WO2018181576A1 - 全固体電池 - Google Patents
全固体電池 Download PDFInfo
- Publication number
- WO2018181576A1 WO2018181576A1 PCT/JP2018/012971 JP2018012971W WO2018181576A1 WO 2018181576 A1 WO2018181576 A1 WO 2018181576A1 JP 2018012971 W JP2018012971 W JP 2018012971W WO 2018181576 A1 WO2018181576 A1 WO 2018181576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- positive electrode
- electrode active
- negative electrode
- powder
- Prior art date
Links
- YWJVFBOUPMWANA-UHFFFAOYSA-H [Li+].[V+5].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O Chemical compound [Li+].[V+5].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YWJVFBOUPMWANA-UHFFFAOYSA-H 0.000 claims abstract description 354
- 239000007773 negative electrode material Substances 0.000 claims abstract description 203
- 239000007774 positive electrode material Substances 0.000 claims abstract description 202
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 229920000388 Polyphosphate Polymers 0.000 claims abstract description 7
- 239000001205 polyphosphate Substances 0.000 claims abstract description 7
- 235000011176 polyphosphates Nutrition 0.000 claims abstract description 7
- 239000007784 solid electrolyte Substances 0.000 claims description 204
- 239000007787 solid Substances 0.000 claims description 31
- 239000011149 active material Substances 0.000 claims description 30
- UXLFPILEUDLAFI-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Al+3].[Al+3].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Al+3].[Al+3].[Li+] UXLFPILEUDLAFI-UHFFFAOYSA-K 0.000 claims description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 380
- 239000000843 powder Substances 0.000 description 347
- 238000002360 preparation method Methods 0.000 description 149
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 104
- 239000007858 starting material Substances 0.000 description 104
- 238000000034 method Methods 0.000 description 98
- 238000010304 firing Methods 0.000 description 86
- 239000002994 raw material Substances 0.000 description 84
- 239000000203 mixture Substances 0.000 description 83
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 80
- 238000004519 manufacturing process Methods 0.000 description 74
- 239000002904 solvent Substances 0.000 description 57
- 239000012298 atmosphere Substances 0.000 description 53
- 238000002156 mixing Methods 0.000 description 53
- 239000010936 titanium Substances 0.000 description 52
- 239000011812 mixed powder Substances 0.000 description 49
- 238000000227 grinding Methods 0.000 description 46
- 229910010413 TiO 2 Inorganic materials 0.000 description 41
- 230000000052 comparative effect Effects 0.000 description 41
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 40
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 40
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 description 40
- 229910052757 nitrogen Inorganic materials 0.000 description 40
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 39
- 238000009616 inductively coupled plasma Methods 0.000 description 39
- 238000005303 weighing Methods 0.000 description 39
- 239000011230 binding agent Substances 0.000 description 38
- 238000005245 sintering Methods 0.000 description 35
- 239000010949 copper Substances 0.000 description 28
- 238000010344 co-firing Methods 0.000 description 22
- 238000011156 evaluation Methods 0.000 description 22
- 238000005259 measurement Methods 0.000 description 22
- UODXCYZDMHPIJE-UHFFFAOYSA-N menthanol Chemical compound CC1CCC(C(C)(C)O)CC1 UODXCYZDMHPIJE-UHFFFAOYSA-N 0.000 description 20
- 238000007650 screen-printing Methods 0.000 description 20
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 17
- 230000000694 effects Effects 0.000 description 17
- 229910001416 lithium ion Inorganic materials 0.000 description 17
- 238000001354 calcination Methods 0.000 description 15
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 229920002799 BoPET Polymers 0.000 description 10
- 239000001856 Ethyl cellulose Substances 0.000 description 10
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 10
- 235000019325 ethyl cellulose Nutrition 0.000 description 10
- 229920001249 ethyl cellulose Polymers 0.000 description 10
- 238000010298 pulverizing process Methods 0.000 description 10
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229910012258 LiPO Inorganic materials 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 238000004898 kneading Methods 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 238000007606 doctor blade method Methods 0.000 description 5
- -1 phosphoric acid compound Chemical class 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- NGFYWBAIYQLTQK-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Li+].[Al+3].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Li+].[Al+3].[Li+] NGFYWBAIYQLTQK-UHFFFAOYSA-K 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Li 3 V 2 (PO 4 ) 3 having a stoichiometric composition is used as the sintered body active material for the positive electrode or the negative electrode, the composition of the crystal grain boundaries formed during the sintering becomes non-uniform, and lithium ion conduction is inhibited. For this reason, there is a problem that a high discharge capacity cannot be obtained.
- the present inventors have found that the positive electrode active material layer and the negative electrode active material layer contain lithium vanadium phosphate, and the lithium vanadium phosphate contains a polyphosphate compound containing Li and V.
- the inventors have found that the ratio of Li and V contained and the ratio of divalent V contained in V are caused by the capacity, and have completed the present invention.
- lithium ions in lithium vanadium phosphate are stably present in the crystal lattice, and the diffusion of excessive Li during sintering is controlled to be uniform. It is possible to form a smooth grain boundary and suppress a decrease in lithium ion conduction between crystal grains. As a result, a large amount of lithium ions can be taken in and out, so that a high capacity can be realized.
- the all solid state battery according to the present invention is characterized in that the solid electrolyte layer contains lithium aluminum aluminum phosphate.
- lithium ions can easily move in the positive electrode active material layer and the negative electrode active material layer, and at the same time, lithium ions move in the solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer. Therefore, higher capacity can be realized.
- the all solid state battery according to the present invention is characterized in that a value of Li / V contained in the positive electrode active material layer is larger than a value of Li / V contained in the negative electrode active material layer.
- the positive electrode active material layer satisfies 1.60 ⁇ Li / V ⁇ 2.30, and the ratio of divalent V contained in V is 10% to 80%
- the negative electrode active material layer satisfies 1.50 ⁇ Li / V ⁇ 2.10, and a ratio of divalent V contained in V is 5% to 57%.
- the solid electrolyte contains Li f Al g Ti h P i O j .
- f, g, h, i and j are 0.5 ⁇ f ⁇ 3.0, 0.0 ⁇ g ⁇ 1.0, 1.0 ⁇ h ⁇ 2.0, 2.8 ⁇ i, respectively. ⁇ 3.2, 9.25 ⁇ j ⁇ 15.0.
- f, g, h, i and j are 0.5 ⁇ f ⁇ 3.0, 0.0 ⁇ g ⁇ 1.0, 1.0 ⁇ h ⁇ 2.0, 2.8 ⁇ i, respectively. ⁇ 3.2, 9.25 ⁇ j ⁇ 15.0.
- the all solid state battery according to the present invention is characterized in that the pair of electrode layers and the solid electrolyte layer provided between the pair of electrode layers have a relative density of 80% or more.
- the all-solid battery according to the present embodiment is an all-solid battery having a solid electrolyte layer between a pair of electrode layers, and the positive electrode active material layer and the negative electrode active material layer constituting the pair of electrode layers include lithium vanadium phosphate.
- the lithium vanadium phosphate contains a polyphosphate compound containing Li and V, satisfies 1.5 ⁇ Li / V ⁇ 2.30, and the ratio of divalent V contained in V is 5% to 80 % Is preferred.
- lithium ions in lithium vanadium phosphate are stably present in the crystal lattice, and excessive Li diffusion is controlled during sintering.
- a uniform grain boundary can be formed and it becomes possible to suppress the fall of lithium ion conduction between crystal grains.
- a large amount of lithium ions can be taken in and out, so that a high capacity can be realized.
- the lithium vanadium phosphate of the present embodiment may be quantified by high frequency inductively coupled plasma emission spectroscopy (ICP) to calculate Li / V.
- ICP inductively coupled plasma emission spectroscopy
- the valence of V in the lithium vanadium phosphate of this embodiment can be obtained from a chemical shift using X-ray photoelectron spectroscopy (XPS).
- the solid electrolyte layer preferably contains lithium aluminum aluminum phosphate.
- the solid electrolyte containing the lithium vanadium phosphate active material and the lithium aluminum aluminum phosphate of the present embodiment is a homogeneous polyphosphate ceramic, so that non-uniform grain boundaries that prevent lithium ion migration at their interface It becomes difficult to form a charge / discharge capacity.
- the Li / V value contained in the positive electrode active material layer is larger than the Li / V value contained in the negative electrode active material layer.
- the amount of Li contained in the positive electrode active material layer is larger than the amount of Li contained in the negative electrode active material layer, so that more Li moves from the positive electrode active material layer to the negative electrode active material layer, The negative electrode active material layer can receive more Li. For this reason, higher capacity can be realized.
- Li / V of lithium vanadium phosphate satisfies 1.6 ⁇ Li / V ⁇ 2.3 in the positive electrode active material layer, and the divalent contained in V
- the ratio of V is 10% to 80%
- the negative electrode active material layer satisfies 1.5 ⁇ Li / V ⁇ 2.1 and the ratio of divalent V contained in V is 5% to 57%. It is preferable to satisfy.
- the amount of Li contained in the positive electrode active material layer is larger than the amount of Li contained in the negative electrode active material layer, so that more Li is contained. It is possible to move from the positive electrode active material layer to the negative electrode active material layer and receive more Li in the negative electrode active material layer, and the divalent V amount of the positive electrode active material layer is less than that of the negative electrode active material layer.
- the amount of V more than the divalent V amount, it becomes possible to make lithium ions exist more stably in the crystal lattice, and by forming uniform grain boundaries, the lithium ion conduction between crystal grains is reduced. As a result, it is possible to achieve higher capacity.
- the crystal grain boundary is easy to operate as a positive electrode and a composition structure suitable for operation as a negative electrode.
- the all-solid-state battery according to the present invention has Li f Al g Ti h Pi O j (where f, g, h, i, and j are each 0 as lithium aluminum phosphate lithium as described above). .5 ⁇ f ⁇ 3.0, 0.0 ⁇ g ⁇ 1.0, 1.0 ⁇ h ⁇ 2.0, 2.8 ⁇ i ⁇ 3.20, 9.25 ⁇ j ⁇ 15.0 It is preferred to use
- Li f Al g Ti h Pi O j having high lithium ion conductivity as lithium aluminum aluminum phosphate (where f, g, h, i, and j are 0.5 ⁇ f ⁇ 3, respectively) 0.0, 0.0 ⁇ g ⁇ 1.0, 1.0 ⁇ h ⁇ 2.0, 2.8 ⁇ i ⁇ 3.2, and 9.25 ⁇ j ⁇ 15.0.) By using it, higher charge / discharge characteristics can be obtained.
- the lithium vanadium phosphate material of this embodiment can be obtained by heat-treating a mixed raw material in which a Li compound, a V compound, and a phosphoric acid compound or a phosphoric acid Li compound are mixed.
- the titanium aluminum lithium lithium material can be obtained by heat-treating a mixed raw material in which a Li compound and an Al compound, a Ti compound, a phosphoric acid compound, or a phosphoric acid Ti compound are mixed.
- Li compound for example, a LiOH or a hydrate thereof, Li 2 CO 3, LiNO 3 , CH 3 COOLi like.
- V compound examples include V 2 O 3 and V 2 O 5 .
- the phosphorus compound examples include H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, and the like.
- the Li phosphate compound examples include LiPO 3 , Li 4 P 2 O 7 , Li 5 P 3 O 10 , Li 6 P 4 O 14, and the like.
- (B) Calcination process in the lithium vanadium phosphate, the mixed powder obtained in the mixing process is calcined.
