[go: up one dir, main page]

WO2018163013A1 - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2018163013A1
WO2018163013A1 PCT/IB2018/051212 IB2018051212W WO2018163013A1 WO 2018163013 A1 WO2018163013 A1 WO 2018163013A1 IB 2018051212 W IB2018051212 W IB 2018051212W WO 2018163013 A1 WO2018163013 A1 WO 2018163013A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
oxide
transistor
conductor
region
Prior art date
Application number
PCT/IB2018/051212
Other languages
French (fr)
Japanese (ja)
Inventor
山崎舜平
遠藤太一
奥野直樹
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2018163013A1 publication Critical patent/WO2018163013A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/69IGFETs having charge trapping gate insulators, e.g. MNOS transistors

Definitions

  • One embodiment of the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • One embodiment of the present invention relates to a semiconductor wafer, a module, and an electronic device.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a semiconductor element such as a transistor, a semiconductor circuit, an arithmetic device, and a memory device are one embodiment of the semiconductor device.
  • a display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like may include a semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • One embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • the CPU has a semiconductor integrated circuit (at least a transistor and a memory) separated from a semiconductor wafer, and forms an assembly of semiconductor elements on which electrodes serving as connection terminals are formed.
  • a semiconductor circuit such as an LSI, a CPU, or a memory is mounted on a circuit board, for example, a printed wiring board, and used as one of various electronic device components.
  • a technique for forming a transistor using a semiconductor thin film formed over a substrate having an insulating surface has attracted attention.
  • the transistor is widely applied to electronic devices such as an integrated circuit (IC) and an image display device (also simply referred to as a display device).
  • IC integrated circuit
  • image display device also simply referred to as a display device.
  • a silicon-based semiconductor material is widely known as a semiconductor thin film applicable to a transistor, but an oxide semiconductor has attracted attention as another material.
  • a transistor using an oxide semiconductor is known to have extremely small leakage current in a non-conduction state.
  • a low power consumption CPU using a characteristic that a transistor including an oxide semiconductor has low leakage current is disclosed (see Patent Document 1).
  • Patent Document 2 a technique of stacking oxide semiconductor layers having different electron affinities (or conduction band bottom levels) is disclosed (see Patent Document 2 and Patent Document 3).
  • An object of one embodiment of the present invention is to provide a semiconductor device having favorable electrical characteristics.
  • An object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high productivity.
  • An object of one embodiment of the present invention is to provide a semiconductor device capable of holding data for a long period of time.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high information writing speed.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high design freedom.
  • An object of one embodiment of the present invention is to provide a semiconductor device capable of suppressing power consumption.
  • An object of one embodiment of the present invention is to provide a novel semiconductor device.
  • One embodiment of the present invention includes a gate electrode, a source electrode, a drain electrode, an oxide semiconductor including a channel formation region, and a gate insulator, and the gate insulator is in contact with the channel formation region.
  • a second layer on the first layer, the second layer is a metal oxide, and the metal oxide has a root mean square roughness (RMS) of 1 ⁇ m ⁇ 1 ⁇ m. In this case, it is 0.4 nm or less.
  • RMS root mean square roughness
  • One embodiment of the present invention includes a gate electrode, a source electrode, a drain electrode, an oxide semiconductor including a channel formation region, and a gate insulator, and the gate insulator is in contact with the channel formation region. And a second layer on the first layer, and the second layer is a metal oxide, and a ring-shaped pattern is observed in electron diffraction using an electron microscope for the metal oxide.
  • the metal oxide is hafnium aluminate or hafnium oxide.
  • hafnium oxide is deposited by sputtering at a deposition temperature of 130 ° C. or lower in a mixed atmosphere containing oxygen.
  • the first layer is silicon oxide, and the amount of desorbed oxygen molecules is 1.0 ⁇ 10 19 atoms / cm 3 or more in the TDS analysis.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a highly productive semiconductor device can be provided.
  • a semiconductor device capable of holding data for a long period can be provided.
  • a semiconductor device with high data writing speed can be provided.
  • a semiconductor device with a high degree of design freedom can be provided.
  • a semiconductor device that can reduce power consumption can be provided.
  • a novel semiconductor device can be provided.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • 4A and 4B are a circuit diagram and a cross-sectional view of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a structure example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a circuit diagram illustrating a structural example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a structure example of a memory device according to one embodiment of the present invention.
  • 4A and 4B are a block diagram and a circuit diagram illustrating a structure example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention.
  • FIG. 10A and 10B are a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention, a circuit diagram, and a timing chart illustrating an operation example of the semiconductor device.
  • FIG. 10 is a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a circuit diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention, and a timing chart illustrating an operation example of the semiconductor device.
  • 1 is a block diagram illustrating a configuration example of an AI system according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating an application example of an AI system according to one embodiment of the present invention.
  • FIG. 10 is a schematic perspective view illustrating a configuration example of an IC incorporating an AI system according to one embodiment of the present invention.
  • FIG. 14 illustrates an electronic device according to one embodiment of the present invention.
  • the figure explaining the cross section of the sample which concerns on an Example The figure explaining the cross-sectional TEM image of the sample which concerns on an Example.
  • the figure explaining the cross section of the sample which concerns on an Example The figure explaining the result of the TDS measurement of the sample which concerns on an Example.
  • a top view also referred to as a “plan view”
  • a perspective view a perspective view, and the like
  • some components may not be described in order to facilitate understanding of the invention.
  • description of some hidden lines may be omitted.
  • the ordinal numbers attached as the first, second, etc. are used for convenience and do not indicate the order of steps or the order of lamination. Therefore, for example, the description can be made by appropriately replacing “first” with “second” or “third”.
  • the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one embodiment of the present invention.
  • X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • an element that enables electrical connection between X and Y for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.
  • Element, light emitting element, load, etc. are not connected between X and Y
  • elements for example, switches, transistors, capacitive elements, inductors
  • resistor element for example, a diode, a display element, a light emitting element, a load, or the like.
  • an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.
  • the switch has a function of controlling on / off. That is, the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current. Alternatively, the switch has a function of selecting and switching a path through which a current flows.
  • the case where X and Y are electrically connected includes the case where X and Y are directly connected.
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
  • Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes signal potential level, etc.), voltage source, current source, switching Circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, memory circuit, control circuit, etc.)
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
  • Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down
  • X and Y are functionally connected.
  • the case where X and Y are functionally connected includes the case where X and Y are directly connected and the case where X and Y are electrically connected.
  • a transistor is an element having at least three terminals including a gate, a drain, and a source.
  • a channel formation region is provided between the drain (drain terminal, drain region or drain electrode) and the source (source terminal, source region or source electrode), and between the source and drain via the channel formation region.
  • a current can flow. Note that in this specification and the like, a channel formation region refers to a region through which a current mainly flows.
  • the functions of the source and drain may be switched when transistors having different polarities are employed or when the direction of current changes during circuit operation. Therefore, in this specification and the like, the terms “source” and “drain” may be used interchangeably.
  • the channel length refers to, for example, a region where a semiconductor (or a portion where current flows in the semiconductor when the transistor is on) and a gate electrode overlap with each other in a top view of the transistor, or a region where a channel is formed
  • the channel length is not necessarily the same in all regions. That is, the channel length of one transistor may not be fixed to one value. Therefore, in this specification, the channel length is any one of values, the maximum value, the minimum value, or the average value in a region where a channel is formed.
  • the channel width is, for example, that a source and a drain face each other in a region where a semiconductor (or a portion where current flows in the semiconductor when the transistor is on) and a gate electrode overlap each other, or in a region where a channel is formed This is the length of the part.
  • the channel width is not necessarily the same in all regions. That is, the channel width of one transistor may not be fixed to one value. Therefore, in this specification, the channel width is any one of values, the maximum value, the minimum value, or the average value in a region where a channel is formed.
  • the channel width in a region where a channel is actually formed (hereinafter also referred to as “effective channel width”) and the channel width (hereinafter “apparently” shown in the top view of the transistor).
  • channel width Sometimes referred to as “channel width”).
  • the effective channel width may be larger than the apparent channel width, and the influence may not be negligible.
  • the ratio of a channel formation region formed on the side surface of the semiconductor may increase. In that case, the effective channel width is larger than the apparent channel width.
  • the apparent channel width may be referred to as “surrounded channel width (SCW)”.
  • SCW surrounded channel width
  • channel width in the case where the term “channel width” is simply used, it may denote an enclosed channel width or an apparent channel width.
  • channel width in the case where the term “channel width” is simply used, it may denote an effective channel width. Note that the channel length, channel width, effective channel width, apparent channel width, enclosed channel width, and the like can be determined by analyzing a cross-sectional TEM image or the like.
  • the impurity of the semiconductor means, for example, a component other than the main component constituting the semiconductor.
  • an element having a concentration of less than 0.1 atomic% can be said to be an impurity.
  • the impurities are included, for example, DOS (Density of States) of the semiconductor may increase or crystallinity may decrease.
  • examples of the impurity that changes the characteristics of the semiconductor include a Group 1 element, a Group 2 element, a Group 13 element, a Group 14 element, a Group 15 element, and an oxide semiconductor.
  • water may also function as an impurity.
  • oxygen vacancies may be formed, for example, by mixing impurities.
  • impurities that change the characteristics of the semiconductor include group 1 elements, group 2 elements, group 13 elements, and group 15 elements excluding oxygen and hydrogen.
  • a silicon oxynitride film has a higher oxygen content than nitrogen in its composition.
  • oxygen is 55 atomic% to 65 atomic%
  • nitrogen is 1 atomic% to 20 atomic%
  • silicon is 25 atomic% to 35 atomic%
  • hydrogen is 0.1 atomic% to 10 atomic%. It is included in the concentration range.
  • the silicon nitride oxide film has a nitrogen content higher than that of oxygen.
  • nitrogen is 55 atomic% to 65 atomic%
  • oxygen is 1 atomic% to 20 atomic%
  • silicon is 25 atomic% to 35 atomic%
  • hydrogen is 0.1 atomic% to 10 atomic%. It is included in the concentration range.
  • the terms “film” and “layer” can be interchanged with each other.
  • the term “conductive layer” may be changed to the term “conductive film”.
  • the term “insulating film” may be changed to the term “insulating layer” in some cases.
  • the term “insulator” can be restated as an insulating film or an insulating layer.
  • the term “conductor” can be restated as a conductive film or a conductive layer.
  • the term “semiconductor” can be restated as a semiconductor film or a semiconductor layer.
  • the transistors described in this specification and the like are field-effect transistors unless otherwise specified.
  • the transistors described in this specification and the like are n-channel transistors unless otherwise specified. Therefore, the threshold voltage (also referred to as “Vth”) is assumed to be greater than 0 V unless otherwise specified.
  • parallel means a state in which two straight lines are arranged at an angle of ⁇ 10 ° to 10 °. Therefore, the case of ⁇ 5 ° to 5 ° is also included.
  • substantially parallel means a state in which two straight lines are arranged at an angle of ⁇ 30 ° to 30 °.
  • Vertical refers to a state in which two straight lines are arranged at an angle of 80 ° to 100 °. Therefore, the case of 85 ° to 95 ° is also included.
  • substantially vertical means a state in which two straight lines are arranged at an angle of 60 ° to 120 °.
  • a barrier film is a film having a function of suppressing permeation of impurities such as hydrogen and oxygen, and when the barrier film has conductivity, the barrier film is referred to as a conductive barrier film. There is.
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OS), and the like. For example, in the case where a metal oxide is used for an active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. In the case of describing as an OS FET, it can be referred to as a transistor including an oxide or an oxide semiconductor.
  • ⁇ Configuration example of semiconductor device> 1A, 1B, and 1C are a top view and a cross-sectional view of the transistor 200 and the periphery of the transistor 200 according to one embodiment of the present invention.
  • FIG. 1A is a top view of a semiconductor device including a transistor 200.
  • FIG. 1B and 1C are cross-sectional views of the semiconductor device.
  • FIG. 1B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 1A and also a cross-sectional view in the channel length direction of the transistor 200.
  • FIG. 1C is a cross-sectional view taken along the dashed-dotted line A3-A4 in FIG. 1A and is a cross-sectional view in the channel width direction of the transistor 200.
  • some elements are omitted for clarity.
  • the semiconductor device of one embodiment of the present invention includes the transistor 200, the insulator 210 functioning as an interlayer film, the insulator 212, and the insulator 280.
  • a conductor 203 (a conductor 203a and a conductor 203b) which is electrically connected to the transistor 200 and functions as a wiring
  • a conductor 240 (a conductor 240a and a conductor 240b) which functions as a plug are included. .
  • the conductor 203 is formed with a conductor 203a in contact with the inner wall of the opening of the insulator 212, and further has a conductor 203b formed inside.
  • the height of the upper surface of the conductor 203 and the height of the upper surface of the insulator 212 can be approximately the same.
  • the transistor 200 has a structure in which the conductor 203a and the conductor 203b are stacked, the present invention is not limited to this. For example, only the conductor 203b may be provided.
  • the conductor 240 is formed in contact with the inner wall of the opening of the insulator 280.
  • the height of the upper surface of the conductor 240 and the height of the upper surface of the insulator 280 can be approximately the same.
  • the transistor 200 has a structure in which the conductor 240 is a single layer, the present invention is not limited to this.
  • the conductor 240 may have a stacked structure of two or more layers.
  • the transistor 200 includes an insulator 214 and an insulator 216 which are disposed over a substrate (not shown), and a conductor 205 which is disposed so as to be embedded in the insulator 214 and the insulator 216.
  • the transistor 200 has a structure in which the oxide 230a, the oxide 230b, and the oxide 230c are stacked, the present invention is not limited to this.
  • a single layer of the oxide 230b, a two-layer structure of the oxide 230b and the oxide 230a, a two-layer structure of the oxide 230b and the oxide 230c, or a stacked structure of three or more layers may be provided.
  • the structure in which the conductors 260a and 260b are stacked is described; however, the present invention is not limited to this.
  • FIG. 2 is an enlarged view of a region 239 in the vicinity of the channel surrounded by a broken line in FIG.
  • the oxide 230 includes a region 232 between a region 234 functioning as a channel formation region of the transistor 200 and a region 231 (region 231a and region 231b) functioning as a source region or a drain region. (Region 232a and region 232b).
  • the region 231 functioning as a source region or a drain region is a region with high carrier density and low resistance.
  • the region 234 functioning as a channel formation region is a region having a lower carrier density than the region 231 functioning as a source region or a drain region.
  • the region 232 has a lower carrier density than the region 231 that functions as a source region or a drain region and a higher carrier density than the region 234 that functions as a channel formation region.
  • the region 232 functions as a junction region between the channel formation region and the source region or the drain region.
  • the region 232 may function as a so-called overlap region (also referred to as a Lov region) which overlaps with the conductor 260 functioning as a gate electrode.
  • a high resistance region is not formed between the region 231 functioning as a source region or a drain region and the region 234 functioning as a channel formation region, so that the on-state current of the transistor can be increased.
  • the oxide 230 is preferably a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor). Since a transistor including an oxide semiconductor has extremely small leakage current (off-state current) in a non-conduction state, a semiconductor device with low power consumption can be provided.
  • An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
  • a transistor including an oxide semiconductor its electrical characteristics are likely to vary due to impurities and oxygen vacancies in the oxide semiconductor, and reliability may deteriorate.
  • hydrogen contained in the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases.
  • oxygen vacancies in the oxide semiconductor are preferably reduced as much as possible.
  • oxygen vacancies formed in the region 234 where the channel is formed in the oxide 230 can be reduced by supplying oxygen.
  • the insulator 250 containing oxygen may be provided in contact with the oxide 230.
  • the insulator 250 preferably contains more oxygen (hereinafter also referred to as excess oxygen) than oxygen that satisfies the stoichiometric composition. When excess oxygen diffuses from the insulator 250 into the oxide 230, oxygen vacancies in the oxide 230 can be reduced.
  • the insulator 250 is preferably formed using an oxide material that has an excess oxygen region and from which part of oxygen is released by heating.
  • the oxide that desorbs oxygen by heating means that the amount of desorbed oxygen in terms of oxygen molecule is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably in TDS (Thermal Desorption Spectroscopy) analysis, preferably
  • the oxide film has a thickness of 1.0 ⁇ 10 19 atoms / cm 3 or more, preferably 2.0 ⁇ 10 19 atoms / cm 3 , and more preferably 3.0 ⁇ 10 20 atoms / cm 3 .
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or more and 700 ° C. or less.
  • silicon oxide having excess oxygen silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and voids Silicon oxide can be used.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the insulator 252 preferably suppresses oxygen diffusion in order to efficiently supply excess oxygen included in the insulator 250 to the oxide 230.
  • the insulator 252 that suppresses diffusion of oxygen diffusion of excess oxygen into the conductor 260 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 230 can be suppressed.
  • oxidation of the conductor 260 due to excess oxygen can be suppressed.
  • the insulator 250 and the insulator 252 may function as part of the gate insulator. Therefore, in the case where silicon oxide, silicon oxynitride, or the like is used for the insulator 250, the insulator 252 is preferably formed using a metal oxide that is a high-k material with a high relative dielectric constant. With such a laminated structure, it is possible to obtain a laminated structure that is stable against heat and has a high relative dielectric constant. Therefore, it is possible to reduce the equivalent oxide thickness (EOT: equivalent oxide thickness) of the gate insulator while maintaining the physical thickness.
  • EOT equivalent oxide thickness
  • the on-state current can be improved without weakening the influence of the electric field from the conductor 260.
  • leakage current can be suppressed by maintaining the distance between the conductor 260 and the oxide 230 depending on the physical thickness of the insulator 250 and the insulator 252.
  • the physical distance between the conductor 260 and the oxide 230 and the electric field strength applied from the conductor 260 to the oxide 230 can be easily increased. Can be adjusted appropriately.
  • a film with low crystallinity (or few crystals) or a film including an amorphous structure may be used as the insulator 252 as the insulator 252.
  • An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating.
  • excess oxygen is added from the insulator 252 to the insulator 250 due to a thermal history in a later process, and the insulator 250 is excessive.
  • An oxygen region can be easily formed.
  • a film with low crystallinity or a film including an amorphous structure has high flatness, and the interface between the insulator 250 and the insulator 252 can be in a favorable state.
  • the insulator 252 is a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, or magnesium. Can be used.
  • hafnium oxide an oxide containing aluminum and hafnium (hafnium aluminate), which is an insulator containing one or both of aluminum and hafnium.
  • hafnium aluminate has higher heat resistance than a hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in a heat history in a later process.
  • an insulation whose root mean square roughness (RMS) measured using an atomic force microscope is 0.4 nm or less, preferably 0.3 nm or less in a measurement range of 1 ⁇ m ⁇ 1 ⁇ m. Use your body.
  • RMS root mean square roughness
  • an insulator in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope may be used.
  • the insulator 272 is preferably provided in contact with the insulator 250 and the insulator 252.
  • the insulator 272 preferably has a function of suppressing diffusion of oxygen (eg, oxygen atoms and oxygen molecules). Since the insulator 272 has a function of suppressing oxygen diffusion, oxygen in the excess oxygen region included in the insulator 250 is efficiently supplied to the region 234 without diffusing to the insulator 274 side. Accordingly, formation of oxygen vacancies at the interface between the oxide 230 and the insulator 250 is suppressed, and the reliability of the transistor 200 can be improved.
  • oxygen eg, oxygen atoms and oxygen molecules
  • a semiconductor device including a transistor including an oxide semiconductor with high on-state current can be provided.
  • a semiconductor device including a transistor including an oxide semiconductor with low off-state current can be provided.
  • the conductor 203 is extended in the channel width direction and functions as a wiring for applying a potential to the conductor 205.
  • the conductor 203 is preferably provided so as to be embedded in the insulator 214 and the insulator 216.
  • the conductor 205 is disposed so as to overlap with the oxide 230 and the conductor 260.
  • the conductor 205 is preferably provided in contact with the upper surface of the conductor 203.
  • the conductor 260 may function as a first gate (also referred to as a top gate) electrode.
  • the conductor 205 may function as a second gate (also referred to as a bottom gate) electrode.
  • the threshold voltage of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without being linked.
  • the threshold voltage of the transistor 200 can be made higher than 0 V and the off-state current can be reduced. Therefore, the drain current when the voltage applied to the conductor 260 is 0 V can be reduced.
  • the conductor 205 By providing the conductor 205 over the conductor 203, the distance between the conductor 203 having the function of the first gate electrode and the wiring and the conductor 203 can be appropriately designed.
  • the insulator 214, the insulator 216, and the like between the conductor 203 and the conductor 260 By providing the insulator 214, the insulator 216, and the like between the conductor 203 and the conductor 260, the parasitic capacitance between the conductor 203 and the conductor 260 can be reduced and the withstand voltage can be increased.
  • the switching speed of the transistor can be improved and a transistor having high frequency characteristics can be obtained. Further, by increasing the withstand voltage between the conductor 203 and the conductor 260, the reliability of the transistor 200 can be improved. Therefore, it is preferable to increase the thickness of the insulator 214 and the insulator 216. Note that the extending direction of the conductor 203 is not limited thereto, and the conductor 203 may be extended in the channel length direction of the transistor 200, for example.
  • the conductor 205 is provided so as to overlap with the oxide 230 and the conductor 260 as illustrated in FIG.
  • the conductor 205 is preferably provided larger than the region 234 in the oxide 230.
  • the conductor 205 is preferably extended also in a region outside the end portion in the channel width direction (W length direction) of the region 234 of the oxide 230b. . That is, it is preferable that the conductor 205 and the conductor 260 overlap with each other with an insulator outside the side surface in the channel width direction of the oxide 230b.
  • the channel formation region in the region 234 can be electrically surrounded by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode.
  • a transistor structure that electrically surrounds a channel formation region by an electric field of the first gate electrode and the second gate electrode is referred to as a surrounded channel (S-channel) structure.
  • the conductor 205 is in contact with the inner walls of the openings of the insulator 214 and the insulator 216, the conductor 205a is formed, and the conductor 205b is further formed inside.
  • the heights of the upper surfaces of the conductors 205a and 205b and the height of the upper surface of the insulator 216 can be approximately the same.
  • the transistor 200 has a structure in which the conductors 205a and 205b are stacked, the present invention is not limited to this. For example, only the conductor 205b may be provided.
  • the conductor 205a and the conductor 203a diffuse impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2 ), a copper atom, and the like. It is preferable to use a conductive material having a function of suppressing (the above-described impurities are hardly transmitted). Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, oxygen atoms and oxygen molecules) (the above-mentioned oxygen hardly transmits). Note that in this specification, the function of suppressing diffusion of impurities or oxygen is a function of suppressing diffusion of any one or all of the impurities and oxygen.
  • the conductivity can be prevented from being reduced due to oxidation of the conductor 205b and the conductor 203b.
  • a conductive material having a function of suppressing oxygen diffusion for example, tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used. Therefore, the conductive material may be used as a single layer or a stacked layer as the conductor 205a and the conductor 203a. Accordingly, diffusion of impurities such as hydrogen and water to the transistor 200 side through the conductor 203 and the conductor 205 can be suppressed.
  • the conductor 205b is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. Note that although the conductor 205b is illustrated as a single layer, it may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above-described conductive material.
  • the conductor 203b functions as a wiring, a conductor having higher conductivity than the conductor 205b is preferably used.
  • a conductor having higher conductivity than the conductor 205b is preferably used.
  • a conductive material mainly containing copper or aluminum can be used.
  • the conductor 203b may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
  • the conductor 203b it is preferable to use copper for the conductor 203b. Since copper has low resistance, it is preferably used for wiring and the like. On the other hand, since copper easily diffuses, the characteristics of the transistor 200 may be deteriorated by diffusing into the oxide 230.
  • the insulator 214 can be made of copper diffusion by using a material such as aluminum oxide or hafnium oxide having low copper permeability.
  • the insulator 210 and the insulator 214 preferably function as barrier insulating films that prevent impurities such as water or hydrogen from entering the transistor from the substrate side. Accordingly, the insulator 210 and the insulator 214 suppress diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2, and the like) and copper atoms. It is preferable to use an insulating material having a function to prevent the above impurities from being transmitted. Alternatively, it is preferable to use an insulating material having a function of suppressing diffusion of oxygen (for example, oxygen atoms and oxygen molecules) (the above-mentioned oxygen is difficult to transmit).
  • oxygen for example, oxygen atoms and oxygen molecules
  • the insulator 210 aluminum oxide or the like is preferably used as the insulator 210, and silicon nitride or the like is preferably used as the insulator 214. Accordingly, diffusion of impurities such as hydrogen and water to the transistor side through the insulator 210 and the insulator 214 can be suppressed. Alternatively, oxygen contained in the insulator 224 or the like can be prevented from diffusing to the substrate side through the insulator 210 and the insulator 214.
  • the insulator 214 can be provided over the conductor 203 by stacking the conductor 205 over the conductor 203.
  • the metal can be prevented from diffusing into a layer above the insulator 214.
  • the insulator 212, the insulator 216, and the insulator 280 that function as interlayer films preferably have a lower dielectric constant than the insulator 210 or the insulator 214.
  • parasitic capacitance generated between the wirings can be reduced.
  • An insulator such as strontium (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST) can be used as a single layer or a stacked layer.
  • strontium (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST) can be used as a single layer or a stacked layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 220, the insulator 222, and the insulator 224 function as gate insulators.
  • an oxide insulator containing more oxygen than oxygen that satisfies the stoichiometric composition is preferably used as the insulator 224 in contact with the oxide 230. That is, it is preferable that an excess oxygen region be formed in the insulator 224. By providing such an insulator containing excess oxygen in contact with the oxide 230, oxygen vacancies in the oxide 230 can be reduced and reliability can be improved.
  • an oxide material from which part of oxygen is released by heating is preferably used as the insulator having an excess oxygen region.
  • the oxide that desorbs oxygen by heating means that the amount of desorbed oxygen in terms of oxygen atom is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1 in TDS (Thermal Desorption Spectroscopy) analysis.
  • the oxide film has a thickness of 0.0 ⁇ 10 19 atoms / cm 3 or more, more preferably 2.0 ⁇ 10 19 atoms / cm 3 , or 3.0 ⁇ 10 20 atoms / cm 3 or more.
  • the surface temperature of the film at the time of TDS analysis is preferably in the range of 100 ° C. to 700 ° C., or 100 ° C. to 400 ° C.
  • the insulator 222 preferably has a function of suppressing the diffusion of oxygen (for example, oxygen atoms and oxygen molecules) (the oxygen is difficult to transmit).
  • the insulator 222 has a function of suppressing oxygen diffusion, oxygen in the excess oxygen region can be efficiently supplied to the oxide 230 without diffusing to the insulator 220 side.
  • the conductor 205 can be prevented from reacting with oxygen in the excess oxygen region of the insulator 224.
  • the insulator 222 is so-called high such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO 3 (BST). It is preferable to use an insulator including a -k material in a single layer or a stacked layer. As transistor miniaturization and higher integration progress, problems such as leakage current may occur due to thinning of the gate insulator. By using a high-k material for the insulator functioning as a gate insulator, the physical film thickness can be maintained and the voltage can be reduced.
  • an insulator including one or both oxides of aluminum and hafnium which is an insulating material having a function of suppressing diffusion of impurities and oxygen (impermeability of impurities and oxygen) is preferably used.
  • the insulator containing one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. In the case of using such a material, it functions as a layer which prevents release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the periphery of the transistor 200.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 220 is preferably thermally stable.
  • silicon oxide and silicon oxynitride are thermally stable, a stacked structure having a high thermal stability and a high dielectric constant can be obtained by combining 222 with a high-k insulator.
  • the insulator 220, the insulator 222, and the insulator 224 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient.
  • the oxide 230 includes an oxide 230a, an oxide 230b over the oxide 230a, and an oxide 230c over the oxide 230b.
  • the oxide 230b By including the oxide 230b over the oxide 230a, diffusion of impurities from the structure formed below the oxide 230a to the oxide 230b can be suppressed.
  • the oxide 230b is provided under the oxide 230c, diffusion of impurities from the structure formed above the oxide 230c to the oxide 230b can be suppressed.
  • the oxide 230 preferably has a stacked structure with oxides having different atomic ratios of metal atoms. Specifically, in the metal oxide used for the oxide 230a, the atomic ratio of the element M in the constituent element is larger than the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230b. It is preferable. In the metal oxide used for the oxide 230a, the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b. In the metal oxide used for the oxide 230b, the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a. As the oxide 230c, a metal oxide that can be used for the oxide 230a or the oxide 230b can be used.
  • the energy at the lower end of the conduction band of the oxide 230a and the oxide 230c is preferably higher than the energy at the lower end of the conduction band in a region where the energy at the lower end of the conduction band of the oxide 230b is low.
  • the electron affinity of the oxide 230a and the oxide 230c is preferably smaller than the electron affinity in the region where the energy at the lower end of the conduction band of the oxide 230b is low.
  • the energy level at the lower end of the conduction band changes gently. In other words, it can be said that it is continuously changed or continuously joined.
  • the defect state density of the mixed layer formed at the interface between the oxide 230a and the oxide 230b and the interface between the oxide 230b and the oxide 230c is preferably low.
  • the oxide 230a and the oxide 230b, and the oxide 230b and the oxide 230c have a common element (main component) in addition to oxygen, so that a mixed layer with a low density of defect states is formed.
  • the oxide 230b is an In—Ga—Zn oxide
  • an In—Ga—Zn oxide, a Ga—Zn oxide, a gallium oxide, or the like may be used as the oxide 230a and the oxide 230c.
  • the main path of carriers is a narrow gap portion formed in the oxide 230b. Since the density of defect states at the interface between the oxide 230a and the oxide 230b and the interface between the oxide 230b and the oxide 230c can be reduced, the influence on the carrier conduction due to interface scattering is small, and a high on-current is obtained. can get.
  • the oxide 230 preferably includes a region 231, a region 232, and a region 234. Note that at least part of the region 231 is in contact with the insulator 274 and preferably has at least one concentration of a metal element such as indium, hydrogen, and nitrogen higher than that of the region 234.
  • the region 232 preferably has at least one concentration of a metal element such as indium, hydrogen, and nitrogen higher than the region 234 and lower than the region 231.
  • the region 231 and the region 232 are regions obtained by adding metal atoms such as indium and gallium or impurities to the metal oxide provided as the oxide 230.
  • the region 231 has higher conductivity than the region 234.
  • impurities for example, plasma treatment, an ion implantation method in which an ionized source gas is added by mass separation, and an ionized source gas are added without mass separation.
  • a dopant which is at least one of a metal element such as indium and an impurity may be added using an ion doping method, a plasma immersion ion implantation method, or the like.
  • the insulator 274 including an element serving as an impurity is formed in contact with the oxide 230, whereby the impurity can be added to the region 231 and the region 232.
  • the region 231 by increasing the content of metal atoms such as indium in the oxide 230, electron mobility can be increased and resistance can be reduced.
  • the resistance of the region 231 is reduced by adding an element that forms oxygen vacancies or an element that is captured by oxygen vacancies.
  • elements typically include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and rare gases.
  • rare gas elements include helium, neon, argon, krypton, and xenon. Therefore, the region 231 may include one or more of the above elements.
  • the region 234, the region 231, and the region 232 are formed in the oxide 230b; however, the region is not limited thereto, and for example, these regions include the oxide 230a and the oxide 230b.
  • the object 230c may also be formed.
  • the boundary of each region is displayed substantially perpendicular to the upper surface of the oxide 230, but this embodiment is not limited to this.
  • the region 232 may protrude to the conductor 260 side in the vicinity of the surface of the oxide 230b and recede to the conductor 240a side or the conductor 240b side in the vicinity of the lower surface of the oxide 230a.
  • the transistor 200 when the resistance of the region 232 is reduced, a high resistance region is not formed between the region 231 functioning as a source region and a drain region and the region 234 where a channel is formed; , And mobility can be increased.
  • the region 232 since the region 232 includes the source region and the drain region and the gate do not overlap with each other in the channel length direction, formation of unnecessary capacitance can be suppressed.
  • leakage current at the time of non-conduction can be reduced.
  • gallium or the like when gallium or the like is added to the region 232, lateral diffusion of impurities such as hydrogen from the region 231 to the region 234 can be suppressed, and unintended reduction of the effective channel length can be suppressed.
  • the region 231a or the region 231b functions as a source region or a drain region.
  • at least part of the region 234 functions as a region where a channel is formed.
  • a curved surface is provided between the side surface of the oxide 230 and the upper surface of the oxide 230. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape).
  • the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm at the end of the oxide 230b.
  • a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used.
  • an oxide having an energy gap of 2 eV or more, preferably 2.5 eV or more is preferably used as the metal oxide to be the region 234. In this manner, off-state current of a transistor can be reduced by using a metal oxide having a wide energy gap.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
  • the oxide 230 includes an In-M-Zn oxide (the element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, or cerium. It is preferable to use a metal oxide such as neodymium, hafnium, tantalum, tungsten, or magnesium. Further, as the oxide 230, an In—Ga oxide or an In—Zn oxide may be used as the oxide 230.
  • the insulator 250 functions as a gate insulating film.
  • the insulator 250 is preferably provided in contact with the upper surface of the oxide 230c.
  • the insulator 250 is preferably formed using an insulator from which oxygen is released by heating.
  • the amount of desorbed oxygen converted to oxygen molecules is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1.0 ⁇ 10 19.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or more and 700 ° C. or less.
  • silicon oxide having excess oxygen silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and voids Silicon oxide can be used.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the concentration of impurities such as water or hydrogen in the insulator 250 is preferably reduced.
  • the thickness of the insulator 250 is preferably greater than or equal to 1 nm and less than or equal to 20 nm.
  • the insulator 252 preferably suppresses oxygen diffusion in order to efficiently supply excess oxygen included in the insulator 250 to the oxide 230.
  • the insulator 252 that suppresses diffusion of oxygen diffusion of excess oxygen into the conductor 260 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 230 can be suppressed.
  • oxidation of the conductor 260 due to excess oxygen can be suppressed.
  • the insulator 250 and the insulator 252 may function as part of the gate insulator. Therefore, in the case where silicon oxide, silicon oxynitride, or the like is used for the insulator 250, the insulator 252 is preferably formed using a metal oxide that is a high-k material with a high relative dielectric constant. With such a laminated structure, it is possible to obtain a laminated structure that is stable against heat and has a high relative dielectric constant. Therefore, it is possible to reduce the equivalent oxide thickness (EOT) of the gate insulator while maintaining the physical thickness.
  • EOT equivalent oxide thickness
  • the on-state current can be improved without weakening the influence of the electric field from the conductor 260.
  • leakage current can be suppressed by maintaining the distance between the conductor 260 and the oxide 230 depending on the physical thickness of the insulator 250 and the insulator 252.
  • the physical distance between the conductor 260 and the oxide 230 and the electric field strength applied from the conductor 260 to the oxide 230 can be easily increased. Can be adjusted appropriately.
  • a film with low crystallinity (or few crystals) or a film including an amorphous structure may be used as the insulator 252 as the insulator 252.
  • An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating.
  • excess oxygen is added from the insulator 252 to the insulator 250 due to a thermal history in a later process, and the insulator 250 is excessive.
  • An oxygen region can be easily formed.
  • a film with low crystallinity or a film including an amorphous structure has high flatness, and the interface between the insulator 250 and the insulator 252 can be in a favorable state.
  • the insulator 252 is a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, or magnesium. Can be used.
  • hafnium oxide an oxide containing aluminum and hafnium (hafnium aluminate), which is an insulator containing one or both of aluminum and hafnium.
  • hafnium aluminate has higher heat resistance than a hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in a heat history in a later process.
  • an insulation whose root mean square roughness (RMS) measured using an atomic force microscope is 0.4 nm or less, preferably 0.3 nm or less in a measurement range of 1 ⁇ m ⁇ 1 ⁇ m. Use your body.
  • RMS root mean square roughness
  • an insulator in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope may be used.
  • the conductor 260 functioning as the first gate electrode includes a conductor 260a and a conductor 260b over the conductor 260a. Similar to the conductor 205a, the conductor 260a diffuses impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2, etc.), copper atoms, and the like. It is preferable to use a conductive material having a suppressing function. Alternatively, it is preferable to use a conductive material having a function of suppressing diffusion of oxygen (for example, oxygen atoms and oxygen molecules).
  • the conductor 260a has a function of suppressing oxygen diffusion
  • excess conductivity of the insulator 250 and the insulator 252 can prevent the conductor 260b from being oxidized and lowering in conductivity.
  • a conductive material having a function of suppressing oxygen diffusion for example, tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used.
  • the conductor 260 functions as a wiring, a conductor having high conductivity is preferably used.
  • a conductor having high conductivity is preferably used for the conductor 260b.
  • the conductor 260b may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
  • a conductive oxide can be used as the conductor 260a.
  • a metal oxide that can be used as the oxide 230 is preferably used.
  • oxygen can be added to the insulator 250 and the insulator 252 so that oxygen can be supplied to the region 234 of the oxide 230. It becomes. Accordingly, oxygen vacancies in the region 234 of the oxide 230 can be reduced.
  • the conductor 260a When the above conductive oxide is used as the conductor 260a, it is preferable to use a conductor that can improve the conductivity of the conductor 260a by adding an impurity such as nitrogen to the conductor 260a.
  • a conductor that can improve the conductivity of the conductor 260a by adding an impurity such as nitrogen to the conductor 260a.
  • titanium nitride or the like is preferably used for the conductor 260b.
  • the conductor 260b may have a structure in which a metal nitride such as titanium nitride and a metal such as tungsten are stacked thereover.
  • the conductor 260 when the conductor 205 extends to a region outside the end portion in the channel width direction of the oxide 230b, the conductor 260 is insulated in the region. It is preferable to overlap the body 250. That is, it is preferable that the conductor 205, the insulator 250, and the conductor 260 form a stacked structure outside the side surface of the oxide 230b.
  • the channel formation region in the region 234 can be electrically surrounded by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode. .
  • an insulator 271 functioning as a barrier film or a hard mask 270 may be provided over the conductor 260b.
  • the side surface of the conductor 260 is substantially perpendicular to the substrate surface, specifically, the angle formed between the side surface of the conductor 260 and the substrate surface is 75 degrees.
  • the angle can be not less than 100 degrees and preferably not less than 80 degrees and not more than 95 degrees.
  • the insulator 272 functioning as a barrier film is provided in contact with the side surfaces of the insulator 250, the insulator 252, the conductor 260, and the insulator 270.
  • the insulator 272 may be formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen.
  • an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen For example, aluminum oxide or hafnium oxide is preferably used.
  • the oxygen in the insulator 250 and the insulator 252 can be prevented from diffusing to the outside.
  • entry of impurities such as hydrogen and water into the oxide 230 from the end portions of the insulator 250 and the insulator 252 and the like can be suppressed. Accordingly, formation of oxygen vacancies at the interface between the oxide 230 and the insulator 250 is suppressed, and the reliability of the transistor 200 can be improved.
  • an insulator having a function of suppressing permeation of impurities such as water or hydrogen and oxygen covers the side surface of the conductor 260, the side surface of the insulator 250, and the side surface of the insulator 252. Can do. Accordingly, impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260, the insulator 250, and the insulator 252. Therefore, the insulator 272 functions as a side barrier that protects the side surfaces of the gate electrode and the gate insulating film.
  • a transistor when a transistor is miniaturized and a channel length is formed to be about 10 nm to 30 nm, an impurity element contained in a structure provided around the transistor 200 is diffused, so that a region 231a and a region 231b are formed. There is a risk of electrical conduction.
  • the first gate voltage when the first gate voltage is 0 V, the source region and the drain region can be prevented from being electrically connected.
  • the insulator 274 is provided so as to cover the insulator 271, the insulator 272, the oxide 230, and the insulator 224.
  • the insulator 274 is provided in contact with the top surfaces of the insulator 271 and the insulator 272 and in contact with a side surface of the insulator 272.
  • the insulator 274 an insulating material having a function of suppressing permeation of oxygen is preferably used.
  • the insulator 274 is preferably formed using silicon nitride, silicon nitride oxide, silicon oxynitride, aluminum nitride, aluminum nitride oxide, or the like.
  • the insulator 274 preferably includes at least one of hydrogen and nitrogen.
  • an impurity such as hydrogen or nitrogen is added to the oxide 230, so that the region 231 and the region 232 are formed in the oxide 230. Can do.
  • An insulator 280 that functions as an interlayer film is preferably provided over the insulator 274.
  • the insulator 280 preferably has a reduced concentration of impurities such as water or hydrogen in the film. Note that an insulator similar to the insulator 210 may be provided over the insulator 280.
  • the conductor 240a and the conductor 240b are disposed in openings formed in the insulator 280 and the insulator 274.
  • the conductor 240a and the conductor 240b are provided to face each other with the conductor 260 interposed therebetween.
  • the heights of the upper surfaces of the conductors 240a and 240b may be approximately the same as the height of the upper surface of the insulator 280.
  • the conductor 240a is in contact with the region 231a that functions as one of the source region and the drain region of the transistor 200
  • the conductor 240b is in contact with the region 231b that functions as the other of the source region and the drain region of the transistor 200. Therefore, the conductor 240a can function as one of the source electrode and the drain electrode, and the conductor 240b can function as the other of the source electrode and the drain electrode. Since the region 231a and the region 231b have low resistance, the contact resistance between the conductor 240a and the region 231a and the contact resistance between the conductor 240b and the region 231b can be reduced and the on-state current of the transistor 200 can be increased.
  • a conductor 240a is formed in contact with the inner walls of the openings of the insulator 280 and the insulator 274.
  • a region 231a of the oxide 230 is located at least at a part of the bottom of the opening, and the conductor 240a is in contact with the region 231a.
  • a conductor 240b is formed in contact with the inner walls of the openings of the insulator 280 and the insulator 274.
  • a region 231b of the oxide 230 is located at least at a part of the bottom of the opening, and the conductor 240b is in contact with the region 231b.
  • the conductor 240 a and the conductor 240 b are preferably in contact with at least the upper surface of the oxide 230 and further in contact with the side surface of the oxide 230.
  • the conductor 240a and the conductor 240b are preferably in contact with both or one of the side surface on the A3 side and the side surface on the A4 side on the side surface intersecting the channel width direction of the oxide 230.
  • the conductor 240a and the conductor 240b may be in contact with the side surface on the A1 side (A2 side) on the side surface intersecting the channel length direction of the oxide 230.
  • the conductor 240a and the conductor 240b are in contact with the side surface of the oxide 230 in addition to the top surface of the oxide 230, whereby the conductor 240a and the contact portion between the conductor 240b and the oxide 230 are formed.
  • the contact area of the contact portion can be increased, and the contact resistance between the conductor 240a and the conductor 240b and the oxide 230 can be reduced.
  • the on-current can be increased while miniaturizing the source electrode and the drain electrode of the transistor.
  • the conductor 240a and the conductor 240b are preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductors 240a and 240b may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
  • the insulator 274 and the conductor in contact with the insulator 280 have a function of suppressing transmission of impurities such as water or hydrogen, as in the conductor 205a.
  • impurities such as water or hydrogen
  • the conductor 205a is preferably used.
  • tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, or ruthenium oxide is preferably used.
  • the conductive material having a function of suppressing permeation of impurities such as water or hydrogen may be used in a single layer or a stacked layer. By using the conductive material, impurities such as hydrogen and water from an upper layer than the insulator 280 can be prevented from entering the oxide 230 through the conductor 240a and the conductor 240b.
  • a conductor that functions by being in contact with the upper surface of the conductor 240a and the upper surface of the conductor 240b may be disposed.
  • a conductive material containing tungsten, copper, or aluminum as a main component is preferably used.
  • the conductor may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material. Note that like the conductor 203 and the like, the conductor may be formed so as to be embedded in an opening provided in the insulator.
  • a substrate over which the transistor 200 is formed for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • there is a semiconductor substrate having an insulator region inside the semiconductor substrate for example, an SOI (Silicon On Insulator) substrate.
  • the conductor substrate examples include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate having a metal nitride examples include a substrate having a metal oxide, and the like.
  • a substrate in which a conductor or a semiconductor is provided on an insulator substrate examples include a substrate in which a conductor or an insulator is provided on a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided on a conductor substrate, and the like.
  • a substrate in which an element is provided may be used.
  • the element provided on the substrate include a capacitor element, a resistor element, a switch element, a light emitting element, and a memory element.
  • a flexible substrate may be used as the substrate.
  • a method for providing a transistor over a flexible substrate there is a method in which after a transistor is formed over a non-flexible substrate, the transistor is peeled off and transferred to a substrate which is a flexible substrate.
  • a separation layer is preferably provided between the non-flexible substrate and the transistor.
  • the substrate may have elasticity.
  • the substrate may have a property of returning to the original shape when bending or pulling is stopped. Or you may have a property which does not return to an original shape.
  • the substrate has a region having a thickness of, for example, 5 ⁇ m to 700 ⁇ m, preferably 10 ⁇ m to 500 ⁇ m, more preferably 15 ⁇ m to 300 ⁇ m.
  • a semiconductor device including a transistor can be reduced in weight. Further, by making the substrate thin, it may have elasticity even when glass or the like is used, or may have a property of returning to its original shape when bending or pulling is stopped. Therefore, an impact applied to the semiconductor device on the substrate due to dropping or the like can be reduced. That is, a durable semiconductor device can be provided.
  • the substrate which is a flexible substrate for example, metal, alloy, resin or glass, or fiber thereof can be used. Further, as the substrate, a sheet woven with fibers, a film, a foil, or the like may be used.
  • a substrate that is a flexible substrate is preferably as the linear expansion coefficient is lower because deformation due to the environment is suppressed.
  • the substrate which is a flexible substrate for example, a material having a linear expansion coefficient of 1 ⁇ 10 ⁇ 3 / K or less, 5 ⁇ 10 ⁇ 5 / K or less, or 1 ⁇ 10 ⁇ 5 / K or less may be used.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic. In particular, since aramid has a low coefficient of linear expansion, it is suitable as a substrate that is a flexible substrate.
  • Insulator examples include an insulating oxide, nitride, oxynitride, nitride oxide, metal oxide, metal oxynitride, and metal nitride oxide.
  • the transistor when the transistor is miniaturized and highly integrated, problems such as leakage current may occur due to the thinning of the gate insulator.
  • a high-k material for the insulator functioning as a gate insulator, the physical film thickness can be maintained and the voltage can be reduced.
  • a parasitic capacitance generated between wirings can be reduced by using a material having a low relative dielectric constant as an interlayer film. Therefore, the material may be selected according to the function of the insulator.
  • Insulators having a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, silicon and hafnium. There are oxynitrides having silicon and nitrides having silicon and hafnium.
  • Insulators having a low dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, Examples include silicon oxide or resin having holes.
  • silicon oxide and silicon oxynitride are thermally stable. Therefore, for example, by combining with a resin, a laminated structure having a thermally stable and low relative dielectric constant can be obtained.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • silicon oxide and silicon oxynitride can be combined with an insulator having a high relative dielectric constant to provide a thermally stable and high stacked dielectric structure.
  • a transistor including an oxide semiconductor can be stabilized in electrical characteristics of the transistor by being surrounded by an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen.
  • Examples of the insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium.
  • An insulator containing lanthanum, neodymium, hafnium, or tantalum may be used as a single layer or a stacked layer.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen
  • a metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.
  • the insulator 224 and the insulator 250 that function as part of the gate insulator are preferably insulators having an excess oxygen region.
  • insulators having an excess oxygen region For example, by using a structure in which silicon oxide or silicon oxynitride having an excess oxygen region is in contact with the oxide 230, oxygen vacancies in the oxide 230 can be compensated.
  • an insulator including one or more oxides of aluminum, hafnium, and gallium can be used.
  • a film with low crystallinity (or few crystals) or a film including an amorphous structure may be used as the insulator 222 and the insulator 252 .
  • An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating.
  • the insulator 224 and the insulator 224 are changed from the insulator 222 and the insulator 252 due to heat history in a later process. Excess oxygen is added to 250, and an excess oxygen region can be easily formed in the insulator 224 and the insulator 250.
  • a film having low crystallinity or a film including an amorphous structure has high flatness, and has an interface between the insulator 250 and the insulator 252, an interface between the insulator 220 and the insulator 222, and an insulator 222 and the insulator 224.
  • the interface with can be in a good state.
  • an insulation whose root mean square roughness (RMS) measured using an atomic force microscope is 0.4 nm or less, preferably 0.3 nm or less in a measurement range of 1 ⁇ m ⁇ 1 ⁇ m. Use your body.
  • RMS root mean square roughness
  • an insulator in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope may be used.
  • the insulator 222 is preferably formed using silicon oxide or silicon oxynitride which is stable against heat.
  • the gate insulator has a heat-stable film and a laminated structure with a high relative dielectric constant, so that the equivalent oxide thickness (EOT) of the gate insulator can be reduced while maintaining the physical film thickness. It becomes.
  • the on-state current can be improved without weakening the influence of the electric field from the gate electrode. Further, leakage current can be suppressed by maintaining the distance between the gate electrode and the region where the channel is formed depending on the physical thickness of the gate insulator.
  • the insulator 212, the insulator 216, the insulator 271 and the insulator 280 preferably include an insulator having a low relative dielectric constant.
  • the insulator 212, the insulator 216, the insulator 271, and the insulator 280 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, fluorine-added silicon oxide, carbon-added silicon oxide, carbon, and It is preferable to include silicon oxide to which nitrogen is added, silicon oxide having holes, or a resin.
  • the insulator 212, the insulator 216, the insulator 271, and the insulator 280 can be formed using silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, fluorine-added silicon oxide, carbon-added silicon oxide, carbon, and the like. It is preferable to have a stacked structure of silicon oxide to which nitrogen is added or silicon oxide having holes and a resin. Since silicon oxide and silicon oxynitride are thermally stable, a laminated structure having a low thermal stability and a low relative dielectric constant can be obtained by combining with silicon. Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen can be used.
  • the insulator 270 and the insulator 272 include aluminum oxide, hafnium oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, and tantalum oxide, and silicon nitride oxide. Alternatively, silicon nitride or the like may be used.
  • Conductor a metal selected from aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, etc.
  • a material containing one or more elements can be used.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
  • a plurality of conductive layers formed using the above materials may be stacked.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen may be combined.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed.
  • a stacked structure of a combination of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.
  • the conductor functioning as the gate electrode has a stacked structure in which the above-described material containing a metal element and the conductive material containing oxygen are combined. Is preferred.
  • a conductive material containing oxygen is preferably provided on the channel formation region side.
  • a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed is preferably used as the conductor functioning as a gate electrode.
  • the above-described conductive material containing a metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon were added Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • the conductor 260, the conductor 203, the conductor 205, and the conductor 240 aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium
  • a material containing one or more metal elements selected from zirconium, beryllium, indium, ruthenium, and the like can be used.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
  • a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used.
  • an oxide semiconductor a metal oxide functioning as an oxide semiconductor
  • the metal oxide applicable to the oxide 230 which concerns on this invention is demonstrated.
  • the oxide semiconductor preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. Further, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, or the like may be included.
  • the oxide semiconductor is an In-M-Zn oxide containing indium, the element M, and zinc is considered.
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • composition of metal oxide A structure of a CAC (Cloud-Aligned Composite) -OS that can be used for the transistor disclosed in one embodiment of the present invention is described below.
  • CAAC c-axis aligned crystal
  • CAC Cloud-aligned Composite
  • CAC-OS or CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material has a function as a semiconductor.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is an electron serving as carriers. It is a function that does not flow.
  • a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily.
  • CAC-OS or CAC-metal oxide by separating each function, both functions can be maximized.
  • the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material, respectively.
  • the conductive region may be observed with the periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
  • CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor include a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), and a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor).
  • OS amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and have a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons.
  • a lattice arrangement such as a pentagon and a heptagon in the distortion.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. This is probably because of this.
  • the CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked.
  • In layer a layer containing indium and oxygen
  • M, Zn elements M, zinc, and oxygen
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
  • the CAAC-OS is an oxide semiconductor with high crystallinity.
  • CAAC-OS cannot confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs.
  • the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the physical properties of the oxide semiconductor including a CAAC-OS are stable. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability.
  • the nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
  • the a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and different properties.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the oxide semiconductor for a transistor, a transistor with high field-effect mobility can be realized. In addition, a highly reliable transistor can be realized.
  • an oxide semiconductor with low carrier density is preferably used.
  • the impurity concentration in the oxide semiconductor film may be decreased and the defect level density may be decreased.
  • a low impurity concentration and a low density of defect states are referred to as high purity intrinsic or substantially high purity intrinsic.
  • the oxide semiconductor has a carrier density of less than 8 ⁇ 10 11 / cm 3 , preferably less than 1 ⁇ 10 11 / cm 3 , more preferably less than 1 ⁇ 10 10 / cm 3 , and 1 ⁇ 10 ⁇ 9 / What is necessary is just to be cm 3 or more.
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low density of defect states, and thus may have a low density of trap states.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high trap state density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metal, alkaline earth metal, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level is formed and carriers may be generated in some cases. Therefore, a transistor including an oxide semiconductor containing an alkali metal or an alkaline earth metal is likely to be normally on. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the oxide semiconductor.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • nitrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the nitrogen concentration in the oxide semiconductor is less than 5 ⁇ 10 19 atoms / cm 3 in SIMS, preferably 5 ⁇ 10 18. atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less, and even more preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases.
  • an oxygen vacancy may be formed in some cases.
  • electrons serving as carriers may be generated.
  • a part of hydrogen may be combined with oxygen bonded to a metal atom to generate electrons as carriers. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to be normally on. For this reason, it is preferable that hydrogen in the oxide semiconductor be reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , more preferably 5 ⁇ 10 18 atoms / cm 3. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • FIGS. 3 to 11 (A) in each drawing shows a top view. Moreover, (B) of each figure is sectional drawing corresponding to the site
  • a substrate (not shown) is prepared, and an insulator 210 is formed over the substrate.
  • the insulator 210 is formed by a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, or an ALD (ALD) method. (Atomic Layer Deposition) method or the like can be used.
  • the CVD method can be classified into a plasma CVD (PECVD: Plasma Enhanced CVD) method using plasma, a thermal CVD (TCVD: Thermal CVD) method using heat, a photo CVD (Photo CVD) method using light, and the like.
  • PECVD Plasma Enhanced CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal Organic CVD
  • the thermal CVD method is a film formation method that can reduce plasma damage to an object to be processed because plasma is not used.
  • a wiring, an electrode, an element (a transistor, a capacitor, or the like) included in the semiconductor device may be charged up by receiving electric charge from plasma.
  • a wiring, an electrode, an element, or the like included in the semiconductor device may be destroyed by the accumulated charge.
  • plasma damage during film formation does not occur, so that a film with few defects can be obtained.
  • the ALD method is also a film forming method that can reduce plasma damage to an object to be processed.
  • the ALD method does not cause plasma damage during film formation, a film with few defects can be obtained.
  • the CVD method and the ALD method are film forming methods in which a film is formed by a reaction on the surface of an object to be processed, unlike a film forming method in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively low film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method with a high film formation rate.
  • the composition of the obtained film can be controlled by the flow rate ratio of the source gases.
  • a film having an arbitrary composition can be formed depending on the flow rate ratio of the source gases.
  • a film whose composition is continuously changed can be formed by changing the flow rate ratio of the source gas while forming the film.
  • an aluminum oxide film is formed as the insulator 210 by a sputtering method.
  • the insulator 210 may have a multilayer structure.
  • an aluminum oxide film may be formed by a sputtering method, and an aluminum oxide film may be formed on the aluminum oxide by an ALD method.
  • a structure in which an aluminum oxide film is formed by an ALD method and an aluminum oxide film is formed on the aluminum oxide by a sputtering method may be employed.
  • the insulator 212 is formed over the insulator 210.
  • the insulator 212 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulator 212 by a CVD method.
  • openings are formed in the insulator 212 and the insulator 210.
  • the opening includes, for example, a groove and a slit. In some cases, the opening is pointed to a region where the opening is formed. Wet etching may be used to form the opening, but dry etching is preferable for fine processing.
  • the insulator 210 is preferably selected from an insulator that functions as an etching stopper film when the insulator 212 is etched to form a groove.
  • the insulator 210 may be a silicon nitride film, an aluminum oxide film, or a hafnium oxide film as an insulating film functioning as an etching stopper film.
  • a conductive film to be the conductor 203a is formed.
  • the conductive film preferably includes a conductor having a function of suppressing permeation of oxygen.
  • tantalum nitride, tungsten nitride, titanium nitride, or the like can be used.
  • a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, or molybdenum tungsten alloy can be used.
  • the conductor to be the conductor 203a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film to be the conductor 203a tantalum nitride or a film in which titanium nitride is stacked over tantalum nitride is formed by a sputtering method.
  • a metal nitride as the conductor 203a, it is possible to prevent the metal from diffusing out of the conductor 203a even when a metal that easily diffuses such as copper is used in the conductor 203b described later.
  • a conductive film to be the conductor 203b is formed over the conductive film to be the conductor 203a.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a low-resistance conductive material such as copper is formed as the conductive film to be the conductor 203b.
  • the conductive film to be the conductor 203a and part of the conductive film to be the conductor 203b are removed, and the insulator 212 is exposed.
  • the conductive film to be the conductor 203a and the conductive film to be the conductor 203b remain only in the opening.
  • the conductor 203 including the conductor 203a and the conductor 203b having a flat upper surface can be formed (see FIG. 3).
  • part of the insulator 212 may be removed by the CMP treatment.
  • the insulator 214 is formed over the insulator 212 and the conductor 203.
  • the insulator 214 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon nitride is formed as the insulator 214 by a CVD method. In this manner, by using an insulator that does not easily transmit copper, such as silicon nitride, as the insulator 214, even if a metal that easily diffuses such as copper is used for the conductor 203b, the metal is a layer above the insulator 214. Can be prevented from diffusing.
  • an insulator 216 is formed over the insulator 214.
  • the insulator 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulator 216 by a CVD method.
  • an opening reaching the conductor 203 is formed in the insulator 214 and the insulator 216.
  • Wet etching may be used to form the opening, but dry etching is preferable for fine processing.
  • the conductive film to be the conductor 205a desirably includes a conductive material having a function of suppressing permeation of oxygen.
  • a conductive material having a function of suppressing permeation of oxygen for example, tantalum nitride, tungsten nitride, titanium nitride, or the like can be used.
  • a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, or molybdenum tungsten alloy can be used.
  • the conductive film to be the conductor 205a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tantalum nitride is formed by a sputtering method as the conductive film to be the conductor 205a.
  • a conductive film to be the conductor 205b is formed over the conductive film to be the conductor 205a.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed by a CVD method as the conductive film to be the conductor 205b, and tungsten is formed by a CVD method on the titanium nitride.
  • the conductive film to be the conductor 205a and part of the conductive film to be the conductor 205b are removed, and the insulator 216 is exposed.
  • the conductive films to be the conductors 205a and 205b remain only in the openings. Accordingly, the conductor 205 including the conductor 205a and the conductor 205b having a flat upper surface can be formed (see FIG. 3). Note that part of the insulator 212 may be removed by the CMP treatment.
  • the insulator 220 is formed over the insulator 216 and the conductor 205.
  • the insulator 220 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulator 212 by a CVD method.
  • the insulator 222 is formed over the insulator 220.
  • an insulator containing one or both of aluminum and hafnium may be formed.
  • the insulator including one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • An insulator including one or both of aluminum and hafnium has a barrier property against oxygen, hydrogen, and water. Since the insulator 222 has a barrier property against hydrogen and water, hydrogen and water contained in a structure provided around the transistor 200 do not diffuse inside the transistor 200 and are contained in the oxide 230. Generation of oxygen vacancies can be suppressed.
  • the insulator 222 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 222 is a film having low crystallinity (or few crystals) or a film including an amorphous structure.
  • An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating.
  • excess oxygen is added from the insulator 222 to the insulator 224 due to a thermal history in a later process, and an excess oxygen region is added to the insulator 224.
  • a film having low crystallinity or a film including an amorphous structure has high flatness, and can have a favorable interface with another film to be stacked.
  • An oxide film with low crystallinity or an amorphous structure that can be used for the insulator 222 has a deposition temperature of R.D. T.A. (RT: Room temperature. Note that in this specification, RT is a temperature at which heating is not performed intentionally) 200 ° C. or lower and a sputtering method in a mixed atmosphere containing oxygen. Can be membrane.
  • the film forming temperature is preferably 130 ° C. or lower, more preferably R.P. T.A. It is good to do.
  • a mixed atmosphere containing oxygen a mixed gas of oxygen and a rare gas or a mixed gas of oxygen and nitrogen can be used.
  • the root mean square roughness (RMS) measured using an atomic force microscope by sputtering under a mixed atmosphere containing a film forming temperature of 200 ° C. or less and oxygen is 0.
  • An insulator 222 having a thickness of 4 nm or less, preferably 0.3 nm or less, can be formed.
  • the insulator 222 in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope can be formed.
  • the insulator 224 is formed over the insulator 222.
  • the insulator 224 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like (see FIG. 3).
  • silicon oxide is formed as the insulator 224 by a CVD method.
  • heat treatment is preferably performed.
  • the heat treatment may be performed at 250 ° C to 650 ° C, preferably 300 ° C to 500 ° C, more preferably 320 ° C to 450 ° C.
  • the heat treatment is performed in a nitrogen or inert gas atmosphere or an atmosphere containing an oxidizing gas at 10 ppm or more, 1% or more, or 10% or more.
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be performed in an atmosphere containing an oxidizing gas of 10 ppm or more, 1% or more, or 10% or more in order to supplement the desorbed oxygen after the heat treatment in a nitrogen or inert gas atmosphere. .
  • treatment is performed for 1 hour at a temperature of 400 ° C. in a nitrogen atmosphere after the insulator 224 is formed.
  • the heat treatment can also be performed at the timing after the insulator 220 is formed and after the insulator 222 is formed. Although the above heat treatment conditions can be used for the heat treatment, the heat treatment after the formation of the insulator 220 is preferably performed in an atmosphere containing nitrogen.
  • plasma treatment including oxygen may be performed in a reduced pressure state.
  • an apparatus having a power source that generates high-density plasma using microwaves for example.
  • a power source for applying RF (Radio Frequency) may be provided on the substrate side.
  • High-density oxygen radicals can be generated by using high-density plasma, and oxygen radicals generated by high-density plasma can be efficiently guided into the insulator 224 by applying RF to the substrate side.
  • plasma treatment containing oxygen may be performed to supplement oxygen that has been desorbed after performing plasma treatment containing an inert gas using this apparatus. Note that impurities such as hydrogen and water contained in the insulator 224 can be removed by appropriately selecting the conditions for the plasma treatment. In that case, heat treatment may not be performed.
  • an oxide film 230A to be the oxide 230a and an oxide film 230B to be the oxide 230b are sequentially formed over the insulator 224 (see FIG. 4).
  • the oxide film is preferably formed continuously without being exposed to the atmospheric environment. By forming the film without opening to the atmosphere, impurities or moisture from the atmospheric environment can be prevented from adhering to the oxide film 230A and the oxide film 230B, and the vicinity of the interface between the oxide film 230A and the oxide film 230B can be prevented. Can be kept clean.
  • the oxide film 230A and the oxide film 230B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230A and the oxide film 230B are formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas.
  • the proportion of oxygen contained in the sputtering gas By increasing the proportion of oxygen contained in the sputtering gas, excess oxygen in the oxide film to be formed can be increased.
  • the oxide film is formed by a sputtering method
  • the In-M-Zn oxide target can be used.
  • part of oxygen contained in the sputtering gas may be supplied to the insulator 224 when the oxide film 230A is formed. Therefore, the proportion of oxygen contained in the sputtering gas for the oxide film 230A may be 70% or more, preferably 80% or more, more preferably 100%.
  • an oxygen-deficient oxide semiconductor is formed when the proportion of oxygen contained in the sputtering gas is 1% to 30%, preferably 5% to 20%. It is formed.
  • a transistor including an oxygen-deficient oxide semiconductor can have a relatively high field-effect mobility.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • impurities such as hydrogen and water in the oxide film 230A and the oxide film 230B can be removed.
  • the processing is continuously performed for one hour at a temperature of 400 ° C. in an oxygen atmosphere.
  • the oxide film 230A and the oxide film 230B are processed into an island shape to form an oxide 230a and an oxide 230b (see FIG. 5).
  • the insulator 224 may be processed into an island shape.
  • the insulator 222 can be used as an etching stopper film.
  • the oxide 230 a and the oxide 230 b are formed so as to overlap with the conductor 205 at least partially.
  • the side surfaces of the oxide 230 a and the oxide 230 b are preferably substantially perpendicular to the upper surface of the insulator 222. Since the side surfaces of the oxide 230a and the oxide 230b are substantially perpendicular to the upper surface of the insulator 222, when the plurality of transistors 200 are provided, the area can be reduced and the density can be increased.
  • the angle formed between the side surfaces of the oxides 230a and 230b and the top surface of the insulator 222 may be an acute angle. In that case, the angle between the side surfaces of the oxides 230a and 230b and the top surface of the insulator 222 is preferably as large as possible.
  • a curved surface is provided between the side surfaces of the oxides 230a and 230b and the upper surface of the oxide 230a. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape).
  • the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm at the end of the oxide 230b.
  • the oxide film may be processed by a lithography method.
  • a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for fine processing.
  • a resist is exposed through a mask.
  • a resist mask is formed by removing or leaving the exposed region using a developer.
  • a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching through the resist mask.
  • the resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • an immersion technique may be used in which exposure is performed by filling a liquid (for example, water) between the substrate and the projection lens.
  • an electron beam or an ion beam may be used.
  • a mask is not necessary when an electron beam or an ion beam is used.
  • the resist mask can be removed by performing a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a hard mask made of an insulator or a conductor may be used instead of the resist mask.
  • an insulating film or a conductive film to be a hard mask material is formed over the oxide film 230B, a resist mask is formed thereon, and a hard mask having a desired shape is formed by etching the hard mask material. can do.
  • the etching of the oxide film 230A and the oxide film 230B may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after the oxide film is etched.
  • the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not always necessary to remove the hard mask.
  • a capacitively coupled plasma (CCP) etching apparatus having parallel plate electrodes can be used as the dry etching apparatus.
  • the capacitively coupled plasma etching apparatus having parallel plate electrodes may be configured to apply a high frequency power source to one of the parallel plate electrodes.
  • a configuration in which a plurality of different high-frequency power sources are applied to one electrode of the parallel plate electrode may be employed.
  • mold electrode may be sufficient.
  • mold electrode may be sufficient.
  • a dry etching apparatus having a high-density plasma source can be used.
  • an inductively coupled plasma (ICP) etching apparatus can be used as the dry etching apparatus having a high-density plasma source.
  • impurities due to an etching gas or the like may adhere or diffuse on the surface or inside of the oxide 230a, the oxide 230b, or the like.
  • impurities include fluorine and chlorine.
  • Cleaning is performed in order to remove the impurities and the like.
  • the cleaning method include wet cleaning using a cleaning liquid, plasma processing using plasma, cleaning by heat treatment, and the like, and the above cleaning may be performed in combination as appropriate.
  • a cleaning process may be performed using an aqueous solution obtained by diluting oxalic acid, phosphoric acid, hydrofluoric acid, or the like with carbonated water or pure water.
  • a cleaning process may be performed using an aqueous solution obtained by diluting oxalic acid, phosphoric acid, hydrofluoric acid, or the like with carbonated water or pure water.
  • ultrasonic cleaning using pure water or carbonated water may be performed.
  • ultrasonic cleaning using pure water or carbonated water is performed.
  • heat treatment may be performed.
  • the heat treatment conditions the above-described heat treatment conditions can be used.
  • the oxide film 230C, the insulating film 250A, the insulating film 252A, the conductive film 260A, the conductive film 260B, the insulating film 270A, and the insulating film 271A are sequentially formed over the insulator 224, the oxide 230a, and the oxide 230b. Film (see FIG. 6).
  • the oxide film 230C can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230C may be formed using a film formation method similar to that of the oxide film 230A or the oxide film 230B in accordance with characteristics required for the oxide 230c.
  • an insulating film 250A is formed.
  • the insulating film 250A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxynitride is preferably formed by a CVD method as the insulating film 250A.
  • the deposition temperature at the time of forming the insulating film 250A is preferably 350 ° C. or higher and lower than 450 ° C., particularly preferably around 400 ° C.
  • oxygen is excited by microwaves, high-density oxygen plasma is generated, and the insulating film 250A is exposed to the oxygen plasma, so that oxygen is supplied to the insulating film 250A, the oxide 230a, the oxide 230b, and the oxide film 230C. Can be introduced.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the moisture concentration and the hydrogen concentration of the insulating film 250A can be reduced.
  • an insulating film 252A is formed over the insulating film 250A.
  • an insulator containing one or both of aluminum and hafnium may be formed.
  • the insulator including one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • An insulator including one or both of aluminum and hafnium has a barrier property against oxygen, hydrogen, and water. Since the insulator 252A has a barrier property against hydrogen and water, hydrogen and water contained in the structure provided around the transistor 200 do not diffuse into the transistor 200 and are contained in the oxide 230. Generation of oxygen vacancies can be suppressed.
  • the insulating film 252A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulating film 252A is a film having low crystallinity (or few crystals) or a film including an amorphous structure.
  • An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating.
  • excess oxygen is added from the insulating film 252A to the insulating film 250A due to a thermal history in a later process, and an excess oxygen region is added to the insulating film 250A.
  • a film having low crystallinity or a film including an amorphous structure has high flatness, and can have a favorable interface with another film to be stacked.
  • An oxide film with low crystallinity or an amorphous structure that can be used for the insulating film 252A has a deposition temperature of R.P.
  • a film can be formed by a sputtering method in a mixed atmosphere containing T and 200 ° C. and oxygen.
  • the film forming temperature is preferably 130 ° C. or lower, more preferably R.P. T (RT is a temperature that is not intentionally heated).
  • a mixed atmosphere containing oxygen a mixed gas of oxygen and a rare gas or a mixed gas of oxygen and nitrogen can be used.
  • the root mean square roughness (RMS) measured using an atomic force microscope by sputtering under a mixed atmosphere containing a film forming temperature of 200 ° C. or less and oxygen is 0.
  • An insulator 252A with a thickness of 4 nm or less, preferably 0.3 nm or less, can be formed.
  • an insulating film 252A in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope can be formed.
  • oxygen can be added to the insulating film 250A and an excess oxygen region can be formed in the insulating film 250A. .
  • oxygen vacancies can be compensated.
  • the insulating film 252A is formed by a sputtering method
  • ions and sputtered particles exist between the target and the substrate.
  • the target is connected to a power source and is supplied with the potential E0.
  • the substrate is given a potential E1 such as a ground potential.
  • the substrate may be electrically floating.
  • the magnitude relationship between the potentials is E2> E1> E0.
  • Ions in the plasma are accelerated by the potential difference E2-E0 and collide with the target, whereby particles are ejected from the target.
  • the sputtered particles adhere to and deposit on the film formation surface to form a film.
  • some ions recoil by the target pass through a film formed as recoil ions, and may be taken into the insulating film 250A and the insulator 224 in contact with the deposition surface.
  • ions in the plasma are accelerated by the potential difference E2-E1, and impact the film formation surface. At this time, some ions reach the inside of the insulating film 250 ⁇ / b> A and the insulator 224.
  • An excess oxygen region can be formed by introducing excess oxygen into the insulating film 250A and the insulator 224. Excess oxygen in the insulating film 250A and the insulator 224 is supplied to the oxide 230, so that oxygen vacancies in the oxide 230 can be filled.
  • oxygen can be introduced into the insulating film 250A and the insulator 224 while the insulating film 252A is formed.
  • excess oxygen introduced into the insulator 250 can be effectively contained.
  • a conductive film 260A and a conductive film 260B are formed.
  • the conductive film 260A and the conductive film 260B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed by a CVD method as the conductive film 260A
  • tungsten is formed by a CVD method as the conductive film 260B.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Note that heat treatment may not be performed.
  • excess oxygen is added from the insulator 252A to the insulator 250A and the insulator 224, so that an excess oxygen region can be easily formed in the insulator 250A and the insulator 224.
  • the insulating film 270A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Since the insulating film 270A functions as a barrier film, an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen is used. For example, aluminum oxide or hafnium oxide is preferably used. Thereby, oxidation of the conductor 260 can be prevented. In addition, impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260 and the insulator 250. In this embodiment, aluminum oxide is formed as the insulating film 270A by an ALD method.
  • the insulating film 271A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the thickness of the insulating film 271A is preferably larger than the thickness of the insulating film 272A to be formed in a later step. Accordingly, when the insulator 272 is formed in a later step, the insulator 271 can be easily left on the conductor 260.
  • silicon oxide is formed by a CVD method as the insulating film 271A.
  • the insulating film 271A is etched to form the insulator 271.
  • the insulator 271 functions as a hard mask.
  • the side surface of the insulator 250, the side surface of the conductor 260 a, the side surface of the conductor 260 b, and the side surface of the insulator 270 can be formed substantially perpendicular to the substrate.
  • the insulating film 250A, the insulating film 252A, the conductive film 260A, the conductive film 260B, and the insulating film 270A are etched to form an oxide 230 (oxide 230a, oxide 230b, and oxide 230c).
  • 250, the insulator 252, the conductor 260 (the conductor 260a and the conductor 260b), and the insulator 270 are formed (see FIG. 7).
  • the insulator 250, the insulator 252, the conductor 260a, the conductor 260b, the insulator 270, and the insulator 271 are formed so that at least a part thereof overlaps with the conductor 205 and the oxide 230.
  • the side surface of the insulator 250, the side surface of the insulator 252, the side surface of the conductor 260a, the side surface of the conductor 260b, and the side surface of the insulator 270 are preferably in the same plane.
  • the same surface shared by the side surface of the insulator 250, the side surface of the insulator 252, the side surface of the conductor 260 a, the side surface of the conductor 260 b, and the side surface of the insulator 270 is preferably substantially perpendicular to the substrate.
  • a cross-sectional shape of the insulator 250, the insulator 252, the conductor 260a, the conductor 260b, and the side surfaces of the insulator 270 and the top surface of the oxide 230 may be acute. In that case, the angle formed by the side surfaces of the insulator 250, the conductor 260a, the conductor 260b, and the insulator 270 and the upper surface of the oxide 230 is preferably as large as possible.
  • the post-process may be performed without removing the hard mask (insulator 271) after the processing.
  • the insulator 271 can function as a hard mask even in the addition of a dopant performed in a later step.
  • the above etching may etch an upper portion of a region of the oxide 230b that does not overlap with the insulator 250.
  • the thickness of the region of the oxide 230b that overlaps with the insulator 250 may be larger than the thickness of the region that does not overlap with the insulator 250.
  • an insulating film 272A is formed to cover the oxide 230c, the insulator 250, the insulator 252, the conductor 260, the insulator 270, and the insulator 271 (see FIG. 8).
  • the insulating film 272A is preferably formed by an ALD method with excellent coverage.
  • the insulating film 272 ⁇ / b> A having a uniform thickness can be formed on the side surfaces of the insulator 250, the conductor 260, and the insulator 270 even in the step portion formed by the conductor 260 and the like. it can.
  • anisotropic etching is performed on the insulating film 272A to form the insulator 272 in contact with the side surfaces of the insulator 250, the conductor 260, and the insulator 270 (see FIG. 9).
  • anisotropic etching process it is preferable to perform a dry etching process.
  • the insulator 272 can be formed in a self-aligned manner by removing the insulating film formed on the surface substantially parallel to the substrate surface.
  • the insulator 270 can remain even if the insulating film 272A over the insulator 270 is removed.
  • the height of the structure including the insulator 250, the conductor 260, the insulator 270, and the insulator 271 is higher than the height of the oxide 230a and the oxide 230b, whereby the oxide 230a and the oxide 230 The insulating film 272A on the side surface of 230b can be removed.
  • the time for removing the insulating film 272A formed on the side surfaces of the oxide 230a and the oxide 230b is shortened, which makes it easier.
  • An insulator 272 can be formed.
  • the insulating film 272 ⁇ / b> A may remain on the side surface of the oxide 230. In that case, the film property of an interlayer film formed in a later process can be improved. In addition, since the insulator remains on the side surface of the oxide 230, impurities such as water or hydrogen mixed in the oxide 230 can be reduced, and oxygen can be prevented from being outwardly diffused from the oxide 230. is there.
  • the structure in which the insulating film 272 ⁇ / b> A remains is formed in contact with the side surface of the oxide 230, an insulator 274 containing an element serving as an impurity is formed in a later step, and a region in the oxide 230 is formed.
  • the interface region between the insulator 224 and the oxide 230 is not reduced in resistance, and thus generation of leakage current can be suppressed.
  • indium is added to the oxide 230 so that the oxide 230a has a concentration peak, generation of a leakage current through the oxide 230a can be suppressed.
  • the dopant is added to the oxide 230 through the insulating film 272A.
  • a region 231, a region 232, and a region 234 are formed in the oxide 230.
  • the region 231 and the region 232 are regions obtained by adding metal atoms such as indium and gallium or impurities to the metal oxide provided as the oxide 230. Note that the region 231 has higher conductivity than at least the oxide 230b in the region 234.
  • a metal element such as indium or gallium and a dopant that is at least one of the impurities may be added.
  • the dopant an element that forms oxygen vacancies described above, an element that is trapped by oxygen vacancies, or the like may be used.
  • the element include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and a rare gas.
  • rare gas elements include helium, neon, argon, krypton, and xenon.
  • a film containing a dopant may be formed as the insulator 274 in contact with the region 231.
  • an insulating film containing one or more of the above elements is preferably used (see FIG. 10).
  • the insulator 274 including an element that becomes an impurity such as nitrogen is preferably formed in contact with the oxide 230.
  • An insulator containing an element that becomes an impurity such as nitrogen may extract and absorb oxygen contained in the oxide 230 in some cases.
  • oxygen vacancies are generated in the region 231 and the region 232.
  • the oxygen vacancies capture an impurity element such as hydrogen or nitrogen contained in the film formation atmosphere of the insulator 274 by film formation of the insulator 274 or heat treatment after the film formation, so that the regions 231 and 232 have low resistance. Turn into.
  • oxygen vacancies are formed by the added impurity element centering on a region in contact with the insulator 274, and the impurity element further enters the oxygen vacancies, whereby the carrier density is increased and the resistance is reduced. Is done. At that time, it is considered that the impurity is diffused also in the region 232 which is not in contact with the insulator 274, so that the resistance is reduced.
  • the source region and the drain region can be formed in a self-aligned manner by forming the insulator 274. Therefore, a miniaturized or highly integrated semiconductor device can also be manufactured with high yield.
  • the top surfaces and side surfaces of the conductor 260, the insulator 252 and the insulator 250 are covered with the insulator 270 and the insulator 272, so that an impurity element such as nitrogen or hydrogen can be contained in the conductor 260 and the insulator 252. Further, it can be prevented from being mixed into the insulator 250. Thus, an impurity element such as nitrogen or hydrogen can be prevented from entering the region 234 functioning as a channel formation region of the transistor 200 through the conductor 260, the insulator 252, and the insulator 250. Therefore, the transistor 200 having favorable electrical characteristics can be provided.
  • silicon nitride, silicon nitride oxide, or silicon oxynitride formed by a CVD method can be used as the insulator 274.
  • silicon nitride oxide is used as the insulator 274.
