WO2018181329A1 - アルミニウム合金材並びにこれを用いた導電部材、導電部品、バネ用部材、バネ用部品、半導体モジュール用部材、半導体モジュール用部品、構造用部材及び構造用部品 - Google Patents
アルミニウム合金材並びにこれを用いた導電部材、導電部品、バネ用部材、バネ用部品、半導体モジュール用部材、半導体モジュール用部品、構造用部材及び構造用部品 Download PDFInfo
- Publication number
- WO2018181329A1 WO2018181329A1 PCT/JP2018/012459 JP2018012459W WO2018181329A1 WO 2018181329 A1 WO2018181329 A1 WO 2018181329A1 JP 2018012459 W JP2018012459 W JP 2018012459W WO 2018181329 A1 WO2018181329 A1 WO 2018181329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- alloy material
- mass
- component
- semiconductor module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/021—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/04—Wound springs
- F16F1/06—Wound springs with turns lying in cylindrical surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/18—Leaf springs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/023—Alloys based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2224/00—Materials; Material properties
- F16F2224/02—Materials; Material properties solids
- F16F2224/0208—Alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2228/00—Functional characteristics, e.g. variability, frequency-dependence
- F16F2228/001—Specific functional characteristics in numerical form or in the form of equations
- F16F2228/005—Material properties, e.g. moduli
- F16F2228/007—Material properties, e.g. moduli of solids, e.g. hardness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45123—Magnesium (Mg) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/4516—Iron (Fe) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0134—Quaternary Alloys
Definitions
- the present invention relates to a high-strength aluminum alloy material having a ribbon shape.
- Patent Document 1 discloses a copper foil made of a Cu—Ag alloy having a conductivity of 80% IACS or more and a tensile strength of 700 N / mm 2 or more as a foil conductor suitable for a signal transmission cable or the like.
- Patent Document 2 discloses a coaxial cable provided with a ribbon-like conductor made of a metal containing copper.
- Copper damage is a phenomenon in which a polymer deteriorates due to a catalytic action of copper ions that promotes an auto-oxidation reaction (redox reaction) of the polymer.
- redox reaction auto-oxidation reaction
- the adhesion between rubber or plastic and copper is lowered, and there is a possibility that insulation failure or copper corrosion may occur.
- As a countermeasure against copper damage it is common to add a chelating agent to a polymer, but the effect is small at high temperatures. New countermeasures are necessary in the environment where the temperature is increased due to the increase in current.
- iron-based materials cannot solve the problem of weight reduction, similar to copper.
- iron-based materials are inferior in corrosion resistance and have problems such as low electrical conductivity and thermal conductivity.
- Aluminum has abundant reserves and has a lower specific gravity and better electrical conductivity than copper-based materials and iron-based materials. Aluminum also has an advantage that the action of promoting the auto-oxidation reaction of the polymer is small. On the other hand, aluminum has a problem that its strength is lower than that of a copper-based material and an iron-based material, and the fatigue life characteristics are inferior. Specifically, the aluminum-based material having a ribbon shape is easily deformed when an external force such as pulling, twisting, or bending is applied, and the function as a member or component is reduced. In addition, when an aluminum-based material having a ribbon shape is repeatedly deformed by external vibration or thermal expansion / contraction, there is a problem of fatigue failure during use. Therefore, conventionally, an aluminum-based material having a ribbon shape can be used only for limited applications.
- an object of the present invention is to provide a high-strength aluminum alloy material having a ribbon shape that can be substituted for a copper-based material and an iron-based material having a ribbon shape, and a conductive member, a conductive component, a spring member using the same,
- An object is to provide a spring component, a semiconductor module member, a semiconductor module component, a structural member, and a structural component.
- the present inventor has an aluminum alloy material having a predetermined alloy composition and having a Vickers hardness (HV) within a predetermined range, which is comparable to a copper-based material and an iron-based material.
- HV Vickers hardness
- the gist configuration of the present invention is as follows.
- An alloy composition comprising Mg: 0.2 to 1.8% by mass, Si: 0.2 to 2.0% by mass, Fe: 0.01 to 1.50% by mass, the balance: Al and inevitable impurities.
- Mg 0.2 to 1.8 mass%
- Si 0.2 to 2.0 mass%
- Fe 0.01 to 1.50 mass%
- Ti, B Cu
- Ag Ag
- Zn Ni
- Vickers hardness (HV) is 90 or more and 190 or less
- Mg 0.2 to 1.8 mass%, Si: 0.2 to 2.0 mass%, Fe: 0.01 to 1.50 mass%, Ti, B, Cu, Ag, Zn, Ni At least one selected from Co, Au, Mn, Cr, V, Zr, and Sn: a total of 0.02 to 2 mass%, and the balance: Al and an inevitable impurity alloy composition.
- Vickers hardness (HV) is 90 or more and 190 or less
- an aluminum alloy material having a predetermined alloy composition and having a Vickers hardness (HV) within a predetermined range has a high ribbon shape comparable to copper-based materials and iron-based materials.
- a strong aluminum alloy material, and a conductive member, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structural member, and structural component using the same can be obtained.
- FIG. 1 is a photograph showing the aluminum alloy material of the present invention produced in Example 1.
- FIG. FIG. 2 is a photograph showing the aluminum alloy material of the present invention produced in Example 17.
- the aluminum alloy material of the present invention comprises Mg: 0.2 to 1.8% by mass, Si: 0.2 to 2.0% by mass, Fe: 0.01 to 1.50% by mass, balance: Al and inevitable impurities
- the Vickers hardness (HV) is 90 or more and 190 or less, and has a ribbon shape.
- Alloy composition It shows about the alloy composition of the aluminum alloy material of this invention, and its effect
- the Mg content is less than 0.2% by mass, the above-described effects are insufficient.
- the Mg content exceeds 1.8% by mass, a crystallized product is formed, and the workability (drawing workability, bending workability, etc.) decreases. Therefore, the Mg content is 0.2 to 1.8% by mass, preferably 0.4 to 1.0% by mass.
- Si 0.2 to 2.0% by mass>
- Si has a function of strengthening by dissolving in an aluminum base material, and has a function of improving tensile strength and bending fatigue resistance by a synergistic effect with Mg.
- the Si content is less than 0.2% by mass, the above-described effects are insufficient.
- Si content exceeds 2.0 mass%, a crystallization thing will be formed and workability will fall. Accordingly, the Si content is 0.2 to 2.0 mass%, preferably 0.4 to 1.0 mass%.
- Fe is an element that contributes to refinement of crystal grains and mainly improves tensile strength by forming an Al—Fe-based intermetallic compound.
- the intermetallic compound refers to a compound composed of two or more kinds of metals. Fe can only be dissolved at 0.05% by mass at 655 ° C. in Al, and the amount of solid solution at room temperature is much smaller. Therefore, the remaining Fe that cannot be dissolved in Al is Al—Fe, Al—Fe—. Crystallizes or precipitates as an intermetallic compound such as Si-based or Al-Fe-Si-Mg-based.
- Such an intermetallic compound mainly composed of Fe and Al is referred to as an Fe-based compound in this specification.
- This intermetallic compound contributes to the refinement of crystal grains and improves the tensile strength. Further, Fe dissolved in Al also has an effect of improving the tensile strength. When the Fe content is less than 0.01% by mass, these effects are insufficient. On the other hand, if the Fe content exceeds 1.50% by mass, the amount of crystallized substances increases and the workability decreases.
- the crystallized product refers to an intermetallic compound generated during casting solidification of the alloy. Therefore, the Fe content is 0.01 to 1.50% by mass, preferably 0.05 to 0.80% by mass.
- the Fe content is preferably less than 1.00% by mass, more preferably less than 0.60% by mass.
- Al and inevitable impurities The balance other than the components described above is Al (aluminum) and inevitable impurities.
- the inevitable impurities referred to here mean impurities in a content level that can be unavoidably included in the manufacturing process. Depending on the content of the inevitable impurities, it may be a factor for reducing the electrical conductivity. Therefore, it is preferable to suppress the content of the inevitable impurities to some extent in consideration of the decrease in electrical conductivity.
- inevitable impurities include Cr (chromium), Mn (manganese), Cu (copper), Ni (nickel), Zn (zinc), Zr (zirconium), Bi (bismuth), and Pb (lead).
- Ga gallium
- Sn titanium
- Sr sinum
- content of these components into 0.05 mass% or less for every said component, and 0.15 mass% or less in the total amount of the said component.
- the aluminum alloy material of the present invention may be covered with at least one metal selected from the group consisting of Cu, Ni, Ag, Sn, Au, and Pd.
- the metal include alloys and intermetallic compounds containing Cu, Ni, Ag, Sn, Au, and / or Pd as main constituent elements.
- the method of coating the aluminum alloy material of the present invention with the metal is not particularly limited, and examples thereof include displacement plating, electrolytic plating, cladding (pressure welding), and thermal spraying.
- the metal coating is preferably thinner from the standpoint of weight reduction, etc. Therefore, among these methods, displacement plating and electrolytic plating are particularly preferable.
- cover on aluminum alloy material you may perform a wire drawing process and / or a rolling process.
- the crystal orientation of the aluminum alloy material of the present invention coated with the metal is measured by X-ray or the like, the measurement is performed on the surface of the aluminum alloy material after removing the metal coating.