- the calcining temperature at this time is preferably equal to or higher than the temperature at which the state change (for example, phase change) of the starting material occurs.
- the temperature is preferably equal to or higher than the temperature at which the carbonate is decomposed to produce a desired lithium vanadium phosphate phase.
- the calcination temperature is preferably 600 ° C. to 1000 ° C.
- the atmosphere at the time of calcination is preferably an inert gas atmosphere or a reducing gas atmosphere.
- the mixed powder obtained in the mixing step is calcined also in lithium aluminum aluminum phosphate.
- the calcination temperature is preferably 800 ° C. to 1000 ° C.
- the atmosphere at the time of calcination is preferably an atmosphere in which titanium is not reduced, and specifically, an air atmosphere is preferable.
- the pulverization step is a step in which the material that has undergone reaction aggregation in the calcination step is made into a powder having an appropriate particle size and distribution.
- the pulverization method may be dry pulverization without entering the solvent, or wet pulverization in the solvent.
- a planetary mill, an attritor, a ball mill or the like can be used.
- the solvent an organic solvent such as ethanol is more preferable because lithium vanadium phosphate can be more stably pulverized.
- the pulverization time depends on the pulverization amount, it can be, for example, 0.5 hours to 32 hours.
- the manufacturing method of lithium vanadium phosphate of this invention is not limited to this, You may employ
- the positive electrode collector layer and the negative electrode collector layer of the all-solid-state battery in this embodiment contain a positive electrode active material and a negative electrode active material, respectively.
- the positive electrode current collector layer and the negative electrode current collector layer contain a positive electrode active material and a negative electrode active material, respectively, adhesion between the positive electrode current collector layer and the positive electrode active material layer, and the negative electrode current collector layer and the negative electrode active material layer Is desirable because it improves.
- the method for forming the paste is not particularly limited, and for example, a paste can be obtained by mixing the powder of each of the above materials in a vehicle.
- the vehicle is a general term for the medium in the liquid phase.
- the vehicle includes a solvent and a binder.
- the prepared paste is applied in a desired order on a substrate such as PET and dried as necessary, and then the substrate is peeled off to produce a green sheet.
- the paste application method is not particularly limited, and a known method such as screen printing, application, transfer, doctor blade, or the like can be employed.
- the produced green sheets are stacked in a desired order and the number of laminated layers, and alignment, cutting, etc. are performed as necessary to produce laminated blocks.
- the active material unit demonstrated below may be prepared and a laminated block may be produced.
- a solid electrolyte paste is formed on a PET film in the form of a sheet by a doctor blade method to obtain a solid electrolyte sheet, and then a positive electrode active material layer paste is printed on the solid electrolyte sheet by screen printing and dried. To do.
- a positive electrode current collector layer paste is printed thereon by screen printing and dried. Further thereon, the positive electrode active material paste is printed again by screen printing, dried, and then the PET film is peeled off to obtain a positive electrode active material layer unit. In this way, a positive electrode active material layer unit in which a positive electrode active material layer paste, a positive electrode current collector layer paste, and a positive electrode active material paste are formed in this order on a solid electrolyte sheet is obtained.
- a negative electrode active material layer unit is also produced by the same procedure, and a negative electrode active material layer unit in which a negative electrode active material layer paste, a negative electrode current collector layer paste, and a negative electrode active material paste are formed in this order on a solid electrolyte sheet is obtained. .
- the produced laminated block is pressure-bonded together.
- the pressure bonding is performed while heating, and the heating temperature is, for example, 40 to 95 ° C.
- the positive electrode and negative electrode active material layer paste was prepared by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of lithium vanadium phosphate powder, and kneading and dispersing with three rolls. An active material layer paste was prepared.
- This solid electrolyte layer paste was formed into a sheet using a PET film as a base material by a doctor blade method to obtain a solid electrolyte layer sheet having a thickness of 15 ⁇ m.
- an electrode current collector layer paste was printed at a thickness of 5 ⁇ m by screen printing and dried at 80 ° C. for 10 minutes.
- a positive electrode active material layer paste was printed thereon by screen printing to a thickness of 5 ⁇ m, and dried at 80 ° C. for 10 minutes to obtain a positive electrode layer unit.
- the negative electrode active material layer paste is printed on the solid electrolyte layer sheet by screen printing at a thickness of 5 ⁇ m, dried at 80 ° C. for 10 minutes, and then on the sheet by screen printing at a thickness of 5 ⁇ m.
- An electrode current collector layer paste was printed and dried at 80 ° C. for 10 minutes to obtain a negative electrode layer unit.
- the PET film was then peeled off.
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in a nitrogen atmosphere. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 1 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 2 In this example, raw materials were weighed so that Li / V of lithium vanadium phosphate was 1.70, and lithium vanadium phosphate powder was produced in the same manner as in Example 1. The composition of lithium vanadium phosphate was confirmed to be 1.70 using Li / V using ICP. The amount of divalent V in the contained V was confirmed to be 20% by using XPS and the amount of divalent V in lithium vanadium phosphate was 20%. Furthermore, after producing the laminated body using the method similar to Example 1, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 1. Table 1 shows the measured discharge capacity.
- Example 3 In this example, raw materials were weighed so that Li / V of lithium vanadium phosphate was 1.80, and lithium vanadium phosphate powder was produced in the same manner as in Example 1. The composition of lithium vanadium phosphate was confirmed to be 1.80 using Li / V using ICP. The amount of divalent V in the contained V was confirmed to be 33% by using XPS and the amount of divalent V in lithium vanadium phosphate was 33%. Furthermore, after producing the laminated body using the method similar to Example 1, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 1. Table 1 shows the measured discharge capacity.
- Example 4 In this example, the raw materials were weighed so that Li / V of lithium vanadium phosphate was 1.93, and lithium vanadium phosphate powder was produced in the same manner as in Example 1. The composition of lithium vanadium phosphate was confirmed to be 1.93 using Li / V using ICP. The amount of divalent V in the contained V was confirmed to be 49% by using XPS and the amount of divalent V in lithium vanadium phosphate was 49%. Furthermore, after producing the laminated body using the method similar to Example 1, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 1. Table 1 shows the measured discharge capacity.
- Example 5 In this example, raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30, and lithium vanadium phosphate powder was produced in the same manner as in Example 1. The composition of lithium vanadium phosphate was confirmed to be Li / V 2.30 using ICP. The amount of divalent V in the contained V was confirmed to be 78% by using XPS and the amount of divalent V in lithium vanadium phosphate was 78%. Furthermore, after producing the laminated body using the method similar to Example 1, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 1. Table 1 shows the measured discharge capacity.
- Comparative Example 1 In this comparative example, raw materials were weighed so that Li / V of lithium vanadium phosphate was 1.48, and lithium vanadium phosphate powder was produced in the same manner as in Example 1. The composition of lithium vanadium phosphate was confirmed to be Li / V 1.48 using ICP. The amount of divalent V in the contained V was confirmed to be 1% by using XPS and the amount of divalent V in lithium vanadium phosphate was 1%. Furthermore, after producing the laminated body using the method similar to Example 1, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 1. Table 1 shows the measured discharge capacity.
- Example 2 In this comparative example, the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.60, and vanadium lithium phosphate powder was produced in the same manner as in Example 1. The composition of lithium vanadium phosphate was confirmed to be Li / V 2.60 using ICP. The amount of divalent V in the contained V was confirmed to be 85% by using XPS and the amount of divalent V in lithium vanadium phosphate was 85%. Furthermore, after producing the laminated body using the method similar to Example 1, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 1. Table 1 shows the measured discharge capacity.
- Example 4 In this comparative example, the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.00, and lithium vanadium phosphate powder was produced in the same manner as in Example 1. The composition of lithium vanadium phosphate was confirmed to be Li / V 2.00 using ICP. The amount of divalent V in the contained V was confirmed to be 1% by using XPS and the amount of divalent V in lithium vanadium phosphate was 1%. Furthermore, after producing the laminated body using the method similar to Example 1, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 1. Table 1 shows the measured discharge capacity.
- the all-solid-state battery using Li / V in the range according to the present invention and lithium vanadium phosphate having divalent V as the active material layer clearly has a high discharge capacity. I understand.
- the calcined powder was treated with a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours for grinding.
- the pulverized powder was separated from the balls and ethanol and dried to obtain lithium vanadium phosphate powder.
- the composition of lithium vanadium phosphate was confirmed to be 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 33% by using XPS and the amount of divalent V in each lithium vanadium phosphate was 33%.
- negative electrode active material As the negative electrode active material, the same powder as the positive electrode active material was used.
- the electrode active material layer paste was prepared by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of lithium vanadium phosphate powder, and kneading and dispersing with three rolls to form a positive electrode and a negative electrode active material layer A paste was prepared.
- This solid electrolyte layer paste was formed into a sheet using a PET film as a base material by a doctor blade method to obtain a solid electrolyte layer sheet having a thickness of 15 ⁇ m.
- the positive electrode current collector layer paste was printed at a thickness of 5 ⁇ m by screen printing and dried at 80 ° C. for 10 minutes.
- a positive electrode active material layer paste was printed thereon by screen printing to a thickness of 5 ⁇ m, and dried at 80 ° C. for 10 minutes to obtain a positive electrode layer unit.
- the negative electrode active material layer paste is printed on the solid electrolyte layer sheet by screen printing at a thickness of 5 ⁇ m, dried at 80 ° C. for 10 minutes, and then on the negative electrode at a thickness of 5 ⁇ m by screen printing.
- the current collector layer paste was printed and dried at 80 ° C. for 10 minutes to obtain a negative electrode layer unit.
- the PET film was then peeled off.
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in a nitrogen atmosphere. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charging and discharging was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 2 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 7 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 8 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 9 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 10 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 11 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 12 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 13 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 14 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 15 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 16 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- Example 17 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V was 1.80 in lithium vanadium phosphate, and lithium vanadium phosphate powder was obtained in the same manner as in Example 6.
- a positive electrode and negative electrode active material layer paste was prepared in the same manner as in Example 6 using this lithium vanadium phosphate powder.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- the starting materials were Li 2 CO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4, and wet mixing was performed for 16 hours in a ball mill using ethanol as a solvent. The mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined in the atmosphere at 850 ° C. for 2 hours in an alumina crucible.
- lithium vanadium phosphate having Li / V and divalent V in the range according to the present invention is used for the active material layer. It can be seen that the discharge capacity is clearly higher in the case of the above.
- Example 18 (Preparation of positive electrode active material)
- the raw materials were weighed so that Li / V was 1.93 in lithium vanadium phosphate.
- Li 2 CO 3 , LiPO 3 , V 2 O 3 and NH 4 H 2 PO 4 were used as starting materials.
- the starting materials were weighed and then mixed and ground in ethanol in a ball mill (120 rpm / zirconia balls) for 16 hours.
- the mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined using a magnesia crucible. The calcining was performed at 850 ° C.
- the calcined powder was treated with a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours for grinding.
- the pulverized powder was separated from the balls and ethanol and dried to obtain lithium vanadium phosphate powder.
- the composition of lithium vanadium phosphate was confirmed to be Li / V 1.93 using ICP.
- the amount of divalent V in the contained V was confirmed to be 49% by using XPS and the amount of divalent V in each lithium vanadium phosphate was 49%.
- the calcined powder was treated with a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours for grinding.
- the pulverized powder was separated from the balls and ethanol and dried to obtain lithium vanadium phosphate powder.