  • the region 231a and the region 231b preferably have a higher concentration of at least one of hydrogen and nitrogen than the region 234.
  • the concentration of hydrogen or nitrogen may be measured using secondary ion mass spectrometry (SIMS) or the like.
  • SIMS secondary ion mass spectrometry
  • the concentration of hydrogen or nitrogen in the region 234 is set near the center of the region overlapping with the insulator 250 of the oxide 230b (for example, the distance from both side surfaces in the channel length direction of the region overlapping with the insulator 250 of the oxide 230b).
  • the concentration of hydrogen or nitrogen in a portion where the two are approximately equal may be measured.
  • the region 231, the region 232, and the region 234 are formed using the reduction in resistance of the oxide 230 by forming the insulator 274, but this embodiment is not limited to this. .
  • dopant addition methods include ion implantation method in which ionized source gas is added by mass separation, ion doping method in which ionized source gas is added without mass separation, plasma immersion ion implantation method, etc. Can be used.
  • mass separation the ionic species to be added and the concentration thereof can be strictly controlled.
  • mass separation is not performed, high-concentration ions can be added in a short time.
  • an ion doping method in which atomic or molecular clusters are generated and ionized may be used. Note that the dopant may be referred to as an ion, a donor, an acceptor, an impurity, an element, or the like.
  • the dopant may be added by plasma treatment.
  • plasma treatment can be performed using a plasma CVD apparatus, a dry etching apparatus, or an ashing apparatus, and a dopant can be added to the region 231 and the region 232.
  • the carrier density can be increased and the resistance can be reduced by increasing the content of the above-described elements that form oxygen vacancies and the elements that are trapped by oxygen vacancies.
  • a metal element such as indium is added to increase the content of metal atoms such as indium in the oxide 230, whereby electron mobility can be increased and resistance can be reduced.
  • the atomic ratio of indium to the element M in at least the region 231 is larger than the atomic ratio of indium to the element M in the region 234.
  • the region 232 by increasing the gallium content, diffusion of impurities such as hydrogen added to the region 231 can be suppressed, so that unintended reduction of the execution channel length can be suppressed.
  • the oxide 230 may be subjected to plasma treatment using the insulator 250, the insulator 252, the conductor 260, the insulator 272, the insulator 270, and the insulator 271 as a mask.
  • the plasma treatment may be performed in an atmosphere containing an element that forms oxygen vacancies or an element trapped by oxygen vacancies.
  • plasma treatment may be performed using argon gas and nitrogen gas.
  • the dopant may be added by an ion doping method through the insulating film 272A.
  • the insulating film 272A is provided to cover the oxide 230, the insulator 250, the conductor 260, and the insulator 270. Therefore, in the direction perpendicular to the top surface of the oxide 230, the thickness of the insulating film 272A differs in the periphery of the side surfaces of the insulator 250, the conductor 260, and the insulator 270 and in other regions.
  • the thickness of the insulating film 272A is larger in the vicinity of the side surfaces of the insulator 250, the conductor 260, and the insulator 270 than in other regions. That is, by adding a dopant through the insulating film 272A, the region 231 and the region 232 can be provided in a self-aligned manner even in a transistor whose channel length is reduced to about 10 nm to 30 nm.
  • the region 232 may be formed by diffusion of the dopant in the region 231 in a process such as a heat treatment performed in a later process.
  • the region 232 since the region 232 is provided, a high-resistance region is not formed between the region 231 functioning as a source region and a drain region and the region 234 where a channel is formed; thus, on-state current and mobility of the transistor Can be increased.
  • the region 232 since the region 232 includes the source region and the drain region and the gate do not overlap with each other in the channel length direction, formation of unnecessary capacitance can be suppressed.
  • leakage current at the time of non-conduction can be reduced.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the added dopant diffuses into the region 232 of the oxide 230, so that the on-state current can be increased.
  • the insulator 280 is formed over the insulator 274.
  • the insulator 280 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a spin coating method, a dip method, a droplet discharge method (such as an ink jet method), a printing method (such as screen printing or offset printing), a doctor knife method, a roll coater method, or a curtain coater method can be used.
  • silicon oxynitride is used as the insulating film.
  • the insulator 280 is preferably formed so that the upper surface has flatness.
  • the top surface of the insulator 280 may have flatness immediately after being formed as an insulating film to be the insulator 280.
  • the insulator 280 may have flatness by removing the insulator and the like from the upper surface so as to be parallel to a reference surface such as the back surface of the substrate after film formation. Such a process is called a flattening process.
  • the planarization process include a CMP process and a dry etching process. In this embodiment, a CMP process is used as the planarization process. Note that the top surface of the insulator 280 is not necessarily flat.
  • an opening reaching the region 231a of the oxide 230 and an opening reaching the region 231b of the oxide 230 are formed in the insulator 280 and the insulator 274.
  • the opening may be formed using a lithography method. Note that the opening is formed so that the side surface of the oxide 230 is exposed in the opening reaching the oxide 230 so that the conductor 240a and the conductor 240b are provided in contact with the side surface of the oxide 230.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a semiconductor device including the transistor 200 can be manufactured.
  • the transistor 200 can be manufactured by using the method for manufacturing the semiconductor device of this embodiment illustrated in FIGS.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device with low off-state current can be provided.
  • a transistor with high on-state current can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device with reduced power consumption can be provided.
  • a highly productive semiconductor device can be provided.
  • FIG. 12A, 13A, and 14A are top views of a semiconductor device including a transistor 200.
  • FIG. 12B, 12C, 13B, 13C, 14B, and 14C are cross-sectional views of the semiconductor device.
  • FIG. 12B, FIG. 13B, or FIG. 14B is shown by a one-dot chain line in FIG. 12A, FIG. 13A, or FIG. 2 is a cross-sectional view of a portion, and is also a cross-sectional view of the transistor 200 in a channel length direction.
  • FIG. 12C, FIG. 13C, or FIG. 14C is the portion indicated by the one-dot chain line A3-A4 in FIG. 12A, FIG. 13A, or FIG. 2 is also a cross-sectional view of the transistor 200 in the channel width direction.
  • FIGS. 12A, 13A, and 14A some elements are omitted for clarity.
  • the structure of the transistor 200 will be described with reference to FIGS. 12, 13A, and 14A, respectively.
  • the material described in detail in ⁇ Structure example of semiconductor device> can be used as the constituent material of the transistor 200.
  • a transistor 200 illustrated in FIG. 12 is different from the semiconductor device illustrated in ⁇ Structure Example of Semiconductor Device> in that it includes at least an insulator 273.
  • an insulator 273 is provided between the insulator 224, the oxide 230, the insulator 272, and the insulator 271 and the insulator 274.
  • the thickness and material of the insulator 273 may be appropriately designed depending on the required transistor performance.
  • the insulator 273 an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen may be used.
  • impurities such as water or hydrogen and oxygen
  • aluminum oxide or hafnium oxide is preferably used. Accordingly, the thickness of the insulator 273 can be reduced. Specifically, the thickness of the insulator 273 is preferably 0.5 nm or more and 1.2 nm or less.
  • the insulator 273 is preferably formed by an ALD method. By using the ALD method, the insulator 273 with high film property can be formed.
  • an insulator having a function of suppressing transmission of impurities such as water or hydrogen and oxygen and covering the side surface of the insulator 272 enhances the barrier property of the insulator 272. be able to. Accordingly, impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260, the insulator 250, and the insulator 252. Therefore, the insulator 273 functions as a side barrier that protects the side surfaces of the gate electrode and the gate insulating film.
  • a transistor 200 illustrated in FIG. 13 is different from the semiconductor device illustrated in ⁇ Structure Example of Semiconductor Device> at least in shape of an oxide 230c.
  • the oxide 230c is provided to cover the oxide 230a and the oxide 230b. That is, the oxide 230b is surrounded by the oxide 230a and the oxide 230c. With this structure, entry of impurities into the oxide 230b in which a channel is formed in the region 234 can be suppressed.
  • the side surface of the oxide 230a and the side surface of the oxide 230b are preferably provided so as to be on the same plane.
  • the oxide 230c is preferably formed so as to cover the oxide 230a and the oxide 230b.
  • the oxide 230c is formed in contact with a side surface of the oxide 230a, a top surface and a side surface of the oxide 230b, and a part of the top surface of the insulator 224.
  • the side surfaces of the oxide 230c are located outside the side surfaces of the oxide 230a and the oxide 230b.
  • a transistor 200 illustrated in FIGS. 14A to 14C has a plurality of channel formation regions with respect to one gate electrode, which is different from the structure of the transistor 200 illustrated in FIGS. Since the transistor 200 includes a plurality of channel formation regions, a large on-state current can be obtained. In addition, since each channel formation region has a structure covered with a gate electrode, that is, an s-channel structure, a large on-state current can be obtained in each channel formation region.
  • FIG. 14 shows an example having three channel formation regions, the number of channel formation regions is not limited to this. For other structures, the structure of the transistor 200 illustrated in FIGS. 1A, 1B, and 1C is referred to.
  • ⁇ Configuration example of semiconductor device> 15A, 15B, and 15C are a top view and a cross-sectional view of the transistor 200, the capacitor 100, and the periphery of the transistor 200 according to one embodiment of the present invention. Note that in this specification, a memory device including one capacitor and at least one transistor is referred to as a cell.
  • FIG. 15A is a top view of a cell 600 including the transistor 200 and the capacitor 100.
  • 15B and 15C are cross-sectional views of the cell 600.
  • FIG. 15B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 15A and also a cross-sectional view in the channel length direction of the transistor 200.
  • FIG. 15C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 15A and is a cross-sectional view in the channel width direction of the transistor 200.
  • some elements are omitted for clarity.
  • the semiconductor device of one embodiment of the present invention includes the transistor 200, the capacitor 100, and the insulator 280 functioning as an interlayer film.
  • a conductor 240 (a conductor 240a, a conductor 240b, a conductor 240c, and a conductor 240d) that is electrically connected to the transistor 200 and functions as a plug is included.
  • the transistor 200 and the capacitor 100 are provided in the same layer, so that part of the structure included in the transistor 200 is used in combination with part of the structure included in the capacitor 100. be able to. That is, part of the structure of the transistor 200 may function as part of the structure of the capacitor 100.
  • the capacitor 200 when the capacitor 200 is partially or entirely overlapped with the transistor 200, the total area of the projected area of the transistor 200 and the projected area of the capacitor 100 can be reduced.
  • a conductor 240b that functions as a plug or a wiring electrically connected to the transistor 200 and a conductor 207 (the conductor 207a and the conductor 207b) are provided below the region where the capacitor 100 and the transistor 200 overlap with each other.
  • the cell 600 can be easily miniaturized or highly integrated.
  • the conductor 207 can be formed in the same process as the conductor 205 which is the structure of the transistor 200, the process can be shortened.
  • the layout of the transistor 200 and the capacitor 100 can be designed as appropriate depending on the capacitance value required for the capacitor 100.
  • the area of the capacitor 100 is determined by the area where the region 231 b of the oxide 230 overlaps with the conductor 120 with the insulator 130 interposed therebetween. Therefore, when the capacitance value necessary for the cell 600 cannot be obtained with the capacitor 100 illustrated in FIGS. 15A and 15B, the width in the A3-A4 direction in the region 231b of the oxide 230a and the oxide 230b Can be made larger than the width in the A3-A4 direction in the region 234 of the oxide 230a and the oxide 230b, whereby the capacitance value can be increased.
  • the length in the A1-A2 direction in the region 231b of the oxide 230 may be larger than the length in the A1-A2 direction in the conductor 120.
  • the conductor 240b can be embedded in the insulator 280. That is, the oxide 230 region 231b and the conductor 240b may be provided in contact with each other in a region where the oxide 230 region 231b and the conductor 120 do not overlap. Therefore, the process can be shortened by forming the conductor 240a, the conductor 240b, and the conductor 240c in the same process.
  • the transistor 200 is formed in the same process as the capacitor 100. Therefore, since the process can be shortened, productivity can be improved.
  • Transistor 200 As the transistor 200, the transistor structure included in the semiconductor device described in the above embodiment may be used.
  • the transistor 200 illustrated in FIGS. 15A and 15B is an example and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • the capacitor 100 has a structure in common with the transistor 200.
  • the region 231 b provided in the oxide 230 of the transistor 200 is described as an example of the capacitor 100 that functions as one of the electrodes of the capacitor 100.
  • the capacitor 100 includes a region 231b of the oxide 230, the insulator 130 over the region 231b, and the conductor 120 over the insulator 130.
  • the conductor 120 is preferably provided over the insulator 130 so that at least a part thereof overlaps with the region 231 b of the oxide 230.
  • the region 231 b of the oxide 230 functions as one of the electrodes of the capacitor 100, and the conductor 120 functions as the other of the electrodes of the capacitor 100.
  • the insulator 130 functions as a dielectric of the capacitor element 100.
  • the region 231b of the oxide 230 has a reduced resistance and is a conductive oxide. Therefore, it can function as one of the electrodes of the capacitor 100.
  • the insulator 130 may be provided by processing the insulator 274.
  • the insulator 130 (the insulator 274) may remain in contact with the transistor 200 and the insulator 224.
  • the insulator 274 may not be provided and the insulator 130 may be separately provided as a dielectric.
  • the insulator 130 for example, aluminum oxide or silicon oxynitride may be used in a single layer or a stacked layer.
  • the conductor 120 is preferably formed using a conductive material mainly containing tungsten, copper, or aluminum. Although not shown, the conductor 120 may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
  • the cell array can be formed by arranging the transistor 200 including the transistor 200 and the capacitor 100 illustrated in FIG. 15 in a matrix or a matrix.
  • FIG. 16A is a circuit diagram illustrating an embodiment in which the cells 600 illustrated in FIG. 15 are arranged in a matrix.
  • one of a source and a drain of a transistor included in a cell 600 adjacent in the row direction is electrically connected to a common BL (BL01, BL02, BL03).
  • the BL is also electrically connected to one of a source and a drain of a transistor included in a cell arranged in the column direction.
  • the first gates of the transistors included in the cells 600 adjacent in the row direction are electrically connected to different WLs (WL01 to WL06).
  • the transistor included in each cell 600 may be provided with the second gate BG.
  • the threshold value of the transistor can be controlled by the potential applied to BG.
  • the first electrode of the capacitor included in the cell 600 is electrically connected to the other of the source and the drain of the transistor. At this time, the first electrode of the capacitor may be formed of a part of a structure forming the transistor.
  • the second electrode of the capacitor included in the cell 600 is electrically connected to the power supply line PL.
  • FIG. 16B illustrates a circuit 610 including the cell 600a electrically connected to WL04 and BL02 and the cell 600b electrically connected to WL03 and BL02 as part of the row in FIG. It is sectional drawing extracted.
  • FIG. 16B is a cross-sectional view of the cell 600a and the cell 600b.
  • the cell 600a includes a transistor 200a and a capacitor 100a.
  • the cell 600b includes a transistor 200b and a capacitor 100b.
  • One of a source and a drain of the transistor 200a and one of a source and a drain of the transistor 200b are both electrically connected to BL02.
  • the occupied area of the cell array can be further reduced.
  • FIG. 17A is a circuit diagram showing a mode different from FIG. 16A in a circuit in which the cells 600 shown in FIG. 15 are arranged in a matrix.
  • a first gate of a transistor included in the cell 600 arranged in the row direction is electrically connected to a common WL (WL01, WL02, WL03).
  • one of a source and a drain of a transistor included in a cell arranged in the column direction is electrically connected to a common BL (BL01 to BL06).
  • the transistor included in each cell 600 may be provided with the second gate BG.
  • the threshold value of the transistor can be controlled by the potential applied to BG.
  • the first electrode of the capacitor included in the cell 600 is electrically connected to the other of the source and the drain of the transistor. At this time, the first electrode of the capacitor may be formed of a part of a structure forming the transistor. In addition, the second electrode of the capacitor included in the cell 600 is electrically connected to the PL.
  • FIG. 17B illustrates a circuit 610 including the cell 600a electrically connected to WL02 and BL03 and the cell 600b electrically connected to WL02 and BL04 as part of the row in FIG. 17A. It is sectional drawing extracted.
  • FIG. 17B is a cross-sectional view of the cell 600a and the cell 600b.
  • the cell 600a includes a transistor 200a and a capacitor 100a.
  • the cell 600b includes a transistor 200b and a capacitor 100b.
  • the memory device illustrated in FIGS. 18 and 19 includes the transistor 300, the transistor 200, and the capacitor 100.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor. Since the transistor 200 has a low off-state current, stored data can be held for a long time by using the transistor 200 for a memory device. That is, the refresh operation is not required or the frequency of the refresh operation is extremely low, so that the power consumption of the storage device can be sufficiently reduced.
  • the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300.
  • the wiring 1003 is electrically connected to one of a source and a drain of the transistor 200, the wiring 1004 is electrically connected to the first gate of the transistor 200, and the wiring 1006 is electrically connected to the second gate of the transistor 200. It is connected to the.
  • the gate of the transistor 300 and the other of the source and the drain of the transistor 200 are electrically connected to one of the electrodes of the capacitor 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitor 100. .
  • the memory device illustrated in FIG. 18 and FIG. 19 has a characteristic that the potential of the gate of the transistor 300 can be held, so that information can be written, held, and read as described below.
  • the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned on, so that the transistor 200 is turned on. Accordingly, the potential of the wiring 1003 is applied to the node FG that is electrically connected to one of the gate of the transistor 300 and the electrode of the capacitor 100. That is, predetermined charge is given to the gate of the transistor 300 (writing).
  • predetermined charge is given to the gate of the transistor 300 (writing).
  • the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned off and the transistor 200 is turned off, so that charge is held at the node FG (holding).
  • the wiring 1002 takes a potential corresponding to the amount of charge held in the node FG.
  • the apparent threshold voltage V th_H when the gate of the transistor 300 is supplied with a high level charge is the low level charge applied to the gate of the transistor 300.
  • the apparent threshold voltage refers to the potential of the wiring 1005 necessary for bringing the transistor 300 into a “conductive state”.
  • the charge given to the node FG can be determined. For example, in writing, when a high-level charge is applied to the node FG, the transistor 300 is in a “conducting state” when the potential of the wiring 1005 is V 0 (> V th_H ). On the other hand, in the case where a low-level charge is supplied to the node FG, the transistor 300 remains in a “non-conduction state” even when the potential of the wiring 1005 becomes V 0 ( ⁇ V th_L ). Therefore, by determining the potential of the wiring 1002, information held in the node FG can be read.
  • the memory device of one embodiment of the present invention includes a transistor 300, a transistor 200, and a capacitor 100 as illustrated in FIG.
  • the transistor 200 is provided above the transistor 300
  • the capacitor 100 is provided above the transistor 300 and the transistor 200.
  • the transistor 300 includes a conductor 316, an insulator 315, a semiconductor region 313 including a part of the substrate 311, a low resistance region 314a which functions as a source region or a drain region, and a low resistance region 314b. Have.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • the region in which the channel of the semiconductor region 313 is formed, the region in the vicinity thereof, the low resistance region 314a that serves as the source region or the drain region, the low resistance region 314b, and the like preferably include a semiconductor such as a silicon-based semiconductor. It preferably contains crystalline silicon. Alternatively, a material containing Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like may be used. A structure using silicon in which effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be employed. Alternatively, the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs, GaAlAs, or the like.
  • HEMT High Electron Mobility Transistor
  • the low-resistance region 314a and the low-resistance region 314b provide an n-type conductivity element such as arsenic or phosphorus, or a p-type conductivity property such as boron, in addition to the semiconductor material used for the semiconductor region 313. Containing elements.
  • the conductor 316 functioning as a gate electrode includes a semiconductor material such as silicon, a metal material, an alloy containing an element imparting n-type conductivity such as arsenic or phosphorus, or an element imparting p-type conductivity such as boron.
  • a conductive material such as a material or a metal oxide material can be used.
  • the threshold voltage can be adjusted by changing the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embeddability, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and tungsten is particularly preferable from the viewpoint of heat resistance.
  • transistor 300 illustrated in FIGS. 18A and 18B is an example, and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • An insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked so as to cover the transistor 300.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, or the like is used. That's fine.
  • the insulator 322 may function as a planarization film for planarizing a step generated by the transistor 300 or the like provided thereunder.
  • the upper surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to improve planarity.
  • CMP chemical mechanical polishing
  • the insulator 324 is preferably formed using a film having a barrier property so that hydrogen and impurities do not diffuse from the substrate 311 or the transistor 300 to a region where the transistor 200 is provided.
  • a film having a barrier property against hydrogen for example, silicon nitride formed by a CVD method can be used.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element including an oxide semiconductor such as the transistor 200, characteristics of the semiconductor element may be reduced. Therefore, a film for suppressing hydrogen diffusion is preferably used between the transistor 200 and the transistor 300.
  • the film that suppresses the diffusion of hydrogen is a film with a small amount of hydrogen desorption.
  • the amount of desorption of hydrogen can be analyzed using, for example, a temperature programmed desorption gas analysis method (TDS).
  • TDS temperature programmed desorption gas analysis method
  • the amount of hydrogen desorbed from the insulator 324 is calculated by converting the amount of desorption converted to hydrogen atoms per area of the insulator 324 in the range of the surface temperature of the film from 50 ° C. to 500 ° C. in TDS analysis. 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 preferably has a lower dielectric constant than the insulator 324.
  • the dielectric constant of the insulator 326 is preferably less than 4, and more preferably less than 3.
  • the relative dielectric constant of the insulator 326 is preferably equal to or less than 0.7 times, more preferably equal to or less than 0.6 times that of the insulator 324.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a conductor 328 that is electrically connected to the capacitor 100 or the transistor 200, the conductor 330, and the like.
  • the conductor 328 and the conductor 330 function as plugs or wirings.
  • a conductor having a function as a plug or a wiring may be given the same reference numeral by collecting a plurality of structures.
  • the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or a stacked layer.
  • a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten.
  • a low-resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low-resistance conductive material.
  • a wiring layer may be provided over the insulator 326 and the conductor 330.
  • an insulator 350, an insulator 352, and an insulator 354 are sequentially stacked.
  • a conductor 356 is formed in the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 functions as a plug or a wiring. Note that the conductor 356 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • an insulator having a barrier property against hydrogen is preferably used as in the case of the insulator 324.
  • the conductor 356 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 350 having a barrier property against hydrogen.
  • tantalum nitride may be used as the conductor having a barrier property against hydrogen. Further, by stacking tantalum nitride and tungsten having high conductivity, diffusion of hydrogen from the transistor 300 can be suppressed while maintaining conductivity as a wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen be in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 354 and the conductor 356.
  • an insulator 360, an insulator 362, and an insulator 364 are sequentially stacked.
  • a conductor 366 is formed in the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 functions as a plug or a wiring. Note that the conductor 366 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 360 is preferably an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 366 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in an opening of the insulator 360 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 364 and the conductor 366.
  • an insulator 370, an insulator 372, and an insulator 374 are sequentially stacked.
  • a conductor 376 is formed in the insulator 370, the insulator 372, and the insulator 374.
  • the conductor 376 functions as a plug or a wiring. Note that the conductor 376 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • an insulator having a barrier property against hydrogen is preferably used as the insulator 370.
  • the conductor 376 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 370 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 374 and the conductor 376.
  • an insulator 380, an insulator 382, and an insulator 384 are sequentially stacked.
  • a conductor 386 is formed over the insulator 380, the insulator 382, and the insulator 384.
  • the conductor 386 functions as a plug or a wiring. Note that the conductor 386 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • an insulator having a barrier property against hydrogen is preferably used as the insulator 380.
  • the conductor 386 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 380 having a barrier property against hydrogen.
  • An insulator 210, an insulator 212, an insulator 214, and an insulator 216 are sequentially stacked over the insulator 384. Any of the insulator 210, the insulator 212, the insulator 214, and the insulator 216 is preferably formed using a substance having a barrier property against oxygen or hydrogen.
  • the insulator 210 and the insulator 214 are each formed using a film having a barrier property such that hydrogen or an impurity does not diffuse from a region where the substrate 311 or the transistor 300 is provided to a region where the transistor 200 is provided. Is preferred. Therefore, a material similar to that of the insulator 324 can be used.
  • silicon nitride formed by a CVD method can be used as an example of a film having a barrier property against hydrogen.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element including an oxide semiconductor such as the transistor 200, characteristics of the semiconductor element may be reduced. Therefore, a film for suppressing hydrogen diffusion is preferably used between the transistor 200 and the transistor 300.
  • the film that suppresses the diffusion of hydrogen is a film with a small amount of hydrogen desorption.
  • a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide is preferably used for the insulator 210 and the insulator 214.
  • aluminum oxide has a high blocking effect that prevents the film from permeating both oxygen and impurities such as hydrogen and moisture, which cause variation in electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 200 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide included in the transistor 200 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 200.
  • the insulator 212 and the insulator 216 can be formed using a material similar to that of the insulator 320.
  • a material having a relatively low dielectric constant as an interlayer film parasitic capacitance generated between wirings can be reduced.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 212 and the insulator 216.
  • the insulator 210, the insulator 212, the insulator 214, and the insulator 216 are embedded with a conductor 218, a conductor (conductor 205) included in the transistor 200, and the like.
  • the conductor 218 functions as a plug or a wiring electrically connected to the capacitor 100 or the transistor 300.
  • the conductor 218 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 210 and the conductor 218 in a region in contact with the insulator 214 are preferably conductors having a barrier property against oxygen, hydrogen, and water.
  • the transistor 300 and the transistor 200 can be separated by a layer having a barrier property against oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 300 to the transistor 200 can be suppressed.
  • a transistor 200 is provided above the insulator 216. Note that as the transistor 200, the transistor structure of the semiconductor device described in the above embodiment may be used. Further, the transistor 200 illustrated in FIGS. 18A and 18B is an example and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • An insulator 280 is provided above the transistor 200.
  • An insulator 282 is provided over the insulator 280.
  • the insulator 282 is preferably formed using a substance having a barrier property against oxygen or hydrogen. Therefore, the insulator 282 can be formed using a material similar to that of the insulator 214.
  • the insulator 282 is preferably formed using a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide.
  • aluminum oxide has a high blocking effect that prevents the film from permeating both oxygen and impurities such as hydrogen and moisture, which cause variation in electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 200 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide included in the transistor 200 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 200.
  • An insulator 286 is provided over the insulator 282.
  • the insulator 286 can be formed using a material similar to that of the insulator 320.
  • a material having a relatively low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
  • the insulator 286, a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 286, as the insulator 286, a silicon oxide film, a silicon oxynitride film, or the like can be used.
  • a conductor 246, a conductor 248, and the like are embedded in the insulator 220, the insulator 222, the insulator 274, the insulator 280, the insulator 282, and the insulator 286.
  • the conductor 246 and the conductor 248 function as plugs or wirings that are electrically connected to the capacitor 100, the transistor 200, or the transistor 300.
  • the conductor 246 and the conductor 248 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the capacitor element 100 is provided above the transistor 200.
  • the capacitor 100 includes a conductor 110, a conductor 120, and an insulator 130.
  • the conductor 112 may be provided over the conductor 246 and the conductor 248.
  • the conductor 112 functions as a plug or a wiring electrically connected to the capacitor 100, the transistor 200, or the transistor 300.
  • the conductor 110 has a function as an electrode of the capacitor 100. Note that the conductor 112 and the conductor 110 can be formed at the same time.
  • the conductor 112 and the conductor 110 include a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above-described element as a component.
  • a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium or a metal nitride film containing the above-described element as a component.
  • titanium nitride film, molybdenum nitride film, tungsten nitride film or the like can be used.
  • indium tin oxide indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon oxide added It is also possible to apply a conductive material such as indium tin oxide.
  • the conductor 112 and the conductor 110 have single-layer structures; however, the structure is not limited thereto, and a stacked structure of two or more layers may be used.
  • a conductor having a high barrier property and a conductor having a high barrier property may be formed between a conductor having a barrier property and a conductor having a high conductivity.
  • an insulator 130 is provided as a dielectric of the capacitor 100 over the conductor 112 and the conductor 110.
  • the insulator 130 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, hafnium oxide, hafnium oxynitride, hafnium nitride oxide, and hafnium nitride. What is necessary is just to use, and it can provide by lamination
  • the insulator 130 may be formed using a material having high dielectric strength such as silicon oxynitride. With this configuration, the capacitor element 100 has improved dielectric strength and can suppress electrostatic breakdown of the capacitor element 100.
  • a conductor 120 is provided over the insulator 130 so as to overlap with the conductor 110.
  • the conductor 120 can be formed using a conductive material such as a metal material, an alloy material, or a metal oxide material. It is preferable to use a high-melting-point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten. In the case of forming simultaneously with other structures such as a conductor, Cu (copper), Al (aluminum), or the like, which is a low resistance metal material, may be used.
  • An insulator 150 is provided over the conductor 120 and the insulator 130.
  • the insulator 150 can be provided using a material similar to that of the insulator 320. Further, the insulator 150 may function as a planarization film that covers the concave and convex shapes below the insulator 150.
  • a transistor including an oxide semiconductor variation in electrical characteristics can be suppressed and reliability can be improved.
  • a transistor including an oxide semiconductor with high on-state current can be provided.
  • a transistor including an oxide semiconductor with low off-state current can be provided.
  • a semiconductor device with reduced power consumption can be provided.
  • FIG. 19 is a cross-sectional view of a memory device including the capacitor 100, the transistor 200, and the transistor 300. Note that in the memory device illustrated in FIG. 19, the structure having the same function as that of the semiconductor device and the structure of the memory device described in the above embodiment and ⁇ Structure of the memory device 1> are denoted by the same reference numerals. To do.
  • a transistor 200 illustrated in FIG. 19 is different from the semiconductor device illustrated in ⁇ Structure example of the memory device 1> in that the cell 600 described in the above embodiment is provided.
  • a cell 600 sharing a part of the structure of the capacitor 100 and a part of the structure of the transistor 200.
  • the cell 600 can be easily miniaturized or highly integrated.
  • the process can be shortened.
  • the semiconductor device illustrated in FIG. 20 is a memory device including the transistor 400, the transistor 200, and the capacitor 100.
  • a storage device will be described with reference to FIG.
  • FIG. 20A is a circuit diagram illustrating an example of a connection relation of the transistor 200, the transistor 400, and the capacitor 100 in the semiconductor device described in this embodiment.
  • FIG. 20B is a cross-sectional view of the semiconductor device in which the wiring 1003 to the wiring 1010 shown in FIG.
  • the transistor 200 has a gate electrically connected to the wiring 1004, one of a source and a drain is electrically connected to the wiring 1003, and the other of the source and the drain is electrically connected to one of the electrodes of the capacitor 100.
  • the other electrode of the capacitor 100 is electrically connected to the wiring 1005.
  • the drain of the transistor 400 is electrically connected to the wiring 1010.
  • the second gate of the transistor 200 and the source, first gate, and second gate of the transistor 400 are a wiring 1006, a wiring 1007, a wiring 1008, and a wiring 1009. It is electrically connected via.
  • the on state and the off state of the transistor 200 can be controlled.
  • the transistor 200 is turned on and a potential is applied to the wiring 1003
  • electric charge can be supplied to the capacitor 100 through the transistor 200.
  • the charge supplied to the capacitor 100 can be held by turning off the transistor 200.
  • the wiring 1005 can be controlled to have a potential at a connection portion between the transistor 200 and the capacitor 100 by capacitive coupling by applying an arbitrary potential. For example, when the ground potential is applied to the wiring 1005, the charge is easily held.
  • a negative potential is applied to the second gate of the transistor 200 through the transistor 400, the threshold voltage of the transistor 200 is made higher than 0 V, and the off-state current is reduced. It is possible to reduce the drain current when the first gate voltage is 0V.
  • the first gate and the second gate of the transistor 400 are diode-connected to the source, and the source of the transistor 400 and the second gate of the transistor 200 are connected to each other.
  • the gate voltage can be controlled.
  • the voltage between the first gate and the source of the transistor 400 and the voltage between the second gate and the source are 0V.
  • the first gate voltage of the transistor 400 is 0 V, the drain current is very small and the threshold voltage is higher than that of the transistor 200. With this configuration, the transistor 200 can be supplied without supplying power to the transistor 400.
  • the negative potential of the second gate can be maintained for a long time.
  • the drain current when the first gate voltage of the transistor 200 is 0 V can be extremely reduced without supplying power to the transistor 200. it can. That is, electric charge can be held in the capacitor 100 for a long time without supplying power to the transistor 200 and the transistor 400.
  • a semiconductor device as a memory element, long-term memory retention can be performed without power supply. Therefore, a memory device that has a low refresh operation frequency or does not require a refresh operation can be provided.
  • connection relation of the transistor 200, the transistor 400, and the capacitor 100 is not limited to that illustrated in FIGS.
  • the connection relationship can be changed as appropriate according to the required circuit configuration.
  • FIG. 20B is a cross-sectional view of a memory device including the capacitor 100, the transistor 200, and the transistor 400. Note that in the memory device illustrated in FIG. 20, the structure having the same function as the structure of the semiconductor device and the memory device described in the above embodiment and ⁇ Structure of the memory device 1> is denoted by the same reference numeral. To do.
  • a memory device of one embodiment of the present invention includes a transistor 200, a transistor 400, and a capacitor 100 as illustrated in FIG.
  • the transistor 200 and the transistor 400 are provided in the same layer, and the capacitor 100 is provided above the transistor 300 and the transistor 200.
  • capacitor 100 and the transistor 200 the capacitor and the transistor included in the semiconductor device and the memory device described in any of the above embodiments and FIGS. 18 and 19 may be used.
  • the capacitor 100, the transistor 200, and the transistor 400 illustrated in FIGS. 20A and 20B are examples, and the structure is not limited thereto, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • the transistor 400 is formed in the same layer as the transistor 200 and can be manufactured in parallel.
  • the transistor 400 includes a conductor 460 (a conductor 460a and a conductor 460b) that functions as a first gate electrode, a conductor 405 (a conductor 405a and a conductor 405b) that functions as a second gate electrode,
  • the insulator 470 and the insulator 472 which are in contact with the conductor 460, the insulator 220 which functions as a gate insulating layer, the insulator 222, the insulator 224, and the insulator 450, and an oxide 430c including a region where a channel is formed
  • an oxide 431a and an oxide 431b which function as one of a source or a drain and an oxide 432a and an oxide 432b which function as the other of a source or a drain.
  • the conductor 405 functioning as the second gate electrode is electrically connected to the conductor 403 (conductors 403a and 403b
  • the conductor 405 is the same layer as the conductor 205.
  • the oxide 431a, the oxide 432a, and the oxide 230a are the same layer, and the oxide 431b, the oxide 432b, and the oxide 230b are the same layer.
  • the oxide 430c is the same layer as the oxide 230c.
  • the insulator 450 is the same layer as the insulator 250.
  • the insulator 452 is the same layer as the insulator 252.
  • the conductor 460 is the same layer as the conductor 260.
  • the insulator 470 is the same layer as the insulator 270.
  • the insulator 472 is the same layer as the insulator 272.
  • the threshold voltage of the transistor 400 can be made higher than 0 V, the off-state current can be reduced, and the drain current when the second gate voltage and the first gate voltage are 0 V can be extremely reduced.
  • a semiconductor device including a transistor including an oxide semiconductor variation in electrical characteristics can be suppressed and reliability can be improved.
  • power consumption can be reduced in a semiconductor device including a transistor including an oxide semiconductor.
  • miniaturization or high integration can be achieved in a semiconductor device including a transistor including an oxide semiconductor.
  • a miniaturized or highly integrated semiconductor device can be provided with high productivity.
  • the semiconductor device illustrated in FIG. 21 is a memory device including the transistor 400, the transistor 300, the transistor 200, and the capacitor 100.
  • a memory device including the transistor 400, the transistor 300, the transistor 200, and the capacitor 100.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor, and any of the transistors described in the above embodiments can be used. Since the transistor described in any of the above embodiments can be formed with high yield even when miniaturized, the transistor 200 can be miniaturized. By using such a transistor for a memory device, the memory device can be miniaturized or highly integrated. Since the off-state current of the transistor described in any of the above embodiments is small, stored data can be held for a long time by using it for a memory device. That is, the refresh operation is not required or the frequency of the refresh operation is extremely low, so that the power consumption of the storage device can be sufficiently reduced.
  • the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300.
  • the wiring 1003 is electrically connected to one of the source and the drain of the transistor 200, the wiring 1004 is electrically connected to the gate of the transistor 200, and the wiring 1006 is electrically connected to the back gate of the transistor 200.
  • the gate of the transistor 300 and the other of the source and the drain of the transistor 200 are electrically connected to one of the electrodes of the capacitor 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitor 100. .
  • the wiring 1007 is electrically connected to the source of the transistor 400, the wiring 1008 is electrically connected to the gate of the transistor 400, the wiring 1009 is electrically connected to the back gate of the transistor 400, and the wiring 1010 is connected to the drain of the transistor 400. And are electrically connected.
  • the wiring 1006, the wiring 1007, the wiring 1008, and the wiring 1009 are electrically connected.
  • the semiconductor device illustrated in FIG. 21 has the characteristic that the potential of the gate of the transistor 300 can be held; thus, information can be written, held, and read as described below.
  • the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned on, so that the transistor 200 is turned on. Accordingly, the potential of the wiring 1003 is applied to the node FG that is electrically connected to one of the gate of the transistor 300 and the electrode of the capacitor 100. That is, predetermined charge is given to the gate of the transistor 300 (writing).
  • predetermined charge is given to the gate of the transistor 300 (writing).
  • the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned off and the transistor 200 is turned off, so that charge is held at the node FG (holding).
  • the wiring 1002 takes a potential corresponding to the amount of charge held in the node FG.
  • the apparent threshold voltage V th_H when the gate of the transistor 300 is supplied with a high level charge is the low level charge applied to the gate of the transistor 300.
  • the apparent threshold voltage refers to the potential of the wiring 1005 necessary for bringing the transistor 300 into a “conductive state”.
  • the charge given to the node FG can be determined. For example, in writing, when a high-level charge is applied to the node FG, the transistor 300 is in a “conducting state” when the potential of the wiring 1005 is V 0 (> V th_H ). On the other hand, in the case where a low-level charge is supplied to the node FG, the transistor 300 remains in a “non-conduction state” even when the potential of the wiring 1005 becomes V 0 ( ⁇ V th_L ). Therefore, by determining the potential of the wiring 1002, information held in the node FG can be read.
  • FIG. 21 is a cross-sectional view of a memory device including the capacitor 100, the transistor 200, the transistor 300, and the transistor 400. Note that the memory device in FIG. 21 has the same function as the structure of the semiconductor device and the memory device described in the above embodiment, ⁇ Structure of the memory device 1>, and ⁇ Structure of the memory device 2>. The same symbols are added to the structures having the same.
  • the memory device of one embodiment of the present invention includes a transistor 300, a transistor 200, a transistor 400, and a capacitor 100 as illustrated in FIG.
  • the transistor 200 and the transistor 400 are provided above the transistor 300, and the capacitor 100 is provided above the transistor 300, the transistor 200, and the transistor 400.
  • capacitor 100, the transistor 200, the transistor 300, and the transistor 400 the capacitors and transistors included in the semiconductor device and the memory device described in any of the above embodiments and FIGS.
  • the capacitor 100, the transistor 300, the transistor 200, and the transistor 400 illustrated in FIGS. 21A and 21B are examples, and the structure is not limited thereto, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • a semiconductor device including a transistor including an oxide semiconductor variation in electrical characteristics can be suppressed and reliability can be improved.
  • power consumption can be reduced in a semiconductor device including a transistor including an oxide semiconductor.
  • miniaturization or high integration can be achieved in a semiconductor device including a transistor including an oxide semiconductor.
  • a miniaturized or highly integrated semiconductor device can be provided with high productivity.
  • a memory cell array can be formed by arranging the transistors 200 as memory cells in a matrix.
  • the memory device illustrated in FIG. 22 is a semiconductor device that forms a memory cell array by arranging the memory devices illustrated in FIGS. 18 and 21 in a matrix. Note that one transistor 400 can control the back gate voltage of the plurality of transistors 200. Therefore, the transistor 400 is preferably provided in a smaller number than the transistor 200.
  • FIG. 22 is a cross-sectional view of a part of rows in the case where the storage devices shown in FIGS. 18 and 21 are arranged in a matrix.
  • FIG. 22 is different from FIG. 21 in the structure of the transistor 300.
  • a semiconductor region 313 where a channel is formed (a part of the substrate 311) has a convex shape.
  • a conductor 316 is provided so as to cover a side surface and an upper surface of the semiconductor region 313 with an insulator 315 interposed therebetween.
  • the conductor 316 may be formed using a material that adjusts a work function.
  • Such a transistor 300 is also called a FIN-type transistor because it uses a convex portion of a semiconductor substrate.
  • an insulator functioning as a mask for forming the convex portion may be provided in contact with the upper portion of the convex portion.
  • the SOI substrate may be processed to form a semiconductor film having a convex shape.
  • a memory cell 650a and a memory cell 650b are arranged adjacent to each other.
  • the memory cell 650a and the memory cell 650b each include the transistor 300, the transistor 200, and the capacitor 100, and are electrically connected to the wiring 1001, the wiring 1002, the wiring 1003, the wiring 1004, the wiring 1005, and the wiring 1006.
  • a node where the gate of the transistor 300 and one of the electrodes of the capacitor 100 are electrically connected is a node FG.
  • the wiring 1002 is a wiring common to the adjacent memory cells 650a and 650b.
  • a semiconductor device including a transistor including an oxide semiconductor variation in electrical characteristics can be suppressed and reliability can be improved.
  • power consumption can be reduced in a semiconductor device including a transistor including an oxide semiconductor.
  • miniaturization or high integration can be achieved in a semiconductor device including a transistor including an oxide semiconductor.
  • a miniaturized or highly integrated semiconductor device can be provided with high productivity.
  • NOSRAM Nonvolatile Oxide Semiconductor RAM
  • 2T type, 3T type gain cell type
  • OS memory a memory device using an OS transistor as a memory cell (hereinafter referred to as “OS memory”) is applied.
  • the OS memory is a memory that includes at least a capacitor and an OS transistor that controls charging and discharging of the capacitor. Since the OS transistor is a transistor with a minimum off-state current, the OS memory has excellent retention characteristics and can function as a nonvolatile memory.
  • FIG. 23 shows a configuration example of NOSRAM.
  • a NOSRAM 1600 illustrated in FIG. 23 includes a memory cell array 1610, a controller 1640, a row driver 1650, a column driver 1660, and an output driver 1670. Note that the NOSRAM 1600 is a multi-value NOSRAM that stores multi-value data in one memory cell.
  • the memory cell array 1610 includes a plurality of memory cells 1611, a plurality of word lines WWL and RWL, a bit line BL, and a source line SL.
  • the word line WWL is a write word line
  • the word line RWL is a read word line.
  • one memory cell 1611 stores 3-bit (eight values) data.
  • the controller 1640 comprehensively controls the entire NOSRAM 1600 and writes data WDA [31: 0] and reads data RDA [31: 0].
  • the controller 1640 processes command signals from the outside (for example, a chip enable signal, a write enable signal, etc.), and generates control signals for the row driver 1650, the column driver 1660, and the output driver 1670.
  • the row driver 1650 has a function of selecting a row to be accessed.
  • the row driver 1650 includes a row decoder 1651 and a word line driver 1652.
  • the column driver 1660 drives the source line SL and the bit line BL.
  • the column driver 1660 includes a column decoder 1661, a write driver 1662, and a DAC (digital-analog conversion circuit) 1663.
  • the DAC 1663 converts 3-bit digital data into an analog voltage.
  • the DAC 1663 converts 32-bit data WDA [31: 0] into an analog voltage every 3 bits.
  • the write driver 1662 has a function of precharging the source line SL, a function of electrically floating the source line SL, a function of selecting the source line SL, and a write voltage generated by the DAC 1663 to the selected source line SL.
  • the output driver 1670 includes a selector 1671, an ADC (analog-digital conversion circuit) 1672, and an output buffer 1673.
  • the selector 1671 selects the source line SL to be accessed and transmits the voltage of the selected source line SL to the ADC 1672.
  • the ADC 1672 has a function of converting an analog voltage into 3-bit digital data. The voltage of the source line SL is converted into 3-bit data in the ADC 1672, and the output buffer 1673 holds data output from the ADC 1672.
  • FIG. 24A is a circuit diagram illustrating a structural example of the memory cell 1611.
  • the memory cell 1611 is a 2T type gain cell, and the memory cell 1611 is electrically connected to the word lines WWL and RWL, the bit line BL, the source line SL, and the wiring BGL.
  • the memory cell 1611 includes a node SN, an OS transistor MO61, a transistor MP61, and a capacitor C61.
  • the OS transistor MO61 is a write transistor.
  • the transistor MP61 is a read transistor, and is composed of, for example, a p-channel Si transistor.
  • the capacitive element C61 is a holding capacitor for holding the voltage of the node SN.
  • the node SN is a data holding node and corresponds to the gate of the transistor MP61 here.
  • the NOSRAM 1600 can hold data for a long time.
  • bit line is a common bit line for writing and reading, but a writing bit line WBL and a reading bit line RBL may be provided as shown in FIG. Good.
  • FIGS. 24C to 24E show other configuration examples of the memory cell.
  • FIGS. 24C to 24E show an example in which a write bit line and a read bit line are provided. As shown in FIG. 24A, bit lines shared by writing and reading are shown. May be provided.
  • a memory cell 1612 shown in FIG. 24C is a modification example of the memory cell 1611 and is obtained by changing a reading transistor to an n-channel transistor (MN61).
  • the transistor MN61 may be an OS transistor or a Si transistor.
  • the OS transistor MO61 may be an OS transistor without a back gate.
  • a memory cell 1613 illustrated in FIG. 24D is a 3T type gain cell, and is electrically connected to the word lines WWL and RWL, the bit lines WBL and RBL, the source line SL, and the wirings BGL and PCL.
  • the memory cell 1613 includes a node SN, an OS transistor MO62, a transistor MP62, a transistor MP63, and a capacitor C62.
  • the OS transistor MO62 is a write transistor.
  • the transistor MP62 is a read transistor, and the transistor MP63 is a selection transistor.
  • a memory cell 1614 shown in FIG. 24E is a modification example of the memory cell 1613, in which the reading transistor and the selection transistor are changed to n-channel transistors (MN62 and MN63).
  • the transistors MN62 and MN63 may be OS transistors or Si transistors.
  • the OS transistor provided in the memory cells 1611 to 1614 may be a transistor without a back gate or a transistor with a back gate.
  • the NOSRAM 1600 Since data is rewritten by charging / discharging the capacitive elements C61 and C62, the NOSRAM 1600 has no limitation on the number of times of rewriting in principle, and can write and read data with low energy. Further, since the data can be held for a long time, the refresh frequency can be reduced.
  • the transistor 200 is used as the OS transistors MO61 and MO62
  • the capacitor 100 is used as the capacitors C61 and C62
  • the transistors MP61 and MN62 are used.
  • the transistor 300 can be used.
  • the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the memory device according to this embodiment can be highly integrated.
  • the storage capacity per unit area of the storage device according to this embodiment can be increased.
  • DOSRAM is described as an example of a memory device to which an OS transistor and a capacitor are applied according to one embodiment of the present invention, with reference to FIGS.
  • DOSRAM registered trademark
  • OS memory is applied to DOSRAM as well as NOSRAM.
  • FIG. 25 shows a configuration example of the DOSRAM.
  • the DOSRAM 1400 includes a controller 1405, a row circuit 1410, a column circuit 1415, a memory cell, and a sense amplifier array 1420 (hereinafter referred to as “MC-SA array 1420”).
  • MC-SA array 1420 a sense amplifier array 1420
  • the row circuit 1410 includes a decoder 1411, a word line driver circuit 1412, a column selector 1413, and a sense amplifier driver circuit 1414.
  • the column circuit 1415 includes a global sense amplifier array 1416 and an input / output circuit 1417.
  • the global sense amplifier array 1416 has a plurality of global sense amplifiers 1447.
  • the MC-SA array 1420 includes a memory cell array 1422, a sense amplifier array 1423, and global bit lines GBLL and GBLR.
  • the MC-SA array 1420 has a stacked structure in which the memory cell array 1422 is stacked on the sense amplifier array 1423.
  • Global bit lines GBLL and GBLR are stacked on the memory cell array 1422.
  • a hierarchical bit line structure in which a local bit line and a global bit line are hierarchized is adopted as the bit line structure.
  • the memory cell array 1422 includes N (N is an integer of 2 or more) local memory cell arrays 1425 ⁇ 0> -1425 ⁇ N-1>.
  • FIG. 26A illustrates a configuration example of the local memory cell array 1425.
  • the local memory cell array 1425 includes a plurality of memory cells 1445, a plurality of word lines WL, and a plurality of bit lines BLL and BLR.
  • the structure of the local memory cell array 1425 is an open bit line type, but may be a folded bit line type.
  • FIG. 26B illustrates a circuit configuration example of the memory cell 1445.
  • the memory cell 1445 includes a transistor MW1, a capacitor CS1, and terminals B1 and B2.
  • the transistor MW1 has a function of controlling charging / discharging of the capacitor CS1.
  • the gate of the transistor MW1 is electrically connected to the word line, the first terminal is electrically connected to the bit line, and the second terminal is electrically connected to the first terminal of the capacitor.
  • the second terminal of the capacitive element CS1 is electrically connected to the terminal B2.
  • a constant voltage (for example, a low power supply voltage) is input to the terminal B2.
  • the transistor 200 can be used as the transistor MW1 and the capacitor 100 can be used as the capacitor CS1.
  • the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the memory device according to this embodiment can be highly integrated.
  • the storage capacity per unit area of the storage device according to this embodiment can be increased.
  • the transistor MW1 includes a back gate, and the back gate is electrically connected to the terminal B1. Therefore, the threshold voltage of the transistor MW1 can be changed by the voltage of the terminal B1.
  • the voltage at the terminal B1 may be a fixed voltage (for example, a negative constant voltage), or the voltage at the terminal B1 may be changed according to the operation of the DOSRAM 1400.
  • the back gate of the transistor MW1 may be electrically connected to the gate, source, or drain of the transistor MW1. Alternatively, a back gate is not necessarily provided in the transistor MW1.
  • the sense amplifier array 1423 includes N local sense amplifier arrays 1426 ⁇ 0> -1426 ⁇ N-1>.
  • the local sense amplifier array 1426 includes one switch array 1444 and a plurality of sense amplifiers 1446.
  • a bit line pair is electrically connected to the sense amplifier 1446.
  • the sense amplifier 1446 has a function of precharging the bit line pair, a function of amplifying the voltage difference between the bit line pair, and a function of holding this voltage difference.
  • the switch array 1444 has a function of selecting a bit line pair and bringing the selected bit line pair and the global bit line pair into a conductive state.
  • bit line pair refers to two bit lines that are simultaneously compared by the sense amplifier.
  • a global bit line pair refers to two global bit lines that are simultaneously compared by a global sense amplifier.
  • a bit line pair can be called a pair of bit lines, and a global bit line pair can be called a pair of global bit lines.
  • bit line BLL and the bit line BLR form one bit line pair.
  • Global bit line GBLL and global bit line GBLR form a pair of global bit lines.
  • bit line pair (BLL, BLR) and the global bit line pair (GBLL, GBLR) are also represented.
  • the controller 1405 has a function of controlling the overall operation of the DOSRAM 1400.
  • the controller 1405 performs a logical operation on a command signal input from the outside to determine an operation mode, and a function to generate control signals for the row circuit 1410 and the column circuit 1415 so that the determined operation mode is executed. It has a function of holding an address signal input from the outside and a function of generating an internal address signal.
  • the row circuit 1410 has a function of driving the MC-SA array 1420.
  • the decoder 1411 has a function of deloading an address signal.
  • the word line driver circuit 1412 generates a selection signal for selecting the word line WL of the access target row.
  • a column selector 1413 and a sense amplifier driver circuit 1414 are circuits for driving the sense amplifier array 1423.
  • the column selector 1413 has a function of generating a selection signal for selecting the bit line of the access target column.
  • the switch array 1444 of each local sense amplifier array 1426 is controlled by a selection signal from the column selector 1413.
  • the plurality of local sense amplifier arrays 1426 are independently driven by the control signal of the sense amplifier driver circuit 1414.
  • the column circuit 1415 has a function of controlling input of the data signal WDA [31: 0] and a function of controlling output of the data signal RDA [31: 0].
  • the data signal WDA [31: 0] is a write data signal
  • the data signal RDA [31: 0] is a read data signal.
  • the global sense amplifier 1447 is electrically connected to a global bit line pair (GBLL, GBLR).
  • the global sense amplifier 1447 has a function of amplifying a voltage difference between the global bit line pair (GBLL, GBLR) and a function of holding this voltage difference.
  • Data input / output to / from the global bit line pair (GBLL, GBLR) is performed by an input / output circuit 1417.
  • Data is written to the global bit line pair by the input / output circuit 1417.
  • Data of the global bit line pair is held by the global sense amplifier array 1416.
  • the data of the global bit line pair is written to the bit line pair of the target column by the switch array 1444 of the local sense amplifier array 1426 specified by the address signal.
  • the local sense amplifier array 1426 amplifies and holds the written data.
  • the row circuit 1410 selects the word line WL of the target row, and the data held in the local sense amplifier array 1426 is written into the memory cell 1445 of the selected row.
  • One row of the local memory cell array 1425 is designated by the address signal.
  • the word line WL in the target row is selected, and the data in the memory cell 1445 is written to the bit line.
  • the local sense amplifier array 1426 detects and holds the voltage difference between the bit line pairs in each column as data.
  • the switch array 1444 writes the data in the column specified by the address signal among the data held in the local sense amplifier array 1426 to the global bit line pair.
  • the global sense amplifier array 1416 detects and holds data of the global bit line pair. Data held in the global sense amplifier array 1416 is output to the input / output circuit 1417. This completes the read operation.
  • the DOSRAM 1400 Since data is rewritten by charging / discharging the capacitive element CS1, the DOSRAM 1400 has no restriction on the number of times of rewriting in principle, and data can be written and read with low energy. Further, since the circuit configuration of the memory cell 1445 is simple, the capacity can be easily increased.
  • the transistor MW1 is an OS transistor. Since the off-state current of the OS transistor is extremely small, leakage of charge from the capacitor CS1 can be suppressed. Therefore, the retention time of the DOSRAM 1400 is very long compared to the DRAM. Therefore, since the frequency of refresh can be reduced, the power required for the refresh operation can be reduced. Therefore, the DOSRAM 1400 is suitable for a memory device that rewrites a large amount of data at a high frequency, for example, a frame memory used for image processing.
  • the bit line can be shortened to the same length as the local sense amplifier array 1426. By shortening the bit line, the bit line capacitance can be reduced and the storage capacity of the memory cell 1445 can be reduced. Further, by providing the switch array 1444 in the local sense amplifier array 1426, the number of long bit lines can be reduced. For the above reasons, the load driven when accessing the DOSRAM 1400 is reduced, and the power consumption can be reduced.
  • an FPGA field programmable gate array
  • OS-FPGA field programmable gate array
  • FIG. 27A illustrates a configuration example of the OS-FPGA.
  • the OS-FPGA 3110 illustrated in FIG. 27A is capable of context switching by a multi-context structure, fine-grain power gating, and NOFF (normally off) computing.
  • the OS-FPGA 3110 includes a controller 3111, a word driver 3112, a data driver 3113, and a programmable area 3115.
  • the programmable area 3115 includes two input / output blocks (IOB) 3117 and a core (Core) 3119.
  • the IOB 3117 has a plurality of programmable input / output circuits.
  • the core 3119 includes a plurality of logic array blocks (LAB) 3120 and a plurality of switch array blocks (SAB) 3130.
  • the LAB 3120 has a plurality of programmable logic elements (PLE) 3121.
  • FIG. 27B shows an example in which the LAB 3120 is configured with five PLE 3121s.
  • the SAB 3130 includes a plurality of switch blocks (SB) 3131 arranged in an array.
  • the LAB 3120 is connected to its own input terminal and the LAB 3120 in the 4 (up / down / left / right) direction via the SAB 3130.
  • Data, dataab, signals context [1: 0], and word [1: 0] are input to SB3131 shown in FIG. data and datab are configuration data, and data and datab have a complementary logic relationship.
  • the number of contexts of the OS-FPGA 3110 is 2, and the signal context [1: 0] is a context selection signal.
  • the signal word [1: 0] is a word line selection signal, and the wiring to which the signal word [1: 0] is input is a word line.
  • the SB 3131 includes PRSs (programmable routing switches) 3133 [0] and 3133 [1].
  • the PRSs 3133 [0] and 3133 [1] have a configuration memory (CM) that can store complementary data. Note that PRS 3133 [0] and PRS 3133 [1] are referred to as PRS 3133 when they are not distinguished. The same applies to other elements.
  • FIG. 28B illustrates a circuit configuration example of the PRS 3133 [0].
  • PRS 3133 [0] and PRS 3133 [1] have the same circuit configuration.
  • PRS 3133 [0] and PRS 3133 [1] are different in the input context selection signal and word line selection signal.
  • the signals context [0] and word [0] are input to the PRS 3133 [0]
  • the signals context [1] and word [1] are input to the PRS 3133 [1].
  • the signal context [0] becomes “H”
  • the PRS 3133 [0] becomes active.
  • the PRS 3133 [0] includes a CM 3135 and a Si transistor M31.
  • the Si transistor M31 is a pass transistor controlled by the CM 3135.
  • the CM 3135 includes memory circuits 3137 and 3137B.
  • the memory circuits 3137 and 3137B have the same circuit configuration.
  • the memory circuit 3137 includes a capacitor C31 and OS transistors MO31 and MO32.
  • the memory circuit 3137B includes a capacitor CB31 and OS transistors MOB31 and MOB32.
  • the transistor 200 can be used as the OS transistors MO31 and MOB31, and the capacitor 100 can be used as the capacitors C31 and CB31. Accordingly, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the semiconductor device according to this embodiment can be highly integrated.
  • the OS transistors MO31, MO32, MOB31, and MOB32 each have a back gate, and each of these back gates is electrically connected to a power supply line that supplies a fixed voltage.
  • the gate of the Si transistor M31 is the node N31
  • the gate of the OS transistor MO32 is the node N32
  • the gate of the OS transistor MOB32 is the node NB32.
  • Nodes N32 and NB32 are charge holding nodes of the CM 3135.
  • the OS transistor MO32 controls a conduction state between the node N31 and the signal line for the signal context [0].
  • the OS transistor MOB32 controls a conduction state between the node N31 and the low potential power supply line VSS.
  • Data held in the memory circuits 3137 and 3137B has a complementary relationship. Therefore, either one of the OS transistors MO32 or MOB32 becomes conductive.
  • the PRS 3133 [0] While the signal context [0] is “L”, the PRS 3133 [0] is inactive. During this period, even if the input terminal of the PRS 3133 [0] changes to “H”, the gate of the Si transistor M31 is maintained at “L”, and the output terminal of the PRS 3133 [0] is also maintained at “L”.
  • the PRS 3133 [0] is active.
  • the gate of the Si transistor M31 changes to “H” according to the configuration data stored in the CM 3135.
  • the OS transistor MO32 of the memory circuit 3137 is a source follower, and thus the gate voltage of the Si transistor M31 increases due to boosting. As a result, the OS transistor MO32 of the memory circuit 3137 loses drive capability, and the gate of the Si transistor M31 is in a floating state.
  • the CM 3135 also has a multiplexer function.
  • FIG. 29 shows a configuration example of PLE 3121.
  • the PLE 3121 includes a lookup table block (LUTblock) 3123, a register block 3124, a selector 3125, and a CM 3126.
  • the LUT block 3123 is configured to multiplex the output of the internal 16-bit CM pair according to the inputs inA-inD.
  • the selector 3125 selects the output of the LUT block 3123 or the output of the register block 3124 according to the configuration stored in the CM 3126.
  • the PLE 3121 is electrically connected to the power line for the voltage VDD via the power switch 3127. On / off of the power switch 3127 is set by configuration data stored in the CM 3128. By providing a power switch 3127 for each PLE 3121, fine-grain power gating is possible. Since the fine-grained power gating function can power gating the PLE 3121 that is not used after context switching, standby power can be effectively reduced.
  • the register block 3124 is configured by a nonvolatile register.
  • the nonvolatile register in the PLE 3121 is a flip-flop (hereinafter referred to as [OS-FF]) including an OS memory.
  • the register block 3124 includes OS-FFs 3140 [1] 3140 [2]. Signals user_res, load, and store are input to the OS-FFs 3140 [1] and 3140 [2].
  • the clock signal CLK1 is input to the OS-FF 3140 [1]
  • the clock signal CLK2 is input to the OS-FF 3140 [2].
  • FIG. 30A illustrates a configuration example of the OS-FF 3140.
  • the OS-FF 3140 includes an FF 3141 and a shadow register 3142.
  • the FF 3141 includes nodes CK, R, D, Q, and QB.
  • a clock signal is input to the node CK.
  • a signal user_res is input to the node R.
  • the signal user_res is a reset signal.
  • Node D is a data input node
  • node Q is a data output node.
  • Nodes Q and QB have a complementary logic relationship.
  • the shadow register 3142 functions as a backup circuit for the FF 3141.
  • the shadow register 3142 backs up the data of the nodes Q and QB according to the signal store, and writes back up the backed up data to the nodes Q and QB according to the signal load.
  • the shadow register 3142 includes inverter circuits 3188 and 3189, Si transistors M37 and MB37, and memory circuits 3143 and 3143B.
  • the memory circuits 3143 and 3143B have the same circuit configuration as the memory circuit 3137 of the PRS 3133.
  • the memory circuit 3143 includes a capacitor C36 and OS transistors MO35 and MO36.
  • the memory circuit 3143B includes a capacitor CB36, an OS transistor MOB35, and an OS transistor MOB36.
  • Nodes N36 and NB36 are gates of the OS transistor MO36 and the OS transistor MOB36, respectively, and are charge holding nodes.
  • Nodes N37 and NB37 are gates of the Si transistors M37 and MB37.
  • the transistor 200 can be used as the OS transistors MO35 and MOB35, and the capacitor 100 can be used as the capacitors C36 and CB36. Accordingly, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the semiconductor device according to this embodiment can be highly integrated.
  • the OS transistors MO35, MO36, MOB35, and MOB36 each have a back gate, and these back gates are each electrically connected to a power supply line that supplies a fixed voltage.
  • the shadow register 3142 backs up the data in the FF 3141.
  • the node N36 becomes “L” when the data of the node Q is written, and the node NB36 becomes “H” when the data of the node QB is written. Thereafter, power gating is executed and the power switch 3127 is turned off. Although the data of the nodes Q and QB of the FF 3141 are lost, the shadow register 3142 holds the backed up data even when the power is turned off.
  • the power switch 3127 is turned on to supply power to the PLE 3121. After that, when the “H” signal load is input to the OS-FF 3140, the shadow register 3142 writes back-up data back to the FF 3141. Since the node N36 is “L”, the node N37 is maintained at “L”, and the node NB36 is “H”, so that the node NB37 is “H”. Therefore, the node Q becomes “H” and the node QB becomes “L”. That is, the OS-FF 3140 returns to the state during the backup operation.
  • the power consumption of the OS-FPGA 3110 can be effectively reduced.
  • An error that may occur in the memory circuit is a soft error due to the incidence of radiation.
  • a soft error is a secondary universe that is generated when a nuclear reaction occurs between alpha rays emitted from the materials that make up the memory and package, or primary cosmic rays incident on the atmosphere from space and atomic nuclei in the atmosphere. This is a phenomenon in which a malfunction such as inversion of data held in a memory occurs due to irradiation of a line neutron or the like to a transistor to generate an electron-hole pair.
  • An OS memory using an OS transistor has high soft error resistance. Therefore, the OS-FPGA 3110 with high reliability can be provided by installing the OS memory.
  • FIG. 31 is a block diagram illustrating a configuration example of the AI system 4041.
  • the AI system 4041 includes a calculation unit 4010, a control unit 4020, and an input / output unit 4030.
  • the arithmetic unit 4010 includes an analog arithmetic circuit 4011, DOSRAM 4012, NOSRAM 4013, and FPGA 4014.
  • DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014, the DOSRAM 1400, the NOSRAM 1600, and the OS-FPGA 3110 described in the above embodiment can be used.
  • the control unit 4020 includes a CPU (Central Processing Unit) 4021, a GPU (Graphics Processing Unit) 4022, a PLL (Phase Locked Loop) 4023, and a SRAM (Static Random Access MemoryPROM 40 Memory, Memory Memory 4024).
  • the input / output unit 4030 includes an external storage control circuit 4031, an audio codec 4032, a video codec 4033, a general-purpose input / output module 4034, and a communication module 4035.
  • the arithmetic unit 4010 can execute learning or inference using a neural network.
  • the analog operation circuit 4011 includes an A / D (analog / digital) conversion circuit, a D / A (digital / analog) conversion circuit, and a product-sum operation circuit.
  • the analog arithmetic circuit 4011 is preferably formed using an OS transistor.
  • An analog operation circuit 4011 using an OS transistor has an analog memory, and can perform a product-sum operation necessary for learning or inference with low power consumption.
  • the DOSRAM 4012 is a DRAM formed using an OS transistor, and the DOSRAM 4012 is a memory that temporarily stores digital data sent from the CPU 4021.
  • the DOSRAM 4012 includes a memory cell including an OS transistor and a reading circuit portion including a Si transistor. Since the memory cell and the reading circuit portion can be provided in different stacked layers, the DOSRAM 4012 can reduce the entire circuit area.
  • the input data may exceed 1000.
  • the SRAM has a limited circuit area and has a small storage capacity, so the input data must be stored in small portions.
  • the DOSRAM 4012 can arrange memory cells highly integrated even with a limited circuit area, and has a larger storage capacity than an SRAM. Therefore, the DOSRAM 4012 can store the input data efficiently.
  • a NOSRAM 4013 is a non-volatile memory using an OS transistor.
  • the NOSRAM 4013 consumes less power when writing data than other non-volatile memories such as flash memory, ReRAM (Resistive Random Access Memory), and MRAM (Magnetorescent Random Access Memory). Further, unlike the flash memory and the ReRAM, the element is not deteriorated when data is written, and the number of times data can be written is not limited.
  • the NOSRAM 4013 can store multi-value data of 2 bits or more in addition to 1-bit binary data.
  • the NOSRAM 4013 stores multi-value data, so that the memory cell area per bit can be reduced.
  • the NOSRAM 4013 can store analog data in addition to digital data. Therefore, the analog arithmetic circuit 4011 can also use the NOSRAM 4013 as an analog memory. Since the NOSRAM 4013 can store analog data as it is, no D / A conversion circuit or A / D conversion circuit is required. Therefore, the NOSRAM 4013 can reduce the area of the peripheral circuit.
  • the analog data refers to data having a resolution of 3 bits (8 values) or more.
  • the multi-value data described above may be included in the analog data.
  • Data and parameters used for calculation of the neural network can be temporarily stored in the NOSRAM 4013.
  • the data and parameters may be stored in the memory provided outside the AI system 4041 via the CPU 4021.
  • the data and parameters provided by the internal NOSRAM 4013 are faster and consume less power. Can be stored. Further, since the bit line of the NOSRAM 4013 can be made longer than that of the DOSRAM 4012, the storage capacity can be increased.
  • the FPGA 4014 is an FPGA using an OS transistor.
  • the AI system 4041 uses a FPGA 4014, which will be described later in hardware, a deep neural network (DNN), a convolutional neural network (CNN), a recursive neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM).
  • a neural network connection such as a deep belief network (DBN), can be constructed. By configuring the above-mentioned neural network connection with hardware, it can be executed at higher speed.
  • the FPGA 4014 is an FPGA having an OS transistor.
  • the OS-FPGA can reduce the area of the memory compared to the FPGA configured with SRAM. Therefore, even if a context switching function is added, the area increase is small.
  • the OS-FPGA can transmit data and parameters at high speed by boosting.
  • the analog arithmetic circuit 4011, the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 can be provided on one die (chip). Therefore, the AI system 4041 can execute neural network calculations at high speed and with low power consumption.
  • the analog arithmetic circuit 4011, the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 can be manufactured through the same manufacturing process. Therefore, the AI system 4041 can be manufactured at low cost.
  • the arithmetic unit 4010 need not have all of the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014.
  • One or more of the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 may be selected and provided depending on the problem that the AI system 4041 wants to solve.
  • the AI system 4041 includes a deep neural network (DNN), a convolutional neural network (CNN), a recursive neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), a deep belief network (DBM). DBN) etc. can be performed.
  • the PROM 4025 can store a program for executing at least one of these methods. Also, a part or all of the program may be stored in the NOSRAM 4013.
  • the AI system 4041 preferably includes a GPU 4022.
  • the AI system 4041 can execute a product-sum operation that is rate-limiting among the product-sum operations used in learning and inference by the arithmetic unit 4010, and can execute other product-sum operations by the GPU 4022. By doing so, learning and inference can be performed at high speed.
  • the power supply circuit 4027 not only generates a low power supply potential for a logic circuit but also generates a potential for analog calculation.
  • the power supply circuit 4027 may use an OS memory.
  • the power supply circuit 4027 can reduce power consumption by storing the reference potential in the OS memory.
  • the PMU 4028 has a function of temporarily turning off the power supply of the AI system 4041.
  • the CPU 4021 and the GPU 4022 preferably have an OS memory as a register. Since the CPU 4021 and the GPU 4022 have the OS memory, even if the power supply is turned off, the data (logical value) can be continuously held in the OS memory. As a result, the AI system 4041 can save power.
  • the PLL 4023 has a function of generating a clock.
  • the AI system 4041 operates based on the clock generated by the PLL 4023.
  • the PLL 4023 preferably has an OS memory. Since the PLL 4023 has an OS memory, it can hold an analog potential for controlling the clock oscillation period.
  • the AI system 4041 may store data in an external memory such as a DRAM. Therefore, the AI system 4041 preferably includes a memory controller 4026 that functions as an interface with an external DRAM.
  • the memory controller 4026 is preferably arranged near the CPU 4021 or the GPU 4022. By doing so, data can be exchanged at high speed.
  • Part or all of the circuit shown in the controller 4020 can be formed on the same die as the arithmetic unit 4010. By doing so, the AI system 4041 can execute the calculation of the neural network at high speed and with low power consumption.
  • the AI system 4041 preferably includes an external storage control circuit 4031 that functions as an interface with an external storage device.
  • the AI system 4041 includes an audio codec 4032 and a video codec 4033.
  • the audio codec 4032 performs encoding (encoding) and decoding (decoding) of audio data
  • the video codec 4033 encodes and decodes video data.
  • the AI system 4041 can perform learning or inference using data obtained from an external sensor. Therefore, the AI system 4041 has a general-purpose input / output module 4034.
  • the general-purpose input / output module 4034 includes, for example, USB (Universal Serial Bus) and I2C (Inter-Integrated Circuit).
  • the AI system 4041 can perform learning or inference using data obtained via the Internet. Therefore, the AI system 4041 preferably includes a communication module 4035.
  • the analog arithmetic circuit 4011 may use a multi-value flash memory as an analog memory.
  • the flash memory has a limited number of rewritable times.
  • it is very difficult to form a multi-level flash memory in an embedded manner an arithmetic circuit and a memory are formed on the same die.
  • the analog arithmetic circuit 4011 may use ReRAM as an analog memory.
  • ReRAM has a limited number of rewritable times and has a problem in terms of storage accuracy.
  • circuit design for separating data writing and reading becomes complicated.
  • the analog arithmetic circuit 4011 may use MRAM as an analog memory.
  • MRAM has a low resistance change rate and has a problem in terms of storage accuracy.
  • the analog arithmetic circuit 4011 preferably uses an OS memory as an analog memory.
  • FIG. 32A shows an AI system 4041A in which the AI systems 4041 described in FIG. 31 are arranged in parallel and signals can be transmitted and received between the systems via a bus line.
  • An AI system 4041A illustrated in FIG. 32A includes a plurality of AI systems 4041_1 to 4041_n (n is a natural number).
  • the AI systems 4041_1 to 4041_n are connected to each other via a bus line 4098.
  • FIG. 32B shows an AI system 4041B in which the AI system 4041 described in FIG. 31 is arranged in parallel as in FIG. 32A, and signals can be transmitted and received between systems via a network. is there.
  • An AI system 4041B illustrated in FIG. 32B includes a plurality of AI systems 4041_1 to 4041_n.
  • the AI systems 4041_1 to 4041_n are connected to each other via a network 4099.
  • the network 4099 may have a configuration in which a communication module is provided in each of the AI systems 4041_1 to 4041_n to perform wireless or wired communication.
  • the communication module can communicate via an antenna.
  • the Internet Intranet, Extranet, PAN (Personal Area Network), LAN (Local Area Network), MAN (Campure Area Network, MAN (MetropoliAwareNetwork), MAN (MetropoliAureNetwork), which are the foundations of the World Wide Web (WWW).
  • Each electronic device can be connected to a computer network such as Network) or GAN (Global Area Network) to perform communication.
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communication: registered trademark
  • EDGE Enhanced Data Rates for GSM Evolvement, CDMA Emulsion, CDMA Emulsion
  • Communication standards such as W-CDMA (registered trademark), or specifications standardized by IEEE such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) can be used.
  • analog signals obtained by an external sensor or the like can be processed by separate AI systems.
  • information such as electroencephalogram, pulse, blood pressure, body temperature, etc., such as biological information
  • various sensors such as an electroencephalogram sensor, a pulse wave sensor, a blood pressure sensor, and a temperature sensor
  • analog signals can be processed by separate AI systems. it can.
  • the amount of information processing per AI system can be reduced. Therefore, signal processing or learning can be performed with a smaller amount of calculation. As a result, recognition accuracy can be increased. From the information obtained by each AI system, it can be expected that changes in biological information that change in a complex manner can be instantaneously and integratedly grasped.
  • the AI system described in the above embodiment integrates a digital processing circuit composed of Si transistors such as a CPU, an analog arithmetic circuit using OS transistors, and OS memories such as OS-FPGA, DOSRAM, and NOSRAM into one die. be able to.
  • FIG. 33 shows an example of an IC incorporating an AI system.
  • An AI system IC 7000 illustrated in FIG. 33 includes a lead 7001 and a circuit portion 7003.
  • the AI system IC 7000 is mounted on a printed circuit board 7002, for example.
  • a plurality of such IC chips are combined and each is electrically connected on the printed circuit board 7002 to complete a substrate on which electronic components are mounted (a mounting substrate 7004).
  • the circuit portion 7003 is provided with the various circuits described in the above embodiment in one die.
  • the circuit portion 7003 has a stacked structure, and is roughly divided into a Si transistor layer 7031, a wiring layer 7032, and an OS transistor layer 7033. Since the OS transistor layer 7033 can be stacked over the Si transistor layer 7031, the AI system IC 7000 can be easily downsized.
  • QFP Quad Flat Package
  • a digital processing circuit such as a CPU, an analog arithmetic circuit using an OS transistor, and OS memories such as OS-FPGA and DOSRAM and NOSRAM can all be formed in the Si transistor layer 7031, the wiring layer 7032, and the OS transistor layer 7033. it can. That is, the elements constituting the AI system can be formed by the same manufacturing process. Therefore, the IC shown in this embodiment mode does not need to increase the manufacturing process even if the number of elements constituting the IC is increased, and the AI system can be incorporated at low cost.
  • the semiconductor device according to one embodiment of the present invention can be used for various electronic devices.
  • FIG. 34 illustrates specific examples of electronic devices using the semiconductor device according to one embodiment of the present invention.
  • FIG. 34A is an external view illustrating an example of an automobile.
  • the automobile 2980 includes a vehicle body 2981, wheels 2982, a dashboard 2983, lights 2984, and the like.
  • the automobile 2980 includes an antenna, a battery, and the like.
  • An information terminal 2910 illustrated in FIG. 34B includes a housing 2911, a display portion 2912, a microphone 2917, a speaker portion 2914, a camera 2913, an external connection portion 2916, an operation switch 2915, and the like.
  • the display portion 2912 includes a display panel using a flexible substrate and a touch screen.
  • the information terminal 2910 includes an antenna, a battery, and the like inside the housing 2911.
  • the information terminal 2910 can be used as, for example, a smartphone, a mobile phone, a tablet information terminal, a tablet personal computer, an electronic book terminal, or the like.
  • a laptop personal computer 2920 illustrated in FIG. 34C includes a housing 2921, a display portion 2922, a keyboard 2923, a pointing device 2924, and the like.
  • the laptop personal computer 2920 includes an antenna, a battery, and the like inside the housing 2921.
  • a video camera 2940 illustrated in FIG. 34D includes a housing 2941, a housing 2942, a display portion 2944, operation switches 2944, a lens 2945, a connection portion 2946, and the like.
  • the operation switch 2944 and the lens 2945 are provided on the housing 2941
  • the display portion 2944 is provided on the housing 2942.
  • the video camera 2940 includes an antenna, a battery, and the like inside the housing 2941.
  • the housing 2941 and the housing 2942 are connected to each other by a connection portion 2946.
  • the angle between the housing 2941 and the housing 2942 can be changed by the connection portion 2946.
  • the orientation of the image displayed on the display portion 2943 can be changed, and display / non-display of the image can be switched.
  • FIG. 34E illustrates an example of a bangle information terminal.
  • the information terminal 2950 includes a housing 2951, a display portion 2952, and the like.
  • the information terminal 2950 includes an antenna, a battery, and the like inside the housing 2951.
  • the display portion 2952 is supported by a housing 2951 having a curved surface. Since the display portion 2952 includes a display panel using a flexible substrate, an information terminal 2950 that is flexible, light, and easy to use can be provided.
  • FIG. 34F illustrates an example of a wristwatch type information terminal.
  • the information terminal 2960 includes a housing 2961, a display portion 2962, a band 2963, a buckle 2964, an operation switch 2965, an input / output terminal 2966, and the like.
  • the information terminal 2960 includes an antenna, a battery, and the like inside the housing 2961.
  • the information terminal 2960 can execute various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games.
  • the display surface of the display portion 2962 is curved, and display can be performed along the curved display surface.
  • the display portion 2962 includes a touch sensor and can be operated by touching the screen with a finger, a stylus, or the like.
  • an application can be started by touching an icon 2967 displayed on the display unit 2962.
  • the operation switch 2965 can have various functions such as time setting, power on / off operation, wireless communication on / off operation, manner mode execution and release, and power saving mode execution and release. .
  • the function of the operation switch 2965 can be set by an operating system incorporated in the information terminal 2960.
  • the information terminal 2960 can execute short-range wireless communication based on a communication standard. For example, it is possible to talk hands-free by communicating with a headset capable of wireless communication. Further, the information terminal 2960 includes an input / output terminal 2966, and can directly exchange data with other information terminals via a connector. Charging can also be performed via the input / output terminal 2966. Note that the charging operation may be performed by wireless power feeding without using the input / output terminal 2966.
  • a memory device including the semiconductor device of one embodiment of the present invention can hold control information, a control program, and the like of the above electronic devices for a long period.
  • a highly reliable electronic device can be realized.
  • the density, crystallinity, and flatness of the hafnium oxide film formed by a sputtering method were analyzed.
  • the flatness was measured and observed using an atomic force microscope (AFM).
  • the crystallinity was analyzed using X-ray diffraction (XRD: X-Ray Diffraction).
  • Sample 1A, Sample 1B, Sample 1C, Sample 1D, Sample 1E, Sample 1F, Sample 1G, and Sample 1H were prepared and analyzed.
  • FIG. 35 shows a laminated structure of each sample.
  • Sample 1A, Sample 1B, Sample 1C, Sample 1D, Sample 1E, Sample 1F, Sample 1G, and Sample 1H are a substrate 910, an insulator 912 on the substrate 910, and an insulator 914 on the insulator 912, respectively.
  • the following table shows the film formation temperature of the insulator 914 in the samples 1A to 1H.
  • a silicon wafer was prepared as the substrate 910.
  • a silicon oxide film having a thickness of 100 nm was formed as the insulator 912 over the substrate 910 by a thermal oxidation method.
  • a hafnium oxide film with a thickness of 5 nm was formed as the insulator 914 over the insulator 912 using a sputtering apparatus.
  • the hafnium oxide film is formed using a hafnium oxide target in a mixed atmosphere of oxygen (O 2 ) and argon (Ar) or in an oxygen (O 2 ) atmosphere, at a pressure of 0.7 Pa, and the target and the substrate.
  • RF power
  • FIG. 36 shows bright-field images (hereinafter also referred to as TEM images) of Sample 1A to Sample 1H, which are obtained by a scanning transmission electron microscope (STEM: Scanning Transmission Electron Microscope).
  • STEM scanning transmission electron microscope
  • the TEM image was acquired using a scanning transmission electron microscope HD-2700 manufactured by Hitachi High-Technologies Corporation, with an acceleration voltage of 200 kV and a beam diameter of about 0.4 nm ⁇ .
  • FIG. 36 shows that when the oxygen flow rate ratio is the same, the higher the film formation temperature, the higher the crystallinity. Further, FIG. 36 shows that when the film formation temperature is the same, the film flatness tends to be increased by performing the film formation in a mixed atmosphere containing oxygen.
  • the insulator 914 of the sample 1E and the sample 1F it was observed that a shape having a recess or a protrusion was formed between one of the crystal regions and another crystal region or an amorphous region. . Further, the interface between the insulator 912 and the insulator 914 was observed in a state of being less clear than the sample 1A or the sample 1B. The shape is considered to be due to the fact that the surface of the film is raised and the flatness of the film is lowered when each crystal region grows. Further, when Samples 1E to 1H were compared, it was observed that as the film formation temperature was closer to 150 ° C., one of the crystal regions tended to be larger and the film surface had less unevenness.
  • the insulator 914 of Samples 1A to 1D has a flat film surface.
  • the interface between the insulator 912 and the insulator 914 was clearly observed.
  • the root mean square roughness (RMS) of Sample 1A was 2.5 ⁇ 10 ⁇ 1 nm (before heating).
  • Sample 1D had a root mean square roughness (RMS) of 2.9 ⁇ 10 ⁇ 1 nm (before heating).
  • Sample 1E had a root mean square roughness (RMS) of 4.3 ⁇ 10 ⁇ 1 nm (before heating).
  • Sample 1H had a root mean square roughness (RMS) of 4.7 ⁇ 10 ⁇ 1 nm (before heating).
  • Sample 1A and Sample 1D have higher flatness than Sample 1E and Sample 1H. Therefore, it was found that a hafnium oxide film using a sputtering method can be formed in a mixed atmosphere containing oxygen to form a film with high flatness.
  • the hafnium oxide film using the sputtering method has a root mean square roughness (RMS) of 0.40 nm or less in a measurement range of 1 ⁇ m ⁇ 1 ⁇ m by appropriately setting the deposition conditions. It was.
  • RMS root mean square roughness
  • a circular (ring-shaped) pattern may be observed.
  • a circular (ring-shaped) pattern is observed even for a substance having a microcrystal close to an amorphous structure depending on measurement conditions such as a beam diameter used (for example, an electron beam having a beam diameter of about 50 nm ⁇ or more). There is a case.
  • a beam diameter used for example, an electron beam having a beam diameter of about 50 nm ⁇ or more.
  • FIG. 38 shows the results of acquiring electron diffraction patterns of Sample 1A, Sample 1D, Sample 1E, and Sample 1H.
  • Sample 1A is an electron beam diffraction pattern at a point A shown in the cross-sectional TEM image
  • sample 1D is an electron beam diffraction pattern at a point D shown in the cross-sectional TEM image
  • sample 1E is a point E shown in the cross-sectional TEM image.
  • the electron beam diffraction pattern of the location shown in FIG. 1 and the sample 1H obtained the electron beam diffraction pattern of the location shown at point A shown in the cross-sectional TEM image.
  • Sample 1H showed a diffraction pattern including spots presumed to originate from the crystal structure. Therefore, it can be presumed that the sample 1E has a polycrystalline region made up of microcrystals in which the grain size of one microcrystal is larger than that of the samples 1A and 1D, or the ratio of microcrystals is high. Sample 1H is considered to have a larger single crystallite grain size or a higher proportion of polycrystalline regions than sample 1E.
  • a hafnium oxide film using a sputtering method can be formed into a film having low crystallinity by using a mixed gas containing oxygen. Further, it has been found that a hafnium oxide film using a sputtering method can form a film having lower crystallinity as the deposition temperature is lower.
  • FIG. 39 shows the laminated structure of each sample.
  • Sample 2A, Sample 2B, Sample 2C, Sample 2D, Sample 2E, Sample 2F, Sample 2G, and Sample 2H are a substrate 920, an insulator 922 on the substrate 920, and an insulator 924 on the insulator 922, respectively.
  • hafnium oxide films having different film formation conditions were used as the insulator 924.
  • the following table shows the film formation temperature of the insulator 924 in Samples 2A to 2H.
  • a silicon wafer was prepared as the substrate 920.
  • a silicon oxide film with a thickness of 100 nm was formed as the insulator 922 by a thermal oxidation method over the substrate 920.
  • samples 2A to 2H were subjected to heat treatment at 600 ° C. for 1 hour in a nitrogen atmosphere.
  • a hafnium oxide film with a thickness of 5 nm was formed as the insulator 924 over the insulator 922 by using a sputtering apparatus.
  • the hafnium oxide film is formed using a hafnium oxide target in a mixed atmosphere of oxygen (O 2 ) and argon (Ar) or in an oxygen (O 2 ) atmosphere, at a pressure of 0.7 Pa, and the target and the substrate.
  • the distance between and was set to 60 mm, and 2.5 kW of power (RF) was applied to form a film.
  • the oxygen flow rate ratio of the sputtering gas and the film formation temperature were in accordance with the above table.
  • FIG. 40 shows the results of TDS analysis before and after the heat treatment for Samples 2A to 2H.
  • FIG. 40 shows the amount of released oxygen [pieces / cm 2 ] for each sample.
  • the release of oxygen was confirmed in the insulator 922 in Samples 2A to 2H before the heat treatment. That is, it was found that by forming the insulator 924, an excess oxygen region is formed in the insulator 922. In particular, it was confirmed that by depositing the insulator 924 in a mixed atmosphere containing oxygen, excess oxygen can be transferred to the insulator 922 more efficiently than in a film containing only oxygen.