- the aluminum alloy material of the present invention comprises Mg: 0.2 to 1.8% by mass, Si: 0.2 to 2.0% by mass, Fe: 0.01 to 1.50% by mass, Ti, B, An alloy composition comprising at least one selected from Cu, Ag, Zn, Ni, Co, Au, Mn, Cr, V, Zr and Sn: 0.00 to 2% by mass in total, and the balance: Al and inevitable impurities.
- Vickers hardness (HV) is 90 or more and 190 or less, and has a ribbon shape.
- the aluminum alloy material of the present invention has Mg: 0.2 to 1.8% by mass, Si: 0.2 to 2.0% by mass, Fe: 0.01 to 1.50% by mass, Ti, B, An alloy composition comprising at least one selected from Cu, Ag, Zn, Ni, Co, Au, Mn, Cr, V, Zr and Sn: a total of 0.02 to 2% by mass, and the balance: Al and inevitable impurities.
- Vickers hardness (HV) is 90 or more and 190 or less, and has a ribbon shape.
- Ti, B, Cu, Ag, Zn, Ni, Co, Au, Mn, Cr, V, Zr and Sn are selected in total: 0.00 mass%” means Ti, B It means that at least one selected from Cu, Ag, Zn, Ni, Co, Au, Mn, Cr, V, Zr and Sn is not substantially contained.
- Alloy composition It shows about the alloy composition of the aluminum alloy material of this invention, and its effect
- the Mg content is less than 0.2% by mass, the above-described effects are insufficient.
- the Mg content exceeds 1.8% by mass, a crystallized product is formed, and the workability (drawing workability, bending workability, etc.) decreases. Therefore, the Mg content is 0.2 to 1.8% by mass, preferably 0.4 to 1.0% by mass.
- Si 0.2 to 2.0% by mass>
- Si has a function of strengthening by dissolving in an aluminum base material, and has a function of improving tensile strength and bending fatigue resistance by a synergistic effect with Mg.
- the Si content is less than 0.2% by mass, the above-described effects are insufficient.
- Si content exceeds 2.0 mass%, a crystallization thing will be formed and workability will fall. Accordingly, the Si content is 0.2 to 2.0 mass%, preferably 0.4 to 1.0 mass%.
- Fe is an element that contributes to refinement of crystal grains and mainly improves tensile strength by forming an Al—Fe-based intermetallic compound.
- the intermetallic compound refers to a compound composed of two or more kinds of metals. Fe can only be dissolved at 0.05% by mass at 655 ° C. in Al, and the amount of solid solution at room temperature is much smaller. Therefore, the remaining Fe that cannot be dissolved in Al is Al—Fe, Al—Fe—. Crystallizes or precipitates as an intermetallic compound such as Si-based or Al-Fe-Si-Mg-based.
- Such an intermetallic compound mainly composed of Fe and Al is referred to as an Fe-based compound in this specification.
- This intermetallic compound contributes to the refinement of crystal grains and improves the tensile strength. Further, Fe dissolved in Al also has an effect of improving the tensile strength. When the Fe content is less than 0.01% by mass, these effects are insufficient. On the other hand, if the Fe content exceeds 1.50% by mass, the amount of crystallized substances increases and the workability decreases.
- the crystallized product refers to an intermetallic compound generated during casting solidification of the alloy. Therefore, the Fe content is 0.01 to 1.50 mass%, preferably 0.05 to 0.23 mass%. In particular, 0.05 to 0.17% by mass is particularly preferable when emphasizing formability into a ribbon shape.
- Ti titanium
- B boron
- Cu copper
- Ag silver
- Zn zinc
- Ni nickel
- Co cobalt
- Au gold
- Mn manganese
- Cr chromium
- V vanadium
- Zr zirconium
- Sn tin
- At least one selected from Zn, Ni, Co, Mn, Cr, V, Zr and Sn is included.
- the above “included” means more than 0.00 mass%.
- a mechanism for improving the heat resistance of the above component for example, a mechanism for reducing the energy of the grain boundary due to a large difference between the atomic radius of the above component and the atomic radius of aluminum, or a large diffusion coefficient of the above component.
- a mechanism that lowers the mobility of the grain boundary when entering the grain boundary a mechanism that delays the diffusion phenomenon in order to trap the vacancies due to a large interaction with the vacancies, etc. It is considered that they are acting synergistically.
- the total content of the above components is less than 0.02% by mass, the heat resistance is insufficient. Moreover, when content of these components exceeds 2 mass%, workability will fall. Therefore, the total content of at least one selected from Ti, B, Cu, Ag, Zn, Ni, Co, Au, Mn, Cr, V, Zr and Sn is preferably 0.02 to 2% by mass. 0.06 to 2% by mass is more preferable, and 0.3 to 1.2% by mass is particularly preferable.
- the balance other than the components described above is Al (aluminum) and inevitable impurities.
- the inevitable impurities referred to here mean impurities in a content level that can be unavoidably included in the manufacturing process. Depending on the content of the inevitable impurities, it may be a factor for reducing the electrical conductivity. Therefore, it is preferable to suppress the content of the inevitable impurities to some extent in consideration of the decrease in electrical conductivity. Examples of the components listed as inevitable impurities include Bi (bismuth), Pb (lead), Ga (gallium), Sr (strontium), and the like. In addition, what is necessary is just to make content of these components into 0.05 mass% or less for every said component, and 0.15 mass% or less in the total amount of the said component.
- the aluminum alloy material of the present invention may be covered with at least one metal selected from the group consisting of Cu, Ni, Ag, Sn, Au, and Pd.
- the metal include alloys and intermetallic compounds containing Cu, Ni, Ag, Sn, Au, and / or Pd as main constituent elements.
- the method of coating the aluminum alloy material of the present invention with the metal is not particularly limited, and examples thereof include displacement plating, electrolytic plating, cladding (pressure welding), and thermal spraying.
- the metal coating is preferably thinner from the standpoint of weight reduction, etc. Therefore, among these methods, displacement plating and electrolytic plating are particularly preferable.
- cover on aluminum alloy material you may perform a wire drawing process and / or a rolling process.
- the crystal orientation of the aluminum alloy material of the present invention coated with the metal is measured by X-ray or the like, the measurement is performed on the surface of the aluminum alloy material after removing the metal coating.
- Such an aluminum alloy material can be realized by controlling the alloy composition and manufacturing method in combination.
- the suitable manufacturing method of the aluminum alloy material of this invention is demonstrated.
- an aluminum alloy such as an Al-Mg-Si alloy is manufactured by a method of precipitation hardening by a combination of solution heat treatment and aging precipitation heat treatment. Was common. This manufacturing method is also called T6 treatment.
- the strength level obtained by this manufacturing method is insufficient with respect to the strength level of copper-based materials and iron-based materials. Therefore, the manufacturing method of the present invention is largely different from the manufacturing method in which the Mg—Si compound is precipitation-hardened, which is generally performed with a conventional aluminum alloy material, in terms of increasing the strength.
- wire drawing [1] and rolling [2] are performed on an aluminum alloy material having a predetermined alloy composition. This will be described in detail below.
- the aluminum alloy material used in the wire drawing [1] is not particularly limited as long as it has the above alloy composition.
- an extruded material, an ingot material, a hot rolled material, a cold rolled material, etc. are used. It can be appropriately selected according to the purpose.
- the processing degree ⁇ is preferably 5 or more, more preferably 6 or more, and still more preferably 7 or more.
- the upper limit of the degree of processing is not particularly specified, but is usually 15.
- the processing rate R is preferably 98.2% or more, more preferably 99.8% or more.
- the aging precipitation heat treatment [0] which has been conventionally performed before the wire drawing [1] is not performed.
- Such an aging precipitation heat treatment [0] promotes precipitation of the Mg—Si compound by holding the aluminum alloy material usually at 160 to 240 ° C. for 1 minute to 20 hours.
- the wire drawing [1] and the subsequent rolling [2] with a high workability as described above are performed. Processing cracks occur inside the material.
- the wire obtained by the wire drawing process [1] is processed into a ribbon shape.
- a method for obtaining an aluminum alloy material having a ribbon shape there is a method of slitting a wide plate. Slit processing is a method in which a material is sheared and cut between tools provided with a minute clearance. The clearance needs to be controlled more precisely as the material thickness is thinner. If the clearance is too narrow, the sagging of the cut material increases. If the sagging is large, the conductive characteristics and mechanical characteristics become insufficient. Conversely, if the clearance is too wide, burrs will occur. Burrs can cause short circuits inside electrical components. Therefore, in this invention, it is preferable to manufacture the aluminum alloy material which has a ribbon shape by the method of performing rolling processing [2] after wire drawing processing [1].
- the width expansion ratio S is preferably 1.4 to 6.0, more preferably 1.7 to 5.0, still more preferably 2.0 to 4.0, and most preferably 2.3. ⁇ 3.5.
- the drawing process [3] may be performed after the rolling process [2].
- Drawing [3] is performed by drawing a rolled aluminum alloy material through a die.
- temper annealing [4] may be performed after rolling [2] or drawing [3] for the purpose of releasing residual stress and improving elongation.
- the temper annealing [4] is preferably performed at a treatment temperature of 50 to 160 ° C. and a holding time of 1 to 48 hours.
- the temperature of the temper annealing [4] is less than 50 ° C., it is difficult to obtain effects such as release of residual stress and improvement of elongation, and when it exceeds 160 ° C., crystal grains grow due to recovery and recrystallization, The strength tends to decrease.
- the conditions for such heat treatment can be appropriately adjusted depending on the type and amount of inevitable impurities and the solid solution / precipitation state of the aluminum alloy material to be used.