- the composition of lithium vanadium phosphate was confirmed to be 1.70 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 20% by using XPS and the amount of divalent V in each lithium vanadium phosphate was 20%.
- a positive electrode active material layer paste was prepared using lithium vanadium phosphate powder having Li / V of 1.93 and a divalent V amount of 49%.
- the positive electrode active material layer paste was prepared by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of lithium vanadium phosphate powder, and kneading and dispersing with three rolls. did.
- a negative electrode active material layer paste was prepared using lithium vanadium phosphate powder having Li / V of 1.70 and a divalent V content of 20%.
- the negative electrode active material layer paste was prepared by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of lithium vanadium phosphate powder, and kneading and dispersing with three rolls. did.
- This solid electrolyte layer paste was formed into a sheet using a PET film as a base material by a doctor blade method to obtain a solid electrolyte layer sheet having a thickness of 15 ⁇ m.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 3 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 19 the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material The raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.55 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared using the same method as in Example 18. The composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.55 by using ICP. In addition, the amount of divalent V in the contained V was confirmed to be 78% and 5% by using XPS and the amount of divalent V in lithium vanadium phosphate was 78%. Furthermore, after producing the laminated body using the method similar to Example 18, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 18. Table 3 shows the measured discharge capacity.
- Example 21 the raw materials were weighed so that Li / V of lithium vanadium phosphate was 1.70 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material The raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.55 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared using the same method as in Example 18. The composition of lithium vanadium phosphate was confirmed to be 1.70 and 1.55 using Li / V using ICP. In addition, the amount of divalent V in the contained V was confirmed to be 20% and 5% by using XPS and the amount of divalent V in lithium vanadium phosphate was 20%. Furthermore, after producing the laminated body using the method similar to Example 18, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 18. Table 3 shows the measured discharge capacity.
- the amount of divalent V in the contained V was confirmed to be 85% and 1% by using XPS, and the amount of divalent V in lithium vanadium phosphate was 85% and 1%. Furthermore, after producing the laminated body using the method similar to Example 18, debuying and sintering were performed by the same method. The discharge characteristics of the laminate were evaluated in the same manner as in Example 18. Table 3 shows the measured discharge capacity.
- Example 22 (Preparation of positive electrode active material)
- the raw materials were weighed so that Li / V was 2.30 in lithium vanadium phosphate.
- Li 2 CO 3 , LiPO 3 , V 2 O 3 and NH 4 H 2 PO 4 were used as starting materials.
- the starting materials were weighed and then mixed and ground in ethanol in a ball mill (120 rpm / zirconia balls) for 16 hours.
- the mixed powder of the starting material was separated from the balls and ethanol and dried, and then calcined using a magnesia crucible. The calcining was performed at 850 ° C.
- the calcined powder was treated with a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours for grinding.
- the pulverized powder was separated from the balls and ethanol and dried to obtain lithium vanadium phosphate powder.
- the composition of lithium vanadium phosphate was confirmed to be Li / V 2.30 using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% by using XPS and the amount of divalent V in each lithium vanadium phosphate was 78%.
- the calcined powder was treated with a ball mill (120 rpm / zirconia balls) in ethanol for 16 hours for grinding.
- the pulverized powder was separated from the balls and ethanol and dried to obtain lithium vanadium phosphate powder.
- the composition of lithium vanadium phosphate was confirmed to be 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 33% by using XPS and the amount of divalent V in each lithium vanadium phosphate was 33%.
- a positive electrode active material layer paste was prepared using lithium vanadium phosphate powder having Li / V of 2.30 and a divalent V content of 78%.
- the positive electrode active material layer paste is prepared by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of lithium vanadium phosphate powder, and kneading and dispersing with three rolls to obtain the positive electrode active material layer paste. Produced.
- a negative electrode active material layer paste was prepared using lithium vanadium phosphate powder having Li / V of 1.80 and a divalent V content of 33%.
- the negative electrode active material layer paste was prepared by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of lithium vanadium phosphate powder, and kneading and dispersing with three rolls to obtain the negative electrode active material layer paste. Produced.
- This solid electrolyte layer paste was formed into a sheet using a PET film as a base material by a doctor blade method to obtain a solid electrolyte layer sheet having a thickness of 15 ⁇ m.
- the positive electrode current collector layer paste was printed at a thickness of 5 ⁇ m by screen printing and dried at 80 ° C. for 10 minutes.
- a positive electrode active material layer paste was printed thereon by screen printing to a thickness of 5 ⁇ m, and dried at 80 ° C. for 10 minutes to obtain a positive electrode layer unit.
- the negative electrode active material layer paste is printed on the solid electrolyte layer sheet by screen printing at a thickness of 5 ⁇ m, dried at 80 ° C. for 10 minutes, and then on the negative electrode at a thickness of 5 ⁇ m by screen printing
- the current collector layer paste was printed and dried at 80 ° C. for 10 minutes to obtain a negative electrode layer unit.
- the PET film was then peeled off.
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charging and discharging was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 23 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 15 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in a nitrogen atmosphere. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 24 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in a nitrogen atmosphere. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 25 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 15 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 26 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 27 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 28 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 29 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 30 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 31 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 32 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Example 33 (Preparation of positive electrode active material and negative electrode active material)
- the raw materials were weighed so that Li / V of lithium vanadium phosphate was 2.30 for the positive electrode active material layer paste and the positive electrode current collector layer paste, and the negative electrode active material
- the raw materials were weighed so that the Li / V of lithium vanadium phosphate was 1.80 for the layer paste and the positive electrode current collector layer paste.
- lithium vanadium phosphate powder was prepared in the same manner as in Example 22.
- the composition of lithium vanadium phosphate was confirmed to be 2.30 and 1.80 using Li / V using ICP.
- the amount of divalent V in the contained V was confirmed to be 78% and 33% by using XPS with respect to the amount of divalent V in lithium vanadium phosphate.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.30, lithium vanadium phosphate powder with Li / V of 1.80, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.60, lithium vanadium phosphate powder with Li / V of 1.48, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.60, lithium vanadium phosphate powder with Li / V of 1.48, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.60, lithium vanadium phosphate powder with Li / V of 1.48, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.60, lithium vanadium phosphate powder with Li / V of 1.48, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.60, lithium vanadium phosphate powder with Li / V of 1.48, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.60, lithium vanadium phosphate powder with Li / V of 1.48, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Positive electrode current collector layer paste in the same manner as in Example 22 using lithium vanadium phosphate powder with Li / V of 2.60, lithium vanadium phosphate powder with Li / V of 1.48, and Cu powder And the paste for negative electrode collector layers was produced.
- Example 22 (Production of active material layer unit and production of laminate) In the same manner as in Example 22, a positive electrode layer unit was prepared using the above positive electrode active material layer paste and positive electrode current collector layer paste, and the negative electrode active material layer paste and negative electrode current collector layer paste were prepared. The negative electrode layer unit was produced using this. Furthermore, the laminated body was obtained by the method similar to Example 22 using the sheet
- the resulting laminate was debindered and fired simultaneously to obtain a sintered body.
- the binder is heated up to a firing temperature of 700 ° C. at a rate of 50 ° C./hour in nitrogen and maintained at that temperature for 10 hours.
- Simultaneous firing is performed at a temperature rise rate of 200 ° C./hour in nitrogen at a firing temperature of 850 ° C. Then, the temperature was maintained for 1 hour, and naturally cooled after firing.
- the battery appearance size after co-firing was 3.2 mm ⁇ 2.5 mm ⁇ 0.4 mm.
- the obtained laminate was measured using a charge / discharge tester attached to a jig of a type fixed with a spring-loaded pin. As measurement conditions, the current during charge / discharge was 2 ⁇ A, and the voltage was 0 V to 1.8 V. Table 4 shows the measured discharge capacity. The threshold value of discharge characteristics sufficient for use is 2.5 ⁇ Ah.
- Li / V and lithium vanadium phosphate having divalent V according to the present invention were respectively used as the positive electrode active material layer and the negative electrode. It can be seen that a significantly higher discharge capacity is obtained when the active material layer is used.