Landscapes

  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

The present invention provides a semiconductor device having stable electrical properties. The present invention also provides a semiconductor device having high reliability. This semiconductor device has a gate electrode, a source electrode, a drain electrode, an oxide semiconductor having a channel formation region, and a gate insulator. The gate insulator has a first layer contacting the channel formation region and a second layer on the first layer, wherein the second layer is a metal oxide, and the metal oxide has a root mean square (RMS) surface roughness of 0.4 nm or less in a measurement range of 1000 nm x 1000 nm.

Description

半導体装置、および半導体装置の作製方法Semiconductor device and manufacturing method of semiconductor device

本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュールおよび電子機器に関する。 One embodiment of the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device. One embodiment of the present invention relates to a semiconductor wafer, a module, and an electronic device.

なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置および電子機器などは、半導体装置を有すると言える場合がある。 Note that in this specification and the like, a semiconductor device refers to any device that can function by utilizing semiconductor characteristics. A semiconductor element such as a transistor, a semiconductor circuit, an arithmetic device, and a memory device are one embodiment of the semiconductor device. A display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like may include a semiconductor device.

なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。 Note that one embodiment of the present invention is not limited to the above technical field. One embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).

近年、半導体装置の開発が進められ、LSIやCPUやメモリが広く用いられている。CPUは、半導体ウエハから切り離された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体をなす。 In recent years, semiconductor devices have been developed, and LSIs, CPUs, and memories are widely used. The CPU has a semiconductor integrated circuit (at least a transistor and a memory) separated from a semiconductor wafer, and forms an assembly of semiconductor elements on which electrodes serving as connection terminals are formed.

LSIやCPUやメモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線板に実装され、様々な電子機器の部品の一つとして用いられる。 A semiconductor circuit (IC chip) such as an LSI, a CPU, or a memory is mounted on a circuit board, for example, a printed wiring board, and used as one of various electronic device components.

また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。 In addition, a technique for forming a transistor using a semiconductor thin film formed over a substrate having an insulating surface has attracted attention. The transistor is widely applied to electronic devices such as an integrated circuit (IC) and an image display device (also simply referred to as a display device). A silicon-based semiconductor material is widely known as a semiconductor thin film applicable to a transistor, but an oxide semiconductor has attracted attention as another material.

また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。 A transistor using an oxide semiconductor is known to have extremely small leakage current in a non-conduction state. For example, a low power consumption CPU using a characteristic that a transistor including an oxide semiconductor has low leakage current is disclosed (see Patent Document 1).

また、トランジスタのキャリア移動度の向上を目的として、電子親和力(または伝導帯下端準位)が異なる酸化物半導体層を積層させる技術が開示されている(特許文献2及び特許文献3参照)。 In addition, for the purpose of improving the carrier mobility of a transistor, a technique of stacking oxide semiconductor layers having different electron affinities (or conduction band bottom levels) is disclosed (see Patent Document 2 and Patent Document 3).

また、近年では電子機器の小型化、軽量化に伴い、トランジスタなどを高密度に集積した集積回路の要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。 In recent years, with the miniaturization and weight reduction of electronic devices, there is an increasing demand for integrated circuits in which transistors and the like are integrated at high density. There is also a need for improved productivity of semiconductor devices including integrated circuits.

特開2012−257187号公報JP 2012-257187 A 特開2011−124360号公報JP 2011-124360 A 特開2011−138934号公報JP 2011-138934 A

本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。 An object of one embodiment of the present invention is to provide a semiconductor device having favorable electrical characteristics. An object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated. An object of one embodiment of the present invention is to provide a semiconductor device with high productivity.

本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、情報の書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。 An object of one embodiment of the present invention is to provide a semiconductor device capable of holding data for a long period of time. An object of one embodiment of the present invention is to provide a semiconductor device with high information writing speed. An object of one embodiment of the present invention is to provide a semiconductor device with high design freedom. An object of one embodiment of the present invention is to provide a semiconductor device capable of suppressing power consumption. An object of one embodiment of the present invention is to provide a novel semiconductor device.

なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 Note that the description of these problems does not disturb the existence of other problems. Note that one embodiment of the present invention does not have to solve all of these problems. Issues other than these will be apparent from the description of the specification, drawings, claims, etc., and other issues can be extracted from the descriptions of the specification, drawings, claims, etc. It is.

本発明の一態様は、ゲート電極と、ソース電極と、ドレイン電極と、チャネル形成領域を有する酸化物半導体と、ゲート絶縁体と、を有し、ゲート絶縁体は、チャネル形成領域と接する第1の層、および第1の層上に第2の層を有し、第2の層は金属酸化物であり、金属酸化物は、自乗平均面粗さ(RMS)が、1μm×1μmの測定範囲において、0.4nm以下である。 One embodiment of the present invention includes a gate electrode, a source electrode, a drain electrode, an oxide semiconductor including a channel formation region, and a gate insulator, and the gate insulator is in contact with the channel formation region. And a second layer on the first layer, the second layer is a metal oxide, and the metal oxide has a root mean square roughness (RMS) of 1 μm × 1 μm. In this case, it is 0.4 nm or less.

本発明の一態様は、ゲート電極と、ソース電極と、ドレイン電極と、チャネル形成領域を有する酸化物半導体と、ゲート絶縁体と、を有し、ゲート絶縁体は、チャネル形成領域と接する第1の層、および第1の層上に第2の層を有し、第2の層は金属酸化物であり、金属酸化物に対する電子顕微鏡を用いた電子線回折において、リング状のパターンが観測される。 One embodiment of the present invention includes a gate electrode, a source electrode, a drain electrode, an oxide semiconductor including a channel formation region, and a gate insulator, and the gate insulator is in contact with the channel formation region. And a second layer on the first layer, and the second layer is a metal oxide, and a ring-shaped pattern is observed in electron diffraction using an electron microscope for the metal oxide. The

上記において、金属酸化物は、ハフニウムアルミネート、または酸化ハフニウムである。 In the above, the metal oxide is hafnium aluminate or hafnium oxide.

上記において、酸化ハフニウムは、スパッタリング法により、酸素を含む混合雰囲気下において、130℃以下の成膜温度で、成膜される。 In the above, hafnium oxide is deposited by sputtering at a deposition temperature of 130 ° C. or lower in a mixed atmosphere containing oxygen.

上記において、第1の層は、酸化シリコンであり、TDS分析において酸素分子の脱離量が1.0×1019atoms/cm以上である。 In the above, the first layer is silicon oxide, and the amount of desorbed oxygen molecules is 1.0 × 10 19 atoms / cm 3 or more in the TDS analysis.

本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。本発明の一態様により、生産性の高い半導体装置を提供することができる。 According to one embodiment of the present invention, a semiconductor device having favorable electrical characteristics can be provided. According to one embodiment of the present invention, a semiconductor device that can be miniaturized or highly integrated can be provided. According to one embodiment of the present invention, a highly productive semiconductor device can be provided.

または、長期間においてデータの保持が可能な半導体装置を提供することができる。または、データの書き込み速度が速い半導体装置を提供することができる。または、設計自由度が高い半導体装置を提供することができる。または、消費電力を抑えることができる半導体装置を提供することができる。または、新規な半導体装置を提供することができる。 Alternatively, a semiconductor device capable of holding data for a long period can be provided. Alternatively, a semiconductor device with high data writing speed can be provided. Alternatively, a semiconductor device with a high degree of design freedom can be provided. Alternatively, a semiconductor device that can reduce power consumption can be provided. Alternatively, a novel semiconductor device can be provided.

なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention need not have all of these effects. It should be noted that the effects other than these are naturally obvious from the description of the specification, drawings, claims, etc., and it is possible to extract the other effects from the descriptions of the specification, drawings, claims, etc. It is.

本発明の一態様に係る半導体装置の上面図および断面図。4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の断面図。FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の上面図および断面図。4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の上面図および断面図。4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の上面図および断面図。4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の上面図および断面図。4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の回路図および断面図。4A and 4B are a circuit diagram and a cross-sectional view of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の回路図および断面図。4A and 4B are a circuit diagram and a cross-sectional view of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の構成を示す断面図。FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の構成を示す断面図。FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の回路図および断面図。4A and 4B are a circuit diagram and a cross-sectional view of a memory device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の構成を示す断面図。FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の構成を示す断面図。FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の構成例を示すブロック図。FIG. 10 is a block diagram illustrating a structure example of a memory device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の構成例を示す回路図。FIG. 10 is a circuit diagram illustrating a structural example of a memory device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の構成例を示すブロック図。FIG. 10 is a block diagram illustrating a structure example of a memory device according to one embodiment of the present invention. 本発明の一態様に係る記憶装置の構成例を示すブロック図および回路図。4A and 4B are a block diagram and a circuit diagram illustrating a structure example of a memory device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の構成例を示すブロック図。FIG. 10 is a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の構成例を示すブロック図、回路図、および半導体装置の動作例を示すタイミングチャート。10A and 10B are a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention, a circuit diagram, and a timing chart illustrating an operation example of the semiconductor device. 本発明の一態様に係る半導体装置の構成例を示すブロック図。FIG. 10 is a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention. 本発明の一態様に係る半導体装置の構成例を示す回路図、および半導体装置の動作例を示すタイミングチャート。4A and 4B are a circuit diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention, and a timing chart illustrating an operation example of the semiconductor device. 本発明の一態様に係るAIシステムの構成例を示すブロック図。1 is a block diagram illustrating a configuration example of an AI system according to one embodiment of the present invention. 本発明の一態様に係るAIシステムの応用例を説明するブロック図。FIG. 10 is a block diagram illustrating an application example of an AI system according to one embodiment of the present invention. 本発明の一態様に係るAIシステムを組み込んだICの構成例を示す斜視模式図。FIG. 10 is a schematic perspective view illustrating a configuration example of an IC incorporating an AI system according to one embodiment of the present invention. 本発明の一態様に係る電子機器を示す図。FIG. 14 illustrates an electronic device according to one embodiment of the present invention. 実施例に係る試料の断面を説明する図。The figure explaining the cross section of the sample which concerns on an Example. 実施例に係る試料の断面TEM像を説明する図。The figure explaining the cross-sectional TEM image of the sample which concerns on an Example. 実施例に係る試料のDFM測定の結果を説明する図。The figure explaining the result of the DFM measurement of the sample concerning an example. 実施例に係る試料の断面TEM像および電子線回折パターンの結果を説明する図。The figure explaining the result of the cross-sectional TEM image and electron-beam diffraction pattern of the sample which concerns on an Example. 実施例に係る試料の断面を説明する図。The figure explaining the cross section of the sample which concerns on an Example. 実施例に係る試料のTDS測定の結果を説明する図。The figure explaining the result of the TDS measurement of the sample which concerns on an Example.

以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments will be described with reference to the drawings. However, the embodiments can be implemented in many different modes, and it is easily understood by those skilled in the art that the modes and details can be variously changed without departing from the spirit and scope thereof. . Therefore, the present invention should not be construed as being limited to the description of the following embodiments.

また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために省略して示すことがある。また、図面において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。 In the drawings, the size, the layer thickness, or the region is exaggerated for simplicity in some cases. Therefore, it is not necessarily limited to the scale. The drawings schematically show an ideal example, and are not limited to the shapes or values shown in the drawings. For example, in an actual manufacturing process, a layer or a resist mask may be lost unintentionally by a process such as etching, but may be omitted for easy understanding. In the drawings, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. In addition, in the case where the same function is indicated, the hatch pattern is the same, and there is a case where no reference numeral is given.

また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。 In particular, in a top view (also referred to as a “plan view”), a perspective view, and the like, some components may not be described in order to facilitate understanding of the invention. Moreover, description of some hidden lines may be omitted.

また、本明細書などにおいて、第1、第2等として付される序数詞は便宜上用いるものであり、工程順又は積層順を示すものではない。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。 In this specification and the like, the ordinal numbers attached as the first, second, etc. are used for convenience and do not indicate the order of steps or the order of lamination. Therefore, for example, the description can be made by appropriately replacing “first” with “second” or “third”. In addition, the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one embodiment of the present invention.

また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。 In addition, in this specification, terms indicating arrangement such as “above” and “below” are used for convenience to describe the positional relationship between components with reference to the drawings. Moreover, the positional relationship between components changes suitably according to the direction which draws each structure. Therefore, the present invention is not limited to the words and phrases described in the specification, and can be appropriately rephrased depending on the situation.

例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。 For example, in this specification and the like, when X and Y are explicitly described as being connected, X and Y are electrically connected, and X and Y are functional. And the case where X and Y are directly connected are disclosed in this specification and the like. Therefore, it is not limited to a predetermined connection relationship, for example, the connection relationship shown in the figure or text, and anything other than the connection relation shown in the figure or text is also described in the figure or text.

ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。 Here, X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).

XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。 As an example of the case where X and Y are directly connected, an element that enables electrical connection between X and Y (for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.) Element, light emitting element, load, etc.) are not connected between X and Y, and elements (for example, switches, transistors, capacitive elements, inductors) that enable electrical connection between X and Y X and Y are not connected via a resistor element, a diode, a display element, a light emitting element, a load, or the like.

XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。 As an example of the case where X and Y are electrically connected, an element (for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.) that enables electrical connection between X and Y is shown. More than one element, light emitting element, load, etc.) can be connected between X and Y. Note that the switch has a function of controlling on / off. That is, the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current. Alternatively, the switch has a function of selecting and switching a path through which a current flows. Note that the case where X and Y are electrically connected includes the case where X and Y are directly connected.

XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。 As an example of the case where X and Y are functionally connected, a circuit (for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc. Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes signal potential level, etc.), voltage source, current source, switching Circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, memory circuit, control circuit, etc.) One or more can be connected between them. As an example, even if another circuit is interposed between X and Y, if the signal output from X is transmitted to Y, X and Y are functionally connected. To do. Note that the case where X and Y are functionally connected includes the case where X and Y are directly connected and the case where X and Y are electrically connected.

また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル形成領域を有しており、チャネル形成領域を介して、ソースとドレインとの間に、電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。 In this specification and the like, a transistor is an element having at least three terminals including a gate, a drain, and a source. A channel formation region is provided between the drain (drain terminal, drain region or drain electrode) and the source (source terminal, source region or source electrode), and between the source and drain via the channel formation region. In addition, a current can flow. Note that in this specification and the like, a channel formation region refers to a region through which a current mainly flows.

また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。 In addition, the functions of the source and drain may be switched when transistors having different polarities are employed or when the direction of current changes during circuit operation. Therefore, in this specification and the like, the terms “source” and “drain” may be used interchangeably.

なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。 Note that the channel length refers to, for example, a region where a semiconductor (or a portion where current flows in the semiconductor when the transistor is on) and a gate electrode overlap with each other in a top view of the transistor, or a region where a channel is formed The distance between the source (source region or source electrode) and the drain (drain region or drain electrode) in FIG. Note that in one transistor, the channel length is not necessarily the same in all regions. That is, the channel length of one transistor may not be fixed to one value. Therefore, in this specification, the channel length is any one of values, the maximum value, the minimum value, or the average value in a region where a channel is formed.

チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。 The channel width is, for example, that a source and a drain face each other in a region where a semiconductor (or a portion where current flows in the semiconductor when the transistor is on) and a gate electrode overlap each other, or in a region where a channel is formed This is the length of the part. Note that in one transistor, the channel width is not necessarily the same in all regions. That is, the channel width of one transistor may not be fixed to one value. Therefore, in this specification, the channel width is any one of values, the maximum value, the minimum value, or the average value in a region where a channel is formed.

なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。 Note that depending on the structure of the transistor, the channel width in a region where a channel is actually formed (hereinafter also referred to as “effective channel width”) and the channel width (hereinafter “apparently” shown in the top view of the transistor). Sometimes referred to as “channel width”). For example, when the gate electrode covers the side surface of the semiconductor, the effective channel width may be larger than the apparent channel width, and the influence may not be negligible. For example, in a fine transistor whose gate electrode covers a side surface of a semiconductor, the ratio of a channel formation region formed on the side surface of the semiconductor may increase. In that case, the effective channel width is larger than the apparent channel width.

このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。 In such a case, it may be difficult to estimate the effective channel width by actual measurement. For example, in order to estimate the effective channel width from the design value, it is necessary to assume that the shape of the semiconductor is known. Therefore, it is difficult to accurately measure the effective channel width when the shape of the semiconductor is not accurately known.

そこで、本明細書では、見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。 Therefore, in this specification, the apparent channel width may be referred to as “surrounded channel width (SCW)”. In this specification, in the case where the term “channel width” is simply used, it may denote an enclosed channel width or an apparent channel width. Alternatively, in this specification, in the case where the term “channel width” is simply used, it may denote an effective channel width. Note that the channel length, channel width, effective channel width, apparent channel width, enclosed channel width, and the like can be determined by analyzing a cross-sectional TEM image or the like.

なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。 Note that the impurity of the semiconductor means, for example, a component other than the main component constituting the semiconductor. For example, an element having a concentration of less than 0.1 atomic% can be said to be an impurity. When the impurities are included, for example, DOS (Density of States) of the semiconductor may increase or crystallinity may decrease. In the case where the semiconductor is an oxide semiconductor, examples of the impurity that changes the characteristics of the semiconductor include a Group 1 element, a Group 2 element, a Group 13 element, a Group 14 element, a Group 15 element, and an oxide semiconductor. There are transition metals other than the main components of, for example, hydrogen, lithium, sodium, silicon, boron, phosphorus, carbon, nitrogen and the like. In the case of an oxide semiconductor, water may also function as an impurity. In the case of an oxide semiconductor, oxygen vacancies may be formed, for example, by mixing impurities. In the case where the semiconductor is silicon, examples of impurities that change the characteristics of the semiconductor include group 1 elements, group 2 elements, group 13 elements, and group 15 elements excluding oxygen and hydrogen.

なお、本明細書等において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多いものである。例えば、好ましくは酸素が55原子%以上65原子%以下、窒素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多いものである。例えば、好ましくは窒素が55原子%以上65原子%以下、酸素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。 Note that in this specification and the like, a silicon oxynitride film has a higher oxygen content than nitrogen in its composition. For example, preferably oxygen is 55 atomic% to 65 atomic%, nitrogen is 1 atomic% to 20 atomic%, silicon is 25 atomic% to 35 atomic%, and hydrogen is 0.1 atomic% to 10 atomic%. It is included in the concentration range. The silicon nitride oxide film has a nitrogen content higher than that of oxygen. For example, preferably, nitrogen is 55 atomic% to 65 atomic%, oxygen is 1 atomic% to 20 atomic%, silicon is 25 atomic% to 35 atomic%, and hydrogen is 0.1 atomic% to 10 atomic%. It is included in the concentration range.

また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。 In this specification and the like, the terms “film” and “layer” can be interchanged with each other. For example, the term “conductive layer” may be changed to the term “conductive film”. Alternatively, for example, the term “insulating film” may be changed to the term “insulating layer” in some cases.

また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。 In this specification and the like, the term “insulator” can be restated as an insulating film or an insulating layer. In addition, the term “conductor” can be restated as a conductive film or a conductive layer. In addition, the term “semiconductor” can be restated as a semiconductor film or a semiconductor layer.

また、本明細書等に示すトランジスタは、明示されている場合を除き、電界効果トランジスタとする。また、本明細書等に示すトランジスタは、明示されている場合を除き、nチャネル型のトランジスタとする。よって、そのしきい値電圧(「Vth」ともいう。)は、明示されている場合を除き、0Vよりも大きいものとする。 The transistors described in this specification and the like are field-effect transistors unless otherwise specified. The transistors described in this specification and the like are n-channel transistors unless otherwise specified. Therefore, the threshold voltage (also referred to as “Vth”) is assumed to be greater than 0 V unless otherwise specified.

また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。 Further, in this specification and the like, “parallel” means a state in which two straight lines are arranged at an angle of −10 ° to 10 °. Therefore, the case of −5 ° to 5 ° is also included. Further, “substantially parallel” means a state in which two straight lines are arranged at an angle of −30 ° to 30 °. “Vertical” refers to a state in which two straight lines are arranged at an angle of 80 ° to 100 °. Therefore, the case of 85 ° to 95 ° is also included. Further, “substantially vertical” means a state in which two straight lines are arranged at an angle of 60 ° to 120 °.

また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す。 In this specification, when a crystal is trigonal or rhombohedral, it is represented as a hexagonal system.

なお、本明細書において、バリア膜とは、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。 Note that in this specification, a barrier film is a film having a function of suppressing permeation of impurities such as hydrogen and oxygen, and when the barrier film has conductivity, the barrier film is referred to as a conductive barrier film. There is.

本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。OS FETと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。 In this specification and the like, a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OS), and the like. For example, in the case where a metal oxide is used for an active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. In the case of describing as an OS FET, it can be referred to as a transistor including an oxide or an oxide semiconductor.

(実施の形態1)
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
(Embodiment 1)
Hereinafter, an example of a semiconductor device including the transistor 200 according to one embodiment of the present invention will be described.

<半導体装置の構成例>
図1(A)、図1(B)、および図1(C)は、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。
<Configuration example of semiconductor device>
1A, 1B, and 1C are a top view and a cross-sectional view of the transistor 200 and the periphery of the transistor 200 according to one embodiment of the present invention.

図1(A)は、トランジスタ200を有する半導体装置の上面図である。また、図1(B)、および図1(C)は該半導体装置の断面図である。ここで、図1(B)は、図1(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1(C)は、図1(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。 FIG. 1A is a top view of a semiconductor device including a transistor 200. FIG. 1B and 1C are cross-sectional views of the semiconductor device. Here, FIG. 1B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 1A and also a cross-sectional view in the channel length direction of the transistor 200. FIG. 1C is a cross-sectional view taken along the dashed-dotted line A3-A4 in FIG. 1A and is a cross-sectional view in the channel width direction of the transistor 200. In the top view of FIG. 1A, some elements are omitted for clarity.

本発明の一態様の半導体装置は、トランジスタ200と、層間膜として機能する絶縁体210、絶縁体212、絶縁体280を有する。また、トランジスタ200と電気的に接続し、配線として機能する導電体203(導電体203a、および導電体203b)、およびプラグとして機能する導電体240(導電体240a、および導電体240b)とを有する。 The semiconductor device of one embodiment of the present invention includes the transistor 200, the insulator 210 functioning as an interlayer film, the insulator 212, and the insulator 280. In addition, a conductor 203 (a conductor 203a and a conductor 203b) which is electrically connected to the transistor 200 and functions as a wiring, and a conductor 240 (a conductor 240a and a conductor 240b) which functions as a plug are included. .

なお、導電体203は、絶縁体212の開口の内壁に接して導電体203aが形成され、さらに内側に導電体203bが形成されている。ここで、導電体203の上面の高さと、絶縁体212の上面の高さは同程度にできる。なお、トランジスタ200では、導電体203aおよび導電体203bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体203bのみを設ける構成にしてもよい。 Note that the conductor 203 is formed with a conductor 203a in contact with the inner wall of the opening of the insulator 212, and further has a conductor 203b formed inside. Here, the height of the upper surface of the conductor 203 and the height of the upper surface of the insulator 212 can be approximately the same. Note that although the transistor 200 has a structure in which the conductor 203a and the conductor 203b are stacked, the present invention is not limited to this. For example, only the conductor 203b may be provided.

また、導電体240は、絶縁体280の開口の内壁に接して形成されている。ここで、導電体240の上面の高さと、絶縁体280の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240が単層である構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240は、2層以上の積層構造でもよい。 The conductor 240 is formed in contact with the inner wall of the opening of the insulator 280. Here, the height of the upper surface of the conductor 240 and the height of the upper surface of the insulator 280 can be approximately the same. Note that although the transistor 200 has a structure in which the conductor 240 is a single layer, the present invention is not limited to this. For example, the conductor 240 may have a stacked structure of two or more layers.

[トランジスタ200]
図1に示すように、トランジスタ200は、基板(図示せず)の上に配置された絶縁体214および絶縁体216と、絶縁体214および絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体220と、絶縁体220の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230(酸化物230a、酸化物230b、および酸化物230c)と、酸化物230の上に配置された絶縁体250と、絶縁体250上に配置された絶縁体252と、絶縁体252の上に配置された導電体260(導電体260a、および導電体260b)と、導電体260の上に配置された絶縁体270と、少なくとも絶縁体250、および導電体260の側面に接して配置された絶縁体272と、酸化物230、および絶縁体272と接して配置された絶縁体274と、を有する。
[Transistor 200]
As shown in FIG. 1, the transistor 200 includes an insulator 214 and an insulator 216 which are disposed over a substrate (not shown), and a conductor 205 which is disposed so as to be embedded in the insulator 214 and the insulator 216. An insulator 220 disposed on the insulator 216 and the conductor 205, an insulator 222 disposed on the insulator 220, an insulator 224 disposed on the insulator 222, and an insulator Oxide 230 (oxide 230a, oxide 230b, and oxide 230c) disposed over 224, insulator 250 disposed over oxide 230, and insulator disposed over insulator 250 252, a conductor 260 (conductor 260a and conductor 260b) disposed on the insulator 252, an insulator 270 disposed on the conductor 260, at least the insulator 250, And has an insulator 272 which is arranged in contact with a side surface of the conductor 260, the oxide 230 insulator 274 and disposed in contact with the insulator 272, and.

なお、トランジスタ200では、酸化物230a、および酸化物230b、および酸化物230cを積層する構成について示しているが、本発明はこれに限られるものではない。酸化物230bの単層、酸化物230bと酸化物230aの2層構造、酸化物230bと酸化物230cの2層構造、または3層以上の積層構造を設ける構成にしてもよい。また、トランジスタ200では、導電体260aおよび導電体260bを積層する構成について示しているが、本発明はこれに限られるものではない。 Note that although the transistor 200 has a structure in which the oxide 230a, the oxide 230b, and the oxide 230c are stacked, the present invention is not limited to this. A single layer of the oxide 230b, a two-layer structure of the oxide 230b and the oxide 230a, a two-layer structure of the oxide 230b and the oxide 230c, or a stacked structure of three or more layers may be provided. In the transistor 200, the structure in which the conductors 260a and 260b are stacked is described; however, the present invention is not limited to this.

また、図1(B)における破線で囲む、チャネル近傍の領域239の拡大図を図2に示す。 FIG. 2 is an enlarged view of a region 239 in the vicinity of the channel surrounded by a broken line in FIG.

図2に示すように、酸化物230は、トランジスタ200のチャネル形成領域として機能する領域234と、ソース領域またはドレイン領域として機能する領域231(領域231a、および領域231b)との間に、領域232(領域232a、および領域232b)を有する。ソース領域またはドレイン領域として機能する領域231は、キャリア密度が高い、低抵抗化した領域である。また、チャネル形成領域として機能する領域234は、ソース領域またはドレイン領域として機能する領域231よりも、キャリア密度が低い領域である。また、領域232は、ソース領域またはドレイン領域として機能する領域231よりもキャリア密度が低く、チャネル形成領域として機能する領域234よりもキャリア密度が高い領域である。すなわち、領域232は、チャネル形成領域と、ソース領域またはドレイン領域との間の接合領域(junction region)としての機能を有する。なお、領域232は、ゲート電極として機能する導電体260と重なる、いわゆるオーバーラップ領域(Lov領域ともいう)として機能する場合がある。 As illustrated in FIG. 2, the oxide 230 includes a region 232 between a region 234 functioning as a channel formation region of the transistor 200 and a region 231 (region 231a and region 231b) functioning as a source region or a drain region. (Region 232a and region 232b). The region 231 functioning as a source region or a drain region is a region with high carrier density and low resistance. The region 234 functioning as a channel formation region is a region having a lower carrier density than the region 231 functioning as a source region or a drain region. The region 232 has a lower carrier density than the region 231 that functions as a source region or a drain region and a higher carrier density than the region 234 that functions as a channel formation region. That is, the region 232 functions as a junction region between the channel formation region and the source region or the drain region. Note that the region 232 may function as a so-called overlap region (also referred to as a Lov region) which overlaps with the conductor 260 functioning as a gate electrode.

接合領域を設けることで、ソース領域またはドレイン領域として機能する領域231と、チャネル形成領域として機能する領域234との間に高抵抗領域が形成されず、トランジスタのオン電流を大きくすることができる。 By providing the junction region, a high resistance region is not formed between the region 231 functioning as a source region or a drain region and the region 234 functioning as a channel formation region, so that the on-state current of the transistor can be increased.

ここで、トランジスタ200において、酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流(オフ電流)が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。 Here, in the transistor 200, the oxide 230 is preferably a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor). Since a transistor including an oxide semiconductor has extremely small leakage current (off-state current) in a non-conduction state, a semiconductor device with low power consumption can be provided. An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.

一方で、酸化物半導体を用いたトランジスタは、酸化物半導体中の不純物及び酸素欠損によって、その電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。従って、酸素欠損が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の酸素欠損はできる限り低減されていることが好ましい。 On the other hand, in a transistor including an oxide semiconductor, its electrical characteristics are likely to vary due to impurities and oxygen vacancies in the oxide semiconductor, and reliability may deteriorate. In addition, hydrogen contained in the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases. When hydrogen enters the oxygen vacancies, electrons serving as carriers may be generated. Therefore, a transistor including an oxide semiconductor containing oxygen vacancies is likely to be normally on. Therefore, oxygen vacancies in the oxide semiconductor are preferably reduced as much as possible.

特に、酸化物230におけるチャネルが形成される領域234と、ゲート絶縁膜として機能する絶縁体250との界面に、酸素欠損が存在すると、電気特性の変動が生じやすく、また信頼性が悪くなる場合がある。 In particular, when oxygen vacancies exist at the interface between the region 234 where the channel is formed in the oxide 230 and the insulator 250 functioning as a gate insulating film, electrical characteristics are likely to fluctuate and reliability is deteriorated. There is.

ここで、酸化物230におけるチャネルが形成される領域234に形成された酸素欠損は、酸素を供給することで、低減することができる。領域234に、酸素を供給するには、例えば、酸素を含む絶縁体250を、酸化物230に接して設ければよい。好ましくは、絶縁体250は、化学量論的組成を満たす酸素よりも多くの酸素(以下、過剰酸素ともいう)を含むとよい。絶縁体250から、過剰酸素が酸化物230へと拡散することで、酸化物230中の酸素欠損を低減することができる。 Here, oxygen vacancies formed in the region 234 where the channel is formed in the oxide 230 can be reduced by supplying oxygen. In order to supply oxygen to the region 234, for example, the insulator 250 containing oxygen may be provided in contact with the oxide 230. The insulator 250 preferably contains more oxygen (hereinafter also referred to as excess oxygen) than oxygen that satisfies the stoichiometric composition. When excess oxygen diffuses from the insulator 250 into the oxide 230, oxygen vacancies in the oxide 230 can be reduced.

例えば、絶縁体250として、過剰酸素領域を有し、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素分子に換算しての酸素の脱離量が、1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、好ましくは2.0×1019atoms/cm、さらに好ましくは3.0×1020atoms/cmである酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下の範囲が好ましい。 For example, the insulator 250 is preferably formed using an oxide material that has an excess oxygen region and from which part of oxygen is released by heating. The oxide that desorbs oxygen by heating means that the amount of desorbed oxygen in terms of oxygen molecule is 1.0 × 10 18 atoms / cm 3 or more, preferably in TDS (Thermal Desorption Spectroscopy) analysis, preferably The oxide film has a thickness of 1.0 × 10 19 atoms / cm 3 or more, preferably 2.0 × 10 19 atoms / cm 3 , and more preferably 3.0 × 10 20 atoms / cm 3 . The surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or more and 700 ° C. or less.

具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。 Specifically, silicon oxide having excess oxygen, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and voids Silicon oxide can be used. In particular, silicon oxide and silicon oxynitride are preferable because they are stable against heat.

また、絶縁体250が有する過剰酸素を、効率的に酸化物230へ供給するために、絶縁体252は酸素拡散を抑制することが好ましい。酸素の拡散を抑制する絶縁体252を設けることで、導電体260への過剰酸素の拡散が抑制される。つまり、酸化物230へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体260の酸化を抑制することができる。 The insulator 252 preferably suppresses oxygen diffusion in order to efficiently supply excess oxygen included in the insulator 250 to the oxide 230. By providing the insulator 252 that suppresses diffusion of oxygen, diffusion of excess oxygen into the conductor 260 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 230 can be suppressed. In addition, oxidation of the conductor 260 due to excess oxygen can be suppressed.

また、絶縁体250、および絶縁体252は、ゲート絶縁体の一部としての機能を有する場合がある。従って、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、絶縁体252は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。該積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。従って、物理膜厚を保持したまま、ゲート絶縁体の等価酸化膜厚(EOT:Equivalent oxide thickness)を小さくすることが可能となる。 The insulator 250 and the insulator 252 may function as part of the gate insulator. Therefore, in the case where silicon oxide, silicon oxynitride, or the like is used for the insulator 250, the insulator 252 is preferably formed using a metal oxide that is a high-k material with a high relative dielectric constant. With such a laminated structure, it is possible to obtain a laminated structure that is stable against heat and has a high relative dielectric constant. Therefore, it is possible to reduce the equivalent oxide thickness (EOT: equivalent oxide thickness) of the gate insulator while maintaining the physical thickness.