- the length of the aluminum alloy material of the present invention is preferably 10 m or more.
- the upper limit of the length of the aluminum alloy material at the time of manufacture is not specifically provided, it is preferable to set it to 6000 m considering workability
- the aluminum alloy material of the present invention is easy to realize the configuration of the present invention as the thickness is reduced.
- the thickness is preferably 1 mm or less, more preferably 0.5 mm or less, still more preferably 0.1 mm or less, and particularly preferably 0.07 mm or less.
- the upper limit of the thickness is not particularly set, but is preferably 30 mm.
- the aluminum alloy material of the present invention is thinly processed.
- a plurality of such aluminum alloy materials can be prepared and joined, and the thickness can be increased for use in the intended application.
- a joining method a known method can be used, and examples thereof include pressure welding, welding, joining with an adhesive, friction stir welding, and the like.
- the aluminum alloy material of the present invention may be coated with another metal such as copper, nickel, tin, silver, or gold in order to improve corrosion resistance and solderability.
- the coating method include pressure welding and plating. Covering the aluminum alloy material also has the effect of improving the fatigue life.
- the aluminum alloy material of the present invention has a ribbon shape.
- the “ribbon shape” means a flat and elongated shape, and can be said to be a tape shape or a belt shape. It is preferable that the width
- the width refers to the length in the direction perpendicular to the longitudinal direction of the aluminum alloy material.
- the end surface in the width direction of the aluminum alloy material according to the present invention may be formed as a convex curved surface.
- the interval between the vertices of the convex curved surface on both end surfaces is defined as the width.
- the ratio of the width to the thickness is preferably 4 times or more, more preferably 8 times or more, and most preferably 12 times or more. There is no particular upper limit for the ratio, but it is usually 30 times.
- the aluminum alloy material of the present invention preferably has a convex end surface in the width direction.
- the width direction end surface refers to an end surface in a direction perpendicular to the longitudinal direction.
- the end surface in the width direction is preferably formed in a curved shape that is convex outward.
- the convex curved surface may be an arc-shaped curved surface made up of one circular arc having a certain curvature, or may be a curved surface formed by connecting a plurality of circular arcs.
- the end surface in the width direction has a planar shape perpendicular to the plate surface and is formed in a curved shape. There is nothing.
- the curved shape of the end face in the width direction has an action of dispersing fatigue stress due to stress concentration by dispersing bending and twisting stress applied to the end face of the material.
- the aluminum alloy material of the present invention has a Vickers hardness (HV) of 90 to 190.
- a Vickers hardness (HV) of 90 is equivalent to that of a copper-based material and an iron-based material. That is, the aluminum alloy material of the present invention has a strength equal to or higher than that of the copper-based material and the iron-based material.
- the Vickers hardness (HV) of the aluminum alloy material is preferably 105 or more, more preferably 115 or more, still more preferably 130 or more, still more preferably 145 or more, and most preferably 160 or more.
- HV Vickers hardness
- an aluminum alloy material having a Vickers hardness (HV) of 115 or more is optimal for, for example, a wearable device member that is likely to be distorted by repeated bending, or an engine or motor peripheral member that is likely to be distorted by vibration. is there.
- Vickers hardness is a value measured according to JIS Z 2244: 2009.
- the processed product can be disassembled, the cross section can be mirror-polished, and the cross section can be measured.
- the aluminum alloy material of the present invention having a Vickers hardness (HV) of 90 or more and 190 or less and having a ribbon shape preferably has a conductivity of 40% IACS or more. More preferably, it is 45% IACS or more, more preferably 50% IACS or more, and most preferably 55% IACS or more.
- the conductivity can be measured by a four-terminal method.
- the aluminum alloy material of the present invention is applicable to all members and parts in which iron-based materials, copper-based materials, and aluminum-based materials are used.
- the member refers to a material obtained by primary processing (for example, punching, bending, plating, etc.) of an aluminum alloy material
- the component refers to a member assembled using the member.
- the aluminum alloy material of the present invention can be used for conductive members, conductive components, spring members, spring components, semiconductor module members, semiconductor module components, structural members, and structural components.
- Examples of conductive members include electric wires and cables.
- Examples of conductive parts including conductive members include overhead power transmission lines, OPGW, underground cables, power cables such as submarine cables, communication cables such as telephone cables and coaxial cables, cables for wired drones, and cabtyre cables.
- EV / HEV charging cables offshore wind power generation twisting cables, elevator cables, umbilical cables, robot cables, electric wires for trains, trolley wires, etc., automotive wire harnesses, marine wires, airplane wires, etc. Electric wires for transportation, bus bars, lead frames, flexible flat cables, lightning rods, antennas, connectors, terminals and the like.
- Examples of the spring member include a coil spring and a leaf spring.
- Examples of the spring component including the spring member include a connector, a switch, a terminal, and a mainspring.
- Examples of the semiconductor module member include a conductor.
- a semiconductor module part provided with the member for semiconductor modules a bonding flat wire is mentioned, for example.
- Structural members include, for example, structural plates, structural squares, and structural atypical materials.
- Structural parts with structural members include, for example, building site scaffolds, conveyor mesh belts, metal fibers for clothing, chains, fences, insect repellent nets, zippers, fasteners, clips, aluminum wool, brake wires and spokes, etc.
- Bicycle parts reinforced glass reinforcement wires, pipe seals, metal packing, cable protection reinforcements, fan belt cores, actuator drive wires, chains, hangers, soundproof meshes, shelf boards, and the like.
- braided copper wires are used as shield wires in cables for data transmission. These shield wires can also be reduced in weight by using the aluminum alloy material of the present invention having a ribbon shape.
- the aluminum alloy material of the present invention having a ribbon shape is a stranded wire twisted together with a wire material of other materials such as copper, copper alloy, aluminum, aluminum alloy, iron, iron alloy as necessary. It is good also as a structure of.
- Example 1 Example 1 to 13, Comparative Examples 1 to 6
- each 10 mm ⁇ bar material having the alloy composition shown in Table 1 was prepared.
- Comparative Example 1 a 10 mm ⁇ bar made of 99.99 mass% Al was prepared.
- an aluminum alloy material having a ribbon shape was produced under the manufacturing conditions shown in Table 1.
- the production conditions A to J shown in Table 1 are specifically as follows.
- the degree of processing and the width expansion rate S are as shown in the above formulas (1) and (3).
- ⁇ Production conditions A> The prepared rod was subjected to wire drawing [1] with a working degree of 5.5. Thereafter, rolling [2] with a width expansion rate S of 3.0 was performed. In addition, finishing drawing [3] and temper annealing [4] were not performed. The ratio of the width to the thickness of the produced aluminum alloy material was 15 times.
- ⁇ Production conditions B> It was performed under the same conditions as manufacturing condition A, except that the degree of processing of wire drawing [1] was set to 6.5. The ratio of the width to the thickness of the produced aluminum alloy material was 10 times.
- ⁇ Production conditions E> The prepared rod was subjected to wire drawing [1] with a working degree of 5.5. Thereafter, rolling [2] with a width expansion rate S of 3.0 was performed. Finish drawing [3] was not performed, and temper annealing [4] was performed at 155 ° C. for 40 hours. The ratio of the width to the thickness of the produced aluminum alloy material was 15 times.
- ⁇ Production conditions F> The prepared bar was subjected to wire drawing [1] with a working degree of 6.5. Thereafter, rolling [2] with a width expansion rate S of 3.0 was performed. Subsequently, finish drawing [3] was performed, and temper annealing [4] was performed at 140 ° C. for 1 hour.
- the ratio of the width to the thickness of the produced aluminum alloy material was 10 times.
- ⁇ Production conditions G> The prepared bar was subjected to wire drawing [1] with a processing degree of 7.5. Thereafter, rolling [2] with a width expansion rate S of 2.5 was performed. Finish drawing [3] was not performed, and temper annealing [4] was performed at 80 ° C. for 24 hours. The ratio of the width to the thickness of the produced aluminum alloy material was 6 times.
- the ratio of the width to the thickness of the produced aluminum alloy material was three times.
- ⁇ Production conditions I> It was performed under the same conditions as the manufacturing condition E, except that the degree of processing of the wire drawing [1] was 2.0.
- the ratio of the width to the thickness of the produced aluminum alloy material was 15 times.
- ⁇ Production conditions J> The prepared bar is subjected to an aging precipitation heat treatment [0] at a treatment temperature of 180 ° C. and a holding time of 5 hours, and thereafter a wire drawing [1] with a working degree of 5.5 and a width expansion ratio S of 3.5. Rolling [2] was performed. In Comparative Example 6, since work cracks frequently occurred during the rolling process [2], the operation was stopped.
- Vickers hardness (HV) According to JIS Z 2244: 2009, Vickers hardness (HV) was measured using a microhardness tester HM-125 (Akashi Co., Ltd. (currently Mitutoyo Co., Ltd.)). At this time, the test force was 0.1 kgf (0.98 N), and the holding time was 15 seconds.
- the measurement position is a position near the middle between the center and the surface layer (position about 1 ⁇ 4 center side from the surface layer side) in the cross section parallel to the longitudinal direction of the produced aluminum alloy material, and the average of the five measured values The value was calculated.
- the number of measurements was further increased, and the average value of the measurement values at 10 locations was calculated.
- the Vickers hardness (HV) is preferably as large as possible, and in this example, 90 or more was regarded as an acceptable level.