- the all solid state battery according to the present invention is effective in improving the discharge capacity.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
リン酸バナジウムリチウムを正極活物質層及び負極活物質層として用いた全固体電池において、高い放電容量を提供することを目的とする。本発明は全固体電池の正極活物質層及び負極活物質層が、リン酸バナジウムリチウムを含み、前記リン酸バナジウムリチウムがLiとVとを含むポリリン酸化合物を含み、1. 50<Li/V≦2.30を満たし、前記Vに含まれる2価のVの割合が5%から80% 満たすことで、高い放電容量を提供できる。
Description
本発明は、高い放電容量を有するとともに安全性が高く、低コストで製造可能な全固体電池に関する。
近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、有機溶媒等の液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液等の問題を生ずる可能性がある。
このような問題を解消すべく、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体電池の開発が進められている。かかる全固体電池は、電解質が固体であるために、液漏れ、液の枯渇等の心配がなく、また、腐食による電池性能の劣化等の問題も生じ難いものである。なかでも、全固体電池は、容易に高い充放電容量とエネルギー密度が可能な二次電池として各方面で盛んに研究が行われている。
しかしながら、未だ固体電解質を電解質として用いた全固体電池は、液状の電解質を用いた電池に比べれば一般的に放電容量が小さいという問題があった。複数の酸化還元電位(3.8V、1.8V)を持ったポリリン酸系電極活物質であるLi3V2(PO4)3を正極、負極に用いて対称電極電池を作製することで、充放電サイクル特性が向上することは開示されているが、放電容量の向上については開示されてはいない(特許文献1)。さらにストイキオ組成のLi3V2(PO4)3を焼結体活物質として正極または負極に用いた場合、焼結時に形成される結晶粒界の組成が不均一になり、リチウムイオン伝導が阻害されるため、高い放電容量が得られないという課題を有していた。
したがって、特許文献1において開示された全固体電池であっても、放容量に関しては未だ改善の余地がある。
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、高い放容量を有する全固体電池を提供することにある。
本発明者らは上記課題を達成すべく鋭意検討した結果、正極活物質層及び負極活物質層は、リン酸バナジウムリチウムを含み、前記リン酸バナジウムリチウムはLiとVとを含むポリリン酸化合物を含み、含有するLiとVとの比率とVに含まれる2価のVの割合が容量に起因していることを見出し、本発明を完成するに至った。
即ち、本発明によれば、以下に示す全固体電池が提供される。
本発明にかかる全固体電池は、一対の電極間に固体電解質層を有する全固体電池であって、前記一対の電極を構成する正極活物質層及び負極活物質層は、リン酸バナジウムリチウムを含み、前記リン酸バナジウムリチウムは、LiとVとを含むポリリン酸化合物を含み、1.5<Li/V≦2.30を満たし、前記Vに含まれる2価のVの割合が5%から80%であることを特徴とする。
かかる構成の正極活物質層及び負極活物質層を用いることで、リン酸バナジウムリチウム中のリチウムイオンを安定して結晶格子内に存在させ、焼結時の過度のLiの拡散を制御し、均一な粒界を形成でき、結晶粒間のリチウムイオン伝導の低下を抑制することが可能になる。これにより、多くのリチウムイオンの出し入れが可能になるため高容量化が実現できる。
本発明にかかる全固体電池は、前記固体電解質層はリン酸チタンアルミニウムリチウムを含むことを特徴とする。
かかる構成によれば、正極活物質層及び負極活物質層中のリチウムイオンの移動が容易になるのと同時に、正極活物質層と負極活物質層間に有る固体電解質層中でのリチウムイオンの移動も容易になるため、より高容量化が実現できる。
本発明にかかる全固体電池は、前記正極活物質層に含まれるLi/Vの値が、前記負極活物質層に含まれるLi/Vの値よりも大きいことを特徴とする。
かかる構成によれば、正極活物質層に含まれるLi量が、負極活物質層に含まれるLi量より多いことで、より多くのLiが正極活物質層から負極活物質層に移動すると共に、負極活物質層では、より多くのLiを受けとる事が可能になる。このため、より高容量化が実現できる。
本発明にかかる全固体電池は、前記正極活物質層は1.60≦Li/V≦2.30を満たし、かつ、Vに含まれる2価のVの割合が10%から80%であり、前記負極活物質層は1.50<Li/V≦2.10を満たし、かつ、Vに含まれる2価のVの割合が5%から57%である事を特徴とする。
かかる構成の正極活物質層及び負極活物質層を用いることで、正極活物質層に含まれるLi量が、負極活物質層に含まれるLi量より多いことで、より多くのLiが正極活物質層から負極活物質層に移動し、かつ負極活物質層では、より多くのLiを受けとる事が可能になり、また、正極活物質層の2価のV量が負極活物質層の2価のV量よりも多くすることで、リチウムイオンをより安定して結晶格子内に存在させることが可能になり、均一な粒界を形成出来ることにより、結晶粒間のリチウムイオン伝導の低下を抑制することが可能になることで、より高容量化が実現できる。
本発明にかかる全固体電池の、前記固体電解質はLifAlgTihPiOjを含むことを特徴とする。[但し、f、g、h、iおよびjは、それぞれ0.5≦f≦3.0、0.0<g≦1.0、1.0≦h≦2.0、2.8≦i≦3.2、9.25<j≦15.0を満たす数である。]
かかる構成によれば、固体電解質層のリン酸チタンアルミニウムリチウムとしてリチウムイオン伝導度が高いLifAlgTihPiOj(但し、f、g、h、iおよびjは、それぞれ0.5≦f≦3.0、0.0<g≦1.0、1.0≦h≦2.0、2.8≦i≦3.2、9.25<j≦15.0を満たす数である。)を用いることにより、より高容量化が得られる。
本発明にかかる全固体電池は、前記一対の電極層と、前記一対の電極層間に設けられた前記固体電解質層とが、相対密度80%以上であることを特徴とする。
本発明によれば、高い放電容量を有する全固体電池を提供することが出来る。
以下、図面を参照にしつつ本発明の好適な実施形態について詳細に説明する。なお、図面中、同一または相当部分には同一の符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
[全固体電池]
図1は、本実施形態の全固体電池1の概念的構造を示す図である。図1に示すように、本実施形態の全固体電池1は、正極層2と負極層3が固体電解質層4を介して積層されており、正極層2は、外装層5、正極集電体層6、正極活物質層7からなり、負極層3は、負極活物質層7、負極集電体層8、外装層5からなる。
図1は、本実施形態の全固体電池1の概念的構造を示す図である。図1に示すように、本実施形態の全固体電池1は、正極層2と負極層3が固体電解質層4を介して積層されており、正極層2は、外装層5、正極集電体層6、正極活物質層7からなり、負極層3は、負極活物質層7、負極集電体層8、外装層5からなる。
本実施形態にかかる全固体電池は、一対の電極層間に固体電解質層を有する全固体電池で、前記一対の電極層を構成する正極活物質層及び負極活物質層は、リン酸バナジウムリチウムを含み、前記リン酸バナジウムリチウムは、LiとVとを含むポリリン酸化合物を含み、1.5<Li/V≦2.30を満たし、前記Vに含まれる2価のVの割合が5%から80%であることが好ましい。
かかる構成によれば、上記の正極活物質層又は負極活物質層を用いることで、リン酸バナジウムリチウム中のリチウムイオンを安定して結晶格子内に存在させ、焼結時に過度のLi拡散を制御できることで、均一な粒界を形成でき、結晶粒間でのリチウムイオン伝導の低下を抑制することが可能になる。これにより、多くのリチウムイオンの出し入れが可能になるため高容量化が実現できる。
なお、本実施形態のリン酸バナジウムリチウムは、材料を高周波誘導結合プラズマ発光分光分析(ICP)にて定量し、Li/Vを算出すればよい。また、本実施形態のリン酸バナジウムリチウム中のVの価数は、X線光電子分光法(XPS)を用いて化学シフトから得ることが出来る。
本実施形態にかかる全固体電池は、また、固体電解質層はリン酸チタンアルミニウムリチウムを含むことが好ましい。
かかる構成によれば、リン酸チタンアルミニウムリチウムを含む固体電解質を固体電解質層に用いた場合は、その固体電解質の高いイオン伝導性のために、正極層と負極層間においてもリチウムイオンの移動も容易になるため、より高い容量化が実現できる。さらに、本実施形態のリン酸バナジウムリチウム活物質とリン酸チタンアルミニウムリチウムを含む固体電解質が同質のポリリン酸系セラミックスであることで、それらの界面においてリチウムイオン移動を妨げるような不均一な粒界を形成しにくくなり充放電容量を向上できる。
本実施形態にかかる全固体電池は、また、前記正極活物質層に含まれるLi/Vの値が、前記負極活物質層に含まれるLi/Vの値よりも大きいことが好ましい。
かかる構成によれば、正極活物質層に含まれるLi量が、負極活物質層に含まれるLi量より多いことで、より多くのLiが正極活物質層から負極活物質層に移動すると共に、負極活物質層では、より多くのLiを受けとる事が可能になる。このため、より高容量化が実現できる。
本実施形態にかかる全固体電池は、さらに、リン酸バナジウムリチウムのLi/Vが、正極活物質層においては1.6≦Li/V≦2.3を満たし、かつVに含まれる2価のVの割合が10%から80%であり、負極活物質層おいては1.5<Li/V≦2.1を満たしかつVに含まれる2価のVの割合が5%から57%を満たすことが好ましい。
かかる構成によれば、正極活物質層及び負極活物質層を用いることで、正極活物質層に含まれるLi量が、負極活物質層に含まれるLi量より多いことで、より多くのLiが正極活物質層から負極活物質層に移動し、かつ負極活物質層では、より多くのLiを受けとる事が可能になり、また、正極活物質層の2価のV量が負極活物質層の2価のV量よりも多くすることで、リチウムイオンをより安定して結晶格子内に存在させることが可能になり、均一な粒界を形成出来ることにより、結晶粒間のリチウムイオン伝導の低下を抑制することが可能になることで、より高容量化が実現できる。
また、理由は明確ではないが、正極活物質層と負極活物質層中のリン酸バナジウムリチウムのLi/VとV中の2価のVの割合を、それぞれ若干変えることによって、焼結時に形成される結晶粒界が正極として作動し易い組成構造と負極としての作動に適した組成構造になると考えている。
本発明にかかる全固体電池は、上記のリン酸チタンアルミニウムリチウムとして、リチウムイオン伝導度が高いLifAlgTihPiOj(但し、f、g、h、iおよびjは、それぞれ0.5≦f≦3.0、0.0<g≦1.0、1.0≦h≦2.0、2.8≦i≦3.20、9.25<j≦15.0を満たす数である。)を用いることが好ましい。
かかる構成によれば、リン酸チタンアルミニウムリチウムとしてリチウムイオン伝導度が高いLifAlgTihPiOj(但し、f、g、h、iおよびjは、それぞれ0.5≦f≦3.0、0.0<g≦1.0、1.0≦h≦2.0、2.8≦i≦3.2、9.25<j≦15.0を満たす数である。)を用いることにより、より高い充放電特性が得られる。
(セラミックス材料の製造方法)
本実施形態のリン酸バナジウムリチウム材料はLi化合物と、V化合物と、リン酸化合物またはリン酸Li化合物とを混合した混合原料を熱処理することにより得ることができる。また、リン酸チタンアルミニウムリチウム材料は、Li化合物と、Al化合物、Ti化合物、リン酸化合物、またはリン酸Ti化合物とを混合した混合原料を熱処理することにより得ることができる。
本実施形態のリン酸バナジウムリチウム材料はLi化合物と、V化合物と、リン酸化合物またはリン酸Li化合物とを混合した混合原料を熱処理することにより得ることができる。また、リン酸チタンアルミニウムリチウム材料は、Li化合物と、Al化合物、Ti化合物、リン酸化合物、またはリン酸Ti化合物とを混合した混合原料を熱処理することにより得ることができる。
前記Li化合物としては、例えば、LiOH又はその水和物、Li2CO3、LiNO3、CH3COOLi等を挙げることができる。前記V化合物としては、V2O3、V2O5等を挙げることができる。前記リン化合物としては、H3PO4、NH4H2PO4、(NH4)2HPO4等を挙げることができる。また、前記リン酸Li化合物としては、LiPO3、Li4P2O7、Li5P3O10、Li6P4O14等を挙げることができる。
また、前記Al化合物としては、Al2O3、Al(OH)3、Al2(SO4)3等を挙げることができる。前記Ti化合物としては、TiO2、Ti2O3、TiCl4、Ti(OR)4等を挙げることができる。前記リン酸Ti化合物としては、TiP2O7、Ti3P4O16等を挙げることができる。
本実施形態にかかるリン酸バナジウムリチウムの製造方法の一例について説明する。この酸化物の製造方法は、(a)原料混合工程を行い、次に(b)熱処理工程を行い、最後に(c)粉砕工程を行う。以下に、これらの工程について順に説明する。
(a)原料混合工程
原料混合工程では、リン酸バナジウムリチウムにおいて、その含有するLiとVの比が1.5<Li/V≦2.30になるように出発原料をそれぞれ秤量し、混合する。出発原料としては、各元素の炭酸塩や硫酸塩、硝酸塩、シュウ酸塩、塩化物、水酸化物、酸化物、リン酸塩などを用いることができる。このうち、すでにリン酸リチウムとして得られている原料や酸化物が熱処理に対して不要なガスの発生が無く好ましいが、さらに炭酸ガスを生じる炭酸塩や熱分解して水蒸気を生じる水酸化物が好ましい。混合方法は、溶媒に入れずに乾式で混合粉砕してもよいし、溶媒に入れて湿式で混合粉砕するものとしてもよいが、溶媒に入れて湿式の混合粉砕を行うことが混合性の向上の面からは好ましい。この混合方法は、例えば、遊星ミル、アトライター、ボールミルなどを用いることができる。溶媒としては、Liが溶解しにくいものが好ましく、例えばエタノールなどの有機溶媒がより好ましい。混合時間は、混合量にもよるが、例えば1時間~32時間とすることができる。また、リン酸チタンアルミニウムリチウムにおいても、所望の組成になるように出発原料をそれぞれ秤量し、いずれかの方法で混合する。
原料混合工程では、リン酸バナジウムリチウムにおいて、その含有するLiとVの比が1.5<Li/V≦2.30になるように出発原料をそれぞれ秤量し、混合する。出発原料としては、各元素の炭酸塩や硫酸塩、硝酸塩、シュウ酸塩、塩化物、水酸化物、酸化物、リン酸塩などを用いることができる。このうち、すでにリン酸リチウムとして得られている原料や酸化物が熱処理に対して不要なガスの発生が無く好ましいが、さらに炭酸ガスを生じる炭酸塩や熱分解して水蒸気を生じる水酸化物が好ましい。混合方法は、溶媒に入れずに乾式で混合粉砕してもよいし、溶媒に入れて湿式で混合粉砕するものとしてもよいが、溶媒に入れて湿式の混合粉砕を行うことが混合性の向上の面からは好ましい。この混合方法は、例えば、遊星ミル、アトライター、ボールミルなどを用いることができる。溶媒としては、Liが溶解しにくいものが好ましく、例えばエタノールなどの有機溶媒がより好ましい。混合時間は、混合量にもよるが、例えば1時間~32時間とすることができる。また、リン酸チタンアルミニウムリチウムにおいても、所望の組成になるように出発原料をそれぞれ秤量し、いずれかの方法で混合する。
(b)仮焼工程
仮焼工程では、リン酸バナジウムリチウムにおいては、混合工程で得られた混合粉末を仮焼する。このときの仮焼温度は、出発原料の状態変化(例えば相変化など)が起きる温度以上が好ましい。例えば、出発原料の一つとしてLi2CO3を用いた場合には、この炭酸塩が分解し所望のリン酸バナジウムリチウム相が生成する温度以上が好ましい。具体的には、仮焼温度は、600℃~1000℃とすることが好ましい。また、リン酸バナジウムリチウム中のV中の2価のV量を制御するために、仮焼時の雰囲気は不活性ガス雰囲気ないしは還元ガス雰囲気が好ましい。また、リン酸チタンアルミニウムリチウムにおいても混合工程で得られた混合粉末を仮焼する。具体的には、仮焼温度は、800℃~1000℃とすることが好ましい。また、仮焼時の雰囲気は、チタンが還元を受けない雰囲気が好ましく、具体的は大気雰囲気が好ましい。
仮焼工程では、リン酸バナジウムリチウムにおいては、混合工程で得られた混合粉末を仮焼する。このときの仮焼温度は、出発原料の状態変化(例えば相変化など)が起きる温度以上が好ましい。例えば、出発原料の一つとしてLi2CO3を用いた場合には、この炭酸塩が分解し所望のリン酸バナジウムリチウム相が生成する温度以上が好ましい。具体的には、仮焼温度は、600℃~1000℃とすることが好ましい。また、リン酸バナジウムリチウム中のV中の2価のV量を制御するために、仮焼時の雰囲気は不活性ガス雰囲気ないしは還元ガス雰囲気が好ましい。また、リン酸チタンアルミニウムリチウムにおいても混合工程で得られた混合粉末を仮焼する。具体的には、仮焼温度は、800℃~1000℃とすることが好ましい。また、仮焼時の雰囲気は、チタンが還元を受けない雰囲気が好ましく、具体的は大気雰囲気が好ましい。
(c)粉砕工程
粉砕では、仮焼工程で反応凝集した材料を適切な粒子径と分布を有する粉体にする工程になる。粉砕方法は、溶媒に入れずに乾式で粉砕してもよいし、溶媒に入れて湿式で粉砕してもよい。この粉砕方法は、例えば、遊星ミル、アトライター、ボールミルなどを用いることができる。溶媒としては、リン酸バナジウムリチウムがより安定に粉砕できるために、例えばエタノールなどの有機溶媒がより好ましい。粉砕時間は、粉砕量にもよるが、例えば0.5時間~32時間とすることができる。
粉砕では、仮焼工程で反応凝集した材料を適切な粒子径と分布を有する粉体にする工程になる。粉砕方法は、溶媒に入れずに乾式で粉砕してもよいし、溶媒に入れて湿式で粉砕してもよい。この粉砕方法は、例えば、遊星ミル、アトライター、ボールミルなどを用いることができる。溶媒としては、リン酸バナジウムリチウムがより安定に粉砕できるために、例えばエタノールなどの有機溶媒がより好ましい。粉砕時間は、粉砕量にもよるが、例えば0.5時間~32時間とすることができる。
以上詳述した製法によれば、出発原料の混合粉末を比較的低温で仮焼を行うため、組成のずれを精度よく抑制することができる。なお、本発明のリン酸バナジウムリチウムの製法は、これに限定されるものではなく、他の製法を採用しても構わない。
本実施形態の全固体電池において正極層2及び負極層3は固体電解質層4を介して積層されており、正極層2は、外装層5、正極集電体層6、正極活物質層7からなり、負極層3は、負極活物質層8、負極集電体層9、外装層5からなる。それらの正極集電体層6及び負極集電体層9は、リチウム二次電池に使用されている従来公知の集電体を含むことができ、常法により製造される。
(集電体)
本実施形態の全固体電池の集電体層を構成する材料は、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルなどを用いるのが好ましい。特に、銅はリン酸チタンアルミニウムリチウムと反応し難く、さらに全固体電池の内部抵抗の低減に効果があるため好ましい。集電体層を構成する材料は、正極層と負極層で同じであってもよいし、異なっていてもよい。
本実施形態の全固体電池の集電体層を構成する材料は、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルなどを用いるのが好ましい。特に、銅はリン酸チタンアルミニウムリチウムと反応し難く、さらに全固体電池の内部抵抗の低減に効果があるため好ましい。集電体層を構成する材料は、正極層と負極層で同じであってもよいし、異なっていてもよい。
