限公司 聚烯烴系樹脂膜、使用有聚烯烴系樹脂膜之積層體以及包裝體
US11244704B2 (en) 2019-09-17 2022-02-08 International Business Machines Corporation Magnetic recording tape having resilient substrate
JP6778804B1 (ja) 2019-09-17 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
US11315596B2 (en) 2019-09-17 2022-04-26 International Business Machines Corporation Magnetic recording tape fabrication method having peek substrate
CN114479450B (zh) * 2020-10-26 2025-03-04 中国石油化工股份有限公司 一种同质非均相聚酰亚胺薄膜及其制备方法和应用
KR20230013466A (ko) * 2021-07-19 2023-01-26 코오롱인더스트리 주식회사 개선된 내구성을 갖는 폴리에스테르 필름 및 그 내구성 평가 방법
US20240110036A1 (en) * 2022-09-21 2024-04-04 Dupont Safety & Construction, Inc. High tenacity filled films comprising a polymer having imidazole groups

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013482A1 (en) * 1992-12-09 1994-06-23 Hoechst Aktiengesellschaft A biaxially oriented two-layer copolyester film for capacitor dielectric use
WO1994013483A1 (en) * 1992-12-09 1994-06-23 Hoechst Aktiengesellschaft Improved biaxially oriented copolyester film for magnetic recording media
JPH0725187A (ja) * 1993-07-12 1995-01-27 Teijin Ltd Icカード用フイルム
JP2000143820A (ja) * 1998-11-10 2000-05-26 Asahi Chem Ind Co Ltd エラストマー組成物の製法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829541B1 (ja) * 1969-06-13 1973-09-11
JPS57195143A (en) * 1981-05-27 1982-11-30 Teijin Ltd Polyester composition
JPS57205445A (en) 1981-06-12 1982-12-16 Toray Ind Inc Poly-p-phenylene sulfide resin composition
US4539389A (en) * 1983-03-30 1985-09-03 Teijin Limited Biaxially oriented polyester film
JPS62113529A (ja) 1985-11-13 1987-05-25 Diafoil Co Ltd ポリエチレンナフタレ−トフイルム
JPH0625267B2 (ja) * 1985-12-17 1994-04-06 ダイアホイルヘキスト株式会社 高密度磁気記録媒体用ポリエチレン−2,6−ナフタレ−トフイルム
FR2640984B1 (ja) * 1988-12-28 1992-09-11 Rhone Poulenc Films
US5434000A (en) * 1992-07-30 1995-07-18 Toyo Boseki Kabushiki Kaisha Biaxially oriented polyester film
US5372879A (en) 1993-02-22 1994-12-13 Teijin Limited Biaxially oriented polyester film
WO1995016223A1 (fr) * 1993-12-07 1995-06-15 Teijin Limited Film support stratifie pour pellicule photographique
TW412567B (en) 1995-07-27 2000-11-21 Toray Industries Polyester composition and its film
EP0950682B1 (en) * 1997-10-29 2005-08-24 Teijin Limited Biaxially oriented film
KR100448035B1 (ko) 1997-12-11 2004-09-08 데이진 가부시키가이샤 이축배향 폴리에스테르 필름
JP4210434B2 (ja) * 1997-12-12 2009-01-21 帝人株式会社 ガラス飛散防止のための積層フィルム
DE69812562T2 (de) * 1997-12-18 2003-11-27 Toray Industries, Inc. Verfahren zur Herstellung einer Polyesterfolie
EP0930330B1 (en) 1998-01-20 2004-12-22 Mitsubishi Polyester Film Corporation Polyester film for decorative sheet
JP3626208B2 (ja) * 1998-01-21 2005-03-02 帝人株式会社 メンブレンスイッチ用二軸配向ポリエステルフィルム
EP1054925B1 (en) * 1998-02-03 2011-10-12 Graham Packaging PET Technologies Inc. Enhanced oxygen-scavenging polymers, and packaging made therefrom
DE19817842A1 (de) * 1998-04-22 1999-10-28 Hoechst Diafoil Gmbh Einschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE69936497T2 (de) * 1998-09-11 2008-04-03 Toray Industries, Inc. Mehrschichtige, biaxial orientierte Polyesterfolie und Verfahren zu ihrer Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013482A1 (en) * 1992-12-09 1994-06-23 Hoechst Aktiengesellschaft A biaxially oriented two-layer copolyester film for capacitor dielectric use
WO1994013483A1 (en) * 1992-12-09 1994-06-23 Hoechst Aktiengesellschaft Improved biaxially oriented copolyester film for magnetic recording media
JPH0725187A (ja) * 1993-07-12 1995-01-27 Teijin Ltd Icカード用フイルム
JP2000143820A (ja) * 1998-11-10 2000-05-26 Asahi Chem Ind Co Ltd エラストマー組成物の製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1473318A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302544A (ja) * 2007-06-06 2008-12-18 Sekisui Chem Co Ltd 延伸熱可塑性ポリエステル系樹脂シート及びその製造方法
JP2010168441A (ja) * 2009-01-21 2010-08-05 Mitsubishi Plastics Inc 層間絶縁材料形成用支持体
JP2010202837A (ja) * 2009-03-06 2010-09-16 Mitsubishi Plastics Inc 二軸配向ポリエステルフィルム
JP2011070714A (ja) * 2009-09-24 2011-04-07 Teijin Dupont Films Japan Ltd 磁気記録媒体用支持体および磁気記録媒体
JP2012015441A (ja) * 2010-07-05 2012-01-19 Teijin Dupont Films Japan Ltd フレキシブルプリント回路基板補強用フィルム、それからなるフレキシブルプリント回路補強板、およびそれらからなるフレキシブルプリント回路基板積層体
JP2012072219A (ja) * 2010-09-28 2012-04-12 Toray Ind Inc 二軸配向ポリエステルフィルム
JP2012135951A (ja) * 2010-12-27 2012-07-19 Mitsubishi Plastics Inc 両面粘着テープ用ポリエステルフィルム
JP2017165986A (ja) * 2012-09-27 2017-09-21 東洋紡株式会社 ポリエステルフィルム
JP2018168381A (ja) * 2012-09-27 2018-11-01 東洋紡株式会社 ポリエステルフィルム
JP2014080593A (ja) * 2012-09-27 2014-05-08 Toyobo Co Ltd ポリエステルフィルム
JP2014080594A (ja) * 2012-09-27 2014-05-08 Toyobo Co Ltd ポリエステルフィルム
JP2016215620A (ja) * 2015-05-15 2016-12-22 謙華科技股▲分▼有限公司 熱昇華型転写インクリボン
JPWO2018003839A1 (ja) * 2016-06-29 2019-04-04 京セラ株式会社 絶縁材料および配線部材
WO2018003839A1 (ja) * 2016-06-29 2018-01-04 京セラ株式会社 絶縁材料および配線部材
US10796815B2 (en) 2016-06-29 2020-10-06 Kyocera Corporation Insulating material and wiring member
JP2018184508A (ja) * 2017-04-25 2018-11-22 東レ株式会社 ポリエステルフィルム。
JP2022027914A (ja) * 2017-04-25 2022-02-14 東レ株式会社 ポリエステルフィルム。
JP7035334B2 (ja) 2017-04-25 2022-03-15 東レ株式会社 ポリエステルフィルム。
JP7248092B2 (ja) 2017-04-25 2023-03-29 東レ株式会社 ポリエステルフィルム。
JP7630498B2 (ja) 2019-09-17 2025-02-17 インターナショナル・ビジネス・マシーンズ・コーポレーション 弾性基材を有する磁気記録テープ
CN114430093A (zh) * 2020-10-29 2022-05-03 Sk新技术株式会社 耐热性提高的隔膜和应用该隔膜的锂二次电池