- the aluminum alloy materials according to Examples 1 to 13 have a specific alloy composition, Vickers hardness (HV) of 90 or more and 190 or less, and have a ribbon shape. , Having a high strength comparable to iron-based materials and copper-based materials (specifically, a tensile strength of 350 MPa or more, and a ratio with copper in fatigue frequency of 1.0 or more) and a high conductivity of 40% IACS or more It was found to show a value.
- HV Vickers hardness
- Comparative Example 1 since Mg, Si, and Fe are not included as metal components, the Vickers hardness (HV) is 50, the tensile strength is as low as 162 MPa, and the number of fatigue times is inferior to copper. It was.
- the aluminum alloy material of the present invention has Mg: 0.2 to 1.8% by mass, Si: 0.2 to 2.0% by mass, Fe: 0.01 to 1.50% by mass, and the balance: Al.
- Example 14 to 29, Comparative Examples 7 to 14 10 mm ⁇ rods having the alloy compositions shown in Table 2 were prepared.
- a 10 mm ⁇ bar made of 99.99 mass% Al was prepared.
- an aluminum alloy material having a ribbon shape was manufactured under the manufacturing conditions shown in Table 2.
- the production conditions A to J shown in Table 2 are specifically as follows.
- the degree of processing and the width expansion rate S are as shown in the above formulas (1) and (3).
- ⁇ Production conditions A> The prepared rod was subjected to wire drawing [1] with a working degree of 5.5. Thereafter, rolling [2] with a width expansion rate S of 3.0 was performed. In addition, finishing drawing [3] and temper annealing [4] were not performed. The ratio of the width to the thickness of the produced aluminum alloy material was 15 times.
- ⁇ Production conditions B> It was performed under the same conditions as manufacturing condition A, except that the degree of processing of wire drawing [1] was set to 6.5. The ratio of the width to the thickness of the produced aluminum alloy material was 10 times.
- ⁇ Production conditions E> The prepared rod was subjected to wire drawing [1] with a working degree of 5.5. Thereafter, rolling [2] with a width expansion rate S of 3.0 was performed. Finish drawing [3] was not performed, and temper annealing [4] was performed at 155 ° C. for 40 hours. The ratio of the width to the thickness of the produced aluminum alloy material was 15 times.
- ⁇ Production conditions F> The prepared bar was subjected to wire drawing [1] with a working degree of 6.5. Thereafter, rolling [2] with a width expansion rate S of 3.0 was performed. Subsequently, finish drawing [3] was performed, and temper annealing [4] was performed at 140 ° C. for 1 hour.
- the ratio of the width to the thickness of the produced aluminum alloy material was 10 times.
- ⁇ Production conditions G> The prepared bar was subjected to wire drawing [1] with a processing degree of 7.5. Thereafter, rolling [2] with a width expansion rate S of 2.5 was performed. Finish drawing [3] was not performed, and temper annealing [4] was performed at 80 ° C. for 24 hours. The ratio of the width to the thickness of the produced aluminum alloy material was 6 times.
- the ratio of the width to the thickness of the produced aluminum alloy material was three times.
- ⁇ Production conditions I> It was performed under the same conditions as the manufacturing condition E, except that the degree of processing of the wire drawing [1] was 2.0.
- the ratio of the width to the thickness of the produced aluminum alloy material was 15 times.
- ⁇ Production conditions J> The prepared bar is subjected to an aging precipitation heat treatment [0] at a treatment temperature of 180 ° C. and a holding time of 5 hours, and thereafter a wire drawing [1] with a working degree of 5.5 and a width expansion ratio S of 3.5. Rolling [2] was performed. In Comparative Example 13, the work was stopped because many work cracks occurred during the rolling process [2].
- Vickers hardness (HV) According to JIS Z 2244: 2009, Vickers hardness (HV) was measured using a microhardness tester HM-125 (Akashi Co., Ltd. (currently Mitutoyo Co., Ltd.)). At this time, the test force was 0.1 kgf (0.98 N), and the holding time was 15 seconds.
- the measurement position is a position near the middle between the center and the surface layer (position about 1 ⁇ 4 center side from the surface layer side) in the cross section parallel to the longitudinal direction of the produced aluminum alloy material, and the average of the five measured values The value was calculated.
- the number of measurements was further increased, and the average value of the measurement values at 10 locations was calculated.
- the Vickers hardness (HV) is preferably as large as possible, and in this example, 90 or more was regarded as an acceptable level.
- the tough pitch copper used for comparison was the same as the produced aluminum alloy material in width and thickness.
- P N A ⁇ N C (5)
- the ratio P with respect to the copper-based material to be compared is preferably as large as possible, in this example, 1.0 or more was set as an acceptable level.
- the aluminum alloy materials according to Examples 14 to 29 have a specific alloy composition, Vickers hardness (HV) of 90 or more and 190 or less, and have a ribbon shape. It was found that the steel has a high strength comparable to that of iron-based materials and copper-based materials (specifically, the tensile strength is 350 MPa or more and the ratio of copper to fatigue is 1.0 or more).