また、本実施形態における全固体電池の正極集電体層及び負極集電体層は、それぞれ正極活物質及び負極活物質を含むことが好ましい。
正極集電体層及び負極集電体層がそれぞれ正極活物質及び負極活物質を含むことにより、正極集電体層と正極活物質層及び負極集電体層と負極活物質層との密着性が向上するため望ましい。
(全固体電池の製造方法)
本実施形態の全固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び、負極集電体層の各材料をペースト化し、塗布乾燥してグリーンシートを作製し、係るグリーンシートを積層し、作製した積層体を同時に焼成することにより製造する。
本実施形態の全固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び、負極集電体層の各材料をペースト化し、塗布乾燥してグリーンシートを作製し、係るグリーンシートを積層し、作製した積層体を同時に焼成することにより製造する。
ペースト化の方法は、特に限定されないが、例えば、ビヒクルに上記各材料の粉末を混合してペーストを得ることができる。ここで、ビヒクルとは、液相における媒質の総称である。ビヒクルには、溶媒、バインダーが含まれる。係る方法により、正極集電体層用のペースト、正極活物質層用のペースト、固体電解質層用のペースト、負極活物質層用のペースト、及び、負極集電体層用のペーストを作製する。
作製したペーストをPETなどの基材上に所望の順序で塗布し、必要に応じ乾燥させた後、基材を剥離し、グリーンシートを作製する。ペーストの塗布方法は、特に限定されず、スクリーン印刷、塗布、転写、ドクターブレード等の公知の方法を採用することができる。
作製したグリーンシートを所望の順序、積層数で積み重ね、必要に応じアライメント、切断等を行い、積層ブロックを作製する。並列型又は直並列型の電池を作製する場合は、正極層の端面と負極層の端面が一致しないようにアライメントを行い積み重ねるのが好ましい。
積層ブロックを作製するに際し、以下に説明する活物質ユニットを準備し、積層ブロックを作製してもよい。
その方法は、まずPETフィルム上に固体電解質ペーストをドクターブレード法でシート状に形成し、固体電解質シートを得た後、その固体電解質シート上に、スクリーン印刷により正極活物質層ペーストを印刷し乾燥する。次に、その上に、スクリーン印刷により正極集電体層ペーストを印刷し乾燥する。更にその上に、スクリーン印刷により正極活物質ペーストを再度印刷し、乾燥し、次いでPETフィルムを剥離することで正極活物質層ユニットを得る。このようにして、固体電解質シート上に、正極活物質層ペースト、正極集電体層ペースト、正極活物質ペーストがこの順に形成された正極活物質層ユニットを得る。同様の手順にて負極活物質層ユニットも作製し、固体電解質シート上に、負極活物質層ペースト、負極集電体層ペースト、負極活物質ペーストがこの順に形成された負極活物質層ユニットを得る。
正極活物質層ユニット一枚と負極活物質層ユニット一枚を、固体電解質シートを介するようにして積み重ねる。このとき、一枚目の正極活物質層ユニットの正極集電体層ペーストが一の端面にのみ延出し、二枚目の負極活物質層ユニットの負極集電体層ペーストが他の面にのみ延出するように、各ユニットをずらして積み重ねる。この積み重ねられたユニットの両面に所定厚みの固体電解質シートをさらに積み重ね積層ブロックを作製する。
作製した積層ブロックを一括して圧着する。圧着は加熱しながら行うが、加熱温度は、例えば、40~95℃とする。
圧着した積層ブロックを、例えば、窒素、水素および水蒸気雰囲気下で500℃~750℃に加熱し脱バインダーを行う。その後、窒素雰囲気下で600℃~1100℃に加熱し焼成を行う。焼成時間は、例えば、0.1~3時間とする。この焼成により積層体が完成する。
焼結された前記積層体の、一対の電極層と、この一対の電極層間に設けられた固体電解質層の相対密度が80%以上であってもよい。相対密度が高い方が結晶内の可動イオンの拡散パスがつながりやすくなり、イオン伝導性が向上する。
[実施例1]
本発明の内容を実施例及び比較例を参照してより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
本発明の内容を実施例及び比較例を参照してより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(正極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.55、になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥した後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.55であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が5%であることを確認した。
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.55、になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥した後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.55であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が5%であることを確認した。
(負極活物質の作製)
負極活物質としては、前記正極活物質と同様の粉末を用いた。
負極活物質としては、前記正極活物質と同様の粉末を用いた。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
正極及び負極活物質層用ペーストは、リン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して正極、及び負極となる活物質層用ペーストを作製した。
正極及び負極活物質層用ペーストは、リン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して正極、及び負極となる活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として、以下の方法で作製したLifAlgTihPiOj(但し、f=1.3、g=0.3、h=1.7、i=3.0、j=12.0)を用いた。Li2CO3、Al2O3、TiO2、NH4H2PO4を出発材料とし、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として、以下の方法で作製したLifAlgTihPiOj(但し、f=1.3、g=0.3、h=1.7、i=3.0、j=12.0)を用いた。Li2CO3、Al2O3、TiO2、NH4H2PO4を出発材料とし、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
次いで、この粉末100部に、溶媒としてエタノール100部、トルエン200部をボールミルで加えて湿式混合した。その後ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層用ペーストを調合した。
(固体電解質層用シートの作製)
この固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ15μmの固体電解質層用シートを得た。
この固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ15μmの固体電解質層用シートを得た。
(正極集電体層用ペースト及び負極集電体層ペーストの作製)
Cu粉とリン酸バナジウムリチウム粉末を重量比で100:9となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロール混合・分散して正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Cu粉とリン酸バナジウムリチウム粉末を重量比で100:9となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロール混合・分散して正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製)
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで電極集電体層用ペーストを印刷し、80℃で10分間乾燥した。その上に、スクリーン印刷により厚さ5μmで正電極活物質層用ペーストを印刷し、80℃で10分間乾燥し正極層ユニットとした。一方、固体電解質層用シート上に、スクリーン印刷により厚さ5μmで負電極活物質層用ペーストを印刷し、80℃で10分間乾燥し、次に、その上に、スクリーン印刷により厚さ5μmで電極集電体層用ペーストを印刷し、80℃で、10分間乾燥し、負極層ユニットとした。次いでPETフィルムを剥離した。
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで電極集電体層用ペーストを印刷し、80℃で10分間乾燥した。その上に、スクリーン印刷により厚さ5μmで正電極活物質層用ペーストを印刷し、80℃で10分間乾燥し正極層ユニットとした。一方、固体電解質層用シート上に、スクリーン印刷により厚さ5μmで負電極活物質層用ペーストを印刷し、80℃で10分間乾燥し、次に、その上に、スクリーン印刷により厚さ5μmで電極集電体層用ペーストを印刷し、80℃で、10分間乾燥し、負極層ユニットとした。次いでPETフィルムを剥離した。
(積層体の作製)
正極層ユニット、負極層ユニットおよび固体電解質層用シートを用いて、固体電解質層、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層、固体電解質層の順に形成されるように積み重ね積層体を得た。このとき、正極層ユニットの正極集電体層が一方の端面にのみ延出し、負極活物層ユニットの負極集電体層が他方の端面にのみ延出するように、各ユニットをずらして積み重ねた。その後、これを熱圧着により成形した後、切断して積層体を作製した。
正極層ユニット、負極層ユニットおよび固体電解質層用シートを用いて、固体電解質層、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層、固体電解質層の順に形成されるように積み重ね積層体を得た。このとき、正極層ユニットの正極集電体層が一方の端面にのみ延出し、負極活物層ユニットの負極集電体層が他方の端面にのみ延出するように、各ユニットをずらして積み重ねた。その後、これを熱圧着により成形した後、切断して積層体を作製した。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流は、いずれも2μAで行い、電圧は0Vから1.8Vで行った。表1に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流は、いずれも2μAで行い、電圧は0Vから1.8Vで行った。表1に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例2]
本実施例においては、リン酸バナジウムリチウムのLi/Vを1.70、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.70であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、20%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
本実施例においては、リン酸バナジウムリチウムのLi/Vを1.70、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.70であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、20%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
[実施例3]
本実施例においては、リン酸バナジウムリチウムのLi/Vを1.80、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、33%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
本実施例においては、リン酸バナジウムリチウムのLi/Vを1.80、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、33%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
[実施例4]
本実施例においては、リン酸バナジウムリチウムのLi/Vを1.93、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.93であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、49%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
本実施例においては、リン酸バナジウムリチウムのLi/Vを1.93、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.93であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、49%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
[実施例5]
本実施例においては、リン酸バナジウムリチウムのLi/Vを2.30、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
本実施例においては、リン酸バナジウムリチウムのLi/Vを2.30、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
[比較例1]
本比較例においては、リン酸バナジウムリチウムのLi/Vを1.48、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、1%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
本比較例においては、リン酸バナジウムリチウムのLi/Vを1.48、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、1%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
[比較例2]
本比較例においては、リン酸バナジウムリチウムのLi/Vを2.60、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
本比較例においては、リン酸バナジウムリチウムのLi/Vを2.60、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
[比較例3]
本比較例においては、リン酸バナジウムリチウムのLi/Vを1.00、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.00であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、20%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
本比較例においては、リン酸バナジウムリチウムのLi/Vを1.00、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.00であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、20%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
[比較例4]
本比較例においては、リン酸バナジウムリチウムのLi/Vを2.00、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.00であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、1%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
本比較例においては、リン酸バナジウムリチウムのLi/Vを2.00、になるように原料の秤量を行い、実施例1と同様の方法でリン酸バナジウムリチウム粉を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.00であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、1%であることを確認した。さらに実施例1と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例1と同様の方法で評価した。表1に測定した放電容量を示した。
表1からもわかるように、本発明に係る範囲のLi/Vと2価のVを有するリン酸バナジウムリチウムを活物質層に用いた全固体電池は明らかに高い放電容量が得られていることが分かる。
[実施例6]
(正極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vを1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が33%であることを確認した。
(正極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vを1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が33%であることを確認した。
(負極活物質の作製)
負極活物質としては、前記正極活物質と同様の粉末を用いた。
負極活物質としては、前記正極活物質と同様の粉末を用いた。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
電極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して正極、及び負極活物質層用ペーストを作製した。
電極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して正極、及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.02、g=0.13、h=1.91、i=3.0、j=12.03になるように秤量を行った。出発原料にはLi2CO3、TiO2、NH4H2PO4を用いて、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.02、g=0.13、h=1.91、i=3.0、j=12.03になるように秤量を行った。出発原料にはLi2CO3、TiO2、NH4H2PO4を用いて、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
次いで、この粉末100部に、溶媒としてエタノール100部、トルエン200部をボールミルで加えて湿式混合した。その後ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層用ペーストを調合した。
この固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ15μmの固体電解質層用シートを得た。