上記積層構造とすることで、導電体260からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、絶縁体250と、絶縁体252との物理的な厚みにより、導電体260と、酸化物230との間の距離を保つことで、リーク電流を抑制することができる。また、絶縁体250、および絶縁体252との積層構造を設けることで、導電体260と酸化物230との間の物理的な距離、および導電体260から酸化物230へかかる電界強度を、容易に適宜調整することができる。 With the stacked structure, the on-state current can be improved without weakening the influence of the electric field from the conductor 260. In addition, leakage current can be suppressed by maintaining the distance between the conductor 260 and the oxide 230 depending on the physical thickness of the insulator 250 and the insulator 252. In addition, by providing a stacked structure of the insulator 250 and the insulator 252, the physical distance between the conductor 260 and the oxide 230 and the electric field strength applied from the conductor 260 to the oxide 230 can be easily increased. Can be adjusted appropriately.

ここで、絶縁体252は、結晶性が低い(または、結晶が少ない)膜、またはアモルファス構造を含む膜を用いるとよい。結晶性が低い、またはアモルファス構造を含む酸化膜は、該酸化膜が有する酸素を、加熱により、近接する絶縁体へと拡散することができる。例えば、結晶性が低い膜、またはアモルファス構造を含む膜を絶縁体252に用いることで、後工程の熱履歴により、絶縁体252から、絶縁体250に過剰酸素が添加され、絶縁体250に過剰酸素領域を容易に形成することができる。また、結晶性が低い膜、またはアモルファス構造を含む膜は、平坦性が高く、絶縁体250と絶縁体252との界面を良好な状態とすることができる。 Here, as the insulator 252, a film with low crystallinity (or few crystals) or a film including an amorphous structure may be used. An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating. For example, when a film having low crystallinity or a film including an amorphous structure is used for the insulator 252, excess oxygen is added from the insulator 252 to the insulator 250 due to a thermal history in a later process, and the insulator 250 is excessive. An oxygen region can be easily formed. Further, a film with low crystallinity or a film including an amorphous structure has high flatness, and the interface between the insulator 250 and the insulator 252 can be in a favorable state.

具体的には、絶縁体252として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。 Specifically, the insulator 252 is a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, or magnesium. Can be used.

特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱履歴において、結晶化しにくいため好ましい。 In particular, it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), which is an insulator containing one or both of aluminum and hafnium. In particular, hafnium aluminate has higher heat resistance than a hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in a heat history in a later process.

例えば、平坦性が高い膜として、原子間力顕微鏡を用いて測定した自乗平均面粗さ(RMS)が、1μm×1μmの測定範囲において、0.4nm以下、好ましくは0.3nm以下である絶縁体を用いるとよい。 For example, as a film having high flatness, an insulation whose root mean square roughness (RMS) measured using an atomic force microscope is 0.4 nm or less, preferably 0.3 nm or less in a measurement range of 1 μm × 1 μm. Use your body.

例えば、結晶性が低い膜として、電子顕微鏡を用いた電子線回折において、円状(リング状)のパターンが観測される絶縁体を用いるとよい。 For example, as a film having low crystallinity, an insulator in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope may be used.

また、絶縁体250、および絶縁体252と接して、絶縁体272を設けることが好ましい。例えば、絶縁体272は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有するとよい。絶縁体272が、酸素の拡散を抑制する機能を有することで、絶縁体250が有する過剰酸素領域の酸素は絶縁体274側へ拡散することなく、効率よく領域234へ供給される。従って、酸化物230と、絶縁体250との界面における酸素欠損の形成が抑制され、トランジスタ200の信頼性を向上させることができる。 The insulator 272 is preferably provided in contact with the insulator 250 and the insulator 252. For example, the insulator 272 preferably has a function of suppressing diffusion of oxygen (eg, oxygen atoms and oxygen molecules). Since the insulator 272 has a function of suppressing oxygen diffusion, oxygen in the excess oxygen region included in the insulator 250 is efficiently supplied to the region 234 without diffusing to the insulator 274 side. Accordingly, formation of oxygen vacancies at the interface between the oxide 230 and the insulator 250 is suppressed, and the reliability of the transistor 200 can be improved.

以上より、オン電流が大きい酸化物半導体を有するトランジスタを有する半導体装置を提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有すると共に、信頼性を向上させた半導体装置を提供することができる。 As described above, a semiconductor device including a transistor including an oxide semiconductor with high on-state current can be provided. Alternatively, a semiconductor device including a transistor including an oxide semiconductor with low off-state current can be provided. Alternatively, it is possible to provide a semiconductor device that suppresses fluctuations in electrical characteristics, has stable electrical characteristics, and has improved reliability.

以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。 Hereinafter, a detailed structure of the semiconductor device including the transistor 200 according to one embodiment of the present invention will be described.

導電体203は、図1(A)、および図1(C)に示すように、チャネル幅方向に延伸されており、導電体205に電位を印加する配線として機能する。なお、導電体203は、絶縁体214および絶縁体216に埋め込まれて設けることが好ましい。 As shown in FIGS. 1A and 1C, the conductor 203 is extended in the channel width direction and functions as a wiring for applying a potential to the conductor 205. Note that the conductor 203 is preferably provided so as to be embedded in the insulator 214 and the insulator 216.

導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、導電体203の上面に接して設けるとよい。 The conductor 205 is disposed so as to overlap with the oxide 230 and the conductor 260. The conductor 205 is preferably provided in contact with the upper surface of the conductor 203.

ここで、導電体260は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のしきい値電圧を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。従って、導電体260に印加する電圧が0Vのときのドレイン電流を小さくすることができる。 Here, the conductor 260 may function as a first gate (also referred to as a top gate) electrode. The conductor 205 may function as a second gate (also referred to as a bottom gate) electrode. In that case, the threshold voltage of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without being linked. In particular, by applying a negative potential to the conductor 205, the threshold voltage of the transistor 200 can be made higher than 0 V and the off-state current can be reduced. Therefore, the drain current when the voltage applied to the conductor 260 is 0 V can be reduced.

導電体203上に導電体205を設けることで、第1のゲート電極、および配線としての機能を有する導電体260と、導電体203との距離を適宜設計することが可能となる。導電体203と導電体260の間に絶縁体214および絶縁体216などが設けられることで、導電体203と導電体260の間の寄生容量を低減し、絶縁耐圧を高めることができる。 By providing the conductor 205 over the conductor 203, the distance between the conductor 203 having the function of the first gate electrode and the wiring and the conductor 203 can be appropriately designed. By providing the insulator 214, the insulator 216, and the like between the conductor 203 and the conductor 260, the parasitic capacitance between the conductor 203 and the conductor 260 can be reduced and the withstand voltage can be increased.

導電体203と導電体260の間の寄生容量を低減することで、トランジスタのスイッチング速度を向上させ、高い周波数特性を有するトランジスタにすることができる。また、導電体203と導電体260の間の絶縁耐圧を高めることで、トランジスタ200の信頼性を向上させることができる。よって、絶縁体214および絶縁体216の膜厚を大きくすることが好ましい。なお、導電体203の延伸方向はこれに限られず、例えば、トランジスタ200のチャネル長方向に延伸されてもよい。 By reducing the parasitic capacitance between the conductor 203 and the conductor 260, the switching speed of the transistor can be improved and a transistor having high frequency characteristics can be obtained. Further, by increasing the withstand voltage between the conductor 203 and the conductor 260, the reliability of the transistor 200 can be improved. Therefore, it is preferable to increase the thickness of the insulator 214 and the insulator 216. Note that the extending direction of the conductor 203 is not limited thereto, and the conductor 203 may be extended in the channel length direction of the transistor 200, for example.

なお、導電体205は、図1(A)に示すように、酸化物230、および導電体260と重なるように配置する。また、導電体205は、酸化物230における領域234よりも、大きく設けるとよい。特に、図1(C)に示すように、導電体205は、酸化物230bの領域234のチャネル幅方向(W長方向)の端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230bのチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。 Note that the conductor 205 is provided so as to overlap with the oxide 230 and the conductor 260 as illustrated in FIG. The conductor 205 is preferably provided larger than the region 234 in the oxide 230. In particular, as illustrated in FIG. 1C, the conductor 205 is preferably extended also in a region outside the end portion in the channel width direction (W length direction) of the region 234 of the oxide 230b. . That is, it is preferable that the conductor 205 and the conductor 260 overlap with each other with an insulator outside the side surface in the channel width direction of the oxide 230b.

上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながることで、閉回路を形成し、酸化物230に形成されるチャネル形成領域を覆うことができる。 With the above structure, when a potential is applied to the conductor 260 and the conductor 205, the electric field generated from the conductor 260 and the electric field generated from the conductor 205 are connected to form a closed circuit, and oxidation A channel formation region formed in the object 230 can be covered.

つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。 That is, the channel formation region in the region 234 can be electrically surrounded by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode. . In this specification, a transistor structure that electrically surrounds a channel formation region by an electric field of the first gate electrode and the second gate electrode is referred to as a surrounded channel (S-channel) structure.

また、導電体205は、絶縁体214および絶縁体216の開口の内壁に接して導電体205aが形成され、さらに内側に導電体205bが形成されている。ここで、導電体205aおよび導電体205bの上面の高さと、絶縁体216の上面の高さは同程度にできる。なお、トランジスタ200では、導電体205aおよび導電体205bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205bのみを設ける構成にしてもよい。 In addition, the conductor 205 is in contact with the inner walls of the openings of the insulator 214 and the insulator 216, the conductor 205a is formed, and the conductor 205b is further formed inside. Here, the heights of the upper surfaces of the conductors 205a and 205b and the height of the upper surface of the insulator 216 can be approximately the same. Note that although the transistor 200 has a structure in which the conductors 205a and 205b are stacked, the present invention is not limited to this. For example, only the conductor 205b may be provided.

ここで、導電体205aおよび導電体203aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。 Here, the conductor 205a and the conductor 203a diffuse impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2 ), a copper atom, and the like. It is preferable to use a conductive material having a function of suppressing (the above-described impurities are hardly transmitted). Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, oxygen atoms and oxygen molecules) (the above-mentioned oxygen hardly transmits). Note that in this specification, the function of suppressing diffusion of impurities or oxygen is a function of suppressing diffusion of any one or all of the impurities and oxygen.

導電体205a、および導電体203aが酸素の拡散を抑制する機能を持つことにより、導電体205bおよび導電体203bが酸化して導電率が低下することを防ぐことができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。従って、導電体205a、および導電体203aとしては、上記導電性材料を単層または積層で用いればよい。これにより、水素、水などの不純物が、導電体203、および導電体205を通じて、トランジスタ200側に拡散するのを抑制することができる。 Since the conductor 205a and the conductor 203a have a function of suppressing oxygen diffusion, the conductivity can be prevented from being reduced due to oxidation of the conductor 205b and the conductor 203b. As a conductive material having a function of suppressing oxygen diffusion, for example, tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used. Therefore, the conductive material may be used as a single layer or a stacked layer as the conductor 205a and the conductor 203a. Accordingly, diffusion of impurities such as hydrogen and water to the transistor 200 side through the conductor 203 and the conductor 205 can be suppressed.

また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。なお、導電体205bを単層で図示したが、積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 The conductor 205b is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. Note that although the conductor 205b is illustrated as a single layer, it may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above-described conductive material.

また、導電体203bは、配線として機能するため、導電体205bより導電性が高い導電体を用いることが好ましい。例えば、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体203bは積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 In addition, since the conductor 203b functions as a wiring, a conductor having higher conductivity than the conductor 205b is preferably used. For example, a conductive material mainly containing copper or aluminum can be used. The conductor 203b may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.

特に、導電体203bに、銅を用いることが好ましい。銅は抵抗が小さいため、配線等に用いることが好ましい。一方、銅は拡散しやすいため、酸化物230に拡散することで、トランジスタ200の特性を低下させる場合がある。そこで、例えば、絶縁体214には、銅の透過性が低い酸化アルミニウム、または酸化ハフニウムなどの材料を用いることで、銅の拡散を抑えることができる。 In particular, it is preferable to use copper for the conductor 203b. Since copper has low resistance, it is preferably used for wiring and the like. On the other hand, since copper easily diffuses, the characteristics of the transistor 200 may be deteriorated by diffusing into the oxide 230. Thus, for example, the insulator 214 can be made of copper diffusion by using a material such as aluminum oxide or hafnium oxide having low copper permeability.

絶縁体210および絶縁体214は、水または水素などの不純物が、基板側からトランジスタに混入するのを防ぐバリア絶縁膜として機能することが好ましい。従って、絶縁体210および絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。 The insulator 210 and the insulator 214 preferably function as barrier insulating films that prevent impurities such as water or hydrogen from entering the transistor from the substrate side. Accordingly, the insulator 210 and the insulator 214 suppress diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2, and the like) and copper atoms. It is preferable to use an insulating material having a function to prevent the above impurities from being transmitted. Alternatively, it is preferable to use an insulating material having a function of suppressing diffusion of oxygen (for example, oxygen atoms and oxygen molecules) (the above-mentioned oxygen is difficult to transmit).

例えば、絶縁体210として酸化アルミニウムなどを用い、絶縁体214として窒化シリコンなどを用いることが好ましい。これにより、水素、水などの不純物が絶縁体210および絶縁体214を介してトランジスタ側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体210および絶縁体214を介して基板側に、拡散するのを抑制することができる。 For example, aluminum oxide or the like is preferably used as the insulator 210, and silicon nitride or the like is preferably used as the insulator 214. Accordingly, diffusion of impurities such as hydrogen and water to the transistor side through the insulator 210 and the insulator 214 can be suppressed. Alternatively, oxygen contained in the insulator 224 or the like can be prevented from diffusing to the substrate side through the insulator 210 and the insulator 214.

また、導電体203の上に導電体205を積層して設ける構成にすることにより、導電体203上に絶縁体214を設けることができる。ここで、導電体203bに銅など拡散しやすい金属を用いても、絶縁体214として窒化シリコンなどを設けることにより、当該金属が絶縁体214より上の層に拡散するのを防ぐことができる。 In addition, the insulator 214 can be provided over the conductor 203 by stacking the conductor 205 over the conductor 203. Here, even when a metal that easily diffuses, such as copper, is used for the conductor 203b, by providing silicon nitride or the like as the insulator 214, the metal can be prevented from diffusing into a layer above the insulator 214.

また、層間膜として機能する絶縁体212、絶縁体216、および絶縁体280は、絶縁体210、または絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。 The insulator 212, the insulator 216, and the insulator 280 that function as interlayer films preferably have a lower dielectric constant than the insulator 210 or the insulator 214. By using a material having a low dielectric constant as the interlayer film, parasitic capacitance generated between the wirings can be reduced.

例えば、絶縁体212、絶縁体216、および絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。 For example, as the insulator 212, the insulator 216, and the insulator 280, silicon oxide, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), titanate An insulator such as strontium (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST) can be used as a single layer or a stacked layer. Alternatively, for example, aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators. Alternatively, these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.

絶縁体220、絶縁体222、および絶縁体224は、ゲート絶縁体としての機能を有する。 The insulator 220, the insulator 222, and the insulator 224 function as gate insulators.

ここで、酸化物230と接する絶縁体224は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁体を用いることが好ましい。つまり、絶縁体224には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、信頼性を向上させることができる。 Here, as the insulator 224 in contact with the oxide 230, an oxide insulator containing more oxygen than oxygen that satisfies the stoichiometric composition is preferably used. That is, it is preferable that an excess oxygen region be formed in the insulator 224. By providing such an insulator containing excess oxygen in contact with the oxide 230, oxygen vacancies in the oxide 230 can be reduced and reliability can be improved.

過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。 Specifically, an oxide material from which part of oxygen is released by heating is preferably used as the insulator having an excess oxygen region. The oxide that desorbs oxygen by heating means that the amount of desorbed oxygen in terms of oxygen atom is 1.0 × 10 18 atoms / cm 3 or more, preferably 1 in TDS (Thermal Desorption Spectroscopy) analysis. The oxide film has a thickness of 0.0 × 10 19 atoms / cm 3 or more, more preferably 2.0 × 10 19 atoms / cm 3 , or 3.0 × 10 20 atoms / cm 3 or more. The surface temperature of the film at the time of TDS analysis is preferably in the range of 100 ° C. to 700 ° C., or 100 ° C. to 400 ° C.

また、絶縁体224が、過剰酸素領域を有する場合、絶縁体222は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。 In the case where the insulator 224 has an excess oxygen region, the insulator 222 preferably has a function of suppressing the diffusion of oxygen (for example, oxygen atoms and oxygen molecules) (the oxygen is difficult to transmit).

絶縁体222が、酸素の拡散を抑制する機能を有することで、過剰酸素領域の酸素は、絶縁体220側へ拡散することなく、効率よく酸化物230へ供給することができる。また、導電体205が、絶縁体224が有する過剰酸素領域の酸素と反応することを抑制することができる。 Since the insulator 222 has a function of suppressing oxygen diffusion, oxygen in the excess oxygen region can be efficiently supplied to the oxide 230 without diffusing to the insulator 220 side. In addition, the conductor 205 can be prevented from reacting with oxygen in the excess oxygen region of the insulator 224.

絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ち、低電圧化が可能となる。 For example, the insulator 222 is so-called high such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO 3 (BST). It is preferable to use an insulator including a -k material in a single layer or a stacked layer. As transistor miniaturization and higher integration progress, problems such as leakage current may occur due to thinning of the gate insulator. By using a high-k material for the insulator functioning as a gate insulator, the physical film thickness can be maintained and the voltage can be reduced.

特に、不純物、および酸素などの拡散を抑制する機能を有する(不純物や酸素が透過しにくい)絶縁性材料であるアルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて形成した場合、酸化物230からの酸素の放出や、トランジスタ200の周辺部からの水素等の不純物の混入を防ぐ層として機能する。 In particular, an insulator including one or both oxides of aluminum and hafnium which is an insulating material having a function of suppressing diffusion of impurities and oxygen (impermeability of impurities and oxygen) is preferably used. As the insulator containing one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. In the case of using such a material, it functions as a layer which prevents release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the periphery of the transistor 200.

または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。 Alternatively, for example, aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators. Alternatively, these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.

また、絶縁体220は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、high−k材料の絶縁体と222組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。 The insulator 220 is preferably thermally stable. For example, since silicon oxide and silicon oxynitride are thermally stable, a stacked structure having a high thermal stability and a high dielectric constant can be obtained by combining 222 with a high-k insulator.

なお、絶縁体220、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。 Note that the insulator 220, the insulator 222, and the insulator 224 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient.

酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230a上に、酸化物230bを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230c下に、酸化物230bを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。 The oxide 230 includes an oxide 230a, an oxide 230b over the oxide 230a, and an oxide 230c over the oxide 230b. By including the oxide 230b over the oxide 230a, diffusion of impurities from the structure formed below the oxide 230a to the oxide 230b can be suppressed. In addition, since the oxide 230b is provided under the oxide 230c, diffusion of impurities from the structure formed above the oxide 230c to the oxide 230b can be suppressed.

また、酸化物230は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。 The oxide 230 preferably has a stacked structure with oxides having different atomic ratios of metal atoms. Specifically, in the metal oxide used for the oxide 230a, the atomic ratio of the element M in the constituent element is larger than the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230b. It is preferable. In the metal oxide used for the oxide 230a, the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b. In the metal oxide used for the oxide 230b, the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a. As the oxide 230c, a metal oxide that can be used for the oxide 230a or the oxide 230b can be used.

また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーが低い領域における、伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの伝導帯下端のエネルギーが低い領域における電子親和力より小さいことが好ましい。 In addition, the energy at the lower end of the conduction band of the oxide 230a and the oxide 230c is preferably higher than the energy at the lower end of the conduction band in a region where the energy at the lower end of the conduction band of the oxide 230b is low. In other words, the electron affinity of the oxide 230a and the oxide 230c is preferably smaller than the electron affinity in the region where the energy at the lower end of the conduction band of the oxide 230b is low.

ここで、酸化物230a、酸化物230b、および酸化物230cにおいて、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。 Here, in the oxide 230a, the oxide 230b, and the oxide 230c, the energy level at the lower end of the conduction band changes gently. In other words, it can be said that it is continuously changed or continuously joined. In order to achieve this, the defect state density of the mixed layer formed at the interface between the oxide 230a and the oxide 230b and the interface between the oxide 230b and the oxide 230c is preferably low.

具体的には、酸化物230aと酸化物230b、酸化物230bと酸化物230cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn−Ga−Zn酸化物の場合、酸化物230aおよび酸化物230cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。 Specifically, the oxide 230a and the oxide 230b, and the oxide 230b and the oxide 230c have a common element (main component) in addition to oxygen, so that a mixed layer with a low density of defect states is formed. be able to. For example, in the case where the oxide 230b is an In—Ga—Zn oxide, an In—Ga—Zn oxide, a Ga—Zn oxide, a gallium oxide, or the like may be used as the oxide 230a and the oxide 230c.

このとき、キャリアの主たる経路は酸化物230bに形成されるナローギャップ部分となる。酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。 At this time, the main path of carriers is a narrow gap portion formed in the oxide 230b. Since the density of defect states at the interface between the oxide 230a and the oxide 230b and the interface between the oxide 230b and the oxide 230c can be reduced, the influence on the carrier conduction due to interface scattering is small, and a high on-current is obtained. can get.

また、酸化物230は、領域231、領域232、および領域234を有することが好ましい。なお、領域231の少なくとも一部は、絶縁体274と接し、インジウムなどの金属元素、水素、および窒素の少なくとも一の濃度が領域234よりも大きいことが好ましい。また、領域232は、インジウムなどの金属元素、水素、および窒素の少なくとも一の濃度が、領域234よりも大きく、かつ領域231よりも小さいことが好ましい。 The oxide 230 preferably includes a region 231, a region 232, and a region 234. Note that at least part of the region 231 is in contact with the insulator 274 and preferably has at least one concentration of a metal element such as indium, hydrogen, and nitrogen higher than that of the region 234. The region 232 preferably has at least one concentration of a metal element such as indium, hydrogen, and nitrogen higher than the region 234 and lower than the region 231.

つまり、領域231、および領域232は、酸化物230として設けられた金属酸化物に、インジウム、ガリウムなどの金属原子、または不純物を添加した領域である。なお、領域231は、領域234よりも、導電性が高い。なお、領域231、および領域232に、不純物を添加するために、例えば、プラズマ処理、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いて、インジウムなどの金属元素、および不純物の少なくとも一であるドーパントを添加すればよい。 That is, the region 231 and the region 232 are regions obtained by adding metal atoms such as indium and gallium or impurities to the metal oxide provided as the oxide 230. Note that the region 231 has higher conductivity than the region 234. In order to add impurities to the region 231 and the region 232, for example, plasma treatment, an ion implantation method in which an ionized source gas is added by mass separation, and an ionized source gas are added without mass separation. A dopant which is at least one of a metal element such as indium and an impurity may be added using an ion doping method, a plasma immersion ion implantation method, or the like.

例えば、酸化物230に接して、不純物となる元素を含む絶縁体274を成膜することで、領域231、および領域232に、不純物を添加することができる。または、領域231において、酸化物230のインジウムなどの金属原子の含有率を高くすることで、電子移動度を高くし、低抵抗化を図ることができる。 For example, the insulator 274 including an element serving as an impurity is formed in contact with the oxide 230, whereby the impurity can be added to the region 231 and the region 232. Alternatively, in the region 231, by increasing the content of metal atoms such as indium in the oxide 230, electron mobility can be increased and resistance can be reduced.

つまり、領域231は、酸素欠損を形成する元素、または酸素欠損に捕獲される元素を添加されることで低抵抗化される。このような元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。よって、領域231は、上記元素の一つまたは複数を含む構成にすればよい。 That is, the resistance of the region 231 is reduced by adding an element that forms oxygen vacancies or an element that is captured by oxygen vacancies. Examples of such elements typically include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and rare gases. Typical examples of rare gas elements include helium, neon, argon, krypton, and xenon. Therefore, the region 231 may include one or more of the above elements.

なお、図1、および図2では、領域234、領域231、および領域232が、酸化物230bに形成されているが、これに限られることなく、例えば、これらの領域は酸化物230a、および酸化物230cにも、形成されていてもよい。また、図1、および図2では、各領域の境界を、酸化物230の上面に対して略垂直に表示しているが、本実施の形態はこれに限られるものではない。例えば、領域232が酸化物230bの表面近傍では導電体260側に張り出し、酸化物230aの下面近傍では、導電体240a側または導電体240b側に後退する形状になる場合がある。 Note that in FIGS. 1 and 2, the region 234, the region 231, and the region 232 are formed in the oxide 230b; however, the region is not limited thereto, and for example, these regions include the oxide 230a and the oxide 230b. The object 230c may also be formed. In FIGS. 1 and 2, the boundary of each region is displayed substantially perpendicular to the upper surface of the oxide 230, but this embodiment is not limited to this. For example, the region 232 may protrude to the conductor 260 side in the vicinity of the surface of the oxide 230b and recede to the conductor 240a side or the conductor 240b side in the vicinity of the lower surface of the oxide 230a.

また、トランジスタ200において、領域232を低抵抗化した場合、ソース領域およびドレイン領域として機能する領域231と、チャネルが形成される領域234との間に高抵抗領域が形成されないため、トランジスタのオン電流、および移動度を大きくすることができる。また、領域232を有することで、チャネル長方向において、ソース領域およびドレイン領域と、ゲートとが重ならないため、不要な容量が形成されることを抑制できる。また、領域232を有することで、非導通時のリーク電流を小さくすることができる。 In the transistor 200, when the resistance of the region 232 is reduced, a high resistance region is not formed between the region 231 functioning as a source region and a drain region and the region 234 where a channel is formed; , And mobility can be increased. In addition, since the region 232 includes the source region and the drain region and the gate do not overlap with each other in the channel length direction, formation of unnecessary capacitance can be suppressed. In addition, by including the region 232, leakage current at the time of non-conduction can be reduced.

また、例えば、領域232にガリウムなどを添加した場合、領域231から領域234へ、水素などの不純物の横拡散を抑制でき、意図しない実効チャネル長の縮小を抑制することができる。 For example, when gallium or the like is added to the region 232, lateral diffusion of impurities such as hydrogen from the region 231 to the region 234 can be suppressed, and unintended reduction of the effective channel length can be suppressed.

従って、各領域の範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。 Therefore, by appropriately selecting the range of each region, it is possible to easily provide a transistor having electrical characteristics that meet the requirements in accordance with circuit design.

従って、トランジスタ200をオンさせると、領域231a、または領域231bは、ソース領域、またはドレイン領域として機能する。一方、領域234の少なくとも一部は、チャネルが形成される領域として機能する。領域231と、領域234の間に領域232を有することで、トランジスタ200において、オン電流を大きくし、かつ、非導通時のリーク電流(オフ電流)を小さくすることができる。 Therefore, when the transistor 200 is turned on, the region 231a or the region 231b functions as a source region or a drain region. On the other hand, at least part of the region 234 functions as a region where a channel is formed. By including the region 232 between the region 231 and the region 234, the transistor 200 can have a large on-state current and a small non-conducting leakage current (off-state current).

また、酸化物230の側面と、酸化物230の上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、酸化物230bの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とすることが好ましい。 In addition, a curved surface is provided between the side surface of the oxide 230 and the upper surface of the oxide 230. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape). For example, the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm at the end of the oxide 230b.

酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。例えば、領域234となる金属酸化物としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。 As the oxide 230, a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used. For example, as the metal oxide to be the region 234, an oxide having an energy gap of 2 eV or more, preferably 2.5 eV or more is preferably used. In this manner, off-state current of a transistor can be reduced by using a metal oxide having a wide energy gap.

なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。 Note that in this specification and the like, metal oxides containing nitrogen may be collectively referred to as metal oxides. In addition, a metal oxide containing nitrogen may be referred to as a metal oxynitride.

酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。 Since a transistor including an oxide semiconductor has extremely low leakage current in a non-conduction state, a semiconductor device with low power consumption can be provided. An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.

例えば、酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。 For example, the oxide 230 includes an In-M-Zn oxide (the element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, or cerium. It is preferable to use a metal oxide such as neodymium, hafnium, tantalum, tungsten, or magnesium. Further, as the oxide 230, an In—Ga oxide or an In—Zn oxide may be used.

絶縁体250は、ゲート絶縁膜として機能する。絶縁体250は、酸化物230cの上面に接して配置することが好ましい。絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。例えば、昇温脱離ガス分光法分析(TDS分析)にて、酸素分子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm、または3.0×1020atoms/cmである酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下の範囲が好ましい。 The insulator 250 functions as a gate insulating film. The insulator 250 is preferably provided in contact with the upper surface of the oxide 230c. The insulator 250 is preferably formed using an insulator from which oxygen is released by heating. For example, in the temperature programmed desorption gas spectroscopy analysis (TDS analysis), the amount of desorbed oxygen converted to oxygen molecules is 1.0 × 10 18 atoms / cm 3 or more, preferably 1.0 × 10 19. An oxide film having atoms / cm 3 or more, more preferably 2.0 × 10 19 atoms / cm 3 , or 3.0 × 10 20 atoms / cm 3 . The surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or more and 700 ° C. or less.

具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。 Specifically, silicon oxide having excess oxygen, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and voids Silicon oxide can be used. In particular, silicon oxide and silicon oxynitride are preferable because they are stable against heat.

加熱により酸素が放出される絶縁体を、絶縁体250として、酸化物230cの上面に接して設けることにより、酸化物230bの領域234に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。 By providing the insulator from which oxygen is released by heating as the insulator 250 in contact with the upper surface of the oxide 230c, oxygen can be effectively supplied to the region 234 of the oxide 230b. Similarly to the insulator 224, the concentration of impurities such as water or hydrogen in the insulator 250 is preferably reduced. The thickness of the insulator 250 is preferably greater than or equal to 1 nm and less than or equal to 20 nm.

また、絶縁体250が有する過剰酸素を、効率的に酸化物230へ供給するために、絶縁体252は酸素拡散を抑制することが好ましい。酸素の拡散を抑制する絶縁体252を設けることで、導電体260への過剰酸素の拡散が抑制される。つまり、酸化物230へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体260の酸化を抑制することができる。 The insulator 252 preferably suppresses oxygen diffusion in order to efficiently supply excess oxygen included in the insulator 250 to the oxide 230. By providing the insulator 252 that suppresses diffusion of oxygen, diffusion of excess oxygen into the conductor 260 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 230 can be suppressed. In addition, oxidation of the conductor 260 due to excess oxygen can be suppressed.

また、絶縁体250、および絶縁体252は、ゲート絶縁体の一部としての機能を有する場合がある。従って、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、絶縁体252は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。該積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。従って、物理膜厚を保持したまま、ゲート絶縁体の等価酸化膜厚(EOT)を小さくすることが可能となる。 The insulator 250 and the insulator 252 may function as part of the gate insulator. Therefore, in the case where silicon oxide, silicon oxynitride, or the like is used for the insulator 250, the insulator 252 is preferably formed using a metal oxide that is a high-k material with a high relative dielectric constant. With such a laminated structure, it is possible to obtain a laminated structure that is stable against heat and has a high relative dielectric constant. Therefore, it is possible to reduce the equivalent oxide thickness (EOT) of the gate insulator while maintaining the physical thickness.

上記積層構造とすることで、導電体260からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、絶縁体250と、絶縁体252との物理的な厚みにより、導電体260と、酸化物230との間の距離を保つことで、リーク電流を抑制することができる。また、絶縁体250、および絶縁体252との積層構造を設けることで、導電体260と酸化物230との間の物理的な距離、および導電体260から酸化物230へかかる電界強度を、容易に適宜調整することができる。 With the stacked structure, the on-state current can be improved without weakening the influence of the electric field from the conductor 260. In addition, leakage current can be suppressed by maintaining the distance between the conductor 260 and the oxide 230 depending on the physical thickness of the insulator 250 and the insulator 252. In addition, by providing a stacked structure of the insulator 250 and the insulator 252, the physical distance between the conductor 260 and the oxide 230 and the electric field strength applied from the conductor 260 to the oxide 230 can be easily increased. Can be adjusted appropriately.

ここで、絶縁体252は、結晶性が低い(または、結晶が少ない)膜、またはアモルファス構造を含む膜を用いるとよい。結晶性が低い、またはアモルファス構造を含む酸化膜は、該酸化膜が有する酸素を、加熱により、近接する絶縁体へと拡散することができる。例えば、結晶性が低い膜、またはアモルファス構造を含む膜を絶縁体252に用いることで、後工程の熱履歴により、絶縁体252から、絶縁体250に過剰酸素が添加され、絶縁体250に過剰酸素領域を容易に形成することができる。また、結晶性が低い膜、またはアモルファス構造を含む膜は、平坦性が高く、絶縁体250と絶縁体252との界面を良好な状態とすることができる。 Here, as the insulator 252, a film with low crystallinity (or few crystals) or a film including an amorphous structure may be used. An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating. For example, when a film having low crystallinity or a film including an amorphous structure is used for the insulator 252, excess oxygen is added from the insulator 252 to the insulator 250 due to a thermal history in a later process, and the insulator 250 is excessive. An oxygen region can be easily formed. Further, a film with low crystallinity or a film including an amorphous structure has high flatness, and the interface between the insulator 250 and the insulator 252 can be in a favorable state.

具体的には、絶縁体252として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。 Specifically, the insulator 252 is a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, or magnesium. Can be used.

特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱履歴において、結晶化しにくいため好ましい。 In particular, it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), which is an insulator containing one or both of aluminum and hafnium. In particular, hafnium aluminate has higher heat resistance than a hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in a heat history in a later process.

例えば、平坦性が高い膜として、原子間力顕微鏡を用いて測定した自乗平均面粗さ(RMS)が、1μm×1μmの測定範囲において、0.4nm以下、好ましくは0.3nm以下である絶縁体を用いるとよい。 For example, as a film having high flatness, an insulation whose root mean square roughness (RMS) measured using an atomic force microscope is 0.4 nm or less, preferably 0.3 nm or less in a measurement range of 1 μm × 1 μm. Use your body.

例えば、結晶性が低い膜として、電子顕微鏡を用いた電子線回折において、円状(リング状)のパターンが観測される絶縁体を用いるとよい。 For example, as a film having low crystallinity, an insulator in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope may be used.

第1のゲート電極として機能する導電体260は、導電体260a、および導電体260a上の導電体260bを有する。導電体260aは、導電体205aと同様に、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。 The conductor 260 functioning as the first gate electrode includes a conductor 260a and a conductor 260b over the conductor 260a. Similar to the conductor 205a, the conductor 260a diffuses impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2, etc.), copper atoms, and the like. It is preferable to use a conductive material having a suppressing function. Alternatively, it is preferable to use a conductive material having a function of suppressing diffusion of oxygen (for example, oxygen atoms and oxygen molecules).

導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250、および絶縁体252が有する過剰酸素により、導電体260bが酸化して導電率が低下することを防ぐことができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。 When the conductor 260a has a function of suppressing oxygen diffusion, excess conductivity of the insulator 250 and the insulator 252 can prevent the conductor 260b from being oxidized and lowering in conductivity. As a conductive material having a function of suppressing oxygen diffusion, for example, tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used.

また、導電体260は、配線として機能するため、導電性が高い導電体を用いることが好ましい。例えば、導電体260bに、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260bは積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 In addition, since the conductor 260 functions as a wiring, a conductor having high conductivity is preferably used. For example, a conductive material containing tungsten, copper, or aluminum as a main component is preferably used for the conductor 260b. The conductor 260b may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.

また、例えば、導電体260aとして、導電性酸化物を用いることができる。例えば、酸化物230として用いることができる金属酸化物を用いることが好ましい。特に、In−Ga−Zn系酸化物のうち、導電性が高い、金属の原子数比が[In]:[Ga]:[Zn]=4:2:3から4:2:4.1、およびその近傍値のものを用いることが好ましい。このような導電体260aを設けることで、導電体260bへの酸素の透過を抑制し、酸化によって導電体260bの電気抵抗値が増加することを防ぐことができる。 For example, a conductive oxide can be used as the conductor 260a. For example, a metal oxide that can be used as the oxide 230 is preferably used. In particular, among In—Ga—Zn-based oxides, the atomic ratio of metal having high conductivity is [In]: [Ga]: [Zn] = 4: 2: 3 to 4: 2: 4.1, It is preferable to use one having a value close thereto. By providing such a conductor 260a, it is possible to suppress permeation of oxygen to the conductor 260b and prevent an increase in the electrical resistance value of the conductor 260b due to oxidation.

また、このような導電性酸化物を、スパッタリング法を用いて成膜することで、絶縁体250、および絶縁体252に酸素が添加され、酸化物230の領域234に酸素を供給することが可能となる。これにより、酸化物230の領域234の酸素欠損を低減することができる。 Further, by forming such a conductive oxide film by a sputtering method, oxygen can be added to the insulator 250 and the insulator 252 so that oxygen can be supplied to the region 234 of the oxide 230. It becomes. Accordingly, oxygen vacancies in the region 234 of the oxide 230 can be reduced.

上記導電性酸化物を導電体260aとして用いる場合、導電体260bには、導電体260aに窒素などの不純物を添加し、導電体260aの導電性を向上できる導電体を用いることが好ましい。例えば、導電体260bは、窒化チタンなどを用いることが好ましい。また、導電体260bを、窒化チタンなどの金属窒化物と、その上にタングステンなどの金属を積層した構造にしてもよい。 When the above conductive oxide is used as the conductor 260a, it is preferable to use a conductor that can improve the conductivity of the conductor 260a by adding an impurity such as nitrogen to the conductor 260a. For example, titanium nitride or the like is preferably used for the conductor 260b. Alternatively, the conductor 260b may have a structure in which a metal nitride such as titanium nitride and a metal such as tungsten are stacked thereover.

また、図1(C)に示すように、導電体205が、酸化物230bのチャネル幅方向の端部よりも外側の領域に、延伸している場合、導電体260は、該領域において、絶縁体250を介して、重畳していることが好ましい。つまり、酸化物230bの側面の外側において、導電体205と、絶縁体250と、導電体260とは、積層構造を形成することが好ましい。 In addition, as illustrated in FIG. 1C, when the conductor 205 extends to a region outside the end portion in the channel width direction of the oxide 230b, the conductor 260 is insulated in the region. It is preferable to overlap the body 250. That is, it is preferable that the conductor 205, the insulator 250, and the conductor 260 form a stacked structure outside the side surface of the oxide 230b.

上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながることで、閉回路を形成し、酸化物230に形成されるチャネル形成領域を覆うことができる。 With the above structure, when a potential is applied to the conductor 260 and the conductor 205, the electric field generated from the conductor 260 and the electric field generated from the conductor 205 are connected to form a closed circuit, and oxidation A channel formation region formed in the object 230 can be covered.

つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。 That is, the channel formation region in the region 234 can be electrically surrounded by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode. .

また、導電体260bの上に、バリア膜として機能する270、またはハードマスクとして機能する絶縁体271を配置してもよい。絶縁体271を設けることで、導電体260の加工の際、導電体260の側面を基板表面に対して概略垂直、具体的には、導電体260の側面と基板表面のなす角を、75度以上100度以下、好ましくは80度以上95度以下とすることができる。導電体を該形状に加工することで、後工程で形成する絶縁体272の加工が容易となる。 Further, an insulator 271 functioning as a barrier film or a hard mask 270 may be provided over the conductor 260b. By providing the insulator 271, when processing the conductor 260, the side surface of the conductor 260 is substantially perpendicular to the substrate surface, specifically, the angle formed between the side surface of the conductor 260 and the substrate surface is 75 degrees. The angle can be not less than 100 degrees and preferably not less than 80 degrees and not more than 95 degrees. By processing the conductor into the shape, the insulator 272 to be formed in a later step can be easily processed.

バリア膜として機能する絶縁体272は、絶縁体250、絶縁体252、導電体260、および絶縁体270の側面に接して設ける。 The insulator 272 functioning as a barrier film is provided in contact with the side surfaces of the insulator 250, the insulator 252, the conductor 260, and the insulator 270.

ここで、絶縁体272は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウム、または酸化ハフニウムなどを用いることが好ましい。これにより、絶縁体250、および絶縁体252中の酸素が外部に拡散することを防ぐことができる。また、絶縁体250、および絶縁体252の端部などから酸化物230に水素、水などの不純物が混入するのを抑制することができる。従って、酸化物230と、絶縁体250との界面における酸素欠損の形成が抑制され、トランジスタ200の信頼性を向上させることができる。 Here, the insulator 272 may be formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen. For example, aluminum oxide or hafnium oxide is preferably used. Thereby, the oxygen in the insulator 250 and the insulator 252 can be prevented from diffusing to the outside. Further, entry of impurities such as hydrogen and water into the oxide 230 from the end portions of the insulator 250 and the insulator 252 and the like can be suppressed. Accordingly, formation of oxygen vacancies at the interface between the oxide 230 and the insulator 250 is suppressed, and the reliability of the transistor 200 can be improved.

絶縁体272を設けることで、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁体で、導電体260の側面、絶縁体250の側面、および絶縁体252の側面を覆うことができる。これにより、導電体260、絶縁体250および絶縁体252を介して、水または水素などの不純物が酸化物230に混入することを防ぐことができる。従って、絶縁体272は、ゲート電極およびゲート絶縁膜の側面を保護するサイドバリアとしての機能を有する。 By providing the insulator 272, an insulator having a function of suppressing permeation of impurities such as water or hydrogen and oxygen covers the side surface of the conductor 260, the side surface of the insulator 250, and the side surface of the insulator 252. Can do. Accordingly, impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260, the insulator 250, and the insulator 252. Therefore, the insulator 272 functions as a side barrier that protects the side surfaces of the gate electrode and the gate insulating film.

特に、トランジスタが微細化され、チャネル長が10nm以上30nm以下程度に形成されている場合、トランジスタ200の周辺に設けられる構造体に含まれる不純物元素が拡散し、領域231aと、領域231bと、が電気的に導通する恐れがある。上記構造とすることで、第1のゲート電圧が0Vのときに、ソース領域とドレイン領域が電気的に導通することを防ぐことができる。 In particular, when a transistor is miniaturized and a channel length is formed to be about 10 nm to 30 nm, an impurity element contained in a structure provided around the transistor 200 is diffused, so that a region 231a and a region 231b are formed. There is a risk of electrical conduction. With the above structure, when the first gate voltage is 0 V, the source region and the drain region can be prevented from being electrically connected.

絶縁体274は、絶縁体271、絶縁体272、酸化物230および絶縁体224を覆って設ける。ここで、絶縁体274は、絶縁体271および絶縁体272の上面に接し、かつ絶縁体272の側面に接して設けられる。 The insulator 274 is provided so as to cover the insulator 271, the insulator 272, the oxide 230, and the insulator 224. Here, the insulator 274 is provided in contact with the top surfaces of the insulator 271 and the insulator 272 and in contact with a side surface of the insulator 272.

また、絶縁体274は、酸素の透過を抑制する機能を有する絶縁性材料を用いることが好ましい。例えば、絶縁体274として、窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどを用いることが好ましい。 For the insulator 274, an insulating material having a function of suppressing permeation of oxygen is preferably used. For example, the insulator 274 is preferably formed using silicon nitride, silicon nitride oxide, silicon oxynitride, aluminum nitride, aluminum nitride oxide, or the like.

なお、絶縁体274を成膜することにより、領域231、および領域232を設ける場合、絶縁体274は、水素および窒素の少なくとも一方を有することが好ましい。水素、または窒素などの不純物を有する絶縁体を絶縁体274に用いることで、水素または窒素などの不純物を酸化物230に添加して、酸化物230において、領域231、および領域232を形成することができる。 Note that in the case where the region 231 and the region 232 are provided by forming the insulator 274, the insulator 274 preferably includes at least one of hydrogen and nitrogen. By using an insulator having an impurity such as hydrogen or nitrogen for the insulator 274, an impurity such as hydrogen or nitrogen is added to the oxide 230, so that the region 231 and the region 232 are formed in the oxide 230. Can do.

絶縁体274の上に、層間膜として機能する絶縁体280を設けることが好ましい。絶縁体280は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。なお、絶縁体280の上に絶縁体210と同様の絶縁体を設けてもよい。 An insulator 280 that functions as an interlayer film is preferably provided over the insulator 274. As in the case of the insulator 224, the insulator 280 preferably has a reduced concentration of impurities such as water or hydrogen in the film. Note that an insulator similar to the insulator 210 may be provided over the insulator 280.

また、絶縁体280および絶縁体274に形成された開口に、導電体240aおよび導電体240bを配置する。導電体240aおよび導電体240bは、導電体260を挟んで対向して設ける。なお、導電体240aおよび導電体240bの上面の高さは、絶縁体280の上面の高さと同程度としてもよい。 In addition, the conductor 240a and the conductor 240b are disposed in openings formed in the insulator 280 and the insulator 274. The conductor 240a and the conductor 240b are provided to face each other with the conductor 260 interposed therebetween. Note that the heights of the upper surfaces of the conductors 240a and 240b may be approximately the same as the height of the upper surface of the insulator 280.

導電体240aは、トランジスタ200のソース領域およびドレイン領域の一方として機能する領域231aと接しており、導電体240bはトランジスタ200のソース領域およびドレイン領域の他方として機能する領域231bと接している。よって、導電体240aはソース電極およびドレイン電極の一方として機能でき、導電体240bはソース電極およびドレイン電極の他方として機能できる。領域231aおよび領域231bは低抵抗化されているので、導電体240aと領域231aの接触抵抗、および導電体240bと領域231bの接触抵抗を低減し、トランジスタ200のオン電流を大きくすることができる。 The conductor 240a is in contact with the region 231a that functions as one of the source region and the drain region of the transistor 200, and the conductor 240b is in contact with the region 231b that functions as the other of the source region and the drain region of the transistor 200. Therefore, the conductor 240a can function as one of the source electrode and the drain electrode, and the conductor 240b can function as the other of the source electrode and the drain electrode. Since the region 231a and the region 231b have low resistance, the contact resistance between the conductor 240a and the region 231a and the contact resistance between the conductor 240b and the region 231b can be reduced and the on-state current of the transistor 200 can be increased.

なお、絶縁体280および絶縁体274の開口の内壁に接して導電体240aが形成されている。当該開口の底部の少なくとも一部には酸化物230の領域231aが位置しており、導電体240aが領域231aと接する。同様に、絶縁体280および絶縁体274の開口の内壁に接して導電体240bが形成されている。当該開口の底部の少なくとも一部には酸化物230の領域231bが位置しており、導電体240bが領域231bと接する。 Note that a conductor 240a is formed in contact with the inner walls of the openings of the insulator 280 and the insulator 274. A region 231a of the oxide 230 is located at least at a part of the bottom of the opening, and the conductor 240a is in contact with the region 231a. Similarly, a conductor 240b is formed in contact with the inner walls of the openings of the insulator 280 and the insulator 274. A region 231b of the oxide 230 is located at least at a part of the bottom of the opening, and the conductor 240b is in contact with the region 231b.

ここで、導電体240a、および導電体240bは、少なくとも酸化物230の上面と接し、さらに酸化物230の側面と接することが好ましい。特に、導電体240a、および導電体240bは、酸化物230のチャネル幅方向と交わる側面において、A3側の側面、およびA4側の側面の双方または一方と接することが好ましい。また、導電体240a、および導電体240bが、酸化物230のチャネル長方向と交わる側面において、A1側(A2側)の側面と接する構成にしてもよい。このように、導電体240a、および導電体240bが酸化物230の上面に加えて、酸化物230の側面と接する構成にすることにより、導電体240a、および導電体240bと酸化物230のコンタクト部の上面積を増やすことなく、コンタクト部の接触面積を増加させ、導電体240a、および導電体240bと酸化物230の接触抵抗を低減することができる。これにより、トランジスタのソース電極およびドレイン電極の微細化を図りつつ、オン電流を大きくすることができる。 Here, the conductor 240 a and the conductor 240 b are preferably in contact with at least the upper surface of the oxide 230 and further in contact with the side surface of the oxide 230. In particular, the conductor 240a and the conductor 240b are preferably in contact with both or one of the side surface on the A3 side and the side surface on the A4 side on the side surface intersecting the channel width direction of the oxide 230. Alternatively, the conductor 240a and the conductor 240b may be in contact with the side surface on the A1 side (A2 side) on the side surface intersecting the channel length direction of the oxide 230. In this manner, the conductor 240a and the conductor 240b are in contact with the side surface of the oxide 230 in addition to the top surface of the oxide 230, whereby the conductor 240a and the contact portion between the conductor 240b and the oxide 230 are formed. Without increasing the upper area, the contact area of the contact portion can be increased, and the contact resistance between the conductor 240a and the conductor 240b and the oxide 230 can be reduced. Thus, the on-current can be increased while miniaturizing the source electrode and the drain electrode of the transistor.

導電体240aおよび導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、図示しないが、導電体240aおよび導電体240bは積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 The conductor 240a and the conductor 240b are preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. Although not illustrated, the conductors 240a and 240b may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.

導電体240を積層構造とする場合、絶縁体274、および絶縁体280と接する導電体には、導電体205aなどと同様に、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。該導電性材料を用いることで、絶縁体280より上層から水素、水などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。 In the case where the conductor 240 has a stacked structure, the insulator 274 and the conductor in contact with the insulator 280 have a function of suppressing transmission of impurities such as water or hydrogen, as in the conductor 205a. Is preferably used. For example, tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, or ruthenium oxide is preferably used. Further, the conductive material having a function of suppressing permeation of impurities such as water or hydrogen may be used in a single layer or a stacked layer. By using the conductive material, impurities such as hydrogen and water from an upper layer than the insulator 280 can be prevented from entering the oxide 230 through the conductor 240a and the conductor 240b.

また、図示しないが、導電体240aの上面、および導電体240bの上面に接して配線して機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、該導電体は、積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。なお、該導電体は、導電体203などと同様に、絶縁体に設けられた開口に埋め込むように形成してもよい。 Although not shown, a conductor that functions by being in contact with the upper surface of the conductor 240a and the upper surface of the conductor 240b may be disposed. As the conductor functioning as the wiring, a conductive material containing tungsten, copper, or aluminum as a main component is preferably used. The conductor may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material. Note that like the conductor 203 and the like, the conductor may be formed so as to be embedded in an opening provided in the insulator.

<半導体装置の構成材料>
以下では、半導体装置に用いることができる構成材料について説明する。
<Constituent materials for semiconductor devices>
Hereinafter, constituent materials that can be used for the semiconductor device will be described.

<<基板>>
トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
<< Board >>
As a substrate over which the transistor 200 is formed, for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used. Examples of the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate), and a resin substrate. Examples of the semiconductor substrate include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide. Furthermore, there is a semiconductor substrate having an insulator region inside the semiconductor substrate, for example, an SOI (Silicon On Insulator) substrate. Examples of the conductor substrate include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate. Alternatively, there are a substrate having a metal nitride, a substrate having a metal oxide, and the like. Further, there are a substrate in which a conductor or a semiconductor is provided on an insulator substrate, a substrate in which a conductor or an insulator is provided on a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided on a conductor substrate, and the like. Alternatively, a substrate in which an element is provided may be used. Examples of the element provided on the substrate include a capacitor element, a resistor element, a switch element, a light emitting element, and a memory element.

また、基板として、可とう性基板を用いてもよい。なお、可とう性基板上にトランジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トランジスタを剥離し、可とう性基板である基板に転置する方法もある。その場合には、非可とう性基板とトランジスタとの間に剥離層を設けるとよい。また、基板が伸縮性を有してもよい。また、基板は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板を薄くすると、トランジスタを有する半導体装置を軽量化することができる。また、基板を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板上の半導体装置に加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができる。 A flexible substrate may be used as the substrate. Note that as a method for providing a transistor over a flexible substrate, there is a method in which after a transistor is formed over a non-flexible substrate, the transistor is peeled off and transferred to a substrate which is a flexible substrate. In that case, a separation layer is preferably provided between the non-flexible substrate and the transistor. Further, the substrate may have elasticity. Further, the substrate may have a property of returning to the original shape when bending or pulling is stopped. Or you may have a property which does not return to an original shape. The substrate has a region having a thickness of, for example, 5 μm to 700 μm, preferably 10 μm to 500 μm, more preferably 15 μm to 300 μm. When the substrate is thinned, a semiconductor device including a transistor can be reduced in weight. Further, by making the substrate thin, it may have elasticity even when glass or the like is used, or may have a property of returning to its original shape when bending or pulling is stopped. Therefore, an impact applied to the semiconductor device on the substrate due to dropping or the like can be reduced. That is, a durable semiconductor device can be provided.

可とう性基板である基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。また、基板として、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。可とう性基板である基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板として好適である。 As the substrate which is a flexible substrate, for example, metal, alloy, resin or glass, or fiber thereof can be used. Further, as the substrate, a sheet woven with fibers, a film, a foil, or the like may be used. A substrate that is a flexible substrate is preferably as the linear expansion coefficient is lower because deformation due to the environment is suppressed. As the substrate which is a flexible substrate, for example, a material having a linear expansion coefficient of 1 × 10 −3 / K or less, 5 × 10 −5 / K or less, or 1 × 10 −5 / K or less may be used. . Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic. In particular, since aramid has a low coefficient of linear expansion, it is suitable as a substrate that is a flexible substrate.

<<絶縁体>>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
<< Insulator >>
Examples of the insulator include an insulating oxide, nitride, oxynitride, nitride oxide, metal oxide, metal oxynitride, and metal nitride oxide.

例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ち、低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。従って、絶縁体の機能に応じて、材料を選択するとよい。 For example, when the transistor is miniaturized and highly integrated, problems such as leakage current may occur due to the thinning of the gate insulator. By using a high-k material for the insulator functioning as a gate insulator, the physical film thickness can be maintained and the voltage can be reduced. On the other hand, for an insulator functioning as an interlayer film, a parasitic capacitance generated between wirings can be reduced by using a material having a low relative dielectric constant as an interlayer film. Therefore, the material may be selected according to the function of the insulator.

また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。 Insulators having a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, silicon and hafnium. There are oxynitrides having silicon and nitrides having silicon and hafnium.

また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。 Insulators having a low dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, Examples include silicon oxide or resin having holes.

また、特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定である。そのため、例えば、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。また、例えば、酸化シリコン、および酸化窒化シリコンは、比誘電率の高い絶縁体と組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。 In particular, silicon oxide and silicon oxynitride are thermally stable. Therefore, for example, by combining with a resin, a laminated structure having a thermally stable and low relative dielectric constant can be obtained. Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic. Further, for example, silicon oxide and silicon oxynitride can be combined with an insulator having a high relative dielectric constant to provide a thermally stable and high stacked dielectric structure.

また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。 In addition, a transistor including an oxide semiconductor can be stabilized in electrical characteristics of the transistor by being surrounded by an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen.

水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。 Examples of the insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium. An insulator containing lanthanum, neodymium, hafnium, or tantalum may be used as a single layer or a stacked layer. Specifically, as an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen, aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or A metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.

例えば、ゲート絶縁体の一部として機能する絶縁体224および絶縁体250は、過剰酸素領域を有する絶縁体であることが好ましい。例えば、過剰酸素領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。 For example, the insulator 224 and the insulator 250 that function as part of the gate insulator are preferably insulators having an excess oxygen region. For example, by using a structure in which silicon oxide or silicon oxynitride having an excess oxygen region is in contact with the oxide 230, oxygen vacancies in the oxide 230 can be compensated.

また、例えば、ゲート絶縁体の一部として機能する絶縁体222および絶縁体252において、アルミニウム、ハフニウム、およびガリウムの一種または複数種の酸化物を含む絶縁体を用いることができる。特に、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。 For example, in the insulator 222 and the insulator 252 which function as part of the gate insulator, an insulator including one or more oxides of aluminum, hafnium, and gallium can be used. In particular, it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like as the insulator containing one or both of aluminum and hafnium.

ここで、絶縁体222および絶縁体252は、結晶性が低い(または、結晶が少ない)膜、またはアモルファス構造を含む膜を用いるとよい。結晶性が低い、またはアモルファス構造を含む酸化膜は、該酸化膜が有する酸素を、加熱により、近接する絶縁体へと拡散することができる。例えば、結晶性が低い膜、またはアモルファス構造を含む膜を絶縁体224および絶縁体252に用いることで、後工程の熱履歴により、絶縁体222および絶縁体252から、絶縁体224、および絶縁体250に過剰酸素が添加され、絶縁体224、および絶縁体250に過剰酸素領域を容易に形成することができる。また、結晶性が低い膜、またはアモルファス構造を含む膜は、平坦性が高く、絶縁体250と絶縁体252との界面、および絶縁体220と絶縁体222の界面、絶縁体222と絶縁体224との界面を良好な状態とすることができる。 Here, as the insulator 222 and the insulator 252, a film with low crystallinity (or few crystals) or a film including an amorphous structure may be used. An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating. For example, when a film having low crystallinity or a film including an amorphous structure is used for the insulator 224 and the insulator 252, the insulator 224 and the insulator 224 are changed from the insulator 222 and the insulator 252 due to heat history in a later process. Excess oxygen is added to 250, and an excess oxygen region can be easily formed in the insulator 224 and the insulator 250. A film having low crystallinity or a film including an amorphous structure has high flatness, and has an interface between the insulator 250 and the insulator 252, an interface between the insulator 220 and the insulator 222, and an insulator 222 and the insulator 224. The interface with can be in a good state.

例えば、平坦性が高い膜として、原子間力顕微鏡を用いて測定した自乗平均面粗さ(RMS)が、1μm×1μmの測定範囲において、0.4nm以下、好ましくは0.3nm以下である絶縁体を用いるとよい。 For example, as a film having high flatness, an insulation whose root mean square roughness (RMS) measured using an atomic force microscope is 0.4 nm or less, preferably 0.3 nm or less in a measurement range of 1 μm × 1 μm. Use your body.

例えば、結晶性が低い膜として、電子顕微鏡を用いた電子線回折において、円状(リング状)のパターンが観測される絶縁体を用いるとよい。 For example, as a film having low crystallinity, an insulator in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope may be used.

例えば、絶縁体222には、熱に対して安定である酸化シリコンまたは酸化窒化シリコンを用いることが好ましい。ゲート絶縁体として、熱に対して安定な膜と、比誘電率が高い積層構造とすることで、物理膜厚を保持したまま、ゲート絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。 For example, the insulator 222 is preferably formed using silicon oxide or silicon oxynitride which is stable against heat. The gate insulator has a heat-stable film and a laminated structure with a high relative dielectric constant, so that the equivalent oxide thickness (EOT) of the gate insulator can be reduced while maintaining the physical film thickness. It becomes.

上記積層構造とすることで、ゲート電極からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、ゲート絶縁体の物理的な厚みにより、ゲート電極と、チャネルが形成される領域との間の距離を保つことで、リーク電流を抑制することができる。 With the stacked structure, the on-state current can be improved without weakening the influence of the electric field from the gate electrode. Further, leakage current can be suppressed by maintaining the distance between the gate electrode and the region where the channel is formed depending on the physical thickness of the gate insulator.

絶縁体212、絶縁体216、絶縁体271および絶縁体280は、比誘電率の低い絶縁体を有することが好ましい。例えば、絶縁体212、絶縁体216、絶縁体271、および絶縁体280は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、絶縁体212、絶縁体216、絶縁体271、および絶縁体280は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。 The insulator 212, the insulator 216, the insulator 271 and the insulator 280 preferably include an insulator having a low relative dielectric constant. For example, the insulator 212, the insulator 216, the insulator 271, and the insulator 280 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, fluorine-added silicon oxide, carbon-added silicon oxide, carbon, and It is preferable to include silicon oxide to which nitrogen is added, silicon oxide having holes, or a resin. Alternatively, the insulator 212, the insulator 216, the insulator 271, and the insulator 280 can be formed using silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, fluorine-added silicon oxide, carbon-added silicon oxide, carbon, and the like. It is preferable to have a stacked structure of silicon oxide to which nitrogen is added or silicon oxide having holes and a resin. Since silicon oxide and silicon oxynitride are thermally stable, a laminated structure having a low thermal stability and a low relative dielectric constant can be obtained by combining with silicon. Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.

絶縁体210、絶縁体214、絶縁体270、および絶縁体272としては、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。絶縁体270および絶縁体272としては、例えば、酸化アルミニウム、酸化ハフニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いればよい。 As the insulator 210, the insulator 214, the insulator 270, and the insulator 272, an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen can be used. Examples of the insulator 270 and the insulator 272 include aluminum oxide, hafnium oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, and tantalum oxide, and silicon nitride oxide. Alternatively, silicon nitride or the like may be used.

<<導電体>>
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
<< Conductor >>
As the conductor, a metal selected from aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, etc. A material containing one or more elements can be used. Alternatively, a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.

また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。 A plurality of conductive layers formed using the above materials may be stacked. For example, a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen may be combined. Alternatively, a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed. Alternatively, a stacked structure of a combination of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.

なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。 Note that in the case where an oxide is used for a channel formation region of the transistor, the conductor functioning as the gate electrode has a stacked structure in which the above-described material containing a metal element and the conductive material containing oxygen are combined. Is preferred. In this case, a conductive material containing oxygen is preferably provided on the channel formation region side. By providing a conductive material containing oxygen on the channel formation region side, oxygen released from the conductive material can be easily supplied to the channel formation region.

特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。 In particular, a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed is preferably used as the conductor functioning as a gate electrode. Alternatively, the above-described conductive material containing a metal element and nitrogen may be used. For example, a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used. In addition, indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon were added Indium tin oxide may be used. Alternatively, indium gallium zinc oxide containing nitrogen may be used. By using such a material, hydrogen contained in a metal oxide in which a channel is formed can be captured in some cases. Alternatively, hydrogen mixed from an external insulator or the like may be captured.

導電体260、導電体203、導電体205、および導電体240としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。 As the conductor 260, the conductor 203, the conductor 205, and the conductor 240, aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium A material containing one or more metal elements selected from zirconium, beryllium, indium, ruthenium, and the like can be used. Alternatively, a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.

<<金属酸化物>>
酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
<< Metal oxide >>
As the oxide 230, a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used. Below, the metal oxide applicable to the oxide 230 which concerns on this invention is demonstrated.

酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。 The oxide semiconductor preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. Further, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, or the like may be included.

ここでは、酸化物半導体が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。 Here, a case where the oxide semiconductor is an In-M-Zn oxide containing indium, the element M, and zinc is considered. The element M is aluminum, gallium, yttrium, tin, or the like. Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium. However, the element M may be a combination of a plurality of the aforementioned elements.

[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
[Composition of metal oxide]
A structure of a CAC (Cloud-Aligned Composite) -OS that can be used for the transistor disclosed in one embodiment of the present invention is described below.

なお、本明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。 In addition, in this specification etc., it may describe as CAAC (c-axis aligned crystal) and CAC (Cloud-aligned Composite). Note that CAAC represents an example of a crystal structure, and CAC represents an example of a function or a material structure.

CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。 CAC-OS or CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material has a function as a semiconductor. Note that in the case where CAC-OS or CAC-metal oxide is used for an active layer of a transistor, the conductive function is a function of flowing electrons (or holes) serving as carriers, and the insulating function is an electron serving as carriers. It is a function that does not flow. A function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.

また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。 In addition, the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region. The conductive region has the above-described conductive function, and the insulating region has the above-described insulating function. In the material, the conductive region and the insulating region may be separated at the nanoparticle level. In addition, the conductive region and the insulating region may be unevenly distributed in the material, respectively. In addition, the conductive region may be observed with the periphery blurred and connected in a cloud shape.

また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。 In CAC-OS or CAC-metal oxide, the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.

また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。 Further, CAC-OS or CAC-metal oxide is composed of components having different band gaps. For example, CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region. In the case of the configuration, when the carrier flows, the carrier mainly flows in the component having the narrow gap. In addition, the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.

すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。 That is, CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).

[金属酸化物の構造]
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
[Structure of metal oxide]
An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor. Examples of the non-single-crystal oxide semiconductor include a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), and a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor). OS: amorphous-like oxide semiconductor) and amorphous oxide semiconductor.

CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。 The CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and have a strain. Note that the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.

ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。 Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons. In addition, there may be a lattice arrangement such as a pentagon and a heptagon in the distortion. Note that in the CAAC-OS, a clear crystal grain boundary (also referred to as a grain boundary) cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. This is probably because of this.

また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。 The CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked. There is a tendency to have a structure (also called a layered structure). Note that indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.

CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。 The CAAC-OS is an oxide semiconductor with high crystallinity. On the other hand, since CAAC-OS cannot confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs. In addition, since the crystallinity of an oxide semiconductor may be deteriorated due to entry of impurities, generation of defects, or the like, the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the physical properties of the oxide semiconductor including a CAAC-OS are stable. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability.

nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。 The nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm). In addition, the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.

a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。 The a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor. The a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.

酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。 Oxide semiconductors have various structures and different properties. The oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.

[酸化物半導体を有するトランジスタ]
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
[Transistor having oxide semiconductor]
Next, the case where the above oxide semiconductor is used for a transistor is described.

なお、上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。 Note that by using the oxide semiconductor for a transistor, a transistor with high field-effect mobility can be realized. In addition, a highly reliable transistor can be realized.

また、トランジスタには、キャリア密度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア密度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。例えば、酸化物半導体は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。 For the transistor, an oxide semiconductor with low carrier density is preferably used. In the case where the carrier density of the oxide semiconductor film is decreased, the impurity concentration in the oxide semiconductor film may be decreased and the defect level density may be decreased. In this specification and the like, a low impurity concentration and a low density of defect states are referred to as high purity intrinsic or substantially high purity intrinsic. For example, the oxide semiconductor has a carrier density of less than 8 × 10 11 / cm 3 , preferably less than 1 × 10 11 / cm 3 , more preferably less than 1 × 10 10 / cm 3 , and 1 × 10 −9 / What is necessary is just to be cm 3 or more.

また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。 In addition, a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low density of defect states, and thus may have a low density of trap states.

また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。 In addition, the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high trap state density may have unstable electrical characteristics.

従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。 Therefore, in order to stabilize the electrical characteristics of the transistor, it is effective to reduce the impurity concentration in the oxide semiconductor. In order to reduce the impurity concentration in the oxide semiconductor, it is preferable to reduce the impurity concentration in an adjacent film. Impurities include hydrogen, nitrogen, alkali metal, alkaline earth metal, iron, nickel, silicon, and the like.