- the aluminum alloy materials according to Examples 14 to 29 contain a predetermined amount of at least one selected from Ti, B, Cu, Ag, Zn, Ni, Co, Au, Mn, Cr, V, Zr, and Sn. Therefore, it was found that the high tensile strength was maintained even after heating and the heat resistance was excellent.
- Comparative Example 11 the total content of at least one selected from Ti, B, Cu, Ag, Zn, Ni, Co, Au, Mn, Cr, V, Zr and Sn is as large as 2.09% by mass. In the middle of the wire drawing [1], a work crack occurred and an aluminum alloy material having a ribbon shape could not be produced.
- the aluminum alloy material of the present invention has Mg: 0.2 to 1.8% by mass, Si: 0.2 to 2.0% by mass, Fe: 0.01 to 1.50% by mass, Ti, B , Cu, Ag, Zn, Ni, Co, Au, Mn, Cr, V, Zr and Sn: an alloy consisting of more than 0.00 to 2% by mass in total, the balance: Al and inevitable impurities
- An aluminum alloy material having a composition, having a Vickers hardness (HV) of 90 or more and 190 or less, and having a ribbon shape, has high strength comparable to iron-based materials and copper-based materials, and Has heat resistance. Therefore, the aluminum alloy material of the present invention can be used for conductive members, conductive components, spring members, spring components, semiconductor module members, semiconductor module components, structural members, structural components, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Conductive Materials (AREA)
- Springs (AREA)
Abstract
Description
[1]Mg:0.2~1.8質量%、Si:0.2~2.0質量%、Fe:0.01~1.50質量%、残部:Al及び不可避不純物からなる合金組成を有するアルミニウム合金材であって、
ビッカース硬さ(HV)が90以上190以下であり、リボン形状を有していることを特徴とするアルミニウム合金材。
[2]Mg:0.2~1.8質量%、Si:0.2~2.0質量%、Fe:0.01~1.50質量%、Ti、B、Cu、Ag、Zn、Ni、Co、Au、Mn、Cr、V、Zr及びSnから選択される少なくとも1種:合計で0.00~2質量%、残部:Al及び不可避不純物からなる合金組成を有するアルミニウム合金材であって、
ビッカース硬さ(HV)が90以上190以下であり、
リボン形状を有していることを特徴とするアルミニウム合金材。
[3]Mg:0.2~1.8質量%、Si:0.2~2.0質量%、Fe:0.01~1.50質量%、Ti、B、Cu、Ag、Zn、Ni、Co、Au、Mn、Cr、V、Zr及びSnから選択される少なくとも1種:合計で0.02~2質量%、残部:Al及び不可避不純物からなる合金組成を有するアルミニウム合金材であって、
ビッカース硬さ(HV)が90以上190以下であり、
リボン形状を有していることを特徴とするアルミニウム合金材。
[4]ビッカース硬さ(HV)が115以上190以下であることを特徴とする上記[1]から[3]のいずれかに記載のアルミニウム合金材。
[5]幅方向端面が凸曲面で形成されていることを特徴とする、上記[1]から[4]のいずれかに記載のアルミニウム合金材。
[6]Cu、Ni、Ag、Sn、Au及びPdからなる群から選択された少なくとも1種の金属で覆われていることを特徴とする、[1]から[6]のいずれかに記載のアルミニウム合金材。
[7]上記[1]から[6]のいずれかに記載のアルミニウム合金材を用いた導電部材。
[8]上記[7]に記載の導電部材を備えた導電部品。
[9]上記[1]から[6]のいずれかに記載のアルミニウム合金材を用いたバネ用部材。
[10]上記[9]に記載のバネ用部材を備えたバネ用部品。
[11]上記[1]から[6]のいずれかに記載のアルミニウム合金材を用いた半導体モジュール用部材。
[12]上記[11]に記載の半導体モジュール用部材を備えた半導体モジュール用部品。
[13]上記[1]から[6]のいずれかに記載のアルミニウム合金材を用いた構造用部材。
[14]上記[13]に記載の構造用部材を備えた構造用部品。
本発明のアルミニウム合金材の合金組成とその作用について示す。
<Mg:0.2~1.8質量%>
Mg(マグネシウム)は、アルミニウム母材中に固溶して強化する作用を有すると共に、Siとの相乗効果によって引張強度を向上させる作用を持つ。しかしながら、Mg含有量が0.2質量%未満であると、上記作用効果が不十分である。また、Mg含有量が1.8質量%を超えると、晶出物が形成され、加工性(伸線加工性や曲げ加工性等)が低下する。したがって、Mg含有量は0.2~1.8質量%であり、好ましくは0.4~1.0質量%である。
Si(ケイ素)は、アルミニウム母材中に固溶して強化する作用を有すると共に、Mgとの相乗効果によって引張強度や耐屈曲疲労特性を向上させる作用を持つ。しかしながら、Si含有量が0.2質量%未満であると、上記作用効果が不十分である。また、Si含有量が2.0質量%を超えると、晶出物が形成され、加工性が低下する。したがって、Si含有量は0.2~2.0質量%であり、好ましくは0.4~1.0質量%である。
Fe(鉄)は、主にAl-Fe系の金属間化合物を形成することによって結晶粒の微細化に寄与すると共に、引張強度を向上させる元素である。ここで、金属間化合物とは2種類以上の金属によって構成される化合物をいう。Feは、Al中に655℃で0.05質量%しか固溶できず、室温では固溶量が更に少ないため、Al中に固溶できない残りのFeは、Al-Fe系、Al-Fe-Si系、Al-Fe-Si-Mg系などの金属間化合物として晶出又は析出する。これらのようにFeとAlとで主に構成される金属間化合物を本明細書ではFe系化合物と呼ぶ。この金属間化合物は、結晶粒の微細化に寄与すると共に、引張強度を向上させる。また、Al中に固溶したFeも引張強度を向上させる作用を有する。Fe含有量が0.01質量%未満であると、これらの作用効果が不十分である。また、Fe含有量が1.50質量%を超えると、晶出物が多くなり、加工性が低下する。ここで、晶出物とは、合金の鋳造凝固時に生ずる金属間化合物をいう。したがって、Fe含有量は0.01~1.50質量%であり、好ましくは0.05~0.80質量%である。なお、鋳造時の冷却速度が遅い場合は、Fe系化合物の分散が疎となり、悪影響を及ぼす可能性がある。そのため、Fe含有量は1.00質量%未満が好ましく、より好ましくは0.60質量%未満である。
上述した成分以外の残部は、Al(アルミニウム)及び不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を考慮して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、Cr(クロム)、Mn(マンガン)、Cu(銅)、Ni(ニッケル)、Zn(亜鉛)、Zr(ジルコニウム)、Bi(ビスマス)、Pb(鉛)、Ga(ガリウム)、Sn(スズ)、Sr(ストロンチウム)等が挙げられる。なお、これらの成分の含有量は、上記成分毎に0.05質量%以下、上記成分の総量で0.15質量%以下とすればよい。
本発明のアルミニウム合金材の合金組成とその作用について示す。
<Mg:0.2~1.8質量%>
Mg(マグネシウム)は、アルミニウム母材中に固溶して強化する作用を有すると共に、Siとの相乗効果によって引張強度を向上させる作用を持つ。しかしながら、Mg含有量が0.2質量%未満であると、上記作用効果が不十分である。また、Mg含有量が1.8質量%を超えると、晶出物が形成され、加工性(伸線加工性や曲げ加工性等)が低下する。したがって、Mg含有量は0.2~1.8質量%であり、好ましくは0.4~1.0質量%である。
Si(ケイ素)は、アルミニウム母材中に固溶して強化する作用を有すると共に、Mgとの相乗効果によって引張強度や耐屈曲疲労特性を向上させる作用を持つ。しかしながら、Si含有量が0.2質量%未満であると、上記作用効果が不十分である。また、Si含有量が2.0質量%を超えると、晶出物が形成され、加工性が低下する。したがって、Si含有量は0.2~2.0質量%であり、好ましくは0.4~1.0質量%である。
Fe(鉄)は、主にAl-Fe系の金属間化合物を形成することによって結晶粒の微細化に寄与すると共に、引張強度を向上させる元素である。ここで、金属間化合物とは2種類以上の金属によって構成される化合物をいう。Feは、Al中に655℃で0.05質量%しか固溶できず、室温では固溶量が更に少ないため、Al中に固溶できない残りのFeは、Al-Fe系、Al-Fe-Si系、Al-Fe-Si-Mg系などの金属間化合物として晶出又は析出する。これらのようにFeとAlとで主に構成される金属間化合物を本明細書ではFe系化合物と呼ぶ。この金属間化合物は、結晶粒の微細化に寄与すると共に、引張強度を向上させる。また、Al中に固溶したFeも引張強度を向上させる作用を有する。Fe含有量が0.01質量%未満であると、これらの作用効果が不十分である。また、Fe含有量が1.50質量%を超えると、晶出物が多くなり、加工性が低下する。ここで、晶出物とは、合金の鋳造凝固時に生ずる金属間化合物をいう。したがって、Fe含有量は0.01~1.50質量%であり、好ましくは0.05~0.23質量%である。特に、リボン形状への成形性を重視する場合に、0.05~0.17質量%が特に好ましい。
Ti(チタン)、B(ホウ素)、Cu(銅)、Ag(銀)、Zn(亜鉛)、Ni(ニッケル)、Co(コバルト)、Au(金)、Mn(マンガン)、Cr(クロム)、V(バナジウム)、Zr(ジルコニウム)、Sn(スズ)はいずれも、耐熱性を向上させる元素である。これらの成分は、1種のみの単独で含まれていてもよいし、2種以上の組み合わせで含まれていてもよい。特に、腐食環境で使用される場合の耐食性を配慮するとZn、Ni、Co、Mn、Cr、V、Zr及びSnから選択される少なくとも1種が含まれていることが好ましい。なお、上記「含まれている」とは、0.00質量%超のことを意味する。
上述した成分以外の残部は、Al(アルミニウム)及び不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を考慮して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、Bi(ビスマス)、Pb(鉛)、Ga(ガリウム)、Sr(ストロンチウム)等が挙げられる。なお、これらの成分の含有量は、上記成分毎に0.05質量%以下、上記成分の総量で0.15質量%以下とすればよい。
従来、Al-Mg-Si系合金等のアルミニウム合金は、溶体化熱処理と時効析出熱処理との組み合わせによって析出硬化させる方法で製造するのが一般的であった。この製造方法は、T6処理とも言われている。しかしながら、この製造方法で得られる強度レベルは、銅系材料や鉄系材料の強度レベルに対して不十分であった。したがって、本発明の製造方法は、従来のアルミニウム合金材で一般的に行われてきた、Mg-Si化合物を析出硬化させる製造方法とは、高強度化に対するアプローチが大きく異なる。