(正極集電体層用ペースト及び負極集電体層ペーストの作製)
Cu粉とリン酸バナジウムリチウム粉末を重量比で100:9となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロール混合・分散して集電体層用ペーストを作製した。
Cu粉とリン酸バナジウムリチウム粉末を重量比で100:9となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロール混合・分散して集電体層用ペーストを作製した。
(活物質層ユニットの作製)
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで正極集電体層用ペーストを印刷し、80℃で10分間乾燥した。その上に、スクリーン印刷により厚さ5μmで正電極活物質層用ペーストを印刷し、80℃で10分間乾燥し正極層ユニットとした。一方、固体電解質層用シート上にスクリーン印刷により厚さ5μmで負電極活物質層用ペーストを印刷し、80℃で10分間乾燥し、次に、その上に、スクリーン印刷により厚さ5μmで負極集電体層用ペーストを印刷し、80℃で、10分間乾燥し、負極層ユニットとした。次いでPETフィルムを剥離した。
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで正極集電体層用ペーストを印刷し、80℃で10分間乾燥した。その上に、スクリーン印刷により厚さ5μmで正電極活物質層用ペーストを印刷し、80℃で10分間乾燥し正極層ユニットとした。一方、固体電解質層用シート上にスクリーン印刷により厚さ5μmで負電極活物質層用ペーストを印刷し、80℃で10分間乾燥し、次に、その上に、スクリーン印刷により厚さ5μmで負極集電体層用ペーストを印刷し、80℃で、10分間乾燥し、負極層ユニットとした。次いでPETフィルムを剥離した。
(積層体の作製)
正極層ユニット、負極層ユニットおよび固体電解質層用シートを用いて、固体電解質層、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層、固体電解質層の順に形成されるように積み重ね積層体を得た。このとき、正極層ユニットの正極集電体層が一方の端面にのみ延出し、負極層ユニットの負極集電体層が他方の端面にのみ延出するように、各ユニットをずらして積み重ねた。その後、これを熱圧着により成形した後、切断して積層体を作製した。
正極層ユニット、負極層ユニットおよび固体電解質層用シートを用いて、固体電解質層、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層、固体電解質層の順に形成されるように積み重ね積層体を得た。このとき、正極層ユニットの正極集電体層が一方の端面にのみ延出し、負極層ユニットの負極集電体層が他方の端面にのみ延出するように、各ユニットをずらして積み重ねた。その後、これを熱圧着により成形した後、切断して積層体を作製した。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件としては、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表2に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件としては、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表2に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例7]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.5、g=0.5、h=1.5、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.5、g=0.5、h=1.5、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例8]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.0、g=1.0、h=1.0、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.0、g=1.0、h=1.0、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例9]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.1、g=1.1、h=0.9、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.1、g=1.1、h=0.9、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例10]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=1.0、i=2.8、j=9.28になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=1.0、i=2.8、j=9.28になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例11]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=2.0、i=3.2、j=12.28になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=2.0、i=3.2、j=12.28になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例12]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=1.0、i=2.8、j=10.75になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=1.0、i=2.8、j=10.75になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例13]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=2.0、i=3.2、j=13.75になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=2.0、i=3.2、j=13.75になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例14]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=1.0、i=2.8、j=10.65になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=1.0、i=2.8、j=10.65になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例15]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=2.0、i=3.2、j=13.65になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=2.0、i=3.2、j=13.65になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例16]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=1.0、i=2.8、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=1.0、i=2.8、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[実施例17]
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.80になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=2.0、i=3.2、j=15.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=2.0、i=3.2、j=15.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[比較例5]
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得た。さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.02、g=0.13、h=1.91、i=3.0、j=12.03になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.02、g=0.13、h=1.91、i=3.0、j=12.03になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[比較例6]
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.5、g=0.5、h=1.5、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.5、g=0.5、h=1.5、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[比較例7]
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.0、g=1.0、h=1.0、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.0、g=1.0、h=1.0、i=3.0、j=12.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[比較例8]
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=1.0、i=2.8、j=9.28になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=1.0、i=2.8、j=9.28になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[比較例9]
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=2.0、i=3.2、j=13.75になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=2.0、i=3.2、j=13.75になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[比較例10]
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=1.0、i=2.8、j=10.65になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=1.0、i=2.8、j=10.65になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
[比較例11]
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(正極活物質及び負極活物質の作製)
本比較例として、リン酸バナジウムリチウムにおいてLi/Vを1.48になるように原料の秤量を行い、実施例6と同様の方法で、リン酸バナジウムリチウム粉末を得さらにこのリン酸バナジウムリチウム粉末を用いて実施例6と同様の方法で、正極及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=2.0、i=3.2、j=15.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=2.0、i=3.2、j=15.0になるように秤量を行った。出発原料はLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。さらに実施例6と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例6と同様の方法で評価した。表2に測定した放電容量を示した。
表2からもわかるように、リン酸チタンアルミニウムリチウムを固体電解質として用いた全固体電池において、本発明に係る範囲のLi/Vと2価のVを有するリン酸バナジウムリチウムを活物質層に用いた場合の方が、明らかに高い放電容量が得られていることが分かる。
[実施例18]
(正極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.93、になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vが1.93であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が49%であることを確認した。
(正極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを1.93、になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vが1.93であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が49%であることを確認した。
(負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vが1.70になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vが1.70であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が20%であることを確認した。
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vが1.70になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vが1.70であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が20%であることを確認した。
(正極活物質層用ペーストの作製)
Li/Vが1.93でかつ2価のV量が49%であるリン酸バナジウムリチウム粉末を用いて正極活物質層用ペーストを作製した。正極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して正極活物質層用ペーストとした。
Li/Vが1.93でかつ2価のV量が49%であるリン酸バナジウムリチウム粉末を用いて正極活物質層用ペーストを作製した。正極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して正極活物質層用ペーストとした。
(負極活物質層用ペーストの作製)
Li/Vが1.70でかつ2価のV量が20%であるリン酸バナジウムリチウム粉末を用いて負極活物質層用ペーストを作製した。負極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して負極活物質層用ペーストとした。
Li/Vが1.70でかつ2価のV量が20%であるリン酸バナジウムリチウム粉末を用いて負極活物質層用ペーストを作製した。負極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して負極活物質層用ペーストとした。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.3、g=0.3、h=1.7、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.3、g=0.3、h=1.7、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノール中を溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
次いで、この粉末100部に、溶媒としてエタノール100部、トルエン200部をボールミルで加えて湿式混合した。その後ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層用ペーストを調合した。
この固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ15μmの固体電解質層用シートを得た。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
正極集電体としてCu粉とLi/Vが1.93のリン酸バナジウムリチウム粉末を、また、負極集電体としてCu粉とLi/Vが1.70のリン酸バナジウムリチウム粉末をCu粉とリン酸バナジウムリチウム粉末が重量比で100:9となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロールで混練混合・分散して正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
正極集電体としてCu粉とLi/Vが1.93のリン酸バナジウムリチウム粉末を、また、負極集電体としてCu粉とLi/Vが1.70のリン酸バナジウムリチウム粉末をCu粉とリン酸バナジウムリチウム粉末が重量比で100:9となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロールで混練混合・分散して正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質ユニットの作製)
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで正極集電体層用ペーストを印刷し、80℃で10分間乾燥した。その上に、スクリーン印刷により厚さ5μmで正電極活物質層用ペーストを印刷し、80℃で10分間乾燥し正極層ユニットとした。一方、固体電解質層用シート上にスクリーン印刷により厚さ5μmで負電極活物質層用ペーストを印刷し、80℃で10分間乾燥し、次に、その上に、スクリーン印刷により厚さ5μmで負極集電体層用ペーストを印刷し、80℃で、10分間乾燥し、負極層ユニットとした。次いでPETフィルムを剥離した。
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで正極集電体層用ペーストを印刷し、80℃で10分間乾燥した。その上に、スクリーン印刷により厚さ5μmで正電極活物質層用ペーストを印刷し、80℃で10分間乾燥し正極層ユニットとした。一方、固体電解質層用シート上にスクリーン印刷により厚さ5μmで負電極活物質層用ペーストを印刷し、80℃で10分間乾燥し、次に、その上に、スクリーン印刷により厚さ5μmで負極集電体層用ペーストを印刷し、80℃で、10分間乾燥し、負極層ユニットとした。次いでPETフィルムを剥離した。
(積層体の作製)
正極層ユニット、負極層ユニットおよび固体電解質層用シートを用いて、固体電解質層、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層、固体電解質層の順に形成されるように積み重ね一層品を得た。このとき、正極層ユニットの正極集電体層が一方の端面にのみ延出し、負極層ユニットの負極集電体層が他方の端面にのみ延出するように、各ユニットをずらして積み重ねた。その後、これを熱圧着により成形した後、切断して積層体を作製した。