[不純物]
ここで、酸化物半導体中における各不純物の影響について説明する。
[impurities]
Here, the influence of each impurity in the oxide semiconductor is described.

酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。 In the oxide semiconductor, when silicon or carbon which is one of Group 14 elements is included, a defect level is formed in the oxide semiconductor. Therefore, the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor (concentration obtained by secondary ion mass spectrometry (SIMS)) are 2 × 10 18 atoms / cm 3 or less, preferably 2 × 10 17 atoms / cm 3 or less.

また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。 In addition, when the oxide semiconductor contains an alkali metal or an alkaline earth metal, a defect level is formed and carriers may be generated in some cases. Therefore, a transistor including an oxide semiconductor containing an alkali metal or an alkaline earth metal is likely to be normally on. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the oxide semiconductor. Specifically, the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 × 10 18 atoms / cm 3 or less, preferably 2 × 10 16 atoms / cm 3 or less.

また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい、例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。 In addition, when nitrogen is contained in an oxide semiconductor, electrons serving as carriers are generated, the carrier density is increased, and the oxide semiconductor is likely to be n-type. As a result, a transistor using an oxide semiconductor containing nitrogen as a semiconductor is likely to be normally on. Accordingly, nitrogen in the oxide semiconductor is preferably reduced as much as possible. For example, the nitrogen concentration in the oxide semiconductor is less than 5 × 10 19 atoms / cm 3 in SIMS, preferably 5 × 10 18. atoms / cm 3 or less, more preferably 1 × 10 18 atoms / cm 3 or less, and even more preferably 5 × 10 17 atoms / cm 3 or less.

また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。 In addition, hydrogen contained in the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases. When hydrogen enters the oxygen vacancies, electrons serving as carriers may be generated. In addition, a part of hydrogen may be combined with oxygen bonded to a metal atom to generate electrons as carriers. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to be normally on. For this reason, it is preferable that hydrogen in the oxide semiconductor be reduced as much as possible. Specifically, in an oxide semiconductor, the hydrogen concentration obtained by SIMS is less than 1 × 10 20 atoms / cm 3 , preferably less than 1 × 10 19 atoms / cm 3 , more preferably 5 × 10 18 atoms / cm 3. Less than 3 , more preferably less than 1 × 10 18 atoms / cm 3 .

不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。 By using an oxide semiconductor in which impurities are sufficiently reduced for a channel formation region of a transistor, stable electrical characteristics can be imparted.

<半導体装置の作製方法>
次に、本発明に係るトランジスタ200を有する半導体装置について、作製方法を図3乃至図11を用いて説明する。また、図3乃至図11において、各図の(A)は上面図を示す。また、各図の(B)は(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図である。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図である。
<Method for Manufacturing Semiconductor Device>
Next, a method for manufacturing a semiconductor device including the transistor 200 according to the present invention will be described with reference to FIGS. Further, in FIGS. 3 to 11, (A) in each drawing shows a top view. Moreover, (B) of each figure is sectional drawing corresponding to the site | part shown with the dashed-dotted line of A1-A2 shown to (A). Moreover, (C) of each figure is sectional drawing corresponding to the site | part shown with the dashed-dotted line of A3-A4 in (A).

まず、基板(図示しない)を準備し、当該基板上に絶縁体210を成膜する。絶縁体210の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法またはALD(Atomic Layer Depostion)法などを用いて行うことができる。 First, a substrate (not shown) is prepared, and an insulator 210 is formed over the substrate. The insulator 210 is formed by a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, or an ALD (ALD) method. (Atomic Layer Deposition) method or the like can be used.

なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。 In addition, the CVD method can be classified into a plasma CVD (PECVD: Plasma Enhanced CVD) method using plasma, a thermal CVD (TCVD: Thermal CVD) method using heat, a photo CVD (Photo CVD) method using light, and the like. . Furthermore, it can be divided into a metal CVD (MCVD: Metal CVD) method and an organic metal CVD (MOCVD: Metal Organic CVD) method depending on the source gas used.

プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。 In the plasma CVD method, a high-quality film can be obtained at a relatively low temperature. Further, the thermal CVD method is a film formation method that can reduce plasma damage to an object to be processed because plasma is not used. For example, a wiring, an electrode, an element (a transistor, a capacitor, or the like) included in the semiconductor device may be charged up by receiving electric charge from plasma. At this time, a wiring, an electrode, an element, or the like included in the semiconductor device may be destroyed by the accumulated charge. On the other hand, in the case of a thermal CVD method without using plasma, such plasma damage does not occur, so that the yield of semiconductor devices can be increased. In addition, in the thermal CVD method, plasma damage during film formation does not occur, so that a film with few defects can be obtained.

また、ALD法も、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。また、ALD法も、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。 The ALD method is also a film forming method that can reduce plasma damage to an object to be processed. In addition, since the ALD method does not cause plasma damage during film formation, a film with few defects can be obtained.

CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。 The CVD method and the ALD method are film forming methods in which a film is formed by a reaction on the surface of an object to be processed, unlike a film forming method in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage. In particular, the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio. However, since the ALD method has a relatively low film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method with a high film formation rate.

CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。 In the CVD method and the ALD method, the composition of the obtained film can be controlled by the flow rate ratio of the source gases. For example, in the CVD method and the ALD method, a film having an arbitrary composition can be formed depending on the flow rate ratio of the source gases. Further, for example, in the CVD method and the ALD method, a film whose composition is continuously changed can be formed by changing the flow rate ratio of the source gas while forming the film. When film formation is performed while changing the flow rate ratio of the source gas, the time required for film formation can be shortened by the time required for conveyance and pressure adjustment compared to the case where film formation is performed using a plurality of film formation chambers. it can. Therefore, the productivity of the semiconductor device may be increased.

本実施の形態では、絶縁体210として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体210は、多層構造としてもよい。例えばスパッタリング法によって酸化アルミニウムを成膜し、該酸化アルミニウム上にALD法によって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。 In this embodiment, an aluminum oxide film is formed as the insulator 210 by a sputtering method. The insulator 210 may have a multilayer structure. For example, an aluminum oxide film may be formed by a sputtering method, and an aluminum oxide film may be formed on the aluminum oxide by an ALD method. Alternatively, a structure in which an aluminum oxide film is formed by an ALD method and an aluminum oxide film is formed on the aluminum oxide by a sputtering method may be employed.

次に絶縁体210上に絶縁体212を成膜する。絶縁体212の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体212として、CVD法によって酸化シリコンを成膜する。 Next, the insulator 212 is formed over the insulator 210. The insulator 212 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, silicon oxide is formed as the insulator 212 by a CVD method.

次に、絶縁体212、および絶縁体210に開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体210は、絶縁体212をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体212に酸化シリコン膜を用いた場合は、絶縁体210は、エッチングストッパ膜として機能する絶縁膜として、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜を用いるとよい。 Next, openings are formed in the insulator 212 and the insulator 210. The opening includes, for example, a groove and a slit. In some cases, the opening is pointed to a region where the opening is formed. Wet etching may be used to form the opening, but dry etching is preferable for fine processing. The insulator 210 is preferably selected from an insulator that functions as an etching stopper film when the insulator 212 is etched to form a groove. For example, in the case where a silicon oxide film is used for the insulator 212 forming the groove, the insulator 210 may be a silicon nitride film, an aluminum oxide film, or a hafnium oxide film as an insulating film functioning as an etching stopper film.

開口の形成後に、導電体203aとなる導電膜を成膜する。該導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。たとえば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体203aとなる導電体の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 After the opening is formed, a conductive film to be the conductor 203a is formed. The conductive film preferably includes a conductor having a function of suppressing permeation of oxygen. For example, tantalum nitride, tungsten nitride, titanium nitride, or the like can be used. Alternatively, a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, or molybdenum tungsten alloy can be used. The conductor to be the conductor 203a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

本実施の形態では、導電体203aとなる導電膜として、スパッタリング法によって窒化タンタルまたは、窒化タンタルの上に窒化チタンを積層した膜を成膜する。導電体203aとしてこのような金属窒化物を用いることにより、後述する導電体203bで銅など拡散しやすい金属を用いても、当該金属が導電体203aから外に拡散するのを防ぐことができる。 In this embodiment, as the conductive film to be the conductor 203a, tantalum nitride or a film in which titanium nitride is stacked over tantalum nitride is formed by a sputtering method. By using such a metal nitride as the conductor 203a, it is possible to prevent the metal from diffusing out of the conductor 203a even when a metal that easily diffuses such as copper is used in the conductor 203b described later.

次に、導電体203aとなる導電膜上に、導電体203bとなる導電膜を成膜する。該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、導電体203bとなる導電膜として、銅などの低抵抗導電性材料を成膜する。 Next, a conductive film to be the conductor 203b is formed over the conductive film to be the conductor 203a. The conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, a low-resistance conductive material such as copper is formed as the conductive film to be the conductor 203b.

次に、CMP処理を行うことで、導電体203aとなる導電膜、ならびに導電体203bとなる導電膜の一部を除去し、絶縁体212を露出する。その結果、開口部のみに、導電体203aとなる導電膜、ならびに導電体203bとなる導電膜が残存する。これにより、上面が平坦な、導電体203aおよび導電体203bを含む導電体203を形成することができる(図3参照。)。なお、当該CMP処理により、絶縁体212の一部が除去される場合がある。 Next, by performing CMP treatment, the conductive film to be the conductor 203a and part of the conductive film to be the conductor 203b are removed, and the insulator 212 is exposed. As a result, the conductive film to be the conductor 203a and the conductive film to be the conductor 203b remain only in the opening. Thus, the conductor 203 including the conductor 203a and the conductor 203b having a flat upper surface can be formed (see FIG. 3). Note that part of the insulator 212 may be removed by the CMP treatment.

次に、絶縁体212、および導電体203上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体214として、CVD法によって窒化シリコンを成膜する。このように、絶縁体214として、窒化シリコンなどの銅が透過しにくい絶縁体を用いることにより、導電体203bに銅など拡散しやすい金属を用いても、当該金属が絶縁体214より上の層に拡散するのを防ぐことができる。 Next, the insulator 214 is formed over the insulator 212 and the conductor 203. The insulator 214 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, silicon nitride is formed as the insulator 214 by a CVD method. In this manner, by using an insulator that does not easily transmit copper, such as silicon nitride, as the insulator 214, even if a metal that easily diffuses such as copper is used for the conductor 203b, the metal is a layer above the insulator 214. Can be prevented from diffusing.

次に絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、CVD法によって酸化シリコンを成膜する。 Next, an insulator 216 is formed over the insulator 214. The insulator 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, silicon oxide is formed as the insulator 216 by a CVD method.

次に、絶縁体214および絶縁体216に、導電体203に達する開口を形成する。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。 Next, an opening reaching the conductor 203 is formed in the insulator 214 and the insulator 216. Wet etching may be used to form the opening, but dry etching is preferable for fine processing.

開口の形成後に、導電体205aとなる導電膜を成膜する。導電体205aとなる導電膜は、酸素の透過を抑制する機能を有する導電性材料を含むことが望ましい。たとえば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 After the opening is formed, a conductive film to be the conductor 205a is formed. The conductive film to be the conductor 205a desirably includes a conductive material having a function of suppressing permeation of oxygen. For example, tantalum nitride, tungsten nitride, titanium nitride, or the like can be used. Alternatively, a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, or molybdenum tungsten alloy can be used. The conductive film to be the conductor 205a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

本実施の形態では、導電体205aとなる導電膜として、スパッタリング法によって窒化タンタルを成膜する。 In this embodiment, tantalum nitride is formed by a sputtering method as the conductive film to be the conductor 205a.

次に、導電体205aとなる導電膜上に、導電体205bとなる導電膜を成膜する。該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 Next, a conductive film to be the conductor 205b is formed over the conductive film to be the conductor 205a. The conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

本実施の形態では、導電体205bとなる導電膜として、CVD法によって窒化チタンを成膜し、該窒化チタン上にCVD法によってタングステンを成膜する。 In this embodiment, titanium nitride is formed by a CVD method as the conductive film to be the conductor 205b, and tungsten is formed by a CVD method on the titanium nitride.

次に、CMP処理を行うことで、導電体205aとなる導電膜、ならびに導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205a、および導電体205bとなる導電膜が残存する。これにより、上面が平坦な、導電体205aおよび導電体205bを含む導電体205を形成することができる(図3参照。)。なお、当該CMP処理により、絶縁体212の一部が除去される場合がある。 Next, by performing CMP treatment, the conductive film to be the conductor 205a and part of the conductive film to be the conductor 205b are removed, and the insulator 216 is exposed. As a result, the conductive films to be the conductors 205a and 205b remain only in the openings. Accordingly, the conductor 205 including the conductor 205a and the conductor 205b having a flat upper surface can be formed (see FIG. 3). Note that part of the insulator 212 may be removed by the CMP treatment.

次に、絶縁体216、および導電体205上に絶縁体220を成膜する。絶縁体220の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体212として、CVD法によって酸化シリコンを成膜する。 Next, the insulator 220 is formed over the insulator 216 and the conductor 205. The insulator 220 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, silicon oxide is formed as the insulator 212 by a CVD method.

次に、絶縁体220上に絶縁体222を成膜する。絶縁体222として、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水は、トランジスタ200の内側へ拡散することなく、酸化物230中の酸素欠損の生成を抑制することができる。 Next, the insulator 222 is formed over the insulator 220. As the insulator 222, an insulator containing one or both of aluminum and hafnium may be formed. Note that as the insulator including one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. An insulator including one or both of aluminum and hafnium has a barrier property against oxygen, hydrogen, and water. Since the insulator 222 has a barrier property against hydrogen and water, hydrogen and water contained in a structure provided around the transistor 200 do not diffuse inside the transistor 200 and are contained in the oxide 230. Generation of oxygen vacancies can be suppressed.

絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 The insulator 222 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

ここで、絶縁体222は、結晶性が低い(または、結晶が少ない)膜、またはアモルファス構造を含む膜とする。結晶性が低い、またはアモルファス構造を含む酸化膜は、該酸化膜が有する酸素を、加熱により、近接する絶縁体へと拡散することができる。結晶性が低い膜、またはアモルファス構造を含む膜を絶縁体222に用いることで、後工程の熱履歴により、絶縁体222から、絶縁体224に過剰酸素が添加され、絶縁体224に過剰酸素領域を容易に形成することができる。また、結晶性が低い膜、またはアモルファス構造を含む膜は、平坦性が高く、積層する他の膜との界面を良好な状態とすることができる。 Here, the insulator 222 is a film having low crystallinity (or few crystals) or a film including an amorphous structure. An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating. By using a film having low crystallinity or a film including an amorphous structure for the insulator 222, excess oxygen is added from the insulator 222 to the insulator 224 due to a thermal history in a later process, and an excess oxygen region is added to the insulator 224. Can be easily formed. A film having low crystallinity or a film including an amorphous structure has high flatness, and can have a favorable interface with another film to be stacked.

絶縁体222に用いることができる結晶性が低い、またはアモルファス構造を含む酸化膜は、成膜温度がR.T.(R.T.:Room temperature。なお、本明細書においてR.T.とは、意図的に加熱しない温度とする)以上200℃以下、および酸素を含む混合雰囲気下でのスパッタリング法により、成膜することができる。なお、成膜温度は、好ましくは130℃以下、さらに好ましくはR.T.とするとよい。また、酸素を含む混合雰囲気としては、酸素と希ガスとの混合ガス、または酸素と窒素との混合ガスを用いることができる。 An oxide film with low crystallinity or an amorphous structure that can be used for the insulator 222 has a deposition temperature of R.D. T.A. (RT: Room temperature. Note that in this specification, RT is a temperature at which heating is not performed intentionally) 200 ° C. or lower and a sputtering method in a mixed atmosphere containing oxygen. Can be membrane. The film forming temperature is preferably 130 ° C. or lower, more preferably R.P. T.A. It is good to do. As a mixed atmosphere containing oxygen, a mixed gas of oxygen and a rare gas or a mixed gas of oxygen and nitrogen can be used.

成膜温度が200℃以下、および酸素を含む混合雰囲気下でのスパッタリング法により、原子間力顕微鏡を用いて測定した自乗平均面粗さ(RMS)が、1μm×1μmの測定範囲において、0.4nm以下、好ましくは0.3nm以下である絶縁体222を成膜することができる。また、電子顕微鏡を用いた電子線回折において、円状(リング状)のパターンが観測される絶縁体222を成膜することができる。 In a measuring range of 1 μm × 1 μm, the root mean square roughness (RMS) measured using an atomic force microscope by sputtering under a mixed atmosphere containing a film forming temperature of 200 ° C. or less and oxygen is 0. An insulator 222 having a thickness of 4 nm or less, preferably 0.3 nm or less, can be formed. In addition, the insulator 222 in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope can be formed.

次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる(図3参照。)。本実施の形態では、絶縁体224として、CVD法によって酸化シリコンを成膜する。 Next, the insulator 224 is formed over the insulator 222. The insulator 224 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like (see FIG. 3). In this embodiment, silicon oxide is formed as the insulator 224 by a CVD method.

続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上または10%以上含む雰囲気で加熱処理を行ってもよい。 Subsequently, heat treatment is preferably performed. The heat treatment may be performed at 250 ° C to 650 ° C, preferably 300 ° C to 500 ° C, more preferably 320 ° C to 450 ° C. Note that the heat treatment is performed in a nitrogen or inert gas atmosphere or an atmosphere containing an oxidizing gas at 10 ppm or more, 1% or more, or 10% or more. Further, the heat treatment may be performed in a reduced pressure state. Alternatively, the heat treatment may be performed in an atmosphere containing an oxidizing gas of 10 ppm or more, 1% or more, or 10% or more in order to supplement the desorbed oxygen after the heat treatment in a nitrogen or inert gas atmosphere. .

本実施の形態では、加熱処理として、絶縁体224成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行なう。 In this embodiment, as the heat treatment, treatment is performed for 1 hour at a temperature of 400 ° C. in a nitrogen atmosphere after the insulator 224 is formed.

上記加熱処理によって、絶縁体222から、絶縁体224に過剰酸素が添加され、絶縁体224に過剰酸素領域を容易に形成することができる。また、絶縁体224に含まれる水素や水などの不純物を除去することなどができる。 By the heat treatment, excess oxygen is added from the insulator 222 to the insulator 224, so that an excess oxygen region can be easily formed in the insulator 224. In addition, impurities such as hydrogen and water contained in the insulator 224 can be removed.

また、加熱処理は、絶縁体220成膜後、および絶縁体222の成膜後のそれぞれのタイミングで行うこともできる。該加熱処理は、上述した加熱処理条件を用いることができるが、絶縁体220成膜後の加熱処理は、窒素を含む雰囲気中で行うことが好ましい。 The heat treatment can also be performed at the timing after the insulator 220 is formed and after the insulator 222 is formed. Although the above heat treatment conditions can be used for the heat treatment, the heat treatment after the formation of the insulator 220 is preferably performed in an atmosphere containing nitrogen.

ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水素や水などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。 Here, in order to form an excess oxygen region in the insulator 224, plasma treatment including oxygen may be performed in a reduced pressure state. For the plasma treatment including oxygen, it is preferable to use an apparatus having a power source that generates high-density plasma using microwaves, for example. Alternatively, a power source for applying RF (Radio Frequency) may be provided on the substrate side. High-density oxygen radicals can be generated by using high-density plasma, and oxygen radicals generated by high-density plasma can be efficiently guided into the insulator 224 by applying RF to the substrate side. Alternatively, plasma treatment containing oxygen may be performed to supplement oxygen that has been desorbed after performing plasma treatment containing an inert gas using this apparatus. Note that impurities such as hydrogen and water contained in the insulator 224 can be removed by appropriately selecting the conditions for the plasma treatment. In that case, heat treatment may not be performed.

次に、絶縁体224上に、酸化物230aとなる酸化膜230Aと、酸化物230bとなる酸化膜230Bを順に成膜する(図4参照。)。なお、上記酸化膜は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。 Next, an oxide film 230A to be the oxide 230a and an oxide film 230B to be the oxide 230b are sequentially formed over the insulator 224 (see FIG. 4). Note that the oxide film is preferably formed continuously without being exposed to the atmospheric environment. By forming the film without opening to the atmosphere, impurities or moisture from the atmospheric environment can be prevented from adhering to the oxide film 230A and the oxide film 230B, and the vicinity of the interface between the oxide film 230A and the oxide film 230B can be prevented. Can be kept clean.

酸化膜230A、および酸化膜230Bの成膜はスパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 The oxide film 230A and the oxide film 230B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn−M−Zn酸化物ターゲットを用いることができる。 For example, in the case where the oxide film 230A and the oxide film 230B are formed by a sputtering method, oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas. By increasing the proportion of oxygen contained in the sputtering gas, excess oxygen in the oxide film to be formed can be increased. In the case where the oxide film is formed by a sputtering method, the In-M-Zn oxide target can be used.

特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。従って、酸化膜230Aのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。 In particular, part of oxygen contained in the sputtering gas may be supplied to the insulator 224 when the oxide film 230A is formed. Therefore, the proportion of oxygen contained in the sputtering gas for the oxide film 230A may be 70% or more, preferably 80% or more, more preferably 100%.

また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体を用いたトランジスタは、比較的高い電界効果移動度が得られる。 In the case where the oxide film 230B is formed by a sputtering method, an oxygen-deficient oxide semiconductor is formed when the proportion of oxygen contained in the sputtering gas is 1% to 30%, preferably 5% to 20%. It is formed. A transistor including an oxygen-deficient oxide semiconductor can have a relatively high field-effect mobility.

本実施の形態では、酸化膜230Aを、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜する。また、酸化膜230Bを、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。 In this embodiment, the oxide film 230A is formed by a sputtering method using a target of In: Ga: Zn = 1: 3: 4 [atomic ratio]. Further, the oxide film 230B is formed by a sputtering method using a target of In: Ga: Zn = 4: 2: 4.1 [atomic ratio]. Note that each oxide film is preferably formed in accordance with characteristics required for the oxide 230 by appropriately selecting a deposition condition and an atomic ratio.

次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、および酸化膜230B中の水素や水などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行なった後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。 Next, heat treatment may be performed. The heat treatment conditions described above can be used for the heat treatment. By the heat treatment, impurities such as hydrogen and water in the oxide film 230A and the oxide film 230B can be removed. In this embodiment mode, after processing for one hour at a temperature of 400 ° C. in a nitrogen atmosphere, the processing is continuously performed for one hour at a temperature of 400 ° C. in an oxygen atmosphere.

次に、酸化膜230A、および酸化膜230Bを島状に加工して、酸化物230a、および酸化物230bを形成する(図5参照。)。 Next, the oxide film 230A and the oxide film 230B are processed into an island shape to form an oxide 230a and an oxide 230b (see FIG. 5).

なお、上記工程において、絶縁体224を、島状に加工してもよい。その場合、絶縁体222をエッチングストッパ膜として用いることができる。 Note that in the above step, the insulator 224 may be processed into an island shape. In that case, the insulator 222 can be used as an etching stopper film.

ここで、酸化物230a、および酸化物230bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、および酸化物230bの側面は、絶縁体222の上面に対し、概略垂直であることが好ましい。酸化物230a、および酸化物230bの側面が、絶縁体222の上面に対し、概略垂直であることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。なお、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角が鋭角になる構成にしてもよい。その場合、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角は大きいほど好ましい。 Here, the oxide 230 a and the oxide 230 b are formed so as to overlap with the conductor 205 at least partially. The side surfaces of the oxide 230 a and the oxide 230 b are preferably substantially perpendicular to the upper surface of the insulator 222. Since the side surfaces of the oxide 230a and the oxide 230b are substantially perpendicular to the upper surface of the insulator 222, when the plurality of transistors 200 are provided, the area can be reduced and the density can be increased. Note that the angle formed between the side surfaces of the oxides 230a and 230b and the top surface of the insulator 222 may be an acute angle. In that case, the angle between the side surfaces of the oxides 230a and 230b and the top surface of the insulator 222 is preferably as large as possible.

また、酸化物230a、および酸化物230bの側面と、酸化物230aの上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、酸化物230bの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とすることが好ましい。端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。 In addition, a curved surface is provided between the side surfaces of the oxides 230a and 230b and the upper surface of the oxide 230a. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape). For example, the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm at the end of the oxide 230b. By not having a corner at the end, the coverage of the film in the subsequent film forming process is improved.

なお、当該酸化膜の加工はリソグラフィー法を用いて行えばよい。また、該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。 Note that the oxide film may be processed by a lithography method. In addition, a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for fine processing.

リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことができる。 In the lithography method, first, a resist is exposed through a mask. Next, a resist mask is formed by removing or leaving the exposed region using a developer. Next, a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching through the resist mask. For example, the resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like. Further, an immersion technique may be used in which exposure is performed by filling a liquid (for example, water) between the substrate and the projection lens. Further, instead of the light described above, an electron beam or an ion beam may be used. Note that a mask is not necessary when an electron beam or an ion beam is used. Note that the resist mask can be removed by performing a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.

また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、酸化膜230B上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。酸化膜230A、および酸化膜230Bのエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。上記酸化膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。 Further, a hard mask made of an insulator or a conductor may be used instead of the resist mask. In the case of using a hard mask, an insulating film or a conductive film to be a hard mask material is formed over the oxide film 230B, a resist mask is formed thereon, and a hard mask having a desired shape is formed by etching the hard mask material. can do. The etching of the oxide film 230A and the oxide film 230B may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching. The hard mask may be removed by etching after the oxide film is etched. On the other hand, when the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not always necessary to remove the hard mask.

ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。 As the dry etching apparatus, a capacitively coupled plasma (CCP) etching apparatus having parallel plate electrodes can be used. The capacitively coupled plasma etching apparatus having parallel plate electrodes may be configured to apply a high frequency power source to one of the parallel plate electrodes. Alternatively, a configuration in which a plurality of different high-frequency power sources are applied to one electrode of the parallel plate electrode may be employed. Or the structure which applies the high frequency power supply of the same frequency to each parallel plate type | mold electrode may be sufficient. Or the structure which applies the high frequency power source from which a frequency differs to each parallel plate type | mold electrode may be sufficient. Alternatively, a dry etching apparatus having a high-density plasma source can be used. As the dry etching apparatus having a high-density plasma source, for example, an inductively coupled plasma (ICP) etching apparatus can be used.

また、上記ドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が酸化物230a、および酸化物230bなどの表面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。 In addition, by performing the treatment such as dry etching, impurities due to an etching gas or the like may adhere or diffuse on the surface or inside of the oxide 230a, the oxide 230b, or the like. Examples of impurities include fluorine and chlorine.

上記の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液など用いたウェット洗浄、プラズマを用いたプラズマ処理または、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。 Cleaning is performed in order to remove the impurities and the like. Examples of the cleaning method include wet cleaning using a cleaning liquid, plasma processing using plasma, cleaning by heat treatment, and the like, and the above cleaning may be performed in combination as appropriate.

ウェット洗浄としては、シュウ酸、リン酸またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。本実施の形態では、純水または炭酸水を用いた超音波洗浄を行う。 As the wet cleaning, a cleaning process may be performed using an aqueous solution obtained by diluting oxalic acid, phosphoric acid, hydrofluoric acid, or the like with carbonated water or pure water. Alternatively, ultrasonic cleaning using pure water or carbonated water may be performed. In this embodiment, ultrasonic cleaning using pure water or carbonated water is performed.

続いて、加熱処理を行っても良い。加熱処理の条件は、前述の加熱処理の条件を用いることができる。 Subsequently, heat treatment may be performed. As the heat treatment conditions, the above-described heat treatment conditions can be used.

次に、絶縁体224、酸化物230a、および酸化物230bの上に、酸化膜230C、絶縁膜250A、絶縁膜252A、導電膜260A、導電膜260B、絶縁膜270A、および絶縁膜271Aを順に成膜する(図6参照。)。 Next, the oxide film 230C, the insulating film 250A, the insulating film 252A, the conductive film 260A, the conductive film 260B, the insulating film 270A, and the insulating film 271A are sequentially formed over the insulator 224, the oxide 230a, and the oxide 230b. Film (see FIG. 6).

酸化膜230Cの成膜はスパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。酸化物230cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化膜230Cを成膜すればよい。本実施の形態では、酸化膜230Cを、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜する。 The oxide film 230C can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. The oxide film 230C may be formed using a film formation method similar to that of the oxide film 230A or the oxide film 230B in accordance with characteristics required for the oxide 230c. In this embodiment, the oxide film 230C is formed by a sputtering method with a target of In: Ga: Zn = 1: 3: 4 [atomic ratio].

次に、絶縁膜250Aを成膜する。絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。本実施例では、絶縁膜250Aとして、CVD法により、酸化窒化シリコンを成膜するとよい。なお、絶縁膜250Aを成膜する際の成膜温度は、350℃以上450℃未満、特に400℃前後とすることが好ましい。絶縁膜250Aを、400℃で成膜することで、不純物が少ない絶縁体を成膜することができる。 Next, an insulating film 250A is formed. The insulating film 250A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, silicon oxynitride is preferably formed by a CVD method as the insulating film 250A. Note that the deposition temperature at the time of forming the insulating film 250A is preferably 350 ° C. or higher and lower than 450 ° C., particularly preferably around 400 ° C. By forming the insulating film 250A at 400 ° C., an insulator with few impurities can be formed.

なお、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させ、該酸素プラズマに絶縁膜250Aを曝すことで、絶縁膜250A、酸化物230a、酸化物230b、および酸化膜230C、へ酸素を導入することができる。 Note that oxygen is excited by microwaves, high-density oxygen plasma is generated, and the insulating film 250A is exposed to the oxygen plasma, so that oxygen is supplied to the insulating film 250A, the oxide 230a, the oxide 230b, and the oxide film 230C. Can be introduced.

また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。該加熱処理によって、絶縁膜250Aの水分濃度および水素濃度を低減させることができる。 Further, heat treatment may be performed. The heat treatment conditions described above can be used for the heat treatment. By the heat treatment, the moisture concentration and the hydrogen concentration of the insulating film 250A can be reduced.

次に、絶縁膜250A上に絶縁膜252Aを成膜する。絶縁膜252Aとして、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体252Aが、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水は、トランジスタ200の内側へ拡散することなく、酸化物230中の酸素欠損の生成を抑制することができる。 Next, an insulating film 252A is formed over the insulating film 250A. As the insulating film 252A, an insulator containing one or both of aluminum and hafnium may be formed. Note that as the insulator including one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. An insulator including one or both of aluminum and hafnium has a barrier property against oxygen, hydrogen, and water. Since the insulator 252A has a barrier property against hydrogen and water, hydrogen and water contained in the structure provided around the transistor 200 do not diffuse into the transistor 200 and are contained in the oxide 230. Generation of oxygen vacancies can be suppressed.

絶縁膜252Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。 The insulating film 252A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

ここで、絶縁膜252Aは、結晶性が低い(または、結晶が少ない)膜、またはアモルファス構造を含む膜とする。結晶性が低い、またはアモルファス構造を含む酸化膜は、該酸化膜が有する酸素を、加熱により、近接する絶縁体へと拡散することができる。結晶性が低い膜、またはアモルファス構造を含む膜を絶縁膜252Aに用いることで、後工程の熱履歴により、絶縁膜252Aから、絶縁膜250Aに過剰酸素が添加され、絶縁膜250Aに過剰酸素領域を容易に形成することができる。また、結晶性が低い膜、またはアモルファス構造を含む膜は、平坦性が高く、積層する他の膜との界面を良好な状態とすることができる。 Here, the insulating film 252A is a film having low crystallinity (or few crystals) or a film including an amorphous structure. An oxide film with low crystallinity or an amorphous structure can diffuse oxygen contained in the oxide film to an adjacent insulator by heating. By using a film having low crystallinity or a film including an amorphous structure for the insulating film 252A, excess oxygen is added from the insulating film 252A to the insulating film 250A due to a thermal history in a later process, and an excess oxygen region is added to the insulating film 250A. Can be easily formed. A film having low crystallinity or a film including an amorphous structure has high flatness, and can have a favorable interface with another film to be stacked.

絶縁膜252Aに用いることができる結晶性が低い、またはアモルファス構造を含む酸化膜は、成膜温度がR.T以上200℃以下、および酸素を含む混合雰囲気下でのスパッタリング法により、成膜することができる。なお、成膜温度は、好ましくは130℃以下、さらに好ましくはR.T(R.Tとは、意図的に加熱しない温度とする)とするとよい。また、酸素を含む混合雰囲気としては、酸素と希ガスとの混合ガス、または酸素と窒素との混合ガスを用いることができる。 An oxide film with low crystallinity or an amorphous structure that can be used for the insulating film 252A has a deposition temperature of R.P. A film can be formed by a sputtering method in a mixed atmosphere containing T and 200 ° C. and oxygen. The film forming temperature is preferably 130 ° C. or lower, more preferably R.P. T (RT is a temperature that is not intentionally heated). As a mixed atmosphere containing oxygen, a mixed gas of oxygen and a rare gas or a mixed gas of oxygen and nitrogen can be used.

成膜温度が200℃以下、および酸素を含む混合雰囲気下でのスパッタリング法により、原子間力顕微鏡を用いて測定した自乗平均面粗さ(RMS)が、1μm×1μmの測定範囲において、0.4nm以下、好ましくは0.3nm以下である絶縁体252Aを成膜することができる。また、電子顕微鏡を用いた電子線回折において、円状(リング状)のパターンが観測される絶縁膜252Aを成膜することができる。 In a measuring range of 1 μm × 1 μm, the root mean square roughness (RMS) measured using an atomic force microscope by sputtering under a mixed atmosphere containing a film forming temperature of 200 ° C. or less and oxygen is 0. An insulator 252A with a thickness of 4 nm or less, preferably 0.3 nm or less, can be formed. In addition, an insulating film 252A in which a circular (ring-shaped) pattern is observed in electron beam diffraction using an electron microscope can be formed.

また、絶縁膜252Aとして金属酸化物を、酸素を含む雰囲気において、スパッタリング法を用いて成膜することで、絶縁膜250Aに酸素を添加し、絶縁膜250Aに過剰酸素領域を形成することができる。絶縁膜250Aに形成された過剰酸素領域から、酸化物230に酸素を供給することで、酸素欠損を補償することができる。 In addition, by forming a metal oxide as the insulating film 252A using a sputtering method in an atmosphere containing oxygen, oxygen can be added to the insulating film 250A and an excess oxygen region can be formed in the insulating film 250A. . By supplying oxygen to the oxide 230 from an excess oxygen region formed in the insulating film 250A, oxygen vacancies can be compensated.

ここで、スパッタリング法による絶縁膜252Aの成膜時には、ターゲットと基板との間には、イオンとスパッタされた粒子とが存在する。例えば、ターゲットは、電源が接続されており、電位E0が与えられる。また、基板は、接地電位などの電位E1が与えられる。ただし、基板が電気的に浮いていてもよい。また、ターゲットと基板の間には電位E2となる領域が存在する。各電位の大小関係は、E2>E1>E0である。 Here, when the insulating film 252A is formed by a sputtering method, ions and sputtered particles exist between the target and the substrate. For example, the target is connected to a power source and is supplied with the potential E0. The substrate is given a potential E1 such as a ground potential. However, the substrate may be electrically floating. In addition, there is a region having the potential E2 between the target and the substrate. The magnitude relationship between the potentials is E2> E1> E0.

プラズマ内のイオンが、電位差E2−E0によって加速され、ターゲットに衝突することにより、ターゲットから粒子がはじき出される。このスパッタされた粒子が成膜表面に付着し、堆積することにより成膜が行われる。また、一部のイオンはターゲットによって反跳し、反跳イオンとして形成された膜を通過し、被成膜面と接する絶縁膜250A、および絶縁体224に取り込まれる場合がある。また、プラズマ内のイオンは、電位差E2−E1によって加速され、成膜表面を衝撃する。この際、一部のイオンは、絶縁膜250A、および絶縁体224内部まで到達する。イオンが絶縁膜250A、および絶縁体224に取り込まれることにより、イオンが取り込まれた領域が絶縁膜250A、および絶縁体224に形成される。つまり、イオンが酸素を含むイオンであった場合において、絶縁膜250A、および絶縁体224に過剰酸素領域が形成される。 Ions in the plasma are accelerated by the potential difference E2-E0 and collide with the target, whereby particles are ejected from the target. The sputtered particles adhere to and deposit on the film formation surface to form a film. Further, some ions recoil by the target, pass through a film formed as recoil ions, and may be taken into the insulating film 250A and the insulator 224 in contact with the deposition surface. Further, ions in the plasma are accelerated by the potential difference E2-E1, and impact the film formation surface. At this time, some ions reach the inside of the insulating film 250 </ b> A and the insulator 224. When ions are taken into the insulating film 250 </ b> A and the insulator 224, regions into which ions are taken are formed in the insulating film 250 </ b> A and the insulator 224. That is, in the case where the ions are ions containing oxygen, an excess oxygen region is formed in the insulating film 250A and the insulator 224.

絶縁膜250A、および絶縁体224に過剰な酸素を導入することで、過剰酸素領域を形成することができる。絶縁膜250A、および絶縁体224の過剰な酸素は、酸化物230に供給され、酸化物230の酸素欠損を補填することができる。 An excess oxygen region can be formed by introducing excess oxygen into the insulating film 250A and the insulator 224. Excess oxygen in the insulating film 250A and the insulator 224 is supplied to the oxide 230, so that oxygen vacancies in the oxide 230 can be filled.

従って、絶縁膜252Aを、スパッタリング装置を用いて、酸素ガス雰囲気下で成膜することで、絶縁膜252Aを成膜しながら、絶縁膜250A、および絶縁体224に酸素を導入することができる。特に、絶縁膜252Aに、バリア性を有するアルミニウム及びハフニウムの一方または双方の酸化物を用いることで、絶縁体250に導入した過剰酸素を、効果的に封じ込めることができる。 Therefore, by forming the insulating film 252A using a sputtering apparatus in an oxygen gas atmosphere, oxygen can be introduced into the insulating film 250A and the insulator 224 while the insulating film 252A is formed. In particular, by using one or both of aluminum and hafnium having barrier properties for the insulating film 252A, excess oxygen introduced into the insulator 250 can be effectively contained.

続いて、導電膜260A、および導電膜260Bを成膜する。導電膜260A、および導電膜260Bは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。本実施の形態では、導電膜260Aとして、CVD法によって窒化チタンを成膜し、導電膜260Bとして、CVD法によってタングステンを成膜する。 Subsequently, a conductive film 260A and a conductive film 260B are formed. The conductive film 260A and the conductive film 260B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment, titanium nitride is formed by a CVD method as the conductive film 260A, and tungsten is formed by a CVD method as the conductive film 260B.

続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。なお、加熱処理は行わなくてもよい場合がある。本加熱処理によって、絶縁体252Aから、絶縁体250A、および絶縁体224に過剰酸素が添加され、絶縁体250A、および絶縁体224に過剰酸素領域を容易に形成することができる。 Subsequently, heat treatment can be performed. The heat treatment conditions described above can be used for the heat treatment. Note that heat treatment may not be performed. Through this heat treatment, excess oxygen is added from the insulator 252A to the insulator 250A and the insulator 224, so that an excess oxygen region can be easily formed in the insulator 250A and the insulator 224.

絶縁膜270Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。絶縁膜270Aは、バリア膜として機能するため、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いる。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。これにより、導電体260の酸化を防ぐことができる。また、導電体260および絶縁体250を介して、水または水素などの不純物が酸化物230に混入することを防ぐことができる。本実施の形態では、絶縁膜270Aとして、ALD法によって酸化アルミニウムを成膜する。 The insulating film 270A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Since the insulating film 270A functions as a barrier film, an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen is used. For example, aluminum oxide or hafnium oxide is preferably used. Thereby, oxidation of the conductor 260 can be prevented. In addition, impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260 and the insulator 250. In this embodiment, aluminum oxide is formed as the insulating film 270A by an ALD method.

絶縁膜271Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。ここで、絶縁膜271Aの膜厚は、後の工程で成膜する絶縁膜272Aの膜厚より厚くすることが好ましい。これにより、後の工程で絶縁体272を形成する際、導電体260の上に絶縁体271を、容易に残存させることができる。本実施の形態では、絶縁膜271Aとして、CVD法によって酸化シリコンを成膜する。 The insulating film 271A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Here, the thickness of the insulating film 271A is preferably larger than the thickness of the insulating film 272A to be formed in a later step. Accordingly, when the insulator 272 is formed in a later step, the insulator 271 can be easily left on the conductor 260. In this embodiment, silicon oxide is formed by a CVD method as the insulating film 271A.

次に、絶縁膜271Aを、エッチングし、絶縁体271を形成する。ここで、絶縁体271は、ハードマスクとして機能する。絶縁体271を設けることで、絶縁体250の側面、導電体260aの側面、導電体260bの側面、および絶縁体270の側面を、基板に対し、概略垂直に形成することができる。 Next, the insulating film 271A is etched to form the insulator 271. Here, the insulator 271 functions as a hard mask. By providing the insulator 271, the side surface of the insulator 250, the side surface of the conductor 260 a, the side surface of the conductor 260 b, and the side surface of the insulator 270 can be formed substantially perpendicular to the substrate.

絶縁体271をマスクとして、絶縁膜250A、絶縁膜252A、導電膜260A、導電膜260B、絶縁膜270Aを、エッチングし、酸化物230(酸化物230a、酸化物230b、および酸化物230c)絶縁体250、絶縁体252、導電体260(導電体260a、および導電体260b)、および絶縁体270を形成する(図7参照。)。絶縁体250、絶縁体252、導電体260a、導電体260b、絶縁体270、および絶縁体271は、少なくとも一部が、導電体205および酸化物230と重なるように形成する。 Using the insulator 271 as a mask, the insulating film 250A, the insulating film 252A, the conductive film 260A, the conductive film 260B, and the insulating film 270A are etched to form an oxide 230 (oxide 230a, oxide 230b, and oxide 230c). 250, the insulator 252, the conductor 260 (the conductor 260a and the conductor 260b), and the insulator 270 are formed (see FIG. 7). The insulator 250, the insulator 252, the conductor 260a, the conductor 260b, the insulator 270, and the insulator 271 are formed so that at least a part thereof overlaps with the conductor 205 and the oxide 230.

また、絶縁体250の側面、絶縁体252の側面、導電体260aの側面、導電体260bの側面、および絶縁体270の側面は、同一面内であることが好ましい。 In addition, the side surface of the insulator 250, the side surface of the insulator 252, the side surface of the conductor 260a, the side surface of the conductor 260b, and the side surface of the insulator 270 are preferably in the same plane.

また、絶縁体250の側面、絶縁体252の側面、導電体260aの側面、導電体260bの側面、および絶縁体270の側面が共有する同一面は、基板に対し、概略垂直であることが好ましい。なお、断面形状において、絶縁体250、絶縁体252、導電体260a、導電体260b、および絶縁体270の側面と、酸化物230の上面のなす角が鋭角になる構成にしてもよい。その場合、絶縁体250、導電体260a、導電体260b、および絶縁体270の側面と、酸化物230の上面のなす角は大きいほど好ましい。 Further, the same surface shared by the side surface of the insulator 250, the side surface of the insulator 252, the side surface of the conductor 260 a, the side surface of the conductor 260 b, and the side surface of the insulator 270 is preferably substantially perpendicular to the substrate. . Note that a cross-sectional shape of the insulator 250, the insulator 252, the conductor 260a, the conductor 260b, and the side surfaces of the insulator 270 and the top surface of the oxide 230 may be acute. In that case, the angle formed by the side surfaces of the insulator 250, the conductor 260a, the conductor 260b, and the insulator 270 and the upper surface of the oxide 230 is preferably as large as possible.

なお、上記加工後も、当該ハードマスク(絶縁体271)は除去せずに後工程を進めてもよい。その場合、絶縁体271は、後工程で実施されるドーパントの添加においてもハードマスクとして機能することができる。 Note that the post-process may be performed without removing the hard mask (insulator 271) after the processing. In that case, the insulator 271 can function as a hard mask even in the addition of a dopant performed in a later step.

また、上記エッチングにより、酸化物230bの絶縁体250と重ならない領域の上部がエッチングされる場合がある。この場合、酸化物230bの絶縁体250と重なる領域の膜厚が、絶縁体250と重ならない領域の膜厚より厚くなる場合がある。 In addition, the above etching may etch an upper portion of a region of the oxide 230b that does not overlap with the insulator 250. In this case, the thickness of the region of the oxide 230b that overlaps with the insulator 250 may be larger than the thickness of the region that does not overlap with the insulator 250.

次に、酸化物230c、絶縁体250、絶縁体252、導電体260、絶縁体270、および絶縁体271を覆って、絶縁膜272Aを成膜する(図8参照。)。絶縁膜272Aは、被覆性に優れたALD法により成膜することが好ましい。ALD法を用いることで、導電体260などにより形成された段差部においても、絶縁体250、導電体260、および絶縁体270の側面に、均一な厚さを有する絶縁膜272Aを形成することができる。 Next, an insulating film 272A is formed to cover the oxide 230c, the insulator 250, the insulator 252, the conductor 260, the insulator 270, and the insulator 271 (see FIG. 8). The insulating film 272A is preferably formed by an ALD method with excellent coverage. By using the ALD method, the insulating film 272 </ b> A having a uniform thickness can be formed on the side surfaces of the insulator 250, the conductor 260, and the insulator 270 even in the step portion formed by the conductor 260 and the like. it can.

次に、絶縁膜272Aに異方性のエッチング処理を行い、絶縁体250、導電体260、および絶縁体270の側面に接して、絶縁体272を形成する(図9参照。)。異方性のエッチング処理としては、ドライエッチング処理を行うことが好ましい。これにより、基板面に略平行な面に成膜された該絶縁膜を除去して、絶縁体272を自己整合的に形成することができる。 Next, anisotropic etching is performed on the insulating film 272A to form the insulator 272 in contact with the side surfaces of the insulator 250, the conductor 260, and the insulator 270 (see FIG. 9). As an anisotropic etching process, it is preferable to perform a dry etching process. Thus, the insulator 272 can be formed in a self-aligned manner by removing the insulating film formed on the surface substantially parallel to the substrate surface.

ここで、絶縁体270上に絶縁体271を形成しておくことで、絶縁体270上部の絶縁膜272Aが除去されても、絶縁体270を残存させることができる。また、絶縁体250、導電体260、絶縁体270、および絶縁体271からなる構造体の高さを、酸化物230aおよび酸化物230bの高さよりも、高くすることで、酸化物230a、酸化物230bの側面の絶縁膜272Aを、除去することができる。さらに、酸化物230a、酸化物230bの端部をラウンド形状にしておくと、酸化物230a、酸化物230bの側面に成膜された絶縁膜272Aを除去するための時間が短縮され、より容易に絶縁体272を形成することができる。 Here, by forming the insulator 271 over the insulator 270, the insulator 270 can remain even if the insulating film 272A over the insulator 270 is removed. In addition, the height of the structure including the insulator 250, the conductor 260, the insulator 270, and the insulator 271 is higher than the height of the oxide 230a and the oxide 230b, whereby the oxide 230a and the oxide 230 The insulating film 272A on the side surface of 230b can be removed. Further, when the ends of the oxide 230a and the oxide 230b are rounded, the time for removing the insulating film 272A formed on the side surfaces of the oxide 230a and the oxide 230b is shortened, which makes it easier. An insulator 272 can be formed.

また、図示しないが、酸化物230の側面にも絶縁膜272Aが残存していてもよい。その場合、後の工程で成膜する層間膜などの被膜性を高めることができる。また、酸化物230の側面に絶縁体が残存することで、酸化物230に混入する水または水素などの不純物を低減し、酸化物230から酸素が外方拡散するのを防ぐことができる場合がある。 Although not illustrated, the insulating film 272 </ b> A may remain on the side surface of the oxide 230. In that case, the film property of an interlayer film formed in a later process can be improved. In addition, since the insulator remains on the side surface of the oxide 230, impurities such as water or hydrogen mixed in the oxide 230 can be reduced, and oxygen can be prevented from being outwardly diffused from the oxide 230. is there.

また、酸化物230の側面に接して絶縁膜272Aの残存した構造体が形成されていることで、後の工程で、不純物となる元素を含む絶縁体274を成膜し、酸化物230に領域231a、および領域231bを形成する場合、絶縁体224と酸化物230との界面領域は、低抵抗化されないため、リーク電流の発生を抑制することができる。または、酸化物230aに濃度のピークを持つように酸化物230にインジウムを添加したとしても、酸化物230aを介したリーク電流の発生を抑制することができる。 In addition, since the structure in which the insulating film 272 </ b> A remains is formed in contact with the side surface of the oxide 230, an insulator 274 containing an element serving as an impurity is formed in a later step, and a region in the oxide 230 is formed. In the case of forming 231a and the region 231b, the interface region between the insulator 224 and the oxide 230 is not reduced in resistance, and thus generation of leakage current can be suppressed. Alternatively, even when indium is added to the oxide 230 so that the oxide 230a has a concentration peak, generation of a leakage current through the oxide 230a can be suppressed.

なお、当該異方性エッチングは、後述するドーパントの添加後に行っても良い。この場合、ドーパントは、絶縁膜272Aを介して酸化物230に添加される。 In addition, you may perform the said anisotropic etching after the addition of the dopant mentioned later. In this case, the dopant is added to the oxide 230 through the insulating film 272A.

続いて、酸化物230において、領域231、領域232、および領域234を形成する。領域231、および領域232は、酸化物230として設けられた金属酸化物に、インジウム、ガリウムなどの金属原子、または不純物を添加した領域である。なお、領域231は、少なくとも、領域234における酸化物230bよりも、導電性が高い。 Subsequently, a region 231, a region 232, and a region 234 are formed in the oxide 230. The region 231 and the region 232 are regions obtained by adding metal atoms such as indium and gallium or impurities to the metal oxide provided as the oxide 230. Note that the region 231 has higher conductivity than at least the oxide 230b in the region 234.

領域231、および領域232に、不純物を添加するために、例えば、インジウム、またはガリウムなどの金属元素、および不純物の少なくとも一であるドーパントを添加すればよい。なお、ドーパントとしては、上述の酸素欠損を形成する元素、または酸素欠損に捕獲される元素などを用いればよい。例えば、該元素として、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。 In order to add the impurity to the region 231 and the region 232, for example, a metal element such as indium or gallium and a dopant that is at least one of the impurities may be added. Note that as the dopant, an element that forms oxygen vacancies described above, an element that is trapped by oxygen vacancies, or the like may be used. Examples of the element include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and a rare gas. Typical examples of rare gas elements include helium, neon, argon, krypton, and xenon.

例えば、領域231、および領域232に、不純物を添加するために、ドーパントを含む膜を絶縁体274として、領域231に接して成膜するとよい。絶縁体274は、上記元素の一種、または複数種を含む絶縁膜を用いることが好ましい(図10参照。)。 For example, in order to add impurities to the regions 231 and 232, a film containing a dopant may be formed as the insulator 274 in contact with the region 231. As the insulator 274, an insulating film containing one or more of the above elements is preferably used (see FIG. 10).

具体的には、酸化物230に接して、窒素などの不純物となる元素を含む絶縁体274を成膜するとよい。窒素などの不純物となる元素を含む絶縁体は、酸化物230に含まれる酸素を引き抜き、吸収する場合がある。酸化物230から、酸素が引き抜かれると、領域231、および領域232には酸素欠損が生じる。該酸素欠損に、絶縁体274の成膜や成膜後の熱処理により、絶縁体274の成膜雰囲気に含まれる、水素または窒素などの不純物元素が捕獲され、領域231、および領域232は低抵抗化する。つまり、酸化物230は、絶縁体274と接する領域を中心に、添加された不純物元素により酸素欠損が形成され、さらに当該不純物元素が酸素欠損に入り込むことで、キャリア密度が高くなり、低抵抗化される。その際、絶縁体274と接しない領域232にも不純物が拡散することで、低抵抗化すると考えられる。 Specifically, the insulator 274 including an element that becomes an impurity such as nitrogen is preferably formed in contact with the oxide 230. An insulator containing an element that becomes an impurity such as nitrogen may extract and absorb oxygen contained in the oxide 230 in some cases. When oxygen is extracted from the oxide 230, oxygen vacancies are generated in the region 231 and the region 232. The oxygen vacancies capture an impurity element such as hydrogen or nitrogen contained in the film formation atmosphere of the insulator 274 by film formation of the insulator 274 or heat treatment after the film formation, so that the regions 231 and 232 have low resistance. Turn into. That is, in the oxide 230, oxygen vacancies are formed by the added impurity element centering on a region in contact with the insulator 274, and the impurity element further enters the oxygen vacancies, whereby the carrier density is increased and the resistance is reduced. Is done. At that time, it is considered that the impurity is diffused also in the region 232 which is not in contact with the insulator 274, so that the resistance is reduced.

従って、絶縁体274の成膜により、ソース領域およびドレイン領域を自己整合的に形成することができる。よって、微細化または高集積化された半導体装置も、歩留まり良く製造することができる。 Therefore, the source region and the drain region can be formed in a self-aligned manner by forming the insulator 274. Therefore, a miniaturized or highly integrated semiconductor device can also be manufactured with high yield.

ここで、導電体260、絶縁体252および絶縁体250の上面および側面を、絶縁体270および絶縁体272で覆っておくことで、窒素または水素などの不純物元素が、導電体260、絶縁体252および絶縁体250に混入することを防ぐことができる。これにより、窒素または水素などの不純物元素が、導電体260、絶縁体252および絶縁体250を通って、トランジスタ200のチャネル形成領域として機能する領域234に混入することを防ぐことができる。従って、良好な電気特性を有するトランジスタ200を提供することができる。 Here, the top surfaces and side surfaces of the conductor 260, the insulator 252 and the insulator 250 are covered with the insulator 270 and the insulator 272, so that an impurity element such as nitrogen or hydrogen can be contained in the conductor 260 and the insulator 252. Further, it can be prevented from being mixed into the insulator 250. Thus, an impurity element such as nitrogen or hydrogen can be prevented from entering the region 234 functioning as a channel formation region of the transistor 200 through the conductor 260, the insulator 252, and the insulator 250. Therefore, the transistor 200 having favorable electrical characteristics can be provided.

例えば、絶縁体274として、CVD法を用いて成膜した、窒化シリコン、窒化酸化シリコン、酸化窒化シリコンを用いることができる。本実施の形態では、絶縁体274として、窒化酸化シリコンを用いる。 For example, as the insulator 274, silicon nitride, silicon nitride oxide, or silicon oxynitride formed by a CVD method can be used. In this embodiment, silicon nitride oxide is used as the insulator 274.

絶縁体274として、窒化酸化シリコンを用いた場合、領域231a、および領域231bは、領域234より、水素および窒素の少なくとも一方の濃度が大きくなることが好ましい。水素または窒素の濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)などを用いて測定すればよい。ここで、領域234の水素または窒素の濃度としては、酸化物230bの絶縁体250と重なる領域の中央近傍(例えば、酸化物230bの絶縁体250と重なる領域のチャネル長方向の両側面からの距離が概略等しい部分)の水素または窒素の濃度を測定すればよい。 In the case where silicon nitride oxide is used as the insulator 274, the region 231a and the region 231b preferably have a higher concentration of at least one of hydrogen and nitrogen than the region 234. The concentration of hydrogen or nitrogen may be measured using secondary ion mass spectrometry (SIMS) or the like. Here, the concentration of hydrogen or nitrogen in the region 234 is set near the center of the region overlapping with the insulator 250 of the oxide 230b (for example, the distance from both side surfaces in the channel length direction of the region overlapping with the insulator 250 of the oxide 230b). The concentration of hydrogen or nitrogen in a portion where the two are approximately equal may be measured.

なお、上記において、絶縁体274の成膜による酸化物230の低抵抗化、を用いて、領域231、領域232、および領域234を形成したが、本実施の形態はこれに限られるものではない。 Note that in the above, the region 231, the region 232, and the region 234 are formed using the reduction in resistance of the oxide 230 by forming the insulator 274, but this embodiment is not limited to this. .

他のドーパントの添加方法としては、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。質量分離を行う場合、添加するイオン種およびその濃度を厳密に制御することができる。一方、質量分離を行わない場合、短時間で高濃度のイオンを添加することができる。また、原子または分子のクラスターを生成してイオン化するイオンドーピング法を用いてもよい。なお、ドーパントを、イオン、ドナー、アクセプター、不純物または元素などと言い換えてもよい。 Other dopant addition methods include ion implantation method in which ionized source gas is added by mass separation, ion doping method in which ionized source gas is added without mass separation, plasma immersion ion implantation method, etc. Can be used. When mass separation is performed, the ionic species to be added and the concentration thereof can be strictly controlled. On the other hand, when mass separation is not performed, high-concentration ions can be added in a short time. Alternatively, an ion doping method in which atomic or molecular clusters are generated and ionized may be used. Note that the dopant may be referred to as an ion, a donor, an acceptor, an impurity, an element, or the like.

また、ドーパントは、プラズマ処理にて添加されてもよい。この場合、プラズマCVD装置、ドライエッチング装置、アッシング装置を用いてプラズマ処理を行い、領域231、および領域232にドーパントを添加することができる。なお、上述した処理を複数組み合わせて、各領域などを形成してもよい。 Further, the dopant may be added by plasma treatment. In this case, plasma treatment can be performed using a plasma CVD apparatus, a dry etching apparatus, or an ashing apparatus, and a dopant can be added to the region 231 and the region 232. In addition, you may form each area | region etc. combining multiple processes mentioned above.

例えば、領域231は、上述の酸素欠損を形成する元素、酸素欠損に捕獲される元素の含有率を高くすることで、キャリア密度を高くし、低抵抗化を図ることができる。または、例えば、領域231において、インジウムなどの金属元素を添加し、酸化物230のインジウムなどの金属原子の含有率を高くすることで、電子移動度を高くし、低抵抗化を図ることができる。なお、インジウムを添加する場合、少なくとも領域231における元素Mに対するインジウムの原子数比が、領域234の元素Mに対するインジウムの原子数比よりも大きくなる。 For example, in the region 231, the carrier density can be increased and the resistance can be reduced by increasing the content of the above-described elements that form oxygen vacancies and the elements that are trapped by oxygen vacancies. Alternatively, for example, in the region 231, a metal element such as indium is added to increase the content of metal atoms such as indium in the oxide 230, whereby electron mobility can be increased and resistance can be reduced. . Note that when indium is added, the atomic ratio of indium to the element M in at least the region 231 is larger than the atomic ratio of indium to the element M in the region 234.

また、例えば、領域232は、ガリウムの含有率を高くすることで、領域231に添加された水素などの不純物の拡散を抑制することで、意図しない実行チャネル長の縮小を抑制することができる。 For example, in the region 232, by increasing the gallium content, diffusion of impurities such as hydrogen added to the region 231 can be suppressed, so that unintended reduction of the execution channel length can be suppressed.

また、例えば、絶縁体250、絶縁体252、導電体260、絶縁体272、絶縁体270、および絶縁体271をマスクとして、酸化物230にプラズマ処理を行ってもよい。プラズマ処理は、上述の酸素欠損を形成する元素、または酸素欠損に捕獲される元素を含む雰囲気などで行えばよい。例えば、アルゴンガスと窒素ガスを用いてプラズマ処理を行えばよい。 For example, the oxide 230 may be subjected to plasma treatment using the insulator 250, the insulator 252, the conductor 260, the insulator 272, the insulator 270, and the insulator 271 as a mask. The plasma treatment may be performed in an atmosphere containing an element that forms oxygen vacancies or an element trapped by oxygen vacancies. For example, plasma treatment may be performed using argon gas and nitrogen gas.

また、例えば、絶縁膜272Aを成膜した後、絶縁膜272Aを介して、イオンドーピング法により、ドーパントを添加してもよい。絶縁膜272Aは、酸化物230、絶縁体250、導電体260、絶縁体270を覆って設けられている。従って、酸化物230の上面に対する垂直方向において、絶縁膜272Aの膜厚は、絶縁体250、導電体260、絶縁体270の側面周辺と、その他の領域において異なる。つまり、絶縁膜272Aの膜厚は、絶縁体250、導電体260、絶縁体270の側面周辺では、その他の領域よりも大きい。つまり、絶縁膜272Aを介して、ドーパントを添加することで、チャネル長が10nmから30nm程度に微細化されたトランジスタでも、自己整合的に、領域231、領域232を設けることができる。また、領域232は、後工程で行う熱処理などの工程において、領域231のドーパントが拡散することにより、形成されてもよい。 Further, for example, after forming the insulating film 272A, the dopant may be added by an ion doping method through the insulating film 272A. The insulating film 272A is provided to cover the oxide 230, the insulator 250, the conductor 260, and the insulator 270. Therefore, in the direction perpendicular to the top surface of the oxide 230, the thickness of the insulating film 272A differs in the periphery of the side surfaces of the insulator 250, the conductor 260, and the insulator 270 and in other regions. In other words, the thickness of the insulating film 272A is larger in the vicinity of the side surfaces of the insulator 250, the conductor 260, and the insulator 270 than in other regions. That is, by adding a dopant through the insulating film 272A, the region 231 and the region 232 can be provided in a self-aligned manner even in a transistor whose channel length is reduced to about 10 nm to 30 nm. The region 232 may be formed by diffusion of the dopant in the region 231 in a process such as a heat treatment performed in a later process.

トランジスタ200において、領域232を設けることで、ソース領域およびドレイン領域として機能する領域231と、チャネルが形成される領域234との間に高抵抗領域が形成されないため、トランジスタのオン電流、および移動度を大きくすることができる。また、領域232を有することで、チャネル長方向において、ソース領域およびドレイン領域と、ゲートとが重ならないため、不要な容量が形成されるのを抑制することができる。また、領域232を有することで、非導通時のリーク電流を小さくすることができる。 In the transistor 200, since the region 232 is provided, a high-resistance region is not formed between the region 231 functioning as a source region and a drain region and the region 234 where a channel is formed; thus, on-state current and mobility of the transistor Can be increased. In addition, since the region 232 includes the source region and the drain region and the gate do not overlap with each other in the channel length direction, formation of unnecessary capacitance can be suppressed. In addition, by including the region 232, leakage current at the time of non-conduction can be reduced.

従って、各領域の範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。 Therefore, by appropriately selecting the range of each region, it is possible to easily provide a transistor having electrical characteristics that meet the requirements in accordance with circuit design.

続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。加熱処理を行うことで、添加されたドーパントが、酸化物230の領域232へと拡散し、オン電流を大きくすることができる。 Subsequently, heat treatment can be performed. The heat treatment conditions described above can be used for the heat treatment. By performing the heat treatment, the added dopant diffuses into the region 232 of the oxide 230, so that the on-state current can be increased.

次に、絶縁体274の上に、絶縁体280を成膜する。絶縁体280の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法またはカーテンコーター法などを用いて行うことができる。本実施の形態では、該絶縁膜として、酸化窒化シリコンを用いる。 Next, the insulator 280 is formed over the insulator 274. The insulator 280 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Alternatively, a spin coating method, a dip method, a droplet discharge method (such as an ink jet method), a printing method (such as screen printing or offset printing), a doctor knife method, a roll coater method, or a curtain coater method can be used. In this embodiment, silicon oxynitride is used as the insulating film.

次に、絶縁体280の一部を除去する。絶縁体280は、上面が平坦性を有するように形成することが好ましい。例えば、絶縁体280は、絶縁体280となる絶縁膜として成膜した直後に上面が平坦性を有していてもよい。または、例えば、絶縁体280は、成膜後に基板裏面などの基準面と平行になるよう絶縁体などを上面から除去していくことで平坦性を有してもよい。このような処理を、平坦化処理と呼ぶ。平坦化処理としては、CMP処理、ドライエッチング処理などがある。本実施の形態では、平坦化処理として、CMP処理を用いる。ただし、絶縁体280の上面は必ずしも平坦性を有さなくてもよい。 Next, part of the insulator 280 is removed. The insulator 280 is preferably formed so that the upper surface has flatness. For example, the top surface of the insulator 280 may have flatness immediately after being formed as an insulating film to be the insulator 280. Alternatively, for example, the insulator 280 may have flatness by removing the insulator and the like from the upper surface so as to be parallel to a reference surface such as the back surface of the substrate after film formation. Such a process is called a flattening process. Examples of the planarization process include a CMP process and a dry etching process. In this embodiment, a CMP process is used as the planarization process. Note that the top surface of the insulator 280 is not necessarily flat.

次に、絶縁体280および絶縁体274に、酸化物230の領域231aに達する開口と、酸化物230の領域231bに達する開口と、を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。なお、導電体240a、および導電体240bが酸化物230の側面に接して設けられるように、酸化物230に達する開口において、酸化物230の側面が露出するように、当該開口を形成する。 Next, an opening reaching the region 231a of the oxide 230 and an opening reaching the region 231b of the oxide 230 are formed in the insulator 280 and the insulator 274. The opening may be formed using a lithography method. Note that the opening is formed so that the side surface of the oxide 230 is exposed in the opening reaching the oxide 230 so that the conductor 240a and the conductor 240b are provided in contact with the side surface of the oxide 230.

次に、導電体240a、および導電体240bとなる導電膜を成膜する。該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 Next, conductive films to be the conductors 240a and 240b are formed. The conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.

次に、CMP処理を行うことで、導電体240a、および導電体240bとなる導電膜の一部を除去し、絶縁体280を露出する。その結果、上記開口のみに、該導電膜が残存することで上面が平坦な導電体240a、および導電体240bを形成することができる(図11参照。)。 Next, a part of the conductive film to be the conductor 240a and the conductor 240b is removed by CMP treatment, and the insulator 280 is exposed. As a result, the conductive film remains only in the opening, whereby the conductor 240a and the conductor 240b having a flat upper surface can be formed (see FIG. 11).

以上により、トランジスタ200を有する半導体装置を作製することができる。図3乃至図11に示す本実施の形態の半導体装置の作製方法を用いることで、トランジスタ200を作成することができる。 Through the above steps, a semiconductor device including the transistor 200 can be manufactured. The transistor 200 can be manufactured by using the method for manufacturing the semiconductor device of this embodiment illustrated in FIGS.