加工度(無次元):η=ln(s1/s2) ・・・・・(1)
加工率(%):R={(s1-s2)/s1}×100 ・・・・・(2)
幅拡がり率S=W/D ・・・・・(3)
本発明のアルミニウム合金材は、リボン形状を有している。「リボン形状」とは、平たく細長い形状であることを意味し、テープ状、帯状とも言える。リボン形状を有する本発明のアルミニウム合金材の幅は厚みに対して1.5倍以上であることが好ましい。アルミニウム合金材の複数箇所において幅と厚みを測定し、幅の平均値と厚みの平均値を用いて、厚みに対する幅の比率を算出することができる。ここで、幅とは、アルミニウム合金材の長手方向に対して垂直な方向の長さをいう。後述するように、本発明によるアルミニウム合金材の幅方向端面は凸曲面で形成されている場合があるが、この場合、両端面における凸曲面の頂点の間隔を幅とする。厚みに対する幅の比率が1.5倍未満であると、幅方向端面が凸曲面で形成されている場合に、この形状によって得られる後述する効果が不十分となる。厚みに対する幅の比率は、好ましくは、4倍以上、更に好ましくは8倍以上、最も好ましくは12倍以上である。比率の上限値は特に設けないが、通常30倍である。
[ビッカース硬さ(HV)]
本発明のアルミニウム合金材は、ビッカース硬さ(HV)が90~190である。ビッカース硬さ(HV)が90とは、銅系材料及び鉄系材料と同等の強度である。すなわち、本発明のアルミニウム合金材は、銅系材料及び鉄系材料と同等以上の強度を有する。アルミニウム合金材のビッカース硬さ(HV)は、好ましくは105以上、より好ましくは115以上、さらに好ましくは130以上、さらにより好ましくは145以上、最も好ましくは160以上である。ビッカース硬さ(HV)が190を超えると、加工割れが発生し易くなり生産性を低下させるため、好ましくない。
90以上のビッカース硬さ(HV)を有するということは、銅系材料と同等以上の疲労寿命が得られるという目安になる。更に、115以上のビッカース硬さ(HV)を有するということは、銅系材料と比較して2倍以上の疲労寿命が得られるという目安になる。これは引張強度で約430MPa以上に相当する。したがって、115以上のビッカース硬さ(HV)を有するアルミニウム合金材は、例えば、繰返しの曲げによって歪みが起こりやすいウェアラブルデバイス用の部材や、振動によって歪みが起こりやすいエンジン或いはモーター周辺の部材に最適である。
Mg:0.2~1.8質量%、Si:0.2~2.0質量%、Fe:0.01~1.50質量%、残部:Al及び不可避不純物からなる合金組成を有すると共に、ビッカース硬さ(HV)が90以上190以下であり、リボン形状を有している、本発明のアルミニウム合金材は、導電率が40%IACS以上であることが好ましい。より好ましくは、45%IACS以上、さらに好ましくは50%IACS以上、最も好ましくは、55%IACS以上である。導電率は、4端子法により測定することができる。
本発明のアルミニウム合金材は、鉄系材料、銅系材料及びアルミニウム系材料が用いられているあらゆる部材並びに部品に適用可能である。部材とは、アルミニウム合金材を一次加工(例えば、打ち抜き加工、曲げ加工、めっき等)したものをいい、部品とは、部材を用いて組み立てられたものをいう。具体的に、本発明のアルミニウム合金材は、導電部材、導電部品、バネ用部材、バネ用部品、半導体モジュール用部材、半導体モジュール用部品、構造用部材及び構造用部品に用いることができる。
まず、実施例1~13及び比較例2~6では、表1に示す合金組成を有する10mmφの各棒材を準備した。比較例1では、99.99質量%Alからなる10mmφの棒材を準備した。次に、各棒材を用いて、表1に示す製造条件にて、リボン形状を有するアルミニウム合金材を作製した。
<製造条件A>
準備した棒材に対し、加工度5.5の伸線加工[1]を行った。その後、幅拡がり率Sが3.0の圧延加工[2]を行った。なお、仕上げ引抜き加工[3]及び、調質焼鈍[4]は行わなかった。作製したアルミニウム合金材の厚みに対する幅の比率は15倍であった。
<製造条件B>
伸線加工[1]の加工度を6.5とした以外は、製造条件Aと同じ条件で行った。作製したアルミニウム合金材の厚みに対する幅の比率は10倍であった。
<製造条件C>
準備した棒材に対し、加工度7.5の伸線加工[1]を行った。その後、幅拡がり率Sが2.5の圧延加工[2]を行った。なお、仕上げ引抜き加工[3]及び、調質焼鈍[4]は行わなかった。作製したアルミニウム合金材の厚みに対する幅の比率は6倍であった。
<製造条件D>
準備した棒材に対し、加工度10.0の伸線加工[1]を行った。その後、幅拡がり率Sが2.0の圧延加工[2]を行った。なお、仕上げ引抜き加工[3]及び、調質焼鈍[4]は行わなかった。作製したアルミニウム合金材の厚みに対する幅の比率は3倍であった。
<製造条件E>
準備した棒材に対し、加工度5.5の伸線加工[1]を行った。その後、幅拡がり率Sが3.0の圧延加工[2]を行った。仕上げ引抜き加工[3]は行わず、155℃で40時間の調質焼鈍[4]を行った。作製したアルミニウム合金材の厚みに対する幅の比率は15倍であった。
<製造条件F>
準備した棒材に対し、加工度6.5の伸線加工[1]を行った。その後、幅拡がり率Sが3.0の圧延加工[2]を行った。続いて、仕上げ引抜き加工[3]を行い、140℃で1時間の調質焼鈍[4]を行った。作製したアルミニウム合金材の厚みに対する幅の比率は10倍であった。
<製造条件G>
準備した棒材に対し、加工度7.5の伸線加工[1]を行った。その後、幅拡がり率Sが2.5の圧延加工[2]を行った。仕上げ引抜き加工[3]は行わず、80℃で24時間の調質焼鈍[4]を行った。作製したアルミニウム合金材の厚みに対する幅の比率は6倍であった。
<製造条件H>
準備した棒材に対し、加工度10の伸線加工[1]を行った。その後、幅拡がり率Sが2.0の圧延加工[2]を行った。仕上げ引抜き加工[3]は行わず、100℃で24時間の調質焼鈍[4]を行った。作製したアルミニウム合金材の厚みに対する幅の比率は3倍であった。
<製造条件I>
伸線加工[1]の加工度を2.0とした以外は、製造条件Eと同じ条件で行った。作製したアルミニウム合金材の厚みに対する幅の比率は15倍であった。
<製造条件J>
準備した棒材に対し、処理温度180℃、保持時間5時間の時効析出熱処理[0]を行い、その後、加工度5.5の伸線加工[1]と幅拡がり率Sが3.5の圧延加工[2]を行った。比較例6では、圧延加工[2]の途中で加工割れが多発したため、作業を中止した。
<製造条件K>
準備した棒材に対し、伸線加工[1]を行った。比較例3、4では、伸線加工[1]の途中で加工割れが多発したため、作業を中止した。
上記実施例及び比較例に係るアルミニウム合金材を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。結果を表1に示す。
JIS H1305:2005に準じて、発光分光分析法によって行った。なお、測定は、発光分光分析装置(株式会社日立ハイテクサイエンス製)を用いて行った。
JIS Z 2244:2009に準じて、微小硬さ試験機 HM-125(株式会社アカシ(現株式会社ミツトヨ)製)を用いて、ビッカース硬さ(HV)を測定した。このとき、試験力は0.1kgf(0.98N)、保持時間は15秒とした。また、測定位置は、作製したアルミニウム合金材の長手方向に平行な断面において、中心と表層の中間付近の位置(表層側から約1/4中心側の位置)とし、5箇所の測定値の平均値を算出した。なお、測定値の最大値及び最小値の差が10以上であった場合には、さらに測定数を増やし、10箇所の測定値の平均値を算出した。ビッカース硬さ(HV)は大きいほど好ましく、本実施例では、90以上を合格レベルとした。
JIS Z2241:2001に準じて、精密万能試験機(株式会社島津製作所製)を用いて、引張試験を行い、引張強さ(MPa)を測定した。なお、上記試験は、評点間距離を10cm、変形速度を10mm/分の条件で実施した。また、各アルミニウム合金材について3本ずつ測定を行い、その平均値を算出した。引張強度は大きいほど好ましいが、本実施例では、350MPa以上を合格レベルとした。
日本伸銅協会技術標準JCBA-T308(2002)に準じて、両振りの試験を行った。試験片のセット長さLは、125GPaのヤング率を有する銅系材料に300MPaの曲げ応力を付与する条件を用いた。板厚tの平方根を用いて、
L=36.06×√t・・・・・・(4)
と表される。作製したアルミニウム合金材について、この条件による材料が破断するまでの繰り返し回数NAを求めた。次に、リボン形状を有するタフピッチ銅について、同じ条件で測定し、繰り返し回数NCを求めた。そして、両者の比Pを次式のように求めた。比較となるタフピッチ銅には、作製したアルミニウム合金材と、幅及び厚みが同じであるものを用いた。
P=NA÷NC・・・・・・(5)
比較となる銅系材料に対する比Pは大きいほど好ましいが、本実施例では、1.0以上を合格レベルとした。
JIS-K6271:2015に基づき、4端子法で20℃において抵抗値を測定した。測定した抵抗値を、作製したアルミニウム合金材の断面積で除することにより導電率を算出した。導電率は高いほど好ましいが、本実施例では、40%IACS以上を合格レベルとした。
まず、実施例14~29及び比較例8~14では、表2に示す合金組成を有する10mmφの各棒材を準備した。比較例7では、99.99質量%Alからなる10mmφの棒材を準備した。次に、各棒材を用いて、表2に示す製造条件にて、リボン形状を有するアルミニウム合金材を作製した。
<製造条件A>
準備した棒材に対し、加工度5.5の伸線加工[1]を行った。その後、幅拡がり率Sが3.0の圧延加工[2]を行った。なお、仕上げ引抜き加工[3]及び、調質焼鈍[4]は行わなかった。作製したアルミニウム合金材の厚みに対する幅の比率は15倍であった。
<製造条件B>
伸線加工[1]の加工度を6.5とした以外は、製造条件Aと同じ条件で行った。作製したアルミニウム合金材の厚みに対する幅の比率は10倍であった。
<製造条件C>
準備した棒材に対し、加工度7.5の伸線加工[1]を行った。その後、幅拡がり率Sが2.5の圧延加工[2]を行った。なお、仕上げ引抜き加工[3]及び、調質焼鈍[4]は行わなかった。作製したアルミニウム合金材の厚みに対する幅の比率は6倍であった。
<製造条件D>
準備した棒材に対し、加工度10.0の伸線加工[1]を行った。その後、幅拡がり率Sが2.0の圧延加工[2]を行った。なお、仕上げ引抜き加工[3]及び、調質焼鈍[4]は行わなかった。作製したアルミニウム合金材の厚みに対する幅の比率は3倍であった。
<製造条件E>
準備した棒材に対し、加工度5.5の伸線加工[1]を行った。その後、幅拡がり率Sが3.0の圧延加工[2]を行った。仕上げ引抜き加工[3]は行わず、155℃で40時間の調質焼鈍[4]を行った。作製したアルミニウム合金材の厚みに対する幅の比率は15倍であった。
<製造条件F>
準備した棒材に対し、加工度6.5の伸線加工[1]を行った。その後、幅拡がり率Sが3.0の圧延加工[2]を行った。続いて、仕上げ引抜き加工[3]を行い、140℃で1時間の調質焼鈍[4]を行った。作製したアルミニウム合金材の厚みに対する幅の比率は10倍であった。
<製造条件G>
準備した棒材に対し、加工度7.5の伸線加工[1]を行った。その後、幅拡がり率Sが2.5の圧延加工[2]を行った。仕上げ引抜き加工[3]は行わず、80℃で24時間の調質焼鈍[4]を行った。作製したアルミニウム合金材の厚みに対する幅の比率は6倍であった。
<製造条件H>
準備した棒材に対し、加工度10の伸線加工[1]を行った。その後、幅拡がり率Sが2.0の圧延加工[2]を行った。仕上げ引抜き加工[3]は行わず、100℃で24時間の調質焼鈍[4]を行った。作製したアルミニウム合金材の厚みに対する幅の比率は3倍であった。
<製造条件I>
伸線加工[1]の加工度を2.0とした以外は、製造条件Eと同じ条件で行った。作製したアルミニウム合金材の厚みに対する幅の比率は15倍であった。
<製造条件J>
準備した棒材に対し、処理温度180℃、保持時間5時間の時効析出熱処理[0]を行い、その後、加工度5.5の伸線加工[1]と幅拡がり率Sが3.5の圧延加工[2]を行った。比較例13では、圧延加工[2]の途中で加工割れが多発したため、作業を中止した。
<製造条件K>
準備した棒材に対し、伸線加工[1]を行った。比較例9~11では、伸線加工[1]の途中で加工割れが多発したため、作業を中止した。