Also Published As

Publication number Publication date
US20050020803A1 (en) 2005-01-27
JP4277685B2 (ja) 2009-06-10
EP1473318A4 (en) 2007-06-27
CN1630680A (zh) 2005-06-22
JPWO2003059995A1 (ja) 2005-05-19
US7384690B2 (en) 2008-06-10
EP1473318A1 (en) 2004-11-03
KR20040072714A (ko) 2004-08-18

Similar Documents

Publication Publication Date Title
WO2003059995A1 (fr) Film de resine thermoplastique biaxialement oriente
JP5712614B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
KR100626771B1 (ko) 이축 배향 폴리에스테르 필름 및 그 제조 방법
WO1999017931A1 (fr) Film de polyester a orientation biaxiale
US6368722B1 (en) Laminated film and process
JP4893190B2 (ja) 二軸配向ポリエステルフィルム
JP3506065B2 (ja) 二軸配向ポリエステルフィルムおよびその製造方法
JP2003246870A (ja) 二軸配向ポリエステルフィルム
KR20050088245A (ko) 적층 필름 및 그 제조 방법
JP2000355631A (ja) ポリエステルフィルムとその製造方法
JP2009221277A (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP5098719B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP2011068807A (ja) 二軸配向ポリエステルフィルム
JP2000309650A (ja) 二軸配向ポリエステルフィルム
JP2001121602A (ja) 二軸配向ポリエステルフィルムとその製造方法
JP4232378B2 (ja) 二軸配向ポリエステルフィルムとその製造方法
JP2004107471A (ja) 二軸配向ポリエステルフィルム
JP4742396B2 (ja) 二軸配向ポリエステルフィルムとその製造方法
JP2001030350A (ja) 二軸配向ポリエステルフィルム
JP2010052416A (ja) 積層体、磁気記録媒体用支持体および磁気記録媒体
JP2000071329A (ja) 同時二軸延伸ポリエステルフィルムおよびその製造法
JP5589718B2 (ja) 二軸配向ポリエステルフィルム
JP2011184605A (ja) 二軸配向フィルム
JP2005163020A (ja) 2軸配向ポリエステルフィルム
JPH08323854A (ja) ポリエステルフィルムおよびそれを用いた磁気記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003560090

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10501041

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047010734

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003700489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038036010

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003700489

Country of ref document: EP