本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、オン電流の大きいトランジスタを提供することができる。または、本発明の一態様により、信頼性の高い半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。 According to one embodiment of the present invention, a semiconductor device having favorable electrical characteristics can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with low off-state current can be provided. Alternatively, according to one embodiment of the present invention, a transistor with high on-state current can be provided. Alternatively, according to one embodiment of the present invention, a highly reliable semiconductor device can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device that can be miniaturized or highly integrated can be provided. Alternatively, according to one embodiment of the present invention, a semiconductor device with reduced power consumption can be provided. Alternatively, according to one embodiment of the present invention, a highly productive semiconductor device can be provided.

以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。 The structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, methods, and the like described in the other embodiments.

<半導体装置の変形例>
以下では、図12、図13、および図14を用いて、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
<Modification of semiconductor device>
An example of a semiconductor device including the transistor 200 according to one embodiment of the present invention will be described below with reference to FIGS.

図12(A)、図13(A)、および図14(A)は、トランジスタ200を有する半導体装置の上面図である。また、図12(B)、図12(C)、図13(B)、図13(C)、図14(B)、および図14(C)は該半導体装置の断面図である。ここで、図12(B)、図13(B)、または図14(B)は、図12(A)、図13(A)、または図14(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図12(C)、図13(C)、または図14(C)は、図12(A)、図13(A)、または図14(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。図12(A)、図13(A)、および図14(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。 12A, 13A, and 14A are top views of a semiconductor device including a transistor 200. FIG. 12B, 12C, 13B, 13C, 14B, and 14C are cross-sectional views of the semiconductor device. Here, FIG. 12B, FIG. 13B, or FIG. 14B is shown by a one-dot chain line in FIG. 12A, FIG. 13A, or FIG. 2 is a cross-sectional view of a portion, and is also a cross-sectional view of the transistor 200 in a channel length direction. FIG. 12C, FIG. 13C, or FIG. 14C is the portion indicated by the one-dot chain line A3-A4 in FIG. 12A, FIG. 13A, or FIG. 2 is also a cross-sectional view of the transistor 200 in the channel width direction. In the top views of FIGS. 12A, 13A, and 14A, some elements are omitted for clarity.

なお、図12(A)、図13(A)、および図14(A)に示す半導体装置において、<半導体装置の構成例>に示した半導体装置を構成する構造と同機能を有する構造には、同符号を付記する。 Note that in the semiconductor device illustrated in FIGS. 12A, 13A, and 14A, a structure having the same function as the structure of the semiconductor device described in <Example of Configuration of Semiconductor Device> The same reference numerals are added.

以下、トランジスタ200の構成についてそれぞれ図12、図13(A)、および図14(A)を用いて説明する。なお、本項目においても、トランジスタ200の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。 Hereinafter, the structure of the transistor 200 will be described with reference to FIGS. 12, 13A, and 14A, respectively. Note that also in this item, the material described in detail in <Structure example of semiconductor device> can be used as the constituent material of the transistor 200.

[半導体装置の変形例1]
図12に示すトランジスタ200は、<半導体装置の構成例>に示した半導体装置とは、少なくとも絶縁体273を有することが異なる。
[Modification Example 1 of Semiconductor Device]
A transistor 200 illustrated in FIG. 12 is different from the semiconductor device illustrated in <Structure Example of Semiconductor Device> in that it includes at least an insulator 273.

具体的には、図12に示すように、絶縁体224、酸化物230、絶縁体272、および絶縁体271と、絶縁体274との間に、絶縁体273を有する。 Specifically, as illustrated in FIG. 12, an insulator 273 is provided between the insulator 224, the oxide 230, the insulator 272, and the insulator 271 and the insulator 274.

図12に示すように、絶縁体274と、酸化物230との間に絶縁体273を設けることで、絶縁体274を成膜した際に拡散するドーパントの量を調整することができる。従って、絶縁体273の膜厚、および材料は、求めるトランジスタの性能により、適宜設計すればよい。 As shown in FIG. 12, by providing the insulator 273 between the insulator 274 and the oxide 230, the amount of dopant diffused when the insulator 274 is formed can be adjusted. Therefore, the thickness and material of the insulator 273 may be appropriately designed depending on the required transistor performance.

例えば、絶縁体273として、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウム、または酸化ハフニウムなどを用いることが好ましい。これにより、絶縁体273の膜厚を薄くすることができる。具体的には、絶縁体273の膜厚は、0.5nm以上、1.2nm以下であることが好ましい。 For example, as the insulator 273, an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen may be used. For example, aluminum oxide or hafnium oxide is preferably used. Accordingly, the thickness of the insulator 273 can be reduced. Specifically, the thickness of the insulator 273 is preferably 0.5 nm or more and 1.2 nm or less.

なお、絶縁体273は、ALD法により成膜するとよい。ALD法を用いることで、被膜性が高い絶縁体273を成膜することができる。 Note that the insulator 273 is preferably formed by an ALD method. By using the ALD method, the insulator 273 with high film property can be formed.

また、絶縁体273を設けることで、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁体で、絶縁体272の側面を覆うことで、絶縁体272のバリア性を強化することができる。これにより、導電体260、絶縁体250および絶縁体252を介して、水または水素などの不純物が酸化物230に混入することを防ぐことができる。従って、絶縁体273は、ゲート電極およびゲート絶縁膜の側面を保護するサイドバリアとしての機能を有する。 In addition, by providing the insulator 273, an insulator having a function of suppressing transmission of impurities such as water or hydrogen and oxygen and covering the side surface of the insulator 272 enhances the barrier property of the insulator 272. be able to. Accordingly, impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260, the insulator 250, and the insulator 252. Therefore, the insulator 273 functions as a side barrier that protects the side surfaces of the gate electrode and the gate insulating film.

[半導体装置の変形例2]
図13に示すトランジスタ200は、<半導体装置の構成例>に示した半導体装置とは、少なくとも酸化物230cの形状が異なる。
[Second Modification of Semiconductor Device]
A transistor 200 illustrated in FIG. 13 is different from the semiconductor device illustrated in <Structure Example of Semiconductor Device> at least in shape of an oxide 230c.

具体的には、図13に示すように、酸化物230cは、酸化物230a、および酸化物230bを覆って設ける。つまり、酸化物230bは、酸化物230a、および酸化物230cにより包囲される。当該構造とすることで、領域234において、チャネルが形成される酸化物230bに不純物が混入することを抑制することができる。 Specifically, as illustrated in FIG. 13, the oxide 230c is provided to cover the oxide 230a and the oxide 230b. That is, the oxide 230b is surrounded by the oxide 230a and the oxide 230c. With this structure, entry of impurities into the oxide 230b in which a channel is formed in the region 234 can be suppressed.

また、酸化物230aの側面と酸化物230bの側面は同一面上となるように、設けられていることが好ましい。また、酸化物230cは、酸化物230aおよび酸化物230bを覆って形成されることが好ましい。例えば、酸化物230cは、酸化物230aの側面、酸化物230bの上面および側面、ならびに絶縁体224の上面の一部に接して形成される。ここで、酸化物230cを上面から見ると、酸化物230cの側面は、酸化物230aおよび酸化物230bの側面の外側に位置する。当該構造とすることで、トランジスタ200が、導電体240と電気的に接続する場合、絶縁体224上においても、酸化物230cを介して導通するため、オーミック接触が良好となる。 In addition, the side surface of the oxide 230a and the side surface of the oxide 230b are preferably provided so as to be on the same plane. The oxide 230c is preferably formed so as to cover the oxide 230a and the oxide 230b. For example, the oxide 230c is formed in contact with a side surface of the oxide 230a, a top surface and a side surface of the oxide 230b, and a part of the top surface of the insulator 224. Here, when the oxide 230c is viewed from above, the side surfaces of the oxide 230c are located outside the side surfaces of the oxide 230a and the oxide 230b. With this structure, when the transistor 200 is electrically connected to the conductor 240, the transistor 200 is electrically connected to the insulator 224 through the oxide 230 c, so that ohmic contact is favorable.

[半導体装置の変形例3]
以下では、図14を用いて、本実施の形態に示すトランジスタの変形例について説明する。
[Modification 3 of Semiconductor Device]
Hereinafter, a modified example of the transistor described in this embodiment will be described with reference to FIGS.

図14に示すトランジスタ200は、一つのゲート電極に対して複数のチャネル形成領域を有することが、図1(A)、(B)および(C)に示すトランジスタ200の構成と異なる。トランジスタ200は、複数のチャネル形成領域を有することで大きなオン電流を得ることができる。また、それぞれのチャネル形成領域は、ゲート電極で覆われた構造、つまりs−channel構造となっているため、それぞれのチャネル形成領域において大きなオン電流を得ることができる。尚、図14は、3つのチャネル形成領域を有する一例を示すが、チャネル形成領域の数はこれに限定されない。その他の構成は、上述の図1(A)、(B)および(C)に示したトランジスタ200の構成を参酌する。 A transistor 200 illustrated in FIGS. 14A to 14C has a plurality of channel formation regions with respect to one gate electrode, which is different from the structure of the transistor 200 illustrated in FIGS. Since the transistor 200 includes a plurality of channel formation regions, a large on-state current can be obtained. In addition, since each channel formation region has a structure covered with a gate electrode, that is, an s-channel structure, a large on-state current can be obtained in each channel formation region. Although FIG. 14 shows an example having three channel formation regions, the number of channel formation regions is not limited to this. For other structures, the structure of the transistor 200 illustrated in FIGS. 1A, 1B, and 1C is referred to.

以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。 The structures, structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, structures, methods, and the like described in the other embodiments.

(実施の形態2)
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
(Embodiment 2)
Hereinafter, an example of a semiconductor device including the transistor 200 according to one embodiment of the present invention will be described.

<半導体装置の構成例>
図15(A)、図15(B)、および図15(C)は、本発明の一態様に係るトランジスタ200、容量素子100、およびトランジスタ200周辺の上面図、および断面図である。なお、本明細書では、1つの容量素子、および少なくとも1つのトランジスタを有する記憶装置をセルと称する。
<Configuration example of semiconductor device>
15A, 15B, and 15C are a top view and a cross-sectional view of the transistor 200, the capacitor 100, and the periphery of the transistor 200 according to one embodiment of the present invention. Note that in this specification, a memory device including one capacitor and at least one transistor is referred to as a cell.

図15(A)は、トランジスタ200、および容量素子100を有するセル600の上面図である。また、図15(B)、および図15(C)はセル600の断面図である。ここで、図15(B)は、図15(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図15(C)は、図15(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。図15(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。 FIG. 15A is a top view of a cell 600 including the transistor 200 and the capacitor 100. 15B and 15C are cross-sectional views of the cell 600. FIG. Here, FIG. 15B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 15A and also a cross-sectional view in the channel length direction of the transistor 200. FIG. 15C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 15A and is a cross-sectional view in the channel width direction of the transistor 200. In the top view of FIG. 15A, some elements are omitted for clarity.

[セル600]
本発明の一態様の半導体装置は、トランジスタ200と、容量素子100、および層間膜として機能する絶縁体280を有する。また、トランジスタ200と電気的に接続し、プラグとして機能する導電体240(導電体240a、導電体240b、導電体240c、および導電体240d)とを有する。
[Cell 600]
The semiconductor device of one embodiment of the present invention includes the transistor 200, the capacitor 100, and the insulator 280 functioning as an interlayer film. In addition, a conductor 240 (a conductor 240a, a conductor 240b, a conductor 240c, and a conductor 240d) that is electrically connected to the transistor 200 and functions as a plug is included.

図15に示すセル600は、トランジスタ200と、容量素子100とを、同層に設けることで、トランジスタ200を構成する構造の一部を、容量素子100が構成する構造の一部と、併用することができる。つまり、トランジスタ200の構造の一部は、容量素子100の構造の一部として、機能する場合がある。 In the cell 600 illustrated in FIG. 15, the transistor 200 and the capacitor 100 are provided in the same layer, so that part of the structure included in the transistor 200 is used in combination with part of the structure included in the capacitor 100. be able to. That is, part of the structure of the transistor 200 may function as part of the structure of the capacitor 100.

また、トランジスタ200に、容量素子100の一部、または全体が、重畳することで、トランジスタ200の投影面積、および容量素子100の投影面積の合計した面積を小さくすることができる。 In addition, when the capacitor 200 is partially or entirely overlapped with the transistor 200, the total area of the projected area of the transistor 200 and the projected area of the capacitor 100 can be reduced.

また、トランジスタ200と電気的に接続するプラグ、または配線として機能する導電体240b、および導電体207(導電体207a、および導電体207b)を、容量素子100、およびトランジスタ200が重畳する領域の下部に設けることで、セル600の微細化、または高集積化が容易となる。また、導電体207は、トランジスタ200の構成である導電体205と同工程で形成できるため、工程短縮が可能となる。 In addition, a conductor 240b that functions as a plug or a wiring electrically connected to the transistor 200 and a conductor 207 (the conductor 207a and the conductor 207b) are provided below the region where the capacitor 100 and the transistor 200 overlap with each other. By providing in the cell, the cell 600 can be easily miniaturized or highly integrated. In addition, since the conductor 207 can be formed in the same process as the conductor 205 which is the structure of the transistor 200, the process can be shortened.

なお、容量素子100に求められる容量値に応じて、トランジスタ200、および容量素子100のレイアウトを適宜設計することができる。 Note that the layout of the transistor 200 and the capacitor 100 can be designed as appropriate depending on the capacitance value required for the capacitor 100.

例えば、容量素子100の面積は、酸化物230の領域231bと、導電体120が、絶縁体130を介して重畳する面積により決定される。従って、セル600に必要な容量値が図15(A)、および図15(B)に示す容量素子100では得られない場合、酸化物230aおよび酸化物230bの領域231bにおけるA3−A4方向の幅を、酸化物230aおよび酸化物230bの領域234におけるA3−A4方向の幅よりも大きくすることで、容量値を大きくすることができる。 For example, the area of the capacitor 100 is determined by the area where the region 231 b of the oxide 230 overlaps with the conductor 120 with the insulator 130 interposed therebetween. Therefore, when the capacitance value necessary for the cell 600 cannot be obtained with the capacitor 100 illustrated in FIGS. 15A and 15B, the width in the A3-A4 direction in the region 231b of the oxide 230a and the oxide 230b Can be made larger than the width in the A3-A4 direction in the region 234 of the oxide 230a and the oxide 230b, whereby the capacitance value can be increased.

また、例えば、酸化物230の領域231bにおけるA1−A2方向の長さを、導電体120におけるA1−A2方向の長さよりも大きくしてもよい。その場合、導電体240bを、絶縁体280に埋め込むことができる。つまり、酸化物230の領域231bと、導電体240bとが、酸化物230の領域231bと導電体120とが重畳しない領域で接するように設けてもよい。従って、導電体240a、導電体240b、および導電体240cを同一工程で形成することで、工程を短縮することができる。 For example, the length in the A1-A2 direction in the region 231b of the oxide 230 may be larger than the length in the A1-A2 direction in the conductor 120. In that case, the conductor 240b can be embedded in the insulator 280. That is, the oxide 230 region 231b and the conductor 240b may be provided in contact with each other in a region where the oxide 230 region 231b and the conductor 120 do not overlap. Therefore, the process can be shortened by forming the conductor 240a, the conductor 240b, and the conductor 240c in the same process.

上記構造を有することで、微細化または高集積化が可能である。また、設計自由度を高くすることができる。また、トランジスタ200は、容量素子100と、同一の工程で形成する。従って、工程を短縮することができるため、生産性を向上させることができる。 With the above structure, miniaturization or high integration is possible. In addition, the degree of freedom in design can be increased. The transistor 200 is formed in the same process as the capacitor 100. Therefore, since the process can be shortened, productivity can be improved.

[トランジスタ200]
トランジスタ200には、先の実施の形態で説明した半導体装置が有するトランジスタの構造を用いればよい。また、図15に示すトランジスタ200は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
[Transistor 200]
As the transistor 200, the transistor structure included in the semiconductor device described in the above embodiment may be used. The transistor 200 illustrated in FIGS. 15A and 15B is an example and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.

[容量素子100]
図15に示すように、容量素子100は、トランジスタ200と共通の構造を有する構成である。本実施の形態では、トランジスタ200の酸化物230に設けられた領域231bを、容量素子100の電極の一方として機能する容量素子100の例について示す。
[Capacitance element 100]
As illustrated in FIG. 15, the capacitor 100 has a structure in common with the transistor 200. In this embodiment, the region 231 b provided in the oxide 230 of the transistor 200 is described as an example of the capacitor 100 that functions as one of the electrodes of the capacitor 100.

容量素子100は、酸化物230の領域231b、領域231b上に絶縁体130、絶縁体130上に導電体120を有する。絶縁体130の上に、少なくとも一部が酸化物230の領域231bと重なるように、導電体120が配置されることが好ましい。 The capacitor 100 includes a region 231b of the oxide 230, the insulator 130 over the region 231b, and the conductor 120 over the insulator 130. The conductor 120 is preferably provided over the insulator 130 so that at least a part thereof overlaps with the region 231 b of the oxide 230.

酸化物230の領域231bは、容量素子100の電極の一方として機能し、導電体120は容量素子100の電極の他方として機能する。絶縁体130は容量素子100の誘電体として機能する。酸化物230の領域231bは低抵抗化されており、導電性酸化物である。従って、容量素子100の電極の一方として機能することができる。 The region 231 b of the oxide 230 functions as one of the electrodes of the capacitor 100, and the conductor 120 functions as the other of the electrodes of the capacitor 100. The insulator 130 functions as a dielectric of the capacitor element 100. The region 231b of the oxide 230 has a reduced resistance and is a conductive oxide. Therefore, it can function as one of the electrodes of the capacitor 100.

なお、絶縁体274を加工することで、絶縁体130を設けてもよい。また、絶縁体130(絶縁体274)は、トランジスタ200、および絶縁体224と接して残存していてもよい。 Note that the insulator 130 may be provided by processing the insulator 274. The insulator 130 (the insulator 274) may remain in contact with the transistor 200 and the insulator 224.

また、イオンドーピング法、またはプラズマ処理などにより、酸化物230の領域231にドーパントを添加する場合、絶縁体274を設けず、誘電体として別途、絶縁体130を設けてもよい。絶縁体130は、例えば、酸化アルミニウムまたは酸化窒化シリコンを単層または積層で用いればよい。 In addition, in the case where a dopant is added to the region 231 of the oxide 230 by an ion doping method, plasma treatment, or the like, the insulator 274 may not be provided and the insulator 130 may be separately provided as a dielectric. For the insulator 130, for example, aluminum oxide or silicon oxynitride may be used in a single layer or a stacked layer.

導電体120は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、図示しないが、導電体120は積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 The conductor 120 is preferably formed using a conductive material mainly containing tungsten, copper, or aluminum. Although not shown, the conductor 120 may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.

<セルアレイの構造>
ここで、本実施の形態のセルアレイの一例を、図16、および図17に示す。例えば、図15に示すトランジスタ200、および容量素子100を有するセル600を、行列、またはマトリクス状に配置することで、セルアレイを構成することができる。
<Structure of cell array>
Here, an example of the cell array of this embodiment is illustrated in FIGS. For example, the cell array can be formed by arranging the transistor 200 including the transistor 200 and the capacitor 100 illustrated in FIG. 15 in a matrix or a matrix.

図16(A)は、図15に示すセル600を、マトリクス状に配置した一形態を示す回路図である。図16(A)においては、行方向に隣り合うセル600が有するトランジスタのソースおよびドレインの一方が共通のBL(BL01、BL02、BL03)と電気的に接続する。また、当該BLは、列方向に配置されたセルが有するトランジスタのソースおよびドレインの一方とも電気的に接続する。一方、行方向に隣り合うセル600が有するトランジスタの第1のゲートは、異なるWL(WL01乃至WL06)と電気的に接続する。また、各セル600が有するトランジスタには第2のゲートBGが設けられていてもよい。BGに印加される電位により、トランジスタのしきい値を制御することができる。また、セル600が有する容量の第1の電極は、トランジスタのソースおよびドレインの他方と電気的に接続する。この時、容量の第1の電極は、トランジスタを構成する構造の一部からなる場合がある。また、セル600が有する容量の第2の電極は、電源線PLと電気的に接続する。 FIG. 16A is a circuit diagram illustrating an embodiment in which the cells 600 illustrated in FIG. 15 are arranged in a matrix. In FIG. 16A, one of a source and a drain of a transistor included in a cell 600 adjacent in the row direction is electrically connected to a common BL (BL01, BL02, BL03). The BL is also electrically connected to one of a source and a drain of a transistor included in a cell arranged in the column direction. On the other hand, the first gates of the transistors included in the cells 600 adjacent in the row direction are electrically connected to different WLs (WL01 to WL06). In addition, the transistor included in each cell 600 may be provided with the second gate BG. The threshold value of the transistor can be controlled by the potential applied to BG. In addition, the first electrode of the capacitor included in the cell 600 is electrically connected to the other of the source and the drain of the transistor. At this time, the first electrode of the capacitor may be formed of a part of a structure forming the transistor. In addition, the second electrode of the capacitor included in the cell 600 is electrically connected to the power supply line PL.

図16(B)は、図16(A)における、行の一部としてWL04とBL02に電気的に接続されたセル600a、およびWL03とBL02に電気的に接続されたセル600bを含む回路610を抜き出した断面図である。図16(B)は、セル600a、およびセル600bの断面図を示す。 FIG. 16B illustrates a circuit 610 including the cell 600a electrically connected to WL04 and BL02 and the cell 600b electrically connected to WL03 and BL02 as part of the row in FIG. It is sectional drawing extracted. FIG. 16B is a cross-sectional view of the cell 600a and the cell 600b.

セル600aは、トランジスタ200aおよび容量素子100aを有している。セル600bは、トランジスタ200bおよび容量素子100bを有している。 The cell 600a includes a transistor 200a and a capacitor 100a. The cell 600b includes a transistor 200b and a capacitor 100b.

トランジスタ200aのソースおよびドレインの一方と、トランジスタ200bのソースおよびドレインの一方は、いずれもBL02と電気的に接続している。 One of a source and a drain of the transistor 200a and one of a source and a drain of the transistor 200b are both electrically connected to BL02.

上記構成より、ソースおよびドレインの一方と電気的に接続する配線を共通化することで、セルアレイの占有面積をさらに縮小することができる。 With the above structure, by sharing a wiring electrically connected to one of the source and the drain, the occupied area of the cell array can be further reduced.

図17(A)は、図15に示すセル600を、マトリクス状に配置した回路において、図16(A)と異なる形態を示す回路図である。図17(A)においては、行方向に配置されたセル600が有するトランジスタの第1のゲートが共通のWL(WL01、WL02、WL03)と電気的に接続する。また、列方向に配置されたセルが有するトランジスタのソースおよびドレインの一方が、共通のBL(BL01乃至BL06)と電気的に接続する。また、各セル600が有するトランジスタには第2のゲートBGが設けられていてもよい。BGに印加される電位により、トランジスタのしきい値を制御することができる。また、セル600が有する容量の第1の電極は、トランジスタのソースおよびドレインの他方と電気的に接続する。この時、容量の第1の電極は、トランジスタを構成する構造の一部からなる場合がある。また、セル600が有する容量の第2の電極は、PLと電気的に接続する。 FIG. 17A is a circuit diagram showing a mode different from FIG. 16A in a circuit in which the cells 600 shown in FIG. 15 are arranged in a matrix. In FIG. 17A, a first gate of a transistor included in the cell 600 arranged in the row direction is electrically connected to a common WL (WL01, WL02, WL03). In addition, one of a source and a drain of a transistor included in a cell arranged in the column direction is electrically connected to a common BL (BL01 to BL06). In addition, the transistor included in each cell 600 may be provided with the second gate BG. The threshold value of the transistor can be controlled by the potential applied to BG. In addition, the first electrode of the capacitor included in the cell 600 is electrically connected to the other of the source and the drain of the transistor. At this time, the first electrode of the capacitor may be formed of a part of a structure forming the transistor. In addition, the second electrode of the capacitor included in the cell 600 is electrically connected to the PL.

図17(B)は、図17(A)における、行の一部としてWL02とBL03に電気的に接続されたセル600a、およびWL02とBL04に電気的に接続されたセル600bを含む回路610を抜き出した断面図である。図17(B)は、セル600a、およびセル600bの断面図を示す。 FIG. 17B illustrates a circuit 610 including the cell 600a electrically connected to WL02 and BL03 and the cell 600b electrically connected to WL02 and BL04 as part of the row in FIG. 17A. It is sectional drawing extracted. FIG. 17B is a cross-sectional view of the cell 600a and the cell 600b.

セル600aは、トランジスタ200aおよび容量素子100aを有している。セル600bは、トランジスタ200bおよび容量素子100bを有している。 The cell 600a includes a transistor 200a and a capacitor 100a. The cell 600b includes a transistor 200b and a capacitor 100b.

以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。 The structures, structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, structures, methods, and the like described in the other embodiments.

(実施の形態3)
本実施の形態では、半導体装置の一形態を、図18乃至図22を用いて説明する。
(Embodiment 3)
In this embodiment, one embodiment of a semiconductor device will be described with reference to FIGS.

<記憶装置1>
図18、および図19に示す記憶装置は、トランジスタ300と、トランジスタ200、および容量素子100を有している。
<Storage device 1>
The memory device illustrated in FIGS. 18 and 19 includes the transistor 300, the transistor 200, and the capacitor 100.

トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。 The transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor. Since the transistor 200 has a low off-state current, stored data can be held for a long time by using the transistor 200 for a memory device. That is, the refresh operation is not required or the frequency of the refresh operation is extremely low, so that the power consumption of the storage device can be sufficiently reduced.

図18、および図19に示す記憶装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200の第1のゲートと電気的に接続され、配線1006はトランジスタ200の第2のゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。 In the memory device illustrated in FIGS. 18 and 19, the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300. The wiring 1003 is electrically connected to one of a source and a drain of the transistor 200, the wiring 1004 is electrically connected to the first gate of the transistor 200, and the wiring 1006 is electrically connected to the second gate of the transistor 200. It is connected to the. The gate of the transistor 300 and the other of the source and the drain of the transistor 200 are electrically connected to one of the electrodes of the capacitor 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitor 100. .

図18、および図19に示す記憶装置は、トランジスタ300のゲートの電位を保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。 The memory device illustrated in FIG. 18 and FIG. 19 has a characteristic that the potential of the gate of the transistor 300 can be held, so that information can be written, held, and read as described below.

情報の書き込みおよび保持について説明する。まず、配線1004の電位を、トランジスタ200が導通状態となる電位にして、トランジスタ200を導通状態とする。これにより、配線1003の電位が、トランジスタ300のゲート、および容量素子100の電極の一方と電気的に接続するノードFGに与えられる。即ち、トランジスタ300のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という。)のどちらかが与えられるものとする。その後、配線1004の電位を、トランジスタ200が非導通状態となる電位にして、トランジスタ200を非導通状態とすることにより、ノードFGに電荷が保持される(保持)。 Information writing and holding will be described. First, the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned on, so that the transistor 200 is turned on. Accordingly, the potential of the wiring 1003 is applied to the node FG that is electrically connected to one of the gate of the transistor 300 and the electrode of the capacitor 100. That is, predetermined charge is given to the gate of the transistor 300 (writing). Here, it is assumed that one of two charges that give two different potential levels (hereinafter referred to as a Low level charge and a High level charge) is given. After that, the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned off and the transistor 200 is turned off, so that charge is held at the node FG (holding).

トランジスタ200のオフ電流が小さい場合、ノードFGの電荷は長期間にわたって保持される。 When the off-state current of the transistor 200 is small, the charge of the node FG is held for a long time.

次に情報の読み出しについて説明する。配線1001に所定の電位(定電位)を与えた状態で、配線1005に適切な電位(読み出し電位)を与えると、配線1002は、ノードFGに保持された電荷量に応じた電位をとる。これは、トランジスタ300をnチャネル型とすると、トランジスタ300のゲートにHighレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Hは、トランジスタ300のゲートにLowレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Lより低くなるためである。ここで、見かけ上のしきい値電圧とは、トランジスタ300を「導通状態」とするために必要な配線1005の電位をいうものとする。したがって、配線1005の電位をVth_HとVth_Lの間の電位Vとすることにより、ノードFGに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードFGにHighレベル電荷が与えられていた場合には、配線1005の電位がV(>Vth_H)となれば、トランジスタ300は「導通状態」となる。一方、ノードFGにLowレベル電荷が与えられていた場合には、配線1005の電位がV(<Vth_L)となっても、トランジスタ300は「非導通状態」のままである。このため、配線1002の電位を判別することで、ノードFGに保持されている情報を読み出すことができる。 Next, reading of information will be described. When an appropriate potential (reading potential) is applied to the wiring 1005 in a state where a predetermined potential (constant potential) is applied to the wiring 1001, the wiring 1002 takes a potential corresponding to the amount of charge held in the node FG. This is because, when the transistor 300 is an n-channel type, the apparent threshold voltage V th_H when the gate of the transistor 300 is supplied with a high level charge is the low level charge applied to the gate of the transistor 300. This is because it becomes lower than the apparent threshold voltage V th_L in the case of being present. Here, the apparent threshold voltage refers to the potential of the wiring 1005 necessary for bringing the transistor 300 into a “conductive state”. Therefore, by setting the potential of the wiring 1005 to the potential V 0 between V th_H and V th_L , the charge given to the node FG can be determined. For example, in writing, when a high-level charge is applied to the node FG, the transistor 300 is in a “conducting state” when the potential of the wiring 1005 is V 0 (> V th_H ). On the other hand, in the case where a low-level charge is supplied to the node FG, the transistor 300 remains in a “non-conduction state” even when the potential of the wiring 1005 becomes V 0 (<V th_L ). Therefore, by determining the potential of the wiring 1002, information held in the node FG can be read.

<記憶装置1の構造>
本発明の一態様の記憶装置は、図18に示すようにトランジスタ300、トランジスタ200、容量素子100を有する。トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。
<Structure of storage device 1>
The memory device of one embodiment of the present invention includes a transistor 300, a transistor 200, and a capacitor 100 as illustrated in FIG. The transistor 200 is provided above the transistor 300, and the capacitor 100 is provided above the transistor 300 and the transistor 200.

トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。 The transistor 300 includes a conductor 316, an insulator 315, a semiconductor region 313 including a part of the substrate 311, a low resistance region 314a which functions as a source region or a drain region, and a low resistance region 314b. Have.

トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。 The transistor 300 may be either a p-channel type or an n-channel type.

半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。 The region in which the channel of the semiconductor region 313 is formed, the region in the vicinity thereof, the low resistance region 314a that serves as the source region or the drain region, the low resistance region 314b, and the like preferably include a semiconductor such as a silicon-based semiconductor. It preferably contains crystalline silicon. Alternatively, a material containing Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like may be used. A structure using silicon in which effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be employed. Alternatively, the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs, GaAlAs, or the like.

低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。 The low-resistance region 314a and the low-resistance region 314b provide an n-type conductivity element such as arsenic or phosphorus, or a p-type conductivity property such as boron, in addition to the semiconductor material used for the semiconductor region 313. Containing elements.

ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。 The conductor 316 functioning as a gate electrode includes a semiconductor material such as silicon, a metal material, an alloy containing an element imparting n-type conductivity such as arsenic or phosphorus, or an element imparting p-type conductivity such as boron. A conductive material such as a material or a metal oxide material can be used.

なお、導電体の材料により、仕事関数が定まるため、導電体の材料を変更することでしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。 Since the work function is determined by the material of the conductor, the threshold voltage can be adjusted by changing the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embeddability, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and tungsten is particularly preferable from the viewpoint of heat resistance.

なお、図18に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。 Note that the transistor 300 illustrated in FIGS. 18A and 18B is an example, and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.

トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。 An insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked so as to cover the transistor 300.

絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。 As the insulator 320, the insulator 322, the insulator 324, and the insulator 326, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, or the like is used. That's fine.

絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。 The insulator 322 may function as a planarization film for planarizing a step generated by the transistor 300 or the like provided thereunder. For example, the upper surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to improve planarity.

また、絶縁体324には、基板311、またはトランジスタ300などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。 The insulator 324 is preferably formed using a film having a barrier property so that hydrogen and impurities do not diffuse from the substrate 311 or the transistor 300 to a region where the transistor 200 is provided.

水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。 As an example of a film having a barrier property against hydrogen, for example, silicon nitride formed by a CVD method can be used. Here, when hydrogen diffuses into a semiconductor element including an oxide semiconductor such as the transistor 200, characteristics of the semiconductor element may be reduced. Therefore, a film for suppressing hydrogen diffusion is preferably used between the transistor 200 and the transistor 300. Specifically, the film that suppresses the diffusion of hydrogen is a film with a small amount of hydrogen desorption.

水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。 The amount of desorption of hydrogen can be analyzed using, for example, a temperature programmed desorption gas analysis method (TDS). For example, the amount of hydrogen desorbed from the insulator 324 is calculated by converting the amount of desorption converted to hydrogen atoms per area of the insulator 324 in the range of the surface temperature of the film from 50 ° C. to 500 ° C. in TDS analysis. 10 × 10 15 atoms / cm 2 or less, preferably 5 × 10 15 atoms / cm 2 or less.

なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。 Note that the insulator 326 preferably has a lower dielectric constant than the insulator 324. For example, the dielectric constant of the insulator 326 is preferably less than 4, and more preferably less than 3. For example, the relative dielectric constant of the insulator 326 is preferably equal to or less than 0.7 times, more preferably equal to or less than 0.6 times that of the insulator 324. By using a material having a low dielectric constant as the interlayer film, parasitic capacitance generated between the wirings can be reduced.

また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。 The insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a conductor 328 that is electrically connected to the capacitor 100 or the transistor 200, the conductor 330, and the like. Note that the conductor 328 and the conductor 330 function as plugs or wirings. In addition, a conductor having a function as a plug or a wiring may be given the same reference numeral by collecting a plurality of structures. In this specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.

各プラグ、および配線(導電体328、および導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。 As a material of each plug and wiring (conductor 328, conductor 330, etc.), a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or a stacked layer. Can be used. It is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed using a low-resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low-resistance conductive material.

絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図18において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。 A wiring layer may be provided over the insulator 326 and the conductor 330. For example, in FIG. 18, an insulator 350, an insulator 352, and an insulator 354 are sequentially stacked. A conductor 356 is formed in the insulator 350, the insulator 352, and the insulator 354. The conductor 356 functions as a plug or a wiring. Note that the conductor 356 can be provided using a material similar to that of the conductor 328 and the conductor 330.

なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。 For example, as the insulator 350, an insulator having a barrier property against hydrogen is preferably used as in the case of the insulator 324. The conductor 356 preferably includes a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 350 having a barrier property against hydrogen. With this structure, the transistor 300 and the transistor 200 can be separated by a barrier layer, and hydrogen diffusion from the transistor 300 to the transistor 200 can be suppressed.

なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。 For example, tantalum nitride may be used as the conductor having a barrier property against hydrogen. Further, by stacking tantalum nitride and tungsten having high conductivity, diffusion of hydrogen from the transistor 300 can be suppressed while maintaining conductivity as a wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen be in contact with the insulator 350 having a barrier property against hydrogen.

絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図18において、絶縁体360、絶縁体362、及び絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、及び絶縁体364には、導電体366が形成されている。導電体366は、プラグ、または配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。 A wiring layer may be provided over the insulator 354 and the conductor 356. For example, in FIG. 18, an insulator 360, an insulator 362, and an insulator 364 are sequentially stacked. Further, a conductor 366 is formed in the insulator 360, the insulator 362, and the insulator 364. The conductor 366 functions as a plug or a wiring. Note that the conductor 366 can be provided using a material similar to that of the conductor 328 and the conductor 330.

なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。 Note that for example, the insulator 360 is preferably an insulator having a barrier property against hydrogen, similarly to the insulator 324. The conductor 366 preferably includes a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in an opening of the insulator 360 having a barrier property against hydrogen. With this structure, the transistor 300 and the transistor 200 can be separated by a barrier layer, and hydrogen diffusion from the transistor 300 to the transistor 200 can be suppressed.

絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図18において、絶縁体370、絶縁体372、及び絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、及び絶縁体374には、導電体376が形成されている。導電体376は、プラグ、または配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。 A wiring layer may be provided over the insulator 364 and the conductor 366. For example, in FIG. 18, an insulator 370, an insulator 372, and an insulator 374 are sequentially stacked. A conductor 376 is formed in the insulator 370, the insulator 372, and the insulator 374. The conductor 376 functions as a plug or a wiring. Note that the conductor 376 can be provided using a material similar to that of the conductor 328 and the conductor 330.

なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。 Note that for example, as the insulator 324, an insulator having a barrier property against hydrogen is preferably used as the insulator 370. The conductor 376 preferably includes a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 370 having a barrier property against hydrogen. With this structure, the transistor 300 and the transistor 200 can be separated by a barrier layer, and hydrogen diffusion from the transistor 300 to the transistor 200 can be suppressed.

絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図18において、絶縁体380、絶縁体382、及び絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、及び絶縁体384には、導電体386が形成されている。導電体386は、プラグ、または配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。 A wiring layer may be provided over the insulator 374 and the conductor 376. For example, in FIG. 18, an insulator 380, an insulator 382, and an insulator 384 are sequentially stacked. A conductor 386 is formed over the insulator 380, the insulator 382, and the insulator 384. The conductor 386 functions as a plug or a wiring. Note that the conductor 386 can be provided using a material similar to that of the conductor 328 and the conductor 330.

なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。 Note that for example, as the insulator 324, an insulator having a barrier property against hydrogen is preferably used as the insulator 380. The conductor 386 preferably includes a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 380 having a barrier property against hydrogen. With this structure, the transistor 300 and the transistor 200 can be separated by a barrier layer, and hydrogen diffusion from the transistor 300 to the transistor 200 can be suppressed.

絶縁体384上には絶縁体210、絶縁体212、絶縁体214、および絶縁体216が、順に積層して設けられている。絶縁体210、絶縁体212、絶縁体214、および絶縁体216のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。 An insulator 210, an insulator 212, an insulator 214, and an insulator 216 are sequentially stacked over the insulator 384. Any of the insulator 210, the insulator 212, the insulator 214, and the insulator 216 is preferably formed using a substance having a barrier property against oxygen or hydrogen.

例えば、絶縁体210、および絶縁体214には、例えば、基板311、またはトランジスタ300を設ける領域などから、トランジスタ200を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。従って、絶縁体324と同様の材料を用いることができる。 For example, the insulator 210 and the insulator 214 are each formed using a film having a barrier property such that hydrogen or an impurity does not diffuse from a region where the substrate 311 or the transistor 300 is provided to a region where the transistor 200 is provided. Is preferred. Therefore, a material similar to that of the insulator 324 can be used.

水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。 As an example of a film having a barrier property against hydrogen, silicon nitride formed by a CVD method can be used. Here, when hydrogen diffuses into a semiconductor element including an oxide semiconductor such as the transistor 200, characteristics of the semiconductor element may be reduced. Therefore, a film for suppressing hydrogen diffusion is preferably used between the transistor 200 and the transistor 300. Specifically, the film that suppresses the diffusion of hydrogen is a film with a small amount of hydrogen desorption.

また、水素に対するバリア性を有する膜として、例えば、絶縁体210、および絶縁体214には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。 As the film having a barrier property against hydrogen, for example, a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide is preferably used for the insulator 210 and the insulator 214.

特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。 In particular, aluminum oxide has a high blocking effect that prevents the film from permeating both oxygen and impurities such as hydrogen and moisture, which cause variation in electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 200 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide included in the transistor 200 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 200.

また、例えば、絶縁体212、および絶縁体216には、絶縁体320と同様の材料を用いることができる。また、比較的誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体212、および絶縁体216として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。 For example, the insulator 212 and the insulator 216 can be formed using a material similar to that of the insulator 320. In addition, by using a material having a relatively low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced. For example, as the insulator 212 and the insulator 216, a silicon oxide film, a silicon oxynitride film, or the like can be used.

また、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、及びトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体218は、導電体328、および導電体330と同様の材料を用いて設けることができる。 The insulator 210, the insulator 212, the insulator 214, and the insulator 216 are embedded with a conductor 218, a conductor (conductor 205) included in the transistor 200, and the like. Note that the conductor 218 functions as a plug or a wiring electrically connected to the capacitor 100 or the transistor 300. The conductor 218 can be provided using a material similar to that of the conductor 328 and the conductor 330.

特に、絶縁体210、および絶縁体214と接する領域の導電体218は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ200とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。 In particular, the insulator 210 and the conductor 218 in a region in contact with the insulator 214 are preferably conductors having a barrier property against oxygen, hydrogen, and water. With this structure, the transistor 300 and the transistor 200 can be separated by a layer having a barrier property against oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 300 to the transistor 200 can be suppressed.

絶縁体216の上方には、トランジスタ200が設けられている。なお、トランジスタ200には、先の実施の形態で説明した半導体装置が有するトランジスタの構造を用いればよい。また、図18に示すトランジスタ200は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。 A transistor 200 is provided above the insulator 216. Note that as the transistor 200, the transistor structure of the semiconductor device described in the above embodiment may be used. Further, the transistor 200 illustrated in FIGS. 18A and 18B is an example and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.

トランジスタ200の上方には、絶縁体280を設ける。 An insulator 280 is provided above the transistor 200.

絶縁体280上には、絶縁体282が設けられている。絶縁体282は、酸素や水素に対してバリア性のある物質を用いることが好ましい。従って、絶縁体282には、絶縁体214と同様の材料を用いることができる。例えば、絶縁体282には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。 An insulator 282 is provided over the insulator 280. The insulator 282 is preferably formed using a substance having a barrier property against oxygen or hydrogen. Therefore, the insulator 282 can be formed using a material similar to that of the insulator 214. For example, the insulator 282 is preferably formed using a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide.

特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。 In particular, aluminum oxide has a high blocking effect that prevents the film from permeating both oxygen and impurities such as hydrogen and moisture, which cause variation in electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 200 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide included in the transistor 200 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 200.

また、絶縁体282上には、絶縁体286が設けられている。絶縁体286は、絶縁体320と同様の材料を用いることができる。また、比較的誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体286として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。 An insulator 286 is provided over the insulator 282. The insulator 286 can be formed using a material similar to that of the insulator 320. In addition, by using a material having a relatively low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced. For example, as the insulator 286, a silicon oxide film, a silicon oxynitride film, or the like can be used.

また、絶縁体220、絶縁体222、絶縁体274、絶縁体280、絶縁体282、および絶縁体286には、導電体246、および導電体248等が埋め込まれている。 A conductor 246, a conductor 248, and the like are embedded in the insulator 220, the insulator 222, the insulator 274, the insulator 280, the insulator 282, and the insulator 286.

導電体246、および導電体248は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体246、および導電体248は、導電体328、および導電体330と同様の材料を用いて設けることができる。 The conductor 246 and the conductor 248 function as plugs or wirings that are electrically connected to the capacitor 100, the transistor 200, or the transistor 300. The conductor 246 and the conductor 248 can be provided using a material similar to that of the conductor 328 and the conductor 330.

続いて、トランジスタ200の上方には、容量素子100が設けられている。容量素子100は、導電体110と、導電体120、および絶縁体130とを有する。 Subsequently, the capacitor element 100 is provided above the transistor 200. The capacitor 100 includes a conductor 110, a conductor 120, and an insulator 130.

また、導電体246、および導電体248上に、導電体112を設けてもよい。導電体112は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体110は、容量素子100の電極としての機能を有する。なお、導電体112、および導電体110は、同時に形成することができる。 Further, the conductor 112 may be provided over the conductor 246 and the conductor 248. The conductor 112 functions as a plug or a wiring electrically connected to the capacitor 100, the transistor 200, or the transistor 300. The conductor 110 has a function as an electrode of the capacitor 100. Note that the conductor 112 and the conductor 110 can be formed at the same time.

導電体112、および導電体110には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。 The conductor 112 and the conductor 110 include a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above-described element as a component. (Tantalum nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film) or the like can be used. Or indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon oxide added It is also possible to apply a conductive material such as indium tin oxide.

図18では、導電体112、および導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。 In FIG. 18, the conductor 112 and the conductor 110 have single-layer structures; however, the structure is not limited thereto, and a stacked structure of two or more layers may be used. For example, a conductor having a high barrier property and a conductor having a high barrier property may be formed between a conductor having a barrier property and a conductor having a high conductivity.

また、導電体112、および導電体110上に、容量素子100の誘電体のとして、絶縁体130を設ける。絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。 Further, an insulator 130 is provided as a dielectric of the capacitor 100 over the conductor 112 and the conductor 110. Examples of the insulator 130 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, hafnium oxide, hafnium oxynitride, hafnium nitride oxide, and hafnium nitride. What is necessary is just to use, and it can provide by lamination | stacking or single layer.

例えば、絶縁体130には、酸化窒化シリコンなどの絶縁耐力が大きい材料を用いるとよい。当該構成により、容量素子100は、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。 For example, the insulator 130 may be formed using a material having high dielectric strength such as silicon oxynitride. With this configuration, the capacitor element 100 has improved dielectric strength and can suppress electrostatic breakdown of the capacitor element 100.

絶縁体130上に、導電体110と重畳するように、導電体120を設ける。なお、導電体120は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。 A conductor 120 is provided over the insulator 130 so as to overlap with the conductor 110. Note that the conductor 120 can be formed using a conductive material such as a metal material, an alloy material, or a metal oxide material. It is preferable to use a high-melting-point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten. In the case of forming simultaneously with other structures such as a conductor, Cu (copper), Al (aluminum), or the like, which is a low resistance metal material, may be used.

導電体120、および絶縁体130上には、絶縁体150が設けられている。絶縁体150は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体150は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。 An insulator 150 is provided over the conductor 120 and the insulator 130. The insulator 150 can be provided using a material similar to that of the insulator 320. Further, the insulator 150 may function as a planarization film that covers the concave and convex shapes below the insulator 150.

本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。 By using this structure, in a semiconductor device including a transistor including an oxide semiconductor, variation in electrical characteristics can be suppressed and reliability can be improved. Alternatively, a transistor including an oxide semiconductor with high on-state current can be provided. Alternatively, a transistor including an oxide semiconductor with low off-state current can be provided. Alternatively, a semiconductor device with reduced power consumption can be provided.

<記憶装置1の変形例>
以下では、図19を用いて、本発明の一態様に係る記憶装置の一例について説明する。
<Modification of Storage Device 1>
Hereinafter, an example of a memory device according to one embodiment of the present invention will be described with reference to FIG.

図19は、容量素子100、トランジスタ200、およびトランジスタ300を有する記憶装置の断面図である。なお、図19に示す記憶装置において、先の実施の形態、および<記憶装置1の構造>に示した半導体装置、および記憶装置を構成する構造と同機能を有する構造には、同符号を付記する。 FIG. 19 is a cross-sectional view of a memory device including the capacitor 100, the transistor 200, and the transistor 300. Note that in the memory device illustrated in FIG. 19, the structure having the same function as that of the semiconductor device and the structure of the memory device described in the above embodiment and <Structure of the memory device 1> are denoted by the same reference numerals. To do.

図19に示すトランジスタ200は、<記憶装置1の構成例>に示した半導体装置に、先の実施の形態で説明したセル600を設けたことが異なる。 A transistor 200 illustrated in FIG. 19 is different from the semiconductor device illustrated in <Structure example of the memory device 1> in that the cell 600 described in the above embodiment is provided.

具体的には、図19に示すように、容量素子100と、トランジスタ200を独立して設ける代わりに、容量素子100の構成の一部と、トランジスタ200の構成の一部とを共有するセル600を有する。 Specifically, as illustrated in FIG. 19, instead of providing the capacitor 100 and the transistor 200 independently, a cell 600 sharing a part of the structure of the capacitor 100 and a part of the structure of the transistor 200. Have

上記構造により、セル600と、トランジスタ300との一部、または全体が、重畳することで、記憶装置の投影面積の合計した面積を小さくすることができる。従って、セル600の微細化、または高集積化が容易となる。また、工程短縮が可能となる。 With the above structure, part or the whole of the cell 600 and the transistor 300 overlap with each other, whereby the total area of the projected areas of the memory device can be reduced. Accordingly, the cell 600 can be easily miniaturized or highly integrated. In addition, the process can be shortened.

<記憶装置2>
図20に示す半導体装置は、トランジスタ400と、トランジスタ200、および容量素子100を有する記憶装置である。以下に、記憶装置としての一形態を、図20を用いて説明する。
<Storage device 2>
The semiconductor device illustrated in FIG. 20 is a memory device including the transistor 400, the transistor 200, and the capacitor 100. Hereinafter, one embodiment of a storage device will be described with reference to FIG.

本実施の形態に示す半導体装置における、トランジスタ200、トランジスタ400、および容量素子100の接続関係の一例を示した回路図を図20(A)に示す。また、図20(A)に示す配線1003から配線1010などを対応させた半導体装置の断面図を図20(B)に示す。 FIG. 20A is a circuit diagram illustrating an example of a connection relation of the transistor 200, the transistor 400, and the capacitor 100 in the semiconductor device described in this embodiment. FIG. 20B is a cross-sectional view of the semiconductor device in which the wiring 1003 to the wiring 1010 shown in FIG.

図20に示すように、トランジスタ200は、ゲートが配線1004と、ソースおよびドレインの一方が配線1003と、ソース及びドレインの他方が容量素子100の電極の一方と電気的に接続される。また、容量素子100の電極の他方が配線1005と電気的に接続される。また、トランジスタ400のドレインが配線1010と電気的に接続される。また、図20(B)に示すように、トランジスタ200の第2のゲートと、トランジスタ400のソース、第1のゲート、および第2のゲートが、配線1006、配線1007、配線1008、および配線1009を介して電気的に接続される。 As illustrated in FIG. 20, the transistor 200 has a gate electrically connected to the wiring 1004, one of a source and a drain is electrically connected to the wiring 1003, and the other of the source and the drain is electrically connected to one of the electrodes of the capacitor 100. In addition, the other electrode of the capacitor 100 is electrically connected to the wiring 1005. In addition, the drain of the transistor 400 is electrically connected to the wiring 1010. As shown in FIG. 20B, the second gate of the transistor 200 and the source, first gate, and second gate of the transistor 400 are a wiring 1006, a wiring 1007, a wiring 1008, and a wiring 1009. It is electrically connected via.

ここで、配線1004に電位を印加することで、トランジスタ200のオン状態、オフ状態を制御することができる。トランジスタ200をオン状態として、配線1003に電位を印加することで、トランジスタ200を介して、容量素子100に電荷を供給することができる。このとき、トランジスタ200をオフ状態にすることで、容量素子100に供給された電荷を保持することができる。また、配線1005は、任意の電位を与えることで、容量結合によって、トランジスタ200と容量素子100の接続部分の電位を制御することができる。例えば、配線1005に接地電位を与えると、上記電荷を保持しやすくなる。また、配線1010に負の電位を印加することで、トランジスタ400を介して、トランジスタ200の第2のゲートに負の電位を与え、トランジスタ200のしきい値電圧を0Vより大きくし、オフ電流を低減し、第1のゲート電圧が0Vのときのドレイン電流を非常に小さくすることができる。 Here, by applying a potential to the wiring 1004, the on state and the off state of the transistor 200 can be controlled. When the transistor 200 is turned on and a potential is applied to the wiring 1003, electric charge can be supplied to the capacitor 100 through the transistor 200. At this time, the charge supplied to the capacitor 100 can be held by turning off the transistor 200. The wiring 1005 can be controlled to have a potential at a connection portion between the transistor 200 and the capacitor 100 by capacitive coupling by applying an arbitrary potential. For example, when the ground potential is applied to the wiring 1005, the charge is easily held. Further, by applying a negative potential to the wiring 1010, a negative potential is applied to the second gate of the transistor 200 through the transistor 400, the threshold voltage of the transistor 200 is made higher than 0 V, and the off-state current is reduced. It is possible to reduce the drain current when the first gate voltage is 0V.

トランジスタ400の第1のゲート及び第2のゲートをソースとダイオード接続し、トランジスタ400のソースとトランジスタ200の第2のゲートを接続する構成にすることで、配線1010によって、トランジスタ200の第2のゲート電圧を制御することができる。トランジスタ200の第2のゲートの負電位を保持するとき、トランジスタ400の第1のゲートソース間の電圧、および第2のゲートソース間の電圧は、0Vになる。トランジスタ400の第1のゲート電圧が0Vのときのドレイン電流が非常に小さく、しきい値電圧がトランジスタ200より大きいので、この構成とすることにより、トランジスタ400に電源供給をしなくてもトランジスタ200の第2のゲートの負電位を長時間維持することができる。 The first gate and the second gate of the transistor 400 are diode-connected to the source, and the source of the transistor 400 and the second gate of the transistor 200 are connected to each other. The gate voltage can be controlled. When the negative potential of the second gate of the transistor 200 is held, the voltage between the first gate and the source of the transistor 400 and the voltage between the second gate and the source are 0V. When the first gate voltage of the transistor 400 is 0 V, the drain current is very small and the threshold voltage is higher than that of the transistor 200. With this configuration, the transistor 200 can be supplied without supplying power to the transistor 400. The negative potential of the second gate can be maintained for a long time.

さらに、トランジスタ200の第2のゲートの負電位を保持することで、トランジスタ200に電源供給をしなくてもトランジスタ200の第1のゲート電圧が0Vのときのドレイン電流を非常に小さくすることができる。つまり、トランジスタ200およびトランジスタ400に電源供給をしなくても、容量素子100に電荷を長時間保持することができる。例えば、このような半導体装置を記憶素子として用いることにより、電源供給無しで長時間の記憶保持を行うことができる。よって、リフレッシュ動作の頻度が少ない、またはリフレッシュ動作を必要としない記憶装置を提供することができる。 Further, by maintaining the negative potential of the second gate of the transistor 200, the drain current when the first gate voltage of the transistor 200 is 0 V can be extremely reduced without supplying power to the transistor 200. it can. That is, electric charge can be held in the capacitor 100 for a long time without supplying power to the transistor 200 and the transistor 400. For example, by using such a semiconductor device as a memory element, long-term memory retention can be performed without power supply. Therefore, a memory device that has a low refresh operation frequency or does not require a refresh operation can be provided.

なお、トランジスタ200、トランジスタ400および容量素子100の接続関係は、図20(A)(B)に示すものに限定されない。必要な回路構成に応じて適宜接続関係を変更することができる。 Note that the connection relation of the transistor 200, the transistor 400, and the capacitor 100 is not limited to that illustrated in FIGS. The connection relationship can be changed as appropriate according to the required circuit configuration.

<記憶装置2の構造>
図20(B)は、容量素子100、トランジスタ200、およびトランジスタ400を有する記憶装置の断面図である。なお、図20に示す記憶装置において、先の実施の形態、および<記憶装置1の構造>に示した半導体装置、および記憶装置を構成する構造と同機能を有する構造には、同符号を付記する。
<Structure of storage device 2>
FIG. 20B is a cross-sectional view of a memory device including the capacitor 100, the transistor 200, and the transistor 400. Note that in the memory device illustrated in FIG. 20, the structure having the same function as the structure of the semiconductor device and the memory device described in the above embodiment and <Structure of the memory device 1> is denoted by the same reference numeral. To do.

本発明の一態様の記憶装置は、図20に示すようにトランジスタ200、トランジスタ400および容量素子100を有する。トランジスタ200およびトランジスタ400は同一層に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。 A memory device of one embodiment of the present invention includes a transistor 200, a transistor 400, and a capacitor 100 as illustrated in FIG. The transistor 200 and the transistor 400 are provided in the same layer, and the capacitor 100 is provided above the transistor 300 and the transistor 200.

なお、容量素子100、およびトランジスタ200としては、先の実施の形態、および図18、および図19で説明した半導体装置、および記憶装置が有する容量素子及びトランジスタを用いればよい。なお、図20に示す容量素子100、トランジスタ200およびトランジスタ400は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。 Note that as the capacitor 100 and the transistor 200, the capacitor and the transistor included in the semiconductor device and the memory device described in any of the above embodiments and FIGS. 18 and 19 may be used. Note that the capacitor 100, the transistor 200, and the transistor 400 illustrated in FIGS. 20A and 20B are examples, and the structure is not limited thereto, and an appropriate transistor may be used depending on a circuit configuration or a driving method.

トランジスタ400は、トランジスタ200と同じ層に形成されており、並行して作製することができるトランジスタである。トランジスタ400は、第1のゲート電極として機能する導電体460(導電体460a、および導電体460b)と、第2のゲート電極として機能する導電体405(導電体405a、および導電体405b)と、導電体460と接する絶縁体470、および絶縁体472と、ゲート絶縁層として機能する絶縁体220、絶縁体222、絶縁体224、および絶縁体450と、チャネルが形成される領域を有する酸化物430cと、ソースまたはドレインの一方として機能する酸化物431a、および酸化物431bと、ソースまたはドレインの他方として機能する酸化物432a、および酸化物432bと、を有する。また、第2のゲート電極として機能する導電体405は、配線として機能する導電体403(導電体403a、および導電体403b)と、電気的に接続されている。 The transistor 400 is formed in the same layer as the transistor 200 and can be manufactured in parallel. The transistor 400 includes a conductor 460 (a conductor 460a and a conductor 460b) that functions as a first gate electrode, a conductor 405 (a conductor 405a and a conductor 405b) that functions as a second gate electrode, The insulator 470 and the insulator 472 which are in contact with the conductor 460, the insulator 220 which functions as a gate insulating layer, the insulator 222, the insulator 224, and the insulator 450, and an oxide 430c including a region where a channel is formed And an oxide 431a and an oxide 431b which function as one of a source or a drain and an oxide 432a and an oxide 432b which function as the other of a source or a drain. Further, the conductor 405 functioning as the second gate electrode is electrically connected to the conductor 403 (conductors 403a and 403b) functioning as wirings.

トランジスタ400において、導電体405は、導電体205と、同じ層である。酸化物431a、および酸化物432aと、酸化物230aとは、同じ層であり、酸化物431b、および酸化物432bと、酸化物230bとは、同じ層である。酸化物430cは、酸化物230cと同じ層である。絶縁体450は、絶縁体250と、同じ層である。絶縁体452は、絶縁体252と、同じ層である。導電体460は、導電体260と、同じ層である。また、絶縁体470は、絶縁体270と、同じ層である。また、絶縁体472は、絶縁体272と、同じ層である。 In the transistor 400, the conductor 405 is the same layer as the conductor 205. The oxide 431a, the oxide 432a, and the oxide 230a are the same layer, and the oxide 431b, the oxide 432b, and the oxide 230b are the same layer. The oxide 430c is the same layer as the oxide 230c. The insulator 450 is the same layer as the insulator 250. The insulator 452 is the same layer as the insulator 252. The conductor 460 is the same layer as the conductor 260. The insulator 470 is the same layer as the insulator 270. The insulator 472 is the same layer as the insulator 272.

トランジスタ400の活性層として機能する酸化物430cは、酸化物230などと同様に、酸素欠損が低減され、水素または水などの不純物が低減されている。これにより、トランジスタ400のしきい値電圧を0Vより大きくし、オフ電流を低減し、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流を非常に小さくすることができる。 In the oxide 430c functioning as the active layer of the transistor 400, oxygen vacancies are reduced and impurities such as hydrogen or water are reduced as in the oxide 230 and the like. Accordingly, the threshold voltage of the transistor 400 can be made higher than 0 V, the off-state current can be reduced, and the drain current when the second gate voltage and the first gate voltage are 0 V can be extremely reduced.

本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、酸化物半導体を有するトランジスタを用いた半導体装置において、消費電力を低減することができる。または、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。または、微細化または高集積化された半導体装置を生産性良く提供することができる。 By using this structure, in a semiconductor device including a transistor including an oxide semiconductor, variation in electrical characteristics can be suppressed and reliability can be improved. Alternatively, power consumption can be reduced in a semiconductor device including a transistor including an oxide semiconductor. Alternatively, miniaturization or high integration can be achieved in a semiconductor device including a transistor including an oxide semiconductor. Alternatively, a miniaturized or highly integrated semiconductor device can be provided with high productivity.

<記憶装置3>
図21に示す半導体装置は、トランジスタ400、トランジスタ300と、トランジスタ200、および容量素子100を有する記憶装置である。以下に、記憶装置としての一形態を、図21を用いて説明する。
<Storage device 3>
The semiconductor device illustrated in FIG. 21 is a memory device including the transistor 400, the transistor 300, the transistor 200, and the capacitor 100. Hereinafter, one mode as a storage device will be described with reference to FIG.

トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタであり、上記実施の形態に示すトランジスタを用いることができる。上記実施の形態に示すトランジスタは、微細化しても歩留まり良く形成できるので、トランジスタ200の微細化を図ることができる。このようなトランジスタを記憶装置に用いることで、記憶装置の微細化または高集積化を図ることができる。上記実施の形態に示すトランジスタは、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。 The transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor, and any of the transistors described in the above embodiments can be used. Since the transistor described in any of the above embodiments can be formed with high yield even when miniaturized, the transistor 200 can be miniaturized. By using such a transistor for a memory device, the memory device can be miniaturized or highly integrated. Since the off-state current of the transistor described in any of the above embodiments is small, stored data can be held for a long time by using it for a memory device. That is, the refresh operation is not required or the frequency of the refresh operation is extremely low, so that the power consumption of the storage device can be sufficiently reduced.

図21において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200のゲートと電気的に接続され、配線1006はトランジスタ200のバックゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。配線1007はトランジスタ400のソースと電気的に接続され、配線1008はトランジスタ400のゲートと電気的に接続され、配線1009はトランジスタ400のバックゲートと電気的に接続され、配線1010はトランジスタ400のドレインと電気的に接続されている。ここで、配線1006、配線1007、配線1008、及び配線1009が電気的に接続されている。 In FIG. 21, the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300. The wiring 1003 is electrically connected to one of the source and the drain of the transistor 200, the wiring 1004 is electrically connected to the gate of the transistor 200, and the wiring 1006 is electrically connected to the back gate of the transistor 200. . The gate of the transistor 300 and the other of the source and the drain of the transistor 200 are electrically connected to one of the electrodes of the capacitor 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitor 100. . The wiring 1007 is electrically connected to the source of the transistor 400, the wiring 1008 is electrically connected to the gate of the transistor 400, the wiring 1009 is electrically connected to the back gate of the transistor 400, and the wiring 1010 is connected to the drain of the transistor 400. And are electrically connected. Here, the wiring 1006, the wiring 1007, the wiring 1008, and the wiring 1009 are electrically connected.

図21に示す半導体装置は、トランジスタ300のゲートの電位が保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。 The semiconductor device illustrated in FIG. 21 has the characteristic that the potential of the gate of the transistor 300 can be held; thus, information can be written, held, and read as described below.

情報の書き込みおよび保持について説明する。まず、配線1004の電位を、トランジスタ200が導通状態となる電位にして、トランジスタ200を導通状態とする。これにより、配線1003の電位が、トランジスタ300のゲート、および容量素子100の電極の一方と電気的に接続するノードFGに与えられる。即ち、トランジスタ300のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という。)のどちらかが与えられるものとする。その後、配線1004の電位を、トランジスタ200が非導通状態となる電位にして、トランジスタ200を非導通状態とすることにより、ノードFGに電荷が保持される(保持)。 Information writing and holding will be described. First, the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned on, so that the transistor 200 is turned on. Accordingly, the potential of the wiring 1003 is applied to the node FG that is electrically connected to one of the gate of the transistor 300 and the electrode of the capacitor 100. That is, predetermined charge is given to the gate of the transistor 300 (writing). Here, it is assumed that one of two charges that give two different potential levels (hereinafter referred to as a Low level charge and a High level charge) is given. After that, the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned off and the transistor 200 is turned off, so that charge is held at the node FG (holding).

トランジスタ200のオフ電流が小さい場合、ノードFGの電荷は長期間にわたって保持される。 When the off-state current of the transistor 200 is small, the charge of the node FG is held for a long time.

次に情報の読み出しについて説明する。配線1001に所定の電位(定電位)を与えた状態で、配線1005に適切な電位(読み出し電位)を与えると、配線1002は、ノードFGに保持された電荷量に応じた電位をとる。これは、トランジスタ300をnチャネル型とすると、トランジスタ300のゲートにHighレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Hは、トランジスタ300のゲートにLowレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Lより低くなるためである。ここで、見かけ上のしきい値電圧とは、トランジスタ300を「導通状態」とするために必要な配線1005の電位をいうものとする。したがって、配線1005の電位をVth_HとVth_Lの間の電位Vとすることにより、ノードFGに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードFGにHighレベル電荷が与えられていた場合には、配線1005の電位がV(>Vth_H)となれば、トランジスタ300は「導通状態」となる。一方、ノードFGにLowレベル電荷が与えられていた場合には、配線1005の電位がV(<Vth_L)となっても、トランジスタ300は「非導通状態」のままである。このため、配線1002の電位を判別することで、ノードFGに保持されている情報を読み出すことができる。 Next, reading of information will be described. When an appropriate potential (reading potential) is applied to the wiring 1005 in a state where a predetermined potential (constant potential) is applied to the wiring 1001, the wiring 1002 takes a potential corresponding to the amount of charge held in the node FG. This is because, when the transistor 300 is an n-channel type, the apparent threshold voltage V th_H when the gate of the transistor 300 is supplied with a high level charge is the low level charge applied to the gate of the transistor 300. This is because it becomes lower than the apparent threshold voltage V th_L in the case of being present. Here, the apparent threshold voltage refers to the potential of the wiring 1005 necessary for bringing the transistor 300 into a “conductive state”. Therefore, by setting the potential of the wiring 1005 to the potential V 0 between V th_H and V th_L , the charge given to the node FG can be determined. For example, in writing, when a high-level charge is applied to the node FG, the transistor 300 is in a “conducting state” when the potential of the wiring 1005 is V 0 (> V th_H ). On the other hand, in the case where a low-level charge is supplied to the node FG, the transistor 300 remains in a “non-conduction state” even when the potential of the wiring 1005 becomes V 0 (<V th_L ). Therefore, by determining the potential of the wiring 1002, information held in the node FG can be read.