上記実施例及び比較例に係るアルミニウム合金材を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。結果を表2に示す。
JIS H1305:2005に準じて、発光分光分析法によって行った。なお、測定は、発光分光分析装置(株式会社日立ハイテクサイエンス製)を用いて行った。
JIS Z 2244:2009に準じて、微小硬さ試験機 HM-125(株式会社アカシ(現株式会社ミツトヨ)製)を用いて、ビッカース硬さ(HV)を測定した。このとき、試験力は0.1kgf(0.98N)、保持時間は15秒とした。また、測定位置は、作製したアルミニウム合金材の長手方向に平行な断面において、中心と表層の中間付近の位置(表層側から約1/4中心側の位置)とし、5箇所の測定値の平均値を算出した。なお、測定値の最大値及び最小値の差が10以上であった場合には、さらに測定数を増やし、10箇所の測定値の平均値を算出した。ビッカース硬さ(HV)は大きいほど好ましく、本実施例では、90以上を合格レベルとした。
JIS Z2241:2001に準じて、精密万能試験機(株式会社島津製作所製)を用いて、引張試験を行い、引張強さ(MPa)を測定した。なお、上記試験は、評点間距離を10cm、変形速度を10mm/分の条件で実施した。作製したアルミニウム合金材と、作製後に120℃で30分間加熱したアルミニウム合金材について、各3本ずつ測定を行い、その平均値を算出した。引張強度は大きいほど好ましいが、本実施例では、加熱前のアルミニウム合金材について350MPa以上を合格レベルとした。加熱後のアルミニウム合金材については、引張強度が加熱前のアルミニウム合金材に対して90%以上であるものを合格「○」とし、90%未満であるものを不合格「×」とした。
日本伸銅協会技術標準JCBA-T308(2002)に準じて、両振りの試験を行った。試験片のセット長さLは、125GPaのヤング率を有する銅系材料に300MPaの曲げ応力を付与する条件を用いた。板厚tの平方根を用いて、
L=36.06×√t・・・・・・(4)
と表される。作製したアルミニウム合金材について、この条件による材料が破断するまでの繰り返し回数NAを求めた。次に、リボン形状を有するタフピッチ銅について、同じ条件で測定し、繰り返し回数NCを求めた。そして、両者の比Pを下記式(5)のように求めた。比較となるタフピッチ銅には、作製したアルミニウム合金材と、幅及び厚みが同じであるものを用いた。
P=NA÷NC・・・・・・(5)
比較となる銅系材料に対する比Pは大きいほど好ましいが、本実施例では、1.0以上を合格レベルとした。
Claims (14)
- Mg:0.2~1.8質量%、Si:0.2~2.0質量%、Fe:0.01~1.50質量%、残部:Al及び不可避不純物からなる合金組成を有するアルミニウム合金材であって、
ビッカース硬さ(HV)が90以上190以下であり、
リボン形状を有していることを特徴とするアルミニウム合金材。 - Mg:0.2~1.8質量%、Si:0.2~2.0質量%、Fe:0.01~1.50質量%、Ti、B、Cu、Ag、Zn、Ni、Co、Au、Mn、Cr、V、Zr及びSnから選択される少なくとも1種:合計で0.00~2質量%、残部:Al及び不可避不純物からなる合金組成を有するアルミニウム合金材であって、
ビッカース硬さ(HV)が90以上190以下であり、
リボン形状を有していることを特徴とするアルミニウム合金材。 - Mg:0.2~1.8質量%、Si:0.2~2.0質量%、Fe:0.01~1.50質量%、Ti、B、Cu、Ag、Zn、Ni、Co、Au、Mn、Cr、V、Zr及びSnから選択される少なくとも1種:合計で0.02~2質量%、残部:Al及び不可避不純物からなる合金組成を有するアルミニウム合金材であって、
ビッカース硬さ(HV)が90以上190以下であり、
リボン形状を有していることを特徴とするアルミニウム合金材。 - ビッカース硬さ(HV)が115以上190以下であることを特徴とする請求項1から3のいずれか1項に記載のアルミニウム合金材。
- 幅方向端面が凸曲面で形成されていることを特徴とする、請求項1から4のいずれか1項に記載のアルミニウム合金材。
- Cu、Ni、Ag、Sn、Au及びPdからなる群から選択された少なくとも1種の金属で覆われていることを特徴とする、請求項1から5のいずれか1項に記載のアルミニウム合金材。
- 請求項1から6のいずれか1項に記載のアルミニウム合金材を用いた導電部材。
- 請求項7に記載の導電部材を備えた導電部品。
- 請求項1から6のいずれか1項に記載のアルミニウム合金材を用いたバネ用部材。
- 請求項9に記載のバネ用部材を備えたバネ用部品。
- 請求項1から6のいずれか1項に記載のアルミニウム合金材を用いた半導体モジュール用部材。
- 請求項11に記載の半導体モジュール用部材を備えた半導体モジュール用部品。
- 請求項1から6のいずれか1項に記載のアルミニウム合金材を用いた構造用部材。
- 請求項13に記載の構造用部材を備えた構造用部品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018532343A JP6430080B1 (ja) | 2017-03-27 | 2018-03-27 | アルミニウム合金材並びにこれを用いた導電部材、導電部品、バネ用部材、バネ用部品、半導体モジュール用部材、半導体モジュール用部品、構造用部材及び構造用部品 |
EP18777183.7A EP3604579B1 (en) | 2017-03-27 | 2018-03-27 | Aluminium alloy material, conductive member using same, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structure member, and structure component |
CN201880019762.2A CN110475884A (zh) | 2017-03-27 | 2018-03-27 | 铝合金材料及使用该材料的导电构件、导电部件、弹簧用构件、弹簧用部件、半导体模块用构件、半导体模块用部件、结构用构件和结构用部件 |
KR1020197020169A KR102570708B1 (ko) | 2017-03-27 | 2018-03-27 | 알루미늄 합금재 그리고 이것을 사용한 도전 부재, 도전 부품, 스프링용 부재, 스프링용 부품, 반도체 모듈용 부재, 반도체 모듈용 부품, 구조용 부재 및 구조용 부품 |
US16/580,965 US11466346B2 (en) | 2017-03-27 | 2019-09-24 | Aluminum alloy material, and conductive member, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structural member and structural component including the aluminum alloy material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017060327 | 2017-03-27 | ||
JP2017-060328 | 2017-03-27 | ||
JP2017-060327 | 2017-03-27 | ||
JP2017060328 | 2017-03-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/580,965 Continuation US11466346B2 (en) | 2017-03-27 | 2019-09-24 | Aluminum alloy material, and conductive member, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structural member and structural component including the aluminum alloy material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181329A1 true WO2018181329A1 (ja) | 2018-10-04 |
Family
ID=63675909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/012459 Ceased WO2018181329A1 (ja) | 2017-03-27 | 2018-03-27 | アルミニウム合金材並びにこれを用いた導電部材、導電部品、バネ用部材、バネ用部品、半導体モジュール用部材、半導体モジュール用部品、構造用部材及び構造用部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11466346B2 (ja) |
EP (1) | EP3604579B1 (ja) |
JP (1) | JP6430080B1 (ja) |
KR (1) | KR102570708B1 (ja) |
CN (1) | CN110475884A (ja) |
WO (1) | WO2018181329A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020129344A1 (ja) * | 2018-12-18 | 2021-11-04 | 古河電気工業株式会社 | ケーブル、ならびにこのケーブルを具える接続構造体、ワイヤーハーネスおよび係留型移動体 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018183721A1 (en) * | 2017-03-30 | 2018-10-04 | NanoAL LLC | High-performance 6000-series aluminum alloy structures |
CN110904370B (zh) * | 2019-12-09 | 2021-07-27 | 安徽鑫铂铝业股份有限公司 | 一种太阳能光伏用铝型材及其制备方法 |
CN111485143B (zh) * | 2020-03-19 | 2021-07-06 | 苏州杰源精密机械有限公司 | 一种高导电率线束及其制备方法 |
KR102850994B1 (ko) * | 2020-03-25 | 2025-08-27 | 닛데쓰마이크로메탈가부시키가이샤 | Al 본딩 와이어 |
US20230302584A1 (en) * | 2020-08-31 | 2023-09-28 | Nippon Micrometal Corporation | Al WIRING MATERIAL |
EP4289984A4 (en) * | 2021-02-05 | 2025-06-18 | Nippon Micrometal Corporation | AL WIRING MATERIAL |
JP7727414B2 (ja) * | 2021-05-28 | 2025-08-21 | 古河電気工業株式会社 | 箔糸用金属材および箔糸ならびに箔糸を用いて形成される撚糸および布 |
CN115821125B (zh) * | 2022-12-21 | 2024-02-02 | 广东中联电缆集团有限公司 | 一种高导电率硬铝合金导线及其制造方法 |
CN116144994B (zh) * | 2022-12-29 | 2023-12-05 | 东北轻合金有限责任公司 | 一种兼具高强度、高硬度、高耐疲劳和高耐腐蚀的铝合金厚板及其制备方法和应用 |
CN117127037A (zh) * | 2023-07-17 | 2023-11-28 | 中国科学院金属研究所 | 一种高强-高导-高韧的超细铝-镁-硅合金线制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000282157A (ja) | 1999-01-29 | 2000-10-10 | Furukawa Electric Co Ltd:The | 箔導体 |
JP2000353435A (ja) | 1999-04-05 | 2000-12-19 | Sumitomo Electric Ind Ltd | 同軸素線、同軸ケーブル及びそれを用いた電子機器 |
JP2004003038A (ja) * | 2003-08-08 | 2004-01-08 | Showa Denko Kk | 熱伝導性および強度に優れたAl−Mg−Si系合金板の製造方法 |