正極層ユニット、負極層ユニットおよび固体電解質層用シートを用いて、固体電解質層、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層、固体電解質層の順に形成されるように積み重ね一層品を得た。このとき、正極層ユニットの正極集電体層が一方の端面にのみ延出し、負極層ユニットの負極集電体層が他方の端面にのみ延出するように、各ユニットをずらして積み重ねた。その後、これを熱圧着により成形した後、切断して積層体を作製した。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表3に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表3に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例19]
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.55になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.55であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び5%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.55になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.55であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び5%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
[実施例20]
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
[実施例21]
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.70になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.55になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.70及び1.55であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、20%及び5%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.70になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.55になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.70及び1.55であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、20%及び5%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
[比較例12]
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
[比較例13]
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.80及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、33%及び1%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例18と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを1.80及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、33%及び1%であることを確認した。さらに実施例18と同様の方法を用いて積層体を作製した後、同様の方法で脱バイ、焼結を行った。その積層体の放電特性は実施例18と同様の方法で評価した。表3に測定した放電容量を示した。
表3からもわかるように、本発明に係る範囲のLi/Vと2価のVを有するリン酸バナジウムリチウムをそれぞれ正極活物質層及び負極活物質層に用いた全固体電池は明らかに高い放電容量が得られていることが分かる。
[実施例22]
(正極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを2.30になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vが2.30であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が78%であることを確認した。
(正極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vを2.30になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vが2.30であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が78%であることを確認した。
(負極活物質の作製)
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vが1.80になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vが1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が33%であることを確認した。
本実施形態の効果を実証するために、リン酸バナジウムリチウムにおいてLi/Vが1.80になるように原料の秤量を行った。出発原料にはLi2CO3、LiPO3、V2O3、NH4H2PO4を用いた。はじめに、出発原料を秤量後、エタノール中にてボールミル(120rpm/ジルコニアボール)で16時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、マグネシア製坩堝を用いて仮焼を行った。仮焼はリン酸バナジウムリチウム中に生成する2価のV量を制御するために、還元雰囲気中の水素含有量を変化させ、850℃、2時間で行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離し乾燥後、リン酸バナジウムリチウム粉末を得た。リン酸バナジウムリチウムの組成はICPを用いてLi/Vが1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、それぞれのリン酸バナジウムリチウム中の2価のV量が33%であることを確認した。
(正極活物質層用ペーストの作製)
Li/Vが2.30でかつ2価のV量が78%であるリン酸バナジウムリチウム粉末を用いて正極活物質層用ペーストを作製した。正極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して正極活物質層用ペーストを作製した。
Li/Vが2.30でかつ2価のV量が78%であるリン酸バナジウムリチウム粉末を用いて正極活物質層用ペーストを作製した。正極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して正極活物質層用ペーストを作製した。
(負極活物質層用ペーストの作製)
Li/Vが1.80でかつ2価のV量が33%であるリン酸バナジウムリチウム粉末を用いて負極活物質層用ペーストを作製した。負極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して負極活物質層用ペーストを作製した。
Li/Vが1.80でかつ2価のV量が33%であるリン酸バナジウムリチウム粉末を用いて負極活物質層用ペーストを作製した。負極活物質層用ペーストはリン酸バナジウムリチウム粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.02、g=0.13、h=1.91、i=3.0、j=12.03になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.02、g=0.13、h=1.91、i=3.0、j=12.03になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
次いで、この粉末100部に、溶媒としてエタノール100部、トルエン200部をボールミルで加えて湿式混合した。その後ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層用ペーストを調合した。
この固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ15μmの固体電解質層用シートを得た。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
正極集電体としてCu粉とLi/Vが2.30のリン酸バナジウムリチウム粉末を、また、負極集電体としてCu粉とLi/Vが1.80のリン酸バナジウムリチウム粉末を、Cu粉とリン酸バナジウムリチウム粉末が重量比で100:9となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロールで混練混合・分散して正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
正極集電体としてCu粉とLi/Vが2.30のリン酸バナジウムリチウム粉末を、また、負極集電体としてCu粉とLi/Vが1.80のリン酸バナジウムリチウム粉末を、Cu粉とリン酸バナジウムリチウム粉末が重量比で100:9となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロールで混練混合・分散して正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製)
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで正極集電体層用ペーストを印刷し、80℃で10分間乾燥した。その上に、スクリーン印刷により厚さ5μmで正電極活物質層用ペーストを印刷し、80℃で10分間乾燥し正極層ユニットとした。一方、固体電解質層用シート上にスクリーン印刷により厚さ5μmで負電極活物質層用ペーストを印刷し、80℃で10分間乾燥し、次に、その上に、スクリーン印刷により厚さ5μmで負極集電体層用ペーストを印刷し、80℃で、10分間乾燥し、負極層ユニットとした。次いでPETフィルムを剥離した。
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで正極集電体層用ペーストを印刷し、80℃で10分間乾燥した。その上に、スクリーン印刷により厚さ5μmで正電極活物質層用ペーストを印刷し、80℃で10分間乾燥し正極層ユニットとした。一方、固体電解質層用シート上にスクリーン印刷により厚さ5μmで負電極活物質層用ペーストを印刷し、80℃で10分間乾燥し、次に、その上に、スクリーン印刷により厚さ5μmで負極集電体層用ペーストを印刷し、80℃で、10分間乾燥し、負極層ユニットとした。次いでPETフィルムを剥離した。
(積層体の作製)
正極層ユニット、負極層ユニットおよび固体電解質層用シートを用いて、固体電解質層、正極集電体層、正極活物質層、、固体電解質層、負極活物質層、負極集電体層、固体電解質層の順に形成されるように積み重ね積層体を得た。このとき、正極質ユニットの正極集電体層が一方の端面にのみ延出し、負極質ユニットの負極集電体層が他方の端面にのみ延出するように、各ユニットをずらして積み重ねた。その後、これを熱圧着により成形した後、切断して積層体を作製した。
正極層ユニット、負極層ユニットおよび固体電解質層用シートを用いて、固体電解質層、正極集電体層、正極活物質層、、固体電解質層、負極活物質層、負極集電体層、固体電解質層の順に形成されるように積み重ね積層体を得た。このとき、正極質ユニットの正極集電体層が一方の端面にのみ延出し、負極質ユニットの負極集電体層が他方の端面にのみ延出するように、各ユニットをずらして積み重ねた。その後、これを熱圧着により成形した後、切断して積層体を作製した。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件としては、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件としては、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例23]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.5、g=0.5、h=1.5、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.5、g=0.5、h=1.5、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例15と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例15と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例24]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.0、g=1.0、h=1.0、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.0、g=1.0、h=1.0、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例25]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.1、g=1.1、h=0.9、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.1、g=1.1、h=0.9、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例15と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例15と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例26]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=1.0、i=2.8、j=9.28になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=1.0、i=2.8、j=9.28になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例27]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=2.0、i=3.2、j=12.28になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=2.0、i=3.2、j=12.28になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例28]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=1.0、i=2.8、j=10.75になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=1.0、i=2.8、j=10.75になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例29]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=2.0、i=3.2、j=13.75になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=2.0、i=3.2、j=13.75になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例30]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=1.0、i=2.8、j=10.65になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=1.0、i=2.8、j=10.65になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例31]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=2.0、i=3.2、j=13.65になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=2.0、i=3.2、j=13.65になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例32]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=1.0、i=2.8、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=1.0、i=2.8、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[実施例33]
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質及び負極活物質の作製)
本実施例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.30になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.80になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.30及び1.80であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、78%及び33%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=2.0、i=3.2、j=15.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=2.0、i=3.2、j=15.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.30のリン酸バナジウムリチウム粉末、Li/Vが1.80のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[比較例14]
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.02、g=0.13、h=1.91、i=3.0、j=12.03になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.02、g=0.13、h=1.91、i=3.0、j=12.03になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[比較例15]