<記憶装置3の構造> <Structure of storage device 3>

図21は、容量素子100、トランジスタ200、トランジスタ300、およびトランジスタ400を有する記憶装置の断面図である。なお、図21に示す記憶装置において、先の実施の形態、<記憶装置1の構造>、および<記憶装置2の構造>、に示した半導体装置、および記憶装置を構成する構造と同機能を有する構造には、同符号を付記する。 FIG. 21 is a cross-sectional view of a memory device including the capacitor 100, the transistor 200, the transistor 300, and the transistor 400. Note that the memory device in FIG. 21 has the same function as the structure of the semiconductor device and the memory device described in the above embodiment, <Structure of the memory device 1>, and <Structure of the memory device 2>. The same symbols are added to the structures having the same.

本発明の一態様の記憶装置は、図21に示すようにトランジスタ300、トランジスタ200、トランジスタ400および容量素子100を有する。トランジスタ200およびトランジスタ400はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、トランジスタ200およびトランジスタ400の上方に設けられている。 The memory device of one embodiment of the present invention includes a transistor 300, a transistor 200, a transistor 400, and a capacitor 100 as illustrated in FIG. The transistor 200 and the transistor 400 are provided above the transistor 300, and the capacitor 100 is provided above the transistor 300, the transistor 200, and the transistor 400.

なお、容量素子100、トランジスタ200、トランジスタ300、およびトランジスタ400としては、先の実施の形態、および図18乃至図20で説明した半導体装置、および記憶装置が有する容量素子及びトランジスタを用いればよい。なお、図21に示す容量素子100、トランジスタ300、トランジスタ200およびトランジスタ400は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。 Note that as the capacitor 100, the transistor 200, the transistor 300, and the transistor 400, the capacitors and transistors included in the semiconductor device and the memory device described in any of the above embodiments and FIGS. Note that the capacitor 100, the transistor 300, the transistor 200, and the transistor 400 illustrated in FIGS. 21A and 21B are examples, and the structure is not limited thereto, and an appropriate transistor may be used depending on a circuit configuration or a driving method.

本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、酸化物半導体を有するトランジスタを用いた半導体装置において、消費電力を低減することができる。または、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。または、微細化または高集積化された半導体装置を生産性良く提供することができる。 By using this structure, in a semiconductor device including a transistor including an oxide semiconductor, variation in electrical characteristics can be suppressed and reliability can be improved. Alternatively, power consumption can be reduced in a semiconductor device including a transistor including an oxide semiconductor. Alternatively, miniaturization or high integration can be achieved in a semiconductor device including a transistor including an oxide semiconductor. Alternatively, a miniaturized or highly integrated semiconductor device can be provided with high productivity.

<メモリセルアレイの構造> <Structure of memory cell array>

本実施の形態のメモリセルアレイの一例を、図22に示す。トランジスタ200をメモリセルとして、マトリクス状に配置することで、メモリセルアレイを構成することができる。 An example of the memory cell array of this embodiment is illustrated in FIG. A memory cell array can be formed by arranging the transistors 200 as memory cells in a matrix.

なお、図22に示す記憶装置は、図18、および図21に示す記憶装置をマトリクス状に配置することで、メモリセルアレイを構成する半導体装置である。なお、1個のトランジスタ400は、複数のトランジスタ200のバックゲート電圧を制御することができる。そのため、トランジスタ400は、トランジスタ200よりも、少ない個数を設けるとよい。 Note that the memory device illustrated in FIG. 22 is a semiconductor device that forms a memory cell array by arranging the memory devices illustrated in FIGS. 18 and 21 in a matrix. Note that one transistor 400 can control the back gate voltage of the plurality of transistors 200. Therefore, the transistor 400 is preferably provided in a smaller number than the transistor 200.

従って、図22には、図21に示すトランジスタ400は省略する。図22は、図18、および図21に示す記憶装置を、マトリクス状に配置した場合における、行の一部を抜き出した断面図である。 Therefore, the transistor 400 illustrated in FIG. 21 is not illustrated in FIG. FIG. 22 is a cross-sectional view of a part of rows in the case where the storage devices shown in FIGS. 18 and 21 are arranged in a matrix.

また、図22は、図21と、トランジスタ300の構成が異なる。図22に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。 FIG. 22 is different from FIG. 21 in the structure of the transistor 300. In the transistor 300 illustrated in FIGS. 22A and 22B, a semiconductor region 313 where a channel is formed (a part of the substrate 311) has a convex shape. In addition, a conductor 316 is provided so as to cover a side surface and an upper surface of the semiconductor region 313 with an insulator 315 interposed therebetween. Note that the conductor 316 may be formed using a material that adjusts a work function. Such a transistor 300 is also called a FIN-type transistor because it uses a convex portion of a semiconductor substrate. Note that an insulator functioning as a mask for forming the convex portion may be provided in contact with the upper portion of the convex portion. Although the case where a part of the semiconductor substrate is processed to form the convex portion is described here, the SOI substrate may be processed to form a semiconductor film having a convex shape.

図22に示す記憶装置では、メモリセル650aとメモリセル650bが隣接して配置されている。メモリセル650aおよびメモリセル650bは、トランジスタ300、トランジスタ200、および容量素子100を有し、配線1001、配線1002、配線1003、配線1004、配線1005、および配線1006と電気的に接続される。また、メモリセル650aおよびメモリセル650bにおいても、同様にトランジスタ300のゲートと、容量素子100の電極の一方と、が電気的に接続するノードを、ノードFGとする。なお、配線1002は隣接するメモリセル650aとメモリセル650bで共通の配線である。 In the memory device illustrated in FIG. 22, a memory cell 650a and a memory cell 650b are arranged adjacent to each other. The memory cell 650a and the memory cell 650b each include the transistor 300, the transistor 200, and the capacitor 100, and are electrically connected to the wiring 1001, the wiring 1002, the wiring 1003, the wiring 1004, the wiring 1005, and the wiring 1006. Similarly, in the memory cell 650a and the memory cell 650b, a node where the gate of the transistor 300 and one of the electrodes of the capacitor 100 are electrically connected is a node FG. Note that the wiring 1002 is a wiring common to the adjacent memory cells 650a and 650b.

メモリセルをアレイ状に配置する場合、読み出し時には、所望のメモリセルの情報を読み出さなくてはならない。例えば、メモリセルアレイがNOR型の構成の場合、情報を読み出さないメモリセルのトランジスタ300を非導通状態にすることで、所望のメモリセルの情報のみを読み出すことができる。この場合、ノードFGに与えられた電荷によらずトランジスタ300が「非導通状態」となるような電位、つまり、Vth_Hより低い電位を、情報を読み出さないメモリセルと接続される配線1005に与えればよい。または、例えば、メモリセルアレイがNAND型の構成の場合、情報を読み出さないメモリセルのトランジスタ300を導通状態にすることで、所望のメモリセルの情報のみを読み出すことができる。この場合、ノードFGに与えられた電荷によらずトランジスタ300が「導通状態」となるような電位、つまり、Vth_Lより高い電位を、情報を読み出さないメモリセルと接続される配線1005に与えればよい。 When memory cells are arranged in an array, information of a desired memory cell must be read at the time of reading. For example, when the memory cell array has a NOR structure, only information on a desired memory cell can be read by turning off the transistor 300 of the memory cell from which information is not read. In this case, a potential at which the transistor 300 becomes “non-conductive” regardless of the charge applied to the node FG, that is, a potential lower than V th_H is applied to the wiring 1005 connected to the memory cell from which information is not read. That's fine. Alternatively, for example, when the memory cell array has a NAND structure, only information on a desired memory cell can be read by turning on the transistor 300 of the memory cell from which information is not read. In this case, if a potential at which the transistor 300 is “conductive” regardless of the charge applied to the node FG, that is, a potential higher than V th_L is applied to the wiring 1005 connected to the memory cell from which information is not read. Good.

本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、酸化物半導体を有するトランジスタを用いた半導体装置において、消費電力を低減することができる。または、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。または、微細化または高集積化された半導体装置を生産性良く提供することができる。 By using this structure, in a semiconductor device including a transistor including an oxide semiconductor, variation in electrical characteristics can be suppressed and reliability can be improved. Alternatively, power consumption can be reduced in a semiconductor device including a transistor including an oxide semiconductor. Alternatively, miniaturization or high integration can be achieved in a semiconductor device including a transistor including an oxide semiconductor. Alternatively, a miniaturized or highly integrated semiconductor device can be provided with high productivity.

以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。 The structures, structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures, structures, methods, and the like described in the other embodiments.

(実施の形態4)
本実施の形態では、図23および図24を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ。)、および容量素子が適用されている記憶装置の一例として、NOSRAMについて説明する。NOSRAM(登録商標)とは「Nonvolatile Oxide Semiconductor RAM」の略称であり、ゲインセル型(2T型、3T型)のメモリセルを有するRAMを指す。
(Embodiment 4)
In this embodiment, with reference to FIGS. 23 and 24, a transistor in which an oxide is used for a semiconductor (hereinafter referred to as an OS transistor) and a capacitor according to one embodiment of the present invention is applied. As an example of the apparatus, NOSRAM will be described. NOSRAM (registered trademark) is an abbreviation of “Nonvolatile Oxide Semiconductor RAM” and refers to a RAM having gain cell type (2T type, 3T type) memory cells.

NOSRAMでは、メモリセルにOSトランジスタが用いられるメモリ装置(以下、「OSメモリ」と呼ぶ。)が適用されている。OSメモリは、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有するメモリである。OSトランジスタが極小オフ電流のトランジスタであるので、OSメモリは優れた保持特性をもち、不揮発性メモリとして機能させることができる。 In the NOSRAM, a memory device using an OS transistor as a memory cell (hereinafter referred to as “OS memory”) is applied. The OS memory is a memory that includes at least a capacitor and an OS transistor that controls charging and discharging of the capacitor. Since the OS transistor is a transistor with a minimum off-state current, the OS memory has excellent retention characteristics and can function as a nonvolatile memory.

<<NOSRAM>>
図23にNOSRAMの構成例を示す。図23に示すNOSRAM1600は、メモリセルアレイ1610、コントローラ1640、行ドライバ1650、列ドライバ1660、出力ドライバ1670を有する。なお、NOSRAM1600は、1のメモリセルで多値データを記憶する多値NOSRAMである。
<< NOSRAM >>
FIG. 23 shows a configuration example of NOSRAM. A NOSRAM 1600 illustrated in FIG. 23 includes a memory cell array 1610, a controller 1640, a row driver 1650, a column driver 1660, and an output driver 1670. Note that the NOSRAM 1600 is a multi-value NOSRAM that stores multi-value data in one memory cell.

メモリセルアレイ1610は複数のメモリセル1611、複数のワード線WWL、RWL、ビット線BL、ソース線SLを有する。ワード線WWLは書き込みワード線であり、ワード線RWLは読み出しワード線である。NOSRAM1600では、1のメモリセル1611で3ビット(8値)のデータを記憶する。 The memory cell array 1610 includes a plurality of memory cells 1611, a plurality of word lines WWL and RWL, a bit line BL, and a source line SL. The word line WWL is a write word line, and the word line RWL is a read word line. In the NOSRAM 1600, one memory cell 1611 stores 3-bit (eight values) data.

コントローラ1640は、NOSRAM1600全体を統括的に制御し、データWDA[31:0]の書き込み、データRDA[31:0]の読み出しを行う。コントローラ1640は、外部からのコマンド信号(例えば、チップイネーブル信号、書き込みイネーブル信号など)を処理して、行ドライバ1650、列ドライバ1660および出力ドライバ1670の制御信号を生成する。 The controller 1640 comprehensively controls the entire NOSRAM 1600 and writes data WDA [31: 0] and reads data RDA [31: 0]. The controller 1640 processes command signals from the outside (for example, a chip enable signal, a write enable signal, etc.), and generates control signals for the row driver 1650, the column driver 1660, and the output driver 1670.

行ドライバ1650は、アクセスする行を選択する機能を有する。行ドライバ1650は、行デコーダ1651、およびワード線ドライバ1652を有する。 The row driver 1650 has a function of selecting a row to be accessed. The row driver 1650 includes a row decoder 1651 and a word line driver 1652.

列ドライバ1660は、ソース線SLおよびビット線BLを駆動する。列ドライバ1660は、列デコーダ1661、書き込みドライバ1662、DAC(デジタル−アナログ変換回路)1663を有する。 The column driver 1660 drives the source line SL and the bit line BL. The column driver 1660 includes a column decoder 1661, a write driver 1662, and a DAC (digital-analog conversion circuit) 1663.

DAC1663は3ビットのデジタルデータをアナログ電圧に変換する。DAC1663は32ビットのデータWDA[31:0]を3ビットごとに、アナログ電圧に変換する。 The DAC 1663 converts 3-bit digital data into an analog voltage. The DAC 1663 converts 32-bit data WDA [31: 0] into an analog voltage every 3 bits.

書き込みドライバ1662は、ソース線SLをプリチャージする機能、ソース線SLを電気的に浮遊状態にする機能、ソース線SLを選択する機能、選択されたソース線SLにDAC1663で生成した書き込み電圧を入力する機能、ビット線BLをプリチャージする機能、ビット線BLを電気的に浮遊状態にする機能等を有する。 The write driver 1662 has a function of precharging the source line SL, a function of electrically floating the source line SL, a function of selecting the source line SL, and a write voltage generated by the DAC 1663 to the selected source line SL. A function of precharging the bit line BL, a function of electrically floating the bit line BL, and the like.

出力ドライバ1670は、セレクタ1671、ADC(アナログ−デジタル変換回路)1672、出力バッファ1673を有する。セレクタ1671は、アクセスするソース線SLを選択し、選択されたソース線SLの電圧をADC1672に送信する。ADC1672は、アナログ電圧を3ビットのデジタルデータに変換する機能を持つ。ソース線SLの電圧はADC1672において、3ビットのデータに変換され、出力バッファ1673はADC1672から出力されるデータを保持する。 The output driver 1670 includes a selector 1671, an ADC (analog-digital conversion circuit) 1672, and an output buffer 1673. The selector 1671 selects the source line SL to be accessed and transmits the voltage of the selected source line SL to the ADC 1672. The ADC 1672 has a function of converting an analog voltage into 3-bit digital data. The voltage of the source line SL is converted into 3-bit data in the ADC 1672, and the output buffer 1673 holds data output from the ADC 1672.

<メモリセル>
図24(A)はメモリセル1611の構成例を示す回路図である。メモリセル1611は2T型のゲインセルであり、メモリセル1611はワード線WWL、RWL、ビット線BL、ソース線SL、配線BGLに電気的に接続されている。メモリセル1611は、ノードSN、OSトランジスタMO61、トランジスタMP61、容量素子C61を有する。OSトランジスタMO61は書き込みトランジスタである。トランジスタMP61は読み出しトランジスタであり、例えばpチャネル型Siトランジスタで構成される。容量素子C61はノードSNの電圧を保持するための保持容量である。ノードSNはデータの保持ノードであり、ここではトランジスタMP61のゲートに相当する。
<Memory cell>
FIG. 24A is a circuit diagram illustrating a structural example of the memory cell 1611. The memory cell 1611 is a 2T type gain cell, and the memory cell 1611 is electrically connected to the word lines WWL and RWL, the bit line BL, the source line SL, and the wiring BGL. The memory cell 1611 includes a node SN, an OS transistor MO61, a transistor MP61, and a capacitor C61. The OS transistor MO61 is a write transistor. The transistor MP61 is a read transistor, and is composed of, for example, a p-channel Si transistor. The capacitive element C61 is a holding capacitor for holding the voltage of the node SN. The node SN is a data holding node and corresponds to the gate of the transistor MP61 here.

メモリセル1611の書き込みトランジスタがOSトランジスタMO61で構成されているため、NOSRAM1600は長時間データを保持することが可能である。 Since the write transistor of the memory cell 1611 includes the OS transistor MO61, the NOSRAM 1600 can hold data for a long time.

図24(A)の例では、ビット線は、書き込みと読み出しで共通のビット線であるが、図24(B)に示すように、書き込みビット線WBLと、読み出しビット線RBLとを設けてもよい。 In the example of FIG. 24A, the bit line is a common bit line for writing and reading, but a writing bit line WBL and a reading bit line RBL may be provided as shown in FIG. Good.

図24(C)−図24(E)にメモリセルの他の構成例を示す。図24(C)−図24(E)には、書き込み用ビット線と読み出し用ビット線を設けた例を示しているが、図24(A)のように書き込みと読み出しで共有されるビット線を設けてもよい。 FIGS. 24C to 24E show other configuration examples of the memory cell. FIGS. 24C to 24E show an example in which a write bit line and a read bit line are provided. As shown in FIG. 24A, bit lines shared by writing and reading are shown. May be provided.

図24(C)に示すメモリセル1612は、メモリセル1611の変形例であり、読み出しトランジスタをnチャネル型トランジスタ(MN61)に変更したものである。トランジスタMN61はOSトランジスタであってもよいし、Siトランジスタであってもよい。 A memory cell 1612 shown in FIG. 24C is a modification example of the memory cell 1611 and is obtained by changing a reading transistor to an n-channel transistor (MN61). The transistor MN61 may be an OS transistor or a Si transistor.

メモリセル1611、1612において、OSトランジスタMO61はバックゲートの無いOSトランジスタであってもよい。 In the memory cells 1611 and 1612, the OS transistor MO61 may be an OS transistor without a back gate.

図24(D)に示すメモリセル1613は、3T型ゲインセルであり、ワード線WWL、RWL、ビット線WBL、RBL、ソース線SL、配線BGL、PCLに電気的に接続されている。メモリセル1613は、ノードSN、OSトランジスタMO62、トランジスタMP62、トランジスタMP63、容量素子C62を有する。OSトランジスタMO62は書き込みトランジスタである。トランジスタMP62は読み出しトランジスタであり、トランジスタMP63は選択トランジスタである。 A memory cell 1613 illustrated in FIG. 24D is a 3T type gain cell, and is electrically connected to the word lines WWL and RWL, the bit lines WBL and RBL, the source line SL, and the wirings BGL and PCL. The memory cell 1613 includes a node SN, an OS transistor MO62, a transistor MP62, a transistor MP63, and a capacitor C62. The OS transistor MO62 is a write transistor. The transistor MP62 is a read transistor, and the transistor MP63 is a selection transistor.

図24(E)に示すメモリセル1614は、メモリセル1613の変形例であり、読み出しトランジスタおよび選択トランジスタをnチャネル型トランジスタ(MN62、MN63)に変更したものである。トランジスタMN62、MN63はOSトランジスタであってもよいし、Siトランジスタであってもよい。 A memory cell 1614 shown in FIG. 24E is a modification example of the memory cell 1613, in which the reading transistor and the selection transistor are changed to n-channel transistors (MN62 and MN63). The transistors MN62 and MN63 may be OS transistors or Si transistors.

メモリセル1611−1614に設けられるOSトランジスタは、バックゲートの無いトランジスタでもよいし、バックゲートが有るトランジスタであってもよい。 The OS transistor provided in the memory cells 1611 to 1614 may be a transistor without a back gate or a transistor with a back gate.

容量素子C61、C62の充放電によってデータを書き換えるため、NOSRAM1600は原理的には書き換え回数に制約はなく、かつ、低エネルギーで、データの書き込みおよび読み出しが可能である。また、長時間データを保持することが可能であるので、リフレッシュ頻度を低減できる。 Since data is rewritten by charging / discharging the capacitive elements C61 and C62, the NOSRAM 1600 has no limitation on the number of times of rewriting in principle, and can write and read data with low energy. Further, since the data can be held for a long time, the refresh frequency can be reduced.

上記実施の形態に示す半導体装置をメモリセル1611、1612、1613、1614に用いる場合、OSトランジスタMO61、MO62としてトランジスタ200を用い、容量素子C61、C62として容量素子100を用い、トランジスタMP61、MN62としてトランジスタ300を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る記憶装置を高集積化させることができる。よって、本実施の形態に係る記憶装置の単位面積当たりの記憶容量を増加させることができる。 When the semiconductor device described in any of the above embodiments is used for the memory cells 1611, 1612, 1613, and 1614, the transistor 200 is used as the OS transistors MO61 and MO62, the capacitor 100 is used as the capacitors C61 and C62, and the transistors MP61 and MN62 are used. The transistor 300 can be used. Thus, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the memory device according to this embodiment can be highly integrated. Thus, the storage capacity per unit area of the storage device according to this embodiment can be increased.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態5)
本実施の形態では、図25および図26を用いて、本発明の一態様に係る、OSトランジスタ、および容量素子が適用されている記憶装置の一例として、DOSRAMについて説明する。DOSRAM(登録商標)とは、「Dynamic Oxide Semiconductor RAM」の略称であり、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMを指す。DOSRAMも、NOSRAMと同様に、OSメモリが適用されている。
(Embodiment 5)
In this embodiment, DOSRAM is described as an example of a memory device to which an OS transistor and a capacitor are applied according to one embodiment of the present invention, with reference to FIGS. DOSRAM (registered trademark) is an abbreviation of “Dynamic Oxide Semiconductor RAM” and refers to a RAM having 1T (transistor) 1C (capacitance) type memory cells. OS memory is applied to DOSRAM as well as NOSRAM.

<<DOSRAM1400>>
図25にDOSRAMの構成例を示す。図25に示すように、DOSRAM1400は、コントローラ1405、行回路1410、列回路1415、メモリセルおよびセンスアンプアレイ1420(以下、「MC−SAアレイ1420」と呼ぶ。)を有する。
<< DOSRAM 1400 >>
FIG. 25 shows a configuration example of the DOSRAM. As shown in FIG. 25, the DOSRAM 1400 includes a controller 1405, a row circuit 1410, a column circuit 1415, a memory cell, and a sense amplifier array 1420 (hereinafter referred to as “MC-SA array 1420”).

行回路1410はデコーダ1411、ワード線ドライバ回路1412、列セレクタ1413、センスアンプドライバ回路1414を有する。列回路1415はグローバルセンスアンプアレイ1416、入出力回路1417を有する。グローバルセンスアンプアレイ1416は複数のグローバルセンスアンプ1447を有する。MC−SAアレイ1420はメモリセルアレイ1422、センスアンプアレイ1423、グローバルビット線GBLL、GBLRを有する。 The row circuit 1410 includes a decoder 1411, a word line driver circuit 1412, a column selector 1413, and a sense amplifier driver circuit 1414. The column circuit 1415 includes a global sense amplifier array 1416 and an input / output circuit 1417. The global sense amplifier array 1416 has a plurality of global sense amplifiers 1447. The MC-SA array 1420 includes a memory cell array 1422, a sense amplifier array 1423, and global bit lines GBLL and GBLR.

(MC−SAアレイ1420)
MC−SAアレイ1420は、メモリセルアレイ1422をセンスアンプアレイ1423上に積層した積層構造をもつ。グローバルビット線GBLL、GBLRはメモリセルアレイ1422上に積層されている。DOSRAM1400では、ビット線の構造に、ローカルビット線とグローバルビット線とで階層化された階層ビット線構造が採用されている。
(MC-SA array 1420)
The MC-SA array 1420 has a stacked structure in which the memory cell array 1422 is stacked on the sense amplifier array 1423. Global bit lines GBLL and GBLR are stacked on the memory cell array 1422. In the DOSRAM 1400, a hierarchical bit line structure in which a local bit line and a global bit line are hierarchized is adopted as the bit line structure.

メモリセルアレイ1422は、N個(Nは2以上の整数)のローカルメモリセルアレイ1425<0>−1425<N−1>を有する。図26(A)にローカルメモリセルアレイ1425の構成例を示す。ローカルメモリセルアレイ1425は、複数のメモリセル1445、複数のワード線WL、複数のビット線BLL、BLRを有する。図26(A)の例では、ローカルメモリセルアレイ1425の構造はオープンビット線型であるが、フォールデッドビット線型であってもよい。 The memory cell array 1422 includes N (N is an integer of 2 or more) local memory cell arrays 1425 <0> -1425 <N-1>. FIG. 26A illustrates a configuration example of the local memory cell array 1425. The local memory cell array 1425 includes a plurality of memory cells 1445, a plurality of word lines WL, and a plurality of bit lines BLL and BLR. In the example of FIG. 26A, the structure of the local memory cell array 1425 is an open bit line type, but may be a folded bit line type.

図26(B)にメモリセル1445の回路構成例を示す。メモリセル1445はトランジスタMW1、容量素子CS1、端子B1、B2を有する。トランジスタMW1は容量素子CS1の充放電を制御する機能をもつ。トランジスタMW1のゲートはワード線に電気的に接続され、第1端子はビット線に電気的に接続され、第2端子は容量素子の第1端子に電気的に接続されている。容量素子CS1の第2端子は端子B2に電気的に接続されている。端子B2には、定電圧(例えば、低電源電圧)が入力される。 FIG. 26B illustrates a circuit configuration example of the memory cell 1445. The memory cell 1445 includes a transistor MW1, a capacitor CS1, and terminals B1 and B2. The transistor MW1 has a function of controlling charging / discharging of the capacitor CS1. The gate of the transistor MW1 is electrically connected to the word line, the first terminal is electrically connected to the bit line, and the second terminal is electrically connected to the first terminal of the capacitor. The second terminal of the capacitive element CS1 is electrically connected to the terminal B2. A constant voltage (for example, a low power supply voltage) is input to the terminal B2.

上記実施の形態に示す半導体装置をメモリセル1445に用いる場合、トランジスタMW1としてトランジスタ200を用い、容量素子CS1として容量素子100を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る記憶装置を高集積化させることができる。よって、本実施の形態に係る記憶装置の単位面積当たりの記憶容量を増加させることができる。 In the case where the semiconductor device described in any of the above embodiments is used for the memory cell 1445, the transistor 200 can be used as the transistor MW1 and the capacitor 100 can be used as the capacitor CS1. Thus, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the memory device according to this embodiment can be highly integrated. Thus, the storage capacity per unit area of the storage device according to this embodiment can be increased.

トランジスタMW1はバックゲートを備えており、バックゲートは端子B1に電気的に接続されている。そのため、端子B1の電圧によって、トランジスタMW1の閾値電圧を変更することができる。例えば、端子B1の電圧は固定電圧(例えば、負の定電圧)であってもよいし、DOSRAM1400の動作に応じて、端子B1の電圧を変化させてもよい。 The transistor MW1 includes a back gate, and the back gate is electrically connected to the terminal B1. Therefore, the threshold voltage of the transistor MW1 can be changed by the voltage of the terminal B1. For example, the voltage at the terminal B1 may be a fixed voltage (for example, a negative constant voltage), or the voltage at the terminal B1 may be changed according to the operation of the DOSRAM 1400.

トランジスタMW1のバックゲートをトランジスタMW1のゲート、ソース、またはドレインに電気的に接続してもよい。あるいは、トランジスタMW1にバックゲートを設けなくてもよい。 The back gate of the transistor MW1 may be electrically connected to the gate, source, or drain of the transistor MW1. Alternatively, a back gate is not necessarily provided in the transistor MW1.

センスアンプアレイ1423は、N個のローカルセンスアンプアレイ1426<0>−1426<N−1>を有する。ローカルセンスアンプアレイ1426は、1のスイッチアレイ1444、複数のセンスアンプ1446を有する。センスアンプ1446には、ビット線対が電気的に接続されている。センスアンプ1446は、ビット線対をプリチャージする機能、ビット線対の電圧差を増幅する機能、この電圧差を保持する機能を有する。スイッチアレイ1444は、ビット線対を選択し、選択したビット線対とグローバルビット線対との間を導通状態にする機能を有する。 The sense amplifier array 1423 includes N local sense amplifier arrays 1426 <0> -1426 <N-1>. The local sense amplifier array 1426 includes one switch array 1444 and a plurality of sense amplifiers 1446. A bit line pair is electrically connected to the sense amplifier 1446. The sense amplifier 1446 has a function of precharging the bit line pair, a function of amplifying the voltage difference between the bit line pair, and a function of holding this voltage difference. The switch array 1444 has a function of selecting a bit line pair and bringing the selected bit line pair and the global bit line pair into a conductive state.

ここで、ビット線対とは、センスアンプによって、同時に比較される2本のビット線のことをいう。グローバルビット線対とは、グローバルセンスアンプによって、同時に比較される2本のグローバルビット線のことをいう。ビット線対を一対のビット線と呼ぶことができ、グローバルビット線対を一対のグローバルビット線と呼ぶことができる。ここでは、ビット線BLLとビット線BLRが1組のビット線対を成す。グローバルビット線GBLLとグローバルビット線GBLRとが1組のグローバルビット線対をなす。以下、ビット線対(BLL,BLR)、グローバルビット線対(GBLL,GBLR)とも表す。 Here, the bit line pair refers to two bit lines that are simultaneously compared by the sense amplifier. A global bit line pair refers to two global bit lines that are simultaneously compared by a global sense amplifier. A bit line pair can be called a pair of bit lines, and a global bit line pair can be called a pair of global bit lines. Here, the bit line BLL and the bit line BLR form one bit line pair. Global bit line GBLL and global bit line GBLR form a pair of global bit lines. Hereinafter, the bit line pair (BLL, BLR) and the global bit line pair (GBLL, GBLR) are also represented.

(コントローラ1405)
コントローラ1405は、DOSRAM1400の動作全般を制御する機能を有する。コントローラ1405は、外部から入力されるコマンド信号を論理演算して、動作モードを決定する機能、決定した動作モードが実行されるように、行回路1410、列回路1415の制御信号を生成する機能、外部から入力されるアドレス信号を保持する機能、内部アドレス信号を生成する機能を有する。
(Controller 1405)
The controller 1405 has a function of controlling the overall operation of the DOSRAM 1400. The controller 1405 performs a logical operation on a command signal input from the outside to determine an operation mode, and a function to generate control signals for the row circuit 1410 and the column circuit 1415 so that the determined operation mode is executed. It has a function of holding an address signal input from the outside and a function of generating an internal address signal.

(行回路1410)
行回路1410は、MC−SAアレイ1420を駆動する機能を有する。デコーダ1411はアドレス信号をデロードする機能を有する。ワード線ドライバ回路1412は、アクセス対象行のワード線WLを選択する選択信号を生成する。
(Row circuit 1410)
The row circuit 1410 has a function of driving the MC-SA array 1420. The decoder 1411 has a function of deloading an address signal. The word line driver circuit 1412 generates a selection signal for selecting the word line WL of the access target row.

列セレクタ1413、センスアンプドライバ回路1414はセンスアンプアレイ1423を駆動するための回路である。列セレクタ1413は、アクセス対象列のビット線を選択するための選択信号を生成する機能をもつ。列セレクタ1413の選択信号によって、各ローカルセンスアンプアレイ1426のスイッチアレイ1444が制御される。センスアンプドライバ回路1414の制御信号によって、複数のローカルセンスアンプアレイ1426は独立して駆動される。 A column selector 1413 and a sense amplifier driver circuit 1414 are circuits for driving the sense amplifier array 1423. The column selector 1413 has a function of generating a selection signal for selecting the bit line of the access target column. The switch array 1444 of each local sense amplifier array 1426 is controlled by a selection signal from the column selector 1413. The plurality of local sense amplifier arrays 1426 are independently driven by the control signal of the sense amplifier driver circuit 1414.

(列回路1415)
列回路1415は、データ信号WDA[31:0]の入力を制御する機能、データ信号RDA[31:0]の出力を制御する機能を有する。データ信号WDA[31:0]は書き込みデータ信号であり、データ信号RDA[31:0]は読み出しデータ信号である。
(Column circuit 1415)
The column circuit 1415 has a function of controlling input of the data signal WDA [31: 0] and a function of controlling output of the data signal RDA [31: 0]. The data signal WDA [31: 0] is a write data signal, and the data signal RDA [31: 0] is a read data signal.

グローバルセンスアンプ1447はグローバルビット線対(GBLL,GBLR)に電気的に接続されている。グローバルセンスアンプ1447はグローバルビット線対(GBLL,GBLR)間の電圧差を増幅する機能、この電圧差を保持する機能を有する。グローバルビット線対(GBLL,GBLR)へのデータの書き込み、および読み出しは、入出力回路1417によって行われる。 The global sense amplifier 1447 is electrically connected to a global bit line pair (GBLL, GBLR). The global sense amplifier 1447 has a function of amplifying a voltage difference between the global bit line pair (GBLL, GBLR) and a function of holding this voltage difference. Data input / output to / from the global bit line pair (GBLL, GBLR) is performed by an input / output circuit 1417.

DOSRAM1400の書き込み動作の概要を説明する。入出力回路1417によって、データがグローバルビット線対に書き込まれる。グローバルビット線対のデータは、グローバルセンスアンプアレイ1416によって保持される。アドレス信号が指定するローカルセンスアンプアレイ1426のスイッチアレイ1444によって、グローバルビット線対のデータが、対象列のビット線対に書き込まれる。ローカルセンスアンプアレイ1426は、書き込まれたデータを増幅し、保持する。指定されたローカルメモリセルアレイ1425において、行回路1410によって、対象行のワード線WLが選択され、選択行のメモリセル1445にローカルセンスアンプアレイ1426の保持データが書き込まれる。 An outline of the writing operation of the DOSRAM 1400 will be described. Data is written to the global bit line pair by the input / output circuit 1417. Data of the global bit line pair is held by the global sense amplifier array 1416. The data of the global bit line pair is written to the bit line pair of the target column by the switch array 1444 of the local sense amplifier array 1426 specified by the address signal. The local sense amplifier array 1426 amplifies and holds the written data. In the specified local memory cell array 1425, the row circuit 1410 selects the word line WL of the target row, and the data held in the local sense amplifier array 1426 is written into the memory cell 1445 of the selected row.

DOSRAM1400の読み出し動作の概要を説明する。アドレス信号によって、ローカルメモリセルアレイ1425の1行が指定される。指定されたローカルメモリセルアレイ1425において、対象行のワード線WLが選択状態となり、メモリセル1445のデータがビット線に書き込まれる。ローカルセンスアンプアレイ1426によって、各列のビット線対の電圧差がデータとして検出され、かつ保持される。スイッチアレイ1444によって、ローカルセンスアンプアレイ1426の保持データの内、アドレス信号が指定する列のデータが、グローバルビット線対に書き込まれる。グローバルセンスアンプアレイ1416は、グローバルビット線対のデータを検出し、保持する。グローバルセンスアンプアレイ1416の保持データは入出力回路1417に出力される。以上で、読み出し動作が完了する。 An outline of the reading operation of the DOSRAM 1400 will be described. One row of the local memory cell array 1425 is designated by the address signal. In the designated local memory cell array 1425, the word line WL in the target row is selected, and the data in the memory cell 1445 is written to the bit line. The local sense amplifier array 1426 detects and holds the voltage difference between the bit line pairs in each column as data. The switch array 1444 writes the data in the column specified by the address signal among the data held in the local sense amplifier array 1426 to the global bit line pair. The global sense amplifier array 1416 detects and holds data of the global bit line pair. Data held in the global sense amplifier array 1416 is output to the input / output circuit 1417. This completes the read operation.

容量素子CS1の充放電によってデータを書き換えるため、DOSRAM1400には原理的には書き換え回数に制約はなく、かつ、低エネルギーで、データの書き込みおよび読み出しが可能である。また、メモリセル1445の回路構成が単純であるため、大容量化が容易である。 Since data is rewritten by charging / discharging the capacitive element CS1, the DOSRAM 1400 has no restriction on the number of times of rewriting in principle, and data can be written and read with low energy. Further, since the circuit configuration of the memory cell 1445 is simple, the capacity can be easily increased.

トランジスタMW1はOSトランジスタである。OSトランジスタはオフ電流が極めて小さいため、容量素子CS1から電荷がリークすることを抑えることができる。したがって、DOSRAM1400の保持時間はDRAMに比べて非常に長い。したがってリフレッシュの頻度を低減できるため、リフレッシュ動作に要する電力を削減できる。よって、DOSRAM1400は大容量のデータを高頻度で書き換えるメモリ装置、例えば、画像処理に利用されるフレームメモリに好適である。 The transistor MW1 is an OS transistor. Since the off-state current of the OS transistor is extremely small, leakage of charge from the capacitor CS1 can be suppressed. Therefore, the retention time of the DOSRAM 1400 is very long compared to the DRAM. Therefore, since the frequency of refresh can be reduced, the power required for the refresh operation can be reduced. Therefore, the DOSRAM 1400 is suitable for a memory device that rewrites a large amount of data at a high frequency, for example, a frame memory used for image processing.

MC−SAアレイ1420が積層構造であることよって、ローカルセンスアンプアレイ1426の長さと同程度の長さにビット線を短くすることができる。ビット線を短くすることで、ビット線容量が小さくなり、メモリセル1445の保持容量を低減することができる。また、ローカルセンスアンプアレイ1426にスイッチアレイ1444を設けることで、長いビット線の本数を減らすことができる。以上の理由から、DOSRAM1400のアクセス時に駆動する負荷が低減され、消費電力を低減することができる。 Since the MC-SA array 1420 has a stacked structure, the bit line can be shortened to the same length as the local sense amplifier array 1426. By shortening the bit line, the bit line capacitance can be reduced and the storage capacity of the memory cell 1445 can be reduced. Further, by providing the switch array 1444 in the local sense amplifier array 1426, the number of long bit lines can be reduced. For the above reasons, the load driven when accessing the DOSRAM 1400 is reduced, and the power consumption can be reduced.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態6)
本実施の形態では、図27から図30を用いて、本発明の一態様に係る、OSトランジスタ、および容量素子が適用されている半導体装置の一例として、FPGA(フィールドプログラマブルゲートアレイ)について説明する。本実施の形態のFPGAは、コンフィギュレーションメモリ、およびレジスタにOSメモリが適用されている。ここでは、このようなFPGAを「OS−FPGA」と呼ぶ。
(Embodiment 6)
In this embodiment, an FPGA (field programmable gate array) is described as an example of a semiconductor device to which an OS transistor and a capacitor are applied according to one embodiment of the present invention, with reference to FIGS. . In the FPGA of this embodiment, an OS memory is applied to the configuration memory and the register. Here, such FPGA is referred to as “OS-FPGA”.

<<OS−FPGA>>
図27(A)にOS−FPGAの構成例を示す。図27(A)に示すOS−FPGA3110は、マルチコンテキスト構造によるコンテキスト切り替え、細粒度パワーゲーティング、NOFF(ノーマリオフ)コンピューティングが可能である。OS−FPGA3110は、コントローラ(Controller)3111、ワードドライバ(Word driver)3112、データドライバ(Data Driver)3113、プログラマブルエリア(Programmable area)3115を有する。
<< OS-FPGA >>
FIG. 27A illustrates a configuration example of the OS-FPGA. The OS-FPGA 3110 illustrated in FIG. 27A is capable of context switching by a multi-context structure, fine-grain power gating, and NOFF (normally off) computing. The OS-FPGA 3110 includes a controller 3111, a word driver 3112, a data driver 3113, and a programmable area 3115.

プログラマブルエリア3115は、2個の入出力ブロック(IOB)3117、コア(Core)3119を有する。IOB3117は複数のプログラマブル入出力回路を有する。コア3119は、複数のロジックアレイブロック(LAB)3120、複数のスイッチアレイブロック(SAB)3130を有する。LAB3120は複数のプログラマブルロジックエレメント(PLE)3121を有する。図27(B)には、LAB3120を5個のPLE3121で構成する例を示す。図27(C)に示すようにSAB3130はアレイ状に配列された複数のスイッチブロック(SB)3131を有する。LAB3120は自身の入力端子と、SAB3130を介して4(上下左右)方向のLAB3120に接続される。 The programmable area 3115 includes two input / output blocks (IOB) 3117 and a core (Core) 3119. The IOB 3117 has a plurality of programmable input / output circuits. The core 3119 includes a plurality of logic array blocks (LAB) 3120 and a plurality of switch array blocks (SAB) 3130. The LAB 3120 has a plurality of programmable logic elements (PLE) 3121. FIG. 27B shows an example in which the LAB 3120 is configured with five PLE 3121s. As shown in FIG. 27C, the SAB 3130 includes a plurality of switch blocks (SB) 3131 arranged in an array. The LAB 3120 is connected to its own input terminal and the LAB 3120 in the 4 (up / down / left / right) direction via the SAB 3130.

図28(A)乃至図28(C)を参照して、SB3131について説明する。図28(A)に示すSB3131には、data、datab、信号context[1:0]、word[1:0]が入力される。data、databはコンフィギュレーションデータであり、dataとdatabは論理が相補的な関係にある。OS−FPGA3110のコンテキスト数は2であり、信号context[1:0]はコンテキスト選択信号である。信号word[1:0]はワード線選択信号であり、信号word[1:0]が入力される配線がそれぞれワード線である。 With reference to FIGS. 28A to 28C, the SB 3131 will be described. Data, dataab, signals context [1: 0], and word [1: 0] are input to SB3131 shown in FIG. data and datab are configuration data, and data and datab have a complementary logic relationship. The number of contexts of the OS-FPGA 3110 is 2, and the signal context [1: 0] is a context selection signal. The signal word [1: 0] is a word line selection signal, and the wiring to which the signal word [1: 0] is input is a word line.

SB3131は、PRS(プログラマブルルーティングスイッチ)3133[0]、3133[1]を有する。PRS3133[0]、3133[1]は、相補データを格納できるコンフィギュレーションメモリ(CM)を有する。なお、PRS3133[0]とPRS3133[1]とを区別しない場合、PRS3133と呼ぶ。他の要素についても同様である。 The SB 3131 includes PRSs (programmable routing switches) 3133 [0] and 3133 [1]. The PRSs 3133 [0] and 3133 [1] have a configuration memory (CM) that can store complementary data. Note that PRS 3133 [0] and PRS 3133 [1] are referred to as PRS 3133 when they are not distinguished. The same applies to other elements.

図28(B)にPRS3133[0]の回路構成例を示す。PRS3133[0]とPRS3133[1]とは同じ回路構成を有する。PRS3133[0]とPRS3133[1]とは入力されるコンテキスト選択信号、ワード線選択信号が異なる。信号context[0]、word[0]はPRS3133[0]に入力され、信号context[1]、word[1]はPRS3133[1]に入力される。例えば、SB3131において、信号context[0]が“H”になることで、PRS3133[0]がアクティブになる。 FIG. 28B illustrates a circuit configuration example of the PRS 3133 [0]. PRS 3133 [0] and PRS 3133 [1] have the same circuit configuration. PRS 3133 [0] and PRS 3133 [1] are different in the input context selection signal and word line selection signal. The signals context [0] and word [0] are input to the PRS 3133 [0], and the signals context [1] and word [1] are input to the PRS 3133 [1]. For example, in the SB 3131, when the signal context [0] becomes “H”, the PRS 3133 [0] becomes active.

PRS3133[0]は、CM3135、SiトランジスタM31を有する。SiトランジスタM31は、CM3135により制御されるパストランジスタである。CM3135は、メモリ回路3137、3137Bを有する。メモリ回路3137、3137Bは同じ回路構成である。メモリ回路3137は、容量素子C31、OSトランジスタMO31、MO32を有する。メモリ回路3137Bは、容量素子CB31、OSトランジスタMOB31、MOB32を有する。 The PRS 3133 [0] includes a CM 3135 and a Si transistor M31. The Si transistor M31 is a pass transistor controlled by the CM 3135. The CM 3135 includes memory circuits 3137 and 3137B. The memory circuits 3137 and 3137B have the same circuit configuration. The memory circuit 3137 includes a capacitor C31 and OS transistors MO31 and MO32. The memory circuit 3137B includes a capacitor CB31 and OS transistors MOB31 and MOB32.

上記実施の形態に示す半導体装置をSAB3130に用いる場合、OSトランジスタMO31、MOB31としてトランジスタ200を用い、容量素子C31、CB31として容量素子100を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る半導体装置を高集積化させることができる。 In the case where the semiconductor device described in any of the above embodiments is used for the SAB 3130, the transistor 200 can be used as the OS transistors MO31 and MOB31, and the capacitor 100 can be used as the capacitors C31 and CB31. Accordingly, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the semiconductor device according to this embodiment can be highly integrated.

OSトランジスタMO31、MO32、MOB31、MOB32はバックゲートを有し、これらバックゲートはそれぞれ固定電圧を供給する電源線に電気的に接続されている。 The OS transistors MO31, MO32, MOB31, and MOB32 each have a back gate, and each of these back gates is electrically connected to a power supply line that supplies a fixed voltage.

SiトランジスタM31のゲートがノードN31であり、OSトランジスタMO32のゲートがノードN32であり、OSトランジスタMOB32のゲートがノードNB32である。ノードN32、NB32はCM3135の電荷保持ノードである。OSトランジスタMO32はノードN31と信号context[0]用の信号線との間の導通状態を制御する。OSトランジスタMOB32はノードN31と低電位電源線VSSとの間の導通状態を制御する。 The gate of the Si transistor M31 is the node N31, the gate of the OS transistor MO32 is the node N32, and the gate of the OS transistor MOB32 is the node NB32. Nodes N32 and NB32 are charge holding nodes of the CM 3135. The OS transistor MO32 controls a conduction state between the node N31 and the signal line for the signal context [0]. The OS transistor MOB32 controls a conduction state between the node N31 and the low potential power supply line VSS.

メモリ回路3137、3137Bが保持するデータは相補的な関係にある。したがって、OSトランジスタMO32またはMOB32の何れか一方が導通する。 Data held in the memory circuits 3137 and 3137B has a complementary relationship. Therefore, either one of the OS transistors MO32 or MOB32 becomes conductive.

図28(C)を参照して、PRS3133[0]の動作例を説明する。PRS3133[0]にコンフィギュレーションデータが既に書き込まれており、PRS3133[0]のノードN32は“H”であり、ノードNB32は“L”である。 With reference to FIG. 28C, an operation example of PRS3133 [0] will be described. Configuration data has already been written in the PRS 3133 [0], the node N32 of the PRS 3133 [0] is “H”, and the node NB32 is “L”.

信号context[0]が“L”である間はPRS3133[0]は非アクティブである。この期間に、PRS3133[0]の入力端子が“H”に遷移しても、SiトランジスタM31のゲートは“L”が維持され、PRS3133[0]の出力端子も“L”が維持される。 While the signal context [0] is “L”, the PRS 3133 [0] is inactive. During this period, even if the input terminal of the PRS 3133 [0] changes to “H”, the gate of the Si transistor M31 is maintained at “L”, and the output terminal of the PRS 3133 [0] is also maintained at “L”.

信号context[0]が“H”である間はPRS3133[0]はアクティブである。信号context[0]が“H”に遷移すると、CM3135が記憶するコンフィギュレーションデータによって、SiトランジスタM31のゲートは“H”に遷移する。 While the signal context [0] is “H”, the PRS 3133 [0] is active. When the signal context [0] changes to “H”, the gate of the Si transistor M31 changes to “H” according to the configuration data stored in the CM 3135.

PRS3133[0]がアクティブである期間に、入力端子が“H”に遷移すると、メモリ回路3137のOSトランジスタMO32がソースフォロアであるために、ブースティングによってSiトランジスタM31のゲート電圧は上昇する。その結果、メモリ回路3137のOSトランジスタMO32は駆動能力を失い、SiトランジスタM31のゲートは浮遊状態となる。 When the input terminal changes to “H” during a period in which PRS 3133 [0] is active, the OS transistor MO32 of the memory circuit 3137 is a source follower, and thus the gate voltage of the Si transistor M31 increases due to boosting. As a result, the OS transistor MO32 of the memory circuit 3137 loses drive capability, and the gate of the Si transistor M31 is in a floating state.

マルチコンテキスト機能を備えるPRS3133において、CM3135はマルチプレクサの機能を併せ持つ。 In the PRS 3133 having a multi-context function, the CM 3135 also has a multiplexer function.

図29にPLE3121の構成例を示す。PLE3121はルックアップテーブルブロック(LUTblock)3123、レジスタブロック3124、セレクタ3125、CM3126を有する。LUTブロック3123は、入力inA−inDに従って内部の16ビットCM対の出力をマルチプレクスする構成である。セレクタ3125は、CM3126が格納するコンフィギュレーションに従って、LUTブロック3123の出力またはレジスタブロック3124の出力を選択する。 FIG. 29 shows a configuration example of PLE 3121. The PLE 3121 includes a lookup table block (LUTblock) 3123, a register block 3124, a selector 3125, and a CM 3126. The LUT block 3123 is configured to multiplex the output of the internal 16-bit CM pair according to the inputs inA-inD. The selector 3125 selects the output of the LUT block 3123 or the output of the register block 3124 according to the configuration stored in the CM 3126.

PLE3121は、パワースイッチ3127を介して電圧VDD用の電源線に電気的に接続されている。パワースイッチ3127のオンオフは、CM3128が格納するコンフィギュレーションデータによって設定される。各PLE3121にパワースイッチ3127を設けることで、細粒度パワーゲーティングが可能である。細粒度パワーゲーティング機能により、コンテキストの切り替え後に使用されないPLE3121をパワーゲーティングすることができるので、待機電力を効果的に低減できる。 The PLE 3121 is electrically connected to the power line for the voltage VDD via the power switch 3127. On / off of the power switch 3127 is set by configuration data stored in the CM 3128. By providing a power switch 3127 for each PLE 3121, fine-grain power gating is possible. Since the fine-grained power gating function can power gating the PLE 3121 that is not used after context switching, standby power can be effectively reduced.

NOFFコンピューティングを実現するため、レジスタブロック3124は、不揮発性レジスタで構成される。PLE3121内の不揮発性レジスタはOSメモリを備えるフリップフロップ(以下[OS−FF]と呼ぶ)である。 In order to realize NOFF computing, the register block 3124 is configured by a nonvolatile register. The nonvolatile register in the PLE 3121 is a flip-flop (hereinafter referred to as [OS-FF]) including an OS memory.

レジスタブロックク3124は、OS−FF3140[1]3140[2]を有する。信号user_res、load、storeがOS−FF3140[1]、3140[2]に入力される。クロック信号CLK1はOS−FF3140[1]に入力され、クロック信号CLK2はOS−FF3140[2]に入力される。図30(A)にOS−FF3140の構成例を示す。 The register block 3124 includes OS-FFs 3140 [1] 3140 [2]. Signals user_res, load, and store are input to the OS-FFs 3140 [1] and 3140 [2]. The clock signal CLK1 is input to the OS-FF 3140 [1], and the clock signal CLK2 is input to the OS-FF 3140 [2]. FIG. 30A illustrates a configuration example of the OS-FF 3140.

OS−FF3140は、FF3141、シャドウレジスタ3142を有する。FF3141は、ノードCK、R、D、Q、QBを有する。ノードCKにはクロック信号が入力される。ノードRには信号user_resが入力される。信号user_resはリセット信号である。ノードDはデータ入力ノードであり、ノードQはデータ出力ノードである。ノードQとノードQBとは論理が相補関係にある。 The OS-FF 3140 includes an FF 3141 and a shadow register 3142. The FF 3141 includes nodes CK, R, D, Q, and QB. A clock signal is input to the node CK. A signal user_res is input to the node R. The signal user_res is a reset signal. Node D is a data input node, and node Q is a data output node. Nodes Q and QB have a complementary logic relationship.

シャドウレジスタ3142は、FF3141のバックアップ回路として機能する。シャドウレジスタ3142は、信号storeに従いノードQ、QBのデータをそれぞれバックアップし、また、信号loadに従い、バックアップしたデータをノードQ、QBに書き戻す。 The shadow register 3142 functions as a backup circuit for the FF 3141. The shadow register 3142 backs up the data of the nodes Q and QB according to the signal store, and writes back up the backed up data to the nodes Q and QB according to the signal load.

シャドウレジスタ3142は、インバータ回路3188、3189、SiトランジスタM37、MB37、メモリ回路3143、3143Bを有する。メモリ回路3143、3143Bは、PRS3133のメモリ回路3137と同じ回路構成である。メモリ回路3143は容量素子C36、OSトランジスタMO35、MO36を有する。メモリ回路3143Bは容量素子CB36、OSトランジスタMOB35、OSトランジスタMOB36を有する。ノードN36、NB36はOSトランジスタMO36、OSトランジスタMOB36のゲートであり、それぞれ電荷保持ノードである。ノードN37、NB37は、SiトランジスタM37、MB37のゲートである。 The shadow register 3142 includes inverter circuits 3188 and 3189, Si transistors M37 and MB37, and memory circuits 3143 and 3143B. The memory circuits 3143 and 3143B have the same circuit configuration as the memory circuit 3137 of the PRS 3133. The memory circuit 3143 includes a capacitor C36 and OS transistors MO35 and MO36. The memory circuit 3143B includes a capacitor CB36, an OS transistor MOB35, and an OS transistor MOB36. Nodes N36 and NB36 are gates of the OS transistor MO36 and the OS transistor MOB36, respectively, and are charge holding nodes. Nodes N37 and NB37 are gates of the Si transistors M37 and MB37.

上記実施の形態に示す半導体装置をLAB3120に用いる場合、OSトランジスタMO35、MOB35としてトランジスタ200を用い、容量素子C36、CB36として容量素子100を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る半導体装置を高集積化させることができる。 When the semiconductor device described in any of the above embodiments is used for the LAB 3120, the transistor 200 can be used as the OS transistors MO35 and MOB35, and the capacitor 100 can be used as the capacitors C36 and CB36. Accordingly, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the semiconductor device according to this embodiment can be highly integrated.

OSトランジスタMO35、MO36、MOB35、MOB36はバックゲートを有し、これらバックゲートはそれぞれ固定電圧を供給する電源線に電気的に接続されている。 The OS transistors MO35, MO36, MOB35, and MOB36 each have a back gate, and these back gates are each electrically connected to a power supply line that supplies a fixed voltage.

図30(B)を参照して、OS−FF3140の動作方法例を説明する。 With reference to FIG. 30B, an example of an operation method of the OS-FF 3140 will be described.

(バックアップ(Backup))
“H”の信号storeがOS−FF3140に入力されると、シャドウレジスタ3142はFF3141のデータをバックアップする。ノードN36は、ノードQのデータが書き込まれることで、“L”となり、ノードNB36は、ノードQBのデータが書き込まれることで、“H”となる。しかる後、パワーゲーティングが実行され、パワースイッチ3127をオフにする。FF3141のノードQ、QBのデータは消失するが、電源オフであっても、シャドウレジスタ3142はバックアップしたデータを保持する。
(Backup)
When the “H” signal store is input to the OS-FF 3140, the shadow register 3142 backs up the data in the FF 3141. The node N36 becomes “L” when the data of the node Q is written, and the node NB36 becomes “H” when the data of the node QB is written. Thereafter, power gating is executed and the power switch 3127 is turned off. Although the data of the nodes Q and QB of the FF 3141 are lost, the shadow register 3142 holds the backed up data even when the power is turned off.

(リカバリ(Recovery))
パワースイッチ3127をオンにし、PLE3121に電源を供給する。しかる後、“H”の信号loadがOS−FF3140に入力されると、シャドウレジスタ3142はバックアップしているデータをFF3141に書き戻す。ノードN36は“L”であるので、ノードN37は“L”が維持され、ノードNB36は“H”であるので、ノードNB37は“H”となる。よって、ノードQは“H”になり、ノードQBは“L”になる。つまり、OS−FF3140はバックアップ動作時の状態に復帰する。
(Recovery)
The power switch 3127 is turned on to supply power to the PLE 3121. After that, when the “H” signal load is input to the OS-FF 3140, the shadow register 3142 writes back-up data back to the FF 3141. Since the node N36 is “L”, the node N37 is maintained at “L”, and the node NB36 is “H”, so that the node NB37 is “H”. Therefore, the node Q becomes “H” and the node QB becomes “L”. That is, the OS-FF 3140 returns to the state during the backup operation.

細粒度パワーゲーティングと、OS−FF3140のバックアップ/リカバリ動作とを組み合わせることで、OS−FPGA3110の消費電力を効果的に低減できる。 By combining the fine grain power gating and the backup / recovery operation of the OS-FF 3140, the power consumption of the OS-FPGA 3110 can be effectively reduced.

メモリ回路において発生しうるエラーとして放射線の入射によるソフトエラーが挙げられる。ソフトエラーは、メモリやパッケージを構成する材料などから放出されるα線や、宇宙から大気に入射した一次宇宙線が大気中に存在する原子の原子核と核反応を起こすことにより発生する二次宇宙線中性子などがトランジスタに照射され、電子正孔対が生成されることにより、メモリに保持されたデータが反転するなどの誤作動が生じる現象である。OSトランジスタを用いたOSメモリはソフトエラー耐性が高い。そのため、OSメモリを搭載することで、信頼性の高いOS−FPGA3110を提供することができる。 An error that may occur in the memory circuit is a soft error due to the incidence of radiation. A soft error is a secondary universe that is generated when a nuclear reaction occurs between alpha rays emitted from the materials that make up the memory and package, or primary cosmic rays incident on the atmosphere from space and atomic nuclei in the atmosphere. This is a phenomenon in which a malfunction such as inversion of data held in a memory occurs due to irradiation of a line neutron or the like to a transistor to generate an electron-hole pair. An OS memory using an OS transistor has high soft error resistance. Therefore, the OS-FPGA 3110 with high reliability can be provided by installing the OS memory.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態7)
本実施の形態では、図31を用いて、上記実施の形態に示す半導体装置を適用した、AIシステムについて説明を行う。
(Embodiment 7)
In this embodiment, an AI system to which the semiconductor device described in any of the above embodiments is applied will be described with reference to FIGS.

図31はAIシステム4041の構成例を示すブロック図である。AIシステム4041は、演算部4010と、制御部4020と、入出力部4030を有する。 FIG. 31 is a block diagram illustrating a configuration example of the AI system 4041. The AI system 4041 includes a calculation unit 4010, a control unit 4020, and an input / output unit 4030.

演算部4010は、アナログ演算回路4011と、DOSRAM4012と、NOSRAM4013と、FPGA4014と、を有する。DOSRAM4012、NOSRAM4013、およびFPGA4014として、上記実施の形態に示す、DOSRAM1400、NOSRAM1600、およびOS−FPGA3110を用いることができる。 The arithmetic unit 4010 includes an analog arithmetic circuit 4011, DOSRAM 4012, NOSRAM 4013, and FPGA 4014. As the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014, the DOSRAM 1400, the NOSRAM 1600, and the OS-FPGA 3110 described in the above embodiment can be used.

制御部4020は、CPU(Central Processing Unit)4021と、GPU(Graphics Processing Unit)4022と、PLL(Phase Locked Loop)4023と、SRAM(Static Random Access Memory)4024と、PROM(Programmable Read Only Memory)4025と、メモリコントローラ4026と、電源回路4027と、PMU(Power Management Unit)4028と、を有する。 The control unit 4020 includes a CPU (Central Processing Unit) 4021, a GPU (Graphics Processing Unit) 4022, a PLL (Phase Locked Loop) 4023, and a SRAM (Static Random Access MemoryPROM 40 Memory, Memory Memory 4024). A memory controller 4026, a power supply circuit 4027, and a PMU (Power Management Unit) 4028.

入出力部4030は、外部記憶制御回路4031と、音声コーデック4032と、映像コーデック4033と、汎用入出力モジュール4034と、通信モジュール4035と、を有する。 The input / output unit 4030 includes an external storage control circuit 4031, an audio codec 4032, a video codec 4033, a general-purpose input / output module 4034, and a communication module 4035.

演算部4010は、ニューラルネットワークによる学習または推論を実行することができる。 The arithmetic unit 4010 can execute learning or inference using a neural network.

アナログ演算回路4011はA/D(アナログ/デジタル)変換回路、D/A(デジタル/アナログ)変換回路、および積和演算回路を有する。 The analog operation circuit 4011 includes an A / D (analog / digital) conversion circuit, a D / A (digital / analog) conversion circuit, and a product-sum operation circuit.

アナログ演算回路4011はOSトランジスタを用いて形成することが好ましい。OSトランジスタを用いたアナログ演算回路4011は、アナログメモリを有し、学習または推論に必要な積和演算を、低消費電力で実行することが可能になる。 The analog arithmetic circuit 4011 is preferably formed using an OS transistor. An analog operation circuit 4011 using an OS transistor has an analog memory, and can perform a product-sum operation necessary for learning or inference with low power consumption.

DOSRAM4012は、OSトランジスタを用いて形成されたDRAMであり、DOSRAM4012は、CPU4021から送られてくるデジタルデータを一時的に格納するメモリである。DOSRAM4012は、OSトランジスタを含むメモリセルと、Siトランジスタを含む読み出し回路部を有する。上記メモリセルと読み出し回路部は、積層された異なる層に設けることができるため、DOSRAM4012は、全体の回路面積を小さくすることができる。 The DOSRAM 4012 is a DRAM formed using an OS transistor, and the DOSRAM 4012 is a memory that temporarily stores digital data sent from the CPU 4021. The DOSRAM 4012 includes a memory cell including an OS transistor and a reading circuit portion including a Si transistor. Since the memory cell and the reading circuit portion can be provided in different stacked layers, the DOSRAM 4012 can reduce the entire circuit area.

ニューラルネットワークを用いた計算は、入力データが1000を超えることがある。上記入力データをSRAMに格納する場合、SRAMは回路面積に制限があり、記憶容量が小さいため、上記入力データを小分けにして格納せざるを得ない。DOSRAM4012は、限られた回路面積でも、メモリセルを高集積に配置することが可能であり、SRAMに比べて記憶容量が大きい。そのため、DOSRAM4012は、上記入力データを効率よく格納することができる。 In the calculation using the neural network, the input data may exceed 1000. When the input data is stored in the SRAM, the SRAM has a limited circuit area and has a small storage capacity, so the input data must be stored in small portions. The DOSRAM 4012 can arrange memory cells highly integrated even with a limited circuit area, and has a larger storage capacity than an SRAM. Therefore, the DOSRAM 4012 can store the input data efficiently.

NOSRAM4013はOSトランジスタを用いた不揮発性メモリである。NOSRAM4013は、フラッシュメモリや、ReRAM(Resistive Random Access Memory)、MRAM(Magnetoresistive Random Access Memory)などの他の不揮発性メモリと比べて、データを書き込む際の消費電力が小さい。また、フラッシュメモリやReRAMのように、データを書き込む際に素子が劣化することもなく、データの書き込み可能回数に制限が無い。 A NOSRAM 4013 is a non-volatile memory using an OS transistor. The NOSRAM 4013 consumes less power when writing data than other non-volatile memories such as flash memory, ReRAM (Resistive Random Access Memory), and MRAM (Magnetorescent Random Access Memory). Further, unlike the flash memory and the ReRAM, the element is not deteriorated when data is written, and the number of times data can be written is not limited.

また、NOSRAM4013は、1ビットの2値データの他に、2ビット以上の多値データを記憶することができる。NOSRAM4013は多値データを記憶することで、1ビット当たりのメモリセル面積を小さくすることができる。 The NOSRAM 4013 can store multi-value data of 2 bits or more in addition to 1-bit binary data. The NOSRAM 4013 stores multi-value data, so that the memory cell area per bit can be reduced.

また、NOSRAM4013は、デジタルデータの他にアナログデータを記憶することができる。そのため、アナログ演算回路4011は、NOSRAM4013をアナログメモリとして用いることもできる。NOSRAM4013は、アナログデータのまま記憶することができるため、D/A変換回路やA/D変換回路が不要である。そのため、NOSRAM4013は周辺回路の面積を小さくすることができる。なお、本明細書においてアナログデータとは、3ビット(8値)以上の分解能を有するデータのことを指す。上述した多値データがアナログデータに含まれる場合もある。 The NOSRAM 4013 can store analog data in addition to digital data. Therefore, the analog arithmetic circuit 4011 can also use the NOSRAM 4013 as an analog memory. Since the NOSRAM 4013 can store analog data as it is, no D / A conversion circuit or A / D conversion circuit is required. Therefore, the NOSRAM 4013 can reduce the area of the peripheral circuit. In this specification, the analog data refers to data having a resolution of 3 bits (8 values) or more. The multi-value data described above may be included in the analog data.

ニューラルネットワークの計算に用いられるデータやパラメータは、一旦、NOSRAM4013に格納することができる。上記データやパラメータは、CPU4021を介して、AIシステム4041の外部に設けられたメモリに格納してもよいが、内部に設けられたNOSRAM4013の方が、より高速且つ低消費電力に上記データやパラメータを格納することができる。また、NOSRAM4013は、DOSRAM4012よりもビット線を長くすることができるので、記憶容量を大きくすることができる。 Data and parameters used for calculation of the neural network can be temporarily stored in the NOSRAM 4013. The data and parameters may be stored in the memory provided outside the AI system 4041 via the CPU 4021. However, the data and parameters provided by the internal NOSRAM 4013 are faster and consume less power. Can be stored. Further, since the bit line of the NOSRAM 4013 can be made longer than that of the DOSRAM 4012, the storage capacity can be increased.

FPGA4014は、OSトランジスタを用いたFPGAである。AIシステム4041は、FPGA4014を用いることによって、ハードウェアで後述する、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの、ニューラルネットワークの接続を構成することができる。上記のニューラルネットワークの接続をハードウェアで構成することで、より高速に実行することができる。 The FPGA 4014 is an FPGA using an OS transistor. The AI system 4041 uses a FPGA 4014, which will be described later in hardware, a deep neural network (DNN), a convolutional neural network (CNN), a recursive neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM). A neural network connection, such as a deep belief network (DBN), can be constructed. By configuring the above-mentioned neural network connection with hardware, it can be executed at higher speed.

FPGA4014はOSトランジスタを有するFPGAである。OS−FPGAは、SRAMで構成されるFPGAよりもメモリの面積を小さくすることができる。そのため、コンテキスト切り替え機能を追加しても面積増加が少ない。また、OS−FPGAはブースティングによりデータやパラメータを高速に伝えることができる。 The FPGA 4014 is an FPGA having an OS transistor. The OS-FPGA can reduce the area of the memory compared to the FPGA configured with SRAM. Therefore, even if a context switching function is added, the area increase is small. The OS-FPGA can transmit data and parameters at high speed by boosting.

AIシステム4041は、アナログ演算回路4011、DOSRAM4012、NOSRAM4013、およびFPGA4014を1つのダイ(チップ)の上に設けることができる。そのため、AIシステム4041は、高速且つ低消費電力に、ニューラルネットワークの計算を実行することができる。また、アナログ演算回路4011、DOSRAM4012、NOSRAM4013、およびFPGA4014は、同じ製造プロセスで作製することができる。そのため、AIシステム4041は、低コストで作製することができる。 In the AI system 4041, the analog arithmetic circuit 4011, the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 can be provided on one die (chip). Therefore, the AI system 4041 can execute neural network calculations at high speed and with low power consumption. In addition, the analog arithmetic circuit 4011, the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 can be manufactured through the same manufacturing process. Therefore, the AI system 4041 can be manufactured at low cost.