JP2006299342A (ja) * | 2005-04-20 | 2006-11-02 | Sumitomo Light Metal Ind Ltd | プレス成形用アルミニウム合金材の製造方法およびプレス加工材 |
JP2007009262A (ja) * | 2005-06-29 | 2007-01-18 | Mitsubishi Alum Co Ltd | 熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板およびその製造方法 |
JP2012097321A (ja) * | 2010-11-02 | 2012-05-24 | Furukawa-Sky Aluminum Corp | 耐応力腐食割れ性に優れた高強度アルミニウム合金製鍛造品及びその鍛造方法 |
JP2013036089A (ja) * | 2011-08-09 | 2013-02-21 | Furukawa-Sky Aluminum Corp | 缶胴用アルミニウム合金板及びその製造方法、ならびに、缶胴用樹脂被覆アルミニウム合金板及びその製造方法 |
JP2014101541A (ja) * | 2012-11-19 | 2014-06-05 | Kobe Steel Ltd | 高圧水素ガス容器用アルミニウム合金材とその製造方法 |
JP2014208865A (ja) * | 2013-04-16 | 2014-11-06 | 日本軽金属株式会社 | 冷間塑性加工用熱処理型アルミニウム合金及びその製造方法 |
JP2015010259A (ja) * | 2013-06-28 | 2015-01-19 | 国立大学法人横浜国立大学 | アルミニウム合金板 |
JP2016020527A (ja) * | 2014-07-14 | 2016-02-04 | 新日鐵住金株式会社 | 高強度高延性アルミニウム合金板の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1158063A1 (en) * | 2000-05-22 | 2001-11-28 | Norsk Hydro A/S | Corrosion resistant aluminium alloy |
US20030133825A1 (en) * | 2002-01-17 | 2003-07-17 | Tom Davisson | Composition and method of forming aluminum alloy foil |
JP4477295B2 (ja) * | 2002-10-10 | 2010-06-09 | 古河電気工業株式会社 | 自動車ワイヤハーネス用アルミ電線 |
FR2851579B1 (fr) | 2003-02-26 | 2005-04-01 | Pechiney Rhenalu | PROCEDE D'EMBOUTISSAGE A TIEDE DE PIECES EN ALLIAGE A1-Mg |
JP4168066B2 (ja) * | 2006-08-11 | 2008-10-22 | 株式会社神戸製鋼所 | プラズマ処理装置に用いられる陽極酸化処理用アルミニウム合金およびその製造方法、陽極酸化皮膜を有するアルミニウム合金部材、ならびにプラズマ処理装置 |
CA2815834A1 (en) * | 2010-10-29 | 2012-05-03 | Alcoa Inc. | Improved 5xxx aluminum alloys, and methods for producing the same |
CN103205611B (zh) * | 2013-03-27 | 2014-09-24 | 成都阳光铝制品有限公司 | 一种适用于生产工业铝带板的铝合金的生产工艺 |
US10301709B2 (en) * | 2015-05-08 | 2019-05-28 | Novelis Inc. | Shock heat treatment of aluminum alloy articles |
CN105970025B (zh) * | 2016-05-16 | 2018-05-29 | 东莞市灿煜金属制品有限公司 | 一种高强度可氧化铝合金板带材的制造方法 |
-
2018
- 2018-03-27 JP JP2018532343A patent/JP6430080B1/ja active Active
- 2018-03-27 KR KR1020197020169A patent/KR102570708B1/ko active Active
- 2018-03-27 EP EP18777183.7A patent/EP3604579B1/en active Active
- 2018-03-27 CN CN201880019762.2A patent/CN110475884A/zh active Pending
- 2018-03-27 WO PCT/JP2018/012459 patent/WO2018181329A1/ja not_active Ceased
-
2019
- 2019-09-24 US US16/580,965 patent/US11466346B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000282157A (ja) | 1999-01-29 | 2000-10-10 | Furukawa Electric Co Ltd:The | 箔導体 |
JP2000353435A (ja) | 1999-04-05 | 2000-12-19 | Sumitomo Electric Ind Ltd | 同軸素線、同軸ケーブル及びそれを用いた電子機器 |
JP2004003038A (ja) * | 2003-08-08 | 2004-01-08 | Showa Denko Kk | 熱伝導性および強度に優れたAl−Mg−Si系合金板の製造方法 |
JP2006299342A (ja) * | 2005-04-20 | 2006-11-02 | Sumitomo Light Metal Ind Ltd | プレス成形用アルミニウム合金材の製造方法およびプレス加工材 |
JP2007009262A (ja) * | 2005-06-29 | 2007-01-18 | Mitsubishi Alum Co Ltd | 熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板およびその製造方法 |
JP2012097321A (ja) * | 2010-11-02 | 2012-05-24 | Furukawa-Sky Aluminum Corp | 耐応力腐食割れ性に優れた高強度アルミニウム合金製鍛造品及びその鍛造方法 |
JP2013036089A (ja) * | 2011-08-09 | 2013-02-21 | Furukawa-Sky Aluminum Corp | 缶胴用アルミニウム合金板及びその製造方法、ならびに、缶胴用樹脂被覆アルミニウム合金板及びその製造方法 |
JP2014101541A (ja) * | 2012-11-19 | 2014-06-05 | Kobe Steel Ltd | 高圧水素ガス容器用アルミニウム合金材とその製造方法 |
JP2014208865A (ja) * | 2013-04-16 | 2014-11-06 | 日本軽金属株式会社 | 冷間塑性加工用熱処理型アルミニウム合金及びその製造方法 |
JP2015010259A (ja) * | 2013-06-28 | 2015-01-19 | 国立大学法人横浜国立大学 | アルミニウム合金板 |
JP2016020527A (ja) * | 2014-07-14 | 2016-02-04 | 新日鐵住金株式会社 | 高強度高延性アルミニウム合金板の製造方法 |
Non-Patent Citations (1)
Title |
---|
ALUMINIUM HANDBOOK, 31 January 2007 (2007-01-31), pages 37 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020129344A1 (ja) * | 2018-12-18 | 2021-11-04 | 古河電気工業株式会社 | ケーブル、ならびにこのケーブルを具える接続構造体、ワイヤーハーネスおよび係留型移動体 |
JP7354147B2 (ja) | 2018-12-18 | 2023-10-02 | 古河電気工業株式会社 | ケーブル、ならびにこのケーブルを具える接続構造体、ワイヤーハーネスおよび係留型移動体 |
Also Published As
Publication number | Publication date |
---|---|
EP3604579A1 (en) | 2020-02-05 |
JP6430080B1 (ja) | 2018-11-28 |
US20200017938A1 (en) | 2020-01-16 |
KR20190132346A (ko) | 2019-11-27 |
JPWO2018181329A1 (ja) | 2019-04-04 |
US11466346B2 (en) | 2022-10-11 |
EP3604579C0 (en) | 2023-10-18 |
KR102570708B1 (ko) | 2023-08-24 |
EP3604579B1 (en) | 2023-10-18 |
EP3604579A4 (en) | 2020-08-12 |
CN110475884A (zh) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6430080B1 (ja) | アルミニウム合金材並びにこれを用いた導電部材、導電部品、バネ用部材、バネ用部品、半導体モジュール用部材、半導体モジュール用部品、構造用部材及び構造用部品 | |
JP6479274B2 (ja) | アルミニウム合金材並びにこれを用いた締結部品、構造用部品、バネ用部品、導電部材および電池用部材 | |
JP6430085B1 (ja) | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
JP6356365B2 (ja) | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
JP6599061B1 (ja) | アルミニウム合金材ならびにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
CN111511940B (zh) | 铝合金材料以及使用其的导电构件、电池用构件、紧固部件、弹簧用部件及结构用部件 | |
JP6410967B2 (ja) | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
KR102453494B1 (ko) | 알루미늄 합금재 및 이를 사용한 케이블, 전선 및 스프링 부재 | |
KR102453495B1 (ko) | 절연 전선용 연선 도체, 절연 전선, 코드 및 케이블 | |
KR20210078495A (ko) | 알루미늄 합금재 및 이를 사용한 도전 부재, 전지용 부재, 체결 부품, 스프링용 부품, 구조용 부품, 캡타이어 케이블 | |
US20130233596A1 (en) | Electric Wire or Cable | |
US11183780B2 (en) | Connection structure | |
JP6858310B2 (ja) | アルミニウム合金材およびこれを用いた、導電部材、電池用部材、締結部品、バネ用部品、構造用部品、キャブタイヤケーブル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018532343 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18777183 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197020169 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018777183 Country of ref document: EP Effective date: 20191028 |