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.5、g=0.5、h=1.5、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=1.5、g=0.5、h=1.5、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[比較例16]
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.0、g=1.0、h=1.0、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=2.0、g=1.0、h=1.0、i=3.0、j=12.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[比較例17]
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=1.0、i=2.8、j=9.28になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=0.02、h=1.0、i=2.8、j=9.28になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[比較例18]
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=2.0、i=3.2、j=13.75になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=0.5、g=1.0、h=2.0、i=3.2、j=13.75になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[比較例19]
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=1.0、i=2.8、j=10.65になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=0.1、h=1.0、i=2.8、j=10.65になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
[比較例20]
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質及び負極活物質の作製)
本比較例においては、正極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを2.60になるように原料の秤量を行い、また、負極活物質層用ペースト並びに正極集電体層用ペースト用として、リン酸バナジウムリチウムのLi/Vを1.48になるように原料の秤量を行った。これらに対し実施例22と同様の方法を用いてリン酸バナジウムリチウム粉末を作製した。リン酸バナジウムリチウムの組成はICPを用いて、Li/Vを2.60及び1.48であることを確認した。また、含有V中の2価Vの量はXPSを用いて、リン酸バナジウムリチウム中の2価のV量が、85%及び1%であることを確認した。
(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末を用いて、実施例22と同様の方法で正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=2.0、i=3.2、j=15.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
固体電解質として用いたリン酸チタンアルミニウムリチウムは、LifAlgTihPiOjの組成において、f=3.0、g=1.0、h=2.0、i=3.2、j=15.0になるように秤量を行った。出発原料にはLi2CO3、Al2O3、TiO2、NH4H2PO4を用い、エタノールを溶媒としてボールミルで16時間湿式混合を行った。出発原料の混合粉末をボールとエタノールから分離し乾燥した後、アルミナ製坩堝中にて、850℃、2時間大気中で仮焼を行った。その後仮焼粉末を、粉砕のためエタノール中にてボールミル(120rpm/ジルコニアボール)で16時間処理を行った。粉砕粉末をボールとエタノールから分離、乾燥し粉末を得た。
(固体電解質シートの作製)
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
得られたリン酸チタンアルミニウムリチウム粉末を用いて、実施例22と同様の方法で固体電解質シートを作製した。
(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
Li/Vが2.60のリン酸バナジウムリチウム粉末、Li/Vが1.48のリン酸バナジウムリチウム粉末、及びCu粉を用いて、実施例22と同様の方法で正極集電体層用ペースト及び負極集電体層用ペーストを作製した。
(活物質層ユニットの作製と積層体の作製)
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
実施例22と同様の方法で、上記の正極活物質層用ペースト並びに正極集電体層用ペーストを用いて正極層ユニットを作製し、負極活物質層用ペースト及び負極集電体層用ペーストを用いて負極層ユニットを作製した。さらに固体電解質層用シート、正極層ユニット、負極ユニットを用い、実施例22と同様の方法で積層体を得た。
(焼結体の作製)
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
得られた積層体に脱バインダーを行った後、同時焼成して焼結体を得た。脱バインダーは窒素中50℃/時間で焼成温度700℃まで昇温して、その温度に10時間保持し、同時焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に1時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.2mm×2.5mm×0.4mmであった。
(充放電特性の評価)
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
得られた積層体は充放電試験器を用い、バネ付けピンで固定するタイプの治具に取り付け充放電容量を測定した。測定条件として、充放電時の電流はいずれも2μAで行い、電圧は0Vから1.8Vで行った。表4に測定した放電容量を示した。使用に十分な放電特性の閾値は2.5μAhである。
表4からもわかるように、リン酸チタンアルミニウムリチウムを固体電解質として用いた全固体電池において、本発明に係るLi/Vと2価のVを有するリン酸バナジウムリチウムをそれぞれ正極活物質層及び負極活物質層に用いた場合の方が、明らかに高い放電容量が得られていることが分かる。
以上のように、本発明に係る全固体電池は放電容量の向上に効果がある。
高容量な全固体電池を提供することにより、特に、エレクトロニクスの分野で大きく寄与する。
高容量な全固体電池を提供することにより、特に、エレクトロニクスの分野で大きく寄与する。
1 全固体電池
2 正極層
3 負極層
4 固体電解質層
5 外装層
6 正極集電体層
7 正極活物質層
8 負極活物質層
9 負極集電体層
2 正極層
3 負極層
4 固体電解質層
5 外装層
6 正極集電体層
7 正極活物質層
8 負極活物質層
9 負極集電体層
Claims (6)
- 一対の電極層間に固体電解質層を有する全固体電池で、前記一対の電極層を構成する正極活物質層及び負極活物質層は、リン酸バナジウムリチウムを含み、前記リン酸バナジウムリチウムは、LiとVとを含むポリリン酸化合物を含み、1.50<Li/V≦2.30を満たし、前記Vに含まれる2価のVの割合が5%から80%であることを特徴とする全固体電池。
- 前記固体電解質層はリン酸チタンアルミニウムリチウムを含むことを特徴とする請求項1に記載の全固体電池。
- 前記正極活物質層に含まれる前記リン酸バナジウムリチウムのLi/Vの値が、前記負極活物質層に含まれる前記リン酸バナジウムリチウムのLi/Vの値よりも大きいことを特徴とする請求項1~2のいずれかに記載の全固体電池。
- 前記正極活物質層に含まれる前記リン酸バナジウムリチウムは1.60≦Li/V≦2.30を満たし、かつVに含まれる2価のVの割合が10%から80%であり、前記負極活物質層に含まれる前記リン酸バナジウムリチウムは1.50<Li/V≦2.10を満たし、かつVに含まれる2価のVの割合が5%から57%である事を特徴とする請求項1~3のいずれかに記載の全固体電池。
- 前記固体電解質はLifAlgTihPiOjを含むことを特徴とする請求項1~4のいずれかに記載の全固体電池。[但し、f、g、h、iおよびjは、それぞれ0.5≦f≦3.0、0.0<g≦1.0、1.0≦h≦2.0、2.8≦i≦3.2、9.25<j≦15.0を満たす数である。]
- 前記一対の電極層と、前記一対の電極層間に設けられた前記固体電解質層とが、相対密度80%以上であることを特徴とする請求項1~5のいずれかに記載の全固体二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019510040A JP6801778B2 (ja) | 2017-03-30 | 2018-03-28 | 全固体電池 |
DE112018001795.8T DE112018001795T5 (de) | 2017-03-30 | 2018-03-28 | All-solid-state-batterie |
US16/498,884 US11251431B2 (en) | 2017-03-30 | 2018-03-28 | All-solid-state battery |
CN201880022735.0A CN110476290B (zh) | 2017-03-30 | 2018-03-28 | 全固体电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-067403 | 2017-03-30 | ||
JP2017067403 | 2017-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181576A1 true WO2018181576A1 (ja) | 2018-10-04 |
Family
ID=63677736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/012971 WO2018181576A1 (ja) | 2017-03-30 | 2018-03-28 | 全固体電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11251431B2 (ja) |
JP (1) | JP6801778B2 (ja) |
CN (1) | CN110476290B (ja) |
DE (1) | DE112018001795T5 (ja) |
WO (1) | WO2018181576A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175630A1 (ja) * | 2019-02-27 | 2020-09-03 | Tdk株式会社 | 全固体二次電池 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6904423B2 (ja) * | 2017-08-30 | 2021-07-14 | 株式会社村田製作所 | 共焼成型全固体電池 |
WO2019044901A1 (ja) | 2017-08-30 | 2019-03-07 | 株式会社村田製作所 | 固体電解質及び全固体電池 |
WO2021145273A1 (ja) * | 2020-01-16 | 2021-07-22 | 株式会社村田製作所 | 固体電池 |
WO2021261558A1 (ja) * | 2020-06-24 | 2021-12-30 | Tdk株式会社 | 固体電解質および固体電解質電池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009123389A (ja) * | 2007-11-12 | 2009-06-04 | Kyushu Univ | 全固体二次電池 |
JP2012146630A (ja) * | 2010-12-21 | 2012-08-02 | Univ Of Tsukuba | 正極活物質およびその製造方法並びにリチウムイオン二次電池。 |
JP2012238545A (ja) * | 2011-05-13 | 2012-12-06 | Toyota Motor Corp | 全固体電池の製造方法 |
JP2016171068A (ja) * | 2015-03-10 | 2016-09-23 | Tdk株式会社 | ガーネット型リチウムイオン伝導性酸化物 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7914932B2 (en) | 2006-02-24 | 2011-03-29 | Ngk Insulators, Ltd. | All-solid-state battery |
JP5115920B2 (ja) | 2006-02-24 | 2013-01-09 | 日本碍子株式会社 | 全固体電池 |
JP5304168B2 (ja) * | 2007-11-12 | 2013-10-02 | 国立大学法人九州大学 | 全固体電池 |
CN102026928A (zh) * | 2008-05-16 | 2011-04-20 | 国立大学法人长冈技术科学大学 | 微晶玻璃及其制造方法 |
JP2013073705A (ja) * | 2011-09-27 | 2013-04-22 | Fuji Heavy Ind Ltd | リチウムイオン二次電池 |
JP2013084566A (ja) * | 2011-09-30 | 2013-05-09 | Fuji Heavy Ind Ltd | 非水電解質二次電池 |
JP6651708B2 (ja) * | 2014-05-19 | 2020-02-19 | Tdk株式会社 | リチウムイオン二次電池 |
US9991556B2 (en) | 2015-03-10 | 2018-06-05 | Tdk Corporation | Garnet-type li-ion conductive oxide |
JP6284040B2 (ja) * | 2015-08-07 | 2018-02-28 | トヨタ自動車株式会社 | リチウム二次電池用正極材料及びその製造方法 |
-
2018
- 2018-03-28 CN CN201880022735.0A patent/CN110476290B/zh active Active
- 2018-03-28 US US16/498,884 patent/US11251431B2/en active Active
- 2018-03-28 JP JP2019510040A patent/JP6801778B2/ja active Active
- 2018-03-28 WO PCT/JP2018/012971 patent/WO2018181576A1/ja active Application Filing
- 2018-03-28 DE DE112018001795.8T patent/DE112018001795T5/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009123389A (ja) * | 2007-11-12 | 2009-06-04 | Kyushu Univ | 全固体二次電池 |
JP2012146630A (ja) * | 2010-12-21 | 2012-08-02 | Univ Of Tsukuba | 正極活物質およびその製造方法並びにリチウムイオン二次電池。 |
JP2012238545A (ja) * | 2011-05-13 | 2012-12-06 | Toyota Motor Corp | 全固体電池の製造方法 |
JP2016171068A (ja) * | 2015-03-10 | 2016-09-23 | Tdk株式会社 | ガーネット型リチウムイオン伝導性酸化物 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175630A1 (ja) * | 2019-02-27 | 2020-09-03 | Tdk株式会社 | 全固体二次電池 |
Also Published As
Publication number | Publication date |
---|---|
US20200266445A1 (en) | 2020-08-20 |
CN110476290B (zh) | 2022-11-01 |
CN110476290A (zh) | 2019-11-19 |
JP6801778B2 (ja) | 2020-12-16 |
JPWO2018181576A1 (ja) | 2020-05-14 |
DE112018001795T5 (de) | 2019-12-19 |
US11251431B2 (en) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5742940B2 (ja) | 全固体電池およびその製造方法 | |
WO2018181576A1 (ja) | 全固体電池 | |
CN109792079B (zh) | 全固体锂离子二次电池 | |
WO2019189311A1 (ja) | 全固体電池 | |
CN109792080B (zh) | 全固体锂离子二次电池 | |
CN111699582A (zh) | 全固体电池 | |
JP2019164980A (ja) | 複合体電極及び全固体リチウム電池 | |
WO2018181674A1 (ja) | 全固体二次電池 | |
CN113056835A (zh) | 全固体电池 | |
CN110931842A (zh) | 全固体电池 | |
CN113169372B (zh) | 全固体二次电池 | |
WO2018181577A1 (ja) | 全固体電池 | |
CN114402470A (zh) | 固体电解质层、全固体二次电池和它们的制造方法 | |
JP2015220096A (ja) | リチウムイオン二次電池 | |
CN110957493A (zh) | 全固体电池 | |
WO2018181578A1 (ja) | 固体電解質および全固体二次電池 | |
WO2018181673A1 (ja) | 全固体二次電池 | |
CN114830394A (zh) | 固体电解质及全固体电池 | |
JP7660096B2 (ja) | 全固体電池 | |
JP7660097B2 (ja) | 全固体電池 | |
JP2019140065A (ja) | 全固体電池の製造方法 | |
WO2023013132A1 (ja) | 負極活物質および全固体電池 | |
WO2024070429A1 (ja) | 負極活物質および全固体電池 | |
CN118922895A (zh) | 固体电解质层及全固体二次电池 | |
WO2020129975A1 (ja) | 活物質材料および全固体電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776252 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019510040 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18776252 Country of ref document: EP Kind code of ref document: A1 |