なお、演算部4010は、DOSRAM4012、NOSRAM4013、およびFPGA4014を、全て有する必要はない。AIシステム4041が解決したい課題に応じて、DOSRAM4012、NOSRAM4013、およびFPGA4014の一または複数を、選択して設ければよい。 Note that the arithmetic unit 4010 need not have all of the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014. One or more of the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 may be selected and provided depending on the problem that the AI system 4041 wants to solve.

AIシステム4041は、解決したい課題に応じて、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行することができる。PROM4025は、これらの手法の少なくとも1つを実行するためのプログラムを保存することができる。また、当該プログラムの一部または全てを、NOSRAM4013に保存してもよい。 The AI system 4041 includes a deep neural network (DNN), a convolutional neural network (CNN), a recursive neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), a deep belief network (DBM). DBN) etc. can be performed. The PROM 4025 can store a program for executing at least one of these methods. Also, a part or all of the program may be stored in the NOSRAM 4013.

ライブラリとして存在する既存のプログラムは、GPUの処理を前提としているものが多い。そのため、AIシステム4041はGPU4022を有することが好ましい。AIシステム4041は、学習と推論で用いられる積和演算のうち、律速となる積和演算を演算部4010で実行し、それ以外の積和演算をGPU4022で実行することができる。そうすることで、学習と推論を高速に実行することができる。 Many existing programs that exist as libraries are premised on GPU processing. Therefore, the AI system 4041 preferably includes a GPU 4022. The AI system 4041 can execute a product-sum operation that is rate-limiting among the product-sum operations used in learning and inference by the arithmetic unit 4010, and can execute other product-sum operations by the GPU 4022. By doing so, learning and inference can be performed at high speed.

電源回路4027は、論理回路用の低電源電位を生成するだけではなく、アナログ演算のための電位生成も行う。電源回路4027はOSメモリを用いてもよい。電源回路4027は、基準電位をOSメモリに保存することで、消費電力を下げることができる。 The power supply circuit 4027 not only generates a low power supply potential for a logic circuit but also generates a potential for analog calculation. The power supply circuit 4027 may use an OS memory. The power supply circuit 4027 can reduce power consumption by storing the reference potential in the OS memory.

PMU4028は、AIシステム4041の電力供給を一時的にオフにする機能を有する。 The PMU 4028 has a function of temporarily turning off the power supply of the AI system 4041.

CPU4021およびGPU4022は、レジスタとしてOSメモリを有することが好ましい。CPU4021およびGPU4022はOSメモリを有することで、電力供給がオフになっても、OSメモリ中にデータ(論理値)を保持し続けることができる。その結果、AIシステム4041は、電力を節約することができる。 The CPU 4021 and the GPU 4022 preferably have an OS memory as a register. Since the CPU 4021 and the GPU 4022 have the OS memory, even if the power supply is turned off, the data (logical value) can be continuously held in the OS memory. As a result, the AI system 4041 can save power.

PLL4023は、クロックを生成する機能を有する。AIシステム4041は、PLL4023が生成したクロックを基準に動作を行う。PLL4023はOSメモリを有することが好ましい。PLL4023はOSメモリを有することで、クロックの発振周期を制御するアナログ電位を保持することができる。 The PLL 4023 has a function of generating a clock. The AI system 4041 operates based on the clock generated by the PLL 4023. The PLL 4023 preferably has an OS memory. Since the PLL 4023 has an OS memory, it can hold an analog potential for controlling the clock oscillation period.

AIシステム4041は、DRAMなどの外部メモリにデータを保存してもよい。そのため、AIシステム4041は、外部のDRAMとのインターフェースとして機能するメモリコントローラ4026を有することが好ましい。また、メモリコントローラ4026は、CPU4021またはGPU4022の近くに配置することが好ましい。そうすることで、データのやり取りを高速に行うことができる。 The AI system 4041 may store data in an external memory such as a DRAM. Therefore, the AI system 4041 preferably includes a memory controller 4026 that functions as an interface with an external DRAM. The memory controller 4026 is preferably arranged near the CPU 4021 or the GPU 4022. By doing so, data can be exchanged at high speed.

制御部4020に示す回路の一部または全ては、演算部4010と同じダイの上に形成することができる。そうすることで、AIシステム4041は、高速且つ低消費電力に、ニューラルネットワークの計算を実行することができる。 Part or all of the circuit shown in the controller 4020 can be formed on the same die as the arithmetic unit 4010. By doing so, the AI system 4041 can execute the calculation of the neural network at high speed and with low power consumption.

ニューラルネットワークの計算に用いられるデータは外部記憶装置(HDD(Hard Disk Drive)、SSD(Solid State Drive)など)に保存される場合が多い。そのため、AIシステム4041は、外部記憶装置とのインターフェースとして機能する外部記憶制御回路4031を有することが好ましい。 Data used for neural network calculation is often stored in an external storage device (HDD (Hard Disk Drive), SSD (Solid State Drive), etc.). Therefore, the AI system 4041 preferably includes an external storage control circuit 4031 that functions as an interface with an external storage device.

ニューラルネットワークを用いた学習と推論は、音声や映像を扱うことが多いので、AIシステム4041は音声コーデック4032および映像コーデック4033を有する。音声コーデック4032は、音声データのエンコード(符号化)およびデコード(復号)を行い、映像コーデック4033は、映像データのエンコードおよびデコードを行う。 Since learning and inference using a neural network often handle audio and video, the AI system 4041 includes an audio codec 4032 and a video codec 4033. The audio codec 4032 performs encoding (encoding) and decoding (decoding) of audio data, and the video codec 4033 encodes and decodes video data.

AIシステム4041は、外部センサから得られたデータを用いて学習または推論を行うことができる。そのため、AIシステム4041は汎用入出力モジュール4034を有する。汎用入出力モジュール4034は、例えば、USB(Universal Serial Bus)やI2C(Inter−Integrated Circuit)などを含む。 The AI system 4041 can perform learning or inference using data obtained from an external sensor. Therefore, the AI system 4041 has a general-purpose input / output module 4034. The general-purpose input / output module 4034 includes, for example, USB (Universal Serial Bus) and I2C (Inter-Integrated Circuit).

AIシステム4041は、インターネットを経由して得られたデータを用いて学習または推論を行うことができる。そのため、AIシステム4041は、通信モジュール4035を有することが好ましい。 The AI system 4041 can perform learning or inference using data obtained via the Internet. Therefore, the AI system 4041 preferably includes a communication module 4035.

アナログ演算回路4011は、多値のフラッシュメモリをアナログメモリとして用いてもよい。しかし、フラッシュメモリは書き換え可能回数に制限がある。また、多値のフラッシュメモリは、エンベディッドで形成する(演算回路とメモリを同じダイの上に形成する)ことが非常に難しい。 The analog arithmetic circuit 4011 may use a multi-value flash memory as an analog memory. However, the flash memory has a limited number of rewritable times. In addition, it is very difficult to form a multi-level flash memory in an embedded manner (an arithmetic circuit and a memory are formed on the same die).

また、アナログ演算回路4011は、ReRAMをアナログメモリとして用いてもよい。しかし、ReRAMは書き換え可能回数に制限があり、記憶精度の点でも問題がある。さらに、2端子でなる素子であるため、データの書き込みと読み出しを分ける回路設計が複雑になる。 The analog arithmetic circuit 4011 may use ReRAM as an analog memory. However, ReRAM has a limited number of rewritable times and has a problem in terms of storage accuracy. Furthermore, since the device has two terminals, circuit design for separating data writing and reading becomes complicated.

また、アナログ演算回路4011は、MRAMをアナログメモリとして用いてもよい。しかし、MRAMは抵抗変化率が低く、記憶精度の点で問題がある。 The analog arithmetic circuit 4011 may use MRAM as an analog memory. However, MRAM has a low resistance change rate and has a problem in terms of storage accuracy.

以上を鑑み、アナログ演算回路4011は、OSメモリをアナログメモリとして用いることが好ましい。 In view of the above, the analog arithmetic circuit 4011 preferably uses an OS memory as an analog memory.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態8)
<AIシステムの応用例>
本実施の形態では、上記実施の形態に示すAIシステムの応用例について図32を用いて説明を行う。
(Embodiment 8)
<Application example of AI system>
In this embodiment, application examples of the AI system described in the above embodiment are described with reference to FIGS.

図32(A)は、図31で説明したAIシステム4041を並列に配置し、バス線を介してシステム間での信号の送受信を可能にした、AIシステム4041Aである。 FIG. 32A shows an AI system 4041A in which the AI systems 4041 described in FIG. 31 are arranged in parallel and signals can be transmitted and received between the systems via a bus line.

図32(A)に図示するAIシステム4041Aは、複数のAIシステム4041_1乃至AIシステム4041_n(nは自然数)を有する。AIシステム4041_1乃至AIシステム4041_nは、バス線4098を介して互いに接続されている。 An AI system 4041A illustrated in FIG. 32A includes a plurality of AI systems 4041_1 to 4041_n (n is a natural number). The AI systems 4041_1 to 4041_n are connected to each other via a bus line 4098.

また図32(B)は、図31で説明したAIシステム4041を図32(A)と同様に並列に配置し、ネットワークを介してシステム間での信号の送受信を可能にした、AIシステム4041Bである。 FIG. 32B shows an AI system 4041B in which the AI system 4041 described in FIG. 31 is arranged in parallel as in FIG. 32A, and signals can be transmitted and received between systems via a network. is there.

図32(B)に図示するAIシステム4041Bは、複数のAIシステム4041_1乃至AIシステム4041_nを有する。AIシステム4041_1乃至AIシステム4041_nは、ネットワーク4099を介して互いに接続されている。 An AI system 4041B illustrated in FIG. 32B includes a plurality of AI systems 4041_1 to 4041_n. The AI systems 4041_1 to 4041_n are connected to each other via a network 4099.

ネットワーク4099は、AIシステム4041_1乃至AIシステム4041_nのそれぞれに通信モジュールを設け、無線または有線による通信を行う構成とすればよい。通信モジュールは、アンテナを介して通信を行うことができる。例えばWorld Wide Web(WWW)の基盤であるインターネット、イントラネット、エクストラネット、PAN(Personal Area Network)、LAN(Local Area Network)、CAN(Campus Area Network)、MAN(Metropolitan Area Network)、WAN(Wide Area Network)、GAN(Global Area Network)等のコンピュータネットワークに各電子装置を接続させ、通信を行うことができる。無線通信を行う場合、通信プロトコル又は通信技術として、LTE(Long Term Evolution)、GSM(Global System for Mobile Communication:登録商標)、EDGE(Enhanced Data Rates for GSM Evolution)、CDMA2000(Code Division Multiple Access 2000)、W−CDMA(登録商標)などの通信規格、またはWi−Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)等のIEEEにより通信規格化された仕様を用いることができる。 The network 4099 may have a configuration in which a communication module is provided in each of the AI systems 4041_1 to 4041_n to perform wireless or wired communication. The communication module can communicate via an antenna. For example, the Internet, Intranet, Extranet, PAN (Personal Area Network), LAN (Local Area Network), MAN (Campure Area Network, MAN (MetropoliAwareNetwork), MAN (MetropoliAureNetwork), which are the foundations of the World Wide Web (WWW). Each electronic device can be connected to a computer network such as Network) or GAN (Global Area Network) to perform communication. When performing wireless communication, as communication protocols or communication technologies, LTE (Long Term Evolution), GSM (Global System for Mobile Communication: registered trademark), EDGE (Enhanced Data Rates for GSM Evolvement, CDMA Emulsion, CDMA Emulsion) , Communication standards such as W-CDMA (registered trademark), or specifications standardized by IEEE such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) can be used.

図32(A)、(B)の構成とすることで、外部のセンサ等で得られたアナログ信号を別々のAIシステムで処理することができる。例えば、生体情報のように、脳波、脈拍、血圧、体温等といった情報を脳波センサ、脈波センサ、血圧センサ、温度センサといった各種センサで取得し、別々のAIシステムでアナログ信号を処理することができる。別々のAIシステムのそれぞれで信号の処理、または学習を行うことで一つのAIシステムあたりの情報処理量を少なくできる。そのため、より少ない演算量で信号の処理、または学習を行うことができる。その結果、認識精度を高めることができる。それぞれのAIシステムで得られた情報から、複雑に変化する生体情報の変化を瞬時に統合的に把握することができるといったことが期待できる。 32A and 32B, analog signals obtained by an external sensor or the like can be processed by separate AI systems. For example, information such as electroencephalogram, pulse, blood pressure, body temperature, etc., such as biological information, can be acquired by various sensors such as an electroencephalogram sensor, a pulse wave sensor, a blood pressure sensor, and a temperature sensor, and analog signals can be processed by separate AI systems. it can. By performing signal processing or learning in each separate AI system, the amount of information processing per AI system can be reduced. Therefore, signal processing or learning can be performed with a smaller amount of calculation. As a result, recognition accuracy can be increased. From the information obtained by each AI system, it can be expected that changes in biological information that change in a complex manner can be instantaneously and integratedly grasped.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態9)
本実施の形態は、上記実施の形態に示すAIシステムが組み込まれたICの一例を示す。
(Embodiment 9)
This embodiment shows an example of an IC in which the AI system described in the above embodiment is incorporated.

上記実施の形態に示すAIシステムは、CPU等のSiトランジスタでなるデジタル処理回路と、OSトランジスタを用いたアナログ演算回路、OS−FPGAおよびDOSRAM、NOSRAM等のOSメモリを、1のダイに集積することができる。 The AI system described in the above embodiment integrates a digital processing circuit composed of Si transistors such as a CPU, an analog arithmetic circuit using OS transistors, and OS memories such as OS-FPGA, DOSRAM, and NOSRAM into one die. be able to.

図33に、AIシステムを組み込んだICの一例を示す。図33に示すAIシステムIC7000は、リード7001及び回路部7003を有する。AIシステムIC7000は、例えばプリント基板7002に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板7002上で電気的に接続されることで電子部品が実装された基板(実装基板7004)が完成する。回路部7003には、上記実施の形態で示した各種の回路が1のダイに設けられている。回路部7003は、先の実施の形態で図18に示すように、積層構造をもち、Siトランジスタ層7031、配線層7032、OSトランジスタ層7033に大別される。OSトランジスタ層7033をSiトランジスタ層7031に積層して設けることができるため、AIシステムIC7000の小型化が容易である。 FIG. 33 shows an example of an IC incorporating an AI system. An AI system IC 7000 illustrated in FIG. 33 includes a lead 7001 and a circuit portion 7003. The AI system IC 7000 is mounted on a printed circuit board 7002, for example. A plurality of such IC chips are combined and each is electrically connected on the printed circuit board 7002 to complete a substrate on which electronic components are mounted (a mounting substrate 7004). The circuit portion 7003 is provided with the various circuits described in the above embodiment in one die. As shown in FIG. 18 in the above embodiment, the circuit portion 7003 has a stacked structure, and is roughly divided into a Si transistor layer 7031, a wiring layer 7032, and an OS transistor layer 7033. Since the OS transistor layer 7033 can be stacked over the Si transistor layer 7031, the AI system IC 7000 can be easily downsized.

図33では、AIシステムIC7000のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。 In FIG. 33, QFP (Quad Flat Package) is applied to the package of the AI system IC 7000, but the form of the package is not limited to this.

CPU等のデジタル処理回路と、OSトランジスタを用いたアナログ演算回路、OS−FPGAおよびDOSRAM、NOSRAM等のOSメモリは、全て、Siトランジスタ層7031、配線層7032およびOSトランジスタ層7033に形成することができる。すなわち、上記AIシステムを構成する素子は、同一の製造プロセスで形成することが可能である。そのため、本実施の形態に示すICは、構成する素子が増えても製造プロセスを増やす必要がなく、上記AIシステムを低コストで組み込むことができる。 A digital processing circuit such as a CPU, an analog arithmetic circuit using an OS transistor, and OS memories such as OS-FPGA and DOSRAM and NOSRAM can all be formed in the Si transistor layer 7031, the wiring layer 7032, and the OS transistor layer 7033. it can. That is, the elements constituting the AI system can be formed by the same manufacturing process. Therefore, the IC shown in this embodiment mode does not need to increase the manufacturing process even if the number of elements constituting the IC is increased, and the AI system can be incorporated at low cost.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態10)
<電子機器>
本発明の一態様に係る半導体装置は、様々な電子機器に用いることができる。図34に、本発明の一態様に係る半導体装置を用いた電子機器の具体例を示す。
(Embodiment 10)
<Electronic equipment>
The semiconductor device according to one embodiment of the present invention can be used for various electronic devices. FIG. 34 illustrates specific examples of electronic devices using the semiconductor device according to one embodiment of the present invention.

図34(A)は、自動車の一例を示す外観図である。自動車2980は、車体2981、車輪2982、ダッシュボード2983、およびライト2984等を有する。また、自動車2980は、アンテナ、バッテリなどを備える。 FIG. 34A is an external view illustrating an example of an automobile. The automobile 2980 includes a vehicle body 2981, wheels 2982, a dashboard 2983, lights 2984, and the like. The automobile 2980 includes an antenna, a battery, and the like.

図34(B)に示す情報端末2910は、筐体2911、表示部2912、マイク2917、スピーカ部2914、カメラ2913、外部接続部2916、および操作スイッチ2915等を有する。表示部2912には、可撓性基板が用いられた表示パネルおよびタッチスクリーンを備える。また、情報端末2910は、筐体2911の内側にアンテナ、バッテリなどを備える。情報端末2910は、例えば、スマートフォン、携帯電話、タブレット型情報端末、タブレット型パーソナルコンピュータ、電子書籍端末等として用いることができる。 An information terminal 2910 illustrated in FIG. 34B includes a housing 2911, a display portion 2912, a microphone 2917, a speaker portion 2914, a camera 2913, an external connection portion 2916, an operation switch 2915, and the like. The display portion 2912 includes a display panel using a flexible substrate and a touch screen. In addition, the information terminal 2910 includes an antenna, a battery, and the like inside the housing 2911. The information terminal 2910 can be used as, for example, a smartphone, a mobile phone, a tablet information terminal, a tablet personal computer, an electronic book terminal, or the like.

図34(C)に示すノート型パーソナルコンピュータ2920は、筐体2921、表示部2922、キーボード2923、およびポインティングデバイス2924等を有する。また、ノート型パーソナルコンピュータ2920は、筐体2921の内側にアンテナ、バッテリなどを備える。 A laptop personal computer 2920 illustrated in FIG. 34C includes a housing 2921, a display portion 2922, a keyboard 2923, a pointing device 2924, and the like. The laptop personal computer 2920 includes an antenna, a battery, and the like inside the housing 2921.

図34(D)に示すビデオカメラ2940は、筐体2941、筐体2942、表示部2943、操作スイッチ2944、レンズ2945、および接続部2946等を有する。操作スイッチ2944およびレンズ2945は筐体2941に設けられており、表示部2943は筐体2942に設けられている。また、ビデオカメラ2940は、筐体2941の内側にアンテナ、バッテリなどを備える。そして、筐体2941と筐体2942は、接続部2946により接続されており、筐体2941と筐体2942の間の角度は、接続部2946により変えることが可能な構造となっている。筐体2941に対する筐体2942の角度によって、表示部2943に表示される画像の向きの変更や、画像の表示/非表示の切り換えを行うことができる。 A video camera 2940 illustrated in FIG. 34D includes a housing 2941, a housing 2942, a display portion 2944, operation switches 2944, a lens 2945, a connection portion 2946, and the like. The operation switch 2944 and the lens 2945 are provided on the housing 2941, and the display portion 2944 is provided on the housing 2942. In addition, the video camera 2940 includes an antenna, a battery, and the like inside the housing 2941. The housing 2941 and the housing 2942 are connected to each other by a connection portion 2946. The angle between the housing 2941 and the housing 2942 can be changed by the connection portion 2946. Depending on the angle of the housing 2942 with respect to the housing 2941, the orientation of the image displayed on the display portion 2943 can be changed, and display / non-display of the image can be switched.

図34(E)にバングル型の情報端末の一例を示す。情報端末2950は、筐体2951、および表示部2952等を有する。また、情報端末2950は、筐体2951の内側にアンテナ、バッテリなどを備える。表示部2952は、曲面を有する筐体2951に支持されている。表示部2952には、可撓性基板を用いた表示パネルを備えているため、フレキシブルかつ軽くて使い勝手の良い情報端末2950を提供することができる。 FIG. 34E illustrates an example of a bangle information terminal. The information terminal 2950 includes a housing 2951, a display portion 2952, and the like. In addition, the information terminal 2950 includes an antenna, a battery, and the like inside the housing 2951. The display portion 2952 is supported by a housing 2951 having a curved surface. Since the display portion 2952 includes a display panel using a flexible substrate, an information terminal 2950 that is flexible, light, and easy to use can be provided.

図34(F)に腕時計型の情報端末の一例を示す。情報端末2960は、筐体2961、表示部2962、バンド2963、バックル2964、操作スイッチ2965、入出力端子2966などを備える。また、情報端末2960は、筐体2961の内側にアンテナ、バッテリなどを備える。情報端末2960は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。 FIG. 34F illustrates an example of a wristwatch type information terminal. The information terminal 2960 includes a housing 2961, a display portion 2962, a band 2963, a buckle 2964, an operation switch 2965, an input / output terminal 2966, and the like. The information terminal 2960 includes an antenna, a battery, and the like inside the housing 2961. The information terminal 2960 can execute various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games.

表示部2962の表示面は湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示部2962はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部2962に表示されたアイコン2967に触れることで、アプリケーションを起動することができる。操作スイッチ2965は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、情報端末2960に組み込まれたオペレーティングシステムにより、操作スイッチ2965の機能を設定することもできる。 The display surface of the display portion 2962 is curved, and display can be performed along the curved display surface. The display portion 2962 includes a touch sensor and can be operated by touching the screen with a finger, a stylus, or the like. For example, an application can be started by touching an icon 2967 displayed on the display unit 2962. The operation switch 2965 can have various functions such as time setting, power on / off operation, wireless communication on / off operation, manner mode execution and release, and power saving mode execution and release. . For example, the function of the operation switch 2965 can be set by an operating system incorporated in the information terminal 2960.

また、情報端末2960は、通信規格に基づく近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、情報端末2960は入出力端子2966を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子2966を介して充電を行うこともできる。なお、充電動作は入出力端子2966を介さずに無線給電により行ってもよい。 In addition, the information terminal 2960 can execute short-range wireless communication based on a communication standard. For example, it is possible to talk hands-free by communicating with a headset capable of wireless communication. Further, the information terminal 2960 includes an input / output terminal 2966, and can directly exchange data with other information terminals via a connector. Charging can also be performed via the input / output terminal 2966. Note that the charging operation may be performed by wireless power feeding without using the input / output terminal 2966.

例えば、本発明の一態様の半導体装置を用いた記憶装置は、上述した電子機器の制御情報や、制御プログラムなどを長期間保持することができる。本発明の一態様に係る半導体装置を用いることで、信頼性の高い電子機器を実現することができる。 For example, a memory device including the semiconductor device of one embodiment of the present invention can hold control information, a control program, and the like of the above electronic devices for a long period. With the use of the semiconductor device according to one embodiment of the present invention, a highly reliable electronic device can be realized.

本実施の形態は、他の実施の形態や実施例などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments and examples.

本実施例では、スパッタリング法を用いて成膜した酸化ハフニウムについて、密度、結晶性、および平坦性の分析を行った。なお、平坦性は原子間力顕微鏡(Atomic Force Microscope:AFM)を用いて測定と観察を行った。また、結晶性は、X線回折(XRD:X−Ray Diffraction)を用いて分析した。 In this example, the density, crystallinity, and flatness of the hafnium oxide film formed by a sputtering method were analyzed. The flatness was measured and observed using an atomic force microscope (AFM). The crystallinity was analyzed using X-ray diffraction (XRD: X-Ray Diffraction).

また、本実施例では、試料1A、試料1B、試料1C、試料1D、試料1E、試料1F、試料1G、および試料1Hを作成し、分析を行った。 In this example, Sample 1A, Sample 1B, Sample 1C, Sample 1D, Sample 1E, Sample 1F, Sample 1G, and Sample 1H were prepared and analyzed.

<試料の構成と作製方法>
図35に、各試料の積層構造を示す。試料1A、試料1B、試料1C、試料1D、試料1E、試料1F、試料1G、および試料1Hは、それぞれ、基板910と、基板910上の絶縁体912と、絶縁体912上の絶縁体914と、を有する。
<Sample configuration and production method>
FIG. 35 shows a laminated structure of each sample. Sample 1A, Sample 1B, Sample 1C, Sample 1D, Sample 1E, Sample 1F, Sample 1G, and Sample 1H are a substrate 910, an insulator 912 on the substrate 910, and an insulator 914 on the insulator 912, respectively. Have.

なお、試料1A、試料1B、試料1C、試料1D、試料1E、試料1F、試料1G、および試料1Hは、絶縁体914として、成膜条件がそれぞれ異なる酸化ハフニウム膜を用いた。下表に、試料1A乃至試料1Hにおける絶縁体914の成膜温度を示す。 Sample 1A, sample 1B, sample 1C, sample 1D, sample 1E, sample 1F, sample 1G, and sample 1H used as the insulator 914 hafnium oxide films having different film formation conditions. The following table shows the film formation temperature of the insulator 914 in the samples 1A to 1H.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

次に、各試料の作製方法について、説明する。 Next, a method for manufacturing each sample will be described.

まず、基板910として、シリコンウエハを用意した。次に、基板910上に、絶縁体912として、熱酸化法によって、酸化シリコン膜を100nmの膜厚で成膜した。 First, a silicon wafer was prepared as the substrate 910. Next, a silicon oxide film having a thickness of 100 nm was formed as the insulator 912 over the substrate 910 by a thermal oxidation method.

続いて、スパッタリング装置を用いて、絶縁体912上に絶縁体914として、酸化ハフニウム膜を5nmの膜厚で、成膜した。なお、酸化ハフニウム膜は、酸化ハフニウムのターゲットを用いて、酸素(O)とアルゴン(Ar)との混合雰囲気下、または酸素(O)雰囲気下にて、圧力0.7Pa、ターゲットと基板との間の距離を60mmとし、2.5kWの電源電力(RF)を印加し、成膜した。また、スパッタリングガスの酸素流量比、および成膜温度は上表に従った。 Subsequently, a hafnium oxide film with a thickness of 5 nm was formed as the insulator 914 over the insulator 912 using a sputtering apparatus. Note that the hafnium oxide film is formed using a hafnium oxide target in a mixed atmosphere of oxygen (O 2 ) and argon (Ar) or in an oxygen (O 2 ) atmosphere, at a pressure of 0.7 Pa, and the target and the substrate. The distance between and was set to 60 mm, and 2.5 kW of power (RF) was applied to form a film. Further, the oxygen flow rate ratio of the sputtering gas and the film formation temperature were in accordance with the above table.

以上の工程により、本実施例の試料1A乃至試料1Hを作製した。 Through the above steps, Sample 1A to Sample 1H of this example were manufactured.

<試料の画像解析>
まず、試料1A乃至試料1Hの断面観察を行った。図36に、走査透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)により取得した、試料1A乃至試料1Hの明視野像(以下、TEM画像ともいう)を示す。なお、TEM画像の取得には、日立ハイテクノロジーズ社製走査透過電子顕微鏡HD−2700を用い、加速電圧は200kV、ビーム径は約0.4nmφとした。
<Image analysis of sample>
First, cross sections of samples 1A to 1H were observed. FIG. 36 shows bright-field images (hereinafter also referred to as TEM images) of Sample 1A to Sample 1H, which are obtained by a scanning transmission electron microscope (STEM: Scanning Transmission Electron Microscope). The TEM image was acquired using a scanning transmission electron microscope HD-2700 manufactured by Hitachi High-Technologies Corporation, with an acceleration voltage of 200 kV and a beam diameter of about 0.4 nmφ.

図36より、酸素流量比が同じである場合、成膜温度が高い方が、結晶性が高い傾向があることがわかった。また、図36より、成膜温度が同じである場合、酸素を含む混合雰囲気下で成膜を行うことで、膜の平坦性が高くなる傾向があることがわかった。 FIG. 36 shows that when the oxygen flow rate ratio is the same, the higher the film formation temperature, the higher the crystallinity. Further, FIG. 36 shows that when the film formation temperature is the same, the film flatness tends to be increased by performing the film formation in a mixed atmosphere containing oxygen.

特に、成膜温度が200℃である試料1D、および試料1Hは、膜全体が結晶化していることが確認された。また、試料1B、試料1C、試料1E、試料1F、および試料1Gの絶縁体914は、部分的に結晶領域を有することが確認された。試料1Aの絶縁体914は、結晶領域が確認できなかった。 In particular, it was confirmed that Sample 1D and Sample 1H having a film formation temperature of 200 ° C. were crystallized as a whole. In addition, it was confirmed that the insulators 914 of the sample 1B, the sample 1C, the sample 1E, the sample 1F, and the sample 1G partially have a crystal region. In the insulator 914 of Sample 1A, a crystal region could not be confirmed.

ここで、試料1E、および試料1Fの絶縁体914において、結晶領域の一つと、他の結晶領域、または非結晶領域の間に凹、または凸を有する形状が形成されていることが観察された。また、絶縁体912と、絶縁体914とのとの界面が、試料1A、または試料1Bよりも不明瞭な状態で観察された。該形状は、各結晶領域が成長する際に、膜表面が隆起し、膜の平坦性が低下したことによると考えられる。また、試料1E乃至試料1Hを比較すると、成膜温度が150℃に近いほど、結晶領域の一つは大きい傾向があり、膜表面の凹凸が少ないことが観察された。 Here, in the insulator 914 of the sample 1E and the sample 1F, it was observed that a shape having a recess or a protrusion was formed between one of the crystal regions and another crystal region or an amorphous region. . Further, the interface between the insulator 912 and the insulator 914 was observed in a state of being less clear than the sample 1A or the sample 1B. The shape is considered to be due to the fact that the surface of the film is raised and the flatness of the film is lowered when each crystal region grows. Further, when Samples 1E to 1H were compared, it was observed that as the film formation temperature was closer to 150 ° C., one of the crystal regions tended to be larger and the film surface had less unevenness.

一方、試料1A乃至試料1Dの絶縁体914は、膜表面が平坦であることが確認された。特に、絶縁体912と、絶縁体914とのとの界面が明瞭に観察された。試料1A乃至試料1Dを比較すると、成膜温度が高いほど、絶縁体914において、全体に対し、結晶化している領域の割合が高いことが観察された。 On the other hand, it was confirmed that the insulator 914 of Samples 1A to 1D has a flat film surface. In particular, the interface between the insulator 912 and the insulator 914 was clearly observed. When comparing the samples 1A to 1D, it was observed that the higher the film formation temperature, the higher the proportion of the crystallized region in the insulator 914 than the whole.

以上より、スパッタリング法を用いた酸化ハフニウム膜の成膜において、成膜温度は、結晶化の割合に寄与する傾向があることがわかった。また、成膜時の雰囲気を、酸素を含む混合雰囲気とすることで、成膜メカニズムに寄与する傾向があると考えられる。従って、スパッタリング法において、低い成膜温度、または成膜時に、酸素を含む混合雰囲気とすることで、平坦性が高い、または結晶性が低い酸化ハフニウム膜が成膜されることがわかった。 From the above, it has been found that in the formation of a hafnium oxide film using a sputtering method, the film formation temperature tends to contribute to the rate of crystallization. Further, it is considered that the atmosphere during film formation tends to contribute to the film formation mechanism by using a mixed atmosphere containing oxygen. Therefore, it has been found that a hafnium oxide film with high flatness or low crystallinity can be formed by using a sputtering method with a low film formation temperature or a mixed atmosphere containing oxygen at the time of film formation.

<試料の平坦性評価>
次に、試料1A、試料1D、試料1E、および試料1Hにおける絶縁体914の平坦性評価を、エスアイアイ・ナノテクノロジー株式会社製走査型プローブ顕微鏡システムSPA−500を用いて行った。なお、測定範囲は1μm×1μmとした。また、走査型プローブ顕微鏡による測定条件は、走査速度を1.0Hzとし、データ数をX=512、Y=512とし、測定点数は10点とした。また、当該測定には、カンチレバーを共振させた状態で、レバーの振動振幅が一定になるように探針と試料との間の距離を制御しながら、表面形状を測定する方法を用いた。
<Evaluation of flatness of sample>
Next, the flatness evaluation of the insulator 914 in Sample 1A, Sample 1D, Sample 1E, and Sample 1H was performed using a scanning probe microscope system SPA-500 manufactured by SII Nanotechnology. The measurement range was 1 μm × 1 μm. The measurement conditions with the scanning probe microscope were a scanning speed of 1.0 Hz, a number of data of X = 512, Y = 512, and a number of measurement points of 10. Further, for the measurement, a method was used in which the surface shape was measured while controlling the distance between the probe and the sample so that the vibration amplitude of the lever was constant while the cantilever was resonated.

試料1A、試料1D、試料1E、および試料1Hの平坦性は、表面荒さの自乗和平方根(RMS)によって評価した。その結果を図37に示す。 The flatness of Sample 1A, Sample 1D, Sample 1E, and Sample 1H was evaluated by the root sum square (RMS) of the surface roughness. The result is shown in FIG.

図37より、試料1Aの自乗平均面粗さ(RMS)は、2.5×10−1nm(加熱前)であった。試料1Dの自乗平均面粗さ(RMS)は、2.9×10−1nm(加熱前)であった。試料1Eの自乗平均面粗さ(RMS)は、4.3×10−1nm(加熱前)であった。試料1Hの自乗平均面粗さ(RMS)は、4.7×10−1nm(加熱前)であった。 From FIG. 37, the root mean square roughness (RMS) of Sample 1A was 2.5 × 10 −1 nm (before heating). Sample 1D had a root mean square roughness (RMS) of 2.9 × 10 −1 nm (before heating). Sample 1E had a root mean square roughness (RMS) of 4.3 × 10 −1 nm (before heating). Sample 1H had a root mean square roughness (RMS) of 4.7 × 10 −1 nm (before heating).

従って、試料1A、および試料1Dは、試料1E、および試料1Hよりも、平坦性が高いことがわかった。従って、スパッタリング法を用いた酸化ハフニウム膜は、酸素を含む混合雰囲気下で成膜することで、平坦性が高い膜が成膜できることがわかった。 Therefore, it was found that Sample 1A and Sample 1D have higher flatness than Sample 1E and Sample 1H. Therefore, it was found that a hafnium oxide film using a sputtering method can be formed in a mixed atmosphere containing oxygen to form a film with high flatness.

以上より、スパッタリング法を用いた酸化ハフニウム膜は、成膜条件を適宜設定することにより、自乗平均面粗さ(RMS)が、1μm×1μmの測定範囲において、0.40nm以下となることがわかった。 From the above, it can be seen that the hafnium oxide film using the sputtering method has a root mean square roughness (RMS) of 0.40 nm or less in a measurement range of 1 μm × 1 μm by appropriately setting the deposition conditions. It was.

<試料の結晶性観察>
次に、試料1A、試料1D、試料1E、および試料1Hにおける絶縁体914の結晶性観察を、電子線回折パターンを用いて行った。電子線回折パターンは、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fを用いて、加速電圧200kV、ビーム径約0.1nmφの電子線を照射しながら0秒の位置から35秒の位置まで一定の速度で移動することで取得した。
<Observation of crystallinity of sample>
Next, the crystallinity observation of the insulator 914 in Sample 1A, Sample 1D, Sample 1E, and Sample 1H was performed using an electron beam diffraction pattern. The electron beam diffraction pattern was measured from the position of 0 seconds to the position of 35 seconds while irradiating an electron beam with an acceleration voltage of 200 kV and a beam diameter of about 0.1 nmφ using an atomic resolution analytical electron microscope JEM-ARM200F manufactured by JEOL Ltd. Acquired by moving at a constant speed.

なお、アモルファス構造を有する物質に対し、ナノビーム電子線回折を行うと、円状(リング状)のパターンが観測される場合がある。また、使用するビーム径などの測定条件(例えばビーム径約50nmφ以上の電子線など)により、アモルファス構造に近い微結晶を有する物質に対しても、円状(リング状)のパターンが観測される場合がある。さらに、アモルファス構造と微結晶粒が混在している場合、リング状の領域に複数の輝点が観測される場合がある。 Note that when nanobeam electron diffraction is performed on a substance having an amorphous structure, a circular (ring-shaped) pattern may be observed. In addition, a circular (ring-shaped) pattern is observed even for a substance having a microcrystal close to an amorphous structure depending on measurement conditions such as a beam diameter used (for example, an electron beam having a beam diameter of about 50 nmφ or more). There is a case. Furthermore, when an amorphous structure and microcrystalline grains are mixed, a plurality of bright spots may be observed in a ring-shaped region.

図38に試料1A、試料1D、試料1E、および試料1Hの電子線回折パターンを取得した結果を示す。なお、試料1Aは断面TEM画像に示す点Aに示す箇所の電子線回折パターン、試料1Dは断面TEM画像に示す点Dに示す箇所の電子線回折パターン、試料1Eは断面TEM画像に示す点Eに示す箇所の電子線回折パターン、および試料1Hは断面TEM画像に示す点Aに示す箇所の電子線回折パターンを、それぞれ取得した。 FIG. 38 shows the results of acquiring electron diffraction patterns of Sample 1A, Sample 1D, Sample 1E, and Sample 1H. Sample 1A is an electron beam diffraction pattern at a point A shown in the cross-sectional TEM image, sample 1D is an electron beam diffraction pattern at a point D shown in the cross-sectional TEM image, and sample 1E is a point E shown in the cross-sectional TEM image. The electron beam diffraction pattern of the location shown in FIG. 1 and the sample 1H obtained the electron beam diffraction pattern of the location shown at point A shown in the cross-sectional TEM image.

図38に示すように、試料1Aに対する電子線回折パターンの結果は、円状(リング状)のパターンが観測された。また、リング状の領域に複数のスポットが観察された。従って、試料1Aは、微結晶を有することが確認された。 As shown in FIG. 38, a circular (ring-shaped) pattern was observed as a result of the electron diffraction pattern for the sample 1A. In addition, a plurality of spots were observed in the ring-shaped region. Therefore, it was confirmed that Sample 1A has microcrystals.

また、試料1Dに対する電子線回折パターンの結果は、明確な複数のスポットが観察されたが、該複数のスポットを含むリング状の領域内に、比較的輝度が低い多数のスポットが観察された。また、試料1Dと試料1Aとを比較すると、試料1Dは、試料1Aよりも比較的輝度が低いスポットの数は少ない。そのため、試料1Dは、試料1Aよりも、リング状の領域が不明瞭に観察された。従って、試料1Dにも微結晶が含まれるが、試料1Aよりも、1つの微結晶の粒径が大きい、または微結晶である割合が高いと考えられる。 Further, as a result of the electron diffraction pattern for the sample 1D, a plurality of clear spots were observed, but a large number of spots having relatively low luminance were observed in a ring-shaped region including the plurality of spots. Further, when comparing the sample 1D and the sample 1A, the sample 1D has a smaller number of spots having relatively lower luminance than the sample 1A. Therefore, in Sample 1D, a ring-shaped region was observed more indefinitely than Sample 1A. Therefore, although the sample 1D includes microcrystals, it is considered that the particle size of one microcrystal is larger than that of the sample 1A or the ratio of microcrystals is higher.

一方、試料1E、および試料1Hに対する電子線回折パターンの結果からは、アモルファス構造に起因する円状(リング状)のパターンが観察できなかった。しかしながら、試料1Eは、円周上に並ぶように、明確な複数のスポットが確認された。一方、試料1Hは、結晶構造に起因すると推測されるスポットが含まれる回折パターンが見られた。従って、試料1Eは、試料1A、および試料1Dよりも、1つの微結晶の粒径が大きい、または、微結晶である割合が高く微結晶からなる多結晶領域を有すると推測できる。また、試料1Hは、試料1Eよりも、1つの微結晶の粒径が大きい、または多結晶領域の割合が高いと考えられる。 On the other hand, from the results of electron beam diffraction patterns for Sample 1E and Sample 1H, a circular (ring-shaped) pattern due to the amorphous structure could not be observed. However, in Sample 1E, a plurality of clear spots were confirmed so as to be arranged on the circumference. On the other hand, Sample 1H showed a diffraction pattern including spots presumed to originate from the crystal structure. Therefore, it can be presumed that the sample 1E has a polycrystalline region made up of microcrystals in which the grain size of one microcrystal is larger than that of the samples 1A and 1D, or the ratio of microcrystals is high. Sample 1H is considered to have a larger single crystallite grain size or a higher proportion of polycrystalline regions than sample 1E.

以上より、試料1A、試料1D、試料1E、試料1Hの順に、結晶性が高くなることがわかった。従って、スパッタリング法を用いた酸化ハフニウム膜は、酸素を含む混合ガスを用いることで、結晶性が低い膜が成膜できることがわかった。また、スパッタリング法を用いた酸化ハフニウム膜は、成膜温度が低いほど、結晶性が低い膜が成膜できることがわかった。 As mentioned above, it turned out that crystallinity becomes high in order of sample 1A, sample 1D, sample 1E, and sample 1H. Therefore, it was found that a hafnium oxide film using a sputtering method can be formed into a film having low crystallinity by using a mixed gas containing oxygen. Further, it has been found that a hafnium oxide film using a sputtering method can form a film having lower crystallinity as the deposition temperature is lower.

以上より、スパッタリング法を用いた酸化ハフニウム膜の成膜において、酸素流量比が同じである場合、成膜温度が高い方が、結晶性が高い傾向があることがわかった。特に、成膜温度が同じである場合、酸素を含む混合雰囲気下で成膜することで、膜の結晶性が低く、平坦性が高くなる傾向があることがわかった。 From the above, it was found that when the oxygen flow rate ratio is the same in the formation of the hafnium oxide film using the sputtering method, the higher the film formation temperature, the higher the crystallinity. In particular, it was found that when the film formation temperature is the same, the film formation is performed in a mixed atmosphere containing oxygen, whereby the crystallinity of the film tends to be low and the flatness tends to be high.

本実施例に示す構成は、他の実施例または他の実施の形態と適宜組み合わせて用いることができる。 The structure described in this example can be used in appropriate combination with any of the other examples or the other embodiments.

本実施例では、基板上に成膜した絶縁体922について、絶縁体924成膜後に加熱処理の前後で、TDS測定を行った結果について説明する。なお、本実施例においては、試料2A、試料2B、試料2C、試料2D、試料2E、試料2F、試料2G、および試料2Hを作製した。 In this example, the result of TDS measurement performed on the insulator 922 formed over a substrate before and after the heat treatment after the insulator 924 is formed will be described. In this example, Sample 2A, Sample 2B, Sample 2C, Sample 2D, Sample 2E, Sample 2F, Sample 2G, and Sample 2H were prepared.

<各試料の構成と作製方法>
図39に、各試料の積層構造を示す。試料2A、試料2B、試料2C、試料2D、試料2E、試料2F、試料2G、および試料2Hは、それぞれ、基板920と、基板920上の絶縁体922と、絶縁体922上の絶縁体924と、を有する。
<Configuration and production method of each sample>
FIG. 39 shows the laminated structure of each sample. Sample 2A, Sample 2B, Sample 2C, Sample 2D, Sample 2E, Sample 2F, Sample 2G, and Sample 2H are a substrate 920, an insulator 922 on the substrate 920, and an insulator 924 on the insulator 922, respectively. Have.

なお、試料2A、試料2B、試料2C、試料2D、試料2E、試料2F、試料2G、および試料2Hには、絶縁体924として、成膜条件がそれぞれ異なる酸化ハフニウム膜を用いた。下表に、試料2A乃至試料2Hにおける絶縁体924の成膜温度を示す。 Note that for the samples 2A, 2B, 2C, 2D, 2E, 2F, 2G, and 2H, hafnium oxide films having different film formation conditions were used as the insulator 924. The following table shows the film formation temperature of the insulator 924 in Samples 2A to 2H.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

次に、各試料の作製方法について、説明する。 Next, a method for manufacturing each sample will be described.

まず、基板920として、シリコンウエハを用意した。次に、基板920上に、絶縁体922として、熱酸化法によって、酸化シリコン膜を100nmの膜厚で成膜した。 First, a silicon wafer was prepared as the substrate 920. Next, a silicon oxide film with a thickness of 100 nm was formed as the insulator 922 by a thermal oxidation method over the substrate 920.

続いて、試料2A乃至試料2Hにおいて、窒素雰囲気下で600℃、1時間の加熱処理を行った。 Subsequently, the samples 2A to 2H were subjected to heat treatment at 600 ° C. for 1 hour in a nitrogen atmosphere.

続いて、スパッタリング装置を用いて、絶縁体922上に絶縁体924として、酸化ハフニウム膜を5nmの膜厚で、成膜した。なお、酸化ハフニウム膜は、酸化ハフニウムのターゲットを用いて、酸素(O)とアルゴン(Ar)との混合雰囲気下、または酸素(O)雰囲気下にて、圧力0.7Pa、ターゲットと基板との間の距離を60mmとし、2.5kWの電源電力(RF)を印加し、成膜した。また、スパッタリングガスの酸素流量比、および成膜温度は上表に従った。 Subsequently, a hafnium oxide film with a thickness of 5 nm was formed as the insulator 924 over the insulator 922 by using a sputtering apparatus. Note that the hafnium oxide film is formed using a hafnium oxide target in a mixed atmosphere of oxygen (O 2 ) and argon (Ar) or in an oxygen (O 2 ) atmosphere, at a pressure of 0.7 Pa, and the target and the substrate. The distance between and was set to 60 mm, and 2.5 kW of power (RF) was applied to form a film. Further, the oxygen flow rate ratio of the sputtering gas and the film formation temperature were in accordance with the above table.

以上の工程により、本実施例の試料2A乃至試料2Hを作製した。 Through the above steps, Sample 2A to Sample 2H of this example were manufactured.

<各試料のTDSの測定結果>
各試料において、絶縁体922が有する酸素量を測定した。なお、測定方法は、各試料の絶縁体924を除去した後、絶縁体922に対し、TDS分析を行なった。また、当該TDS分析においては、酸素分子に相当する質量電荷比m/z=32の放出量を測定した。TDS分析装置は、電子科学社製WA1000Sを用い、昇温レートは30℃/minとした。
<TDS measurement results for each sample>
In each sample, the oxygen amount of the insulator 922 was measured. Note that in the measurement method, the insulator 924 of each sample was removed, and then the insulator 922 was subjected to TDS analysis. Further, in the TDS analysis, the release amount of the mass-to-charge ratio m / z = 32 corresponding to oxygen molecules was measured. As the TDS analyzer, WA1000S manufactured by Denshi Kagaku Co., Ltd. was used, and the temperature rising rate was 30 ° C./min.

また、試料2A、乃至試料2Hに対し、後工程における熱履歴を想定した加熱処理を行った。なお、加熱処理は、窒素雰囲気下で350℃、1時間とした。加熱処理後、各試料の絶縁体924を除去し、絶縁体922に対し、TDS分析を行なった。図40に、試料2A、乃至試料2Hにおける加熱処理前後のTDS分析の結果を示す。 Moreover, the heat processing which assumed the heat history in a post process was performed with respect to sample 2A thru | or sample 2H. Note that the heat treatment was performed at 350 ° C. for 1 hour in a nitrogen atmosphere. After the heat treatment, the insulator 924 of each sample was removed, and the insulator 922 was subjected to TDS analysis. FIG. 40 shows the results of TDS analysis before and after the heat treatment for Samples 2A to 2H.

図40は、各試料の酸素の放出量[個/cm]を示す。図40に示すように、加熱処理前の試料2A乃至試料2Hにおいて、絶縁体922は、酸素の放出が確認された。つまり、絶縁体924を成膜することで、絶縁体922に、過剰酸素領域が形成されることがわかった。特に、絶縁体924を、酸素を含む混合雰囲気下で成膜することで、酸素のみの雰囲気下での成膜よりも、効率的に過剰酸素を絶縁体922へ転嫁できることが確認された。 FIG. 40 shows the amount of released oxygen [pieces / cm 2 ] for each sample. As shown in FIG. 40, the release of oxygen was confirmed in the insulator 922 in Samples 2A to 2H before the heat treatment. That is, it was found that by forming the insulator 924, an excess oxygen region is formed in the insulator 922. In particular, it was confirmed that by depositing the insulator 924 in a mixed atmosphere containing oxygen, excess oxygen can be transferred to the insulator 922 more efficiently than in a film containing only oxygen.

また、試料2A、および試料2Bは、加熱処理を行うことで、酸素分子の放出量が増加することがわかった。これは、加熱処理により、絶縁体924が有する酸素分子が、絶縁体922へ拡散することで、絶縁体922が有する過剰酸素が増加したと推測できる。一方、試料2D乃至試料2Hでは、加熱処理後に、酸素分子の放出量が、測定下限以下となった。 In addition, it was found that the amount of released oxygen molecules increased by performing heat treatment on Sample 2A and Sample 2B. This can be presumed that the oxygen molecule included in the insulator 924 is diffused into the insulator 922 due to heat treatment, so that excess oxygen included in the insulator 922 is increased. On the other hand, in Sample 2D to Sample 2H, the amount of released oxygen molecules was equal to or lower than the measurement lower limit after the heat treatment.

以上より、絶縁体924の成膜温度が低い場合、熱処理、または後工程における熱履歴により、絶縁体924から、絶縁体922へと酸素が拡散することがわかった。 From the above, it is found that when the film formation temperature of the insulator 924 is low, oxygen diffuses from the insulator 924 to the insulator 922 by heat treatment or thermal history in a later process.

以上より、絶縁体924を成膜することで、絶縁体922に過剰酸素領域を形成することが確認できた。また、絶縁体924の成膜は、酸素を含む混合雰囲気下、または成膜温度が低いほど、絶縁体922に効率よく過剰酸素を添加することがわかった。 From the above, it was confirmed that an excess oxygen region was formed in the insulator 922 by forming the insulator 924. Further, it was found that in the formation of the insulator 924, excess oxygen is efficiently added to the insulator 922 in a mixed atmosphere containing oxygen or at a lower deposition temperature.

以上、本実施例に示す構成は、他の実施例または他の実施の形態と適宜組み合わせて用いることができる。 As described above, the structure described in this example can be combined as appropriate with any of the other examples or the other embodiments.

100  容量素子
100a  容量素子
100b  容量素子
110  導電体
112  導電体
120  導電体
130  絶縁体
150  絶縁体
200  トランジスタ
200a  トランジスタ
200b  トランジスタ
203  導電体
203a  導電体
203b  導電体
205  導電体
205a  導電体
205b  導電体
205B  導電膜
207  導電体
207a  導電体
207b  導電体
210  絶縁体
212  絶縁体
214  絶縁体
216  絶縁体
218  導電体
220  絶縁体
222  絶縁体
224  絶縁体
224A  絶縁体
230  酸化物
230a  酸化物
230A  酸化膜
230b  酸化物
230B  酸化膜
230c  酸化物
230C  酸化膜
231  領域
231a  領域
231b  領域
232  領域
232a  領域
232b  領域
234  領域
239  領域
240  導電体
240a  導電体
240b  導電体
240c  導電体
240d  導電体
246  導電体
248  導電体
250  絶縁体
250A  絶縁膜
252  絶縁体
252A  絶縁膜
260  導電体
260a  導電体
260A  導電膜
260b  導電体
260B  導電膜
270  絶縁体
270A  絶縁膜
271  絶縁体
271A  絶縁膜
272  絶縁体
272A  絶縁膜
273  絶縁体
274  絶縁体
280  絶縁体
282  絶縁体
286  絶縁体
300  トランジスタ
311  基板
313  半導体領域
314a  低抵抗領域
314b  低抵抗領域
315  絶縁体
316  導電体
320  絶縁体
322  絶縁体
324  絶縁体
326  絶縁体
328  導電体
330  導電体
350  絶縁体
352  絶縁体
354  絶縁体
356  導電体
360  絶縁体
362  絶縁体
364  絶縁体
366  導電体
370  絶縁体
372  絶縁体
374  絶縁体
376  導電体
380  絶縁体
382  絶縁体
384  絶縁体
386  導電体
400  トランジスタ
403  導電体
403a  導電体
403b  導電体
405  導電体
405a  導電体
405b  導電体
430c  酸化物
431a  酸化物
431b  酸化物
432a  酸化物
432b  酸化物
450  絶縁体
452  絶縁体
460  導電体
460a  導電体
460b  導電体
470  絶縁体
472  絶縁体
600  セル
600a  セル
600b  セル
610  回路
620  回路
650a  メモリセル
650b  メモリセル
910  基板
912  絶縁体
914  絶縁体
920  基板
922  絶縁体
924  絶縁体
1001  配線
1002  配線
1003  配線
1004  配線
1005  配線
1006  配線
1007  配線
1008  配線
1009  配線
1010  配線
1400  DOSRAM
1405  コントローラ
1410  行回路
1411  デコーダ
1412  ワード線ドライバ回路
1413  列セレクタ
1414  センスアンプドライバ回路
1415  列回路
1416  グローバルセンスアンプアレイ
1417  入出力回路
1420  MC−SAアレイ
1422  メモリセルアレイ
1423  センスアンプアレイ
1425  ローカルメモリセルアレイ
1426  ローカルセンスアンプアレイ
1444  スイッチアレイ
1445  メモリセル
1446  センスアンプ
1447  グローバルセンスアンプ
1600  NOSRAM
1610  メモリセルアレイ
1611  メモリセル
1612  メモリセル
1613  メモリセル
1614  メモリセル
1640  コントローラ
1650  行ドライバ
1651  行デコーダ
1652  ワード線ドライバ
1660  列ドライバ
1661  列デコーダ
1662  ドライバ
1663  DAC
1670  出力ドライバ
1671  セレクタ
1672  ADC
1673  出力バッファ
2000  CDMA
2910  情報端末
2911  筐体
2912  表示部
2913  カメラ
2914  スピーカ部
2915  操作スイッチ
2916  外部接続部
2917  マイク
2920  ノート型パーソナルコンピュータ
2921  筐体
2922  表示部
2923  キーボード
2924  ポインティングデバイス
2940  ビデオカメラ
2941  筐体
2942  筐体
2943  表示部
2944  操作スイッチ
2945  レンズ
2946  接続部
2950  情報端末
2951  筐体
2952  表示部
2960  情報端末
2961  筐体
2962  表示部
2963  バンド
2964  バックル
2965  操作スイッチ
2966  入出力端子
2967  アイコン
2980  自動車
2981  車体
2982  車輪
2983  ダッシュボード
2984  ライト
3110  OS−FPGA
3111  コントローラ
3112  ワードドライバ
3113  データドライバ
3115  プログラマブルエリア
3117  IOB
3119  コア
3120  LAB
3121  PLE
3123  LUTブロック
3124  レジスタブロック
3125  セレクタ
3126  CM
3127  パワースイッチ
3128  CM
3130  SAB
3131  SB
3133  PRS
3135  CM
3137  メモリ回路
3137B  メモリ回路
3140  OS−FF
3141  FF
3142  シャドウレジスタ
3143  メモリ回路
3143B  メモリ回路
3188  インバータ回路
3189  インバータ回路
4010  演算部
4011  アナログ演算回路
4012  DOSRAM
4013  NOSRAM
4014  FPGA
4020  制御部
4021  CPU
4022  GPU
4023  PLL
4025  PROM
4026  メモリコントローラ
4027  電源回路
4028  PMU
4030  入出力部
4031  外部記憶制御回路
4032  音声コーデック
4033  映像コーデック
4034  汎用入出力モジュール
4035  通信モジュール
4041  AIシステム
4041_n  AIシステム
4041_1  AIシステム
4041A  AIシステム
4041B  AIシステム
4098  バス線
4099  ネットワーク
7000  AIシステムIC
7001  リード
7003  回路部
7031  Siトランジスタ層
7032  配線層
7033  OSトランジスタ層
100 capacitive element 100a capacitive element 100b capacitive element 110 conductor 112 conductor 120 conductor 130 insulator 150 insulator 200 transistor 200a transistor 200b transistor 203 conductor 203a conductor 203b conductor 205 conductor 205a conductor 205b conductor 205B conductor Film 207 conductor 207a conductor 207b conductor 210 insulator 212 insulator 214 insulator 216 insulator 218 conductor 220 insulator 222 insulator 224 insulator 224A insulator 230 oxide 230a oxide 230A oxide film 230b oxide 230B Oxide film 230c Oxide 230C Oxide film 231 Region 231a Region 231b Region 232 Region 232a Region 232b Region 234 Region 239 Region 240 Conductor 40a conductor 240b conductor 240c conductor 240d conductor 246 conductor 248 conductor 250 insulator 250A insulation film 252 insulator 252A insulation film 260 conductor 260a conductor 260A conductor film 260b conductor 260B conductor film 270 insulator 270A insulation Film 271 insulator 271A insulator 272 insulator 272A insulator 273 insulator 274 insulator 280 insulator 282 insulator 286 insulator 300 transistor 311 substrate 313 semiconductor region 314a low resistance region 314b low resistance region 315 insulator 316 conductor 320 Insulator 322 insulator 324 insulator 326 insulator 328 conductor 330 conductor 350 insulator 352 insulator 354 insulator 356 conductor 360 insulator 362 insulator 364 insulator 366 Electric conductor 370 Insulator 372 Insulator 374 Insulator 376 Conductor 380 Insulator 382 Insulator 384 Insulator 386 Conductor 400 Transistor 403 Conductor 403a Conductor 403b Conductor 405 Conductor 405a Conductor 405b Conductor 430c Oxide 431a Oxide 431b oxide 432a oxide 432b oxide 450 insulator 452 insulator 460 conductor 460a conductor 460b conductor 470 insulator 472 insulator 600 cell 600a cell 600b cell 610 circuit 620 circuit 650a memory cell 650b memory cell 910 substrate 912 Insulator 914 Insulator 920 Substrate 922 Insulator 924 Insulator 1001 Wiring 1002 Wiring 1003 Wiring 1004 Wiring 1005 Wiring 1006 Wiring 1007 Wiring 10 8 wiring 1009 wiring 1010 wiring 1400 DOSRAM
1405 Controller 1410 Row circuit 1411 Decoder 1412 Word line driver circuit 1413 Column selector 1414 Sense amplifier driver circuit 1415 Column circuit 1416 Global sense amplifier array 1417 Input / output circuit 1420 MC-SA array 1422 Memory cell array 1423 Sense amplifier array 1425 Local memory cell array 1426 Local Sense amplifier array 1444 Switch array 1445 Memory cell 1446 Sense amplifier 1447 Global sense amplifier 1600 NOSRAM
1610 memory cell array 1611 memory cell 1612 memory cell 1613 memory cell 1614 memory cell 1640 controller 1650 row driver 1651 row decoder 1652 word line driver 1660 column driver 1661 column decoder 1662 driver 1663 DAC
1670 output driver 1671 selector 1672 ADC
1673 Output buffer 2000 CDMA
2910 Information terminal 2911 Case 2912 Display unit 2913 Camera 2914 Speaker unit 2915 Operation switch 2916 External connection unit 2917 Microphone 2920 Notebook personal computer 2921 Case 2922 Display unit 2923 Keyboard 2924 Pointing device 2940 Video camera 2941 Case 2942 Case 2943 Display Unit 2944 operation switch 2945 lens 2946 connection unit 2950 information terminal 2951 case 2952 display unit 2960 information terminal 2961 case 2962 display unit 2963 band 2964 buckle 2965 operation switch 2966 input / output terminal 2967 icon 2980 car 2981 car body 2982 wheel 2983 dashboard 2984 Light 3110 OS-FPGA
3111 Controller 3112 Word driver 3113 Data driver 3115 Programmable area 3117 IOB
3119 Core 3120 LAB
3121 PLE
3123 LUT block 3124 register block 3125 selector 3126 CM
3127 Power Switch 3128 CM
3130 SAB
3131 SB
3133 PRS
3135 CM
3137 Memory circuit 3137B Memory circuit 3140 OS-FF
3141 FF
3142 Shadow register 3143 Memory circuit 3143B Memory circuit 3188 Inverter circuit 3189 Inverter circuit 4010 Operation unit 4011 Analog operation circuit 4012 DOSRAM
4013 NOSRAM
4014 FPGA
4020 control unit 4021 CPU
4022 GPU
4023 PLL
4025 PROM
4026 Memory controller 4027 Power supply circuit 4028 PMU
4030 Input / output unit 4031 External storage control circuit 4032 Audio codec 4033 Video codec 4034 General-purpose input / output module 4035 Communication module 4041 AI system 4041_n AI system 4041_1 AI system 4041A AI system 4041B AI system 4098 Bus line 4099 Network 7000 AI system IC
7001 Lead 7003 Circuit part 7031 Si transistor layer 7032 Wiring layer 7033 OS transistor layer

Claims (6)

 ゲート電極と、ソース電極と、ドレイン電極と、チャネル形成領域を有する酸化物半導体と、ゲート絶縁体と、を有し、
 前記ゲート絶縁体は、前記チャネル形成領域と接する第1の層、および前記第1の層上の第2の層を有し、
 前記第2の層は金属酸化物であり、
 前記金属酸化物は、自乗平均面粗さ(RMS)が、1μm×1μmの測定範囲において、0.4nm以下であることを特徴とする半導体装置。
A gate electrode, a source electrode, a drain electrode, an oxide semiconductor having a channel formation region, and a gate insulator;
The gate insulator has a first layer in contact with the channel formation region, and a second layer on the first layer;
The second layer is a metal oxide;
The metal oxide has a root mean square roughness (RMS) of 0.4 nm or less in a measurement range of 1 μm × 1 μm.
 ゲート電極と、ソース電極と、ドレイン電極と、チャネル形成領域を有する酸化物半導体と、ゲート絶縁体と、を有し、
 前記ゲート絶縁体は、前記チャネル形成領域と接する第1の層、および前記第1の層上の第2の層を有し、
 前記第2の層は金属酸化物であり、
 前記金属酸化物に対する電子顕微鏡を用いた電子線回折において、リング状のパターンが観測されることを特徴とする半導体装置。
A gate electrode, a source electrode, a drain electrode, an oxide semiconductor having a channel formation region, and a gate insulator;
The gate insulator has a first layer in contact with the channel formation region, and a second layer on the first layer;
The second layer is a metal oxide;
A ring-shaped pattern is observed in electron diffraction using an electron microscope for the metal oxide.
 請求項1乃至請求項2のいずれか一において、
 前記金属酸化物は、ハフニウムアルミネートであることを特徴とする半導体装置。
In any one of Claims 1 to 2,
The semiconductor device, wherein the metal oxide is hafnium aluminate.
 請求項1乃至請求項2のいずれか一において、
 前記金属酸化物は、酸化ハフニウムであることを特徴とする半導体装置。
In any one of Claims 1 to 2,
The semiconductor device, wherein the metal oxide is hafnium oxide.
 請求項4において、
 前記酸化ハフニウムは、スパッタリング法により、酸素を含む混合雰囲気下において、130℃以下の成膜温度で、成膜されたことを特徴とする半導体装置。
In claim 4,
2. The semiconductor device according to claim 1, wherein the hafnium oxide is formed by sputtering at a film formation temperature of 130 ° C. or less in a mixed atmosphere containing oxygen.
 請求項1乃至請求項2のいずれか一において、
 前記第1の層は、酸化シリコンであり、TDS分析において酸素分子の脱離量が1.0×1019atoms/cm以上であることを特徴とする半導体装置。
In any one of Claims 1 to 2,
The semiconductor device is characterized in that the first layer is made of silicon oxide, and the amount of desorption of oxygen molecules is 1.0 × 10 19 atoms / cm 3 or more in TDS analysis.
PCT/IB2018/051212 2017-03-07 2018-02-27 Semiconductor device and method for manufacturing semiconductor device WO2018163013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043031 2017-03-07
JP2017-043031 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018163013A1 true WO2018163013A1 (en) 2018-09-13

Family

ID=63448405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051212 WO2018163013A1 (en) 2017-03-07 2018-02-27 Semiconductor device and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2018163013A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243929A (en) * 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd Semiconductor device, semiconductor device manufacturing method, and display device
JP2013128106A (en) * 2011-11-18 2013-06-27 Semiconductor Energy Lab Co Ltd Insulating film, formation method thereof, semiconductor device, and manufacturing method thereof
JP2014179596A (en) * 2013-02-12 2014-09-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2015032655A (en) * 2013-08-01 2015-02-16 出光興産株式会社 Thin film transistor
JP2015057819A (en) * 2013-08-09 2015-03-26 株式会社半導体エネルギー研究所 Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243929A (en) * 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd Semiconductor device, semiconductor device manufacturing method, and display device
JP2013128106A (en) * 2011-11-18 2013-06-27 Semiconductor Energy Lab Co Ltd Insulating film, formation method thereof, semiconductor device, and manufacturing method thereof
JP2014179596A (en) * 2013-02-12 2014-09-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2015032655A (en) * 2013-08-01 2015-02-16 出光興産株式会社 Thin film transistor
JP2015057819A (en) * 2013-08-09 2015-03-26 株式会社半導体エネルギー研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
WO2018203181A1 (en) Semiconductor device
JP2018190976A (en) Semiconductor device and manufacturing method of semiconductor device
US20210175235A1 (en) Semiconductor device and method for manufacturing semiconductor device
US11088286B2 (en) Semiconductor device and method for manufacturing semiconductor device
WO2018150295A1 (en) Semiconductor device
JP2018129503A (en) Semiconductor device and method for manufacturing semiconductor device
JPWO2018197988A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2018181890A (en) Semiconductor device
JP7017428B2 (en) Semiconductor device
JP2024161138A (en) Semiconductor Device
JP2018107447A (en) Semiconductor device and manufacturing method of semiconductor device
JP7086934B2 (en) Semiconductor equipment
WO2018224912A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2018167588A1 (en) Semiconductor device and manufacturing method for semiconductor device
WO2018167601A1 (en) Semiconductor device and manufacturing method for semiconductor device
WO2018163012A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2018163013A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2018152399A (en) Semiconductor device and manufacturing method of semiconductor device
WO2018163020A1 (en) Conductor, method for manufacturing conductor, semiconductor device, and method for manufacturing semiconductor device
JP2018098437A (en) Semiconductor device and semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP